TASKING.

TASKING SmartCode - 8051
User Guide

MA264-800 (v10.3r1) August 27, 2024

Copyright © 2024 TASKING B.V.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING B.V. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. TASKING®
and its logo are registered trademarks of TASKING Germany GmbH. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

Table of Contents

I O =T g T 7= T 1 1
I T 5 = L= B 1Y/ o 1= P 2
1.2, ACCESSING MEBIMOIY ettt ettt e e e e e et e ettt 3

1.2.1. Memory Type QUAIITIEISoviriii i e 4
1.2.2. MEMOTY MOGEIS ...ueieititi i e e e 6
1.2.3. Placing an Object at an Absolute Address: __at()coovveriiiiiiie e, 7
1.2.4. ACCESSING BilS L.uiiiiiti i 8
1.2.5. Accessing Hardware from C: __sfr, __bsfr ... 11
1.3, Shift JIS Kanji SUPPOIT .t e e e e e 12
1.4. Using Assembly in the C Source: _ asm()ccoviiiiiiiiiiiieeie e 13
1.5. GNU C Language EXIENSIONScuiuitititiiiiei ettt e et aa e aanens 22
LB, AT ULES et 22
1.7. Pragmas to Control the ComPpilero.iiiiiii e 26
1.8. Predefined PreproCeSSOr MACIOSc.iuiririiiii ettt e e e e a e 32
1.9, VariablEs ..o e 33
1.9.1. AUtOMALIC VariabIEscuiiiii i 33
1.9.2. Initialized Variablesc.oii 34
1.9.3. Non-Initialized Variables 34
0 TR 1 1T 34
1,11, SWItCh STAIEMENE ... et 35
O o2 B T 1 T o L PP 37
1.12.1. Calling CONVENTION L..iuiiiii e e e e e e e e aanes 37
1.12.2. STACK USAQE ouvniiiiiiii ittt e e e e e 38
1.12.3. REGISIEI USAQE . .uiiiiiiitit ettt e e e e ettt aaaas 41
1.12.4. Inlining FUNCHONS: INIINEt e aes 42
1.12.5. Interrupt FUNCHONS ... e e 43
1.12.6. INtriNSIC FUNCHONSuiiii e 46
e TS T ox 1 o] o NN F= 1011 o 51

b XY= 100 o]V = Uy o U T Vo = PP 53
2.0 ASSEIMDBIY SYNMTAX ..ttt aas 53
2.2. Assembler Significant CharacCterscooiiiiiii e 54
2.3. Operands of an Assembly INSFUCHION ..ot 55
2.4, SYMDBOL NAMES ..ot et 55

2.4.1. Predefined Preprocessor SYMbBOISccoiiiiiiiii e 56
BT 2 (=T o 1S3 (] ¢ PP 57
2.6. Special FUNCHON REQISEISuii it e e 57
2.7, ASSEMDBIY EXPIrESSIONS ..vittitit ittt e e et aas 58
2.7.1. NUMEFIC CONSLANEStuieiitiiie ettt e aenas 58
A S 11131 T PSPPI 59
2.7.3. EXPresSion OPEratorSo.uiiiiiiee e e e et e e e e e e e e aeaaans 59
2.7.4. Symbol Types and EXPression TYPESuuiuiuirii e e e eaaaes 61
A S T F- T o B o (=T o (0Tt 1T o PP 62
2.8.1. Defining and Calling MaCIOSvuiniiii e aes 63
2.8.2. Local SYmbOIS iN MACTIOSiviiiiii et e 66
2.8.3. Built-in Macro Preprocessing FUNCLIONSoviuiiiiiiii s eieieieeeeaeaes 67
2.8.4. MACIO DEIIMITEIS ... euieeie et et eenas 97
2.8.5. Literal Mode versus Normal Modec.oviiiiiiiiiiieiec e 100
2.8.6. Algorithm for Evaluating Macro CallSccoooiuiiiiiiiiii e 102

TASKING SmartCode - 8051 User Guide

2.9. Assembler Directives and CONMIOISovuiuiieiiiiii e 103
2.9.1. ASSEMDIET DIFECHVESouitiitee e 104
2.9.2. ASSEMDBIEr CONMIOIS ...viiit e 130

2.10. GENEIIC INSIIUCTIONS ... ettt ettt et et e es 153

3.USING the C COMPIIEE ...t et et 155

3.1, COMPIIALION PrOCESS ...ttt e 155

3.2. Calling the C COMPIIET e 156

3.3. The C Startup COOE ...t e et 158

3.4. How the Compiler Searches Include Filescooooiiiiiii e 160

3.5. Compiling fOor DEDUQGGING ... vueiiiie e 161

3.6. Compiler OPtIMIZAtIONSuieie e 162
3.6.1. Generic Optimizations (frontend)coiuieiiiii e 163
3.6.2. Core Specific Optimizations (backend)ccovviiiiiiiii e 164
3.6.3. Optimize for Code Size or EXeCUtion SPeedccvviiiiiiniiiiiiiieinieeenenn 165

3.7. Static CoAe ANGIYSIS ...ttt 167
3.7.1. C Code Checking: CERT C ...ouiiiiiiiiiii e 168
3.7.2. C Code Checking: MISRA Ciiiiiiiiie e 170

3.8. C COMPIlEr EXTOr MESSAUES ... euvniniteniiae it ettt et 172

A PTOfIlING e e 175

4.1 What IS Profiling? ... 175

4.2. Profiling at Compile Time (Static Profiling)cooiiiii e 176
4.2.1. Step 1: Build your Application with Static Profilingcooooviiiiiinnnnn, 176
4.2.2. Step 2: Displaying Static Profiling RESUIScoooiiiiiiiiie, 177

5. USING the ASSEMDBIET e 181

5.1, ASSEMDBIY PrOCESS ...ouiieie i e 181

5.2. Calling the ASSEMDIET e e 182

5.3. How the Assembler Searches Include Files ... 183

5.4. Assembler OptimIZAtiONSc.iuiiiti e 184

5.5. Generating @ LiSt File ..o 185

5.6. ASSEMDIEr ErTOr MESSAGESeuiiiiitieii ettt e 185

B. USING the LINKET ...t et ettt 187

B.1. LINKING PrOCESS ...uitiiiiit ittt et et 187
6.1.1. Phase 1: LINKING .. .uvnieiii et 189
6.1.2. PhaSE 2: LOCALING ... euvninitett ettt ettt et et 190

6.2. Calling the LINKET ... e 192

6.3. LiNKing With LIDraries ..o e 193
6.3.1. How the Linker Searches Librariesc.cooviiiiiiiii e 195
6.3.2. How the Linker Extracts Objects from Librariesccoooviiiiiiiiiiinenn, 195

6.4. Incremental LINKINGoeiei e 196

6.5. IMporting BINAry FlES 196

6.6. Converting Intel Hex to Binary FOrMatooiuiiiiiiii e 197

6.7. LINKEr OPtIMIZALIONS ...\ viietei ettt et ettt ene e 198

6.8. Controlling the Linker With @ SCrIPL ..o 200
6.8.1. Purpose of the Linker SCript LAnNQUAGEcvuerieirieiieieeieeneeeee e 200
6.8.2. ECIIPSE AN LSL ...ttt 200
6.8.3. Structure of a Linker SCrpt Fileccviii e 202
6.8.4. The Architecture Definitioncoeiiiiii e 205
6.8.5. The Derivative DefiNitionooiriiiii e 208
6.8.6. The Processor DefiNitioNovirieiii e 209
6.8.7. The Memory Definitionc.oeiiiiii e 209

TASKING SmartCode - 8051 User Guide

6.8.8. The Section Layout Definition: Locating SECtionscocovvviiiiiiiiiinnienenns. 211

6.9. LINKE LADEIS . ..ot 213
6.10. Generating @ Map File 214
6.11. LINKer ELF NOtE SECHONScuitiiitiii ettt et e 215
6.12. LINKET EFFOr MESSAUES .. eutuenitiiteett et et ettt et et 215
7.USING the ULIILIESeeei et 217
7.1, CONIOI PrOGIaIM ...ttt et e et 217
7.2. MaKE ULIIILY BIMIK ...ttt e et e 219
7.2.1. MaAKEFIlE RUIES ..o e 219
7.2.2. MaKefile DIFECHVESueeeeii e e 221
7.2.3. MACIO DEfINItIONSeeieiitei e 221
7.2.4. MaKefile FUNCHONSouiitii e 224
7.2.5. ConditioNal PrOCESSINGcuuenititiiiie et 224
7.2.6. MaKefile Parsingcuiiiiii e 225
7.2.7. Makefile Command ProCeSSINGcuueniiiitiiies et 226
7.2.8. Calling the amk Make ULIlitycooiuimiii e 227

7.3. Make ULility MKBL ... e 228
7.3.1. Calling the Make ULIlItYc.oeiiiei e 229
7.3.2.Writing @ MaKefile ... 230

T, ATCRIVE e e e 239
7.4.1. Calling the ArChIVET ... 239
7.4.2. ArChiver EXAmMPIESuiii e 241

7.5. HLL ODBJECT DUMPET ...ttt ettt e 243
T.5. 0. INVOCALION . ouieeie e e et 243
7.5.2. HLL DUMP OUEPUL FOrMALeieieiiii e 243

7.6. EXpire Cache ULIIYc.eeiei e 249
8. USING the DEDUGGET ... e 251
8.1. Reading the Eclipse DOCUMENTALIONc.iuieiiiiiieie et 251
8.2. Debugging @n 8051 PrOJECEcuuiiitiie et e 251
8.3. Creating a Customized Debug Configurationc.cooviiiiiiiiiii e 252
8.4, TroUDIESNOOTINGce et 259
8.5. TASKING DebUQg PEISPECHIVEueuitieieeei et e 259
8.5.1. DEDUG VIBW .ottt et 260
8.5.2. BreakpointS VIEWuiie i 262
8.5.3. File System Simulation (FSS) VIEWoiuiiiiiiiiii e 268
8.5.4. DiSasSemMbBIY VIBWcuiiiiii e 269
8.5.5. EXPreSSIONS VIBW . ..cuiiiitiii et 269
8.5.6. MEMOIY VIBWieiitiiiie ettt et 270
8.5.7. Compare ApPIICAtION VIEW ..o 271
8.5.8. HEAD VIBW ...ieiieii i 271
8.5.9. LOGGING VIBW ..ottt ettt et et 272
8.5.10. RTOS VIBW ...viieitiititiiet et ettt et ettt et e neae e 272
8.5.11. REGISIEIS VIBW ...ttt ettt et 272
8.5.12. TFACE VIBW ettt et ettt et e 273

LS B Lo 1o] I @] o] 1T] o 1S PP 275
9.1. Configuring the Command Line ENVIONMENTcveiiiiiiiiieeeee e 279
9.2. C COMPIIEr OPLIONS ...ttt et e e ene e 281
9.3. ASSEMDIET OPLIONS ...ttt 357
9.4, LINKEI OPLIONS ..ttt ettt et ettt et e e 404
9.5. Control Program OPLIONSeuieiit ettt 459

TASKING SmartCode - 8051 User Guide

9.6. MaKe ULIlIty OPLIONSeieieiieiet ettt et et et 518
9.7. Parallel Make ULility OPLIONSuieitieiee et 546
9.8. ArCRIVEN OPTIONS .. .eteit ettt ettt et 560
9.9. HLL ODbject DUMPET OPLIONSvuiiitiiteeie et et e 574
9.10. Expire Cache ULility OPLIONSvuitiiiiieie e 598
10. Influencing the BUild Time ... e 609
10.1. OptiIMIZAtION OPLIONS ... eetiititi et e ettt ene e 609
10.2. AULOMALIC INIINING «..oeee et e 609
10.3. COdE COMPACHION ...eieie ittt et et ene s 609
10.4. COMPIIEr CACKNE .. oot e 609
10.5. HEAEr FIES . .oueiie e 610
10.6. Parallel BUIlL ... e e 610
10.7. NUMDETr Of SECLONSieii e 611
I o= T =T PP PRSP 613
11,1, LIDrary FUNCHONS ...ttt et et e 613
L0 L, @SSOt et 614
11.1.2. ctype.h and WCLYPE.N ... 614
L0.0.3, AN e 615
L1004, BITNON e 615

L0 LD fONEL N e 616

L0 L6, FBNVLN L 616

L. 1.7 Fl0AE N o e 617
11.1.8. inttypes.h and Stdint.h ... 618

L0 L0 0. N e 618
L1100, 0S06B46B.1 ..ot 619
I I O 12 11 1 PP PRSPPI 619
11,102, 10CAIE.N oo e 619
111,23, MANOC.H e e 619
11.1.14. math.h and tgmath.h ... 620
10105, SO M. N e e 624
L1106, SIGNALIN o e 625
11,107, StAalign.n oo 625
L1128, SEAANG.N oo 625
11.1.19. StADOOLN <. 626
11.1.20. StAAEF. N Lo e 626
11,120, SEAINEN oo e 626
11.1.22. stdio.h and Wehar.h ... 626
11.1.23. stdlib.h and Wehar.h ... 634
11.1.24. StANOrEIUINLN L.oe e e 637
11.1.25. string.h and Wehar.h ... 638
11.1.26. time.h and WChar.n 639
L11.1.27. UCNAIN o 642
L1128, UNISTA.N oo 642
11.1.29. WCNAIN o 643
11,130, WOEYPE.N ot e 644

11.2. C LIBrary REENITANCYvuiiiiiit ettt et et e 645
12, LISt FlE FOIMALS ...ooeneiie e e ettt et et 657
12.1. Assembler List File FOIrMALc.ieieieii e 657
12.2. Linker Map File FOrMALo e 658
13. ODJECE FIlE FOIMALSeieitee ettt et e es 665

Vi

TASKING SmartCode - 8051 User Guide

13.1. ELF/DWARF ODBJECt FOIMALouieiititie et et 665
13.2. Intel HEX RECOIT FOIMALc.ieiie ittt e 665
13.3. Motorola S-ReCOrd FOIMMALcuiititiee e 668
13.4. Binary ODJEC FOIMALvuinieiie e e et 670
14. Linker Script LANGQUAGE (LSL)uieiiiiii et 671
14.1. Structure of @ Linker SCript Fileou e 671
14.2. Syntax of the Linker SCript LANQUAGEccuvuiiieiiiiaie e 673
14.2.0. PrEPIOCESSING .. ueuttteteten ettt et ettt ettt et 673
14.2.2. LEXICAl SYNEAX ..euittieitin et 674
14.2.3. 1dentifiers @and TaGSovueuiriitii e 675
T14.2.4, EXPIESSIONS . ..vieniitit ettt ettt et et e 675
14.2.5. BUIlt-IN FUNCHONSenieii e e e es 676
14.2.6. LSL Definitions in the Linker Script File ... 678
14.2.7. Memory and Bus Definitionsooiuiiiiiiiii e 679
14.2.8. Architecture Definitionc.iiiiii e 681
14.2.9. Derivative DefiNItiONo 683
14.2.10. Processor Definition and Board Specificationccocoviiiiiiiniiiininenns 684
14.2.10. SECHON SEUUD ...ttt et e 684
14.2.12. Section Layout Definition ..o 685

14.3. EXPression EVAIUALION ..o 690
14.4. Semantics of the Architecture Definitioncooviiiiiii e 690
14.4.1. Defining an ArChiteCUIecuiii e 691
14.4.2. Defining INtErNal BUSESuiiiiiiii et 691
14.4.3. Defining AAAreSS SPACESuiriiie ittt 692

LA 4.4, MAPPINGS ettt et ettt et et e 694

14.5. Semantics of the Derivative Definitionc.oviiiiii e 697
14.5.1. Defining @ DEIVALIVEiuiitiii et 698
14.5.2. Instantiating Core ArChiteCtUIESc.iuiiiiii e 698
14.5.3. Defining Internal Memory and BUSEScooviuiiiiiiiiii e 700

14.6. Semantics of the Board SpecifiCcationcovviiiiii 701
14.6.1. DefiNiNg @ PrOCESSON ... vuiiiiiiteet e e ae 702
14.6.2. Instantiating DeriVatiVESc.ouiiiiriiii e 702
14.6.3. Defining External Memory and BUSESc.ovuieiiiiiiiiiiiiiiiecneceeeens 702

14.7. Semantics of the Section Setup Definitionc.cooiiiiii e 703
14.7.1. SEtting UP @& SECHONuvuinitiite e e 704

14.8. Semantics of the Section Layout Definitioncocooiiiiiiiii e 705
14.8.1. Defining @ SEeCtioN LaYOULovieieiiiie e 706
14.8.2. Creating and Locating Groups of SECtiONScccooiiiiiiiiiii e 707
14.8.3. Creating or Modifying Special SECHONSccciviiiiiiiii e 713
14.8.4. Creating SYMDOIS 718
14.8.5. Conditional Group STAtEMENTSc.veirienitiie e 719

15. CERT C Secure Coding STANAArdcuieiiiei e 721
15.1. PreproCesSSOr (PRE)cuuiiiiii et e et 721
15.2. Declarations and Initialization (DCL)c.ovuiuiiiiii e 722
15.3. EXPreSSioNS (EXP) ...iiiiiiiiiie et 723
ST a1 (=To = o AV) PP 724
15.5. Floating PoiNt (FLP) ... e 724
15.6. AITAYS (ARR) .ottt 725
15.7. Characters and StriNgS (STR) ...uvreiiii e 725
15.8. Memory Management (MEM) ... e 725

Vii

TASKING SmartCode - 8051 User Guide

15.9. EnVIironment (ENV) ... e 726
15.10. SIGNAIS (SIG) . .tieniieitee e 726
15.11. MiISCEllaN@0US (MSC)vuiiiiiiteee e e et 727
16. MISRA C RUIES .ottt et et 729
16.1. MISRA CiLO08 .ottt e et 729
16.2. MISRA C:2004 ..ottt et 733
16.3. MISRA Ci2012 ..oooiiiieieiiie et ettt et 741

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler for 8051 fully supports the ISO C99 standard and supports all mandatory
language features of the C11 and C17 standard, and adds extra possibilities to program the special
functions of the target. C17 is the default of the C compiler.

The TASKING C compiler meets and exceeds the minimum requirements in all cases, only limited by the
amount of memory available to the compiler.

C11/C17 language features

All mandatory ISO C11/C17 language features are supported (ISO/IEC 9899:2011/9899:2018 section
6.10.8.1 Mandatory macros). Furthermore the C compiler supports the following conditional features
(ISO/IEC 9899:2011/9899:2018 section 6.10.8.3 Conditional feature macros):

« variable length arrays and variably modified types

Other conditional language features such as threads, as mentioned in section 6.10.8.3 Conditional feature
macros and section 6.10.8.2 Environment macros of the ISO/IEC 9899:2011/9899:2018 standard, are
not supported. __STDC_NO _ATOM CS__ and __STDC_NO_THREADS___ are defined as 1.

Additional language features

In addition to the standard C language, the compiler supports the following:
» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

» predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

TASKING SmartCode - 8051 User Guide

1.1. Data Types

Fundamental Data Types

The C compiler supports the following data types.

CType Size Align Limits
__bit 1 1 Oorl
_Bool 1 8 Oor1l
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 8 [-2%°, 2151
unsigned short 16 8 [0, 216-1]
int 16 8 25, 25.1)
unsigned int 16 8 [0, 216-1]
enum 1 1 Oorl
8 8 [-21527%] or [0, 28-ﬂ
16 8 [[2™,277-1] or [0, 27°-1]

long 32 8 [-2%%, 2%
unsigned long 32 8 [0, 232-1]
long long ** 32 8 [-231, 231-1]
unsigned long long - 32 8 [0, 232-1]
float (23-bit mantissa) 32 8 [-3.402E+38, —1.175E-38]

[+1.175E-38, +3.402E+38]
double ” 32 8 [-3.402E+38, —1.175E-38]
long double [+1.175E-38, +3.402E+38]
pointer to __sfr, __ bsfr, _ data, 8 8 [0, 28-1]
__bdata, __idata, __pdata or __bit
pointer to function, _ xdataor __rom |16 8 [0, 216-1]

“When you use the enumtype, the compiler will use the smallest sufficient type (__bi t, char,
unsi gned char ori nt), unless you use C compiler option --integer-enumeration (always use
16-hit integers for enumeration).

" The | ong | ong types are treated as | ong. The doubl e and | ong doubl e types are always
treated as f | oat .

C Language

Bit Data Type

You can use the __bi t type to define scalars in the bit-addressable area and for the return type of
functions. A struct containing bit-fields cannot be used for this purpose, for example because the struct
is aligned at a byte boundary. Unlike the _Bool type the __bi t type is aligned on a bit boundary.

The following rules apply to __bi t type variables:
« A__bit type variable is always unsigned.

* A__bit type variable can be exchanged with all other type-variables. The compiler generates the
correct conversion.

A __bi t type variable is like a boolean. Therefore, if you convertani nt type variabletoa __bi t type
variable, it becomes 1 (true) if the integer is not equal to 0, and O (false) if the integer is 0. The next
two C source lines have the same effect:

bit _variable
bit _variable

int_vari abl e;
int_variable ? 1 : O;

» Pointerto __bi t is allowed, but you cannot take the address of a bit on the stack.

e The __bit typeis allowed as a structure member. However, a bit structure can only contain members
of type __bi t, and you cannot push a bit structure on the stack or return a bit structure via a function.

e Aunionofa__bit structure and another type is not allowed.
« A__bit type variable is allowed as a parameter of a function.
* A__bit type variable is allowed as a return type of a function.
« A__bit typed expression is allowed as switch expression.

* The si zeof ofa__bit typeis 1.

» Aglobal or static __bi t type variable can be initialized.

* A__bit type variable can be declared volatile.

__bitsizeof() operator

The si zeof operator always returns the size in bytes. Use the __bi t si zeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof (object | type)

1.2. Accessing Memory

The TASKING C compiler for 8051 has several keywords you can use in your C source to specify memory
locations. This is explained in the sub-sections that follow.

TASKING SmartCode - 8051 User Guide

1.2.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type based on the memory model.

You can specify the following memory types:

data

Qualifier Description [Location Maximum Pointer size [Pointer Section type*
object size arithmetic

__bdata Bit Bit Size of bit 8-bit 8-bit bdata

addressable |addressable |addressable
memory in memory
internal RAM

__data Direct Lower 128 128 bytes 8-bit 8-bit data
addressable |bytesin
internal RAM |internal RAM
data

__idata Indirect Internal RAM |Size of 8-hit 8-bit idata
addressable internal RAM
internal RAM
data

__sfr Special Upper 128 No allocation |8-bit 8-bit --
function bytes in possible
register internal RAM

__bsfr Bit Upper 128 No allocation |8-bit 8-bit --
addressable |bytes in possible
special internal RAM
function
register

__Xxdata External RAM |External RAM |64 KiB 16-bit 16-bit xdata
data

__pdata Page in External RAM | 256 bytes 8-bit 8-bit pdata
external RAM
data

__rom External ROM |External ROM |64 KiB 16-hit 16-bit rom

" The default section name is equal to the section type followed by a single underscore and the name
of the allocated object. You can change the section name with the #pr agna secti on or command
line option --rename-sections.

" Because the SFR area has a predefined layout (little-endian), it is not possible to allocate variables
in this area. The SFR area is only accessible through a direct addressing mode. Therefore, a warning
will be generated when a pointerto __sfr or __bsfr is dereferenced.

C Language

Examples using explicit memory types

__data char c;

__rom char text[] = "No snoking";
__xdata int array[10][4];

__idata long |I;

The memory type qualifiers are treated like any other data type specifier (such as unsi gned). This means
the examples above can also be declared as:

char _ data C;

char __rom text[] = "No snoking";
int _ xdata array[10][4];
long __idata |;

1.2.1.1. Pointers with Memory Type Qualifiers
Pointers for the 8051 can have two types: a 'logical’ type and a memory type. For example,
_romchar *__data p; /* pointer residing in data, pointing to ROM */

means p has memory type __dat a (p itself is allocated in on-chip RAM), but has logical type 'character
in target memory space ROM'. The memory type qualifier used to the left of the "*', specifies the target
memory of the pointer, the memory type qualifier used to the right of the *', specifies the storage memory
of the pointer.

The 8051 C compiler is very efficient in allocating pointers, because it recognizes far (2 byte) and near
(1 byte) pointers. Pointers to __data, __idata, __pdata, __bdata and __bit have a size of 1 byte, whereas
pointers to __rom, __ xdata and functions (in ROM) have a size of 2 bytes.

Pointer conversions
Conversions of pointers with the same qualifiers are always allowed. The following table contains the

additionally allowed pointer conversions. Other pointer conversions are not allowed to avoid possible
run-time errors.

Source pointer

Destination pointer

__bdata __data

__bdata __idata
__data __idata
__pdata __xdata
__bsfr _ sfr

1.2.1.2. Structure Tags with Memory Type Qualifiers

A tag declaration is intended to specify the layout of a structure or union. If a memory type is specified,
it is considered to be part of the declarator. The tag name itself, nor its members can be bound to any
storage area, although members having type "... pointer to" do require one. The tag may then be used

TASKING SmartCode - 8051 User Guide

to declare objects of that type, and may allocate them in different memories. The following example
illustrates this constraint.

struct S {
__Xxdata int i; /* referring to storage: not correct */
__idata char *p; /* used to specify target nenory: correct */

}s

In the example above the 8051 compiler ignores the erroneous __xdat a memory type qualifier (and
issues a warning message).

1.2.1.3. Typedefs with Memory Type Qualifiers

Typedef declarations follow the same scope rules as any declared object. Typedef names may be
(re-)declared in inner blocks but not at the parameter level. However, in typedef declarations, memory
type qualifiers are allowed. A typedef declaration should at least contain one type qualifier.

Example using memory types with typedefs:
typedef __idata int |DATINT, /* menmory type __idata: OK */

typedef int _ data *DATAPTR /* logical type _ data,
nmenory type 'default’ */

1.2.2. Memory Models

The C compiler supports three data memory models, listed in the following table.

Memory model |Description Letter |Max RAM size |Default data memory type
Small Direct addressable s 128 bytes __data
internal RAM
Auxiliary page One page of external |a 256 bytes __pdata
RAM
Large External RAM I 64 KiB __xdata

Each memory model defines a default memory type for objects that do not have a memory type qualifier
specified. By default, the 8051 compiler uses the small memory model. With the C compiler option --model
you can specify another memory model. Per memory model you can choose to use reentrancy which
enables you to call functions recursively.

You can overrule the default memory type with one of the memory type qualifiers. This allows you to
exceed the default maximum RAM size. For information on the memory types, see Section 1.2.1, Memory
Type Qualifiers.

Small memory model

By default the 8051 compiler uses the small memory model. In the small memory model all data objects
with the default memory type and the stack (used for function parameter passing) must fit in the direct

addressable area of internal RAM. Objects with an explicit memory type qualifier can exceed this limitation
(for example an object qualified as __xdat a or __pdat a). Note that the stack length depends upon the
nesting depth of the various functions. Accessing data in internal RAM is considerably faster than accessing

6

C Language

data in external RAM. Therefore, it is useful to place often used variables in internal data memory and
less often referenced data elements in external data memory.

Large memory model

When the compiler uses the large memory model to access data, the produced code is larger and in
some cases slower than the code for a similar operation in one of the other memory models.

Auxiliary page memory model

The auxiliary page memory model is especially interesting for derivatives with 256 bytes of 'external' RAM
on chip. All data objects with the default memory type must fit in one 256 bytes page.

Reentrancy

Optionally you can choose to enable reentrancy. If you select reentrancy, a (less efficient) virtual dynamic
stack is used which allows you to call functions recursively. With reentrancy, you can call functions at any
time, even from interrupt functions.

Select the memory model in Eclipse
To select the memory model to compile for:
1. Select C Compiler » Memory Model.
2. Select the Small, Auxiliary or Large compiler memory model.

3. Optionally enable the option Allow reentrant functions.

__ MODEL__

The compiler defines the preprocessor symbol __ MODEL __ to the letter representing the selected memory
model. This can be very helpful in making conditional C code in one source module, used for different
applications in different memory models.

Example:

#if __MODEL__ == 's'
/* this part is only for the small menory nodel */

#rendi f
1.2.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object at an absolute address in memory.

With the attribute __at () you can specify an absolute address.
Examples

unsi gned char Display[80*24] __ at(0x2000);

TASKING SmartCode - 8051 User Guide

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

void f(void) __at(Oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

The argument of the __at () attribute must be a constant address expression. Otherwise the compiler
generates an error.

You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses. If they are, the compiler generates
an error.

A variable that is declared ext er n, is not allocated by the compiler in the current module. Hence you
should not use the keyword __at () on an external variable. If you do, the compiler ignores the keyword
__at () without generating an error. Use __at () at the definition of the variable.

You cannot place structure members at an absolute address. If you do, the compiler ignores the keyword
__at () and generates a warning.

Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.2.4. Accessing Bits

There are several methods to access single bits in the bit-addressable area. The compiler generates
efficient bit operations where possible.

Masking and shifting

The classic method to extract a single bit in C is masking and shifting.

bdat a unsi gned int bitword;

void foo(void)

{

if(bitword & 0x0004) /'l bit 2 set?

{

bitword &= ~0x0004; // clear bit 2
}
bi tword | = 0x0001; // set bit O;

Built-in macros __getbit() and __putbit()

C Language

The compiler has the built-in macros __get bi t () and __put bi t () . These macros expand to shift/and/or

combinations to perform the required result.

__bdata unsigned int bw;

void foo(void)

{

if(_getbit(bw, 2))

{
}

__putbit(0, bw, 2);

__putbit(1,

}

Accessing bits using a struct/union combination

typedef __ bdata union

{

bw, 0);

unsi gned i nt word;
struct

{ .
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

i
} bit

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
S;

} bitword_t;

bitword t

bw;

b0 :
bl :
b2 :
b3 :
b4 :
b5 :
b6 :
b7 :
b8 :
b9 :
b10:
bl1:
b12:
b13:
bl4:
b15:

void foo(void)

PR RPRPRPRRRRPRPRPRPRRPRERRERE

i f(bw bits.b3)

{

bw. bits. b3
}
bw. bits. b0 = 1;

0;

TASKING SmartCode - 8051 User Guide

}
void reset(void)
{

bw. word = 0;
}

Declaring a bit variable with __atbit() (backwards compatibility only)

For backwards compatibility, you can still use the __at bi t () keyword to define a bit symbol as an alias
for a single bit in a bit-addressable object. However, we recommend that you use one of the methods
described above to access a bit.

The syntax of __at bit () is:

__atbit(object,offset)

where, object is a bit-addressable object and offset is the bit position in the object.
The following restrictions apply:

» This keyword can only be applied to __bi t type symbols.

» The bit must be defined vol at i | e explicitly. The compiler issues an error if the bit is not defined
volatile.

» The bitword can be any vol ati | e bit-addressable (__bdat a) object. The compiler issues an error if
the bit-addressable object was not volatile.

» The bit symbol cannot be used as a global symbol. An extern on the bit variable, without __at bi t (),
will lead to an unresolved external message from the linker, so therefore __at bi t () is required.

Examples

/* Module 1 */
vol atile __bdata unsigned int bitword;
volatile __bit b __atbit(bitword, 3);

/* Module 2 */
extern volatile __bdata unsigned int bitword;
extern volatile __bit b __atbit(bitword, 3);

Drawbacks of __atbit()

The __at bi t () requires all involved objects to be volatile. If your application does not require these
objects to be volatile, you may see in many cases that the generated code is less optimal than when the
objects were not volatile. The reason for that is that the compiler must generate each read and write
access for volatile objects as written down in the C code. Fortunately the standard C language provides
methods to achieve the same result as with __at bi t () . The compiler is smart enough to generate
efficient bit operations where possible.

10

C Language

1.2.5. Accessing Hardware from C: __ sfr, _ bsfr

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*. sf r) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs. These SFR files are also used by the assembler
and the simulator engine. The debugger and the Eclipse IDE use the XML variants of the SFR files. The
XML files include full descriptions of the SFRs and the bit-fields. Also the bit-field values are described.
To decrease compile time the . sf r files do not contain the descriptions.

The . sfr files are in written C.
Example use in C:

#include <sfr/regtc49x.sfr> // include the SFR file

void set_sfr(void)

{
SCR_PCON. U = 0x88; /! use SFR name
SCR PO_QUT.B.P3 = 1; /1 use of bit name
if (SCR_PO_OUT.B.P34 == 1)
{
SCR _PO_OUT. B. P3 = 0;
}
}

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named r egcpu. sf r, where cpu is the name of the target processor. You can include the
register file you want use in your source manually or you can specify control program option
--include-sfr-file. The files are located in the standard i ncl ude directory.

Defining Special Function Registers

With the __sfr memory type qualifier you can define a symbol as an SFR. The compiler may assume
that special SFR operations can be performed on such symbols. The compiler can decide to use bit
instructions for those special function registers that are bit accessible, in this case use __bsfr instead
of __sfr.For example, if bits are defined in the SFR definition, these bits can be accessed using bit
instructions.

Note that the __sfr space is little-endian, while the other spaces are big-endian.

For the 8051 only the SFRs at addresses 0x80, 0x88, 0x90, 0x98, 0xa0, 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
0xd0, 0xd8, 0xe0, 0xe8, 0xfO and 0Oxf8 are bit addressable.

A typical definition of a special function register looks as follows:

t ypedef struct

_Bool __ b0 : 1;
_Bool __ bl : 1;
_Bool __ b2 : 1;

11

TASKING SmartCode - 8051 User Guide

_Bool __ b3 : 1;

_Bool b4 : 1,

_Bool __ b5 : 1;

_Bool b6 : 1;

_Bool __ b7 : 1,
} __bitstruct _t;
#define SP (*(__sfr volatile unsigned char *)0xD4)
#defi ne PO (*(__bsfr volatile unsigned char *)0x80)
#define PO_O ((*(__bsfr volatile __bitstruct_t *)0x80).__b0)
#define PO_1 ((*(__bsfr volatile __bitstruct_t *)0x80).__ bl)

Because the special function registers are dealing with 1/0, they are declared vol ati | e. It is incorrect
to optimize away the access to them.

1.3. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

* First (high) byte is in the range 0x81-0x9f or Oxe0-0xef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with Ox5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/1 Exanpl e usage of Shift JIS Kanji
/1 Do not switch off option -AK
/1l At the position of the italic text you can
/1 put your Shift JI'S Kanji code
int i; // put Shift JI'S Kanji here
char c1;
char c2;
unsi gned int ui;
const char nes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"'K,"'a",
SANRIADY
/1 5 Japanese array

n.,

voi d mai n(voi d)

{
i=(int)cl,;

12

C Language

i++; /* put Shift JIS Kanji here\
conti nuous comment */

c2=nes[9];

ui =ar[0];

1.4. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword
__asn("instruction_tenplate”
[: output_paramli st
[@ input_paramli st
[@ register_reserve_list]]]);
or in a C variable declaration to replace a C variable name with another name in assembly:

type c_variable_nane __asm("assenbly_variabl e_name");

Instead of __asn{), you can also use the GNU constructs:

__asm_ [volatile] (); [/* always allowed */
asm[volatile] (); /[* only when -Ag is used */
instruction_template Assembly instructions may contain parameters from the input list or

output list in the form:

instruction %parm_nr,.. or

instruction %[parm_name],..

To include the % character in the assembly output, it is necessary
to specify %%.

instruction Instruction mnemonic.

13

TASKING SmartCode - 8051 User Guide

Y%parm_nr
%[parm_name]

output_param_list
input_param_list

=]+

&

constraint _char
C_expression

register_reserve_list
register_name

Parameter number in the range 0 .. 9. The number is treated as an
index to the combined output and input parameter lists.

Reference to a parameter name used in the input or output parameter
list.

[[[[parm_name]] "{=|+}[&]constraint_char" (C_expression)],...]
[[[[parm_name]] " constraint_char" (C_expression)],...]

When you use the + instead of = this informs the compiler that the
operand is both read and written.

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression. See the table below.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

[["register_name"],...]

Name of the register you want to reserve. For example because this
register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint character

Type

Operand Remark

r

register

RO - R7 input/output constraint

To be used in places
where an Rn addressing
mode is allowed. It can
be turned into a direct
addressing mode by
using an explicit "A" prefix
in the inline assembly
code.

bit register B.0-B.7,FO, F1 input/output constraint

indirect address register |RO - R1 input constraint only

14

C Language

Constraint character |Type Operand Remark

d direct address register |ARO - AR7, B and the |input/output constraint
pseudo registers

To be used in places
where a direct addressing
mode is allowed.

number type of operand it is same as %number Input constraint only. The
associated with number must refer to an
output parameter.
Indicates that %onumber
and number are the same
register.

If an input parameter is modified by the inline assembly then this input parameter must also be added
to the list of output parameters (see Example 7). If this is not the case, the resulting code may behave
differently than expected since the compiler assumes that an input parameter is not being changed
by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asmn()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn{) statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Use newline characters ‘\n’ to continue on a new lineina __asn()
statement. For multi-line output, use tab characters \t' to indent instructions.

__asn("nop\n"
"\'tnop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint r ; the compiler decides which register is best to use. The %0 in the instruction template is
replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

__data char out;

void get_out(void)

{

15

TASKING SmartCode - 8051 User Guide

__asn("nov %0, #Oxff"

"=r (out));
}

Generated assembly code:

nov RO, #0xf f

nov _out, RO

Example 3: using input parameters

Assign a variable to an SFR. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %® in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

__data char in;
void init_sfr(void)

{
__asn("MV PO, %"
rr(in))
}
Generated assembly code:
nov RO, _in
MOV PO, RO

Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are necessary for the input and
output parameters (constraint r , %@ for out , %4 fori n1, 92 for i n2 in the instruction template). The
compiler generates code to move the input expressions into the input registers and to assign the result
to the output variables.

__data char inl, in2, out;
void add2(void)

{
__asm("MOV A, %\n\t"
"ADD A, %2\n\t"
"MV %0, A’
"=r" (out)
"r" (inl), "r" (in2));
}
voi d mai n(voi d)
{
inl = 3;
in2 = 4;

16

C Language

add2();
}

Generated assembly code:

_add2:
Code generated by C conpiler
nov RO, _in2
nov R1, inl
__asm statenent expansion

MOV A RL

ADD A, RO

MOV RO, A

Code generated by C conpiler
nmov _out, RO
_mai n:
nov _inl, #3
nov _in2, #4

Example 5: using an explicit "A" prefix to turn a"r" constraintinto adirect
addressing mode

__data char in, out;

void minc(void)

{

__asm("MV %O, A%d\n\t"
"I NC %0"

"=r" (out)
rin))

}

Generated assembly code:

_minc:

; Code generated by C conpil er
nov RO, _in

; __asm statenment expansion
MOV RO, ARO
I NC RO

; Code generated by C conpil er
mv _out, RO

When you use the "d" constraint a pseudo-register might also be used. GPRs will be prefixed with an "A"
automatically:

__data char in, out;
void minc2(void)
{
_asm("MOV %O, %d\n\t"
"I NC %0"
"=r"(out)

17

TASKING SmartCode - 8051 User Guide

nd(in))
}

Generated assembly code is the same.

Example 6: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register RO is a reserved register. You can do this by adding a reserved
register list (: "R0"). As you can see in the generated assembly code, register RO is not used (the first

register used is R1).

__data char inl, in2, out;
voi d add2(void)

{
_asn("MV A %\n\t"
"ADD A, %2\n\t"
"MV 99, A
"=r" (out)
"r* (inl), "r" (in2)
"RO")
}
voi d nmai n(voi d)
{
inl = 3;
in2 = 4;
add2();
}

Generated assembly code:

_add2:
Code generated by C conpil er
nov R1, in2
nov R2, inl
__asm statenent expansion

MOV A R2

ADD A, R1

MOV R1, A

Code generated by C conpiler
nmov _out, R1L
_mai n:
nov _inl, #3
nov _in2, #4

18

C Language

Example 7: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline char foo(char parl, char par2, char * par3)

{
int retval ue;
__asn(
"dec %d\n\t"
" mov A R\ n\t"
"add A %\n\t"
" mov AY®, 9B\ n\t"
" nmov @0, A"
"=&s" (retvalue), "=r" (parl), "=r" (par?2)
"1" (parl), "2" (par2), "r" (par3)
)
return retval ue;
}

char result, parm

voi d func(void)

{
}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

result = foo(100, 100, &parm);

This results in the following generated assembly code:

nov RO, #100
nov AR2, RO
| ea R3, # parm

dec RO ; RO contains 99
nov A R2 ; A contains 100
add A RO ; A contains 199
nov AR1, R3

nov @1, A

nov _result, Rl

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that

19

TASKING SmartCode - 8051 User Guide

par 1 and par 2 both contain 100. Therefore the compiler can optimize and assign the same register to
% and 92. This would have given an unexpected result.

__as
"dec %\ n\t"
" mov AR\ n\t"
"add A %\n\t"
" mov A%, 9B\ n\ t"
" mov @0, A"
"=&s" (retval ue)
"r" (parl), "r" (par2), "r" (par3)
)

Generated assembly code:

nmov RO, # parm
nov R2, #100

dec R2 R2 contains 99

nov A R2 A contains 99

add A R2 ; sane register R2, but is expected read-only
nov AR1, RO

nov @r1, A

nov _result, Rl ; contains unexpected result

Example 8: using + prefix in output operand

Perform an addition operation. Registers are used for the input and output parameters (constraintr , %0
for out , 94 for i nl in the instruction template). An output operand usually starts with =, but it can also
start with + to signify that the operand is both read and written by the instruction.

__data char inl, in2, out;
void f1()

{

out = in2;

__asm("MV A, 9%@\n\t"
"ADD A, %d\n\t"

"MV 99, A"
"+r" (out)
"rro(inl))
}
Generated assembly code:
nov RO, inl
nov R1, in2
MOV A RL
ADD A, RO

20

C Language

MOV R1, A
nov _out,R1

Example 9: using symbolic name for operands

Instead of numbers, you can also use symbolic names for input and output operands by specifying it
inside the square brackets ([]). For example, [out] is the symbolic name for an operand.

__data char inl, in2, out;
void f1()
{
_asm("MV A, %\n\t"
"ADD A, 92\ n\t"
"MV 9B, A"
"=r" (out) : "r" (inl), "r" (in2));

}
void f2()
{
_asn("MWV A, %inpl]\n\t"
"ADD A, %inp2]\n\t"
"MOV %out], A"
[out]"=r" (out) : [inpl] "r" (inl), [inp2] "r" (in2));

}

Generated assembly code:

; Function _f1

_f1:
.using O
nov RO, _inl
nmv R1, _in2
MOV A, RO
ADD A, R1
MOV RO, A
nmov _out, RO
ret

; End of function
;. End of section

'code_f2' .segment code
.rseg 'code_f2' code

.public _f2
; Function _f2
_f2:
.using O
nov RO, _inl
nmv R1, _in2
MOV A, RO
ADD A, R1

21

TASKING SmartCode - 8051 User Guide

MOV RO, A

nov _out, RO
ret

; End of function

1.5. GNU C Language Extensions

The C compiler supports the following GNU C language extensions:
e __buil ti nintrinsics of specific C library functions. See Section 1.12.6.1, Built-in Library Functions

* Intrinsic functions __bui I ti n_choose_expr,and __builtin_types_conpati bl e_p. See
Section 1.12.6, Intrinsic Functions.

» Token __builtin_of f set of that defines the macro of f set of .
» Keyword variants:

 Instead of __al i gnof, you can also use __al i gnof __ or alternatively al i gnof with C compiler
option --language=+gcc (-Ag).

« Instead of __asm you can also use __asm__ or alternatively asmwith C compiler option
--language=+gcc (-Ag).

e Instead of __t ypeof,youcanalsouse __typeof __ oralternatively t ypeof with C compiler option
--language=+gcc (-Ag).

* Instead of vol ati |l e,youcanalsouse __volatile__or__volatile.

1.6. Attributes

You can use the keyword __at tri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

attribute ((name,...))
or:

__hane__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __nor et ur n___ instead of
__attribute__ ((noreturn)).

alias("symbol™)

Youcanuse __attribute__ ((alias("symnmbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

22

C Language

void __f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__ f".

const

Youcanuse __attribute__((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

export

Youcanuse __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. Not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external |inkage */

flatten

Youcanuse _attribute_ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noi nline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute__ ((format(type,arg_string_index, arg_check_start))) to
specify that functions take pri nt f, scanf, strfti me or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strfti me or
strfnon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
st rfti me-style formats, arg_check_start must be 0.

Example:

23

TASKING SmartCode - 8051 User Guide

int foo(int i, const char * ny format, ...) __attribute__((format(printf, 2, 3)));

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute__((Ieaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» Onreturn of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) to prevent afunction from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((al ways_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna

i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For

example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)
{

24

C Language

/* Print error nessage */
exit(1);
}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al everdid return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

overloadable

Youcanuse __attribute__((overl oadabl e)) to define multiple functions with the same name,
but with different prototypes. This provides a limited form of function overloading. Function overloading
is restricted to direct calls.

It is not possible to have both a normal and an over | oadabl e function of the same name. In that case,
the normal function takes precedence. The over | oadabl e attribute is ignored for functions without a
prototype.

When calling a function for which only overloadable definitions are visible, the function with the best match
is selected. The best match is the function with the correct number of arguments, requiring the least
amount of argument conversions. When there are no matches, or when there are multiple ambiguous
matches, an error is generated.

protect

Youcanuse _attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i __attribute__((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

pure

Youcanuse __attribute__((pure)) tospecify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nane"))) tospecify that a function or variable must appear
in the object file in a particular section. For example:

voi d foobar(void) __attribute__ ((section("code_foobar")));
int baz __attribute__((section("data_baz")));

puts the function f oobar in the section named code_f oobar, and puts variable baz in the section
named dat a_baz.

25

TASKING SmartCode - 8051 User Guide

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute__ ((used)) = "Copyright 2019 TASKI NG BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute_ ((used)) implies__attribute_ ((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragnma weak.

1.7. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [l abel :] pragme- spec pragma-argunents [on | off | default | restore]

or:

_Pragma("[Ilabel :]pragna-spec pragma-argunments [on | off | default | restore]l")

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

26

C Language

Examples:

/1 by default all warnings are shown

#pragma war ni ng 535 /1 disable W35

#pragma war ni ng 530 /1 also disable W30

const char var_1 = 0x5678; // W30 is not shown

var _2; // Wh35 is not shown

#pragma warni ng restore /'l restore one level, only W35 is disabled
const char var_3 = 0x56789; // W30 is shown

#pragma war ni ng def aul t /'l back to default, all warnings are shown
var _4; // Wh35 is shown

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agnma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragnma ... restore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl:optim ze P
volatile int v;

void f(void)

{
int i, a
a = 42;
labl: for(i=1; i<10; i++)
{
/* the entire for loop is part of the pragma optimze */
a+=i;
}
vV = a;

27

TASKING SmartCode - 8051 User Guide

Supported pragmas
The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you

can use c51 --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support a
label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This pragma is defined in ISO C99/C11/C17. With this pragma you can control the +contract flag of C
compiler option --fp-model.

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an alias directive (. ALl AS) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false" and "true" from the library header file st dbool . h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

clear / noclear [on | off | default | restore] (*)

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data. Note however that constant data in __r omspace is never cleared. So,

_romint i; /* always uninitialized */
_romconst int j; /* always uninitialized */

See C compiler option --no-clear.

compactmaxmatch {value | default | restore} (*)
With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extend {size | default | restore} (*)
Specify the maximum amount of internal RAM to be used for pseudo registers.

See C compiler option --extend and Section 1.9.1, Automatic Variables.

28

C Language

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTRN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTRN directive out.

With this pragma you can force an external reference (. EXTRN assembler directive), even when the
symbol is not used in the module.

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

inline / noinline / smartinline [default | restore] (*)

See Section 1.12.4, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enabled the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.

linear_switch / jump_switch / binary_switch / smart_switch [default |
restore] (*)

With these pragmas you can overrule the compiler chosen switch method:

i near_swi tch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_swi tch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart _switch letthe compiler decide the switch method used

29

TASKING SmartCode - 8051 User Guide

See also Section 1.11, Switch Statement.

macro / nomacro [on | off | default | restore] (*)
Turns macro expansion on or off. By default, macro expansion is enabled.
maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 3.7.2, C Code Checking: MISRA C.
novector [on | off | default | restore] (*)

Do not generate interrupt vectors and reference to interrupt handler in run-time library. Same as C compiler
option --no-vector.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opt i mi ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

profile [flags | default | restore] (*) / endprofile

Control the profile settings. The pragma works the same as C compiler option --profile. Note that this
pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profiling.

ramstring [on | off | default | restore] (*)

Allocate strings in ROM and RAM. The strings are copied to RAM at startup.

30

C Language

romstring [on | off | default | restore] (*)

Allocate strings in ROM only. Same as C compiler option --romstrings (-S).

section [type=name] / endsection [default | restore] (*)

Rename sections of the specified type or restore default section naming. See Section 1.13, Section
Naming for more information.

source / nosource [on | off | default | restore] (*)

With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4).

vector_offset {offset | default | restore} (*)
Specify base address for interrupt vectors.

See C compiler option --vector-offset.

warning [number[-number],...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

31

TASKING SmartCode - 8051 User Guide

1.8. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

_ BIG_ENDIAN__ Expands to 1. The processor accesses data in big-endian, except for the
__sfr space which is little-endian.

__ BUILD__ Identifies the build number of the compiler in the format yymmddqq (year,
month, day and quarter in UTC).

__C51_ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the c51 compiler only. It expands to 1.

__CORE_core___ A symbol is defined depending on the option --core=core. The core is
converted to uppercase. For example, if --core=scr3g is specified, the
symbol __CORE_SCR3G__ is defined. When no --core is supplied, the
compiler defines __CORE_SCR3G__.

__DATE__ Expands to the compilation date: “mmm dd yyyy".

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

__LITTLE_ENDIAN__

Expands to 0. The processor accesses data in big-endian, except for the
__sfr space which is little-endian.

_ MISRAC_VERSION_

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2012.

__ MODEL__

Identifies the memory model for which the current module is compiled. It
expands to a single character constant: ‘s’ (small), ‘a’ (auxiliary page), or ‘I

(large).

__PROF_ENABLE__

Always expands to 0 (dynamic profiling is disabled).

__REVISION___ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

_ SINGLE_FP__ Always expands to 1 (8051 only has single precision floating-point).

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_NO_ATOMICS__

(C11/C17 only) Expands to 1 to indicate that this implementation does not
support atomic types and the st dat om c. h header file.

__STDC_NO_THREADS__

(C11/C17 only) Expands to 1 to indicate that this implementation does not
support the t hr eads. h header file.

__STDC_VERSION__

Identifies the ISO C version number. Expands to 201710L for ISO C17,
201112L for ISO C11, 199901L for ISO C99 or 199409L for ISO C90.

32

C Language

Macro Description

_ TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version

2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#ifdef _ C51_

/* this part is only conpiled for the 8051 C compiler */
#endi f

1.9. Variables

1.9.1. Automatic Variables

In non-reentrant functions recursion is not possible, because automatic variables are not allocated on a
stack, but in a static area. The static area of a function can be overlaid with that of another function. This
saves memory. Depending on the selected memory model the static area for automatics will be allocated
in the data, pdata or xdata memory space for the memory models small, auxiliary or large respectively.

In a reentrant function automatic variables are treated the conventional way: dynamically allocated on a
stack. As is the case for the static area the place of the stack depends upon the selected memory model,
it can be allocated in the data, pdata or xdata memory space.

Although automatic variables are allocated in a static area for non-reentrant functions, they are not the
same as local variables (within a function) which are declared to be static by means of the keyword

st ati c. When the keyword st at i ¢ is used, a variable will keep its value when a function returns and
is called again. This is not the case for automatic variables allocated in the static area, because the area
may be overlaid with the static area of another function.

To generate code which is as fast and compact as possible, the compiler tries to place some automatic
variables into registers and in the internal RAM (extended virtual registers, also known as pseudo registers).
By default, the compiler uses four bytes per function for pseudo registers. You can change this amount
by means of the C compiler option --extend=size or #pr agnma ext end size.

For non-reentrant functions the static area for the pseudo registers will be overlaid, like the static area
for automatic variables.

For reentrant functions the area for the pseudo registers is as large as required for the function that uses
the most pseudo registers. Reentrant functions save/restore the pseudo registers on the stack, like they
are real registers.

The C library is built in such a way that no pseudo registers are used. l.e: it is built with the option
--extend=0.

33

TASKING SmartCode - 8051 User Guide

1.9.2. Initialized Variables

Non automatic initialized variables use the same amount of space in both ROM and RAM (for all possible
RAM memory spaces). This is because the initializers are stored in ROM and copied to RAM at start-up.
This is completely transparent to the user. The only exception is an initialized variable residing in ROM,
by means of the __r ommemory type qualifier.

The following examples are for the 8051 C compiler in the large memory model.

i nt i = 100; /* 2 bytes in ROM 2 bytes in XDATA */
__romint j =3 /* 2 bytes in ROM */
char *p = "TEXT"; /[* 7 bytes in ROM 7 bytes in XDATA

2 bytes for p, 5 bytes for "TEXT" */
_rom char h[] = "HELP'; /* 5 bytes in ROM */
__data char ¢ = '"a'; /* 1 byte in ROM 1 byte in DATA */

1.9.3. Non-Initialized Variables

In some cases clearing or initialization of global variables at startup is unwanted. For example when
memory contents are preserved after power is turned off (see for an example Section 6.8.8, The Section
Layout Definition: Locating Sections). This can be the case when some RAM is implemented in EEPROM
or in a battery powered memory device. To prevent a global variable from being initialized is easy: just
do not initialize it. To avoid clearing of non-initialized variables one of the following should be done:

» Define (allocate) these variables in a special C module and compile this module with option --no-clear.
From Eclipse: From the Project menu, select Properties for, expand C/C++ Build, select Settings
and open the Tool Settings tab, select C Compiler » Allocation and disable the option Clear
uninitialized global and static variables.

» Define (allocate) these variables between #pr agma nocl ear and #pragma cl ear.

» Make a separate assembly module, containing the allocation of these variables in a special data section.

1.10. Strings

In this context the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any memory
type, and are not considered as 'strings'.

The 8051 compiler places strings in both ROM and RAM. Where strings in RAM are placed depends on
the specified memory model. If you use the 8051 compiler option --romstrings or #pr agma r onstri ng,
the compiler places all strings in ROM only. This is useful for single chip applications.

Example without --romstrings option:

_romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
char *world = "world\n"; /* initialized pointer
to string in XDATA */

Example with --romstrings option:

34

C Language

__romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
__romchar *world = "world\n"; /* initialized pointer
to string in ROM */

Example with #pr agma ronstri ng:
#pragma romstring
_romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
_romchar *world = "world\n"; /* initialized pointer
to string in ROM */
#pragma ramstring

Strings in library routines

Library routines containing pointer arguments always expect the target memory of these pointers to be
the default RAM of the memory model used to make this library. For example:

int printf(const char *format, ...);

In the large memory model, this means pri nt f () expects the address of the format string (the first
argument) to have memory type __xdat a. Therefore, the C startup code of the large memory model
copies all strings from ROM to XDATA. So, the statement:

printf("Hello world\n");

is executed correctly, because the 8051 compiler passes the address of the allocated XDATA area (filled
at C startup time) to pri ntf ().

With the --romstrings option specified, the string is put in ROM only and the standard printf/scanf like
library routines will fail. You will need to create your own __r omqualified versions. All library sources are
delivered. For example, you can use the source of pri nt f () (in module pri ntf. c) to create a
__rom printf().The prototype could be:

int __romprintf(__romchar *format, ...);

Modifying string literals

The 8051 accepts that string literals are modifiable when strings are in both ROM and RAM. You can do
this with pointers, or even with a construct like:

"st ing"[2] ="r";

Of course, when you use the --romstrings option this statement is not allowed.

1.11. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

35

TASKING SmartCode - 8051 User Guide

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart_swi t ch is the default of the compiler. The compiler tries to use the switch method
which uses the least space in ROM (table size in ROMDATA plus code to do the indexing). With the C
compiler option --tradeoff you can tell the compiler to emphasis more on speed than on ROM size.

For a switch with a long type argument, only binary search table code is used.

For an int type argument, a jump table switch is only possible when all case values are in the same 256
value range (the high byte value of all programmed cases are the same).

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma j unp_swi tch force jump table code

#pragma bi nary_swi tch force binary search table code

#pragma smart_switch let the compiler decide the switch method used

Using a pragma cannot overrule the restrictions as described earlier.

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is preceded by a different switch pragma.

Example:

voi d test(unsigned char val)

{

/* place pragma before the switch statenent */
#pragma junp_swi tch
switch (val)

{
}

/* use junmp table */

36

C Language

1.12. Functions

Static and Reentrant Functions

For the TASKING C compiler for 8051 functions in C can either be static or reentrant. In static functions
parameters and automatic variables are not allocated on a stack, but in a static area. Reentrant functions
use a less efficient virtual dynamic stack which allows you to call functions recursively. With reentrancy,
you can call functions at any time, even from interrupt functions. The compiler can overlay parameters
and automatics of static functions, but not of reentrant functions.

See also Section 1.9.1, Automatic Variables.

You can use the function qualifiers __stati c or__reentrant to specify a function as static or reentrant,
respectively. If you do not specify a function qualifier, the compiler assumes that those functions are static.
If you specify the compiler option --reentrant the default for functions without a function qualifier is
reentrant.

Example:

void f_static(void)

{ /* this function is by default _ static */
}
__reentrant int f_reentrant (void)
{ . .
int i;
/* variable i is placed on a virtual stack */
}

1.12.1. Calling Convention

Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack (a static or
reentrant stack depending on the __r eent r ant function qualifier).

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are B.0 .. B.7, R2, R3, R4, R5, R6, and R7. Parameters <= 32
bit are passed in registers:

Parameter Type Registers used for parameters

1 bit B.0, B.1, B.2, B.3,B.4, B.5, B.6, B.7
8 bit R7, R5, R3, R6, R4, R2

16 bit R67, R45, R23

37

TASKING SmartCode - 8051 User Guide

Parameter Type Registers used for parameters
32 bit R4567

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 32 bit, or all registers are used, parameter
passing continues on the stack. Data on the stack is always byte aligned.

Example with three arguments:

funcl(int a, long b, int *c)

a (first parameter) is passed in registers R67.

b (second parameter) is passed on the stack. (R67 from R4567 is already used)

¢ (third parameter) is passed in registers R45.

Variable Argument Lists

Functions with a variable argument list must push all parameters after the last fixed parameter on the
stack. The normal parameter passing rules apply for all fixed parameters.

Function Return Values
The C compiler uses registers to store C function return values, depending on the function return types.

C, A, R4, R5, R6 and R7 are used for return values <=32 bit:

Return Type Register Description

1 bit C carry

8 bit A accumulator

16 bit R67 R6 high byte, R7 low byte

32 bit R4567 R45 high word, R67 low word

The return registers have an overlap with the parameter registers, which yields more efficient code when
passing arguments to child functions.

1.12.2. Stack Usage

The stack consists of a system stack in __i dat a, two virtual dynamic stacks (in __xdat aand __pdat a)
and three static stacks (static areasin __dat a, __xdat a and __pdat a). The system stack and all static
stacks grow up, the virtual stacks grow down. The system stack pointer and virtual stack pointers always
point to the last valid byte.

The following figures show the layout of the system stack and the virtual stack.

38

C Language

Stack pointer (SF) High address
Ll "';')
Callee saved registers g
T
. c
[ei] [=]
@ =
o = o
Automatic wariables o =
f=2]
=]
Function ent M z
unction entr . =
y-— Return address =
-
[
o =
_ £ w
Argument passing area E
5
o
&
Low address
Figure 1.1. System stack layout
High address
—x
(i}
g 5
b B
Argument passing area g =
=
. =
Function entry ¥ E
A T z
: f=2]
5
Automatic variables o =
= ua]
T
@
2
) o
Callee saved registers o
Stack pointer (S ¥ +
Low address

Figure 1.2. Virtual stack layout

The following shows the stack usage per memory model.

Stack usage in small memory model

The following applies to functions implicitly or explicitly qualified __r eentrant :

39

TASKING SmartCode - 8051 User Guide

Saved value Stack Offset (from function entry) Stack pointer
Parameters system - (size of parameters + 1) SP
Return address system -1 SP
Automatic variables |system +1 SP
Saved registers system size of automatic variables + 1 SP

The following applies to functions implicitly or explicitly qualified __st ati c:

variables

Saved value Stack Offset Stack pointer
Return address system -1 SP

Registers static stack in __dat a 0 label
Automatic variables |static stack in __dat a size of registers label
Parameters static stack in __dat a size of registers + size of automatic |label

Stack usage in large memory model

The following applies to functions implicitly or explicitly qualified __reentrant:

Saved value Stack Offset Stack pointer
Return address system -1 SP
Saved registers virtual stack in __xdat a - size of automatic variables and |__SP

saved registers
Automatic variables |virtual stack in __xdat a - size of automatic variables __SP
Parameters virtual stack in __xdat a 0 SP

The following applies to functions implicitly or explicitly qualified __stati c:

Saved value Stack Offset Stack pointer
Return address system -1 SP

Automatic variables |static stack in __xdat a 0 label
Parameters static stack in __xdat a size of automatic variables label
Registers static stack in __dat a 0 label

Stack usage in auxiliary page memory model

The following applies to functions implicitly or explicitly qualified __r eentrant:

Saved value

Stack

Offset

Stack pointer

Return address

system

-1

SP

Saved registers

virtual stack in __pdat a

- size of automatic variables and
saved registers

SP

40

C Language

Saved value Stack

Offset

Stack pointer

Automatic variables |virtual stack in __pdat a

- size of automatic variables

_SP

Parameters

virtual stack in __pdat a 0

SP

Same virtual stack picture as with the large memory model, but then in __pdat a instead of in __xdat a.

The following applies to functions implicitly or explicitly qualified __stati c:

Saved value Stack Offset Stack pointer
Return address system -1 SP

Automatic variables |static stack in __pdat a 0 label
Parameters static stack in __pdat a size of automatic variables label
Registers static stack in __dat a 0 label

1.12.3. Register Usage

The C compiler uses the general purpose registers and pseudo registers according to the convention
given in the following table (for normal functions).

Register Class Purpose

A caller saves Return value

B caller saves Parameter passing

DPL caller saves

DPH caller saves

RO caller saves

R1 caller saves

R2 caller saves Parameter passing

R3 caller saves Parameter passing

R4 caller saves Parameter passing and return values
R5 caller saves Parameter passing and return values
R6 caller saves Parameter passing and return values
R7 caller saves Parameter passing and return values
PSW caller saves Program Status Word register
pseudo registers |callee saves Automatic variables

%__REG+reg

SP dedicated Stack pointer

The registers are classified: caller saves, callee saves and dedicated.

41

TASKING SmartCode - 8051 User Guide

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

dedicated The stack pointer register SP is dedicated.

For interrupt functions (see Section 1.12.5, Interrupt Functions), except for the reset vector, the following
registers are used for callee saves:

A, B, DPH, DPL, RO .. R7, PSW, pseudo registers %__ REG+reg

There are no caller saves registers for interrupt functions.

1.12.4. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

42

C Language

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nli ne
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has an i nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne/#pragma snarti nl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

1.12.5. Interrupt Functions

The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt
service routines (ISR). An interrupt service routine (or: interrupt function, interrupt handler, exception
handler) is called when an interrupt event (or: service request) occurs.

The difference between a normal function and an interrupt function is that an interrupt function ends with
a RETI instruction instead of a RET instruction, and that all registers that might possibly be corrupted
during the execution of the interrupt function are saved on function entry (this is called the interrupt frame)
and restored on function exit.

1.12.5.1. Defining an Interrupt Service Routine: __isr, __interrupt()

You can use the type qualifier __i sr to declare a function as an interrupt service routine, but this does

not bind the function to an interrupt vector. With the function qualifier __i nt er rupt () you can bind the
function to a specific vector. The function qualifier __i nt errupt () takes one or more vector addresses
as argument(s). All supplied vector addresses will be initialized to point to the interrupt function.

The __i nterrupt () function qualifier implies the __i sr type qualifier.
Interrupt functions cannot return anything and must have a voi d argument type list:

void __interrupt(vector_address[, vector_address]...)
isr(void)

{

43

TASKING SmartCode - 8051 User Guide

}

The __i sr type qualifier must also be used when a pointer to an interrupt function is declared.

For example:

void __interrupt(O0x23) serial_receive(void)

{ /* __isr is added automatically by __interrupt() */

}

extern void __isr external _isr(void); /* reference to external */
/* interrupt function, vector address irrelevant */

void __isr (*pisr)(void) = external _isr;

/* declare pointer to interrupt function */
Suppress generation of interrupt vectors

When you define an interrupt service routine, the compiler generates the appropriate interrupt vector,
consisting of an instruction jumping to the interrupt function. You can suppress this with the C compiler
option --no-vector or the #pr agna novect or.

Specify another vector offset

For certain ROM monitors it is necessary to specify an offset for all interrupt vectors. For this you can use
the C compiler option --vector-offset=value. Suppose a ROM monitor has the interrupt table at offset
0x4000. When you compile with - - vect or - of f set =0x4000 interrupt vector 1 (vector address 11) is
being located at address 0x400B instead of OxB.

1.12.5.2. Register Bank Switching: __bankx /__nobank

It is possible to assign a new register bank to an interrupt function, which can be used on the processor
to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch
register banks with the __bank0, __bank1, _bank2 or __bank3 function qualifier. The syntax is:

void __interrupt(vector_address[, vector_address]...)
__bankbanknr
isr(void)

{

When you do not specify a __bankx qualifier for an interrupt function, the compiler assumes the default
register bank, as set by the compiler option --registerbank. In this case the compiler saves the GPRs by
using push/pop instructions and generates code to switch to the selected register bank.

With an explicit ___bankx qualifier, the compiler will only generate code to switch to the selected register
bank. The registers RO - R7 are implicitly saved when the register bank is being switched. When the
__bankx qualifier is the same as the default, the compiler generates a warning.

44

C Language

Example:

#define __INTNO(nr) ((8*nr)+3) /* use nunber instead of vector address */
_interrupt(__INTNO(1)) _ _bank2 void tiner(void);

The compiler places a long-jump instruction on the vector address 11 of interrupt number 1, tothe t i ner ()
routine, which switches the register bank to bank 2 and saves some more registers. When ti ner () is
completed, the extra registers are popped, the bank is switched back to the original value and a RETI
instruction is executed.

You can call another C function from the interrupt C function. However, this function must be compiled
with the same __bankx qualifier, because the compiler generates code which uses the addresses of the
registers RO-R7. Therefore, the __bankx qualifier is also possible with normal C functions (and their
prototype declarations).

Example:

Suppose ti ner (), from the previous example, is calling get _nunber () . The function prototype (and
definition) of get _nunber () should contain the correct__bankx qualifier.

__bank2 int get_nunber(void);

Register bank independent code generation

In order to generate efficient code the compiler uses absolute register addresses in its code generation.
For example, since there is no instruction to move a register to a register, the compiler will use a direct
addressing mode: "MOV Rn,direct". In the second operand the absolute address of a register will be
used.

The absolute address of a register depends upon the selected register bank. Sometimes this dependency
is unwanted, for example when a function is called from both the main thread and an interrupt thread. If
both threads use different register banks, they cannot call a function that uses absolute register addresses.
To overcome this, you can instruct the compiler to generate the code for a function in a register bank
independent way. To do this, you can use the __nobank qualifier (or use compiler option
--registerbank=none).

When the code in an interrupt function needs to be generated in a register bank independent way, the
compiler will always push/pop the used GPRs. The used register bank will not be switched in this case.

Example:
__nobank int func(int x)
/* this function can be called fromany function
i ndependent of its register bank */
return x+1;

}
__bankl void f1(void)

func(1);

45

TASKING SmartCode - 8051 User Guide

__bankO void main(void)

{
}

1.12.5.3. Reset Vector

func(0);

The compiler treats the reset vector (__i nterrupt (0))as aspecial case. For this vector the compiler
will never push/pop any registers. Also the PSW register will not be saved/restored before initializing it
with the selected register bank. Furthermore, the compiler will not warn when an explicit __bankx qualifier
is the same as the default.

Because of the special treatment, the reset vector cannot be combined with other interrupt vectors. E.qg:
__interrupt(11, 0, 19) is not allowed.

1.12.5.4. Interrupt Frame: __frame()

With the function qualifier __f r anme() you can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If you
do not specify the function qualifier __f r ame() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt(vector_address[, vector_address]...)
__frame(reg[, reg]...) isr(void)

{

}

The reg can be any register defined as an SFR. The compiler generates a warning about registers that
are not listed in __frame() but are used in the interrupt function. When the compiler would save GPRs
using push/pop instructions it will warn about missing GPRs in __f rame() also. The compiler does not
generate a warning when an explicit __bankx qualifier is used because the compiler would not push/pop
GPRs itself.

Example:

void __interrupt(0x10) _ frane(A RO,Rl) foo (void)
{

}...

Normally when an interrupt function is called, all registers in the default register bank that are (or could
be) used in the interrupt function are saved on the stack so the registers are available for the interrupt
routine. After returning from the interrupt routine, the original values are restored from the stack again.

1.12.6. Intrinsic Functions
Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to

use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

46

C Language

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The TASKING C compiler for 8051 recognizes the following intrinsic functions:

__alloc
void * volatile __alloc(__size_t size);
Allocate memory. Returns a pointer to space in external memory of size bytes length. NULL if there is

not enough space left. This function is used internally for variable length arrays, it is not to be used by
end users.

__dotdotdot__
char * volatile __dotdotdot__(void);

Variable argument '..." operator. Used in library function va_st art () . Returns the stack offset to the
variable argument list.

__free
void volatile __free(void *p);

Deallocates the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .

__getbit
__bit __getbit(operand, bitoffset);

Returns the bit at bi t of f set (range 0-7 for a char, 0-15 for an int or 0-31 for a long) of the bit-addressable
oper and for usage in bit expressions. bi t of f set must be an integral constant expression.

Example:

__bdata unsigned char byte;
int i;

if (_gethit(byte, 3))
i = 1;

__putbit

void __putbit(__bit value, operand, bitoffset);

47

TASKING SmartCode - 8051 User Guide

Assign val ue to the bit at bi t of f set (range 0-7 for a char, 0-15 for an int or 0-31 for a long) of the
bit-addressable oper and. bi t of f set must be an integral constant expression.

Example:

__bdata unsigned int word;

__putbit(0, word, 10);

__nop
void _ _nop(void);
Generates a NOP instruction.

__rol

unsi gned char __rol (unsigned char operand,
unsi gned char count);

Use the RL instruction to rotate oper and left count times. Returns the rotated value.

ror

unsi gned char __ror(unsigned char operand,
unsi gned char count);

Use the RR instruction to rotate oper and right count times. Returns the rotated value.

__testclear
__bit __testclear(__bit *semaphore);

Read and clear sermaphor e using the JBC instruction. Returns 0 if semaphor e was not cleared by the
JBC instruction, 1 otherwise.

Example:

__bit b;
unsi gned char c;

if (__testclear(&)) /* JBC instruction */
c=1,

__Vsp__
_bit __vsp_ (void);

Virtual stack pointer used. Used in library function va_ar g() . Returns 1 if the virtual stack pointer is
used, 0 otherwise.

48

Miscellaneous intrinsics

C Language

Intrinsic Function

Description

type __builtin_choose_expr(const_exp, expl, exp2

);

Evaluate code depending on the value of a constant
expression. Returns expl if const_exp, which is an
integer constant expression, is nonzero. Otherwise
it returns exp2.

int __ builtin_constant_p(type exp);

During compilation, constant propagation returns 1
if exp is a constant expression. Otherwise, it returns
0. Note that type can be i nt, | ong, | ong | ong,
doubl e orl ong doubl e.

long __builtin_expect(long exp, long c);

Indicates that exp is likely to evaluate to a specified
value c.

int __builtin_types_compatible_p(typel, type2);

Determine whether two types are the same. Returns
1 if typel and type2 are compatible, O otherwise.
You can use the result in integer constant
expressions.

1.12.6.1. Built-in Library Functions

The intrinsics described in this section are built-in versions of a number of library functions. The name of
the intrinsic is the name of the library function prefixed by __bui I tin_.

The standard header file where the function is declared, defines a macro that maps the function to the
intrinsic. You can force a call to the library function by removing the macro definition with an #undef
directive, or by enclosing the name of the function in parenthesis, e.g.: (st r cpy)(dest, src);

Intrinsic Function

Description

void * __ builtin_memchr(const void * s, int c,
__size_tn);

Checks the first n bytes of memory pointed to by s,
on the occurrence of character c. A call to the library
function menthr () is generated.

int __builtin_memcmp(const void * s1, const void
*s2, size_tn);

Compares the first n bytes of memory pointed to by
s1, with the memory pointed to by s2. A call to the
library function mentnp() is generated.

void * __builtin_memcpy(void * dest, void * src,
__size_tn);

Copy the first n bytes of memory pointed to by src,
to the memory pointed to by dest. A call to the library
function mentpy() is generated.

void * __ builtin_memmove(void * dest, void * src,
__Size_tn);

Copy the first n bytes of memory pointed to by src,
to the memory pointed to by dest, but overlapping
strings are handled correctly. A call to the library
function menmove() is generated.

void * __builtin_memset(void * s, int ¢, __size_tn

);

Fill the first n bytes of the memory pointed to by s
with the value c. A call to the library function
nmenset () is generated.

49

TASKING SmartCode - 8051 User Guide

Intrinsic Function

Description

char * __builtin_strcat(char * dest, const char * src

);

Appends a copy of string pointed to by src, to the
end of string pointed to by dest. A call to the library
function st r cat () is generated.

char * __builtin_strchr(const char * s, int ¢);

Returns a pointer to the first occurrence of character
c in the string pointed to by s or the null pointer if
not found. A call to the library function st r chr ()
is generated.

int __builtin_strcemp(const char * s1, const char *
s2);

Compares the string pointed to by s1 to the string
pointed to by s2. A call to the library function
strcnp() is generated.

char * __builtin_strcpy(char * dest, const char * src

):

Copy the string pointed to by src, including the
terminating null byte, to the buffer pointed to by dest.
A call to the library function st r cpy() is generated.

__size_t __ builtin_strcspn(const char * s, const
char * set);

Searches the string pointed to by s for a sequence
of characters not specified in the string pointed to

by set. A call to the library function st rcspn() is

generated.

__size_t__ builtin_strlen(const char * s);

Computes the length of the string pointed to by s.
A call to the library function st r | en() is generated.

char * __builtin_strncat(char * dest, const char *
src, __size tn);

Appends not more than n characters of string
pointed to by src, to the end of string pointed to by
dest. A call to the library function st r ncat () is
generated.

int __builtin_strncmp(const char * s1, const char *
s2, _size_ tn);

Compares the first n characters of string pointed to
by s1 to the first n characters of string pointed to by
s2. A call to the library function st rncnp() is
generated.

char * __builtin_strncpy(char * dest, const char *
src, __size tn);

Copies not more than n characters of string pointed
to by src, to the string pointed to by dest. A call to
the library function st r ncpy() is generated.

char* __builtin_strpbrk(const char * s1, const char
*s2);

Returns the first character in the string pointed to
by s1 that also is specified in the string pointed to
by s2. A call to the library function st r pbr k() is
generated.

char * __builtin_strrchr(const char * s, int ¢);

Returns a pointer to the last occurrence of character
c in the string pointed to by s or the null pointer if
not found. A call to the library function st rr chr ()
is generated.

__size_t__builtin_strspn(const char * s, const char
*set);

Searches the string pointed to by s for a sequence
of characters specified in the string pointed to by
set. A call to the library function st rspn() is
generated.

50

C Language

Intrinsic Function Description

char * __builtin_strstr(const char * s1, const char *|Searches for a substring pointed to by s2 in the
s2); string pointed to by s1. A call to the library function
strstr() is generated.

1.13. Section Naming

The C compiler generates sections and uses a combination of the memory type and the object name as
section names. The memory types are: code, rom, bit, bdata, data, idata, pdata and xdata. See also
Section 1.2.1, Memory Type Qualifiers. The section names are independent of the section attributes such
as clear, init, and romdata.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format_string[,[type=]format_string]...
#pragma section [type=]format_string[,[type=]format_string]...

With the memory type you select which sections are renamed. The matching sections will get the specified
format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{nodul e} module name

{nane} object name, name of variable or function
{type} section type

The default compiler generated section names are {t ype} _{ nane}.
Itis not possible to change the name of overlay sections, max sections and interrupt vector table sections.
Some examples (file t est . c):

#pragnma section data={nodul e} _{type} {attrib}
__data int x;
/* Section name: test_data_data_clear */

#pragma section data=_8051_{nodul e} _{nane}
__data int status;
/* Section name: _8051 test_status */

#pragma secti on pdat a=RENAVED { nane}

__pdata int barcode;
/* Section name: RENAMED barcode */

51

TASKING SmartCode - 8051 User Guide

With #pr agma endsect i on the naming convention of the previous level is restored, while with #pr agna
section defaul t the default section naming convention is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file exanpl e. c)

__data char a; // allocated in 'data_a'

#pragma section dat a=MyDat al

__data char b; /1 allocated in ' MyDatal'
#pragma section dat a=MyDat a2

__data char c; /1 allocated in ' MyData2'
#pragma endsection

__data char d; /1 allocated in ' MyDatal'
#pragma endsection

__data char e; /l allocated in 'data_e'

52

Chapter 2. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language. For a complete
overview of the architecture you are using, refer to the target's Core Reference Manual.

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits, dollar ($) and
underscore characters (). The first character cannot be a digit or a $. The label
can also be a number. A label which is prefixed by whitespace (spaces or tabs)
has to be followed by a colon (:). The size of an identifier is only limited by the
amount of available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the begi nning
;o of aline

1: jmp 1p ; This is an endl ess | oop
; using nuneric |abels

53

TASKING SmartCode - 8051 User Guide

instruction An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the target's Core Reference Manual.

The instruction can also be a so-called 'generic instruction’. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 2.10, Generic Instructions.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 2.8, Macro Preprocessing.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont rol

For more information on controls see Section 2.9, Assembler Directives and Controls.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.7.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

5 Unreported comment delimiter

\ Line continuation character
% Start of a built-in assembly function, or a macro call
* Literal character, used in % DEFI NE

String constants delimiter

String constants delimiter

54

Assembly Language

Character |Description

$ Location counter substitution

Immediate addressing

Note that macro operators have a higher precedence than expression operators.

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 2.5, Registers.

expression Any valid expression as described in Section 2.7, Assembly Expressions.

address A combination of expression, register and symbol.

2.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels
Symbols used for memory locations are referred to as labels.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions are also reserved. The case of these built-in symbols is
insignificant.

55

TASKING SmartCode - 8051 User Guide

Examples

Valid symbol names:

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nanme

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__BUILD__ Identifies the build number of the assembler in the format yymmddqq (year,
month, day and quarter in UTC).

__Ch1 Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as51 assembler only. It expands to 1.

_ CORE_ Expands to a string with the core name depending on the option --core=core.
For example, if --core=scr3g is specified, the symbol __CORE__ expands
to scr 3g.

_ CORE_core___ A symbol is defined depending on the option option --core=core. The core
is converted to uppercase. For example, if --core=scr3g is specified, the
symbol __CORE_SCR3G__ is defined as 1, otherwise the symbol is defined
as 0. When no --core is supplied, the assembler defines _ CORE_SCR3G__
as 1.

__REVISION___ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__ _TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__VERSION__ Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

i f @efined('__C51_ ")

; this part is only for the 8051 assenbl er

.endif

56

Assembly Language

2.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

A C DPTR
RO R1 R2 R3 R4 R5 R6 R7
ARO ARl AR2 AR3 AR4 AR5 ARG AR7Y

The following special function registers should also not be used as symbol names in an assembly language
source file. However it is allowed to redefine them.

ACC B DPH DPL PSW SP
AC CY FO F1 P OV RSO RS1

2.6. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register file (*.sfr) as symbol names for use with the compiler and
assembler. The assembler reads the SFR file with the command line option --sfr-file . If you use Eclipse
or the control program you can specify that the SFR file should be included based on the selected processor
automatically (--asm-sfr-file). The format of the SFR file is exactly the same as the include file for the C
compiler. For more details on the SFR files see Section 1.2.5, Accessing Hardware from C: __sfr, __ bsfr.
Because the SFR file format uses C syntax and the assembler has a limited C parser, it is important that
you only use the described constructs.

Example use in assembly (with option --sfr-file=regtc49x.sfr):

nov SCR_PCON. U, #0x88 ; use of SFR nane

setb SCR PO_QUT.B. P3 ; use of bit nane
mov C, SCR_PO_QUT. B. P4
gj nc 2

clr SCR_PO_OUT.B. P3
Without an SFR file the assembler only knows the registers and SFRs as specified in Section 2.5, Registers.
Built into the assembler are a number of symbol definitions for various 8051 addresses in bit and data

memory space. These symbols are treated by the assembler as if they were defined with the . BI T or
. DATA directives.

Bit addresses

Symbol Address Symbol Address
P 0xDO RS1 0xD4
F1 0xD1 FO 0xD5
ov 0xD2 AC 0xD6
RSO 0xD3 CcY 0xD7

57

TASKING SmartCode - 8051 User Guide

Data addresses AURIX 3G family SCR

Symbol Address Symbol Address
SP 0xD4 PSW 0xDO
DPL 0xD5 ACC OxEO
DPH 0xD6 B OxDA

Note that the B register for the AURIX 3G family SCR is not bit addressable.

2.7. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer values), and any combination
of integers or ASCI| literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

 (expression)

« function call

All types of expressions are explained in separate sections.

2.7.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes and suffixes can be used in either lowercase or uppercase.

58

Assembly Language

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b suffix 0b1101

11001010b
Octal Octal digits (0-7) followed by a o or q suffix 7770
Hexadecimal A Ox prefix followed by a hexadecimal digits (0-9, A-F, a-f). Or |Ox12FF

use a h suffix 0x45

0f al10h
Decimal Decimal digits (0-9), optionally followed by a d 12

1245d
2.7.2. Strings

ASCII characters, enclosed in single () or double () quotes constitute an ASCII string. Strings can contain
escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB, . DWor . DL assembler
directive; in that case all characters result in a constant value of the specified size. Null strings have a
value of 0.

Examples

' ABCD 7 (0x41424344)

79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB +1 ; (0x4143) string used in expression

v ; null string

2.7.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Type Operator Name Description
@) parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.

59

TASKING SmartCode - 8051 User Guide

Type Operator

Name

Description

one's complement

Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

NOT

logical negate

Returns 1 if the operands' value is O; otherwise O.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

HIGH

high byte

Returns the high byte of the operand ((operand >>
8)&0xFF).

LOW

low byte

Returns the low byte of the operand (operand &
OXFF).

type

type cast

Any of the valid assembler symbol types can be used
as a type cast operator.

*

Arithmetic

multiplication

Yields the product of its operands.

division

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

%
MOD

modulo

Used with integers, this operator yields the remainder
from the division of the first operand by the second.
Used with floating-point operands, this operator
applies the following rules:

Y%Z=YifZz=0

Y % Z = X if Z <> 0, where X has the same sign as
Y, is less than Z, and satisfies the relationship: Y =
integer * Z + X

addition

Yields the sum of its operands.

subtraction

Yields the difference of its operands.

Shift <<
SHL

shift left

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>>
SHR

shift right

Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

60

Assembly Language

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
LT TRUE or an integer 0 if the indicated condition is
<= less than or equal FALSE.
LE In either case, the memory space attribute of the
> greater than resultis N
GT
- reater than or equal For example, if D has a value of 3 and E has a value
G_E 9 q of 5, then the result of the expression D<E s 1, and
the result of the expression D>E is 0.
== equal
EQ Use tests for equality involving floating-point values
1= not equal with cauttlo(r;, sm(i:a rounding errors could cause
NE unexpected results.
Bit and bit position Specify bit position (right operand) in a bit
Bitwise addressable byte or word (left operand).
& AND Integer only. Yields the bitwise AND function of its
AND operand.
[OR Integer only. Yields the bitwise OR function of its
OR operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
XOR of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
Il logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
% f function, but can be used in any expression.

2.7.4. Symbol Types and Expression Types

Symbol Types

The type of a symbol is determined upon its definition by the section in which it is defined. The following
table shows the symbol types that are available.

Symbol type Type of section where symbol is defined
BIT bit address space

CODE code address space

DATA direct addressable data

IDATA indirect addressable data

PDATA auxiliary external data space

61

TASKING SmartCode - 8051 User Guide

Symbol type Type of section where symbol is defined

XDATA external data space

Itis also possible to explicitly define the symbol’s type with the . BI T, . CODE, . DATA, . | DATAand . XDATA
directive and with the . EXTRN directive. Labels not on the same line as the directive still are assigned
the type for that directive if they immediately precede the directive:

codesect .segnment code
.rseg codesect

nyl abel: ; this |abel gets the CODE type
.dw 1

When you make a symbol global with the . PUBLI Cdirective, the symbol’s type will be stored in the object
file. The . EXTRN directive used for importing the symbol in another module must specify the same type.

Symbols defined with . EQU or . SET inherit the type of the expression. The result of an expression is
determined by the type of symbols used in the expression.

Type Checking

When you use a symbol or expression as an operand for an instruction, the assembler will check if the
type of this symbol or expression is valid for the used instruction. If it is not valid, the assembler will issue
an error. For generic instructions the assembler uses the symbol type to select the smallest instruction.

Expression Types

When evaluating an expression, the result of the expression is determined by the operands of the
expression and the operators. The section type NUMBER is used for expressions representing a typeless
number. The section type of an expression involving more than one operand is assigned according to
the following rules:

1. The section type of a unary operation (+, -, NOT, LOW, HIGH) will be the same as the section type of
the operand.

2. The section type of a binary + or - operation is NUMBER, unless one of the operands has type NUMBER,
in which case the section type will be the type of the other operand.

3. The section type of the binary operations except + and - will be NUMBER.

2.8. Macro Preprocessing

The assembler has a built-in macro preprocessor which is compatible with Intel's syntax for the 8051
macro processing language (MPL).

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

62

Assembly Language

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

2.8.1. Defining and Calling Macros

The first step in using a macro is to define it. Every macro consists of a macro_name with optional
arguments and a macro_body. The macro_name defines the name used when the macro is called; the
macro_body contains the code or instructions to be inserted when the macro is called.

A macro definition takes the following form:

% *] DEFI NE(macr o_nane[(argunent [, argunent]...)]) [LOCAL local _list]
(

macr o_body

)

The '%' character signals a macro call. This character is called the 'metacharacter' and can also be
redefined (see macro preprocessing function VETACHAR()). The "' is the optional literal character.
When you define a macro using the literal character *', as shown above, macro calls contained in the
body of the macro are not expanded until the macro is called.

The macro_name must be an identifier conform to the following rules:

» The macro name starts with an uppercase or lowercase alphabetical character (a-z, A-Z), question

mark '? or underscore ' .
» The remaining part of the name can also contain digits.

» Only the first 31 characters of a macro identifier are recognized as the unique identifier name. Uppercase
and lowercase characters are not distinguished in a macro identifier.

The macro_body may contain calls to other macros. If so, the return value is actually the fully expanded
macro body, including the return values of the call to other macros. The macro call is re-expanded each
time it is called.

With the optional argument list you can pass information to the macro body. You can see them as variables.
Each argument must be a unique macro identifier, but it may be the same as other argument names to
other macros since it has no existence outside the macro definition. Argument names may also be the
same as the names of other user macros or of macro functions. Note, however that in this case the macro
or function cannot be used within the macro body, since its name would be recognized as a parameter
instead. To reference an argument within the macro body, use its name preceded by the metacharacter
(by default the '%' character).

Arguments are separated and surrounded by a delimiter. Typically these are parentheses and commas,
but you can use other delimiters as well. See Section 2.8.4, Macro Delimiters for more information.

63

TASKING SmartCode - 8051 User Guide

Macros can optionally contain local symbols. For each symbol in the local_list, the assembler will replace
each symbol by a unique assembly-time symbol each time the macro is called. See Section 2.8.2, Local
Symbols in Macros for more information.

Once a macro has been created, it may be redefined by a second call to DEFINE. Note, however that a
macro should not redefine itself within its body.

Calling a macro

To call a macro, you use the '%' character followed by the name of the macro (the literal character *' is
only admissible for defined macros whose call is passed to another macro as an argument; example:
%VIL(9% M2) . The preprocessor removes the call and inserts the return value of the call. If the macro body
contains any call to other macros, they are replaced with their return values.

%vracr o_name[(argument [, argunent]...)] [;comrent]

Example 1: macro definitions without arguments
Macro definition at the top of the program:

% DEFI NE (MOVE)
(MV A @R

MV @2, A
)

The macro call as it appears in the program:

MOV R1, #1
YWOVE ; <-- macro call preceded by four spaces

The program as it appears after the preprocessor of the assembler made the following expansion, where
the first expanded line is preceded by the four spaces preceding the call:

MOV R1, #1
MV A @RL
MV @2, A

Macro definition at the top of the program:

% DEFI NE (ADD5)

(MV RO, #5
MV R5, @R
ADD R5, RO

)

The macro call as it appears in the original program body:

MOV R5, #2
YADD5

The program after the macro expansion:

64

MOV RS, #2
MOV RO, #5
MOV R5, @2
ADD R5, RO

Macro definition at the top of the program:

% DEFI NE (MOVE_AND_ADD) (
Y%VOVE
%ADD5

)

The macro call as it appears in the body of the program:

MOV R, #1
9%OVE_AND_ADD

The program after the macro expansion:

MOV R, #1

MOV A @1
MV @Rz, A

MOV RO, #5
MV RS
ADD R5, RO

Example 2: macro definition with arguments

Assembly Language

The example below shows the definition of a macro with three arguments: SOURCE, DEST and COUNT.
The macro produces code to copy any number of words from one part of memory to another.

% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT))
(MOV R1, #%SOURCE
MOV RO, #YDEST
MOV R7, #YCOUNT
MV A @1
MOV
INC
INC
DINZ

)

A simple call to a macro defined above might be:
9MOVE_ADD GEN(10, 24, 8)
The above macro call produces the following code:

MOV R1, #10
MOV RO, #24

65

TASKING SmartCode - 8051 User Guide

MOV R7, #8
MOV A @1
MOV @RO, A
INC R1L
INC RO

DINZ R7, ($-4)

2.8.2. Local Symbols in Macros

If we used a fixed label instead of the offset ($-4) in the previous example, the macro using the fixed label
can only be called once, since a second call to the macro causes a conflict in the label definitions at
assembly time. The label can be made a parameter and a different symbol name can be specified each
time the macro is called.

A preferable way to ensure a unique label for each macro call is to put the label in a local_list.
The syntax for the LOCAL construct in the DEFINE function is shown below.

% *] DEFI NE(macr o_nane[(argument [, argunent]...)]) [LOCAL |l ocal _Iist]
(

nmacr o_body

)

The local_list construct allows you to use macro identifiers to specify assembly-time symbols. Each use
of a LOCAL symbol in a macro guarantees that the symbol will be replaced by a unique assembly-time
symbol each time the symbol is called.

The macro preprocessor increments a counter once for each symbol used in the list every time your
program calls a macro that uses the LOCAL construct. Symbols in the local_list, when used in the macro
body, receive a two to five digit suffix that is the hexadecimal value of the counter. The first time you call
a macro that uses the LOCAL construct, the suffix is '00'".

The local_list is a list of valid macro identifiers separated by spaces. Since these macro identifiers are
not parameters, the LOCAL construct in a macro has no effect on a macro call.

To reference local symbols in the macro body, they must be preceded by the metacharacter (by default
the '%' character). The symbol LOCAL is not reserved; a user symbol or macro may have this name.

The next example shows a macro definition that uses a LOCAL list.

Example

9% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT)) LOCAL LAB
(MOV Rl, #%SOURCE

MOV RO, #UDEST

MOV R7, #UCOUNT

%_AB:
MV A @1
MOV @0, A
INC R1

66

Assembly Language

INC RO
DINZ R7, %.AB

)

A simple call to a macro defined above might be:
90OVE_ADD GEN(50, 100, 24)

The above macro call might produce the following code (if this is the eleventh call to a macro using a
LOCAL list):

MOV R1, #50
MOV RO, #100
MOV R7, #24
LABOA:

MV A @1

MOV @0, A

INC R1

INC RO

DINZ R7, LABOA

Any macro identifier can be used in a local_list. However, if long identifier names are used, they should
be restricted to 29 characters. Otherwise, the label suffix may cause the identifier to exceed 31
characters and these would be truncated.

2.8.3. Built-in Macro Preprocessing Functions

The macro preprocessor part of the assembler has several built-in or predefined macro functions. These
built-in functions perform many useful operations that are difficult or impossible to produce in a user-defined
macro.

We have already discussed one of these built-in functions, DEFINE. DEFINE creates user-defined macros.
DEFINE does this by adding an entry in the macro preprocessor's tables of macro definitions. Each entry
in the tables includes the macro name of the macro, its parameter list, its local list and its macro body.
Entries for the built-in functions are present when the macro preprocessor begins operation.

Other built-in functions perform numerical and logical expression evaluation, affect control flow of the
macro preprocessor, manipulate character strings, and perform console I/O.

Overview of macro preprocessing functions

Function Description

% text' Comment function

% text end-of-line

% text Escape function: prevent macro expansion of text of n
characters long

o text) Bracket function: prevent macro expansion

o4 text} Group function: ensure macro expansion

67

TASKING SmartCode - 8051 User Guide

Function

Description

USTS() , USES()
YERROR() , YATAL()
vEXI T

% F()

% FDEF() , % FNDEF()
% N() , Y0UT()

9% NCL UDE()

%EN()

OATCH()
YVETACHAR()

Y%OPTI ON()

YSET() , UEVAL()
%SUBSTR()

%NDEF()

OMHI LE() , YREPEAT()

YEQS() , YNES() , %.TS(), XES() ,

% FILE_,% LINE__

String comparing functions

Generate user error message or fatal error message

Terminate expansion of the most recently called user defined
macro

File/line info functions

Conditional control flow

Test if a macro is defined or not

Input/output functions

Include a file

Return the length of a string

Define macro identifiers

Redefine the metacharacter ‘%'

Call a command line option from within the source file
Calculating functions

Return part of a string

Undefine a previously defined macro or built-in function
Control looping functions

68

Assembly Language

Comment function: %'

Syntax
9% text'
or:

%text end-of-line

Description

The macro processing language can be very subtle, and the operation of macros written in a straightforward
manner may not be immediately obvious. Therefore, it is often necessary to comment macro definitions.

The comment function always evaluates to the null string. Two terminating characters are recognized:
the apostrophe ' and the end-of-line (line-feed character, ASCIl 0AH). The second form of the call allows
macro definitions to be spread over several lines, while avoiding any unwanted end-of-lines in the return
value. In either form of the comment function, the text or comment is not evaluated for macro calls.

The literal character "*" is not accepted in connection with this function.

Example

% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT)) LOCAL LAB
(MOV R1, #YBO0URCE % This is the source address'
MOV RO, #YOEST % This is the destination'

MOV R7, #Y%COUNT % %COUNT nust be a constant'

%_AB: % This is a |ocal |abel.
% End of line is inside the conment!
MOV A @GR1L
MOV @RO, A
INC R1
INC RO

DINZ R7, %.AB
)

Call the above macro:
9MOVE_ADD GEN(50, 100, 24)
Return value from above call:

MOV R1, #50
MOV RO, #100
MOV R7, #24

LABOA:
MOV A @R1
MOV @0, A
INC R1
INC RO

DINZ R7, LABOA

69

TASKING SmartCode - 8051 User Guide

Note that the comments that were terminated with the end-of-line removed the end-of-line character along
with the rest of the comment.

The metacharacter is not recognized as flagging a call to the macro preprocessor when it appears in the
comment function.

70

Assembly Language

Escape function: %n

Syntax

%M text

Description

The escape function prevents the macro preprocessor from processing a text string of n characters long,
where n is a decimal digit from 0 to 9. The escape function is useful for inserting a metacharacter as text,
adding a comma as part of an argument, or placing a single parenthesis in a character string that requires
balanced parentheses.

The literal character ** is not accepted in connection with this function.

Example
Bef ore Macro Expansi on After Macro Expansion
; Aver age of 20%1% ->: Average of 20%
YOTCALL(JAN 2194, 2017, -> JAN 21, 2017

AUG 149, 2017) -> AUG 14, 2017
WWCALL(1%) Option 1, -> 1) Option 1

29%) Option 2, ->2) Option 2

3%) Option 2) -> 3) Option 3

The first example adds a literal '%' in the text. The second example keeps the date as one actual parameter
adding a literal ',". The third example adds a literal right parenthesis)’ to each parameter.

Related Information

Bracket function %)

71

TASKING SmartCode - 8051 User Guide

Bracket function: %()
Syntax

9%t ext)

Description

The bracket function prevents all macro preprocessor expansion of the text contained within the
parentheses. However, the escape function, the comment function, and the parameter substitution are
still recognized. Since there is no restriction for the length of the text within the bracket function, it is
usually easier to use than the escape function.

The literal character ** is not accepted in connection with this function.

Example

9% DEFI NE (DEFW LI ST, NAVE))
(YNAME . DW 9%l ST)

The macro DEFW expands .DW statements, where the variable LI ST represents the first parameter and
the expression NAME represents the second parameter.

The following expansion should be obtained by the call:
PHONE . DW 0x198, 0x3D, OxFO

If the call in the following form:

YDEFW 0x198, 0x3D, 0xFO, PHONE)

occurs, the macro preprocessor would interpret the first argument (0x198) as LIST and everything after
the first comma as the second parameter, since the first comma would be interpreted as the delimiter
separating the macro parameters.

In order to change this method of interpretation, all tokens that are to be combined for an individual
parameter must be identified as a parameter string and set in a bracket function:

YDEFW(% 0x198, 0x3D, OxFO0), PHONE)

This way the bracket function prevents the string '198H, 3DH, OFOH' from being evaluated as separate
parameters.

Related Information

Escape function %n

72

Assembly Language

Group function: %({ }
Syntax

% text}

Description

The group function does the opposite of the bracket function, it ensures that the text is expanded. The
resulting string is then interpreted itself like a macro command. This allows for definition of complex
recursive macros. Another useful application of the group function is to separate macro identifiers from
surrounding, possibly valid identifier characters.

The literal character ** is not accepted in connection with this function.

Example

Ydef i ne(TEXTA) (Text A)
Ydef i ne(TEXTB) (Text B)
Ydefi ne(TEXTC) (Text C)

%def i ne(SELECT) (B)

94 TEXTUSELECT}

The contents of the group function, TEXT%SELECT, expands to TEXTB, which on its turn is expanded as
Y EXTB resulting in Text B.

%def i ne(op) (add)
% op} _and_nove

The group function ensures that the macro op is expanded. Without it, op_and_nove would be seen as
the macro identifier.

73

TASKING SmartCode - 8051 User Guide

%ERROR, %FATAL

Syntax

YERROR(t ext)
Y-ATAL(t ext)

Description
With these built-in functions you can generate a user error or fatal error message.

You can use the “ERROR function to trigger a user error 'E 100'. Macro preprocessing will continue after
the YERROR function. The “ERROR function expands to the null string.

You can use the %~ATAL function to trigger a user fatal error 'F 101'. Macro preprocessing will stop directly
after the %-ATAL function, and the program will exit with value 1. The %~ATAL function expands to the
null string.

Example

% FNDEF(TEMP)
THEN

(YERROR(Macr o TEMP not defi ned))
ELSE

(9%-ATAL(Macro TEMP is defined))
Fl

Related Information

$IVESSAGE assembler control

74

Assembly Language

%EQS, NNES, %LTS, LES, %GTS, %GES

Syntax

%EQS(argl, arg2)
UNES(ar g1, ar g2)
%.TS(argl, arg2)
% ES(argl, arg2)
%GTS(argl, arg2)
%CES(argl, ar g2)

Description

These string comparison functions compare two text arguments and return a logical value based on that
comparison. If the function evaluates to 'TRUE', then it returns the character string 'OffffH". If the function
evaluates to 'FALSE', then it returns '00H'. Both arguments may contain macro calls.

Function Description

YEQS Equal. TRUE if both arguments are identical.

UNES Not equal. TRUE if arguments are different in any way.

%UTS Less than. TRUE if first argument has a lower value than second argument.

% ES Less than or equal. TRUE if first argument has a lower value than second argument or if
both arguments are identical.

%USTS Greater than. TRUE if first argument has a higher value than second argument.

YCES Greater than or equal. TRUE if first argument has a higher value than second argument,

or if both arguments are identical.

Before these functions perform a comparison, both strings are completely expanded. Then the ASCII
value of the first character in the first string is compared to the ASCII value of the first character in the
second string. If they differ, then the string with the higher ASCII value is to be considered to be greater.
If the first characters are the same, the process continues with the second character in each string, and
so on. Only two strings of equal length that contain the same characters in the same order are equal.

Example

%EQS(ABC, ABC) -> OffffH (TRUE)

The character strings are identical.

%EQS(ABC, ABC) -> 00H (FALSE)

The space after the comma is part of the second argument

%.TS(CBA, cba) -> OffffH (TRUE)

The lowercase characters have a higher ASCII value than uppercase.

%GES(ABC, ABC) -> 00H (FALSE)

75

TASKING SmartCode - 8051 User Guide

The space at the end of the second string makes the second string greater than the first one.
Y%GTS(16, 111H) -> OffffH (TRUE)

ASCII '6' is greater than ASCII '1".

The arguments can also contain macro calls:

98ATCH(NEXT, LI ST) (CAT, DOG_MOUSE)

YEQS(9NEXT, CAT) -> OffffH (TRUE)
YEQS(DOG, #BUBSTR(%L1 ST, 1,3)) -> Of fffH (TRUE)

76

Assembly Language

%EVAL

Syntax

YEVAL(expr essi on)
Description

The %EVAL function accepts an expression as its argument and returns the expression's value in
hexadecimal.

The expression argument must be a legal macro-time expression. The return value from %EVAL is built
according to macro processing rules for representing hexadecimal numbers. The trailing character is
always the hexadecimal suffix (H). The expanded value is at most 16 bits and negative numbers are
shown in two's complement form. If the leading digit of the return value is 'A’, 'B', 'C', 'D', 'E' or 'F', it is
preceded by a 0.

Example

COUNT SET %EVAL(33H + 15H + Of O0H) -> COUNT SET O0f 48H

MOV RL, #%&VAL(10H - ((13+6) *2) +7) -> MOV R1L, #Offf1H

YSET(NUML, 44) ->null string
YSET(Nume, 25) ->null string
MOV R1, #%&EVAL(YNUML LE 9&NUMR) -> MOV R1, #00H

77

TASKING SmartCode - 8051 User Guide

%EXIT

Syntax

%EXI T

Description

The built-in function %EXI T terminates expansion of the most recently called user defined macro. It is
most commonly used to avoid infinite loops (e.g. a recursive user defined macro that never terminates).
It allows several exit points in the same macro.

Example

This example uses the %EXI T function to terminate a recursive macro when an odd number of bytes have
been added.

% DEFI NE (MEM ADD_MEM SOURCE, DEST, BYTES))
(%F(YBYTES LE 0) THEN (9&EXIT) FI

ADD A, %SOURCE

ADDC A, 9YDEST

MV 9DEST, A

%F(YBYTES EQ 1) THEN (%&EXIT) FI

MV A %SOURCE+1

ADDC A, YDEST+1

MV 9DEST+1, A

% F(YBYTES GT 2) THEN (

9%EM ADD_MEM %SOURCE+2, YDEST+2, 9BYTES- 2)) FI

)

The above example adds two pairs of bytes and stores results in DEST. As long as there is a pair of bytes
to be added, the macro MEM_ADD _MEMis expanded. When BYTES reaches a value of 1 or 0, the macro
is exited.

In the following example %&EXI T is a simple jump out of a recursive loop:

% DEFI NE (BODY)
(MOV A, %WVAR

YSET(MWAR, %WAR + 1)
)

% DEFI NE (UNTI L(CONDI TI ON, EXE_BCDY))
(Y%EXE_BODY
% F(%OCONDI TI ON)
THEN (
YEXI T)
ELSE (
QUNTI L(%CONDI TI ON, %EXE_BODY)
) FI

78

Assembly Language

%SET(WAR, 0)
QUNTI L(9%WAR GT 3, 9% BCODY)

Related Information
OREPEAT

\H LE

79

TASKING SmartCode - 8051 User Guide

% _ FILE _,%_ LINE__
Syntax

% FILE
% LINE__

Description

The % _FI LE__ macro is equivalent to the ISO C predefined macro, it translates into the name of the
current source file.

The % LI NE__ macro is equivalent to the ISO C predefined macro, it translates into the line number of
the current source line.

Example

YERROR(Error in file % _FILE _on line % _LINE)

80

Assembly Language

%IF

Syntax

% F(expression)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text?2)]

Fl

Description

With the %8 F function you can create a part of conditional assembly code. The assembler assembles
only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the result of the expression is TRUE, then the succeeding textl is expanded; if it is FALSE and the
optional ELSE clause is included in the call, then the text2 is expanded. If the expression results FALSE
and the ELSE clause is not included, the | F call returns the null string. The macro call must be terminated
by FI .

You can nest % F calls to any level. The ELSE clause refers to the most recent % F call that is still open
(not terminated by FI). FI terminates the most recent 98 F call that is still open.

Example
This is a simple example of the IF call with no ELSE clause:

%SET(VALUE, OFOH)
% F(%/ALUE GE OFFH)
THEN

(MOV R1l, #%WALUE)
Fi

This is a simple form of the IF call with an ELSE clause:

% F(%EQS(ADD, %OPERATI ON))
THEN
(ADD R7, #03H)
ELSE
(SUB R7, #03H)
F

This is an example of three nested IF calls:
% F(%EQS(%OPER, ADD)) THEN (

ADD R1, #03H
)ELSE (% F(%&EQS(%OPER, SUB)) THEN (

81

TASKING SmartCode - 8051 User Guide

SUB R1, #03H
)ELSE (9% F(Y%EQS(%OPER, MUL)) THEN (
MOV R1, #03
JVWP MIL_LAB
) ELSE (
MOV R1, #DATUM
JVP DI V_LAB
) FI
) FI
) FI

Demonstrating conditional assembly:
YSET(DEBUG, 1)
% F(YOEBUGQ)
THEN (
MOV R1, #YDEBUG

JMP DEBUG
) F

MV Rl, R2

This expands to:

MOV R1, #01H
JMP DEBUG
MOV Rl, R2

To turn of the debug code you can change %SET to:
YSET(DEBUG, 0)
Related Information

% FDEF, % FNDEF

82

Assembly Language

%IFDEF, %IFNDEF

Syntax

% FDEF(macr o)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text?2)]

Fl

% FNDEF(macr o)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text2)]

FI

Description

The 9% FDEF built-in function tests if a macro is defined and the %8 FNDEF built-in function tests if a macro
is not defined. Based on this test, the function expands or withholds its text arguments. These functions
allow you to decide at macro time whether to assemble certain code or not (conditional assembly). So,
the assembler never has to see any code which is not to be assembled.

The % FDEF and %4 FNDEF functions first test if macro is defined (IFDEF) or not (IFNDEF). If it is TRUE,
then the succeeding textl is expanded; if it is FALSE and the optional EL SE clause is included in the call,
then the text2 is expanded. If the test results to FALSE and the ELSE clause is not included, the macro
call returns the null string. The macro call must be terminated by FI .

You can nest % FDEF/% FNDEF calls to any level. The ELSE clause refers to the most recent call that is
still open (not terminated by FI). FI terminates the most recent %4 FDEF/% FNDEF call that is still open.

Example
This is a simple example of the IFNDEF call with no ELSE clause:

% FNDEF(MODEL)

THEN (

YDEFI NE(MODEL) (SMALL)
) FI

This is a simple form of the IFDEF call with an ELSE clause:

% FDEF(DOADD)
THEN

(ADD R7, #03H)
ELSE

(SUB R7, #03H)
FI

83

TASKING SmartCode - 8051 User Guide

Related Information

% F

84

Assembly Language

%IN, %0UT
Syntax

% N

YOUT(t ext)
Description

These built-in functions perform console I/O. They are line oriented. % N outputs the character '>' as a
prompt to the console (unless you specify another prompt with option --prompt), and returns the next
line typed at the console including the line terminator. %0UT outputs a string to the console; the return
value of ¥%OUT is the null string.

Example

%OUT(ENTER NUVBER OF PROCESSORS | N SYSTEM
%SET(PROC_COUNT, % N)

%OUT(ENTER THI S PROCESSOR S ADDRESS)

%SET(ADDRESS, % N)

%OUT(ENTER BAUD RATE)

%SET(BAUD, % N)

The following lines would be displayed on the console:

ENTER NUMBER OF PROCESSCRS | N SYSTEM
> user response

ENTER THI S PROCESSOR S ADDRESS

> user response

ENTER BAUD RATE

> user response

Related Information
%OPTI ON

Assembler option --prompt

85

TASKING SmartCode - 8051 User Guide

%INCLUDE

Syntax

% NCLUDE(fil enane" | <fil enanme>

Description

With the 9% NCLUDE function you include another file at the exact location where the %4 NCLUDE occurs.
This happens at macro preprocessing time, before the resulting file is assembled. The %4 NCLUDE function
works similarly to the #i ncl ude statement in C. The source from the include file is assembled as if it
followed the point of the %4 NCLUDE function. When the end of the included file is reached, assembly of
the original file continues.

The string specifies the filename of the file to be included. Leading and trailing whitespaces are skipped.
The filename must be compatible with the operating system (forward/backward slashes) and can contain
a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The directory of the current source file.

2. The path that is specified with the assembler option --include-directory.

3. The path that is specified in the environment variable AS511 NC when the product was installed.
4. The default i ncl ude directory in the installation directory.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example

It is allowed to start a new section in an included file. If this file is included somewhere in another section,
the contents of that section following the included file will belong to the section started in the include file:

: file incfile.asm

i nsect .segnent data
.rseg data
.db 5
.db 6

; file mainfile.asm

mai nsect .segnent data
.rseg data
.db 1
.db 2
% NCLUDE(i ncfile.asm

86

Assembly Language

.db 3
.db 4

The resulting sections have the following contents:

mai nsect: 0x01 0x02
incsect: 0x05 0x06 0x03 0x04

87

TASKING SmartCode - 8051 User Guide

%LEN
Syntax
% EN(t ext)
Description

The built-in function %4.ENtakes a character string argument and returns the length of the character string
in hexadecimal format (the same format as “EVAL).

Example

Bef ore Macro Expansi on After Macro Expansion
%_EN(ABCDEFGHI JKLMNOPQRSTUVWKYZ) -> laH

%.EN(A, B, -> 05H

9% EN() -> 0OH

YWVATCH(STR1, STR2) (Cheese, Mouse)

% EN(%STR1) -> 06H

% EN(¥SUBSTR(%8TR2, 1, 3)) -> 03H

Related Information
9%VATCH

Y%SUBSTR

88

Assembly Language

%MATCH

Syntax

UVATCH(macro_idl delimter nmacro_id2) (text)

Description

The built-in function %VATCH primarily serves to define macro identifiers. The %vVATCH function searches
a character string for a delimiter character and assigns the substrings on either side of the delimiter to
the macro identifiers.

delimiter is the first character to follow macro_id1. You can use a space or a comma or any other delimiter.
See Section 2.8.4, Macro Delimiters for more information on delimiters.

%VATCH searches the text for the first delimiter. When it is found, all characters to the left of it are assigned
to macro_id1 and all characters to the right are assigned to macro_id2. If the delimiter is not found, the
entire text is assigned to macro_id1 and the null string is assigned to macro_id2.

Example
9%VATCH(M51, M52) (ABC, DEF) -> MB1=ABC MS2=DEF
9VATCH(MS3, M34) (GH, %VB1) -> MS3=GH MB4=ABC

9VATCH(MS5, MS6) (%-EN(%vB1)) -> MS5=03H Ms6=nul |
You can use the MATCH function for processing string lists as shown in the next example.

9%ATCH(NEXT, LI ST) (10H, 20H, 30H)
OMHI LE(% EN(9\EXT))
(MOV A OEXT

ADD A, #2

MOV OMNEXT, A

9VATCH(NEXT, LI ST) (%.1 ST)
)

Produces the following code:
First iteration of WHILE:

MOV A 10H
ADD A, #2
MOV 10H, A

Second iteration of WHILE:
MOV A, 20H
ADD A, #2
MOV 20H, A

Third iteration of WHILE:

89

TASKING SmartCode - 8051 User Guide

MOV A 30H
ADD A, #2
MOV 30H, A

Related Information
%_EN

Y%SUBSTR

90

Assembly Language

%METACHAR

Syntax

UWVETACHAR(t ext)

Default: %

Description

You can use this function to redefine the metacharacter (initially: '%").

Although the text string may be any number of characters long, only the first character in the string is
taken to be the new metacharacter. Macro calls in the text string are still recognized and corresponding
actions that will not lead to any direct expansion on the output file will be performed. So, for example a
YSET macro call inside the text string will be performed.

Characters that may not be used as a metacharacter are: a blank, letter, digit, left or right parenthesis,
or asterisk.

Example
The following example is catastrophic !!!
9VETACHAR(&)

This examples defines the space character as the new metacharacter, since it is the first character in the
text string!

The correct way should be:

YVETACHAR(&)

91

TASKING SmartCode - 8051 User Guide

%OPTION

Syntax

%OPTI ON(command_I i ne_opt i on)

Description

You can use the %0PTI ON function to trigger a command line option from within the source file.

The command_line_option must be any valid command line option. The %PTI ONfunction itself is replaced
with the null string.

Example

The following command sets the prompt for the %4 N function to "y/ n: " from with the source:
YEOPTI ON(- - pronpt =y/ n:)

Related Information

% N

92

Assembly Language

%REPEAT

Syntax

YREPEAT(expr essi on)
(text)

Description

Unlike the 9% F and 9\HI LE macros, “REPEAT uses the expression for a numerical value that specifies
the number of times the text should be expanded. The expression is evaluated once when the macro is
first called, then the specified number of iterations is performed.

A call to built-in function %EXI T always terminates a %EPEAT macro.

Example

Lab:
MOV A, #8
MOV R2, #OFFFFH

YREPEAT(8)
(MV @2, A

ADD @1, A
)

Related Information
oEXI T

W LE

93

TASKING SmartCode - 8051 User Guide

%SET

Syntax

YSET(macr o_vari abl e, expr essi on)

Description

The %SET function assigns the value of the numeric expression to the identifier, macro_variable, and
stores the macro_variable in the macro time symbol table.macro_variable must follow the same syntax
convention used for other macro identifiers. Expansion of a macro_variable always results in hexadecimal
format.

The %SET macro call affects the macro time symbol table only; when %SET is encountered, the macro
preprocessor replaces it with the null string. Symbols defined by %SET can be redefined by a second
YSET call, or defined as a macro by a “DEFI NE call.

Example

USET(COUNT, 0) ->null string

USET(OFFSET, 16) ->null string

MOV R1, #%COUNT + %OFFSET -> MOV R1, #00H + 10H
MOV R2, #YCOUNT -> MOV R2, #00H

%SET can also be used to redefine symbols in the macro time table:

YSET(COUNT, UCOUNT + YOFFSET) -> null string

YSET(OFFSET, %OFFSET * 2) -> null string
MOV R1, #YOOUNT + Y%OFFSET -> MOV R1, #10H + 20H
MOV R2, #YOOUNT -> MOV R2, #10H

94

Assembly Language

%SUBSTR

Syntax

¥%SUBSTR(string, start, count)

Description

The built-in function “SUBSTR returns a substring of its text argument. The macro takes three arguments:
a string from which the substring is to be extracted and two numeric arguments.

start specifies the starting character of the substring.
count specifies the number of characters to be included in the substring.
If start is zero or greater than the length of the argument string, “8UBSTR returns the null string.

If count is zero, then “SUBSTRreturns the null string. If it is greater than the remaining length of the string,
then all characters from the start character of the substring to the end of the string are included.

Example

Bef ore Macro Expansion After Macro Expansion

%SUBSTR(ABCDEFG, 5, 1) > E
%SUBSTR(ABCDEFG, 5, 100) -> EFG
%BUBSTR(123(56) 890, 4, 4) -> (56)
%SUBSTR(ABCDEFG, 8, 1) -> nul |
%SUBSTR(ABCDEFG, 3, 0) -> nul |

Related Information
%_EN

%VATCH

95

TASKING SmartCode - 8051 User Guide

%UNDEF

Syntax

Y%INDEF(i dentifier)

Description

You can use this function to undefine a previously defined macro, or one of the built-in macro functions.

The identifier must be a previously defined macro name or one of the built-in functions. The %JNDEF
command is replaced with the null string.

Example

YOEFI NE(TEMP) (pat h) -> macro TEMP is defined

%JINDEF(TEMP) -> null string, TEMP is undefined
%INDEF(SET) ->null string

YSET(COUNT, 0) -> undefi ned nacro name: SET

96

Assembly Language

%WHILE

Syntax

9\ LE(expr essi on)
(text)

Description

The %\HI LE built-in function evaluates the expression. If it results to TRUE, the text is expanded. %\H LE
expands to the null string. Once the text has been expanded, the logical argument is retested and if it is
still TRUE, the text is expanded again. This continues until the logical argument proves FALSE.

Since the macro continues processing until the expression is FALSE, the text should modify the expression,
or else 9%\HI LE may never terminate.

A call to built-in function %EXI T always terminates a %\HI LE macro.

Example
This example uses the SET macro and a macro-time symbol to count the iterations of the %4\HI LE mactro.

%SET(COUNTER, 7)

oMM LE(%COUNTER GT 0)
(MV R2, #%COUNTER
MV @Rl, R2
ADD RIL, #2
%SET(COUNTER, %COUNTER - 1)

)

Related Information
ovEXIT

YREPEAT

2.8.4. Macro Delimiters

Delimiters are used in the function ¥OEFI NE to separate the macro name from the optional parameter
list and to separate different parameters in this parameter list. In the ¥%ATCH function a delimiter is used
to define a separator, which is used as kind of terminator in the corresponding balanced text argument.
The most commonly used delimiters are characters like parentheses and commas, but the macro language
permits almost any character or group of characters to be used as a delimiter.

Regardless of the type of delimiter used to define a macro, once it has been defined, only the delimiters
used in the definition can be used in the macro call. Macros defined with parentheses and commas require
parentheses and commas in the macro call. Macros defined with spaces (or any other delimiter), require
that delimiter when called.

97

TASKING SmartCode - 8051 User Guide

Macro delimiters can be divided into three classes: implied blank delimiters, identifier delimiters, and literal
delimiters.

2.8.4.1. Implied Blank Delimiters

Implied blank delimiters are the easiest to use and contribute the most readability and flexibility to macro
definitions. An implied blank delimiter is one or more spaces, tabs or new lines (a carriage-return/linefeed
pair) in any order. To define a macro that uses the implied blank delimiter, simply place one or more
spaces, tabs, or new lines surrounding the parameter list and separating the formal parameters.

When you call the macro defined with the implied blank delimiter, each delimiter will match a series of
spaces, tabs, or new lines. Each parameter in the call begins with the first non-blank character, and ends
when a blank character is found.

Example
% DEFI NE(WORDS FI RST SECOND) (TEXT: %1 RST %SECOND)

All of the following calls are valid:

Bef ore Macro Expansi on After Macro Expansion
9MORDS hell o worl d -> TEXT: hello world
IMNORDS one

t wo -> TEXT: one two
9ANORDS

wel |
done -> TEXT: well done

2.8.4.2. Identifier Delimiters

Identifier delimiters are legal macro identifiers designated as delimiters. To define a macro that uses an
identifier delimiter in its call pattern, you must prefix the delimiter with the commercial at symbol '@". You
must separate the identifier delimiter from the macro identifiers by a blank character.

When calling a macro defined with identifier delimiters, an implied blank delimiter is required to precede
the identifier delimiter, but none is required to follow the identifier delimiter.

Example

o DEFI NE(ADD ML @O M2 @ND MB) (
MOV A, %L
ADD A, %2
MOV %2, A
MOV A, %L
ADD A, %/B
MOV 9%vB, A
)

The following call (there is no blank after TOand AND):

%ADD ATOM TOBI LL ANDLI ST

98

Assembly Language

returns the following code after expansion:

MOV A, ATOM
ADD A, Bl LL
MOV BILL, A
MOV A, ATOM
ADD A, LI ST
MOV LI ST, A

2.8.4.3. Literal Delimiters

The delimiters we used with the user-defined macros (parentheses and commas) were literal delimiters.
A literal delimiter can be any character except the metacharacter.

When you define a macro using a literal delimiter, you must use exactly that delimiter when you call the
macro.

When defining a macro, you must literalize the delimiter string, if the delimiter you wish to use meets any
of the following conditions:

» uses more than one character

 uses a macro identifier character (A-Z, , _, or ?)
» uses a commercial at (@)

* uses a space, tab, carriage-return, or linefeed

You can use the escape function (%) or the bracket function (%)) to literalize the delimiter string.

Example

Bef ore Macro Expansion After Macro Expansion
9% DEFI NE(MAC(A, B)) (YA 98B) -> null string

9VAC(2, 3) ->2 3

In the following example brackets are used instead of parentheses. The commercial at symbol separates
the parameters:

9% DEFI NE(OR[A% @ B]) (OR %A, YB) -> null string
YOR[AL@\2] -> OR Al, A2

In the next example, delimiters that could be identifier delimiters have been defined as literal delimiters:

9% DEFI NE(ADD(A% AND) B)) (AND %A, 98) -> nul| string
%ADD (A AND #34H) -> AND A , #27H

The spaces around AND are considered as part of the argument string.
Example

The next example demonstrates the difference between identifier delimiters and literal delimiters.

99

TASKING SmartCode - 8051 User Guide

% DEFI NE(ADD MLY% TO) M2% AND) MB) (
MOV A, %L
ADD A, %2
MOV %2, A
MOV A, %L
ADD A, %/B
MOV 9%vB, A
)

The following call:
%ADD ATOM TOBI LL ANDLI ST
returns the following code after expansion (the TOin ATOMis recognized as the delimiter):

MOV A A

ADD A, M TOBI LL
MOV M TCOBI LL, A
MOV A A

ADD A, LI ST

MOV LI ST, A

2.8.5. Literal Mode versus Normal Mode

In normal mode, the macro preprocessor scans text looking for the metacharacter. When it finds one, it
begins expanding the macro call. Parameters and macro calls are expanded. This is the usual operation
of the macro preprocessor, but sometimes it is necessary to modify this mode of operation. The most
common use of the literal mode is to prevent macro expansion. The literal character in DEFINE prevents
the expansion of macros in the macro body until you call the macro.

When you place the literal character *' in a DEFINE call, the macro preprocessor shifts to literal mode
while expanding the call. The effect is similar to surrounding the entire call with the bracket function.
Parameters to the literalized call are expanded, the escape, comment, and bracket functions are also
expanded, but no further processing is performed. If there are any calls to other, they are not expanded.

If there are no parameters in the macro being defined, the DEFINE built-in function can be called without

the literal character. If the macro uses parameters, the macro will attempt to evaluate the formal parameters
in the macro body as parameterless macro calls.

Example

The following example illustrates the difference between defining a macro in literal mode and normal
mode:

YSET(TOM 1)

% DEFI NE (ML) (
YEVAL (9T OV)

)

YDEFI NE (M) (

100

Assembly Language

YEVAL (%r0M)
)

When ML and M2 are defined, TOMis equal to 1. The macro-body of ML has not been evaluated due to
the literal character, but the macro body of M2 has been completely evaluated, since the literal character
is not used in the definition. Changing the value of TOMhas no affect on M, it changes the return value
of ML as illustrated below:

Bef ore Macro Expansi on After Macro Expansion

YSET(TOM 2)
7Y -> 02H
%P -> 01H

The macros themselves can be called with the literal character. The return value then is the unexpanded
body:

% M2 -> 01H
o ML -> YEVAL(%OV
Example

Sometimes it is necessary to obtain access to parameters by several macro levels. The literal mode is
also used for this purpose. The following example assumes that the macro ML called in the macro-body
is predefined.

@ DEFI NE (M2(P1)) (
MOV A %P1
oML %P1)

)

In the above example, the formal parameter %1 is used once as a simple place holder and once as an
actual parameter for the macro ML.

Actual parameters in the contents must not be known in literal mode, since they are not expanded. If the
definition of M2, however, occurred in normal mode, the macro preprocessor would try to expand the call
from ML and, therefore, the formal parameter %1 (used as an actual parameter). However, this first

receives its value when called from M2. If its contents happen to be undefined, an error message is issued.

Example

Another application possibility for the literal mode exists for macro calls that are used as actual parameters
(macro strings, macro variables, macro calls).

OML(%8 MR)

The formal parameter of ML was assigned the call from M2 ("%R") by its expansion. M2 is expanded from
ML when the formal parameters are processed.

In normal mode, M2 is expanded in its actual parameter listimmediately when called from ML. The formal
parameters of ML in its body are replaced by the prior expanded macro body from M2.

101

TASKING SmartCode - 8051 User Guide

Example

The following example shows the different use of macros as actual parameters in the literal and normal
mode.

YSET(M2, 1)

9% DEFI NE (ML(P1)) (
YSET(M2, %R + 1)

%Wwe, %1
)
9VIL(%8 M) -> 02H, 02H
YL (%VR) -> 03H, 02H
9VIL(%8 MR) -> 04H, 04H

2.8.6. Algorithm for Evaluating Macro Calls

The algorithm of the macro preprocessor used for evaluating the source file can be broken down into 6
steps:

1. Scan the input stream until the metacharacter is found.
2. Isolate the macro name.

3. If macro has parameters, expand each parameter from left to right (initiate step one on actual parameter),
before expanding the next parameter.

4. Substitute actual parameters for formal parameters in macro body.

5. If the literal character is not used, initiate step one on macro body.

6. Insert the result into output stream.

The terms 'input stream' and 'output stream' are used because the return value of one macro may be a

parameter to another. On the first iteration, the input stream is the source line. On the final iteration, the
output stream is passed to the assembler.

Example

The examples below illustrate the macro preprocessor's evaluation algorithm:
YSET(TOM 3)

% DEFI NE (STEVE) (%SET(TOM %OM - 1) %OM

YDEFI NE (ADAM A, B)) (
DB %A 9B, YA 9B, %A 9B
)

102

Assembly Language

The call ADAMis presented here in the normal mode with TOMas the first actual parameter and STEVE
as the second actual parameter. The first parameter is completely expanded before the second parameter
is expanded. After the call to ADAMhas been completely expanded, TOMwill have the value 02H.

Bef ore Macro Expansi on After Macro Expansion
YADAM %OV #BTEVE) -> DB 03H, 02H, 03H, 02H, 03H, 02H

Now reverse the order of the two actual parameters. In this call to ADAM STEVE is expanded first (and
TOMis decremented) before the second parameter is evaluated. Both parameters have the same value.

%SET(TOM 3)
%ADAM ¥STEVE, %OV -> DB 02H, 02H, 02H, 02H, 02H, O02H

Now we will literalize the call to STEVE when it appears as the first actual parameter. This prevents STEVE
from being expanded until it is inserted in the macro-body, then it is expanded for each replacement of
the formal parameters. TOMis evaluated before the substitution in the macro body.

YSET(TOM 3)
%ADAM % STEVE, %OV -> DB 02H, 03H, O1H, 03H, OOH, O3H

2.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

« Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition directives

« Data definition / Storage allocation directives
e High Level Language (HLL) directives

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST and
$NOLIST you overrule this option for a part of the code that you do not want to appear in the list file.
Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:

103

TASKING SmartCode - 8051 User Guide

* Assembly listing controls
¢ Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions. The assembler recognizes both uppercase and lowercase
for directives and controls.

2.9.1. Assembler Directives

Overview of assembly control directives

Directive

Description

. END

Indicates the end of an assembly module

Overview of symbol definition directives

Directive Description

. ALI AS Create an alias for a symbol

.BIT Assign bit address to a symbol

. CODE Assign CODE address to a symbol
. DATA Assign DATA address to a symbol

. EQU Set permanent value to a symbol

. EXTRN Import global section symbol

. | DATA Assign IDATA address to a symbol

. NAME Define module name

. PUBLI C Declare global section symbol

. RSEG Select a section

. SEGVENT Declare a section

. SET Set temporary value to a symbol

. IEAK Mark a symbol as 'weak’

. XDATA Assign XDATA address to a symbol

Overview of data definition / storage allocation directives

Directive Description

.DBI'T Define bit

. DB Define byte

. DW Define word (16 bits)
. DL Define long (32 bits)
. DS Define storage

104

Assembly Language

Overview of register bank directives

. COWPI LER_ENV

. COWPI LER_| NVOCATI ON
. COVPI LER_NAME

. COVPI LER_VERSI ON

. M SRAC

Directive Description

. USI NG Use register bank number

Overview of HLL directives

Directive Description

. CALLS Pass call tree information and/or stack usage information

Pass environment variables used for the generation of the assembly source
file

Pass C compiler invocation
Pass C compiler name

Pass C compiler version header
Pass MISRA C information

Overview of directives supported for backwards compatibility

The following directives are

not described in this manual, they are only supported by the assembler for

backwards compatibility reasons.

Directive Description

. BSEG Select absolute BIT section

. CSEG Select absolute CODE section
. DSEG Select absolute DATA section

. 1 SEG Select absolute IDATA section
. ORG Modify location counter

. XSEG Select absolute XDATA section

105

TASKING SmartCode - 8051 User Guide

ALIAS

Syntax

alias-nanme . ALI AS functi on-nane

Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

The alias-name cannot be redefined anywhere else in the program (or section, if section directives are
being used). Symbols defined with the . ALI AS directive can be made public with the . PUBLI Cdirective.
The symbol defined with the . ALI AS gets the same type as the originating symbol.

Example

_malloc . ALIAS nmall oc

106

Assembly Language

BIT

Syntax

synbol .BIT expression

Description

With the . BI T directive you assign a BIT address to a symbol name. The expression must evaluate into
a number or BIT address and may not contain forward references. The symbol will be of type BIT.

Example

.RSEG A SEG relocatable bit
;addr essabl e section
CTRL: .DS 1

TST .BIT CTRL. O ;bit in relocatable byte
K .BIT TST+1 ;next bit
TST2 .BIT 64H ;absolute bit

Related Information
Section 2.7.4, Symbol Types and Expression Types

. EQU (Set permanent value to a symbol)

107

TASKING SmartCode - 8051 User Guide

.CALLS

Syntax

. CALLS "caller’,’ callee’

or
. CALLS ’'caller’,’’, stack_usage
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
Example

The function _nai n calls the function _nf unc:

.CALLS ' _main', ' nfunc'

The function _mai n() uses 4 bytes on the stack:

.CALLS ' _main','"',4

108

Assembly Language

.CODE

Syntax

synbol . CODE expression

Description

With the . CODE directive you assign a CODE address to a symbol name. The expression must evaluate

into a number or CODE address and may not contain forward references. The symbol will be of type
CODE.

Example

RESTART . CODE 00H

Related Information

Section 2.7.4, Symbol Types and Expression Types

. EQU (Set permanent value to a symbol)

109

TASKING SmartCode - 8051 User Guide

.COMPILER_ENYV, .COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION

Syntax

. COWPI LER _VERSI ON "ver si on_header"

. COWPI LER | NVOCATI ON "i nvocati on”

. COVPI LER_NAME " nane"

. COWPI LER_ENV "env_var _nane=env_var _val ue"

Description

The C compiler generates information about itself, the invocation and the environment variables used
during the compilation at the start of the assembly source. This way you can always see how the assembly
source file was generated. When you assemble the source file, this information will appear in . not e
sections in the object file.

A label is not allowed before these directives.

Example

. COWPI LER_VERSI ON "TASKI NG Snart Code - 8051 C conpiler vx.yrz Build yymddqq"

. COWPI LER_| NVOCATION "¢c51 -M --regi sterbank=0 --core=scr3g --fp-nodel =clnrTz test.c"
. COWPlI LER_NAME "c51"

. COWPI LER_ENV " C511 NC=C: \\ Progr am Fi | es\\ TASKI NG\ Snart Code vx.yrz\\c51\\incl ude”

110

Assembly Language

.DATA

Syntax

synbol . DATA expression

Description

With the . DATA directive you assign a DATA address to a symbol hame. The expression must evaluate
into a number or DATA address and may not contain forward references. The symbol will be of type
DATA.

Example

TSTART . DATA 60H ;define TSTART to be at
;1 ocation 60H

TEND . DATA 6DH ;define TEND to be at
;| ocation 6DH

Related Information
Section 2.7.4, Symbol Types and Expression Types

. EQU (Set permanent value to a symbol)

111

TASKING SmartCode - 8051 User Guide

.DBIT, .DB, .DW, .DL

Syntax

[label] .DBIT argunent[, argunent]...
[label] .DB argunent[,argunent]. ..
[l abel] .DWargunent[,argunent]. ..
[label] .DL argunent[,argunent]. ..

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero). For single bit initialization (. DBI T) the argument must be a positive absolute expression and
each argument represents a bit to be initialized.

Multiple arguments are stored in successive byte locations. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The following table shows the number of bits initialized.

Directive Bits
.DBI'T 1

. DB 8

. Dw 16

. DL 32

When these directives are used in a BIT section, each argument initializes the number of bits defined for
the used directive and the location counter of the current section is incremented with this number of bits.

The . DBI T directive can be used in a BIT section only. Each argument represents a bit to be initialized
to 0 or 1. The location counter of the current section is incremented by a number of bits equal to the
number of arguments.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / long, the assembler issues
a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

112

Assembly Language
Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like \n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

WBL: .DW'ABC,,'D ; results in 0x414200000044 , the 'C is truncated
LTBL: .DL ' ABC ;results in 0x00414243

Related Information

. DS (Define Storage)

113

TASKING SmartCode - 8051 User Guide

.DS

Syntax

[l abel] .DS expression

Description

The . DS directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). In a bit section, the
MAU size is 1, thus the . DS directive will initializes a number of bits equal to the result of the expression.

Example

DSEC .segnent data clear
.rseg data clear
RES: .DS 5+3 ; allocate 8 bytes

Related Information

. DB (Define Memory)

114

Assembly Language

.END

Syntax

. END

Description

With the . END directive you tell the assembiler that the end of the module is reached. The assembler will
not process any lines following an . END directive.

The assembler does not allow a label with this directive.

Example

CSEC . segnent code
.rseg code
; source |ines
. END ; End of assenbly nodul e

115

TASKING SmartCode - 8051 User Guide

.EQU
Syntax

synmbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . PUBLI C directive you
can declare the symbol global.

The symbol defined with the . EQU gets a type depending on the resulting type of the expression. If the
resulting type of the expression is none the symbol gets no type when the . EQUis used outside a section
and it gets the type of the section when it is defined inside a section.

Example

To assign the value 0x4000 permanently to the symbol MYSYMBOL:
MYSYMBOL . EQU 0x4000

Related Information

Section 2.7.4, Symbol Types and Expression Types

. SET (Set temporary value to a symbol)

116

Assembly Language

.EXTRN

Syntax

. EXTRN type (synbol [,synmbol]...) [,type (synbol[,synbol]...)]...
Description

With the . EXTRNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . PUBLI C
directive.

The type of the symbol can be one of the section types BIT, CODE, DATA, IDATA or XDATA or NUMBER.
The type NUMBER does not correspond to a specific memory space, but indicates a typeless number.
The assembler uses the types to check the symbol’s use. In other words, if the symbol does not fit the
instruction’s operand, the assembler will issue a warning.

If you do not use the . EXTRN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTRN directive.

A label is not allowed with this directive.

Example

. EXTRN CODE (AVAR, get _i nfo), DATA(count) ; extern declaration
. EXTRN BI T(nybi t, abit), NUMBER(tnum

CSEC . segnent code
.rseg code

MOV RO, AVAR ; AVAR is used here

Related Information
See Section 2.7.4, Symbol Types and Expression Types for more information on the type keywords.

. PUBLI C (Declare global section symbol)

117

TASKING SmartCode - 8051 User Guide

.IDATA

Syntax

symbol .| DATA expression

Description

With the . | DATA directive you assign a IDATA address to a symbol name. The expression must evaluate
into a number or IDATA address and may not contain forward references. The symbol will be of type
IDATA.

Example

TSTART . | DATA 60H ;define TSTART to be at
;1 ocati on 60H

TEND .| DATA 6DH ;define TEND to be at
;1 ocati on 6DH

Related Information
Section 2.7.4, Symbol Types and Expression Types

. EQU (Set permanent value to a symbol)

118

Assembly Language

#line

Syntax

#[1ine] |linenunber ["filename"]
Description

The line directive is the only directive not starting with a dot, but with a hash sign. It allows passing on
line number information from higher level sources. This linenumber is used when generating errors. When
this directive is encountered, the internal line number count is reset to the specified number and counting
continues after the directive. The line after the directive is assumed to originate on the specified line
number. The optional file name will, when specified, reset the module file name for purposes of error
generation.

This directive is generated by the preprocessor phase of the C compiler. Normally you will not use it in
hand-coded assembly.

Example

#line 1

119

TASKING SmartCode - 8051 User Guide

.NAME
Syntax

. NAME string
Description

With the . NAME directive you can identify the current program module. If this directive is not present, the
module name is taken from the input source file name.

Example

.NAME ny_prog ; nodule nane is ny_prog

120

Assembly Language

.MISRAC

Syntax

. M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el, ef , 66,
cb75,af 1, ef f, e7, e7f, 8d, 63, 87ff7, 6ff 3, 4'

Related Information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

121

TASKING SmartCode - 8051 User Guide

.PUBLIC

Syntax

. PUBLI C synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . PUBLI C directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . PUBLI C, from another module, use the . EXTRN directive.
Only program labels and symbols defined with . EQU can be made global.

The assembler does not allow a label with this directive. The type of the global symbol is determined by
its definition.

Example
LOOPA . EQU 1 ; definition of synbol LOOPA
.PUBLIC LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es

Related Information

. EXTRN (Import global section symbol)

122

Assembly Language

.RSEG

Syntax

. RSEG nane type [attribute...]

Description

Use this directive to switch to a section previously defined by a . SEGVENT directive. The following
statements will be assembled in the section name, using the location counter of the named section. The
specified section remains in effect until another . SEGVENT or . RSEGdirective is encountered. The location
counter of the section is initially set to zero.

The type and attributes are the same as that of the . SEGVENT directive.

Example

CSEC . SEGVENT code
. RSEG CSEC code :sel ect code section

ABSSEC . SEGVENT xdat a at (0x100)
. RSEG ABSSEC xdat a at (0x100)
: absol ute section
. RSEG CSEC code ;switch to CSEC again
Related Information

Section 2.7.4, Symbol Types and Expression Types.

. SEGVENT (Declare section)

123

TASKING SmartCode - 8051 User Guide

SEGMENT

Syntax

name . SEGVENT type [attribute...]
Description

Use this directive to declare a section, assign a set of section attributes, and initialize the location counter
to zero.

The name specifies the name of the section. The type operand specifies the section’s space and must
be one of:

Section type Description

BIT bit address space

CODE code address space
DATA direct addressable data
IDATA indirect addressable data
XDATA external data space

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description

AT (address) Locate the section at the given address.

BITADDRESSABLE | Specifies a section to be relocated within the bit space on a byte boundary (BDATA).
Allowed only with DATA sections and the section size is limited to 16 bytes.

CLEAR Sections are zeroed at startup.

CLUSTER (‘name’) | Cluster code sections with companion debug sections. Used by the linker during
removal of unreferenced sections. The name must be unique for this module (not
for the application). To prevent naming conflicts with other symbols, the prefix
".cl uster."is added to the cluster name during object file generation.

COMMON Specifies a section to be located in the common area. Allowed only with CODE
segments. This is only useful when code bank switching is used.

INBLOCK Specifies a section which must be contained in a 2048-byte page. Allowed only with
CODE sections.

INIT Defines that the section contains initialization data, which is copied from ROM to
RAM at program startup.

INPAGE Specifies a section which must be contained in a 256-byte page. Allowed only with
CODE and XDATA sections.

MAX When data sections with the same name occur in different object modules with the

MAX attribute, the linker generates a section of which the size is the maximum of
the sizes in the individual object modules

124

Assembly Language

Attribute

Description

OVERLAY (b[,b]...)

Specifies the register banks (b) used in the section. This information will be used by
the linker to overlay sections using the same register banks. No overlaying will be
done when the OVERLAY attribute is omitted. The OVERLAY attribute is not allowed
with CODE sections.

PAGE Specifies a section which start address must be on a 256-byte page boundary.
Allowed only with CODE and XDATA sections.

PROTECT Tells the linker to exclude a section from unreferenced section removal and duplicate
section removal.

ROMDATA Specifies that the section contains initialized data. This attribute is allowed with
CODE and XDATA sections only. This information is meaningful to allocate constant
data in the XDATA memory space. When used with CODE sections it is only
meaningful for debugging purposes. A section that has been declared with the
ROMDATA attribute cannot be disassembled by a debugger.

SHORT XDATA sections can be declared with the SHORT attribute. The linker allocates the
section in a page of auxiliary memory (PDATA).

UNIT The default relocation attribute: the section will not be aligned.

Example

DSEC . SEGVENT data init
. RSEG DSEC data init

TAB2 .DW38

initialized section

ABSSEC . SEGVENT xdat a at (0x100)
. RSEG ABSSEC xdat a at (0x100)
: absolute section

Related Information

Section 2.7.4, Symbol Types and Expression Types.

. RSEG (Select section)

125

TASKING SmartCode - 8051 User Guide

SET

Syntax

symbol . SET expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . PUBLI C directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

126

Assembly Language

.USING

Syntax

. USI NG expr essi on

Description

With the . USI NGdirective you specify the register bank that is used by the subsequent code. The
expression is the number (between 0 and 3 inclusive) which refers to one of the four register banks.

The . USI NGdirective allows you to use the predefined symbolic register addresses (ARO through AR7)
instead of their absolute addresses. In addition, the directive causes the assembler to reserve a space
for the specified register bank.

Note that if you equate a symbol (e.g. with a . EQUdirective) to an ARi symbol, the user-defined symbol
will not change its value as a result of the subsequent . USI NG directive.

Example

.USING 3
PUSH AR2 ;Push register 2 of bank 3

.USING 1
PUSH AR2 ;Push register 2 of bank 1

Related Information

. EQU (Set permanent value to a symbol)

127

TASKING SmartCode - 8051 User Guide

WEAK

Syntax

. EAK synbol [, synbol]. ..

Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . PUBLI C directive or the . EXTRN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . PUBLI C definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.PUBLIC LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synmbol LOOPA as weak

Related Information
. EXTRN (Import global section symbol)

. PUBLI C (Declare global section symbol)

128

Assembly Language

XDATA

Syntax

synbol . XDATA expressi on
Description
With the . XDATA directive you assign a XDATA address to a symbol name. The expression must evaluate

into a number or XDATA address and may not contain forward references. The symbol will be of type
XDATA.

Example
. RSEG XSPACE
ROOM . DS 4 ;reserve 4 bytes of XDATA
MORE X . XDATA ROOM+2 ;define MORE X to be 2
; bytes after ROOM
Related Information

Section 2.7.4, Symbol Types and Expression Types

. EQU (Set permanent value to a symbol)

129

TASKING SmartCode - 8051 User Guide

2.9.2. Assembler Controls
Assembler controls are classified as primary or general.

Primary controls affect the overall behavior of the assembler and remain in effect throughout the assembly.
For this reason, primary controls may only be used on the command line (with option --control) or at the
beginning of a source file, before the assembly starts. If you specify a primary control more than once, a
warning message is given and the last definition is used. This enables you to override primary controls
via the invocation line (with --control).

General controls are used to control the assembler during assembly. Control lines containing general
controls may appear anywhere in a source file and are also allowed on the command line (with --control).
When you specify general controls via the command line the corresponding general controls in the source
file are ignored.

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is

issued. The arguments of controls can optionally be enclosed in braces (). All controls have abbreviations
of 2 characters (or 4 characters for the $no.. variant).

Overview of assembler controls

Control Class Description

$[NO ASMLI NEI NFO |General |Generate source line information for assembly files

$[NQ CASE Primary |User-defined symbols are case (in)sensitive

$DATE Primary |Set the date in the list file page header

$[NO DEBUG Primary [Control debug information generation

$EJECT General |Generate form feed in list file page header

$[NO ERRORPRI NT Primary |Print errors to a file

$[NQ LI ST General |Print source lines to list file

$MESSACGE General |Programmer generated message

$[NO MOD51 General |Use predefined register names

$NOEXTERNALMEMORY |General |Assemble for derivatives without external memory

$[NO OBJECT Primary |Alternative name for object file

$[NO OPTI M ZE General |Control optimization

$PAGELENGTH Primary |Set list file page length

$PAGEW DTH Primary |Set list file page width

$[NO PAG NG Primary |Control pagination of list file

$[NO PRI NT Primary |Generate a list file

$[NO| REGADDR General |Allow/disallow operands to refer to an absolute register address

$[NO REG STERBANK |Primary | Specify register banks used

$SAVE /| $RESTORE |General [Save and restore the current value of the $L1 ST / $NOLI ST
controls

130

Assembly Language

Control Class Description
$SVALLROM Primary |Application fits in one 2K byte block
$TI TLE General |Set program title in header of assembly list file

131

TASKING SmartCode - 8051 User Guide

$ASMLINEINFO / $SNOASMLINEINFO

Syntax

$ASMLI NEI NFO
$NOASMLI NEI NFO

Default
$NOASMLI NEI NFO
Abbreviation

$AL / $NOAL

Description

With the $ASMLI NEI NFOcontrol the assembler generates assembly level debug information. This matches
the effect of the --debug-info=+asm (-ga) command line option. When you use the command line option,
it sets the default, but the control will override its effect.

Example

$ASMLI NEI NFO
;generate line and file debug information
MOV RO, R1

$NOASMLI NEI NFO
;stop generating line and file information

Related Information
Assembler option --debug-info

Assembler control $DEBUG

132

Assembly Language

$DATE

Syntax

$DATE(st ri ng)

Abbreviation

$DA

Description

This control sets the date as subtitle of the list file page header. When no $DATE is used the assembler
uses the date and time when the list file was generated. The string argument of the $DATE control is not

checked for a valid date, in fact any string can be used.

Example

; Jul 28 2017 in header of list file
$date(' Jul 28 2017')

Related Information

Assembler option --list-file

133

TASKING SmartCode - 8051 User Guide

$CASE / $NOCASE

Syntax

$CASE
$NOCASE

Default
$CASE
Abbreviation
$CA / $NCOCA
Description

Selects whether the assembler operates in case sensitive mode or not. In case insensitive mode the
assembler maps characters on input to uppercase (literal strings excluded).

Related Information

Assembler option --case-insensitive

134

Assembly Language

$DEBUG / SNODEBUG

Syntax

$DEBUG
$NODEBUG

Default
$NCDEBUG
Abbreviation
$DB / $NODB
Description

With the $DEBUG control you enable the assembler to generate debug information. If no high-level language
debug information is present, debug information on assembly level is generated. This control also generates
debug information on local symbols. This matches the effect of the --debug-info=+local,+smart (-gls)
command line option. When you use the command line option, it sets the default, but the control will
override its effect.

Example

$DEBUG
;generate smart debug informati on and information on | ocal synbols
MOV RO, R1

Related Information
Assembler option --debug-info

Assembler control SASMLINEINFO

135

TASKING SmartCode - 8051 User Guide

$EJECT

Syntax

$EJECT

Default

A new page is started when the page length is reached.

Abbreviation

$EJ

Description

If you generate a list file with the assembler option --list-file, with the $EJECT control the list file generation
advances to a new page by inserting a form feed. The new page is started with a new page header. The
$EJECT control has no effect when $NOPAGQ NGis set.

Example

; assenbl er source |lines

$EJECT ; generate a fornfeed

Related Information
Assembler option --list-file

Assembler control $PAGING

136

Assembly Language

$ERRORPRINT / SNOERRORPRINT

Syntax

$ERRORPRI NT(fi | €)
$NOERRORPRI NT

Default
$NOERRORPRI NT
Abbreviation
$EP / $NCEP
Description

With the $ERRORPRI NT control you can redirect the error messages, normally displayed at the console,
to an error list file.

Example

$ep(errlist.ers) ; redirect errors to file errlist.ers

137

TASKING SmartCode - 8051 User Guide

SLIST / $NOLIST

Syntax

$LI ST
$NOLI ST

Default

$LI ST

Abbreviation
$LI / $NOLI
Description

If you generate a list file with the assembler option --list-file, you can use the $LI ST/ $NCOLI ST controls
to specify which source lines the assembler must write to the list file. Without the assembler option --list-file
these controls have no effect. The controls take effect starting at the next line.

Example

.. ; source line in list file
$NOLI ST

.. ; source line not inlist file
$LI ST

; source line alsoin list file

Related Information
Assembler option --list-file

Assembler control $SAVE / SRESTORE

138

Assembly Language

$MESSAGE

Syntax

$MESSAGE(string)

Abbreviation

$MBG

Description

With the $MESSAGE control you tell the assembler to print a message to st der r during the assembling

process. This is for example useful in combination with conditional assembly to indicate which part is
assembled.

Example

YDEFI NE(| D) (4)
$MESSAGE(The value of IDis % D)

The assembler prints the following message to st derr:

The value of IDis 4

139

TASKING SmartCode - 8051 User Guide

$MOD51 / $NOMOD51

Syntax

$MOD51
$NOMOD51

Default
$MOD51
Abbreviation
$MO / $NOMO
Description

The assembler uses a list of predefined register names. With $NOMOD51 the list will not be used by the
assembler.

Example

$nonod51
; use no predefined list of register nanes

Related Information

Section 2.5, Registers

140

Assembly Language

$NOEXTERNALMEMORY

Syntax

$NOEXTERNAL VEMORY

Abbreviation

$NCEM

Description

Certain derivatives like the 8xC751 have no external memory support and therefore do not allow the

MOVX instruction. With this control an error message is issued whenever a MOVX instruction is
encountered.

141

TASKING SmartCode - 8051 User Guide

$OBJECT / SNOOBJECT
Syntax

$OBJECT(fi | €)
$NOOBJECT

Default

$OBIECT(sourcefil e. obj)
Abbreviation

$QJ / $NOQJ

Description

With the $OBJECT control you can specify an alternative name for the object file. With the $SNOOBJECT
control no object file will be generated.

Example

$oj (nmyfile.obj) ; generate object file nmyfile.obj

142

Assembly Language

$OPTIMIZE / SNOOPTIMIZE

Syntax

$OPTI M ZE
$NOOPTI M ZE

Default

$OPTI M ZE
Abbreviation
$OP / $NOOP
Description

With these controls you can turn on or off conditional jump optimization, expansion of generic instructions
and jump chain optimizations. This control overrules the --optimize (-O) command line option.

Example

$noop
; turn optim zation off
: source |ines

$op

; turn optim zation back on
: source |ines

Related Information

Assembler option --optimize

143

TASKING SmartCode - 8051 User Guide

$PAGELENGTH

Syntax

$PAGELENGTH(pagel ength)
Default

$PAGELENGTH(72)
Abbreviation

$PL

Description

If you generate a list file with the assembler option --list-file, the $PAGELENGTH control sets the number
of lines per page in the list file.

The argument may be any positive absolute integer expression.
Example

$PL(55) ; page length is 55

Related Information

Assembler option --list-file

Assembler control $PAGEWIDTH

144

Assembly Language

$PAGEWIDTH

Syntax

$PAGEW DTH(pagewi dth)
Default

$PAGEW DTH(132)
Abbreviation

$PW

Description

If you generate a list file with the assembler option --list-file, the $PAGEW DTH control sets the width of
a page in the list file.

The argument may be any positive absolute integer expression. The default is 132, the minimum is 64
and the maximum is 255. Although greater values for this control are not rejected by the assembler, lines
are truncated if they exceed the length of 255.

Example

$PW 80) ; set the pagewidth to 80 characters
Related Information

Assembler option --list-file

Assembler control $PAGELENGTH

145

TASKING SmartCode - 8051 User Guide

$PAGING / SNOPAGING

Syntax

$PAG NG
$NOPAG NG

Default

$PAG NG
Abbreviation
$PA / $NOPA
Description

If you generate a list file with the assembler option --list-file, you can use these controls to turn the
generation of form feeds in the list file on or off.

Example

$nopa
; turn paging off

Related Information
Assembler option --list-file

Assembler control $EJECT

146

Assembly Language

$PRINT / $SNOPRINT

Syntax

$PRINT[(file)]
$NOPRI NT

Default
$NOPRI NT
Abbreviation
$PR / $NOPR
Description

With the $PRI NT control you can generate a list file. Without a file the default filename is sourcefile. | st .
The $NOPRI NT control causes no list file to be generated.

Example

$pr(nylist.Ist) ; generate list file nylist.|st

Related Information

Assembler option --list-file

147

TASKING SmartCode - 8051 User Guide

$REGADDR / $NOREGADDR

Syntax

$REGADDR
$NOREGADDR

Default
$REGADDR
Abbreviation
$RA / $NORA
Description

The $NOREGADDR control disallows the use of absolute register addresses as instruction operands. By
default absolute registers, like ARO, are allowed as operands.

Example

$ra
mov R1,AR2 ; valid assenbly instruction
$nor a
mov RO, AR7 ; AR7 not allowed -> assenbler warning W201

Related Information

Section 2.5, Registers

148

Assembly Language

$REGISTERBANK / $NOREGISTERBANK

Syntax

$REG STERBANK(rb[,rb]...)
$NOREGH STERBANK

Default

$REG STERBANK(0)
Abbreviation

$RB / $NORB
Description

With $REG STERBANK you can specify the register banks used in the current source module. This
information is used by the linker to allocate the memory containing the register banks. $NORB specifies
that no memory is initially reserved for register banks. The . USI NG assembler directive also reserves
register banks.

Example

$rb(0, 1, 2) ; reserve register banks 0, 1 and 2
Related Information

. USI NG (Use register bank)

149

TASKING SmartCode - 8051 User Guide

$SAVE / SRESTORE

Syntax

$SAVE
$RESTORE

Abbreviation

$SA /| $RE

Description

The $SAVE control stores the current value of the $LI ST / $NOLI ST controls onto a stack. The $SRESTORE
control restores the most recently saved value; it takes effect starting at the next line. You can nest $SAVE
controls to a depth of 16.

Example
$nol i st
: source |ines
$save ; save values of $LIST / $NOLI ST
$list
$restore ; restore value ($nolist)

Related Information
Assembler option --list-file

Assembler control $LIST

150

Assembly Language

$SMALLROM

Syntax

$SVALLROM

Abbreviation

$SR

Description

When an application fits in a 2K byte block (or no more ROM is supported) LCALL and LIMP instructions
can be translated into shorter ACALL and AJMP calls. With this control the conversion will be done
automatically. You can also use this control for derivatives (like the 80C751/752) that do not support the

LCALL instruction.

A $TI TLE with no string argument causes the current title to be blank. The title is initially the name of the
module. The $TI TLE control will not be printed in the source listing.

Example

$SVALLROM

; translate LCALL/LIJMP to ACALL/ AJMP

151

TASKING SmartCode - 8051 User Guide

$TITLE

Syntax

$TI TLE([string])
Default

No title.
Abbreviation

$TT

Description

The $TI TLE initializes the program title to the string specified in the operand field. The program title will
be printed after the banner at the top of all succeeding pages of the source listing until another $TI TLE
control is encountered. An exception to this is the first $TI TLE control, which sets the title of the first and
following pages in the listing until the next $T1 TLE control is encountered.

A $TI TLE with no string argument causes the current title to be blank (this is the default). The $TI TLE
control will not be printed in the source listing.

Example

$TITLE(This is the newtitle in the list file)

Related Information

Assembler option --list-file

152

Assembly Language

2.10. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

The assembler knows the following generic instructions:

CALL/GCALL

* ACALL -> If the target address operand falls within the same 2K page.

» LCALL -> If the target address operand is unknown or outside the same 2K page.

JMP/GIMP
» SJIMP -> If the target address operand falls within an 8-bit offset [-128..127].
» AJMP -> If the target address operand falls within the same 2K page.

* LIMP -> If the target address operand is unknown or outside the same 2K page.

GJB

Results in JB if the target address is within the relative range. If the target is not within the relative range,
a combination of INB/LIMP is used.

GJINB

Results in JNB if the target address is within the relative range. If the target is not within the relative range,
a combination of JB/LIMP is used.

153

TASKING SmartCode - 8051 User Guide

154

Chapter 3. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING toolset for 8051 under Eclipse uses the TASKING makefile generator and make utility to
build your entire embedded project, from C source till the final ELF/DWARF object file which serves as
input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 7.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:
Csource file

~

| » compiler intermediate file

C compiler .
- .mil

assembly file
.src

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 9.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

3.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO C standard.

155

TASKING SmartCode - 8051 User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register. When there are not enough
physical registers, virtual registers are spilled to the stack. Intermediate results of any optimization can
live, for some time, on the stack or in physical registers.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

3.2. Calling the C Compiler

The TASKING toolset for 8051 under Eclipse uses the TASKING makefile generator and make utility to
build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

156

Using the C Compiler

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 10, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

You can specify the target processor when you create a new project with the New C Project wizard (File
» New » TASKING 8051 C Project), but you can always change the processor in the project properties
dialog.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

From the Configuration list, select a configuration or select[All configurations].

From the Processor selection list, select a processor.

157

TASKING SmartCode - 8051 User Guide

To access the C compiler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al Il configurations].
4. On the Tool Settings tab, select C Compiler.
5. Select the sub-entries and set the options in the various pages.
Note that the C compiler options are used to create an object file from a C file. The options you enter

in the Assembler page are not only used for hand-coded assembly files, but also for intermediate
assembly files.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all C compiler options in Section 9.2, C Compiler Options.

Invocation syntax on the command line:

cb1 [[option]... [file]...]...

3.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called. It initializes the stack pointer and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.

A default startup code is part of the C library. For most situations this should be sufficient, but if the default
run-time startup code does not match your configuration, you can add it to your project and modify it.

To add the C startup code to your project

When you create a new project with the New C Project wizard (File » New » TASKING 8051 C Project),
fill in the dialogs and enable the option Add startup file(s) to the project in the following dialog.

158

Mew C Project

8051 Project Settings

€3 Select a processor to continue

Processor selection

[Infineon AURLX 3G Family

Actions
[] Add startup file(s) to the project

@ < Back Next > Finish

Expand All
Expand Selected

Collapse All

Cancel

Using the C Compiler

This adds the file cst ar t . ¢ to your project. This file is a copy of | i b/ src/ cstart. c.If you do not add
the startup code here, the startup code is taken from the C library during link time. You can always add
it later with File » New » Startup Files.

To change the C startup code in Eclipse manually

1.

Double-click on the file cstart. c.

The cstart.c file opens in the editor area.

159

TASKING SmartCode - 8051 User Guide

2.

3.

[l estart.c &3 = O

extern void _init(void); A
#pragma extern main

extern int main{ int argc);

extern void exit(int);

#pragma weak exit

#pragma extern _Exit

extern char _ idata _lc_bs[]; /* system stack begin label */
extern char * _ data _SP; /* virtual stack peinter */

#if _MODEL__ == 'a’

define VSTACK_LABEL _lc_ue_vstack_pdata

#endif

#if MODEL__ == 'l

define VSTACK_LABEL _lc_ue_vstack xdata

#endif

extern char VSTACK_LABEL[]; /* virtual stack end label */

extern char _ xdata _lc_base_pdata[]; /* auxiliary page start addres
#if (defined XADDRH)

define PDATA_SFR XADDRH

#elif (defined SCR_XADDRH)

define PDATA_SFR SCR_XADDRH

#elif (defined P2)

define PDATA_SFR P2

#endif

“woid _ interrupt(@) _start(void)

PDATA_SFR = ((unsigned int)_lc_base_pdata) »> 8;/* set up PDATA SFlw
< >

You can edit the C startup code directly in the editor.

A * appears in front of the name of the file to indicate that the file has changes.

Click =l or select File » Save to save the changes.

3.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1.

If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

. When the compiler did not find the include file, it looks in the directories that are specified in the C

Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

. When the compiler did not find the include file (because it is not in the specified include directory or

because no directory is specified), it looks in the path(s) specified in the environment variable C511 NC.

160

Using the C Compiler

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
c51 -Inyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable C511 NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable C511 NC and then in the default i ncl ude directory.

3.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce

the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 3.6, Compiler Optimizations.

161

TASKING SmartCode - 8051 User Guide

Invocation syntax on the command line

The invocation syntax on the command line is:

cbl -g file.c

3.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

From the Configuration list, select a configuration or select[All configurations].
On the Tool Settings tab, select C Compiler » Optimization.

Select an optimization level in the Optimization level box.

or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

162

Using the C Compiler

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pr agna opti m ze fl ag
and #pragma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinplification */
C source ...
#pragma optim ze c /* Enabl e common expression
C. elimnation. Expression
C source ... sinplification still enabled */

#pragma endoptim ze /* Di sabl e cormon expressi on

elimnation */
#pragma endoptim ze /* Di sabl e expression
. sinplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

3.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

A CSE can live in a register, on stack or can be recomputed when required.

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

163

TASKING SmartCode - 8051 User Guide

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

» Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-0OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -OI/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-O0)
A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
3.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

164

Using the C Compiler

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to
be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 3.6.3, Optimize for Code Size or Execution Speed.

Note that if you use section renaming, by default, the compiler only performs code compaction on sections
that have the same section type prefix, and name given by the section renaming pragma or option. When
you use C compiler option --relax-compact-name-check, the compiler does not perform this section
name check, but performs code compaction whenever possible.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease code size.

3.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

165

TASKING SmartCode - 8051 User Guide

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed

0 no speed

1 yes speed

2 yes speed

3 yes size

4 yes size

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agna
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_nmax_si ze) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 100 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

166

Using the C Compiler

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.
Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

3.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

» An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)

{
char buf[10];
int i;

for (i =0; i <= 10; i+4+)
{
if (sonme_condition(i))

{

167

TASKING SmartCode - 8051 User Guide

buf[i] = 0; /* subscript may be out of bounds */

}

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or ifthe i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-02).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

3.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

168

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding

Using the C Compiler
The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

 severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 15, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for

The Properties dialog appears.

169

http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

TASKING SmartCode - 8051 User Guide

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
c51 --cert={all | nane [-nane],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

3.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet itis considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2012, Guidelines for the Use of the
C Language in Critical Systems (MIRA Limited, 2013).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2004. You can
select the version with the following C compiler option:

--m srac-versi on=1998
--m srac-versi on=2004
--m srac-version=2012

In your C source files you can check against the MISRA C version used. For example:

#if M SRAC VERSION _ == 1998
#elif __ M SRAC_VERSION__ == 2004
#elif __ M SRAC_VERSION__ == 2012
#endi f

For a complete overview of all MISRA C rules, see Chapter 16, MISRA C Rules.

170

Using the C Compiler

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- nandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

Note that not all MISRA C violations will be reported when other errors are detected in the input source.
For instance, when there is a syntax error, all semantic checks will be skipped, including some of the
MISRA C checks. Also note that some checks cannot be performed when the optimizations are switched
off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » MISRA C.
4. Select the MISRA C version (1998, 2004 or 2012).

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.

On the command line you can use the option --misrac.

171

TASKING SmartCode - 8051 User Guide

c51 --msrac={all | nunber [-nunber],...]

3.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C Compiler » Diagnostics page of the Project »
Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

172

Using the C Compiler

A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

c51 --diag=[format:]{all | nunber,...]

173

TASKING SmartCode - 8051 User Guide

174

Chapter 4. Profiling

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is. This chapter
describes the TASKING profiling method with static profiling.

4.1.What is Profiling?

Profiling is a collection of methods to gather data about your application which helps you to identify code
fragments where execution consumes the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a particular type of performance
tuning problem. Performance problems can be solved by:

« Identifying time-consuming algorithms and rewrite the code using a more time-efficient algorithm.

« Identifying time-consuming functions and select the appropriate compiler optimizations for these functions
(for example, enable loop unrolling or function inlining).

« Identifying time consuming loops and add the appropriate pragmas to enable the compiler to further
optimize these loops.

A profiler helps you to find and identify the time consuming constructs and provides you this way with
valuable information to optimize your application.

TASKING employs various schemes for collecting profiling data, depending on the capabilities of the
target system and different information needs.

Profiling estimation by the C compiler (Static Profiling)

The TASKING C compiler has an option to generate static profile information through various heuristics
and estimates. The profiling data produced this way at compile time is stored in an XML file, which can
be processed and displayed.

Advantages

* it can give a give a quick estimation of the time spent in each function and basic block
« this profiling method is execution environment independent

« the application is profiled at compile time

* it requires no extra code instrumentation, so no extra run-time overhead
Disadvantage

* itis an estimation by the compiler

Static profiling is described in more detail below in the following section.

175

TASKING SmartCode - 8051 User Guide

4.2. Profiling at Compile Time (Static Profiling)

Static profiling can be used to determine which parts of a program take most of the execution time.

Overview of steps to perform

To obtain a profile, perform the following steps:

1. Compile and link your program with static profiling enabled
2. Display the profile

First you need a completed project. If you are not using your own project, you can use the Blink example
as described below.

1. From the File menu, select Import...
The Import dialog appears.
2. Select TASKING C/C++ » TASKING 8051 Example Projects and click Next.
3. Inthe Example projects box, disable all projects except queens.
4. Click Finish.

The projects should now be visible in the C/C++ Projects view.

4.2.1. Step 1: Build your Application with Static Profiling

The first step is to tell the C compiler to make an estimation of the profiling information of your application.
This is done with C compiler options:

1. From the Project menu, select Properties for
The Properties for queens dialog box appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.
4. Enable Static profiling.
For the command line, see the C compiler option --profile (-p).
Profiling is only possible with optimization levels 0, 1 and 2. So:

5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

6. Click OK to apply the new option settings and rebuild the project (¥4),

176

4.2.2. Step 2: Displaying Static Profiling Results

Profiling

After your project has been built with static profiling, the result of the profiler can be displayed in the
TASKING Profiler perspective. The profiling data of each individual file (. sxm), is combined in the XML
file queens. xpr of . This file is read and its information is displayed. To view the profiling information,

open the TASKING Profiler perspective:

1. From the Window menu, select Open Perspective » Other...

The Open Perspective dialog appears.
2. Select the TASKING Profiler perspective and click Open.

The TASKING Profiler perspective opens.

workspace_smartcode_vx.yrz - queens/queens.c - SmartCode Eclipse IDE vi.yrz - O x
File Edit Source Refactor MNavigate Search Project Debug Window Help
] 2 B - -Gl D Hi® - - - Gro- Q i®|De
0@ C/C++ Projects X = 0 |[[g queensc X =8
) q
| = & § *voi_d g ~
v 25 queens [Active - Debug | ~ main (void)
44 Binaries init_screen();
[Includes display board(SEARCH DISP);
= Debug display status{ searching };
[&] queens.c f%ndilegalimw(@, a);
display status(done);
] screen.c :
exit_screen();
screenh T
vt100.h v
= readme.txt v
- Profiler X ez § = O
Module #line Function Calls #Callers #Callees L)
Jhqueens.c display_board 5
Jhqueens.c display_count 2
Jhqueens.c display_field 2
hqueens.c display_status 1
Jhqueens.c 36 main 1 5
\queens.c 162 display_board... 34618
Jhqueens.c 163 display_board... 17309
\queens.c 165 display_board... 17308 v
Q' Callers / Callees > 't &8 = 0
Module Zline Caller Calls Calls %
Module #line Callee Calls Calls % 2
Jhqueens.c 125 display_board 1 16.67%
Jgueens.c 205 display_status 2 33.33%
Aqueens.c 80 find_legal_row 1 16.67%
Whscreen.c 34 exit_screen 1 10.67% h
The TASKING Profiler perspective
The TASKING Profiler perspective contains the following Views:
Profiler view Shows the profiling information of all functions in all C source modules belonging

to your application.

177

TASKING SmartCode - 8051 User Guide
Callers / Callees The first table in this view, the callers table, shows the functions that called the
view focus function.

The second table in this view, the callees table, shows the functions that are called
by the focus function.

* Clicking on a function (or on its table row) makes it the focus function.

» Double-clicking on a function, opens the appropriate C source module in the Editor view at the location
of the function definition.

» To sort the rows in the table, click on one of the column headers.
The profiling information

Based on the profiling options you have set before compiling your application, some profiling data may
be present and some may be not. The columns in the tables represent the following information:

Module The C source module in which the function resides.
#Line The line number of the function definition in the C source module.
Function The function for which profiling data is gathered and (if present) the code blocks in each

function. To show or hide the block counts, in the Profiler view click the Menu button ()
and select Show Block Counts.

Total Time The total amount of time in seconds that was spent in this function and all of its
sub-functions.

Self Time The amount of time in seconds that was spent in the function itself. This excludes the
time spent in the sub-functions. So, self time = function's total time - total times of the
called functions.

% in This is the relative amount of time spent in this function, calculated as a percentage of

Function the total application time. These should add up to 100%. The total application time is
determined by taking the total time of the call graph. This is usually main or cstart.
Example:

Total tinme of nmain: 0.002000
Self tinme of function foo: 0.000100
% n Function = (0.000100 / 0.002000) * 100 = 5%

Calls Number of times the function has been executed.
#Callers Number of functions by which the function was called.
#Callees Number of functions that was actually called from this function.

Contribution In the caller table: shows for which part (in percent) the caller contributes to the time spent
% in the focus function.
In the callee table: shows how much time the focus function has spent relatively in each
of its callees.

178

Profiling

Calls % In the caller table: shows how often each callee was called as a percentage of all calls

from the focus function.
In the callee table: shows how often the focus function was called from a particular caller
as a percentage of all calls to the focus function.

Common toolbar icons

Icon Action Description

) Show/Hide Block |Toggle. If enabled, shows profiling information for block counters.
Counts

- Select Profiling Opens a dialog where you can specify profiling files for display.
File(s)

To display static profiling information in the Profiler view

1.

In the Profiler view, click on the & (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.

In the Projects box, select the project for which you want to see profiling information.
In the Profiling Type group box, select Static Profiling.
In the Static Profiling File group box, enable the option Use default.

By default, the file project. xpr of is used (queens. xpr of). If you want to specify another file,
disable the option Use default and use the edit field and/or Browse button to specify a static profiling
file (. xpr of).

Click OK to finish.

179

TASKING SmartCode - 8051 User Guide

180

Chapter 5. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 8¥C

assembler

relocatable object file
.obj

assembly file (hand coded)

. asm

list file . 1st

————% error messages .ers

The following information is described:
» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 9.3, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

5.1. Assembly Process

The assembler generates relocatable output files with the extension . obj . These files serve as input for
the linker.

Phases of the assembly process

» Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities by means of a built-in macro preprocessor.
See Section 2.8, Macro Preprocessing for more information.

181

TASKING SmartCode - 8051 User Guide

5.2. Calling the Assembler

The TASKING toolset for 8051 under Eclipse uses the TASKING makefile generator and make utility to
build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Configuration list, select a configuration or select[All configurations].

182

Using the Assembler

4. From the Processor selection list, select a processor.

To access the assembler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select Assembler.
5. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all assembler options in Section 9.3, Assembler Options.

Invocation syntax on the command line:
asbl [[option]... [file]...]...

The input file must be an assembly source file (. asmor . src).

5.3. How the Assembler Searches Include Files

When you use include files (with the %4 NCLUDE macro preprocessing function), you can specify their
location in several ways. The assembler searches the specified locations in the following order:

1. If the 9% NCLUDE function contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-I)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable AS511 NC.

183

TASKING SmartCode - 8051 User Guide

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file t est . asmcontains the following lines:
% NCLUDE(nyi nc. i nc)

You can call the assembler as follows:

as51 -1 nyinclude test.asm

First the assembler looks for the file myi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nyi ncl ude. If it was still not found, the assembler
searches in the environment variable AS511 NC and then in the default i ncl ude directory.

5.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al configurations].
4. On the Tool Settings tab, select Assembler » Optimization.
5. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow generic instructions (option -Og/-0OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions.

By default this option is enabled. If you turn off this optimization, generic instructions are not allowed. In
that case you have to use hardware instructions.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

184

Using the Assembler

5.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate alist file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example on the command line
The following command generates the listfile t est . | st :
asb51 -I test.asm

See Section 12.1, Assembler List File Format, for an explanation of the format of the list file.

5.6. Assembler Error Messages
The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control

185

TASKING SmartCode - 8051 User Guide

warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

as51 --diag=[format:]{all | nunber,...]

186

Chapter 6. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files

(. obj files, generated by the assembler), and libraries into a single relocatable linker object file (. out).
The locator phase assigns absolute addresses to the linker object file and creates an absolute object file
which you can load into a target processor. From this point the term linker is used for the combined
linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

relocatable object files

relocatable linker object file -ob]

.out

relocatable object library
.1lib

linker script file

link file .
sl inker map file .map

—-—-——% error messages .elk
relocatable linker object file
.out

memory definition file .mdf

v v v

Intel Hex ELF/DWARF Motorola S-record
absolute object file absolute object file absolute object file
.hex .elf .sre

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 9.4, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

6.1. Linking Process

The linker combines and transforms relocatable object files (. obj) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

187

TASKING SmartCode - 8051 User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

188

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data sections. For each section the copy table contains
the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

6.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

189

TASKING SmartCode - 8051 User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. obj) or libraries (. | i b) to resolve
the remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

6.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 rmov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Locate order

In some cases, the linker sorts sections, and this determines the order in which the sections appear in
memory, usually from low to high addresses, but the linker can optionally allocate sections from high to
low addresses.

The sort key is composed of (at least) the section alignment, size, name, and contents. The section
contents are not compared directly, but a CRC value is computed from the section contents, and this
value is compared. This means that if two sections are identical in all but one attribute, and this attribute
is changed for one of the sections, then the order of the sections in memory may change.

190

Using the Linker

To see the order in which sections are located, refer to the subsection Locate Rules in Section 12.2,
Linker Map File Format. The locate rules are processed from top to bottom, while the sections in a locate
rule are handled from left to right.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr e) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 6.8, Controlling the Linker with a Script.

191

TASKING SmartCode - 8051 User Guide

6.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click Clean.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behavior tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

From the Configuration list, select a configuration or select[All configurations].
On the Tool Settings tab, select Linker.

Select the sub-entries and set the options in the various pages.

Note that when you click Restore Defaults to restore the default tool options, as a side effect the
processor is also reset to its default value on the Processor page (C/C++ Build » Processor).

You can find a detailed description of all linker options in Section 9.4, Linker Options.

192

Using the Linker

Invocation syntax on the command line:
k51 [[option]... [file]...]...

When you are linking multiple files, either relocatable object files (. obj) or libraries (. | i b), itis important
to specify the files in the right order. This is explained in Section 6.3, Linking with Libraries.

Example:
| k61 -dscr3g.lsl test.obj

This links and locates the file t est . obj and generates the file t est . el f.

6.3. Linking with Libraries

There are two kinds of libraries: system libraries and user libraries.
System library

System libraries are stored in the directories:

<8051 installation path>\lib\scr3g (libraries for core scr3g)

An overview of the system libraries is given in the following table:

Libraries Description

c51m{r | s}[b].lib C libraries for each model m: s (small), a (aux), | (large)
Optional letters:

r = reentrant

s = static

b = bank number 0, 1, 2, 3

fpS1Im{r | s}t].lib Floating-point libraries for each model m: s (small), a (aux), | (large)
Optional letters:

r = reentrant

S = static

t = trapping (control program option --fp-model=+trap)

rt51.lib Run-time library

To link the default C (system) libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

193

TASKING SmartCode - 8051 User Guide

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library c51ss0. | i b, type:

| k61 --1ibrary=c51ss0 -dscr3g.|sl test.obj

User library

You can create your own libraries. Section 7.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

| k51 -dscr3g.lsl start.obj nylib.lib
If the library resides in a sub-directory, specify that directory with the library name:
| k51 -dscr3g.lsl start.obj nylibs\nylib.lib

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

| k51 --first-library-first a.lib test.obj b.lib

194

Using the Linker

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are presentin botha. | i b and b. | i b are now
also resolved from a. | i b.

6.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable L1 BC51.

3. When the linker did not find the library, it tries the default | i b\ scr 3g directory relative to the installation
directory, depending on the core architecture.

User library

If you use your own library, the linker searches the library in the current directory only.

6.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ar51 always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

195

TASKING SmartCode - 8051 User Guide

[k51 nylib.lib

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. i b.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| k51 --extern=main nmylib.lib

In this case the linker searches for the symbol rmai n in the library and (if found) extracts the object that
contains mai n.

If this module contains new unresolved symbols, the linker looks again in nyl i b. | i b. This process
repeats until no new unresolved symbols are found.

6.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . obj modules to a relocatable object file . out . In this case the linker does not perform the
locating phase. With the second invocation, you specify both new . obj files as the . out file you had
created with the first invocation.

Incremental linking is only possible on the command line.

| k51 -dscr3g.lsl --incremental testl.obj -otest.out
| k51 -dscr3g.lsl test2.obj test.out

This links the filet est 1. obj and generates thefilet est . out . This file is used again and linked together
witht est 2. obj tocreatethefilet est . el f (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . obj files

are linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

6.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from.

Add a data object in Eclipse
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.

2. To add a data object, click on the Add button in the Data objects box.

196

Using the Linker

3. Type or select a binary file (including its path).
On the command line you can add raw data to your application with the linker option --import-object.

This makes it possible for example to display images on a device or play audio. The linker puts the raw
data from the binary file in a section. The section is aligned on a 2-byte boundary. The section name is
derived from the filename, in which dots are replaced by an underscore. So, when importing a file called
ny. np3, a section with the name my_np3 is created. In your application you can refer to the created
section by using linker labels.

For example:

#i ncl ude <stdio. h>

__romextern char _lc_ub_ny_np3; /* linker |abels */
__romextern char _lc_ue_ny_np3;
__romchar* mp3 = & | c_ub_ny_np3;

voi d mai n(voi d)
{
int size = &lc_ue_nmy_m3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (nmp3[i]);

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory type qualifier __r om otherwise the linker cannot bind your
linker symbols.

If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

6.6. Converting Intel Hex to Binary Format

The linker can convert one or more Intel Hex input files to a single binary output file. This binary output

format is only available for "chip" output, not for "space" output. Multiple Intel Hex files may be used as

input, as long as there are no address conflicts and as long as there is only one program entry point for
a set of multiple Intel Hex files. If more than one entry point is encountered the linker emits an error.

The linker reads the Intel Hex file(s) and stores the contents in an internal database format in as many
sections as there are contiguous memory sections within the Intel Hex file(s). All sections are stored within
the primary hex file address space. Each section is incrementally named using the following format .

.secN_input _file_name

Conversion from the internal database format to the binary output takes place automatically when the
input is detected to be an Intel Hex file and the command line option:

197

TASKING SmartCode - 8051 User Guide

--chi p-out put =[basenane] : f or mat [: addr _si ze], ...
is used with the format field set to BIN and the addr_size left empty.

Any memory location included in the binary file that is not occupied by application data can be filled with
the value specified by linker option --binfill=pattern (default 0x00).

The resulting binary output file has no knowledge of targets or absolute addresses. It is simply a byte
representation of the image data that was read in. The data of a binary output file represents the first
MAU in memory (at offset zero) up to the last data MAU of the application in memory. The resulting binary
file has no memory holes because they are filled with the fill pattern.

Example:

| k51 nyproj _1. hex nmyproj_2. hex -dtc49x.|sl --core=npe:xc800 --chip-output=nyproj:bin --binfill=0x2D

6.7. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)
This optimization removes unreferenced sections from the resulting object file.
This optimization considers a section referenced if either of the following two conditions is true:
1. The section is protected from unreferenced section removal, which can be one of:
* the section is assigned an absolute address, either in the object file or in LSL
« the section is selected by exact name in LSL (no wildcard pattern) :

» a symbol defined in the section is referenced in LSL

198

Using the Linker

« the section has the 'protected' section flag set, either in the object file or in LSL
2. The section is referenced via a relocation by another section that is considered referenced.

"I multiple sections of a specific name are created by using section renaming, all of these sections are
protected against unreferenced section removal. With a selection using wildcards, matching sections are
selected, but matching sections that are unreferenced may be removed. See Selecting sections for a
group in Section 14.8.2, Creating and Locating Groups of Sections.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Note that this optimization only affects unrestricted sections that require an initialization action in the
copy table. The affected sections get a clustered restriction. Unrestricted sections are sections that
do not have their absolute location or their relative location to other sections restricted. See also Define
the mutual order of sections in an LSL group in Section 14.8.2, Creating and Locating Groups of
Sections.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

199

TASKING SmartCode - 8051 User Guide

Note that the optimizations perform detailed comparisons between sections with equal contents to check
if they are indeed equal. Since these comparisons can be computationally intensive, the optimizations
are only performed when the number of sections to be compared is under a limit (default 10000 sections).
With option --duplicate-section-limit you can specify a custom maximum amount.

6.8. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

6.8.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that TASKING
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 14, Linker Script Language (LSL).

6.8.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | sl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

200

Using the Linker
Because an 8051 project is part of a TriCore project you only need to specify an LSL file to the TriCore
project.
To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

MNew C/C++ Project O x

TriCore Project Settings —

3 Select a processor to continue

Processor selection

[Infineon AURIX 3G Family Expand Al

Expand Selected

Collapse All
Multi-core configuration
Actions
Add startup file(s) to the project
Add linker script file to the project
':?3' < Back Next > Finish Cancel

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
* You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

201

TASKING SmartCode - 8051 User Guide

The project LSL file opens in the editor area.

jsil myproject.lsl X = 08
/f TASKING TriCore toolset ~
lipse project linker script file

= #if defined(_ PROC_TC49X_)
#define _ REDEFINE_ON_CHIP ITEMS
#include "tcd49x.1s1"
processor mpe

{
}

derivative my_tc49x extends tc49x

derivative = my_tc49x;

1
memory pflash@e (tag="cn-chip”)
mau = 33
type = rom;
size = 2M;
map cached(dest=bus:sri, dest_offset=8x3@eoaeen, size=2M);
map not_cached(dest=bus:sri, dest_offset=0xaP0eeo88, size=2
< >

2. You can edit the LSL file directly in the project_name. | sl editor.

A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click =l or select File » Save to save the changes.

» You can also make changes to the property pages Memory and Stack/Heap.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory or Stack/Heap.
In the right pane the corresponding property page appears.
3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
6.8.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into

physical addresses for a given type of core. If the core supports multiple address spaces, then for each

202

Using the Linker

space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the stack and the heap.

This specification is normally written by TASKING. TASKING supplies LSL files in the i ncl ude. | sl
directory. The file ar ch51. | sl defines the architecture for generic 8051, ar ch_scr 3g. | sl defines the
generic SCR3G architecture, it extends the generic 8051 architecture.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device

* locate sections in physical memory

203

TASKING SmartCode - 8051 User Guide

* maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)
The optional section layout definition enables you to exactly control where input sections are located.

Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File
architecture cb51

/1 Specification of the ¢c51 core architecture.
/1 Witten by TASKI NG

}
architecture scr3g extends c51
{
}
derivative X /1 derivative nane is arbitrary
{
/1 Specification of the derivative.
/1 Witten by TASKI NG
core xc800 /1 always specify the core
{
architecture = scr3g;
}
bus idata_bus
{
/1 internal bus
}
/1 internal menory
}
processor npe /1 processor nane is arbitrary
{
derivative = X;
/1l You can omt this part, except if you use a
/1l multi-core system
}
menory ext _nane
{
/1 external menory definition
}

204

Using the Linker

section_| ayout npe: xc800: xdat a /1 section |ayout

{

/'l section placenent statenments

/] sections are |located in address space 'xdata’
/1l of core 'xc800' of processor 'npe'

}
Overview of LSL files delivered by TASKING

TASKING supplies the following LSL files in the directory i ncl ude. | sl .

LSL file Description
archb51. | sl Defines the ¢51 architecture and contains a default section layout.
arch_scr3g. | sl Defines the scr3g architecture, it extends the ¢51 architecture. It includes the

file arch51.1sl.

derivative. sl Derivative LSL file. It contains memory definitions and section_setup definitions.
It includes the file ar ch_scr 3g. | sl .

defaul t.| sl Itincludesaderi vati ve. | sl file based on the target processor you specified
with control program option --cpu. You can add this file to your project and
adapt it to your needs, or create your own LSL file.

The linker uses the file def aul t . | sl , unless you specify another file with the linker option --Isl-file (-d).

6.8.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

» space definitions: the logical address spaces and their properties
* bus definitions: the 1/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2V with N the number of bits used
to encode the addresses.

The relation of an address space with another address space can be one of the following:

» one space is a subset of the other. These are often used for "small" absolute or relative addressing.

205

TASKING SmartCode - 8051 User Guide

* the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture c51 as defined in ar ch51. | s| (which is
included in arch_scr 3g. | sl).

Space Id MAU Description

data 1 8 Direct addressable data (on-chip), contains definitions for a heap.

idata 2 8 Indirect addressable space (on-chip), contains definitions for the stack.

bdata 3 8 Bit-addressable data (on-chip RAM).

bit 4 1 Bit address space.

xdata 5 8 External data, contains definitions for a virtual stack and a heap.

pdata 6 8 Paged data, mapped in one 256 bytes page. Contains definitions for a virtual
stack and a heap.

code 7 8 Code address space, specifies the start address at the beginning of the
vector table.

The c51 architecture in LSL notation

The best way to program the architecture definition, is to start with a drawing. The figure below shows a

part of the architecture c51
Space Rdata bus sdata_bos

i — — —]
space peiatal ™ man = &

=6 width = §
mau = §
(]

56

id =5
mau = §

[ZT——

Space code bs code_bs

P — — —
W=7 mau =&
may = & Wwidth = &

fak — —]

The figure shows three address spaces called xdat a, pdat a and code. The address space pdat a is
a subset of the address space xdat a. All address spaces have attributes like a number that identifies
the logical space (id), a MAU and an alignment. In LSL notation the definition of these address spaces
look as follows:

space xdata

{
id
mau

5;
8;

206

Using the Linker

map (size=64k, dest=bus: xdata_bus);

}
space pdata
{
id = 6;
mau = 8
map (size=256, dest_offset=_ BASE PDATA & OxffO00, dest=space: xdata);
}
space code
{
id =7,
mau = 8
map (size=64k, dest=bus:code_bus);
}

The keyword map corresponds with the dotted lines in the drawing. You can map:
 address space => address space

» address space => bus

e memory => bus (not shown in the drawing)

* bus => bus (not shown in the drawing)

Next the internal buses nhamed xdat a_bus and code_bus must be defined in LSL:

bus xdat a_bus

{
mau = 8;
width =8; // there are 8 data lines on the bus
}
bus code_bus
{
mau = 8;
width = 8;
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture c51

{
}

/1 Al code above goes here.

207

TASKING SmartCode - 8051 User Guide

6.8.5. The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

« core definition: an instance of a core architecture
* bus definition: the 1/0 buses of the core architecture

* memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core xc800

{
}

architecture = scr3g;

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
xdat a_bus maps to the bus xdat a_bus defined in the architecture definition of core xc800:

bus xdat a_bus

{

mau = 8;

width = 8;

map (dest =bus: xc800: xdat a_bus, dest_offset=0, size=256);
}
Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

menory internal _code_rom

{
type = rom
size = 2k;
mau = 8;
map(dest = bus:code_bus, size=2k,
dest _offset = 0x00); // src_offset is zero by default)
}

208

Using the Linker
This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // nanme of derivative

/1 Al'l code above goes here

}

6.8.6. The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

6.8.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with memory. You
need to specify the location and size of the physical external memory devices in the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

/1 menory definitions
MEMOHY MY_Avram
J— 0
oo m=s
T may =& i
-——— SER
My Bran
Menary Jran
- — — —] 0

may = &

-+ — —] 1]

Suppose your embedded system has 56 KiB of external RAM, named xr am 8 KiB of external NVRAM,
named ny_nvr amand 64 KiB of external ROM, named xr om(see figure above.) xr amand ny_nvram

209

TASKING SmartCode - 8051 User Guide

are connected to the bus xdat a_bus and xr omis connected to the bus code_bus. In LSL this looks
like follows:

menory ny_nvram

{
mau = 8;
type = nvram
size = 8k;
map (dest = bus:xc800: xdata_bus, src_offset = 0, dest_offset = 0,
si ze=8k) ;
}
nmenory Xram
{
mau = 8;
type = ram
size = 56k;
map (dest = bus:xc800: xdata_bus, src_offset = 0, dest_offset = 8Kk,
si ze=56k) ;
}
nmenory Xrom
{
mau = 8;
type = rom
size = 64k;
map (dest = bus:xc800: code_bus, src_offset = 0, dest_offset = 0,
si ze=64Kk) ;
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.
3. Open the Memory tab and click on the Add... button.
The Add new memory dialog appears.
4. Enter the memory name (for example my_nvr am, type (for example nvr an) and size.

5. Click on the Add... button.

210

Using the Linker

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #defi ne __ REDEFI NE_ON_CHI P_I TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

6.8.8. The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . ¢) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdi o. h>

int wuninitialized data;

int initialized data = 1;
#pragma section data=non_vol atile
#pragma nocl ear

int battery_backup_tag;

int battery_backup_i nvok;
#pragma cl ear

#pragma endsection

void main (void)
if (battery_backup_tag != BATTERY_BACKUP_TAG)

/1 battery back-upped nenory area contains invalid data

211

TASKING SmartCode - 8051 User Guide

/1 initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;
}
printf("This application has been invoked % tines\n",
battery_backup_i nvok++);

}

The compiler assigns names and attributes to sections. With the #pr agma sect i on and #pr agna
endsect i on the compiler's default section naming convention is overruled and a section with the name
non_vol ati | e is defined. In this section the battery back-upped data is stored.

By default the compiler creates a section with the name "dat a_variable" of section type "dat a" carrying
section attribute "cl ear " to store uninitialized data objects. The section type and attribute tell the linker
to locate the section in address space data and that the section content should be filled with zeros at
startup.

As aresult of the #pragma secti on data=non_vol ati | e, the data objects between the pragma
pair are placed in a section with the name "non_vol at i | e". Note that the compiler sets the "cl ear "
attribute. However, battery back-upped sections should not be cleared and therefore we used #pr agna
nocl ear.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory nmy_nvr amfrom the example in Section 6.8.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space near :

section_layout ::data

/1 Section placenent statenments

}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section non_vol ati | e. All
other sections are located using the defaults specified in the architecture definition. Sectionnon_vol ati |l e
should be placed in non-volatile ram. To achieve this, the run address refers to our non-volatile memory
called ny_nvram

group (run_addr = mem ny_nvram)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect "non_vol atile";

212

Using the Linker

For a complete description of the Linker Script Language, refer to Chapter 14, Linker Script Language
(LSL).

6.9. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with __| ¢_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

__lc_ub_name Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

__lc_b_nane

__lc_ue_nane End of section name. Also used to mark the end of the stack or heap. It points
to the section address + section size, in other words the first MAU behind the

__lc_e_nane section.

__lc_cb_nane Start address of an overlay section in ROM.

__lc_ce_nane End address of an overlay section in ROM.

__lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

__lc_ge_nane End of group name. It points to the first MAU behind the last section in the
group. This label appears in the output file even if no reference to the label
exists in the input file.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

At C level, all linker labels start with one leading underscore (the compiler adds an extra underscore).

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you have
to replace all dots by underscores.

Additionally, the linker script file defines the following symbols:

Symbol Description

__lc_bs Begin of stack. Same as __| c_ub_st ack.

__lc_base_pdata Start of paged data. Alias for __BASE_PDATA & 0xff 00

_lc_cp Start of copy table. Same as __| ¢_ub_t abl e. The copy table gives the
source and destination addresses of sections to be copied. This table will be
generated by the linker only if this label is used.

213

TASKING SmartCode - 8051 User Guide

Example: refer to a label with section name with dots from C

Suppose a section has the name . t ext . When you want to refer to the begin of this section you have to
replace all dots in the section name by underscores:

#i ncl ude <stdio. h>
extern void * _lc_ub__text;

i nt mai n(voi d)

{

printf("The function main is located at %\n",
& | c_ub__text);
}

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "st ack" (with the keyword st ack). You
can refer to the begin and end of the stack from your C source as follows (labels have one leading
underscore):

#i ncl ude <stdio. h>

extern char _lc_ub_stack[];
extern char _lc_ue_stack[];
int main(voi d)

{
printf("Size of stack is %\ n",

_lc_ue_stack - _lc_ub_stack);

}

From assembly you can refer to the end of the stack with:

.extrn idata(__I| c_ue_stack) ; end of stack

6.10. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

When the linker works on more than one task, a map file can be created for each of the tasks. There is
also an option to create one global map file that includes information for all tasks involved. Use linker
option --global-map-file to generate the global map file. This map file format is very similar to that of the
map file for a single task.

To generate a map file
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

214

Using the Linker

In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line

The following command generates the map file t est . map:
I k51 --map-file test. obj

With this command the map file t est . map is created.

See Section 12.2, Linker Map File Format for an explanation of the format of the map file.

6.11. Linker ELF Note Sections

The linker passes ELF Note sections from input files to ELF output files and adds the following notes:
* linker name

* linker version

* linker invocation

« for each defined environment variable that could influence the output, the name and value of the
environment variable

You can inspect ELF note sections with hldump51 -FOn or with elfdump.

6.12. Linker Error Messages
The linker reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

215

TASKING SmartCode - 8051 User Guide

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nessage

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.
2. Inthe Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

| kK51 --diag=[format:]{all | nunber,...]

216

Chapter 7. Using the Utilities

The TASKING toolset for 8051 comes with a number of utilities:

cc51 A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

amk A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

mk51 A make utility for backwards compatibility with older versions of the toolset. Not
recommended for new projects.

ar51 An archiver. With this utility you create and maintain library files with relocatable object
modules (. obj) generated by the assembler.

hldump51 A high level language (HLL) object dumper. With this utility you can dump information about
an absolute object file (. el f). Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

expire51 A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

7.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C compiler, assembler and linker, but you can call the control
program from the command line. The invocation syntax is:

cc51 [[option]... [file]... ...

Recognized input files
» Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

 Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

» Files with a . sr c suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Fileswith a . | i b suffix are interpreted as library files and are passed to the linker.

» Files with a . obj suffix are interpreted as object files and are passed to the linker.

217

TASKING SmartCode - 8051 User Guide
» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Fileswith a . | sl suffix are interpreted as linker script files and are passed to the linker.
Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wc, -Wa,
-WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 9.5, Control Program
Options.

Example with verbose output
cc51 --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\c51" -Ms --registerbank=0 -0 cc3248a.src test.c

+ "path\as51" -0 cc3248b.obj cc3248a.src

+ "path\| k51" -o test.elf -D_CPU_=51 --map-file
cc3248b. obj -1¢51ss0 -1 fp5lss -1rt51"

The control program produces unique filenames for intermediate steps in the compilation process (such

as cc3248a. src and cc3248b. obj in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
cc5l --pass-c=-Cc test.c

The option -Oc is directly passed to the compiler.

218

Using the Utilities

7.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/ bi n/ sh, cnd. exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

7.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.obj : test.c

This states that target t est . obj depends on prerequisite t est . c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however). The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test. obj
cchl test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.obj : test.c
cc5l test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

219

TASKING SmartCode - 8051 User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. obj matches the pattern '% obj ', with 'f 00" as the stem.

The targets f 0o0. ¢ and f 0o. el f do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.obj filter.obj
all: $(objects)
$(objects): %obj: %c

cc51 -¢c $< -0 $@

echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.obj: test.c
cchl -c test.c -0 test. obj
echo the stemis test

filter.obj: filter.c
cchl -c filter.c -o filter.obj
echo the stemis filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

220

Using the Utilities

Target Description
ANT The rules following this target are executed before any other targets are built.
. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

. PHONY: cl ean

cl ean:
rm*.o

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

7.2.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i ncl ude nakefil e2 nakefile3

White spaces (tabs or spaces) in front of the directive are allowed.

7.2.3. Macro Definitions

A macro is a symbol hame that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DI NNER = $(FOOD) and $(BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

221

TASKING SmartCode - 8051 User Guide

Macros are evaluated recursively. Whenever $(DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling wat er". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
1= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

222

Using the Utilities

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@) evaluates to the directory name holding the file$(@) . $(@) / $(@) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/ home/ . wi ne/ t est / home/

/ home/ test/. proj ect / home/ test/
/.. /file /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRQ . obj "=.d")

1Intemally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

223

TASKING SmartCode - 8051 User Guide

7.2.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filt er function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.obj readnme.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ...,item ...)

Thefilter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.obj readnme.txt .project output.c}
results in:

test.obj readne.txt .project

$(foreach var-name, item ..., action)

The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c filter.h output.c output.h

7.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

224

Using the Utilities

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

7.2.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this cooment |ine is continued\
on the next line
3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+="' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted ":' the line is interpreted as a dependency rule.

8. When the first token on the line is "i ncl ude" or "-i ncl ude" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

225

TASKING SmartCode - 8051 User Guide

7.2.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output

and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

r m[option]... file... Remove the specified file(s). The following options are available:
-r, --recursive Remove directories and their contents recursively.
-f, --force Force deletion. Ignore non-existent files, never prompt.
-i, --interactive Interactive. Prompt before every removal.
-v, --verbose Verbose mode. Explain what is being done.
-m file Read options from file..
-?, --help Show usage.

226

Using the Utilities

7.2.8. Calling the amk Make Utility

The invocation syntax of amk is:

ank [option]... [target]... [macro=def]...
For example:

ank test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 9.7,
Parallel Make Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

227

TASKING SmartCode - 8051 User Guide

7.3. Make Utility mk51

This make utility is for backwards compatibility with older versions of the toolset. It is not recommended
for new projects. Use amk instead.

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mk51 is a tool to maintain, update, and reconstruct groups of programs. The make utility
looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

« the target it should build, specified as argument on the command line
« the rules to build the target, stored in a file usually called makefi | e

In addition, the make utility also reads the file nk51. nk which contains predefined rules and macros.
See Section 7.3.2, Writing a Makefile.

The makef i | e contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (. el f) is
updated when one of its dependencies has changed. The absolute file depends on . obj files and libraries
that must be linked together. The . obj files on their turn depend on . sr ¢ files that must be assembled
and finally, . sr c files depend on the C source files (. ¢) that must be compiled. In the makef i | e this
looks like:

test.src : test.c # dependency
c51 test.c # rule

test.obj : test.src
asbl test.src

test.elf : test.obj
| k51 test.obj -0 test.elf --nmap-file -1c51ss0 -1fp5lss -I1rt51

You can use any command that is valid on the command line as a rule in the makefi | e. So, rules are
not restricted to invocation of the toolset.

Example

To build the target t est . el f, call mk51 with one of the following lines:

228

Using the Utilities

nk51 test.elf

nk51 -fnymake. nak test.elf

By default the make utility reads the file nakef i | e so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mk51 uses the first target defined in the makefile. In this example it would
build t est . src instead of t est . el f.

Based on the sample invocation, the make utility now tries to build t est . el f based on the makefile and
performs the following steps:

1. From the makefile the make utility reads thatt est . el f depends ontest. obj.

2. Iftest. obj does not exist or is out-of-date, the make utility first tries to build this file and reads from
the makefile thatt est . obj dependsontest. src.

3. Ift est. sr c does exist, the make utility now creates t est . obj by executing the rule for it: as51
test.src.

4. There are no other files necessary to create t est . el f so the make utility now can use t est . obj to
create t est. el f by executing the rule: | k51 test.obj -o test.elf

The make utility has now builtt est . el f but it only used the assembler to update t est . obj and the
linker to create t est . el f.

If you compare this to the control program:
cc5l test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

7.3.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nk51 [[option]... [target]... [macro=def]...]

For example:

nk51 test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mk51 invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mk51's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

229

TASKING SmartCode - 8051 User Guide

option For a complete list and description of all make utility options, see Section 9.6, Make
Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

7.3.2. Writing a Makefile

In addition to the standard makefile makef i | e, the make utility always reads the makefile mk51. nk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefil e.

With the option -r (Do not read the nk51. nk file) you can prevent the make utility from reading nk51. k.

The default name of the makefile is makef i | e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

* targets and dependencies

* rules

» macro definitions or functions

* conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this cooment |line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this coment line ends with a backsl ash \ $(EMPTY)
this is a new line

7.3.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

230

Using the Utilities

target ... : [dependency ...] [; rule]
[rule]

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: deno.elf final.elf

deno.elf final.elf: test.obj deno.obj final.obj

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

nk51
nk51 all
nk51 denp.elf final.elf

If you do not specify a target, the first target in the makefile (in this example al |) is built. The target al |
depends on denp. el f and fi nal . el f so the second and third invocation have the same effect and
the files deno. el f and fi nal . el f are built.

You can normally use colons to denote drive letters. The following works as intended:
c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: deno.elf # These two lines are equivalent wth:
all: final.elf # all: deno.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

. | GNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

JANT The rules following this target are executed before any other targets are built.

. PRECI QUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

231

TASKING SmartCode - 8051 User Guide

Target Description

. SI LENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

. SUFFI XES This target specifies a list of file extensions. Instead of building a completely specified

target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile nk51. nk.

If you specify this target with dependencies, these are added to the existing
. SUFFI XES target in nk51. nk. If you specify this target without dependencies, the
existing list is cleared.

7.3.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
nove test.c final.c # rulel
c51 final.c # rul e2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . | GNORE target.

+ The make utility uses a shell or Windows command prompt (cnd. exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cnd. exe anyway.

You can force mk51 to execute multiple command lines in one shell environment. This is accomplished
with the token combination ";\'. For example:

cd c:\Tasking\bin ;\
nk51 -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

232

Using the Utilities

I k51 -0 $@-f <<EOF
$(separate "\n" $(match .obj $!))
$(separate "\n" $(match .lib $!))
$(LKFLAGS)

ECF

The three lines between <<EOF and EOF are written to a temporary file (for example nkce4cOa. t np),
and the rule is rewritten as: 1 k51 -0 $@-f nkce4dcOa.t np.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension . ex2. For example:

. SUFFI XES: .C
. C. obj
cc51 -¢ $<

Read this as: to build a file with extension . obj out of a file with extension . c, call the control program
with -c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The
special target . SUFFI XES: is followed by a list of file extensions of the files that are required to build the
target.

Implicit rules

Implicit rules are stored in the system makefile mk51. nk and are intimately tied to the . SUFFI XES special
target. Each dependency that follows the . SUFFI XES target, defines an extension to a flename which
must be used to build another file. The implicit rules then define how to actually build one file from another.
These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -1 c51ss0 -1 fp5lss -Irt51 # macro

prog.elf: prog.obj sub. obj
| k61 prog.obj sub.obj $(LIB) -0 prog.elf

prog.obj: prog.c inc.h

c51 prog.c
as51 prog.src

sub. obj : sub.c inc.h
c51 sub. c
asbl sub.src

This makefile says that pr og. el f depends on two files pr og. obj and sub. obj , and that they in turn
depend on their corresponding source files (pr og. ¢ and sub. ¢) along with the common file i nc. h.

The following makefile uses implicit rules (from nk51. nk) to perform the same job.

233

TASKING SmartCode - 8051 User Guide

LDFLAGS = -1c¢51ss0 -1 fp5lss -1rt51 # macro used by inplicit rules
prog. el f: prog.obj sub. obj # inplicit rule used
prog.obj: prog.c inc.h # inplicit rule used
sub.obj: sub.c inc.h # inplicit rule used

7.3.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = t ext
MACRO += and nore text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${ MACRC} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRI NK)
EAT = neat and/or vegetabl es
DRI NK = wat er

export FOOD

The macro FOOD is expanded as neat and/ or veget abl es and wat er atthe moment itis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mk51. Any line which uses MAKE, temporarily overrides the option -n
(Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mk51 (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mk51's, but it is also available to these invocations as an environment variable.

234

Using the Utilities

Macro Description

PRODDI R Holds the name of the directory where mk51 is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRI NT = $(PRODDIR)/ i b/src/_doprint.c
When mk51 is installed in the directory c: / Taski ng/ bi n this line expands to:

DOPRI NT = c:/ Tasking/lib/src/_doprint.c

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${ @}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

7.3.2.4. Makefile Functions
A function not only expands but also performs a certain operation. Functions syntactically look like macros

but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)'. All functions are built-in
and currently these are: mat ch, separ at e, pr ot ect, exi st ,nexi st and addpr ef i x.

$(match suffix filename ...)

The mat ch function yields all arguments which match a certain suffix:

235

TASKING SmartCode - 8051 User Guide

$(match .obj prog.obj sub.obj nylib.lib)
yields:

prog. obj sub. obj

$(separate separator argument ...)

The separ at e function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.obj sub. obj)
results in:

pr og. obj
sub. obj

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .obj $!))

yields all object files the current target depends on, separated by a newline string.
$(protect argument)

The pr ot ect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect 1'Il show you the "protect" function)
yields:

echo "I'lIl show you the \"protect\" function”

$(exist file | directory argument)

The exi st function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c cchl test.c)

When the file t est . c exists, it yields:

cc5l test.c

When the file t est . ¢ does not exist nothing is expanded.

236

Using the Utilities

$(nexist file|directory argument)

The nexi st function is the opposite of the exi st function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexi st test.src cc5l test.c)

$(addprefix prefix, argument ...)

The addpr ef i x function adds a prefix to its arguments. It is used in nk51. nk for invocation of the control
program to pass arguments directly to a tool.

Example:
cc51 $(addprefix -W, -gl -Q2) test.c
yields:

cc51 -W-gl -W-Q2 test.c

7.3.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

237

TASKING SmartCode - 8051 User Guide

el se-1ines
endi f

7.3.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is conmment and is
cch5l test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like including a . h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

i ncl ude nakefil e2 nmakefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hel | o
export GREETI NG

This example creates the environment variable GREETI NG with the value Hel | 0. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

238

Using the Utilities

7.4. Archiver

The archiver ar51 is a program to build and maintain your own library files. A library file is a file with
extension . | i b and contains one or more object files (. obj) that may be used by the linker.

The archiver has five main functions:

Deleting an object module from the library

Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

relocatable object library
.lib

relocatable object file N
.obj

linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

archiver

relocatable object library
.lib

7.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create alibrary in Eclipse

Instead of creating an 8051 absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C Project wizard.

1. From the File menu, select New » TASKING 8051 C Project.
The New C Project wizard appears.
2. Enter a project name.
3. Inthe Project type box, select TASKING 8051 Library and click Next >.

4. Follow the rest of the wizard and click Finish.

239

TASKING SmartCode - 8051 User Guide

5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

ar51 key_option [sub_option...] library [object file]

key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -v
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

240

Using the Utilities

Description Option Sub-option
Replace only newer modules -u
Verbose -v

Miscellaneous

Display options -?
Display description of one or more diagnostic messages --diag
Display version header -V
Read options from file -f file

For a complete list and description of all archiver options, see Section 9.8, Archiver Options.
7.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. | i b and add the object modules cst art. obj and cal c. obj toit:

ar51 -r nylib.lib cstart.obj calc. obj

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

ar51 -r nylib.lib nod3. obj

Print a list of object modules in the library
To inspect the contents of the library:

ar51 -t nmylib.lib

The library has the following contents:

cstart. obj

cal c. obj
nod3. obj

Move an object module to another position

To move nod3. obj to the beginning of the library, position it just before cst art . obj :
ar51 -nb cstart.obj nylib.lib nod3. obj

Delete an object module from the library

To delete the object module cst art . obj from the library nyl i b. |i b:

241

TASKING SmartCode - 8051 User Guide

ar51 -d nylib.lib cstart. obj

Extract all modules from the library
Extract all modules from the library nyl i b. | i b:

ar51 -x nylib.lib

242

Using the Utilities

7.5. HLL Object Dumper

The high level language (HLL) dumper hldump51 is a program to dump information about an absolute
object file (. el f). Key features are a disassembler with HLL source intermixing and HLL symbol display
and a HLL symbol listing of static and global symbols.

7.5.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:
hl dump51 [option]... file...

The input file must be an ELF file with or without DWARF debug info (. el f).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== fj|le.elf ==========

For a complete list and description of all options, see Section 9.9, HLL Object Dumper Options. With
hl dunmp51 - - hel p you will see the options on st dout .

7.5.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with --output-type=xml. The XML output is mainly for use in the Eclipse editor. The output is printed on
st dout , unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:
1. Module list

2. Section list

3. Section dump (disassembly)

4, HLL symbol table

5. Assembly level symbol table

6. Note sections

7. Debug control flow section

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown, except for part 7.

243

TASKING SmartCode - 8051 User Guide

Example

Suppose we have a simple "Hello World" program in a file called hel | 0. c. We call the control program
as follows:

cc51 -g -t --control-flowinfo hello.c

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. Option
--control-flow-info adds control flow information to the output file. This command results (among other
files) in the file hel | 0. el f (the absolute object file).

We can dump information about the object file with the following command:
hl dump51 -F3 hello.elf
Option -F3 enables all parts. A possible output could be (just a fraction of the actual output is shown):

---------- Module list ----------

Narme Ful | path
hello.c hello.c

---------- Section list ----------

Address Size Align Type Narme

000004ef 9 1 text code_nmmin
00000037 6 1 bss data_world
0000002c¢ 11 1 bss data__1 str
---------- Section dunp ----------

.rseg '$interrupt_0' code, at(0x00000000)
00000000 02 04 4f _S$interrupt_O: LIMP __start
End of section

.rseg 'code_main' code, at(0x000004ef)

000004ef 74 37 _mai n: MoV A, #55
000004f1 f5 49 MoV _$varargs_printf, A
000004f 3 7f 2c MoV R7, #44
000004f5 02 04 8 LIMP _printf

End of section

.rseg '[data__1 str]' data, at (0x0537)

.db 48, 65, 6¢, 6¢, 6f, 20, 25, 73, 21, Oa, 00 ; Hello %s!..

End of section

.rseg '[data_world]' data, at (0x0542)

.db 77, 6f,72, 6¢, 64, 00 ;o worl d.
End of section

---------- HLL synbol table ----------

Using the Utilities

Addr ess Size HLL Type Nane

3: 00000008 36 struct _iobuf _ _data _iob[4] [_iob.c]

3: 00000037 6 char __data world[6] [hello.c]

3: 0000003d 9 struct __data _dbg_request [dbg.c]

10: 0000044f 22 void __static __data __bankO__interrupt _start()
10: 000004ef 9 void __static __data __bank0 main()

---------- Assenbly | evel symbol table ----------

Addr ess Si ze Type Nane

0: 00000000

0: 00000000 _Exit

0: 00000000 _dbg_request
0: 00000000 nmai n

0: 00000000 hell o.src

1: 00000000 data__dbg_request
1: 00000000 data__iob

1: 00000000 data world
1: 00000037 data _world

7: 000004 ef code _main
7:000004f 8 code _printf

---------- .note sections ----------
Section .note, section 65:

00000000 type: TASKI NG LI NKER NANMVE
0000000c nane: TASKI NG

00000014 desc: |k51

---------- Debug control flow section ----------
start offset : O
start address: 0x000004ef

code size 9
#entries 00
Module list

This part lists all modules (C files) found in the object file(s). It lists the filename and the complete path
name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

Address The start address of the section. Hexadecimal, 8 digits, 32-bit.

Size The size (length) of the section in bytes. Decimal, filled up with spaces.

Align The alignment of the section in number of bytes. Decimal, filled up with spaces.
Type The section type.

245

TASKING SmartCode - 8051 User Guide

Name

The name of the section.

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

Section dump

This part contains the disassembly. It consists of the following columns:

address column

encoding column

label column

disassembly column

Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No Ox prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

Displays the label depending on the option --symbols=[hlljasm|none]. The default
is asm, meaning that the low level (ELF) symbols are used. With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hlllasm|none].

The contents of data sections are represented by directives. A new directive will
be generated for each symbol. ELF labels in the section are used to determine
the start of a directive. ROM sections are represented with . db, . dw, . dl kind of
directives, depending on the size of the data. RAM sections are represented with
. ds directives, with a size operand depending on the data size. This can be either
the size specified in the ELF symbol, or the size up to the next label.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead a hex dump is done with the following format:

AAAAAAAA HO H1 H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR

where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

section 57 ([data__1_str]):

00000537 48 65 6¢ 6C 6f 20 25 73 21 Oa 00 Hello %! ..

246

Using the Utilities

With option --hex, RAM sections will be represented with only a start address and a size indicator:
AAAAAAAA Space: 48 bytes

With option --disassembly-intermix you can intermix the disassembly with HLL source code.
HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit. The number in front
of the address indicates the memory type qualifier. For example, 3: indicates
__data.

Size The size of the symbol from the DWARF info in bytes.

HLL Type The HLL symbol type.

Name The name of the HLL symbol.

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:
3: 00000037 6 char __data world[6] [hello.c]

With option --expand-symbols=+basic-types HLL struct and union symbols are listed including all fields.
Array members are expanded in one array member per line regardless of the HLL type. For example:

3: 00000037 6 char __data world[6] [hello.c]
3: 00000037 1 char
3: 00000038 1 char
3: 00000039 1 char
3: 0000003a 1 char
3: 0000003b 1 char
3: 0000003c 1 char

HLL struct and union symbols are listed by default without fields. For example:
3: 0000003d 9 struct __data _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

3: 0000003d 9 struct __data _dbg_request [dbg.c]
3: 0000003d 2 i nt _errno

3: 0000003f 1 enum nr

3: 00000040 6 uni on u

3: 00000040 2 struct exit

3: 00000040 2 i nt st at us

3: 00000040 3 struct open

3: 00000040 1 const char _ data * pathnane

3: 00000041 2 unsi gned short int flags

247

TASKING SmartCode - 8051 User Guide

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

10: 0000047e 66 int __static __data __bankO fclose(struct _iobuf _ _data * fp)
The local and static symbols get an identification between square brackets. The filename is printed and

if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

3: 00000100 4 int count [file.c, sonmefunc()]
3: 00000104 4 int count [x\a.c]
3: 00000108 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.

Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit. The number in front
of the address indicates the memory space as specified in the LSL file. For example,
7: indicates space code.

Size The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.
Type Code or Data, depending on the section the symbol belongs to. If this field is empty,

the symbol does not belong to a section.
Name The name of the ELF symbol.

Debug control flow section

When control flow information is present in the ELF file (control program option --control-flow-info), this
part shows information about the basic blocks and their relation.

start offset The start seek offset in bytes from the beginning of the section.

start address The start address of the basic block.

code size The code size of the basic block.

#entries The number of successor basic blocks. This value can be 0 if there are no
SUCCESSOrSs.

dest. offset The destination offset in bytes to the first, second, ... successor from the beginning

of the section.

248

Using the Utilities

7.6. Expire Cache Utility

With the utility expire51 you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 10.4, Compiler Cache.

The invocation syntax is:
expirebl [option]... cache-directory
The compiler cache is present in the directory c51cache under the specified cache-directory.

For a complete list and description of all options, see Section 9.10, Expire Cache Utility Options. With
expi re51 --hel p you will see the options on st dout .

Examples

To remove all files older than seven days, enter:

expireb5l --days=7 "installation-dir\nproject\.cache"

To reduce the compiler cache size to 4 MB, enter:

expi reb5l --negabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi rebl --megabytes=0 "installation-dir\nproject\.cache"

249

TASKING SmartCode - 8051 User Guide

250

Chapter 8. Using the Debugger

This chapter describes the debugger and how you can run and debug a C application. This chapter only
describes the TASKING specific parts.

8.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:

1.

2.

Start Eclipse.

From the Help menu, select Help Contents.

The help screen overlays the Eclipse Workbench.

In the left pane, select C/C++ Development User Guide.

Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

8.2. Debugging an 8051 Project

In order to debug an 8051 project, follow the steps below.

1.

Create an 8051 project (for example, mypr oj ect), as explained in the Getting Started with TASKING
SmartCode. Enable at least the Debug configuration.

(Optional) Build the 8051 project. This step is optional because the . out file is built automatically
when the project is referenced and built from a TriCore project. See step 5.

This results in a linked output file (. out).

Create a TriCore project, as explained in the Getting Started with TASKING SmartCode.
In the TriCore project, make a project reference to the 8051 project.

Build the TriCore project.

This builds the referenced 8051 project and creates the . out file in the Debug directory of the 8051
project. Furthermore this creates a TriCore ELF file and an 8051 ELF file in the Debug directory of
the TriCore project.

Make the 8051 project the active project.

251

TASKING SmartCode - 8051 User Guide

7. Create a debug configuration for the 8051 project, as explained in Section 8.3, Creating a Customized
Debug Configuration.

8. Start the debugger. From the Debug menu select Debug project. Alternatively you can click the #
button in the main toolbar.

If you want to debug with the 8051 simulator, you can add an extra post link step to build a standalone
8051 project and create an absolute ELF file that you can debug. To do this:

1. From the Project menu, select Properties for myproject.
The Properties dialog appears.
2. Select C/C++ Build » Settings.
3. Open the Build Steps tab.
4. Add the following command line to the Command field under Post-build steps:

"${ PRODDI R}/ bi n/ | k51" -dtc49x.lsl -M-o0 ${PRQJ}.el f ${PRAI}. out --core=npe: xc800

5. Click Apply and Close.

Example

A TC49x eight queens example (queens) is delivered with the product for the 8051 simulator. Use the
Import wizard (File » Import » TASKING C/C++ » TASKING 8051 Example Projects) to import the
project into the workspace.

8.3. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

If you want to debug on a target board, you have to create a custom debug configuration for your target
board, otherwise you have to create a debug launch configuration for the TASKING simulator.

To debug a project, you need at least one opened and active project in your workbench. In this chapter,
it is assumed that the nypr oj ect is opened and active in your workbench.

Create or customize your debug configuration
To create or change a debug configuration follow the steps below.
1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

252

Using the Debugger

2. Select TASKING C/C++ Debugger and click the New launch configuration button (.
) to add a new configuration.

Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++
Debugger » myproject.

3. Inthe Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter mypr oj ect . si mul at or to identify the simulator debug configuration.

4. Onthe Target tab, select the TASKING 8051 Simulator.

The dialog shows several tabs.
Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also

select the connection settings. The information in this tab is based on the Debug Target Configuration
(DTC) files.

Debug Configurations o x
Create, manage, and run configurations ,
TASKING C/C++ Debugger E
B 8 X[B T ~ | Name: [myproject |
type filter text Target| i= Initialization | [£] Project| 69: Arguments| & Source [C] Miscellaneous
%5 TASKING C/C++ Debugger ||| Target settings
ct
s myproje (O Show all targets @) Show targets for TCASx
Target: TASKING 8051 Simulator
Configuration:
Connection settings
Connection: Simulator v
B Field Value Edit.
Revert Appl
Filter matched 2 of 5 items
@ Debug Close

Initialization tab

On the Initialization tab enable one or more of the following options:

253

TASKING SmartCode - 8051 User Guide

Debug Configurations = x
Create, manage, and run configurations - 3
TASKING C/C+ Debugger <
B 2% B 7~ Name: | myproject J
type filter text Target | §= Initialization| [F] Project| (9= Arguments| i Source | [] Miscellaneous
~ % TASKING C/Cs+ Debugger ||| [nital download of program
%5 myproject [Verify download of program

Reset target

Gote main

Break on exit

O Reduce target state polling

[nitialize target board

Flash seftings

Use default flash settings (reco

Browse...

Restore Defaults

Revert Appl
Filter matched 2 of 5 items

@

Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

Reset target

If enabled, the target is immediately reset after downloading has completed. Registers that have the
i nit resource setin the . dt c file, are reset to their default value. Execution stops at the reset vector.

Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application stops
executing when it reaches the first C instruction in the function mai n() . Usually you enable this option
in combination with the option Reset Target.

Break on exit

If enabled, the target halts automatically when the exi t () function is called.

Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.

Initialize Target Board

254

Using the Debugger

Some target boards contain a power supply chip which needs to be initialized every time after power-on,
before hardware debugging is started. If enabled, the target board is initialized automatically before
the start of a debug session.

This option is not supported for the 8051.

Initialization tab: Flash settings
» Use default flash settings (recommended)
By default, the flash settings are derived from the . dt c file for the chosen target processor. So, when

you change processors the flash settings change automatically. If you do not want that, you can specify
your own flash settings. You can click Restore Defaults to restore the default flash settings.

* Monitor file

Filename of the monitor, usually an Intel Hex or S-Record file.
» Sector buffer size

Specifies the buffer size for buffering a flash sector.
* Workspace address

The address of the workspace of the flash programming monitor.
Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file(s) which are used when you choose this configuration.

Debug Configurations o x
Create, manage, and run configurations ,
TASKING C/C++ Debugger 3
B 8 X[B T ~ | Name: [myproject |
type filter text Target | i= Initialization | 5] Project| 69: Arguments| & Source [C] Miscellaneous
v %5 TASKING C/C++ Debugger || p o o
F5 myproject
myproject Browse...
Binary files
File Offset Add..
S{build_confighmyproject.eif
Edit.
Remove
up
Down
The start address will be taken from the first file that defines one
Revert Appl
Filter matched 2 of 5 items
@ Debug a

255

TASKING SmartCode - 8051 User Guide

 In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project mypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

» Inthe Binary files group box, you can choose one or more binary files to debug. The file
nmypr oj ect . el f is automatically selected from the active project.

The order of the binary files matters. Use the Up and Down buttons to change the order. If there are
multiple files, the application start address is taken from the first file that defines one. An ELF file always
defines one, whereas Hex files may not. Try to avoid address overlaps.

Note that conflicts between symbols could arise, for example when you download two ELF files that
both contain the function mai n() . When you download multiple files, we recommend that the first

binary file is an ELF file that contains the startup code and mai n() and that the other files are auxiliary
Hex files.

To add a binary file
1. Click Add... to add a binary file.

The Add Binary File dialog appears.

Add Binary File =

(1) Specify a binary file and optionally an offset

File:

| ${build_configf\myproject.elf Search... | | Browse...
Offset:

Affects only code and data, not debug information

®

2. Specify the binary file, use the Search... button to select one from the active project, or use the
Browse... button to search the file system.

3. Optionally, specify an address offset. The value will be added to all target addresses in the binary
file.

Note that the address offset will be applied only to code, data and the start address, not to debug

information. Specifying a non-zero offset is not recommended for an ELF/DWARF file. If the offset
causes an address to underflow or overflow an error occurs.

Arguments tab
If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are

conventionally passed in the ar gv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

256

Using the Debugger

» Inthe C/C++ perspective select Project » Properties for to open the Properties dialog. Expand C/C++
Build » Startup Configuration. Enable the option Enable passing argc/argv to main() and specify

a Buffer size for argv.

Debug Configurations

Create, manage, and run configurations

FeExX| BTV~

TASKING C/C#+ Debugger ﬁ"

Name: | myproject

Target | = Initialzation| [Project [69: Arguments| 1 Source| [Miscellaneous
v TASKING C/C++ Deb:
* U991 CiCes program arguments
*5 myproject
i TASKING win|DEA argl arg2
arg3 argh
Variables...

Working directory
Use default working directory

Stworkspace_loc:myproject}

Workspace.. | | File System.. Variables...

Filter matched 2 of 5 items

Revert Apply

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search

for debug data.

Debug Configurations

Create, manage, and run configurations

BeEX BT -

TASKING C/C++ Debugger ﬁ"

Name: | myproject

Torget | i= Initislization |) Project | €0- Arguments [Source| (] Miscellaneous
- %’;;\SK\NG €/C+ Debugger ||| Source Lockup Path:
myproject
Defautt
) TASKING winDEA fangfDeia Add...
Edit..
Remove
Up
Down

Restore Default

[Search for duplicate source files on the path

Filter matched 2 of 5 items

Revert Apply

» Usually, the default source code location is correct.

257

TASKING SmartCode - 8051 User Guide

Miscellaneous tab

On the Miscellaneous tab you can specify several file locations.

Debug Configurations [m] X
Create, manage, and run configurations :
TASKING C/C++ Debugger J
B ER[E T~ | Name [myproject]
Target | i= Initialization | | Project | ()= Arguments | 1 Source [Miscellancous.
TASKING C/C++ Debi
v *+ DEBUI9ET ||| pebugger location: [CProgram Files\TASKING\SmartCode wcyra\eclipse\pluging| | Browse..
%5 myproject
@t TASKING winIDEA FSS root directory: | S{project_loc/\Sfbuild_config) || Browse..
ORT file: [|| Browse..
6D log file: [| Browse..

Debug instrument log file (if applicable):

[|| rowse..

[Cache target access
[Launch in background

[Use linker/locator memory map file .mdf) for memory map

Revert Appl
Filter matched 2 of 5 items = BB
@

» Debugger location
The location of the debugger itself. This should not be changed.

* FSSroot directory
The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

* ORTI file and KSM module
If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. See
also the description of the RTOS view.

» GDI log file and Debug instrument log file
You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files. These are primarily intended for use by or at the request of TASKING support
personnel.

+ Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

258

e Launch in background

Using the Debugger

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this

option.

» Use linker/locator memory map file (.mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (. ndf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

8.4. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem

Solution

Wrong device name in the launch
configuration

Make sure the specified device name is correct.

Invalid baud rate

Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution
environment.

Make sure the execution environment or attached probe is powered.

Cable connected to the wrong port
on the execution environment or host.

Some target machines and hosts have several ports. Make sure
you connect the cable to the correct port.

Conflict between communication
ports.

A device driver or background application may use the same
communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user.

The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

8.5. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

259

TASKING SmartCode - 8051 User Guide

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

workspace_smartcode_wx.ytz - myproject/myproject.c - SmartCode Eclipse IDE wxyrz - m| X
File Edit Source Refoctor Navigate Search Project Debug Window Help
[milhd | @ iQia|agm @3 @ @ | Eiteids i g - DOyt Q E| B
%5 Debug X B g = O |[t0=Variables X “._® Breakpoin | 5" Expressio = O ||l Registers X 0| e 8 = 0O
~ 45 myproject [TASKING C/C++ Debugger] HE | B & 2 || Name Value Description
v TAS:FDT’:NGdﬂDBSDTS?m:\atnr[;a:kmgdebuggar.axa] Name Tpe Value 4 sor o
v o Thread [B051] (Suspended) 0 i signed int Cannoat read varia... Hh Miscellaneou Miscellaneous
= main(} at myproject.c:6 0x1681 #& Simulator Simulator
= _start() at cstart.c:58 Ox13a1
[€] myproject.c = O || Disassembly ¥ “_E= Outline = 8
#include <stdio.h> " Enter location here ~ & & Bl ek
5 int main(void) ¥ PE0APE0RRRR1EEL: | MOV data:@xed, #@xl -
200000000OOOL1G54: CLR A
int i; A20AG00RERRR1EES: MOV data:@xéc, A
for (i=1; i<=3; i++) 2000000000001687 MoV tlﬂata:BfBa, fB)lG
8 printf("%d\n",i);
printf{ "Ed\n",i); 000000000000168a MOV DPTR, _$varargs_printf (#@x1728)
e 200000BEERRR165d: MOV A, data:@x@c
Printf("Helle world, ™)i BBBBBBBBBBBBlESfi :D\IX @DP;R, J‘-‘\ .
printf("this is \n"); 9988999999991690: MoV A, data:exs
printf("a small Edst\n®,i-3); BBBBBBBBBBBDlEQQ: }N(DPTR
printf("debugging example.\n"); 2000000000001693: MOVX @DPTR, A
" A20A000BERRR1EI4: MOV R7, #8x69
~ 200000000000 1696: MoV RE, #dx@ “
3 Console X “_{&] Tasks SRR ™M B-r~= 00 Memoy x |t 8 %G8 =0
Debug [myproject] Moniters g
Communication: Simulator A
Debug Instrument Module: disims1
Starting Debugger...
Launching configuration: myproject
Leading 'C:\Users\name\workspace_smartcode_vx.yrz\myproject\Debug\mypr
w
< >

8.5.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

Icon Session item Description

£ <3 Launch instance |Launch configuration name and launch type
Debugger instance | Debugger name and state

+F @ g |Thread instance |Thread number and state

260

Using the Debugger

Icon

Session item

Description

m

Stack frame

Stack frame number, function, file name, and file line number

instance

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
o Reset target Resets the target system. Registers that have the i ni t resource setin the
system . dt c file, are reset to their default value. Execution stops at the reset vector.
. Restart Resets the target system and restarts the application. The application stops
o executing when it reaches the first C instruction in the function mai n() .
b Resume Resumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
Q. Relaunch terminated. If the debug session is still running, a new debug session is
g 9 9
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
L] Terminate : : ;
this debug session, or start another debug session.
[& | Terminate all Right-click menu. As terminate. Ends all debug sessions.
@, | Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*lremove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate and then Relaunch.

261

TASKING SmartCode - 8051 User Guide

Icon Action Description

Detaches the debugger from the selected process (useful for debugging

& Disconnect attached processes).

Stepping through the application

Icon Action Description

2 Step into Steps to the next source line or instruction.

Steps over a called function. The function is executed and the application

Step over suspends at the next instruction after the call.
Executes the current function. The application suspends at the next
i Step return . X .
instruction after the return of the function.
i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

Toggle. If an interrupt source continues generating interrupts while the
target is stopped (either manually or by hitting a breakpoint), a following
Interrupt aware |single step will always enter the Interrupt Service Routine (ISR). This can
stepping lead to some problems during single stepping. With interrupt aware stepping
enabled, interrupts are temporarily disabled after the target has stopped.
When execution resumes the interrupts are restored.

Miscellaneous

Icon Action Description
Right-click menu. Copies the stack as text to the windows clipboard. You
Copy Stack .) . ;
can paste the copied selection as text in, for example, a text editor.
% Edit project... Right-click menu. O_pens_the debug configuration dialog to let you edit the
current debug configuration.
B Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

8.5.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button : opens the Breakpoints menu.

Types of breakpoints

To access the breakpoints dialog, add a breakpoint as follows:

262

Using the Debugger

1. Click the Add TASKING Breakpoint button (6&).
The Breakpoints dialog appears.
Each tab lets you set a breakpoint of a specific type. You can set the following types of breakpoints:

* File breakpoint

Breakpoints *

Select breakpoint type
(1) Create file breakpoint

File Function Code Address Data Data Address Stack Instruction Cycle Timer

File: | CJUEENS.C - Browse...

Line:
Method
(C) Hardware breakpoint
() Software breakpoint
(® Ne preference

Condition: | |
Ignore count: I:I

If a debug session is active, the File drop-down box is filled with all source files as present in the debug
information in the ELF file. This can include files not present in the Eclipse project (for example from
libraries). If a file could be matched to a file in the active Eclipse project it will show as an Eclipse project
relative filename.

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses. It is also possible that on some files no line breakpoints can be set because the
debugger lacks line information.

* Function

263

TASKING SmartCode - 8051 User Guide

Breakpoints

Select breakpoint type
(1) Create function breakpoint

Function: | main

File: QUEENS.C
Methad
(O Hardware breakpoint
() Software breakpoint
(® No preference

File Function Code Address Data Data Address Stack

Condition: |

Ignore count: I:I

Y
I\?/I

Instruction Cycle

Timer
~

£

Cancel

The Function drop-down box is filled with all functions from the debug information and the symbol
table (if not already in the debug information). You can use the File drop-down box to filter the list of
functions. If you select <all> you will see the filenames (between parentheses) behind each entry in
the Function drop-down box. Functions marked with function_name [section] originate from the symbol
table. These functions are normally not associated with a filename and will therefore be included if
<unknown> is selected in the File drop-down box. Functions marked ‘filename'::function_name are

static functions.

The target halts when it reaches the first line of the specified function. Note that function breakpoints

generally will not work on inlined instances of a function.

* Code Address

Breakpoints

Select breakpoint type
3 Mo address specified.

Address: |
Method
(O Hardware breakpoint
(D Software breakpoint
(®) Mo preference

Condition: |

Ignore count: I:I

)
|\‘2/)

File Function CodeAddress Data Data Address Stack Instruction Cycle

Timer

Cancel

264

The target halts when it reaches the specified instruction address.

e Data

Breakpoints

Select breakpoint type
(1) Create data breakpoint

File Function Code Address Data Data Address Stack Instruction Cycle Timer

(O Break on read access
(O Break on write access

(®) Break on read or write access

Condition: | |
Ignore count: I:I

Variable: | ‘queens.c'ichess_board ~
File: qUEENS.C ~
Type

Using the Debugger

The Variable drop-down box is filled with all variables from the debug information and the symbol table
(if not already in the debug information), but you can also enter text yourself. If a label is filled in, the
size will be 1 MAU. You can use the File drop-down box to filter the list of variables. If you select <all>
you will see the filenames (between parentheses) behind each entry in the Variables drop-down box.
Variables marked with variable_name [section] originate from the symbol table. These variables are
normally not associated with a flename and will therefore be included if <unknown> is selected in the

File drop-down box. Variables marked ‘filename'::variable_name are static.

The target halts when the given variable is read or written to, as specified.

» Data Address

265

TASKING SmartCode - 8051 User Guide

Breakpoints

Select breakpoint type
3 No address specified.

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Address: |

Length:

Type
(O) Break on read access

(C) Break on write access

(®) Break on read or write access

Condition: |

Ignore count: I:I

® oK Cancel

The target halts when the given memory range (specified in terms of an absolute Address and a Length
in MAUS) is read or written to, as specified.

¢ Stack

Breakpoints

Select breakpoint type
3 No stack frame selected.

File Function Code Address Data Data Address 5tack Instruction Cycle Timer

Level: ~

Method

(O Hardware breakpoint
() Software breakpoint
(® No preference

Condition: |

Ignore count: I:I
® oK Cancel

The target halts when it reaches the specified stack level.

* Instruction

266

Breakpoints

Select breakpoint type
& No count specified.

File Function Code Address Data

Data Address Stack

Count: |

Condition: |

Ignore count: I:I
@

Instruction Cycle

OK

Timer

Cancel

Using the Debugger

The target halts when the given number of instructions (Count) has been executed.

* Cycle

Breakpoints

Select breakpoint type
3 No count specified.

File Function Code Address Data

Data Address Stack

Count: |

Condition: |

Ignore count: I:I
@

Instruction Cycle

OK

Timer

Cancel

The target halts when the given number of clock cycles (Count) has elapsed.

* Timer

267

TASKING SmartCode - 8051 User Guide

Breakpoints *

Select breakpoint type
3 No time specified.

File Function Code Address Data Data Address Stack Instruction Cycle Timer

Tirne: |

Condition: |

Ignore count: I:I

'/?3' OK Cancel

The target halts when the given amount of Time elapsed. The value entered is interpreted by the debug
instrument.

In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to 'true' (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

8.5.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <8051 install ati on pat h>\ exanpl es directory from where you can import it into your
workspace.) Per debugging session, you can have more than one FSS view, each of which is associated
with a positive integer. By default, the view "FSS #1" is associated with the standard streams st di n,

st dout, st derr and st daux. Other views can be accessed by opening a file named "terminal window
<number>", as shown in the example below.

268

Using the Debugger

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, w ndow 3.\n");
fcl ose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 8.3, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. Inthe FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 11.1.3,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

8.5.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well if you click the Show Source button (f%).

The left part of the Disassembly view shows the addresses, opcodes and/or function offsets depending
on what you selected in the right-click menu.

The right part of the Disassembly view shows the disassembly instructions and/or the C/C++ source code
and symbols depending on what you selected in the right-click menu. Right-click in the right part and
select Preferences to open the Disassembly Preferences dialog.

To view the contents of a specific memory location, type the address in the Enter location here field.

8.5.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.
The Add Watch Expression dialog appears.

2. Enter an expression you want to watch during debugging, for example, the variable name "i

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

269

TASKING SmartCode - 8051 User Guide
» You can access target registers directly using #NAME. For example "ar r [#R0 << 3] " or "#T| MER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCI N'.

» Expressions may contain target function calls like for example "g1 + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

8.5.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C language. You can address memory using expressions such as:

* 0x0847d3c

« (&y)+1024

o *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:
1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional. You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.

The Add Memory Rendering dialog appears.

270

Using the Debugger
2. Select the rendering you want (Traditional, Hex, ASCII, Signed Integer, Unsigned Integer or Hex
Integer) and click Add Rendering(s).
To remove a rendering:
1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

8.5.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.

8.5.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (0x0, 0xO0, ...).

» After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

271

TASKING SmartCode - 8051 User Guide

8.5.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of TASKING support personnel.

8.5.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). You have to create your own Run Time Interface (ORTI) and specify this file
on the Miscellaneous tab while configuring a customized debug configuration (see also Section 8.3,
Creating a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button (L) to add a new configuration.
3. Open the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.
5. Inthe KSM module field, specify the name of a KSM shared library file suitable for RTOS kernels.

The debugger supports ORTI specifications v2.0 and v2.1.

8.5.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. The
registers are organized in a number of register groups, which together contain all known registers. You
can select a group to see which registers it contains. This view has a number of features:

* While you step through the application, the registers that are changed turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

272

Using the Debugger

iiti Registers EE | it § = O
MName Walue Description 2
v M4 Miscellaneous Miscellaneous
pioi RO 0x0
pini R 0x6b
pini R2 0x0
i R3 0]
i R4 00
i RS 00
i1l RB 00
i R7 067 o
Name : RE
Hex: @xe
Decimal:®
Octal:@
Binary:@

Default:8xe

* You can change each register's value.
» You can search for a specific register: right-click on a register and from the popup menu select Find

Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

8.5.12.Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

* Right-click in the Trace view and select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

273

TASKING SmartCode - 8051 User Guide

274

Chapter 9. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.

You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

C Compiler

Eclipse option Description or option

Preprocessing

Automatic inclusion of ".sfr" file Control program option --include-sfr-file

Store preprocessor output in <file>.pre Control program option --preprocess (-E) /
--no-preprocessing-only

275

TASKING SmartCode - 8051 User Guide

Eclipse option

Description or option

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Insert a space between adjacent tokens (if needed)

Control program option
--preprocess=+token-separation

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Include paths

C compiler option --include-directory

Memory Model

Compiler memory model

C compiler option --model

Allow reentrant functions

C compiler option --reentrant

Language

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

pointer

Check assignment of string literal to non-'const' string

C compiler option --language=-strings

Treat ‘char' variables as unsigned

C compiler option --uchar

Treat 'int' bit-fields as signed

C compiler option --signed-bitfields

Treat enumerated types always as integer

C compiler option --integer-enumeration

Allow optimization across volatile access

C compiler option --language=-volatile

Allow Shift JIS Kanji in strings

C compiler option --language=+kanji

Floating-Point

Floating-point model

Control program option --fp-model

Allocation

Rename sections

C compiler option --rename-sections

Clear non-initialized global and static variables

C compiler option --no-clear

String allocation

C compiler option --romstrings

Default register bank

C compiler option --registerbank

Amount of data for automatics

C compiler option --extend

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Maximum size for code compaction

C compiler option --compact-max-size

276

Tool Options

Eclipse option

Description or option

Maximum call depth for code compaction

C compiler option --max-call-depth

Always inline function calls

C compiler option --inline

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Custom Optimization

C compiler option --optimize

Compilation Speed

C compiler option --cache

Debugging

Generate symbolic debug information

C compiler option --debug-info

Static profiling

C compiler option --profile=+static

MISRA C

MISRA C checking

C compiler option --misrac

MISRA C version

C compiler option --misrac-version

Warnings instead of errors for mandatory rules

C compiler option
--misrac-mandatory-warnings

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004 / Custom 2012

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option --warnings-as-errors

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Perform global type checking on C code

C compiler option --global-type-checking

Maximum number of emitted errors

C compiler option --error-limit

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Additional options

C compiler options, Control program options

Assembler

Eclipse option

Description or option

Preprocessing

277

TASKING SmartCode - 8051 User Guide

Eclipse option

Description or option

Use TASKING preprocessor

Assembler option --preprocessor-type

Automatic inclusion of '.sfr' file

Control program option --asm-sfr-file

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

Include paths

Assembler option --include-directory

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equs

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

Set default symbol scope to global

Assembler option --symbol-scope

Optimization

Optimize generic instructions

Assembler option --optimize=+generics

Optimize instruction size

Assembler option --optimize=+instr-size

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Allow Shift JIS Kanji in strings

Assembler option --kanji

Additional options

Assembler options

Linker

Eclipse option

Description or option

Libraries

Link default libraries

Control program option --no-default-libraries

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

278

Tool Options

Eclipse option

Description or option

Library search path

Linker option --library-directory

Data Objects

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file (.Isl)

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=I

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

Delete duplicate data

Linker option --optimize=y

Map File

Generate map file (.map)

Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer

Linker option --map-file=file.mapxml: XML

Include ...

Linker option --map-file-format

Diagnostics

Suppress warnings

Linker option --no-warnings=num

Suppress all warnings

Linker option --no-warnings

Maximum number of emitted errors

Linker option --error-limit

Miscellaneous

Strip symbolic debug information

Linker option --strip-debug

Link case insensitive

Linker option --case-insensitive

Do not use standard copy table for initialization

Linker option
--user-provided-initialization-code

Additional options

Linker options

9.1. Configuring the Command Line Environment

If you want to use the tools on the command line (either using a Windows command prompt or using

Solaris), you can set environment variables.

You can set the following environment variables:

279

TASKING SmartCode - 8051 User Guide

Environment variable Description

AS51INC With this variable you specify one or more additional
directories in which the assembler looks for include
files. See Section 5.3, How the Assembler Searches
Include Files.

C51INC With this variable you specify one or more additional
directories in which the C compiler looks for include
files. See Section 3.4, How the Compiler Searches
Include Files.

CC51BIN When this variable is set, the control program
prepends the directory specified by this variable to
the names of the tools invoked.

LIBC51 With this variable you specify one or more additional
directories in which the linker looks for libraries. See
Section 6.3.1, How the Linker Searches Libraries.

PATH With this variable you specify the directory in which
the executables reside. This allows you to call the
executables when you are not in the bi n directory.
Usually your system already uses the PATH variable
for other purposes. To keep these settings, you need
to add (rather than replace) the path. Use a
semicolon (;) to separate path names.

TMPDIR With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

With the exception of CC51BIN, PATH and TMPDIR, the information about the environment variables
used by the tools is logged in ELF Note sections of the generated ELF output file. See Section 6.11,
Linker ELF Note Sections. The compiler related environment variables are also logged in . COVPI LER_ENV
assembler directives.

See the documentation of your operating system on how to set environment variables.

280

Tool Options

9.2. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

c51 -QCac test.c
c51 --optim ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

281

TASKING SmartCode - 8051 User Guide

C compiler option: --cache

Menu entry
1. Select C Compiler » Optimization » Compilation Speed.
2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.

Command line syntax
--cache[=di rectory]
Default on command line: . (current directory)

Default in Eclipse: . cache directory under project directory

Description

This option enables a cache for output files in the specified directory. When the source code after
preprocessing and relevant compiler options and the compiler version are the same as in a previous
invocation, the previous result is copied to the output file. The cache only works when there is a single C
input file and a single output file.

You can also enable the cache and specify the cache directory with the environment variable C51CACHE.
This option takes precedence over the environment variable.

The cache directory may be shared, for instance by placing it on a network drive.

The compiler creates a directory c51cache in the directory specified with the option --cache or the
environment variable C51CACHE. The directory is only created when it does not yet exist. The cache
files are stored in this directory.

Example

To improve the compilation speed and put cached files in directory . cache, enter:
c51 --cache=.cache test.c

Related information

Section 10.4, Compiler Cache

Section 7.6, Expire Cache Utility

282

Tool Options

C compiler option: --cert

Menu entry
1. Select C Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax
--cert={all | nane[-nane],...}
Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 15, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a

three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:
c51 --cert=str30 test.c

Related information

Chapter 15, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

283

TASKING SmartCode - 8051 User Guide

C compiler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

284

Tool Options

C compiler option: --compact-max-size

Menu entry
1. Select C Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.

Command line syntax

- - conpact - max- si ze=val ue
Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory

usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

c51 --optim ze=+conpact --conpact-nax-si ze=100 test.c
Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

285

TASKING SmartCode - 8051 User Guide

C compiler option: --control-flow-info

Menu entry

1. Select C Compiler » Debugging.

2. Enable the option Generate control flow information.

Command line syntax

--control -flowinfo

Description

With this option the compiler adds control flow information to the output file. The compiler generates a

. debug_control _f | owsection which describes the basic blocks and their relations. This information
can be used for code coverage analysis on optimized code.

Example

c51 --control-flowinfo test.c
Related information

Section 7.5.2, HLL Dump Output Format

C compiler option --debug-info (Debug information)

286

Tool Options

C compiler option: --core

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor selection list, select a processor.
Command line syntax
--core=core
You can specify the following core arguments:
scr3g XC800 architecture for AURIX 3G SCR

Default: scr3g

Description

With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program option --cpu, the 8051 toolset derives the core from
the processor you selected.

With --core=scr3g, the compiler generates assembly for the XC800 architecture for the AURIX 3G SCR.
The macro __ CORE_SCR3G__ is defined in the C source file.

Example

Specify a custom core:

c51 --core=scr3g test.c
Related information

Control program option --cpu (Select processor)

287

TASKING SmartCode - 8051 User Guide

C compiler option: --debug-info (-g)
Menu entry

1. Select C Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopti on]
- g[subopti on]

You can set the following suboptions:

small 1/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default (Eclipse): - - debug- i nf o=def aul t

Default (without suboptions): - - debug- i nf o=def aul t

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

If you do not specify this option, the compiler does not generate debug information.

The DWARF debug format allows for a flexible approach as to how much symbolic information is included,
as long as the structure is valid. Adding all possible DWARF data for a program is not practical. The
amount of DWARF information per compilation unit can be huge. And for large projects, with many object
modules the link time can grow unacceptably long. That is why the compiler has several debug information
levels. In general terms one can say, the higher the level the more DWARF information is produced.

The DWARF data in an object module is not only used for debugging. The toolset can also do "type
checking" of the whole application. In that case the linker will use the DWARF information of all object
modules to determine if every use of a symbol is done with the same type. In other words, if the application
is built with type checking enabled then the compiler will add DWARF information too.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

288

Default debug information

Tool Options

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

In the following table you see in more detail what DWARF information is included for the debug option

levels.

Feature -g1 |[-g2 |-g3 |typecheck Remarks

basic info + + + + info such as symbol name and type

call frame + + + + this is information for a debugger to compute
a stack trace when a program has stopped
at a breakpoint

symbol lifetime + + this is information about where symbols live
(e.g. on stack at offset so and so, when the
program counter is in this range)

line number info + + + file name, line number, column number

"lookup tables" + DWARF sections ... this is an optimization
for the DWARF data, it is not essential

unused typedefs + in the C code of the program there can be

(many) typedefs that are not used for any
variable. Sometimes this can cause
enormous expansion of the DWARF data and
thus it is only included in -g3.

Related information

289

TASKING SmartCode - 8051 User Guide

C compiler option: --define (-D)
Menu entry
1. Select C Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

deno_func(); /* conpile for the denmo program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

290

Tool Options

You can now use a macro definition to set the DEMO flag:

c51 --define=DEMO test.c
c51 --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

c51 --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

291

TASKING SmartCode - 8051 User Guide

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
c5l --dep-file=test.dep test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information
C compiler option --dep-format (Format of dependency info)

C compiler option --preprocess=+make (Generate dependencies for make)

292

Tool Options

C compiler option: --dep-format

Menu entry

Command line syntax
- - dep- f or mat =f or nat

You can specify the following format arguments:

amk amk format of dependency info
gnu GNU format of dependency info
Default: amk
Description

With this option you can override the format of the make dependencies file from TASKING amk (the
default format) to GNU make. The format determines how names with spaces or other special characters
are escaped. In the amk format such names are double quoted. In the GNU format special characters
are escaped using a backslash.

Example
c51l --dep-file=test.dep --dep-format=gnu test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep in the GNU make format.

Related information
C compiler option --dep-file (Generate dependencies in a file)

C compiler option --preprocess=+make (Generate dependencies for make)

293

TASKING SmartCode - 8051 User Guide

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nmsg[-nBQg],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example
To display an explanation of message number 282, enter:
c51 --di ag=282

This results in the following message and explanation:

294

Tool Options

E282: unterm nated conment

Make sure that every comment starting with /* has a matching */.
Nest ed coments are not possible.

To write an explanation of all errors and warnings in HTML format to file cer r or s. ht m , use redirection
and enter:

c51 --diag=htm:all > cerrors.htni

Related information

Section 3.8, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

C compiler option --warning-level (Control warning level)

295

TASKING SmartCode - 8051 User Guide

C compiler option: --error-file

Menu entry

Command line syntax
--error-file[=file]
Description

With this option the compiler redirects diagnostic messages to a file. If you do not specify a filename, the
error file will be named after the output file with extension . err .

Example
To write diagnostic messages to error s. err instead of st der r, enter:

c51 --error-file=errors.err test.c

Related information

296

Tool Options

C compiler option: --error-limit

Menu entry

1. Select C Compiler » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you limit the number of error messages in one compiler run to the specified number.
When the limit is exceeded, the compiler aborts with fatal error message F105. Warnings and informational

messages are not included in the count. When 0 (zero) or a negative number is specified, the compiler
emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 3.8, C Compiler Error Messages

297

TASKING SmartCode - 8051 User Guide

C compiler option: --extend

Menu entry

1. Select C Compiler » Allocation.

2. Enter the number of bytes in the Amount of data for automatics field.
Command line syntax

- - ext end=val ue

Default: 4

Description

By default the compiler uses a maximum of four bytes of internal RAM for pseudo registers. With this
option you can change the number of bytes the compiler uses as a maximum.

Related information

Section 1.9.1, Automatic Variables

298

Tool Options

C compiler option: --fp-model

Menu entry
1. Select C Compiler » Floating-Point.
2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.
Command line syntax
--f p-nodel =f | ags

You can set the following flags:

+/-contract c/C allow expression contraction
+/-fastlib I/L allow less precise library functions
+/-nonan n/N allow optimizations to ignore NaN/Inf
+/-rewrite r/R allow expression rewriting
+/-trap tT support trapping on exceptions
+/-negzero z/Z ignore sign of -0.0
0 alias for --fp-model=CLNRtZ (strict)
1 alias for --fp-model=cLNRTZ (precise)
2 alias for --fp-model=clInrTz (fast double)
3 alias for --fp-model=cInrTz (fast single)

Default: - - f p- nodel =cl nr Tz

Description
With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for
certain floating-point operations.

With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(ath)*c.

299

TASKING SmartCode - 8051 User Guide

With --fp-model=+trap operations trap on floating-point exceptions. Make sure you specify the
corresponding trapping floating-point library to the linker.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas STDC FP_CONTRACT, f p_negzer o, f p_nonan andf p_rewr it e in Section 1.7, Pragmas to
Control the Compiler.

300

Tool Options

C compiler option: --global-type-checking
Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.
Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

301

TASKING SmartCode - 8051 User Guide

C compiler option: --help (-?)
Menu entry
Command line syntax

--help[=item

-?

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o] Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
c51 -7

c51 --help

c51

The following invocation displays a list of the available pragmas:

c51 - - hel p=pragnes

Related information

302

Tool Options

C compiler option: --include-directory (-1)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path that is specified with this option.
3. The path that is specified in the environment variable C511 NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
c51 --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

303

TASKING SmartCode - 8051 User Guide

The compiler now looks for the file myi nc. h in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

304

Tool Options

C compiler option: --include-file (-H)
Menu entry
1. Select C Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example

c51 --include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of botht est 1. c and t est 2. c.
Related information

C compiler option --include-directory (Add directory to include file search path)

305

TASKING SmartCode - 8051 User Guide

C compiler option: --inline
Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noi nl i ne function
qualifier whenever possible. This option has the same effect as a #pr agrma i nl i ne at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

c51 --optimze=+conpact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.12.4, Inlining Functions: inline

306

Tool Options

C compiler option: --inline-max-incr / --inline-max-size
Menu entry

1. Select C Compiler » Optimization.

2. Inthe Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).

Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-nmax-si ze=threshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options only have effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the function
qualifieri nl i ne.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier i nl i ne and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example
c51 --optimze=+inline --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier i nl i ne and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information
C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.12.4, Inlining Functions: inline
Section 3.6.3, Optimize for Code Size or Execution Speed

307

TASKING SmartCode - 8051 User Guide

C compiler option: --integer-enumeration

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat enumerated types always as integer.

Command line syntax

--integer-enuneration

Description

Normally the compiler treats enumerated types as the smallest data type possible (char oreven __bi t

instead of i nt). This reduces code size. With this option the compiler always treats enum types as i nt
as defined in the ISO C99/C11C17 standard.

Related information

Section 1.1, Data Types

308

Tool Options

C compiler option: --iso (-c)
Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99, ISO C11, ISO C17, or ISO C90.

Command line syntax

--is0={90] 99| 11] 17}

-c{90| 99| 11| 17}

Default: - -i so=17

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99

refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C17
refers to the ISO/IEC 9899:2018 (E) standard. C17 is the default.

Example
To select the ISO C99 standard on the command line:

c51 --is0=99 test.c

Related information

C compiler option --language (Language extensions)

309

TASKING SmartCode - 8051 User Guide

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the . sr ¢ file when errors occur during compilation.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during compilation, the resulting . sr ¢ file may be incomplete or incorrect. With this
option you keep the generated output file (. sr ¢) when an error occurs.

By default the compiler removes the generated output file (. sr ¢c) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

c51 --keep-output-files test.c

When an error occurs during compilation, the generated output file t est . sr ¢ will not be removed.
Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

310

Tool Options

C compiler option: --language (-A)
Menu entry
1. Select C Compiler » Language.
2. Enable or disable one or more of the following options:
» Allow GNU C extensions
* Allow long long types in ISO C90 mode
* Allow // comments in ISO C90 mode
» Check assignment of string literal to non-'const' string pointer
 Allow optimization across volatile access

 Allow Shift JIS Kanji in strings

Command line syntax
- -l anguage=[f | ags]
- Al fl ags]

You can set the following flags:

+/-gcc g/G enable a number of gcc extensions
+/-kanji k/K support for Shift JIS Kanji in strings
+/-longlong I/L long long types in ISO C90 mode
+/-comments p/P /I comments in ISO C90 mode
+/-volatile viV don't optimize across volatile access
+/-strings xIX relaxed const check for string literals

Default: - AGKI pVx

Default (without flags): - AGKLPVX

Description

With this option you control the language extensions the compiler can accept. By default the 8051 compiler
allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

311

TASKING SmartCode - 8051 User Guide

» The identifier __FUNCTION__ expands to the current function name.
 Alternative syntax for variadic macros.

 Alternative syntax for designated initializers.

 Allow zero sized arrays.

 Allow empty struct/union.

 Allow unnamed struct/union fields.

» Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.

« Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #war ni ng.

» Allow comma operator, conditional operator and cast as Ivalue.

 An inline function without "st at i c" or "ext er n" will be global.

* An"extern inline"function will not be compiled on its own.

* Recognize the keywords asm al i gnof , t ypeof , and __ext ensi on__.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gce).

Shift JIS Kanji support

With --language=+kanji (-Ak) you tell the compiler to support Shift JIS encoded Kanji multi-byte characters
in strings, (wide) character constants and / / comments. Without this option, encodings with Ox5c as the
second byte conflict with the use of the backslash as an escape character. Shift JISin/ *. . . */ comments
is supported regardless of this option. Note that Shift JIS also includes Katakana and Hiragana.

long long types in ISO C90 mode

With --language=+longlong (-Al) you tell the compiler to allow | ong | ong types in ISO C90 mode
(option --is0=90). In later ISO C versions these types are always allowed.

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In later ISO C versions this style of comments is always accepted.

312

Tool Options

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;

int main(void)

{
p="hello"; // with -AX the conpiler issues warning W25
return O;

}

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by executing all memory and (SFR) register accesses before the access of the volatile
object. The volatile access acts as a memory barrier. With this option you can prevent for example that
code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

voi d Test Func(unsigned int flag)

{
access = 0;
variable |= flag;
if(variable == 3)
{
variable = 0;
}
variabl e | = 0x8000;
access = 1;
}
Result with --language=-volatile (default):
_Test Func:
.using O
clr A
nov _access+1, A ; <== Vol atile access
nov _access, A
nov A R7
orl A, _variabl e+l
nmov R1, A
nov A R6
orl A, _variable

nov RO,
gj ne R1, #3, _2

313

TASKING SmartCode - 8051 User Guide

gj ne RO, #0, _2
clr A
nmov R1, A
nov RO, A
_2:
nmov A RL
nov A RO
orl A #128
nov RO, A
nov _access+1, #1 ; <== Vol atile access
nov _access, #0
nov _variable+l,RlL ; <== Moved across vol atile access
nov _variabl e, RO

ret

Result with --language=+volatile:

_Test Func:
.using O
clr A
nov _access+1, A ; <== Vol atile access
nov _access, A
nov A R7
orl A, _variabl e+l
nov R1, A
nov A R6
orl A, _variable
nov RO, A

gj ne R1, #3, _2
gj ne RO, #0, _2

clr A
nov R1, A
nov RO, A
_2:
nov A R1
nov A RO
orl A #128
nov RO, A
orl _variable+l,RlL ; <== Not noved
orl _variabl e, RO
nov _access+1, #1 ; <== Vol atile access
nov _access, #0

ret

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Related information

C compiler option --iso (ISO C standard)

314

Tool Options

Section 1.3, Shift JIS Kanji Support

315

TASKING SmartCode - 8051 User Guide

C compiler option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example
c51 --preprocess=+make --nmmke-target=../mytarget.obj test.c

The compiler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information
C compiler option --preprocess=+make (Generate dependencies for make)
C compiler option --dep-file (Generate dependencies in a file)

C compiler option --dep-format (Format of dependency info)

316

Tool Options

C compiler option: --max-call-depth

Menu entry
1. Select C Compiler » Optimization.

2. Inthe Maximum call depth for code compaction field, enter a value.

Command line syntax
- - max- cal | - dept h=val ue

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

-1 Poses no limit to the call depth (default)

0 The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

>0 Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)
This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module. The
call depth after linking may differ, depending on the nature of the modules.

Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

317

TASKING SmartCode - 8051 User Guide

C compiler option: --mil
Menu entry

Command line syntax

--mil

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate

representation (MIL) to a file with the suffix . mi | . The C compiler accepts . nmi | files as input files on the
command line.

Related information

Section 3.1, Compilation Process

318

Tool Options

C compiler option: --misrac

Menu entry
1. Select C Compiler » MISRA C.
2. Make a selection from the MISRA C checking list.

3. Ifyou selected Custom, expand the Custom 1998, Custom 2004 or Custom 2012 entry and enable
one or more individual rules.

Command line syntax
--misrac={all | nr[-nr]},...
Description

With this option you specify to the compiler which MISRA C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA C rules.

Example
c51 --misrac=9-13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13 violation in file t est . c.

Related information

Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac-mandatory-warnings
C compiler option --misrac-advisory-warnings
C compiler option --misrac-required-warnings

Linker option --misrac-report

319

TASKING SmartCode - 8051 User Guide

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
/ --misrac-mandatory-warnings

Menu entry

1. Select C Compiler » MISRA C.

2. Make a selection from the MISRA C checking list.

3. Enable one or more of the options:
Warnings instead of errors for mandatory rules
Warnings instead of errors for required rules
Warnings instead of errors for advisory rules.

Command line syntax
--m srac-advi sory-war ni ngs

--m srac-required-warni ngs
--m srac- mandat or y- war ni ngs

Description

Normally, if an advisory rule or required rule is violated, the compiler generates an error. As a consequence,
no output file is generated. With this option, the compiler generates a warning instead of an error.

Related information
Section 3.7.2, C Code Checking: MISRA C
C compiler option --misrac

Linker option --misrac-report

320

C compiler option: --misrac-version

Menu entry

1. Select C Compiler » MISRA C.

2. Select the MISRA C version: 1998, 2004 or 2012.

Command line syntax
--m srac-version={1998| 2004| 2012}

Default: 2012

Description

Tool Options

MISRA C rules exist in three versions: MISRA C:1998, MISRA C:2004 and MISRA C:2012. By default,
the C source is checked against the MISRA C:2012 rules. With this option you can select which version

to use.

Related information
Section 3.7.2, C Code Checking: MISRA C

C compiler option --misrac

321

TASKING SmartCode - 8051 User Guide

C compiler option: --model (-M)

Menu entry

1. Select C Compiler » Memory Model.

2. Select the Small, Auxiliary or Large compiler memory model.
Command line syntax

--nodel ={smal | | aux]| | ar ge}

-Ms|all'}

Default: - - rodel =smal |

Description

By default, the 8051 compiler uses the small memory model. You can specify the option --model to specify
another memory model.

The table below illustrates the meaning of each memory model:

Model Memory type Location Pointer size |[Pointer
arithmetic
small __data Direct addressable 8-bit 8-bit
internal RAM
aux __pdata One page of external 8-bit 8-bit
RAM
large __Xdata External RAM 16-hit 16-hit

The value of the predefined preprocessor symbol __ MODEL___ represents the memory model selected
with this option. This can be very helpful in making conditional C code in one source module, used for
different applications in different memory models. The value of __MODEL__is:

small model s

auxiliary page model ‘a’

large model I’
Example

To compile the file t est . ¢ for the large memory model:

c51 --nodel =l arge test.c

Related information

C compiler option --reentrant (Enable reentrancy)

322

Tool Options

Section 1.2.2, Memory Models

323

TASKING SmartCode - 8051 User Guide

C compiler option: --no-clear

Menu entry

1. Select C Compiler » Allocation.

2. Disable the option Clear uninitialized global and static variables.

Command line syntax

--no-cl ear

Description

Normally uninitialized global/static variables are cleared at program startup. With this option you tell the
compiler to generate code to prevent uninitialized global/static variables from being cleared at program
startup.

This option applies to constant as well as non-constant variables.

Related information

Pragmas cl ear/ nocl ear

324

Tool Options

C compiler option: --no-stdinc

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the defaulti ncl ude directory relative to the installation

directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information
C compiler option --include-directory (Add directory to include file search path)

Section 3.4, How the Compiler Searches Include Files

325

TASKING SmartCode - 8051 User Guide

C compiler option: --no-strict-aliasing

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-strict-aliasing to the Additional options field.

Command line syntax

--no-strict-aliasing

Description

With this option you can disable optimizations based on one type of undefined behavior. With this option
the compiler will not use type information to prove that two memory accesses cannot alias. This prevents

certain classes of optimizations that rely on the absence of this kind of undefined behavior.

Related information

326

Tool Options

C compiler option: --no-strict-overflow

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-strict-overflow to the Additional options field.

Command line syntax

--no-strict-overfl ow

Description

By default the C compiler can perform optimizations based on the assumption that signed integer overflow
does not occur in the application. In the ISO C standard the behavior on integer overflow is undefined.

With this option you tell the compiler to disable such optimizations and the compiler will treat overflow of
signed integers as wraparound in two's complement.

Related information

327

TASKING SmartCode - 8051 User Guide

C compiler option: --no-vector

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-vector to the Additional options field.

Command line syntax

--no-vect or

Description

With this option you tell the compiler not to generate code for interrupt vectors and references to the

interrupt handler in the run-time library. Use this option if you do not use interrupts in your application, or
if you want to write your own interrupt vectors.

Related information
C compiler option --vector-offset (Specify a base address for interrupt vectors)

Section 1.12.5, Interrupt Functions

328

Tool Options

C compiler option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber [- nunber],...]

-w nunber [- nunber], ...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

* If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

c51 test.c --no-warnings=537, 538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma war ni ng

329

TASKING SmartCode - 8051 User Guide

C compiler option: --optimize (-O)

Menu entry

1. Select C Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optin ze[=fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce alA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression elE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline il Automatic function inlining

+/-loop I/L Loop transformations

+/-forward 0/O Forward store

+/-propagate p/P Constant propagation

+/-compact r'R Code compaction (reverse inlining)
+/-subscript s/S Subscript strength reduction
+/-peephole ylIY Peephole optimizations

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OaBCEFGILOPRSY

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

--optimize=1 -O1 Optimize
Alias for -OabcefgILOPRSy

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

330

Tool Options

--optimize=2 -02 Optimize more (default)
Alias for -Oabcefglloprsy

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -0O3 Optimize most
Alias for -Oabcefgiloprsy

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti mi ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pr agma opti m ze fl ag/#pragna endoptin ze.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:

c5l test.c

cb51l --optimze=2 test.c
c51 -2 test.c

cbl --optimze test.c
c51 -Otest.c

c51 -Cabcefglloprsy test.c

c51 --optim ze=+coal esce, +i pro, +cse, +expr essi on, +f | ow, +gl o,
-inline, +l oop, +f orwar d, +pr opagat e, +conpact,
+subscri pt, +peephol e test.c

Related information
C compiler option --tradeoff (Trade off between speed and size)
Pragma opti m ze/ endopti mi ze

Section 3.6, Compiler Optimizations

331

TASKING SmartCode - 8051 User Guide

C compiler option: --option-file (-f)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
'This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

332

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the compiler:
c51 --option-fil e=myoptions
This is equivalent to the following command line:

c51 --debug-info --define=DEMO=1 test.c

Related information

Tool Options

333

TASKING SmartCode - 8051 User Guide

C compiler option: --output-file (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output-file=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension . sr c.

Example
To create the file out put . sr ¢ instead of t est . src, enter:

c51 --output-file=output.src test.c

Related information

334

Tool Options

C compiler option: --preprocess (-E)

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

5. (Optional) Enable the option Insert a space between adjacent tokens (if needed).
Command line syntax

--preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files

+/-list I/L generate a list of macro definitions

+/-make m/M generate dependencies for make

+/-noline p/P strip #line source position information
+/-token-separation tT insert a space between adjacent tokens (if needed)

Default: - ECl LMPT

Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file nane. pr e (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output-file.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

335

TASKING SmartCode - 8051 User Guide

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension . obj . With the option --make-target you can specify a target name which overrules the default
target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

With --preprocess=+token-separation you tell the preprocessor to insert a space between adjacent
tokens, if needed. For example, to prevent concatenation due to a macro expansion.

Example

c51 --preprocess=+conments, +i ncl udes, -1i st, - nake, - nol i ne, +t oken-separati on
test.c --output-file=test.pre

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments, a list
of all included source files and a space between tokes (if needed) are included but no list of macro
definitions and no dependencies are generated and the line source position information is not stripped
from the output file.

Related information
C compiler option --dep-file (Generate dependencies in a file)
C compiler option --dep-format (Format of dependency info)

C compiler option --make-target (Specify target name for -Em output)

336

Tool Options

C compiler option: --profile (-p)
Menu entry
1. Select C Compiler » Debugging.
2. Enable or disable Static profiling.
Command line syntax
--profile[=flag,...]
-p[flags]
You can set the following flags:

+/-static sIS static profile generation
Default: - pS
Default (-p without flags): - ps
Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

For an extensive description of profiling refer to Chapter 4, Profiling.
Static profiling
With this option you do not need to run the application to get profiling results. The compiler generates

profiling information at compile time, without adding extra code to your application.

Note that the option Generate symbolic debug information (--debug-info) does not affect profiling,
execution time or code size.

Example

To generate static profiling information for the module t est . ¢, compile as follows:
c51 --profile=+static test.c

Related information

Chapter 4, Profiling

337

TASKING SmartCode - 8051 User Guide

C compiler option: --reentrant

Menu entry

1. Select C Compiler » Memory Model.

2. Enable the option Allow reentrant functions.
Command line syntax

--reentrant

Description

If you select reentrancy, a (less efficient) virtual dynamic stack is used which allows you to call functions
recursively. With reentrancy, you can call functions at any time, even from interrupt functions.

Related information
C compiler option --model (Memory model)

Section 1.2.2, Memory Models

338

Tool Options

C compiler option: --registerbank

Menu entry

1. Select C Compiler » Allocation.

2. Inthe Default register bank field, select 0, 1, 2, 3 or register bank independent.

Command line syntax

--registerbank={0 | 1| 2| 3| n | none}

Description

With this option you select the default register bank. For normal functions no code is generated to switch

to the register bank. This will only be done for interrupt functions. When you select none (n) the generated
code will be register bank independent and a switch will never be generated.

Related information

Section 1.12.5.2, Register Bank Switching: __bankx /___nobank

339

TASKING SmartCode - 8051 User Guide

C compiler option: --relax-compact-name-check

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --relax-compact-name-check to the Additional options field.

Command line syntax

- -rel ax- conpact - nanme- check

Description

With code compaction (reverse inlining), chunks of code that can occur more than once in different
functions, are transformed into another function. Chunks of code that are part of functions with a different

section rename suffix are not taken into account. With this option the compiler does not perform this
section name check, but performs code compaction whenever possible.

Related information

Section 3.6.2, Core Specific Optimizations (backend)

340

Tool Options

C compiler option: --relax-overlay-name-check

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --relax-overlay-name-check to the Additional options field.

Command line syntax

--rel ax- over| ay- name- check

Description

This option relaxes the overlaying of romdata for internal constants, string literals and compound literals.
Romdata for internals are overlaid when equal. By default, the compiler only performs overlaying on equal

romdata for internals that have the same memory space and section rename suffix. With this option the
compiler does not perform this overlay name check, but performs overlaying whenever possible.

Related information

341

TASKING SmartCode - 8051 User Guide

C compiler option: --rename-sections (-R)

Menu entry
1. Select C Compiler » Allocation

The Rename sections box shows the sections that are currently renamed.
2. Torename a section, click on the Add button in the Rename sections box.

3. Type the rename rule in the format type=format or format (for example, dat a={ nrodul e} _{attri b})
Use the Edit and Delete button to change a section renaming or to remove an entry from the list.

Command line syntax
--renane-sections=[type=]format_string[,[type=]format_string]...
-R[type=]format_string[,[type=]format_string]...

Default section name: {type} {name}

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names. You can then use this unique section name
in the linker script file for locating.

With the memory type you select which sections are renamed. The matching sections will get the specified
format_string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{nodul e} module name

{nane} object name, name of variable or function
{type} section type

Instead of this option you can also uses the pragmas sect i on/endsect i on in the C source.

Example

To rename sections of memory type dat ato _c51_t est _variable_name:
c51 --renane-sections=data=_c51_{nodul e} _{nane} test.c
Related information

See assembler directive . SEGVENT for a list of section types and attributes.

342

Tool Options

Pragmas sect i on/endsecti on

Section 1.13, Section Naming

343

TASKING SmartCode - 8051 User Guide

C compiler option: --romstrings

Menu entry
1. Select C Compiler » Allocation.

2. Inthe String allocation field, select Keep strings in ROM (use __rom keyword for a pointer to
a string).

Command line syntax

--ronstrings

Description

By default, constant strings are copied from ROM to RAM at program startup. With this option you tell
the compiler to keep constant strings in ROM. If you use this option, you can access these strings only
with the __r omkeyword.

With this option enabled, strings are not copied to RAM at startup to save RAM memory. Strings in ROM
cannot be modified and access is slower than access to strings in RAM.

Related information
Pragmaranstri ng/ronstring

Section 1.10, Strings

344

Tool Options

C compiler option: --signed-bitfields

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'int' bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plaini nt istreated as si gned i nt orunsi gned
i nt.Bydefault ani nt bit-field is treated as unsi gned i nt . This offers the best performance. With this

option you tell the compiler to treat i nt bit-fields as si gned i nt . In this case, you can still add the
keyword unsi gned to treat a particular i nt bit-field as unsi gned.

Related information

Section 1.1, Data Types

345

TASKING SmartCode - 8051 User Guide

C compiler option: --source (-s)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas sour ce/ nosour ce

346

Tool Options

C compiler option: --stdout (-n)

Menu entry

Command line syntax

- -stdout

-n

Description

With this option you tell the compiler to send the output to st dout (usually your screen). No files are

created. This option is for example useful to quickly inspect the output or to redirect the output to other
tools.

Related information

347

TASKING SmartCode - 8051 User Guide

C compiler option: --tradeoff (-t)

Menu entry
1. Select C Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.

Command line syntax
--tradeof f={0] 1] 2| 3| 4}
-t{0] 1] 2| 3] 4}
Default: - - t r adeof f =4
Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more optimization.
In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
c51 --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 3.6.3, Optimize for Code Size or Execution Speed

348

C compiler option: --uchar (-u)

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat 'char’ variables as unsigned.

Command line syntax
- - uchar
-u

Description

Tool Options

By default char is the same as specifying si gned char . With this option char is the same as unsi gned

char.

Related information

Section 1.1, Data Types

349

TASKING SmartCode - 8051 User Guide

C compiler option: --undefine (-U)

Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKI NG__:

c51 --undefine=_ TASKING test.c

Related information
C compiler option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

350

Tool Options

C compiler option: --undefined-macro

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --undefined-macro to the Additional options field.
Command line syntax

- -undefi ned- nacr o

Description

With this option you tell the compiler to issue warning W598 when an undefined macro is replaced by
zero in an #if condition.

Related information

351

TASKING SmartCode - 8051 User Guide

C compiler option: --vector-offset

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --vector-offset to the Additional options field.
Command line syntax

--vector - of f set =val ue

Default: --vector-offset=0

Description

With this option you can specify a 16-bit offset address for the interrupt vector table. The default offset
address is 0x0000.

This option is for example useful to place the vector table in RAM.

Example

Specify 0x4000 as the base address of the interrupt vector table on the command line:
c51 --vector-offset=0x4000 test.c

Suppose your C source contains the following interrupt function:
__interrupt(0x0013) void isr(void)

The compiler adds the offset address to the vector address in the C source so the actual vector address
becomes 0x4013.

Related information
C compiler option --no-vector (Do not generate interrupt vectors)

Section 1.12.5, Interrupt Functions

352

Tool Options

C compiler option: --verbose (-v)

Menu entry
Command line syntax
--verbose

-V

Description

With this option you put the C compiler in verbose mode. The C compiler performs its tasks while it prints
the steps it performs to st dout .

Related information

353

TASKING SmartCode - 8051 User Guide

C compiler option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The compiler ignores all other options or input files.

Related information

354

Tool Options

C compiler option: --warning-level (-W)

Menu entry

Command line syntax

--war ni ng-1 evel =l evel
-Wevel

Default: warning level 1

Description
With this option you can control the amount of warnings that are enabled by default. Possible levels are
1 and 2, a higher level enables more warnings. For warnings with a level higher than 1, the warning

message descriptions produced by the --diag option show the warning level (level x) after the warning
number. Warnings without a (level x) indication are level 1 warnings.

Related information
C compiler option --diag (Explanation of diagnostic messages)

C compiler option --no-warnings (Suppress some or all warnings)

355

TASKING SmartCode - 8051 User Guide

C compiler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pr agna war ni ng)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler
warnings. As a consequence, the compiler now also stops after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pr agma war ni ng).

Related information
C compiler option --no-warnings (Suppress some or all warnings)

Pragma war ni ng

356

Tool Options

9.3. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

as51 -Qgs test.src
as51 --optin ze=+generics, +instr-size test.src

When you do not specify an option, a default value may become active.

357

TASKING SmartCode - 8051 User Guide

Assembler option: --allow-undefined-macro

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --allow-undefined-macro to the Additional options field.
Command line syntax

--al | ow undefi ned- macro

Description

With this option the macro preprocessor part of the assembler will not issue an error when it finds an
undefined macro.

Related information

358

Assembler option: --case-insensitive (-¢)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax

--case-insensitive

-C

Default: case sensitive

Description

Tool Options

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel nane.

asbl --case-insensitive test.src

Related information

359

TASKING SmartCode - 8051 User Guide

Assembler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

360

Tool Options

Assembler option: --control

Menu entry
1. Select Assembler » Miscellaneous.

2. Add the option --control to the Additional options field.

Command line syntax

--control =control

Description

With this option you can specify an assembler control on the command line. Use the name of the control
without the '$' prefix. You can use this option multiple times.

Example

asb51 --control ="nessage(This is a control on the comand line)" test.src
This is a control on the command |ine

Related information

Section 2.9.2, Assembler Controls

361

TASKING SmartCode - 8051 User Guide

Assembler option: --core

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor selection list, select a processor.
Command line syntax
--core=core
You can specify the following core arguments:
scr3g XC800 architecture for AURIX 3G SCR
Default: scr3g
Description
With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program option --cpu, the 8051 toolset derives the core from
the processor you selected.

With --core=scr3g, you can use predefined XC800 SFRs for the AURIX 3G SCR in the assembly code.
The define _ CORE_SCR3G__ is setto 1.

Example

To allow the use of predefined XC800 SFRs for the AURIX 3G SCR in the assembly code, enter:
as51 --core=scr3g test.src

Related information

Control program option --cpu (Select processor)

362

Tool Options

Assembler option: --debug-info (-g)

Menu entry
1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

- -debug-i nf o[=f | ags]

-g[fl ags]

You can set the following flags:

+/-asm a/lA Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local I/L Assembler local symbols debug information
+/-smart s/S Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.

Related information

Assembler control $DEBUG

363

TASKING SmartCode - 8051 User Guide

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the . DEFI NE, . SET, and . EQU directives
(similar to #def i ne in the C language). With the . MACRO directive you can define more complex
macros.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

364

Tool Options

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.1 F DEMO ==

; instructions for deno application

. ELSE

; instructions for the real application
. ENDI F

You can now use a macro definition to set the DEMO flag:

asb51 --define=DEMO test.src
as51 --define=DEMO=1 test.src

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

365

TASKING SmartCode - 8051 User Guide

Assembler option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension . d. When you specify a filename, all
dependencies will be combined in the specified file.

Example

asbl --dep-file=test.dep test.src

The assembler assembles the file t est . sr ¢, which results in the output file t est . obj , and generates
dependency lines in the file t est . dep.

Related information
Assembler option --dep-format (Format of dependency info)

Assembler option --make-target (Specify target name for --dep-file output)

366

Tool Options

Assembler option: --dep-format

Menu entry

Command line syntax
- - dep- f or mat =f or nat

You can specify the following format arguments:

amk amk format of dependency info
gnu GNU format of dependency info
Default: amk
Description

With this option you can override the format of the make dependencies file from TASKING amk (the
default format) to GNU make. The format determines how names with spaces or other special characters
are escaped. In the amk format such names are double quoted. In the GNU format special characters
are escaped using a backslash.

Example
as51 --dep-file=test.dep --dep-fornmat=gnu test.src

The assembler assembles the file t est . sr ¢, which results in the output file t est . obj , and generates
dependency lines in the file t est . dep in the GNU make format.

Related information

Assembler option --dep-file (Generate dependencies in a file)

367

TASKING SmartCode - 8051 User Guide

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
as51 --di ag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assenbl er supports only a single input file. Al other input files are ignored.

368

Tool Options

To write an explanation of all errors and warnings in HTML format to file aser r or s. ht m , use redirection
and enter:

asb51 --diag=htm:all > aserrors.htm
Related information

Section 5.6, Assembler Error Messages

369

TASKING SmartCode - 8051 User Guide

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
* Emit local EQU symbols

» Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs elE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - - eni t - | ocal s=ES

Default (without flags): - - eni t - | ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object

file can be useful for debugging.

Related information

Assembler directive .EQU

370

Tool Options

Assembler option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the assembler redirects diagnostic messages to a file. If you do not specify a filename,
the error file will be named after the input file with extension . er s.

Example
To write diagnostic messages to err or s. er s instead of st der r, enter:

asbl --error-file=errors.ers test.src

Related information

Section 5.6, Assembler Error Messages

371

TASKING SmartCode - 8051 User Guide

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0

(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 5.6, Assembler Error Messages

372

Tool Options

Assembler option: --help (-?)

Menu entry

Command line syntax
--help[=item

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
as51 -?

as51 --help

as51

To see a detailed description of the available options, enter:

as51 --hel p=options

Related information

373

TASKING SmartCode - 8051 User Guide

Assembler option: --include-directory (-I)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable AS511 NC when the product was installed.

4. The default directory $(PRODDI R) \ i ncl ude.

Example

Suppose that the assembly source file t est . sr ¢ contains the following lines:
% NCLUDE(nyi nc. i nc)

You can call the assembler as follows:

as51 --include-directory=c:\proj\include test.src

First the assembler looks for the file nyi nc. i nc in the directory where t est . sr c is located. If it does
not find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

374

Tool Options

Related information

Assembler option --include-file (Include file at the start of the input file)

375

TASKING SmartCode - 8051 User Guide

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.
Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source

file. The specified include file is included before all other includes. This is the same as specifying
% NCLUDE(fi |l e) atthe beginning of your assembly source.

Example
as51 --include-file=nyinc.inc test.src

The file nyi nc. i nc is included at the beginning of t est . sr ¢ before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

376

Tool Options

Assembler option: --info-messages

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --info-messages to the Additional options field.
Command line syntax

--info-nmessages

Description

With this option the macro preprocessor can generate informational messages in addition to errors or
warnings.

Related information

377

TASKING SmartCode - 8051 User Guide

Assembler option: --kanji

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow Shift JIS Kanji in strings.

Command line syntax

--kanj i

Description

With this option you tell the assembler to support Shift JIS encoded Kanji multi-byte characters in strings.

Without this option, encodings with Ox5c¢ as the second byte conflict with the use of the backslash as an
escape character. Shift JIS in comments is supported regardless of this option.

Note that Shift JIS also includes Katakana and Hiragana.

Related information

C compiler option --language=+kanji (Allow Shift JIS Kanji in strings)

378

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. obj) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

379

TASKING SmartCode - 8051 User Guide

Assembler option: --list-file (-1)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.
Command line syntax

--list-file[=file]

-l[file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative

addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list

file is the basename of the source file with the extension . | st .

Related information

Assembler option --list-format (Format list file)

380

Tool Options

Assembler option: --list-format (-L)

Menu entry
1. Select Assembler » List File.
2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax
--list-format=flag,...
-Lfl ags

You can set the following flags:

+/-section d/D List section directives (. SECTI ON)
+/-symbol e/E List symbol definition directives
+/-generic-expansion g/G List expansion of generic instructions
+/-generic il List generic instructions

+/-line I/L List #line directives

+/-empty-line n/N List empty source lines and comment lines (newline)
+/-equate g/Q List equate and set directives (. EQU, . SET)
+/-relocations r/R List relocations characters 'r'

+/-hll s/S List HLL symbolic debug informations
+/-equate-values v/V List equate and set values

+/-wrap-lines w/W Wrap source lines

+/-cycle-count y/Y List cycle counts

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled
Alias for --list-format=DEGILNQRSVWY
--list-format=1 -L1 All options enabled

Alias for --list-format=degilnqrsvwy
Default: - - | i st - f or mat =dEG | nqr sVwy

Description
With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-1).

381

TASKING SmartCode - 8051 User Guide

Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

382

Tool Options

Assembler option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . obj .

Example
as51 --dep-file --make-target=../mytarget.obj test.src

The assembler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information
Assembler option --dep-file (Generate dependencies in a file)

Assembler option --dep-format (Format of dependency info)

383

TASKING SmartCode - 8051 User Guide

Assembler option: --max-nesting

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --max-nesting to the Additional options field.
Command line syntax

- - max- nest i ng=nunber

Default: 31

Description

With this option you can set the maximum include file nesting level.
Related information

% NCLUDE()

384

Tool Options

Assembler option: --no-notes

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --no-notes to the Additional options field.
Command line syntax

--no-notes

Description
By default, the assembler generates a note section in the object file. The note section contains compiler
version and invocation information, if supplied in the input file, version and invocation information of the

assembler, and information of environment variables, if used by the compiler or assembler. With this
option you can suppress the generation of a note section in the output object file.

Related information

Section 7.5.2, HLL Dump Output Format

385

TASKING SmartCode - 8051 User Guide

Assembler option: --no-skip-asm-comment

Menu entry
1. Select Assembler » Miscellaneous.

2. Add the option --no-skip-asm-comment to the Additional options field.

Command line syntax

- - no- ski p- asm coment

Description

With this option you instruct the macro preprocessor not to skip parsing after assembly comment ;.

Related information

386

Tool Options

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201, 202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, ...]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:
as51 test.src --no-warni ngs=201, 202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

387

TASKING SmartCode - 8051 User Guide

Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:

» Optimize generic instructions

» Optimize instruction size

Command line syntax
--optimze=flag,...

-Of I ags

You can set the following flags:

+/-generics g/G
+/-instr-size s/S

Default: - - opti m ze=gs

Description

Allow generic instructions
Optimize instruction size

With this option you can control the level of optimization. For details about each optimization see
Section 5.4, Assembler Optimizations

When you use this option to specify a set of optimizations, you can turn on or off the optimizations in your
assembly source file with the assembler controls $opt i m ze/ $noopti m ze.

Related information

Assembler control $OPTIMIZE

Section 5.4, Assembler Optimizations

388

Tool Options

Assembler option: --option-file (-f)

Menu entry
1. Select Assembler » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
* Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

389

TASKING SmartCode - 8051 User Guide

* Itis possible to nest command line files up to 25 levels.

Example
Suppose the file myopt i ons contains the following lines:

- -debug-i nfo=+asm - | ocal
test.src

Specify the option file to the assembler:
as51 --option-fil e=myoptions
This is equivalent to the following command line:

as51 --debug-info=+asm-local test.src

Related information

390

Tool Options

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension . obj .

Example
To create the file r el obj . obj instead of asm obj , enter:

as51 --output=relobj.obj asmsrc

Related information

391

TASKING SmartCode - 8051 User Guide

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

- - page- | engt h=nunber

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page

in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information
Assembler option --list-file (Generate list file)

Assembler control $SPAGELENGTH

392

Tool Options

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=nunber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGEWIDTH

393

TASKING SmartCode - 8051 User Guide

Assembler option: --parameters-redefine

Menu entry
1. Select Assembler » Miscellaneous.

2. Add the option --parameters-redefine to the Additional options field.

Command line syntax

- - paranet ers-redefine

Description

With this option it is allowed to use the “SET macro to redefine a macro parameter.

Related information

YSET()

394

Assembler option: --preprocess (-E)

Menu entry

Command line syntax
- - preprocess

-E

Description

Tool Options

With this option the assembler will only preprocess the assembly source file. The assembler sends the

preprocessed file to stdout.

Related information

395

TASKING SmartCode - 8051 User Guide

Assembler option: --preprocessor-type (-m)

Menu entry

1. Select Assembler » Preprocessing.

2. Enable or disable the option Use TASKING preprocessor.
Command line syntax

- - preprocessor-type=type

-ntype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng

Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

396

Assembler option: --prompt

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --prompt to the Additional options field.
Command line syntax

--pronpt=string

Default: >

Description

With this option you can set the prompt for the % N built-in function.

Example

To set the prompt for the % N function to "cnd>", enter:
as51 --pronpt="cnd>" test.src

Related information

% N()

Tool Options

397

TASKING SmartCode - 8051 User Guide

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,...]

-t[flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - sect i on-i nf o=CL

Default (without flags): - - sect i on-i nf o=cl

Description

With this option you tell the assembiler to display section information. For each section its memory space,

size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the

section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:

asb1 --list-file --section-info asmsrc

Related information

Assembler option --list-file (Generate list file)

398

Tool Options

Assembler option: ---sfr-file

Menu entry

1. Select Assembler » Preprocessing.

2. Enable the option Automatic inclusion of ".sfr' file.

Command line syntax

--sfr-file=regcpu. sfr

Description

With this option the assembler can include the register file r egcpu. sfr.
In Eclipse this option is called automatically by default.

Related information

Section 2.6, Special Function Registers

399

TASKING SmartCode - 8051 User Guide

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- - synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive .PUBLIC

400

Tool Options

Assembler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

401

TASKING SmartCode - 8051 User Guide

Assembler option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description
If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will

be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

402

Tool Options

Assembler option: --warn-on-undefined-macro

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --warn-on-undefined-macro to the Additional options field.
Command line syntax

- -war n- on- undef i ned- nacr o

Description

With this option the assembler generates warning W 201 instead of error E 301 when an undefined
preprocessor macro name is found.

Related information

403

TASKING SmartCode - 8051 User Guide

9.4. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

| kK51 -nfkl test.obj
| k51 --map-file-format=+files, +link, +l ocate test. obj

When you do not specify an option, a default value may become active.

404

Tool Options

Linker option: --binfill

Menu entry

Command line syntax
--binfill=pattern

Default: 0x00

Description
With this option you can specify an unsigned 32-bit fill pattern for the binary output file. To use this option,
you first need to set the command to inform the linker to produce a binary file. You can do this by setting

the output file type as BIN with linker option --chip-output (-c). If this is not done then option --binfill is
ignored.

Example

To convert two Intel Hex input files to a binary output file and fill the memory gaps with Ox2D, enter the
following on the command line:

1 k51 nyproj _1. hex myproj_2. hex -dtc49x.|sl --core=npe:xc800 --chip-output=nyproj:bin --binfill=0x2D

Related information
Linker option --chip-output

Section 6.6, Converting Intel Hex to Binary Format

405

TASKING SmartCode - 8051 User Guide

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the . obj file case insensitive.

Related information

Assembler option --case-insensitive

406

Tool Options

Linker option: --chip-output (-c)

Menu entry

Command line syntax
--chi p-out put =[basenane] : f or mat [: addr _si ze], ...
-c[basenane] : format [: addr _si ze], . ..

You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records
BIN Binary

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default). For binary files an address size is not allowed.

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

nenory nmemane
{ type=rom }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension . hex, . sr e or . bi n. Optionally, you can specify a basename
which prepends the generated file name.

The linker also always generates a task-related absolute object file in ELF/DWARF format and a
memory definition file, unless you specify linker option --no-default-output.

Example

To generate Intel Hex output files for each defined memory, enter the following on the command line:
| kK51 --chi p-out put =myprog: | HEX test 1. obj

In this case, this generates the file mypr og_memname. hex.

Related information

Linker option --output (Output file)

407

TASKING SmartCode - 8051 User Guide

Linker option --no-default-output (No default task-related output files)

Linker option --binfill (Binary fill pattern)

408

Tool Options

Linker option: --core (-C)

Menu entry

Command line syntax

--core=core

-Ccore

You can specify the following cores:
mpe:xc800 XC800 core

Default: mpe:xc800

Description

With this option you specify the core of the target processor for the current link task. Only one task can
be assigned to a certain core. npe is the multi-processor environment as specified in the LSL file.

Example
To link objects for the 8051 core npe: xc800, enter:

I k51 -0 test.elf --core=npe:xc800 -D__CPU__=t c49x
--map-file test.obj -1c51ss0 -1fp5lss -1rt51

Related information

Control program option --Isl-core (Specify LSL core)

409

TASKING SmartCode - 8051 User Guide

Linker option: --define (-D)

Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[=macr o_defi ni ti on]
- Dmacr o_name[=nacr o_defini tion]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional locating.

Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

To define the symbol __CPU__ which is used in the linker script file def aul t . | sl to include the proper
processor specific LSL file, enter:

| k61 --define=__CPU__=tc49x test.obj

Related information

Linker option --option-file (Specify an option file)

410

Tool Options

Linker option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the linker to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to the file | k51. d. When you specify a filename, all dependencies
will be combined in the specified file.

Example
| k61 --dep-file=test.dep test.obj

The linker links the file t est . obj , which results in the output file t est . el f, and generates dependency
lines in the file t est . dep.

Related information
Linker option --dep-format (Format of dependency info)

Linker option --make-target (Target to use in dependencies file)

411

TASKING SmartCode - 8051 User Guide

Linker option: --dep-format

Menu entry

Command line syntax
- - dep- f or mat =f or mat

You can specify the following format arguments:

amk amk format of dependency info
gnu GNU format of dependency info
Default: amk
Description

With this option you can override the format of the make dependencies file from TASKING amk (the
default format) to GNU make. The format determines how names with spaces or other special characters
are escaped. In the amk format such names are double quoted. In the GNU format special characters
are escaped using a backslash.

Example
| k61 --dep-file=test.dep --dep-format=gnu test.obj

The linker links the file t est . obj , which results in the output file t est . el f, and generates dependency
lines in the file t est . dep in the GNU make format.

Related information

Linker option --dep-file (Generate dependencies in a file)

412

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
| kK51 --di ag=106

This results in the following message and explanation:
E106: unresol ved external: <nessage>

The linker could not resolve all external synbols.

413

TASKING SmartCode - 8051 User Guide

This is an error when the increnmental |inking option is disabled.
The <nessage> indicates the synbol that is unresol ved.

To write an explanation of all errors and warnings in HTML format to file | kerr or s. ht ml , use redirection
and enter:

| k51 --diag=htm:all > | kerrors.htm

Related information

Section 6.12, Linker Error Messages

414

Tool Options

Linker option: --duplicate-section-limit

Menu entry

Command line syntax
--duplicate-section-linmt=nunber
Default: 10000

Description

With this option, duplicate code and/or data sections are not removed if more than number sections would
have to be compared.

The duplicate section removal optimization performs detailed comparisons between sections with equal
contents to check if they are indeed equal. Since these comparisons can be computationally intensive,
the optimization is only performed when the number of sections to be compared is under a limit. With this
option you can specify a custom maximum amount.

Related information
Section 6.7, Linker Optimizations
Linker option --optimize=+delete-duplicate-code (-Ox) (Delete duplicate code sections)

Linker option --optimize=+delete-duplicate-data (-Oy) (Delete duplicate data sections)

415

TASKING SmartCode - 8051 User Guide

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects diagnostic messages to a file. If you do not specify a filename, the
error file is | k51. el k.

Example
To write diagnostic messages to err or s. el k instead of st der r, enter:

| k61 --error-file=errors.elk test.obj

Related information

Section 6.12, Linker Error Messages

416

Tool Options

Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 6.12, Linker Error Messages

417

TASKING SmartCode - 8051 User Guide

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol , ...

-esynbol , . ..

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
___START as an unresolved external.

Example
Consider the following invocation:
k51 nylib.lib

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through myl i b. i b.

| kb1 --extern=__START nylib.lib

In this case the linker searches for the symbol __START in the library and (if found) extracts the object
that contains __ START, the startup code. If this module contains new unresolved symbols, the linker looks
againinnyl i b. i b. This process repeats until no new unresolved symbols are found.

Related information

Section 6.3, Linking with Libraries

418

Tool Options

Linker option: -first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example
Consider the following example:
| k51 --first-library-first a.lib test.obj b.lib

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are presentinbotha. | i bandb. | i b are now
also resolved from a. | i b.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

419

TASKING SmartCode - 8051 User Guide

Linker option: --global-map-file

Menu entry

Command line syntax

--global -map-file=file[:XM], ...
Default: no global map file is generated
Description

With this option you tell the linker to generate a global linker map file that includes information about each
of the tasks.

A global linker map file is a text or XML file that shows how the linker has mapped the sections and
symbols from the various object files (. obj) to the linked object file. A locate part shows the absolute
position of each section. External symbols are listed per space with their absolute address, both sorted
on symbol and sorted on address.

Related information
Linker option --global-map-file-format (Format global map file)
Linker option --map-file (Generate map file for a single task)

Section 12.2, Linker Map File Format

420

Linker option: --global-map-file-format

Menu entry

Command line syntax

--global -map-file-format=flag,...

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/IK Include link result information

+/-locate I/L Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/0 Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--global-map-file-format=0
--global-map-file-format=1

--global-map-file-format=2

Default: - - gl obal - map-fil e-format=2

Description

With this option you specify which information you want to include in the global map file.

Link information

Tool Options

Alias for --global-map-file-format=cDfikLMNoQrSU

Locate information

Alias for --global-map-file-format=CDfiKIMNoOQRSU

Most information

Alias for --global-map-file-format=cdfikimNoQrSu

On the command line you must use this option in combination with the option --global-map-file.

421

TASKING SmartCode - 8051 User Guide

Related information

Linker option --global-map-file (Generate global map file)

Section 12.2, Linker Map File Format

422

Tool Options

Linker option: --global-type-checking
Menu entry

Command line syntax

--gl obal -t ype-checki ng

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

423

TASKING SmartCode - 8051 User Guide

Linker option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
| k51 -7

| k51 --help

| k51

To see a detailed description of the available options, enter:

| k51 --hel p=options

Related information

424

Tool Options

Linker option: --hex-format

Menu entry
1. Select Linker » Miscellaneous.

2. Add the option --hex-format to the Additional options field.

Command line syntax
--hex-format=flag, ...
You can set the following flag:
+/-start-address s/S Emit start address record
Default: - - hex- f or mat =s
Description

With this option you can specify to emit or omit the start address record from the hex file.

Related information

Linker option --output (Output file)

425

TASKING SmartCode - 8051 User Guide

Linker option: --hex-record-size

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.
Related information

Linker option --output (Output file)

Section 13.2, Intel Hex Record Format

426

Tool Options

Linker option: --import-object
Menu entry
1. SelectLinker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).
Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--inmport-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a

file called nmy. j pg, a section with the name nmy_j pg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 6.5, Importing Binary Files

427

TASKING SmartCode - 8051 User Guide

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ")

2. The path that is specified with this option.

3. The default directory $(PRODDI R) \'i ncl ude. | sl .

Example

Suppose that your linker script file nyl sl . | sl contains the following line:

#i ncl ude "nyinc.inc"

You can call the linker as follows:

| k51 --include-directory=c:\proj\include --Isl-file=nylsl.|Isl test.obj

First the linker looks for the file myi nc. i nc in the directory where nyl sl . | sl is located. If it does not
find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). Finally it looks in the directory
$(PRODDI R)\i ncl ude. | sl .

Related information

Linker option --Isl-file (Specify linker script file)

428

Tool Options

Linker option: --incremental (-r)

Menu entry

Command line syntax
--incremental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out . You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file . out . The linker will
now locate the file.

Example
In this example, the filest est 1. obj , t est 2. obj andt est 3. obj are incrementally linked:
1.1k51 --increnental testl.obj test2.obj --output=test.out
testl.obj and test2.obj are linked
2.1k51 --incremental test3.obj test.out
test3.obj and test.out are linked, taskl.out is created
3.1 k51 taskl. out

taskl.out is located

Related information

Section 6.4, Incremental Linking

429

TASKING SmartCode - 8051 User Guide

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular

error does not result in a corrupt object file, or when you want to inspect the output file, or send it to
TASKING support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

430

Tool Options

Linker option: --library (-1)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.
Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax
--library=nane

- | nane

Description
With this option you tell the linker to use system library name. | i b, where name is a string. The linker

first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variable LI BC51, unless you used the option --ignore-default-library-path.

Example
To search in the system library c51ss0. | i b (C library):
| k51 test.obj nylib.lib --1ibrary=c51ss0

The linker links the file t est . obj and first looks in library myl i b. | i b (in the current directory only),
then in the system library c51ss0. | i b to resolve unresolved symbols.

Related information
Linker option --library-directory (Additional search path for system libraries)

Section 6.3, Linking with Libraries

431

TASKING SmartCode - 8051 User Guide

Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry
1. SelectLinker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDI R)\ | i b.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variable LI BC51.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library ()
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variable LI BC51.

3. The default directory $(PRODDI R)\ | i b.

Example
Suppose you call the linker as follows:

| k51 test.obj --library-directory=c:\nylibs --1ibrary=c51ss0

432

Tool Options

First the linker looks in the directory c: \ myl i bs for library ¢51ss0. | i b (this option). If it does not find
the requested libraries, it looks in the directory that is set with the environment variable LI BC51. Then
the linker looks in the default directory $(PRODDI R)\ | i b for libraries.

Related information
Linker option --library (Link system library)

Section 6.3.1, How the Linker Searches Libraries

433

TASKING SmartCode - 8051 User Guide

Linker option: --link-only

Menu entry

Command line syntax
--link-only
Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

434

Tool Options

Linker option: --Isl-check

Menu entry
Command line syntax
--1sl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 6.8, Controlling the Linker with a Script

435

TASKING SmartCode - 8051 User Guide

Linker option: --Isl-dump

Menu entry

Command line syntax

--1sl-dunp[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of

the option --map-file (generate map file for a single task). If you do not specify a filename, the file
| k51. | df is used.

Related information

Linker option --map-file-format (Map file formatting)

436

Tool Options

Linker option: --Isl-file (-d)

Menu entry
An LSL file can be generated when you create your TriCore project in Eclipse:
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.
The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field.

Command line syntax
--Isl-file=file
-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file def aul t . | sl or the name of a manually written
linker script file. You can use this option multiple times. The linker processes the LSL files in the order in
which they appear on the command line.

Related information
Linker option --Isl-check (Check LSL file(s) and exit)

Section 6.8, Controlling the Linker with a Script

437

TASKING SmartCode - 8051 User Guide

Linker option: --make-target

Menu entry
Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . el .

Example
| k51 --nake-target=mytarget.elf test.obj

The linker generates dependency lines with the default target name nyt ar get . el f instead oft est . el f.

Related information

Linker option --dep-file (Generate dependencies in a file)

438

Tool Options

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file[=file][:XM]
-Mfile]l[:XM]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
. map. If you did not specify the option --output, the linker uses the file t ask1. map. Eclipse names the
. map file after the project.

In Eclipse the XML variant of the map file (extension . mapxnl) is used for graphical display in the map
file viewer.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

Related information
Linker option --map-file-format (Format map file)

Section 12.2, Linker Map File Format

439

TASKING SmartCode - 8051 User Guide

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax
--map-file-format=flag, ...
-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/K Include link result information

+/-locate IIL Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/0O Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0 Link information

Alias for -mcDfikLMNoQrSU
--map-file-format=1 -m1 Locate information

Alias for -mCDfiKIMNoQRSU
--map-file-format=2 -m2 Most information

Alias for -mcdfikimNoQrSu

Default: - - map-fi |l e- f or mat =2

440

Tool Options

Description
With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information
Linker option --map-file (Generate map file for a single task)

Section 12.2, Linker Map File Format

441

TASKING SmartCode - 8051 User Guide

Linker option: --misra-c-report
Menu entry

Command line syntax

--msra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance report. This report lists the

various modules in the project with the respective MISRA C settings at the time of compilation. If you do
not specify a filename, the file basename. ntr is used.

Related information

C compiler option --misrac (MISRA C checking)

442

Tool Options

Linker option: --non-romable

Menu entry

Command line syntax

--non-ronabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

Related information

443

TASKING SmartCode - 8051 User Guide

Linker option: --no-default-output

Menu entry

Command line syntax

--no-def aul t - out put

Description

By default the linker generates an absolute object file and a memory definition file for each task. With this
option you specify to the linker not to generate these files, unless explicitly specified.

Example
Invocation to create an Intel Hex output for each chip only:
| kK51 -cnyprog: | HEX --no-defaul t-output test.obj

This generates the file mypr og_memname. hex. Without --no-default-output also the files t ask1. el f
and t askl. ndf are generated.

Related information
Linker option --chip-output (Generate an output file for each chip)

Control program option --no-map-file (Do not generate map file)

444

Tool Options

Linker option: --no-rescan

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--Nno-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

445

TASKING SmartCode - 8051 User Guide

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax
- -no-rom copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized
when the application is restarted.

Related information

446

Tool Options

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135, 136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber, .. .]
-w nunber, ...]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

« If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example
To suppress warnings 135 and 136, enter:

| k51 --no-warni ngs=135, 136 test. obj

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

447

TASKING SmartCode - 8051 User Guide

Linker option: --optimize (-O)

Menu entry

1.

2.

Select Linker » Optimization.

Select one or more of the following options:

» Delete unreferenced sections

» Use a 'first-fit decreasing' algorithm

» Compress copy table

Delete duplicate code

* Delete duplicate data

Command line syntax

--optinm ze=flag, ...

-Of I ags

You can set the following flags:

+/-delete-unreferenced-sections c/C

+/-first-fit-decreasing

+/-copytable-compression

+/-delete-duplicate-code

+/-delete-duplicate-data

I/L

tT
XIX

yIY

Use the following options for predefined sets of flags:

--optimize=0

--optimize=1

--optimize=2

Default: - - opti m ze=1

448

No optimization
Alias for -OCLTXY

Delete unreferenced sections from the output
file

Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

Emit smart restrictions to reduce copy table size
Delete duplicate code sections from the output
file

Delete duplicate constant data from the output
file

Default optimization

Alias for -OcLtxy

All optimizations
Alias for -Ocltxy

Tool Options

Description
With this option you can control the level of optimization.
Note that when you use the flag +copytable-compression, sections affected by the copy table are
located as if they were in a clustered LSL group, if they do not have a locate restriction yet.
Related information

For details about each optimization see Section 6.7, Linker Optimizations.

Define the mutual order of sections in an LSL group in Section 14.8.2, Creating and Locating Groups of
Sections.

Linker option --duplicate-section-limit (Specify a limit for duplicate section removal)

449

TASKING SmartCode - 8051 User Guide

Linker option: --option-file (-f)

Menu entry
1. Select Linker » Miscellaneous.
2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |ine"

450

Tool Options

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

--map-fil e=ny. map (generate a map file)

test. obj (input file)

--library-directory=c:\nylibs (addi tional search path for systemlibraries)
Specify the option file to the linker:

| k51 --option-file=myoptions

This is equivalent to the following command line:

| k51 --map-file=my.map test.obj --library-directory=c:\nylibs

Related information

451

TASKING SmartCode - 8051 User Guide

Linker option: --output (-0)

Menu entry

Command line syntax
--output=[filenane][:format[:addr_size][, space_name]]...
-o[filenane] [:format[:addr_size][, space_nane]]...

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name t ask1. el f .

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename t askn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records). Note that if you make the addr_size too small, the linker might give a fatal object writer error
indicating an address overflow.

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension . hex or . sr e and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension . hex or. sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

452

Tool Options

Example

To create the output file mypr og. hex of the address space named near , enter:

| k51 test.obj --output=myprog. hex:|HEX: 2, near

If they exist, any other address spaces are emitted as well and are named nypr og_spacename. hex.
Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

453

TASKING SmartCode - 8051 User Guide

Linker option: --strip-debug (-S)

Menu entry
1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax
--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

454

Tool Options

Linker option: --user-provided-initialization-code (-i)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax
--user-provided-initialization-code
-

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

455

TASKING SmartCode - 8051 User Guide

Linker option: --verbose (-v)

Menu entry

Command line syntax
--verbose

-V

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(- vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally
be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

456

Tool Options

Linker option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The linker ignores all other options or input files.

Related information

457

TASKING SmartCode - 8051 User Guide

Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

458

Tool Options

9.5. Control Program Options

The control program cc51 facilitates the invocation of the various components of the 8051 toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C compiler,
assembler or linker, it is recommended to use the control program options --pass-c, --pass-assembler,
--pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cc51l -W-Cac test.c
cc51 --pass-c=--opti m ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

459

TASKING SmartCode - 8051 User Guide

Control program option: --address-size

Menu entry

Command line syntax

- -address-si ze=addr _si ze

Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.
Example

To create the SREC file t est . sr e with S1 records, type:

cc51 --format =SREC --address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

460

Tool Options

Control program option: --check

Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information
C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

461

TASKING SmartCode - 8051 User Guide

Control program option: --control-flow-info

Menu entry

1. Select C Compiler » Debugging.

2. Enable the option Generate control flow information.

Command line syntax

--control -flowinfo

Description

With this option the compiler adds control flow information to the output file. The compiler generates a

. debug_control _f | owsection which describes the basic blocks and their relations. This information
can be used for code coverage analysis on optimized code.

Example

cc51 --control-flowinfo test.c
Related information

Section 7.5.2, HLL Dump Output Format

Control program option --debug-info (Debug information)

462

Tool Options

Control program option: --core

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.
Command line syntax
--core=core
You can specify the following core arguments:
scr3g XC800 architecture for AURIX 3G SCR

Default: scr3g

Description

With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program option --cpu, the 8051 toolset derives the core from
the processor you selected.

With --core=scr3g, the compiler generates assembly for the XC800 architecture for the AURIX 3G SCR.
The macro __ CORE_SCR3G__ is defined in the C source file.

Example
To select the XC800 architecture for the AURIX 3G SCR, enter:

cc51 --core=scr3g test.c

Related information

Control program option --cpu (Select processor)

463

TASKING SmartCode - 8051 User Guide

Control program option: --cpu (-C)

Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

Command line syntax
--cpu=id | nane | cpu
-Cd | name | cpu
Description

With this option you define the target processor for which you create your application. You can specify a
full processor name, like "TC49x", or a base CPU name, like tc49x or its unique id, like tc49x.

Based on this option the C compiler and assembler can include the special function register file
r egcpu. sfr, if you also specify option --include-sfr-file or option --asm-sfr-file. In Eclipse this is done
automatically.

The standard list of supported processors is defined in the file pr ocessor s. xni . This file defines for
each processor its full name (for example, "TC49x"), its ID, the base CPU name (for example, tc49x), the
core settings (for example, scr3g) and the on-chip flash settings for that processor. To show a list of all
supported processors you can use option --cpu-list.

The control program reads the file pr ocessor s. xm . The lookup sequence for names specified to this
option is as follows:

1. match with the 'i d' attribute in pr ocessor s. xm (case insensitive, for example t c49x)

2. if none matched, match with the 'nane’ attribute in pr ocessor s. xm (case insensitive, for example
"TC49x")

3. if still none matched, match any of the base CPU names (the 'cpu’ attribute in pr ocessors. xni , for
example t c49x). If multiple processors exist with the same base CPU, a warning will be issued and
the first one is selected.

4. if still none matched, the control program issues a fatal error.

The preferred use of the option --cpu, is to specify an ID because that is always a unique name. For
example, --cpu=tc49x. The control program will lookup this processor name in the file pr ocessors. xm .
The control program passes the options to the underlaying tools. For example, -D__CPU__ =tc49x to the
linker. If you also specify option --include-sfr-file, the control program passes the option -Hsfr/regtc49x.sfr
to the C compiler. If you also specify option --asm-sfr-file, the control program passes the option
--sfr-file=sfr/regtc49x.sfr to the assembler.

Example

To generate the filet est . el f for the TC49x processor, enter:

464

Tool Options

cc51l --cpu=tc49x --include-sfr-file --asmsfr-file -v -t test.c
The control program will call the tools as follows:

+ ¢c51 -M --registerbank=0 --core=scr3g -D__CPU__=tc49x -Hsfr/regtc49x. sfr
--fp-nodel=cinrTz -o test.src test.c

+ asbl --core=scr3g -D_CPU_=tc49x --sfr-file=sfr/regtc49xg. sfr
-0 test.obj test.src

+ kb1 -0 test.elf --core=npe:xc800 -D_CPU__=tc49x --map-file test.obj
-1 c51ss0 -1 fp5lss -Irt51

Related information

Control program option --cpu-list (Show list of processors)

Control program option --processors (Read additional processor definitions)
Control program option --include-sfr-file (Include SFR file in compiler)

Control program option --asm-sfr-file (Include SFR file in assembler)

465

TASKING SmartCode - 8051 User Guide

Control program option: --cpu-list
Menu entry

Command line syntax
--cpu-list[=pattern]

Description

With this option the control program shows a list of supported processors as defined in the file
processors. xm . This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility. You can use it to limit the output list.
Example

To show a list of all processors, enter:

cc51 --cpu-list

Related information

Control program option --cpu (Select processor)

466

Tool Options

Control program option: --create (-c)

Menu entry

Command line syntax
--creat e[=st age]
- c[st age]

You can specify the following stages:

relocatable | Stop after the files are linked to a linker object file (. out)
mil m Stop after C files are compiled to MIL (. mi |)

object o] Stop after the files are assembled to objects (. obj)
assembly s Stop after C files are compiled to assembly (. src)

Default (without flags): - - cr eat e=obj ect

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input. With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file t est . obj :

cc51 --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.
Related information

Linker option --link-only (Link only, no locating)

467

TASKING SmartCode - 8051 User Guide

Control program option: --debug-info (-g)

Menu entry
1. Select C Compiler » Debugging.

2. Togenerate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopti on]
- g[subopti on]

You can set the following suboptions:

small l|c Emit small set of debug information.
default 2|d Emit default symbolic debug information.
all 3]a Emit full symbolic debug information.

Default (Eclipse): - - debug- i nf o=def aul t

Default (without suboptions): - - debug- i nf o=def aul t

Description

With this option you specify to include debug information in the generated object file.

If you do not specify this option, no debug information is generated.

The control program passes the option -gsuboption to the C compiler and calls the assembler with -gsl.
Related information

C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

468

Tool Options

Control program option: --define (-D)

Menu entry
1. Select C Compiler » Preprocessing and/or Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)
Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
- -defi ne=macr o_name[=macr o_defi ni tion]

- Dmacr o_name[=nacr o_defini tion]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.
Make sure you do not use a reserved keyword as a macro name, as this can lead to unexpected
results.

Example

Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#i f DEMO

dermo_func(); [* conpile for the demo program */
#el se

real _func(); [* conpile for the real program*/

469

TASKING SmartCode - 8051 User Guide

#endi f
}

You can now use a macro definition to set the DEMO flag:

cc51 --define=DEMO test.c
cc51 --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cc51l --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information

Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

470

Tool Options

Control program option: --dep-file

Menu entry

Command line syntax
--dep-file[=file]
Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example

cchl --dep-file=test.dep -t test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information
Control program option --dep-format (Format of dependency info)

Control program option --preprocess=+make (Generate dependencies for make)

471

TASKING SmartCode - 8051 User Guide

Control program option: --dep-format

Menu entry

Command line syntax
- - dep- f or mat =f or mat

You can specify the following format arguments:

amk amk format of dependency info
gnu GNU format of dependency info
Default: amk
Description

With this option you can override the format of the make dependencies file from TASKING amk (the
default format) to GNU make. The format determines how names with spaces or other special characters
are escaped. In the amk format such names are double quoted. In the GNU format special characters
are escaped using a backslash.

Example
cc51 --dep-file=test.dep --dep-format=gnu -t test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep in the GNU make format.

Related information
Control program option --dep-file (Generate dependencies in a file)

Control program option --preprocess=+make (Generate dependencies for make)

472

Tool Options

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:
cc51 --di ag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccer r or s. ht m , use redirection
and enter:

cc51 --diag=htm:all > ccerrors. htnl

473

TASKING SmartCode - 8051 User Guide

Related information

Section 3.8, C Compiler Error Messages

474

Tool Options

Control program option: --dry-run (-n)
Menu entry

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

475

TASKING SmartCode - 8051 User Guide

Control program option: --error-file

Menu entry
Command line syntax
--error-file
Description

With this option the control program tells the compiler, assembler and linker to redirect diagnostic messages
to a file.

Example

To write diagnostic messages to error files instead of st derr, enter:
cchl --error-file test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

476

Tool Options

Control program option: --error-limit

Menu entry
1. Select C Compiler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax
--error-limnt=nunber
Default: 42

Description

With this option you limit the number of error messages in one invocation to the specified number. When
the limit is exceeded, the control program aborts with fatal error message F105. Warnings and informational
messages are not included in the count. When 0 (zero) or a negative number is specified, the control
program emits all errors. Without this option the maximum number of errors is 42. The control program
also passes this option to the C compiler, assembler and linker.

Related information

Section 3.8, C Compiler Error Messages

477

TASKING SmartCode - 8051 User Guide

Control program option: --format

Menu entry

Command line syntax
- -format =f or mat

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWAREF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example
To generate a Motorola S-record output file:

cchl --format=SREC testl.c test2.c --output=test.sre

Related information
Control program option --address-size (Set address size for linker IHEX/SREC files)
Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

478

Tool Options

Control program option: --fp-model

Menu entry
1. Select C Compiler » Floating-Point.
2. Make a selection from the Floating-point model list.

3. If you selected Custom, enable one or more individual options.
Command line syntax
--f p-nodel =f | ags

You can set the following flags:

+/-contract c/C allow expression contraction
+/-fastlib I/L allow less precise library functions
+/-nonan n/N allow optimizations to ignore NaN/Inf
+/-rewrite r/R allow expression rewriting
+/-trap tT support trapping on exceptions
+/-negzero z/Z ignore sign of -0.0
0 alias for --fp-model=CLNRtZ (strict)
1 alias for --fp-model=cLNRTZ (precise)
2 alias for --fp-model=clInrTz (fast double)
3 alias for --fp-model=cInrTz (fast single)

Default: - - f p- nodel =cl nr Tz

Description
With this option you select the floating-point execution model.

With --fp-model=+contract you allow the compiler to contract multiple float operations into a single
operation, with different rounding results. A possible example is fused multiply-add.

With --fp-model=+fastlib you allow the compiler to select faster but less accurate library functions for
certain floating-point operations. With --fp-model=-fastlib more precise library functions are used and
the compiler defines the macro __PRECI SE_LI B_FP__, which is used in mat h. h.

With --fp-model=+nonan you allow the compiler to ignore NaN or Inf input values. An example is to
replace multiply by zero with zero.

With --fp-model=+rewrite you allow the compiler to rewrite expressions by reassociating. This might
result in rounding differences and possibly different exceptions. An example is to rewrite (a*c)+(b*c) as
(at+b)*c.

479

TASKING SmartCode - 8051 User Guide

With --fp-model=+trap operations trap on floating-point exceptions. By default the control program uses
the non-trapping floating-point library (f p51ss. | i b). With this option you tell the control program to use
the trapping floating-point library (f p51sst. | i b).

If you use the trapping floating-point library, exceptional floating-point cases are intercepted and can be
handled separately by an application defined exception handler. Using this library decreases the execution
speed of your application.

With --fp-model=+negzero you allow the compiler to ignore the sign of -0.0 values. An example is to
replace (a-a) by zero.

Related information

Pragmas STDC FP_CONTRACT, f p_negzer o, f p_nonan and f p_rewr i t e in Section 1.7, Pragmas to
Control the Compiler.

480

Tool Options

Control program option: --global-type-checking

Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.

Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the

linker to perform type checking between modules. The control program passes this option to both the C
compiler and the linker.

Related information

481

TASKING SmartCode - 8051 User Guide

Control program option: --help (-?)

Menu entry

Command line syntax
--help[=item

-2

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
cc51 -?

cc51 --help

cc51

To see a detailed description of the available options, enter:

cc51 --hel p=options

Related information

482

Tool Options

Control program option: --include-directory (-1)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...

-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the control program as follows:
cc51 --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file nyi nc. h in the directory where t est . c is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information
C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

483

TASKING SmartCode - 8051 User Guide

Control program option: --include-file (-H)

Menu entry
1. Select C Compiler » Preprocessing.

The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example

cc51l --include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of bothtest 1. c and t est 2. c.
Related information

C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

484

Tool Options

Control program option: --include-sfr-file / --asm-sfr-file

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Automatic inclusion of ".sfr' file.
3. Select Assembler » Preprocessing.

4. Enable the option Automatic inclusion of ".sfr' file.

Command line syntax
--include-sfr-file

--asmsfr-file

Description

With --include-sfr-file the compiler includes the register file r egcpu. sf r as based on the selected target
processor.

With --asm-sfr-file the assembler includes the register file r egcpu. sfr as based on the selected target
processor.

In Eclipse both options are enabled by default.

Example

cch5l --cpu=t49x --include-sfr-file --asmsfr-file -v -t test.c

+ c51 -Ms --registerbank=0 --core=scr3g -D__CPU__=tc49x -Hsfr/regtc49x. sfr
--fp-nodel=clnrTz -o test.src test.c

+ asbl --core=scr3g -D__CPU__=tc49x --sfr-file=sfr/regtc49xg. sfr
-0 test.obj test.src

+ k51 -0 test.elf --core=npe:xc800 -D_CPU__=tc49x --map-file test.obj
-1 c51ss0 -1 fp5lss -Irt51

Related information
Control program option --cpu (Select processor)

Section 1.2.5, Accessing Hardware from C: __sfr, _ bsfr

485

TASKING SmartCode - 8051 User Guide

Control program option: --integer-enumeration

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat enumerated types always as integer.

Command line syntax

--integer-enuneration

Description

Normally the compiler treats enumerated types as the smallest data type possible (char instead of i nt).
This reduces code size. With this option the compiler always treats enum-types as i nt as defined in the

ISO C99/C11/C17 standard.

Related information

Section 1.1, Data Types

486

Tool Options

Control program option: --iso

Menu entry
1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99, ISO C11, ISO C17, or ISO C90.

Command line syntax
--is0={90| 99| 11| 17}
Default: - - i so=17
Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the ISO/IEC 9899:1999 (E) standard. C11 refers to the ISO/IEC 9899:2011 (E) standard. C17
refers to the ISO/IEC 9899:2018 (E) standard. C17 is the default.

Independent of the chosen ISO C standard, the control program always links libraries with C11/C17
support.

Example

To select the ISO C99 standard on the command line:
cc51 --is0=99 test.c

Related information

C compiler option --iso (ISO C standard)

487

TASKING SmartCode - 8051 User Guide

Control program option: --keep-output-files (-k)

Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax
--keep-output-files
-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to TASKING
support.

The control program passes this option to the compiler, assembler and linker.
Example
cc51l --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information
C compiler option --keep-output-files
Assembler option --keep-output-files

Linker option --keep-output-files

488

Tool Options

Control program option: --keep-temporary-files (-t)
Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-tenporary-files

-t

Description

By default, the control program removes intermediate files like the . sr c file (result of the compiler phase)
and the . obj file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example
cch51l --keep-tenporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

489

TASKING SmartCode - 8051 User Guide

Control program option: --library (-1)

Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.
Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax
--library=nane

- nane

Description
With this option you tell the linker via the control program to use system library name. | i b, where name
is a string. The linker first searches for system libraries in any directories specified with --library-directory,

then in the directories specified with the environment variable LI BC51, unless you used the option
--ignore-default-library-path.

Example
To search in the system library c51ss0. | i b (C library):
cchl test.obj mylib.lib --1ibrary=c51ss0

The linker links the file t est . obj and first looks in library myl i b. | i b (in the current directory only),
then in the system library ¢51ss0. | i b to resolve unresolved symbols.

Related information

Control program option --no-default-libraries (Do not link default libraries)

Control program option --library-directory (Additional search path for system libraries)
Section 6.3, Linking with Libraries

Chapter 11, Libraries

490

Tool Options

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry
1. SelectLinker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.
Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$(PRODDI R)\ | i b.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variable LI BC51.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-)
is:

1. The path that is specified with the option --library-directory.
2. The path that is specified in the environment variable LI BC51.

3. The default directory $(PRODDI R)\ | i b.

Example
Suppose you call the control program as follows:

cc5l test.c --library-directory=c:\nylibs --1ibrary=c51ss0

491

TASKING SmartCode - 8051 User Guide

First the linker looks in the directory c: \ nmyl i bs for library ¢51ss0. | i b (this option). If it does not find
the requested libraries, it looks in the directory that is set with the environment variable LI BC51. Then
the linker looks in the default directory $(PRODDI R)\ | i b for libraries.

Related information
Control program option --library (Link system library)

Section 6.3.1, How the Linker Searches Libraries

492

Tool Options

Control program option: --list-files

Menu entry

Command line syntax

--list-files[=file]

Default: no list files are generated

Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler

generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension . | st .

Note that object files and library files are not counted as input files.

Related information
Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

493

TASKING SmartCode - 8051 User Guide

Control program option: --Isl-core

Menu entry

Command line syntax

--1sl-core=core

You can specify the following cores:
xc800 XC800 core

Default: xc800

Description

With this option you select the core name as specified in a linker script file, for the current link task. The
control program passes the correct LSL file to the linker and specifies the correct core.

Example

If you call the control program with the following options:
-Ctc49x --1sl-core=xc800

the control program calls the linker with the following options:
-dtc49x.1sl -D__NO_VTC --core=npe: xc800
Related information

Linker option --core (Specify LSL core)

494

Tool Options

Control program option: --Isl-file (-d)

Menu entry
An LSL file can be generated when you create your TriCore project in Eclipse:
1. From the File menu, select File » New » TASKING TriCore C/C++ Project.
The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.
3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field.

Command line syntax
--Isl-file=file,...

-dfile, ...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file. You can specify the existing file target. | sl or the name
of a manually written linker script file. You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 6.8, Controlling the Linker with a Script

495

TASKING SmartCode - 8051 User Guide

Control program option: --make-target

Menu entry

Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example
cc51 --preprocess=+make --make-target=../nytarget.obj test.c

The compiler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information
Control program option --preprocess=+make (Generate dependencies for make)
Control program option --dep-file (Generate dependencies in a file)

Control program option --dep-format (Format of dependency info)

496

Tool Options

Control program option: --model (-M)

Menu entry

1. Select C Compiler » Memory Model.

2. Select the Small, Auxiliary or Large compiler memory model.
Command line syntax

--nodel ={smal | | aux]| | ar ge}

-Ms|all}

Default: - - rodel =smal |

Description

By default, the 8051 compiler uses the small memory model. You can specify the option --model to specify
another memory model.

The table below illustrates the meaning of each memory model:

Model Memory type Location Pointer size |Pointer
arithmetic
small __data Direct addressable 8-bit 8-bit
internal RAM
aux __pdata One page of external 8-bit 8-bit
RAM
large __Xdata External RAM 16-hit 16-hit

The value of the predefined preprocessor symbol __ MODEL___ represents the memory model selected
with this option. This can be very helpful in making conditional C code in one source module, used for
different applications in different memory models. The value of __ MODEL__is:

small model s

auxiliary page model ‘a'

large model '
Example

To compile the file t est . ¢ for the large memory model:

cc51 --nodel =l arge test.c

Related information

Control program option --reentrant (Enable reentrancy)

497

TASKING SmartCode - 8051 User Guide

Section 1.2.2, Memory Models

498

Tool Options

Control program option: --no-default-libraries

Menu entry
1. SelectLinker » Libraries.

2. Disable the option Link default libraries.

Command line syntax

--no-default-libraries

Description

By default the control program specifies the standard C libraries (C11/C17) and run-time library to the
linker. With this option you tell the control program not to specify the standard C libraries and run-time
library to the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name
or pass the libraries as files on the command line. The control program recognizes the option --library
(-I) as an option for the linker and passes it as such.

Example
cc51 --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (c51ss0. | i b) and avoid unresolved externals:

cc5l --no-default-libraries --library=c51ss0 test.c

Related information
Control program option --library (Link system library)
Section 6.3.1, How the Linker Searches Libraries

Chapter 11, Libraries

499

TASKING SmartCode - 8051 User Guide

Control program option: --no-map-file

Menu entry
1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. obj) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

With this option you prevent the generation of a map file.

Related information

500

Tool Options

Control program option: --no-warnings (-w)

Menu entry
1. Select C Compiler » Diagnostics.

The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.
Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- - no-war ni ngs[=nunber [- nunber],...]
-w nunber [- nunber], ...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:
« If you do not specify this option, all warnings are reported.
« If you specify this option but without numbers, all warnings of all tools are suppressed.

* If you specify this option with a number or a range, only the specified control program warnings are
suppressed. You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:
cc51 test.c --no-warnings
Related information

Control program option --warnings-as-errors (Treat warnings as errors)

501

TASKING SmartCode - 8051 User Guide

Control program option: --option-file (-f)

Menu entry

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"

"This has a double quote " enbedded

"This has a double quote " and a single quote '"' enbedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

502

Tool Options

--debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the control program:
cc51l --option-fil e=myoptions
This is equivalent to the following command line:

cc51 —debug-info --define=DEMO=1 test.c

Related information

503

TASKING SmartCode - 8051 User Guide

Control program option: --output (-0)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax
--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.
Example

cc51 test.c prog.c

The control program generates an ELF/DWARF object file (default) with the name t est . el f.

To generate the fileresul t . el f:

cc51l --output=result.elf test.c prog.c

Related information
Control program option --format (Set linker output format)
Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

504

Tool Options

Control program option: --pass (-W)

Menu entry
1. Select C Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.
2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -WI. For the C options you have to do this
manually.

Command line syntax

--pass-assembler=option -Waoption Pass option directly to the assembler

--pass-c=option -Wcoption Pass option directly to the C compiler

--pass-linker=option -Wloption Pass option directly to the linker
Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example
To pass the option --verbose directly to the linker, enter:

cc51 --pass-linker=--verbose test.c

Related information

505

TASKING SmartCode - 8051 User Guide

Control program option: --preprocess (-E) / --no-preprocessing-only

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

5. (Optional) Enable the option Insert a space between adjacent tokens (if needed).
Command line syntax

--preprocess[=fl ags]

-E[f1 ags]

- - no- preprocessi ng-only

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files

+/-list I/L generate a list of macro definitions

+/-make m/M generate dependencies for make

+/-noline p/P strip #line source position information
+/-token-separation T insert a space between adjacent tokens (if needed)

Default: - ECI LMPT

Description

With this option you tell the compiler to preprocess the C source. The C compiler sends the preprocessed
output to the file name. pr e (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

506

Tool Options
With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension . d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension . obj . With the option --make-target
you can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

With --preprocess=+token-separation you tell the preprocessor to insert a space between adjacent
tokens, if needed. For example, to prevent concatenation due to a macro expansion.

Example
cc51 --preprocess=+comments, - make, -nol i ne --no-preprocessing-only test.c

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
fletest.elf

Related information
Control program option --dep-file (Generate dependencies in a file)
Control program option --dep-format (Format of dependency info)

Control program option --make-target (Specify target name for -Em output)

507

TASKING SmartCode - 8051 User Guide

Control program option: --processors

Menu entry

1. From the Window menu, select Preferences.
The Preferences dialog appears.

2. Select TASKING » 8051.

3. Click the Add button to add additional processor definition files.

Command line syntax

--processors=file

Description
With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file pr ocessor s. xml . This file defines for
each processor its full name (for example, Generic SCR3G), its ID, the base CPU name (for example,
scr3g) and if present the on-chip flash settings for that processor. Each processor also defines an option
to supply to the linker for preprocessing the LSL file for the applicable on-chip memory definitions.

The control program reads the specified file after the file pr ocessor s. xm in the product's et c directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.

Eclipse generates a --processors option in the makefiles for each specified XML file.
Example

Specify an additional processor definition file:

cc51 --processors=new processors. xm --cpu=NEW PROC test.c
Related information

Control program option --cpu (Select processor)

508

Tool Options

Control program option: --profile (-p)

Menu entry

1. Select C Compiler » Debugging.

2. Enable or disable Static profiling.

Command line syntax

--profile[=flag,...]

-p[flags]

You can set the following flags:
+/-static sIS static profile generation

Default: - pS

Default (-p without flags): - ps

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

For an extensive description of profiling refer to Chapter 4, Profiling.
Static profiling
With this option you do not need to run the application to get profiling results. The compiler generates

profiling information at compile time, without adding extra code to your application.

Note that the option Generate symbolic debug information (--debug-info) does not affect profiling,
execution time or code size.

Example

To generate static profiling information for the module t est . ¢ during execution, compile as follows:
cc5l --profile=+static test.c

Related information

Chapter 4, Profiling

509

TASKING SmartCode - 8051 User Guide

Control program option: --reentrant

Menu entry

1. Select C Compiler » Memory Model.

2. Enable the option Allow reentrant functions.
Command line syntax

--reentrant

Description

If you select reentrancy, a (less efficient) virtual dynamic stack is used which allows you to call functions
recursively. With reentrancy, you can call functions at any time, even from interrupt functions.

Related information
Control program option --model (Memory model)

Section 1.2.2, Memory Models

510

Tool Options

Control program option: --registerbank

Menu entry

1. Select C Compiler » Allocation.

2. Inthe Default register bank field, select 0, 1, 2, 3 or register bank independent.

Command line syntax

--registerbank={0 | 1| 2| 3| n | none}

Description

With this option you select the default register bank. For normal functions no code is generated to switch

to the register bank. This will only be done for interrupt functions. When you select none (n) the generated
code will be register bank independent and a switch will never be generated.

Related information

Section 1.12.5.2, Register Bank Switching: __bankx /___nobank

511

TASKING SmartCode - 8051 User Guide

Control program option: --signed-bitfields

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat "int" bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plaini nt is treated as si gned i nt orunsi gned
i nt.By default ani nt bit-field is treated as unsi gned i nt . This offers the best performance. With this

option you tell the compiler to treat i nt bit-fields as si gned i nt . In this case, you can still add the
keyword unsi gned to treat a particular i nt bit-field as unsi gned.

Related information
C compiler option --signed-bitfields

Section 1.1, Data Types

512

Tool Options

Control program option: --uchar (-u)

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

- -uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Related information

Section 1.1, Data Types

513

TASKING SmartCode - 8051 User Guide

Control program option: --undefine (-U)

Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane

- Uracr o_nane

Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__DATE__ Mmm dd yyyy

__STDC level of ANSI standard

The control program passes the option --undefine (-U) to the compiler.

Example

To undefine the predefined macro __ TASKI NG__:

cc51 --undefine=__ TASKING _ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.8, Predefined Preprocessor Macros

514

Tool Options

Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.
Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs it tasks while
it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

515

TASKING SmartCode - 8051 User Guide

Control program option: --version (-V)

Menu entry

Command line syntax

--version
-V
Description

Display version information. The control program ignores all other options or input files.

Related information

516

Tool Options

Control program option: --warnings-as-errors

Menu entry
1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber[-nunber],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

« If you specify this option but without numbers, all warnings are treated as errors.

« If you specify this option with a number or a range, only the specified control program warnings are
treated as an error. You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information
Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

517

TASKING SmartCode - 8051 User Guide

9.6. Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility mk51 to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:
nk51 [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 7.3, Make Utility mk51.

518

Tool Options

Defining Macros

Command line syntax

macr o_namne[=macr o_defini tion]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example
Consider the following makefile with conditional rules to build a demo program and a real program:

i fdef DEMO # the value of DEMO is of no inportance
real.elf : deno.obj nain. obj
| k51 denp. obj main.obj -1c¢51ss0 -1fp5lss -Irt51
el se
real.elf : real.obj main.obj
| k51 real.obj main.obj -1c51ss0 -1fp5lss -Irt51
endi f

You can now use a macro definition to set the DEMO flag:
nk51 real . el f DEMO=1

In both cases the absolute object file r eal . el f is created but depending on the DEMO flag it is linked
with deno. obj orwith real . obj .

Related information
Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

519

TASKING SmartCode - 8051 User Guide

Make utility option: -?

Command line syntax

-?
Description
Displays an overview of all command line options.

Example

The following invocation displays a list of the available command line options:

nk51 -?

Related information

520

Tool Options

Make utility option: -a
Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
nk51 -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

521

TASKING SmartCode - 8051 User Guide

Make utility option: -c

Command line syntax

-C

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.

Example

nk51 -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

522

Tool Options

Make utility option: -D / -DD

Command line syntax

-D
- DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by
mk51.

With the option -DD not only the lines of the makefile are printed but also the lines of the nk51. nk file
(implicit rules).

Example
nk51 -D
Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

523

TASKING SmartCode - 8051 User Guide

Make utility option: -d/ -dd

Command line syntax

-d
-dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example
nk51 -d

Shows which files are out of date and rebuilds them.

Related information

524

Tool Options

Make utility option: -e
Command line syntax

-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example
nk51 -e

The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

525

TASKING SmartCode - 8051 User Guide

Make utility option: -err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.
With the option -s the make utility only displays error messages.
Example

nk51 -err error.txt

The make utility writes messages to the file error . t xt .
Related information

Make utility option -s (Do not print commands before execution)

Make utility option -c (Run as child process)

526

Tool Options

Make utility option: -f
Command line syntax

-f my_makefile
Description

By default the make utility uses the file makef i | e to build your files.

With this option you tell the make utility to use the specified file instead of the file makef i | e. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from st di n.

Example
nk51 -f mynake

The make utility uses the file mynake to build your files.

Related information

527

TASKING SmartCode - 8051 User Guide

Make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.
With the option -G you can call the make utility from within another directory. The path is the path to the

directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory . . \ myfi | es. You can call the make
utility, for example, as follows:

nk51 -G ..\ nyfiles

Related information

528

Tool Options

Make utility option: -i
Command line syntax

-

Description

When an error occurs during the make process, the make utility exits with a certain exit code.

With the option -i, the make utility exits without an error code, even when errors occurred.

Example
nk51 -i

The make utility exits without an error code, even when an error occurs.

Related information

529

TASKING SmartCode - 8051 User Guide

Make utility option: -K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process. The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.
Example

nk51 -K

The make utility preserves all temporary files.

Related information

530

Tool Options

Make utility option: -k
Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
nk51 -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

531

TASKING SmartCode - 8051 User Guide

Make utility option: -m

Command line syntax

-mfile

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from st di n.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded”
"This has a double quote " enbedded

"This has a doubl e quote and a single quote '"' enbedded"
Note that adjacent strings are concatenated.

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |line"

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

-k
-err errors.txt
test.elf

532

Specify the option file to the make utility:

nk51 -m myoptions

This is equivalent to the following command line:

nk51 -k -err errors.txt test.elf

Related information

Tool Options

533

TASKING SmartCode - 8051 User Guide

Make utility option: -n
Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

nk51 -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Make utility option -s (Do not print commands before execution)

534

Tool Options

Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is

interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

nk51 -p

The make utility never removes target dependency files.
Related information

Special target . PRECI QUS in Section 7.3.2.1, Targets and Dependencies

535

TASKING SmartCode - 8051 User Guide

Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status
indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example

nk51 -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

536

Tool Options

Make utility option: -r
Command line syntax

-r

Description

When you call the make utility, it first reads the implicit rules from the file nk51. nk, then it reads the
makefile with the rules to build your files. (The file nk51. nkis located in the \ et ¢ directory of the toolset.)

With this option you tell the make utility not to read nk51. nmk and to rely fully on the make rules in the
makefile.

Example
nk51 -r

The make utility does not read the implicit make rules in nk51. k.

Related information

537

TASKING SmartCode - 8051 User Guide

Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in

the environment variable MAKEFLAGS.

With this option you tell the make utility not to read mk51. nk and to rely fully on the make rules in the
makefile.

Example
nk51 -S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mk51 in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

538

Tool Options

Make utility option: -s
Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example
nk51 -s
The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Make utility option -n (Perform a dry run)

539

TASKING SmartCode - 8051 User Guide

Make utility option: -t
Command line syntax

-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example
nk51 -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

540

Tool Options

Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.

Example
nk51 -time
The make utility displays the current date and time and updates out-of-date files.

Related information

541

TASKING SmartCode - 8051 User Guide

Make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

542

Tool Options

Make utility option: -W
Command line syntax
-Wtarget

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example
nk51 -Wtest.elf

The make utility rebuilds out of date targets in the makefile except the file t est . el f which is considered
now as up to date.

Related information

543

TASKING SmartCode - 8051 User Guide

Make utility option: -w
Command line syntax

-w

Description

With this option the make utility sends error messages and verbose messages to standard output. Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example
nk51 -w
The make utility sends messages to standard out instead of standard error.

Related information

544

Tool Options

Make utility option: -x
Command line syntax

- X

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example
nk51 -x

If errors occur, the make utility gives extended information.

Related information

545

TASKING SmartCode - 8051 User Guide

9.7. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:
ank [option...] [target...] [macro=def]
This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 7.2, Make Utility
amk.

546

Tool Options

Parallel make utility option: --always-rebuild (-a)

Command line syntax
--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
ank -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

547

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --change-dir (-G)

Command line syntax

--change-di r=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDI Ris defined with the value of path.
Example

Suppose your makefile and other files are stored in the directory . . \ myfi | es. You can call the make
utility, for example, as follows:

ank -G ..\nyfiles

Related information

548

Tool Options

Parallel make utility option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 169, enter:
ank --di ag=451

This results in the following message and explanation:

E451: nake stopped

An error has occured while executing one of the comands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file anker r or s. ht m , use redirection
and enter:

ank --diag=htm:all > ankerrors. htm

Related information

549

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --dry-run (-n)
Command line syntax

--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.
Example

ank -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Parallel make utility option -s (Do not print commands before execution)

550

Tool Options

Parallel make utility option: --help (-? / -h)

Command line syntax
--help[=item
-h[iteni

-?
You can specify the following arguments:
options o} Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ank -7?
ank -h
ank --help

To see a detailed description of the available options, enter:
ank --hel p=options

Related information

551

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --jobs (-}) / --jobs-limit (-J)
Menu
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behavior tab, select Enable parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

- -j obs[=nunber]
-j [nunber]

--jobs-1imt[=nunber]
- J[nunber]

Description

When these options you can limit the number of parallel jobs. The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example
ank -j3
Limit the number of parallel jobs to 3.

Related information

552

Tool Options

Parallel make utility option: --keep-going (-k)

Command line syntax

- - keep- goi ng

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
ank -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

553

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --list-targets (-1)

Command line syntax

--list-targets

-1

Description

With this option, the make utility lists all "primary" targets that are out of date.
Example

ank -1
list of targets

Related information

554

Tool Options

Parallel make utility option: --makefile (-f)

Command line syntax
--makefil e=nmy_makefile

-f my_makefile

Description
By default the make utility uses the file makef i | e to build your files.

With this option you tell the make utility to use the specified file instead of the file nakef i | e. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from st di n.

Example
ank -f mynake

The make utility uses the file mynake to build your files.

Related information

555

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --no-warnings (-w)

Command line syntax

- - no- war ni ngs[=nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:
ank --no-warni ngs=751, 756
Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

556

Tool Options

Parallel make utility option: --silent (-s)

Command line syntax
--silent

-S

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

ank -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Parallel make utility option -n (Perform a dry run)

557

TASKING SmartCode - 8051 User Guide

Parallel make utility option: --version (-V)

Command line syntax
--version

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

558

Tool Options

Parallel make utility option: --warnings-as-errors

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors. This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

559

TASKING SmartCode - 8051 User Guide

9.8. Archiver Options

The archiver and library maintainer ar51 is a tool to build library files and it offers the possibility to replace,
extract and remove modules from an existing library.

The invocation syntax is:
ar51 key_option [sub_option...] library [object _file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 7.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Description ‘Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-n-u-v
Extract an object module from the library -X -0 -V
Delete object module from library -d -v

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Suppress the message that is displayed when a new library is -C

created

Create a new library from scratch -n

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

560

Tool Options

Description Option Sub-option
Miscellaneous

Display options -?

Display description of one or more diagnostic messages --diag

Display version header -V

Read options from file -f file

561

TASKING SmartCode - 8051 User Guide

Archiver option: --delete (-d)

Command line syntax
--delete [--verbose]
-d [-V]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

--verbose -v Verbose: the archiver shows which files are removed.

Example

ar51 --delete nylib.lib obj1l.obj obj2.obj

The archiver deletes obj 1. obj and obj 2. obj from the library myl i b. 1i b.
ar51 -d -v nylib.lib objl. obj obj2.obj

The archiver deletes obj 1. obj and obj 2. obj from the library nmyl i b. | i b and displays which files are
removed.

Related information

562

Tool Options

Archiver option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The archiver does
not perform any actions. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 102, enter:
ar51 --di ag=102

This results in the following message and explanation:

F102: cannot create "<file>"

The output file or a tenporary file could not be created. Check if you have
sufficient disk space and if you have wite permissions for the specified
file.

To write an explanation of all errors and warnings in HTML format to file ar er r or s. ht ml , use redirection
and enter:

ar51 --diag=htm:all > arerrors. htm

Related information

563

TASKING SmartCode - 8051 User Guide

Archiver option: --dump (-p)

Command line syntax

- -dunp

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example
ar51 --dunp nylib.lib obj1.0bj > file.obj
The archiver prints the file obj 1. obj to standard output where it is redirected to the file f i | e. obj . The

effect of this example is very similar to extracting a file from the library but in this case the 'extracted' file
gets another name.

Related information

564

Tool Options

Archiver option: --extract (-x)

Command line syntax

--extract [--nodtinme] [--verbose]
-x [-0] [-v]

Description

Extract an existing module from the library.

--modtime -0 Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

--verbose -V Verbose: the archiver shows which files are extracted.

Example

To extract the file obj 1. obj from the library myl i b.1i b:

ar51 --extract mylib.lib obj1. obj

If you do not specify an object module, all object modules are extracted:
ar51 -x mylib.lib

Related information

565

TASKING SmartCode - 8051 User Guide

Archiver option: --help (-?)

Command line syntax

--help[=item

-?
You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
ar51 -?

ar51 --help

ar51

To see a detailed description of the available options, enter:

ar51 --hel p=options

Related information

566

Tool Options

Archiver option: --move (-m)

Command line syntax

--nove [-a posnane] [-b posnane]

-m[-a posnane] [-b posnane]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

--after=posname -a Move the specified object module(s) after the existing module
posname poshame.

--before=posname -b Move the specified object module(s) before the existing
posname module poshame.

Example

Suppose the library nyl i b. | i b contains the following objects (see option --print):
obj 1. obj

obj 2. obj

obj 3. obj

To move obj 1. obj totheend of nyli b. i b:

ar51 --nmove nylib.lib obj1. obj

To move obj 3. obj just before obj 2. obj :

ar51 -m-b obj2.0bj nylib.lib obj3.obj

The library myl i b. | i b after these two invocations now looks like:
obj 3. obj

obj 2. obj

obj 1. obj

Related information

Archiver option --print (-t) (Print library contents)

567

TASKING SmartCode - 8051 User Guide

Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from st di n.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"

"This has a doubl e quote " enbedded

"This has a double quote " and a single quote '"' enbedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |line"

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

-x nmylib.lib objl.obj
-V

568

Specify the option file to the archiver:

ar51 --option-fil e=myoptions

This is equivalent to the following command line:

ar51 -x nylib.lib obj1l. obj -v

Related information

Tool Options

569

TASKING SmartCode - 8051 User Guide

Archiver option: --print (-t)
Command line syntax

--print [--synbol s=0| 1]

-t [-s0]-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

--symbols=0 -s0 Displays per object the name of the object itself and all symbols in
the object.
--symbols=1 -s1 Displays the symbols of all object files in the library in the form

library_name:object_name:symbol_name

Example

ar51 --print nylib.lib

The archiver prints a list of all object modules in the library nyli b. | i b:
ar51 -t -sO nylib.lib

The archiver prints per object all symbols in the library. For example:

cstart. obj
synbol s:
__cstart
.vector.0
_cstart_trap

Related information

570

Tool Options

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posnane] [--before=posnane]
[--create] [--new] [--newer-only] [--verbose]

-r [-a posnane] [-b posnane][-c] [-n] [-u] [-V]
Description

You can use the option --replace (-r) for several purposes:

» Adding new objects to the library

» Replacing objects in the library with the same object of a newer date
» Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

--after=posname -aposhame Insert the specified object module(s) after the existing
module poshame.

--before=posname -b posname Insert the specified object module(s) before the existing
module posname.

--create -C Suppress the message that is displayed when a new library
is created.

--new -n Create a new library from scratch. If the library already

exists, it is overwritten.

--newer-only -u Insert the specified object module only if it is newer than
the module in the library.

--verbose -V Verbose: the archiver shows which files are replaced.
The suboptions -a or -b have no effect when an object is added to the library.
Example
Suppose the library nyl i b. | i b contains the following object (see option --print):
obj 1. obj
To add obj 2. obj totheend of nyli b. li b:

ar51 --replace nylib.lib obj2. obj

571

TASKING SmartCode - 8051 User Guide

To insert obj 3. obj just before obj 2. obj :

ar51 -r -b obj2.0bj nylib.lib obj 3. obj

The library myl i b. | i b after these two invocations now looks like:

obj 1. obj

obj 3. obj

obj 2. obj

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:
ar51 --replace newib.lib obj1. obj

The archiver creates the library new i b. | i b and adds the object obj 1. obj toit.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption --new (-n):

ar51 -r -n nylib.lib objl.obj

The archiver overwrites the library nyl i b. | i b and adds the object obj 1. obj to it. The new library
nylib. lib only contains obj 1. obj .

Related information

Archiver option --print (-t) (Print library contents)

572

Tool Options

Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.

Related information

573

TASKING SmartCode - 8051 User Guide

9.9. HLL Object Dumper Options

The high level language (HLL) dumper hldump51 is a program to dump information about an absolute
object file (. el f).

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

hl dunp51 - FdhMsy test.elf
hl dump51 - - dunp-f or mat =+dunp, +hl | synbol s, - nodul es, +secti ons, +synbol s test. el f

When you do not specify an option, a default value may become active.

574

Tool Options

HLL object dumper option: --blank-out (-b)

Command line syntax
- - bl ank- out [=f | ag]
-b[fl ag]
You can specify the following format flags:
+/-labels I/L Black out hexadecimal address and labels.

Default:; - - bl ank- out =L

Description

With this option you can blank out addresses and optionally labels in all dump phases. Instead of the
addresses and labels crosses (X's) are shown.

The +labels sub-option blanks out hexadecimal addresses and labels. With the -labels sub-option only
hexadecimal addresses are blanked out. This is the default.

This option is useful when you want to compare the output, but want to ignore the addresses and labels.
Example

hl durp51 -F2 hello.elf

----------- Section dunmp ----------

.rseg 'code_main' code, at(0x000004ef)

000004ef 74 37 _main: MoV A, #55
000004f1 f5 49 MOV _$varargs_printf, A
000004f3 7f 2c MoV R7, #44
000004f5 02 04 f8 LIVP _printf

;. End of section
hl dump51 -F2 --bl ank-out hello.elf

----------- Section dunmp ----------

.rseg 'code_main' code, at(0x000004ef)

XXXXXXXX 74 37 _main: MoV A, #55
XXXXXXXX 5 49 MOV _$varargs_printf, A
XXXXXXXX 7f 2c MoV R7, #44
XXXXXXXX 02 04 8 LIVP _printf

;. End of section

hl dump51 - F2 --bl ank-out =+l abel s hello.elf

575

TASKING SmartCode - 8051 User Guide

XXXKKXXX 74 37
XXXXXXXX 5 49
XXXXXXXX 7 2¢
XXXXXXXX 02 04 f8

Related information

576

XHRXXXHKXXXX:

.rseg 'code_main' code,

MoV A, #55
MoV XXXXXKXXXX, A
MoV R7, #44

LIMP) 9,9,0,0.9.9.9.9.9.4
End of section

at (0x000004ef)

Tool Options

HLL object dumper option: --class (-c)

Command line syntax
--cl ass[=cl ass]
-c[cl ass]

You can specify one of the following classes:

all a Dump contents of all sections.
code c Dump contents of code sections.
data d Dump contents of data sections.

Default: - - cl ass=al |

Description

With this option you can restrict the output to code or data only. This option affects all parts of the output,
except the module list. The effect is listed in the following table.

Output part Effect of --class

Module list Not restricted

Section list Only lists sections of the specified class

Section dump Only dumps the contents of the sections of the specified class
HLL symbol table Only lists symbols of the specified class

Assembly level symbol |Only lists symbols defined in sections of the specified class
table

Note sections Not restricted

By default all sections are included.

Related information

Section 7.5.2, HLL Dump Output Format

577

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --copy-table
Command line syntax
--copy-table

Description

With this option the HLL object dumper attempts to translate the specified code address to the destination
address of a copy table copy command during disassembly.

Related information

578

Tool Options

HLL object dumper option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The HLL object
dumper does not process any files. You can specify the following formats: html, rtf or text (default). To
create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

Example

To display an explanation of message number 101, enter:
hl dump51 --di ag=101

This results in the following message and explanation:

F101: cannot create "<file>"

The output file or a tenporary file could not be created.
Check if you have sufficient disk space and if you have
wite permissions for the specified file.

To write an explanation of all errors and warnings in HTML format to file hl dunperrors. htnl , use
redirection and enter:

hl dump51 --diag=htm :all > hldunperrors. htnm

Related information

579

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --disassembly-intermix (-i)
Command line syntax
--di sassenbl y-i nterm x[=f1 ag]
-i[flag]
You can specify the following format flags:
+/-single-line s/S Force the insert to be limited to the first preceding source line.
Default: - - di sassenbl y-i nterm x=S
Description

With this option the disassembly is intermixed with HLL source code. The source is searched for as
described with option --source-lookup-path

The +single-line sub-option forces the insert to be limited to the first preceding source line. With the

-single-line sub-option all source lines that belong to the address are prefixed. For example comments
are thus also visible. This is the default.

Example

hl dump51 --di sassenbl y-interm x --source-| ookup-path=c:\nylib\src hello.elf

Related information

HLL object dumper option --source-lookup-path

580

Tool Options

HLL object dumper option: --disassembly-without-encoding (-r)

Command line syntax

- -di sassenbl y-wi t hout - encodi ng
-r

Description

With this option the address and encoding are not part of the disassembly of a code section. This is useful
when you only want the disassembly part.

Example
hl dump51 -F2 hello.elf

----------- Section dump ----------

.rseg 'code_main' code, at(0x000004ef)

000004ef 74 37 _main: MoV A, #55
000004f1 f5 49 MOV _$varargs_printf, A
000004f3 7f 2c MoV R7, #44
000004f5 02 04 f8 LIVP _printf

: End of section
hl dump51 - F2 --di sassenbl y-wi t hout -encodi ng hello. el f

----------- Section dump ----------

.rseg 'code_main' code, at(0x000004ef)

_mai n: MOV A, #55
MoV _$varargs_printf, A
MoV R7, #44
LIMP _printf

: End of section

Related information

581

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --dump-format (-F)

Command line syntax
--dunmp-format[=flag,...]
-F[flag]...

You can specify the following format flags:

+/-dump d/D Dump the contents of the sections in the object file. Code
sections can be disassembled, data sections are dumped.
+/-debug-control-flow fIF Dump the debug control flow section.
+/-hllsymbols h/H List the high level language symbols, with address, size and
type.
+/-modules m/M Print a list of modules found in object file.
+/-note n/N Dump all ELF . not e sections.
+/-sections s/S Print a list of sections with start address, length and type.
+/-symbols y/Y List the low level symbols, with address and length (if known).
0 Alias for DFHMNSY (nothing)
1 Alias for DFhRMNSY (only HLL symbols)
2 Alias for dFHMNSY (only section contents)
3 Alias for dfhmnsy (everything)

Default: - - dunp- f or mat =dFhmmsy

Description

With this option you can control which parts of the dump output you want to see. By default, all parts are
dumped, except for part 7.

1. Module list

2. Section list

3. Section dump (disassembly)
4. HLL symbol table

5. Assembly level symbol table
6. Note sections

7. Debug control flow section

You can limit the number of sections that will be dumped with the options --sections and --section-types.

582

Tool Options

Related information

Section 7.5.2, HLL Dump Output Format

583

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --expand-symbols (-e)
Command line syntax

- -expand- synbol s[=fl ag], . ..

-e[flag]...

You can specify one of the following flags:

+/-basic-types b/B Expand arrays with basic C types.

+/-fullpath fIF Include the full path to the field level.

+/-gap-info g/G Insert gap markers where data is not consecutive.
+/-nesting-indicator n/N Print nesting bars.

Default (no flags): - - expand- synbol s=BFGN

Description

With this option you specify that all struct, union and array symbols are expanded with their fields in the
HLL symbol dump.

With --expand-symbols=+basic-types, HLL struct and union symbols are listed including all fields. Array
members are expanded in one array member per line regardless of the HLL type. For the fields the types
and names are indented with 2 spaces.

With --expand-symbols=+fullpath, all fields of structs and unions and all members of non-basic type
arrays are expanded and prefixed with their parent's names.

With --expand-symbols=+gap-info, unused memory in complex data types (structures and unions)
between data objects and between code objects is shown as { gap} parts. This option is useful to optimize
data memory usage. This option only works if debug information is available in the ELF file.

With --expand-symbols=+nesting-indicator, vertical bars (]) are shown to make it easier to see the
expanded structs, unions and arrays.

Example
hl dump51 -F1 hello.elf
---------- HLL synbol table ----------

3: 00000037 6 char __data worl d[6] [hello.c]
3: 0000003d 9 struct __data _dbg_request [dbg.c]

hl dump51 -e -F1 hello.elf

---------- HLL synbol table ----------

3: 00000037 6 char __data worl d[6] [hello.c]

584

Tool Options

3: 0000003d 9 struct __data _dbg_request [dbg.c]

3: 0000003d 2 i nt _errno

3: 0000003f 1 enum nr

3: 00000040 6 uni on u

3: 00000040 2 struct exit

3: 00000040 2 i nt st at us

3: 00000040 3 struct open

3: 00000040 1 const char _ _data * pathnane

3: 00000041 2 unsi gned short int flags

hl dump51 -eb -F1 hello.elf

---------- HLL synmbol table ----------

3: 00000037 6 char __data world[6] [hello.c]

3: 00000037 1 char

3: 00000038 1 char

3: 00000039 1 char

3: 0000003a 1 char

3: 0000003b 1 char

3: 0000003c 1 char

3: 0000003d 9 struct __data _dbg_request [dbg.c]

3: 0000003d 2 i nt _errno

3: 0000003f 1 enum nr

3: 00000040 6 uni on u

3: 00000040 2 struct exit

3: 00000040 2 i nt st at us

3: 00000040 3 struct open

3: 00000040 1 const char _ _data * pathnane

3: 00000041 2 unsi gned short int flags

hl dump51 -ef -F1 hello.elf

---------- HLL synmbol table ----------

3: 00000037 6 char __data world[6] [hello.c]

3: 0000003d 9 struct __data _dbg_request [dbg.c]

3: 0000003d 2 i nt _dbg_request._errno
3: 0000003f 1 enum _dbg_request. nr

3: 00000040 6 uni on _dbg_request.u

3: 00000040 2 struct _dbg_request.u.exit
3: 00000040 2 i nt _dbg_request.u.exit.status
3: 00000040 3 struct _dbg_request. u. open
3: 00000040 1 const char _ _data * _dbg_request. u. open. pat hnane
3: 00000041 2 unsi gned short int _dbg_request. u.open. fl ags

585

TASKING SmartCode - 8051 User Guide

hl dump51 -eg -F1 hello.elf

---------- HLL symbol table ----------

3: 00000037 6 char __data world[6] [hello.c]
3: 0000003d 9 struct __data _dbg_request [dbg.c]
3: 0000003d 2 i nt _errno

3: 0000003f 1 enum nr

3: 00000040 6 uni on u

3: 00000040 2 struct exit

3: 00000040 2 i nt status

3: 00000042 4 {gap}

3: 00000040 3 struct open

3: 00000040 1 const char __data * pathnane

3: 00000041 2 unsi gned short int flags

3: 00000043 3 {gap}

hl dump51 -en -F1 hello.elf

---------- HLL symbol table ----------

3: 00000037 6 char __data world[6] [hello.c]
3: 0000003d 9 struct __data _dbg_request [dbg.c]
3: 0000003d 2| int _errno

3: 0000003f 1| enum nr

3: 00000040 6 | union u

3: 00000040 2| | struct exit

3: 00000040 21]] int status

3: 00000040 3| | struct open

3: 00000040 1| | | const char __data * pathnane

3: 00000041 2| | | unsigned short int flags

Related information

Section 7.5.2, HLL Dump Output Format

586

Tool Options

HLL object dumper option: --help (-?)

Command line syntax

--help

-?

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line options:
hl dump51 -7

hl dump51 --hel p
hl dunp51

Related information

587

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --hex (-x)

Command line syntax
- - hex
- X

Description

With this option you can control the way data sections and code sections are dumped. By default, the
contents of data sections are represented by directives. A new directive will be generated for each symbol.
ELF labels in the section are used to determine the start of a directive. ROM sections are represented
with . db, . dw, . dI kind of directives, depending on the size of the data. RAM sections are represented
with . ds directives, with a size operand depending on the data size. This can be either the size specified
in the ELF symbol, or the size up to the next label. Code sections are dumped as disassembly.

With option --hex, no directives will be generated for ROM data sections and no disassembly dump will
be done for code sections. Instead ROM data sections and code sections are dumped as hexadecimal
code with ASCII translation. RAM sections will be represented with only a start address and a size indicator.

Example
hl dump51 -F2 --section=[data__1 str] hello.elf

---------- Section dunp ----------

.rseqg '[data__1 str]' data, at (0x0537)
.db 48, 65, 6¢, 6¢, 6f, 20, 25, 73, 21, Oa, 00
;. End of section
hl dump51 -F2 --section=[data__1 str] --hex hello.elf

---------- Section dunp ----------

section 57 ([data__1 str]):

00000537 48 65 6¢ 6C 6f 20 25 73 21 Oa 00

Related information

Section 7.5.2, HLL Dump Output Format

588

. Hello 9s!..

Hello %s! ..

Tool Options

HLL object dumper option: --option-file (-f)
Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the HLL object dumper.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

* Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a double quote " enbedded’
"This has a double quote " and a single quote '"' enbedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation |line"

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myopt i ons contains the following lines:
- -synbol s=hl |

--cl ass=code
hello.elf

589

TASKING SmartCode - 8051 User Guide

Specify the option file to the HLL object dumper:
hl dump51 --option-fil e=myoptions
This is equivalent to the following command line:

hl dump51 --synbol s=hl| --class=code hello.elf

Related information

590

Tool Options

HLL object dumper option: --output (-0)

Command line syntax
--output=file

-o file

Description

By default, the HLL object dumper dumps the output on st dout . With this option you specify to dump
the information in the specified file.

The default output format is text, but you can specify another output format with option --output-type.

Example

hl dump51 - - out put =dunp.txt hello.elf

The HLL object dumper dumps the output in file dunp. t xt .
Related information

HLL object dumper option --output-type

591

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --output-type (-T)
Command line syntax
--out put -type[=t ype]

- T[type]

You can specify one of the following types:

text t Output human readable text.
xml X Output XML.

Default: - - out put - t ype=t ext
Description
With this option you can specify whether the output is formatted as plain text or as XML.

Related information

HLL object dumper option --output

592

Tool Options

HLL object dumper option: --sections (-S)

Command line syntax
--sections=nane,. ..

-Shane, ...

Description

With this option you can restrict the output to the specified sections only. This option affects the following
parts of the output:

Output part Effect of --sections

Module list Not restricted

Section list Only lists the specified sections

Section dump Only dumps the contents of the specified sections
HLL symbol table Not restricted

Assembly level symbol |Only lists symbols defined in the specified sections
table

Note sections Not restricted

By default all sections are included.

Related information

Section 7.5.2, HLL Dump Output Format

593

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --source-lookup-path (-L)

Command line syntax

- -sour ce- | ookup- pat h=pat h
-Lpath

Description

With this option you can specify an additional path where your source files are located. If you want to
specify multiple paths, use the option --source-lookup-path for each separate path.

The order in which the HLL object dumper will search for source files when intermixed disassembly is
used, is:

1. The path obtained from the HLL debug information.

2. The path that is specified with the option --source-lookup-path. If multiple paths are specified, the
paths will be searched for in the order in which they are given on the command line.

Example
Suppose you call the HLL object dumper as follows:
hl dump51 --di sassenbl y-interm x --source-| ookup-path=c:\nylib\src hello.elf

First the HLL object dumper looks in the directory found in the HLL debug information of file hel | o. el f
for the location of the source file(s). If it does not find the file(s), it looks in the directory ¢: \ myl i b\ src.

Related information

HLL object dumper option --disassembly-intermix

594

Tool Options

HLL object dumper option: --symbols (-S)
Command line syntax
- -synbol s[=t ype]

- S[type]

You can specify one of the following types:

asm a Display assembly symbols in code dump.
hll h Display HLL symbols in code dump.
none n Display plain addresses in code dump.

Default: - - synmbol s=asm

Description

With this option you can control symbolic information in the disassembly and data dump. For data sections
this only applies to symbols used as labels at the data addresses. Data within the data sections will never
be replaced with symbols.

Only symbols that are available in the ELF or DWARF information are used. If you build an application
without HLL debug information the --symbols=hll option will result in the same output as with
--symbols=none. The same applies to the --symbols=asm option when all symbols are stripped from
the ELF file.

Example
hl dump51 -F2 hello.elf

----------- Section dunmp ----------

.rseg '$interrupt_0" code, at(0x00000000)
00000000 02 04 4f _S$interrupt_O: LIVP __start
;. End of section

hl dunmp51 - -synbol s=none -F2 hello.elf

----------- Section dunmp ----------

.rseg '$interrupt_0" code, at(0x00000000)
00000000 02 04 4f LIMP code: 0x44f
;. End of section

Related information

Section 7.5.2, HLL Dump Output Format

595

TASKING SmartCode - 8051 User Guide

HLL object dumper option: --version (-V)

Command line syntax
--version

-V

Description

Display version information. The HLL object dumper ignores all other options or input files.

Related information

596

Tool Options

HLL object dumper option: --xml-base-filename (-X)

Command line syntax
--xm - base-fil ename
-X

Description

With this option the <Fi | e nane> field in the XML output only contains the filename of the object file.
By default, any path name, if present, is printed as well.

Example

hl dump51 --output-type=xm --output=hello.xm ../hello.elf
The field <Fi | e name="../hello.el f">isusedinhel | 0. xm .

hl dump51 --out put-type=xm --output=hello.xm -X ../hello.elf

The field <Fi | e name="hel | 0. el f">isused in hel | 0. xm . The path is stripped from the filename.

Related information

HLL object dumper option --output-type

597

TASKING SmartCode - 8051 User Guide

9.10. Expire Cache Utility Options

With the utility expire51 you can limit the size of the cache (C compiler option --cache) by removing all
files older than a few days or by removing older files until the total size of the cache is smaller than a
specified size. See also Section 10.4, Compiler Cache.

The invocation syntax is:
expireb51 [option]... cache-directory
The compiler cache is present in the directory c51cache under the specified cache-directory.

This section describes all options for the expire cache utility.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

598

Tool Options

Expire cache utility option: --access (-a)
Command line syntax

--access

-a

Description

Use the last access time instead of the last modification time to determine which files to delete.

Example

expireb5l --access --days=7 "installation-dir\nproject\.cache"

Related information

599

TASKING SmartCode - 8051 User Guide

Expire cache utility option: --days (-d)

Menu entry

1. Select C Compiler » Optimization » Compilation Speed.

2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.
By default this is the .cache directory under your project directory.

4. Specify the Maximum days files will live in the cache.

Command line syntax

- -days=n
-dn
Description

Remove all files older than n days from the cache.

Example
To remove all files older than seven days, enter:

expireb5l --days=7 "installation-dir\nproject\.cache"

Related information

600

Tool Options

Expire cache utility option: --diag
Command line syntax
--diag=[format:]{all | nsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas,
or you can specify a range.

With this option the expire cache utility does not remove any files.

Example

To display an explanation of message number 204, enter:
expi rebl --di ag=204

This results in the following message and explanation:

E204: failed to renove "<fil e>" <<cause>>

The renoval of the indicated file failed. The <cause>
provi des nore details of the problem

To write an explanation of all errors and warnings in HTML format to file expi re51_errors. htm , use
redirection and enter:

expirebl --diag=htm:all > expire5l_errors. htni

Related information

601

TASKING SmartCode - 8051 User Guide

Expire cache utility option: --dry-run (-n)
Command line syntax

--dry-run

-n

Description

With this option you put the expire utility in verbose mode. The utility shows which files would be deleted,
without actually removing them.

Related information

Expire cache utility option --verbose (Verbose output)

602

Tool Options

Expire cache utility option: --help (-?)

Command line syntax
--help[=item

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
expirebl -7

expire51 --help

expireb51

To see a detailed description of the available options, enter:

expi re51 --hel p=options

Related information

603

TASKING SmartCode - 8051 User Guide

Expire cache utility option: --megabytes (-m)

Menu entry

1. Select C Compiler » Optimization » Compilation Speed.

2. Enable the option Cache generated code to improve the compilation speed.

3. Inthe Directory for cached files field, enter the name for the location of the cache.
By default this is the .cache directory under your project directory.

4. Enable the option Clear cache upon project clean.

Each time you use Project » Clean... the cache is cleared.

Command line syntax
- - negabyt es=m

-mm

Description

Reduce the size of the cache to m MBytes by removing files from the cache, starting with the oldest file.
With a size of 0 (zero) you clear the entire cache.

Example
To reduce the compiler cache size to 4 MB, enter:

expi re51l --megabytes=4 "installation-dir\nproject\.cache"
Older files are removed until the total size of the cache is smaller than 4 MB.
To clear the compiler cache, enter:

expi re51 --negabytes=0 "installation-dir\nproject\.cache"

Related information

604

Tool Options

Expire cache utility option: --totals (-t)
Command line syntax

--totals

-t

Description

Show the total size of the cache and the number of directories and files. This option is implicit when
invoked without the --days and --megabytes options.

Example
expireb5l -t "installation-dir\nproject\.cache"

installation-dir\nproject\.cache\c5lcache:
1 MB, 2 directories, 2 files

Related information

605

TASKING SmartCode - 8051 User Guide

Expire cache utility option: --verbose (-v)

Command line syntax
--verbose

-V

Description

With this option you put the expire cache utility in verbose mode. The utility shows which files are being
deleted.

Example
expire51 -v --nmegabytes=0 "installation-dir\nproject\.cache"
2014-07-03 12:36: 17 installation-dir\nproject\.cache\c5lcache\ myproject\6f0a3basd

Related information

606

Tool Options

Expire cache utility option: --version (-V)

Command line syntax

--version
-V
Description

Display version information and exit. The expire cache utility ignores all other options.

Related information

607

TASKING SmartCode - 8051 User Guide

608

Chapter 10. Influencing the Build Time

In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time. The following sections describe several
issues that can have significant influence on the build time.

10.1. Optimization Options

In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may
resultin more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

10.2. Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time. The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

10.3. Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

10.4. Compiler Cache

The C compiler has support for caching intermediate results to avoid full compilations. When the source
code after preprocessing and relevant compiler options and the compiler version are the same as in a
previous invocation, the previous result is copied to the output file. The cache only works when there is
a single C input file and a single output file (no --mil-split).

To enable caching from Eclipse:

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Optimization » Compilation Speed.

609

TASKING SmartCode - 8051 User Guide

4. Enable the option Cache generated code to improve the compilation speed.

5. Inthe Directory for cached files field, enter the name for the location of the cache.
By default this is the .cache directory under your project directory.

6. Specify the Maximum days files will live in the cache.

7. (Optional) Enable the option Clear cache upon project clean.
Each time you use Project » Clean... the cache is cleared.

Eclipse calls the C compiler with option --cache. The cache directory may be shared, for instance by
placing it on a network drive. The compiler creates a directory c51cache in the specified directory.

When a result from the cache is used, be aware of the following:

 In case source merging is enabled an older version of the source is still shown. As long as a source
change has no effect on the preprocessed code, the cached version of the output file is used.

» Some options, like --define, --include-directory and --output are not part of the hash used for the
cache. As long as a change in these options has no influence on the preprocessed code, the cached
version of the output is used. This means that the options listed as comments in the generated assembly
file might not match the options actually used.

With every compilation of a file that results in a cache miss, a new file is stored in the cache. Old files are
not removed from the cache automatically because that would slow down the compiler too much. To keep
the cache size reasonable specify a maximum number of days the files will live in the cache. Eclipse uses
the utility expire51 for this. It is recommended to run this utility frequently, for example with each time the
project is linked. For more information on this utility see Section 7.6, Expire Cache Utility.

10.5. Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

* itis clear what interfaces are used by a module
» an incremental build after modifying a header file results in less modules required to be rebuild

* it reduces compile time

10.6. Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when
using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.

610

Influencing the Build Time

In Eclipse you can control the parallel build behavior:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behavior tab, select Enable parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

10.7. Number of Sections

The linker speed depends on the number of sections in the object files. The more sections, the longer
the locating will take. You can decrease the link time by creating output sections in the LSL file. For
example:

section_| ayout ::code

{
group (ordered)
{
section "code_outputl" (size = 64k, attributes = x, fill=0xFF,
overfl ow = "code_out put2")
{
select "*__cocofun*";
}
}
}

611

TASKING SmartCode - 8051 User Guide

612

Chapter 11. Libraries

This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C11/C17) and some functions of the floating-point library.

Section 11.1, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar . h are parallel to functions in other header files. These are
discussed together.

Section 11.2, C Library Reentrancy, gives an overview of which functions are reentrant and which are
not.

C library / floating-point library / run-time library

The following libraries are included in the 8051 toolset for each core variant. Both Eclipse and the control
program cc51 automatically select the appropriate libraries depending on the specified options.

Libraries Description

c¢51m{r | s}[b].lib C libraries for each model m: s (small), a (aux), | (large)
Optional letters:
r = reentrant

S = static
b = bank number 0, 1, 2, 3
fpS1Im{r | s}t].lib Floating-point libraries for each model m: s (small), a (aux), | (large)

(contains floating-point functions needed by the C compiler)
Optional letters:

r = reentrant

S = static

t = trapping (control program option --fp-model=+trap)

rt51.lib Run-time library (contains other run-time functions needed by the C
compiler)

Sources for the libraries are present in the directory | i b\ src, | i b\ src. * in the form of an executable.
If you run the executable it will extract the sources in the corresponding directory.

Floating-point library with trapping
If you use the trapping floating-point library (f p51m{r | s}t. | i b), exceptional floating-point cases are

intercepted and can be handled separately by an application defined trap handler. Using this library
decreases the execution speed of your application.

11.1. Library Functions
The tables in the sections below list all library functions, grouped per header file in which they are declared.

Some functions are not completely implemented because their implementation depends on the context
where your application will run. These functions are for example all I/O related functions. Where possible,

613

TASKING SmartCode - 8051 User Guide
these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an 1/0O environment which enables you to debug your application.

A number of wide character functions are available as C source code, but have not been compiled with
the C library. To use complete wide character functionality, you must recompile the libraries with the
macro WCHAR SUPPORT_ENABLED and keep this macro also defined when compiling your own sources.
See C compiler option --define (-D). The easiest way is to adapt the makefile for the library and change
the CCline to:

CC = $(PRODDI R)\ bi n\ c51 - DWCHAR SUPPORT_ENABLED
11.1.1. assert.h

assert (expr) Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)
For C11/C17 only, the following macro is defined:

#define static_assert _Static_assert

11.1.2. ctype.h and wctype.h

The header file ct ype. h declares the following functions which take a character ¢ as an integer type

argument. The header file wet ype. h declares parallel wide character functions which take a character
c of the wchar _t type as argument.

ctype.h wctype.h Description

i sal num i swal num Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

i sal pha i swal pha Returns a non-zero value when c is an alphabetic character
([A-Z][a-z]).

i sbl ank i swbl ank Returns a non-zero value when c is a blank character (tab, space...)

iscntrl i swentrl Returns a non-zero value when c is a control character.

isdigit iswditit Returns a non-zero value when c is a numeric character ([0-9]).

i sgraph i swgr aph Returns a non-zero value when c is printable, but not a space.

i sl ower i sw ower Returns a non-zero value when c is a lowercase character ([a-z]).

i sprint i swprint Returns a non-zero value when c is printable, including spaces.

i spunct i swpunct Returns a non-zero value when c is a punctuation character (such
as'. ', ").

i sspace i swspace Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

i supper i swupper Returns a non-zero value when c is an uppercase character ([A-Z]).

i sxdigit i swxdi git Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

t ol ower t oM ower Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

614

Libraries

ctype.h wctype.h Description

t oupper t owupper Returns ¢ converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

_tol ower - Converts c to a lowercase character, does not check if ¢ really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

_toupper - Converts c to an uppercase character, does not check if c really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

i sasci i Returns a non-zero value when c is in the range of 0 and 127. This
function is not defined in ISO C99.
toasci i Converts c to an ASCII value (strip highest bit). This function is

not defined in ISO C99.

11.1.3. dbg.h

The header file dbg. h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C.

_dbg_trap Low level function to trap debug events

_argcv(const char Low level function for command line argument passing
*buf, size_t size)

11.1.4. errno.h

int errno External variable that holds implementation defined error codes.

The following error codes are defined as macros in er r no. h:

EPERM 1 Operation not permitted
ENCENT 2 No such file or directory
El NTR 3 Interrupted system call
ElI O 4 I/O error

EBADF 5 Bad file number

EAGAI N 6 No more processes
ENOVEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address

EEXI ST 10 File exists

ENOTDI R 11 Not a directory

El SDI R 12 Is a directory

El NVAL 13 Invalid argument

ENFI LE 14 File table overflow

EMFI LE 15 Too many open files
ETXTBSY 16 Text file busy

ENCSPC 17 No space left on device
ESPI PE 18 lllegal seek

615

TASKING SmartCode - 8051 User Guide

ERCFS 19 Read-only file system

EPI PE 20 Broken pipe

ELOOP 21 Too many levels of symbolic links
ENAVETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORVMAT 25 lllegal format string for printf/scanf
ERR_NOFLOAT 26 Floating-point not supported
ERR_NCLONG 27 Long not supported

ERR_NOPO NT 28 Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...

El LSEQ 29 Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENCDEV 31 No such device
11.1.5. fcntl.h

The header file f cnt | . h contains the function open() , which calls the low level function _open(), and
definitions of flags used by the low level function _open() . This header file is not defined in ISO C.

open Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

11.1.6. fenv.h

Contains mechanisms to control the floating-point environment. The functions in this header file are not
implemented.

f eget env Stores the current floating-point environment. (Not implemented)

f ehol dexcept Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions. (Not implemented)

fesetenv Restores a previously saved (f eget env or f ehol dexcept) floating-point
environment. (Not implemented)

f eupdat eenv Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.
(Not implemented)

616

Libraries

f ecl ear except Clears the current exception status flags corresponding to the flags specified
in the argument. (Not implemented)

f eget exceptfl ag Stores the current setting of the floating-point status flags. (Not implemented)

f erai seexcept Raises the exceptions represented in the argument. As a result, other

exceptions may be raised as well.
(Not implemented)

fesetexceptfl ag Sets the current floating-point status flags.
(Not implemented)

f et est except Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.
(Not implemented)

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DI VBYZERO FE_| NEXACT FE_I NVALI D
FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT
f eget round Returns the current rounding direction, represented as one of the values of

the rounding direction macros.
(Not implemented)

f esetround Sets the current rounding directions. (Not implemented)

Currently no rounding mode macros are implemented.

11.1.7. float.h

The header file f | oat . h defines the characteristics of the real floating-point types f | oat , doubl e and
| ong doubl e.

f | oat . h used to contain prototypes for the functions copysi gn(f),i si nf (f),i sfi ni te(f),i snan(f)
and scal b(f). These functions have accordingly to the ISO C99 standard been moved to the header
file mat h. h. See also Section 11.1.14, math.h and tgmath.h.

The following functions are only available for ISO C90:

copysignf(float f,float s) Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysi gn(doubl e d, doubl e s) Copies the sign of the second argument s to the value of the first
argument d and returns the result.

isinff(float f) Test the variable f on being an infinite (IEEE-754) value.

i si nf (doubl e d); Test the variable d on being an infinite (IEEE-754) value.
isfinitef(float f) Test the variable f on being a finite (IEEE-754) value.

i sfinite(double d) Test the variable d on being a finite (IEEE-754) value.

i snanf (float f) Test the variable f on being NaN (Not a Number, IEEE-754) .

617

TASKING SmartCode - 8051 User Guide

i snan(doubl e d)
scal bf (float f,int p)
scal b(doubl e d,int p)

Test the variable d on being NaN (Not a Number, IEEE-754) .

Returns f * 27p for integral values without computing 2"*N.

Returns d * 27p for integral values without computing 2N. (See
also scal bn in Section 11.1.14, math.h and tgmath.h)

11.1.8. inttypes.h and stdint.h

The header files st di nt . h and i ntt ypes. h provide additional declarations for integer types and have
various characteristics. The st di nt . h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in

the ISO C99 standard.

Thei ntt ypes. h header file includes st di nt . h and adds portable formatting and conversion functions.
Below the conversion functions from i nt t ypes. h are listed.

i maxabs(intmax_t j)
i maxdi v(intmax_t
i ntmax_t denom

strtoi max(const char *

restrict nptr, char **
restrict endptr, i nt base)

nuner,

strtoumax(const char *
restrict nptr, char **
restrict endptr, i nt base)

west oi max(const wechar _t *
restrict nptr, wchar _t **
restrict endptr, i nt base)

west oumax(const wehar _t *
restrict nptr, wchar _t **
restrict endptr, i nt base)

11.1.9.i0.h

Returns the absolute value of j

Computes nuner / denomand nuner % denom The resultis stored
in the quot and r emcomponents of the i maxdi v_t structure type.

Convert string to maximum sized integer. (Compare strtol |)

Convert string to maximum sized unsigned integer. (Compare
strtoul)

Convert wide string to maximum sized integer. (Compare wcst ol |)

Convert wide string to maximum sized unsigned integer. (Compare
westoul I)

The header file i 0. h contains prototypes for low level I/O functions. This header file is not defined in ISO

C.

_cl ose(fd)
_l seek(fd, of fset, whence)

_open(fd,fl ags)
_read(fd, *buff, cnt)
_unl i nk(*nane)
_wite(fd, *buffer,cnt)

618

Used by the functions cl ose and f cl ose. (FSS implementation)

Used by all file positioning functions: f get pos, f seek, f set pos,
ftell,rew nd.(FSS implementation)

Used by the functions f open and f r eopen. (FSS implementation)
Reads a sequence of characters from a file. (FSS implementation)
Used by the function remove. (FSS implementation)

Writes a sequence of characters to a file. (FSS implementation)

Libraries

11.1.10.is0646.h
The header file i s0646. h adds tokens that can be used instead of regular operator tokens.

#defi ne and &&
#define and_eq &=
#define bitand
#define bitor
#defi ne conpl
#defi ne not
#defi ne not _eq
#defi ne or
#define or_eq
#define xor
#define xor_eq *

>———— | —

11.1.11. limits.h

Contains the sizes of integral types, defined as macros.

11.1.12.locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file | ocal e. h.

char *setlocale(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL 0 LC_NUMERIC 3
LC_COLLATE 1 LC TI ME 4
LC_CTYPE 2 LC_MONETARY 5

struct |conv *local econv(void)
Returns a pointer to type st ruct | conv with values appropriate for the formatting of numeric

guantities according to the rules of the current locale. The st r uct | conv in this header file is
conforming the ISO standard.

11.1.13. malloc.h

The header file mal | oc. h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of st dl i b. h. See Section 11.1.23, stdlib.h and wchar.h.

619

TASKING SmartCode - 8051 User Guide

mal | oc(si ze)

al i gned_al | oc(al i gnnent,

si ze)

cal I oc(nobj, si ze)

free(*ptr)

real l oc(*ptr, size)

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

(C11/C17 only) Allocates space for an object whose alignment is
specified by alignment and with size size.

The allocated space is not initialized. Returns a pointer to the
allocated space.

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the mal | oc or cal | oc function.

Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

11.1.14. math.h and tgmath.h

The header file mat h. h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for doubl e, f | oat and | ong
doubl e. They are respectively named function, functionf , functionl . All | ong type functions, though
declared in mat h. h, are implemented as the doubl e type variant which nearly always meets the
requirement in embedded applications.

The header file t gmat h. h contains parallel type generic math macros whose expansion depends on the
used type.t gmat h. h includes mat h. h and the effect of expansion is that the correct mat h. h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

Trigonometric and hyperbolic functions

math.h tgmath.h Description

sin si nf sinl sin Returns the sine of x.

cos cosf cosl cos Returns the cosine of x.

tan t anf tanl tan Returns the tangent of x.

asin asi nf asinl asin Returns the arc sine sin'l(x) of x.
acos acosf acosl acos Returns the arc cosine cos'l(x) of x.
at an at anf at anl at an Returns the arc tangent tan'l(x) of x.
at an2 atan2f atan2l at an2 Returns the result of: tan'l(y/ X).

si nh si nhf si nhl si nh Returns the hyperbolic sine of x.

620

Libraries

math.h tgmath.h Description
cosh coshf coshl cosh Returns the hyperbolic cosine of x.
tanh t anhf t anhl tanh Returns the hyperbolic tangent of x.

asi nh asi nhf asi nhl asi nh Returns the arc hyperbolic sine of x.
acosh acoshf acoshl acosh Returns the non-negative arc hyperbolic cosine of x.
at anh at anhf at anhl at anh Returns the arc hyperbolic tangent of x.

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, | og and | 0g10.

math.h tgmath.h Description
exp expf expl exp Returns the result of the exponential function e*.
exp2 exp2f exp2| exp2 Returns the result of the exponential function 2*. (Not

implemented)

expml expmif expmil expml Returns the result of the exponential function e*-1. (Not
implemented)

| og | ogf | ogl | og Returns the natural logarithm | n(x), x>0.

| 0ogl10 | ogl0f | oglo0l | 0ogl10 Returns the base-10 logarithm of x, x>0.

| oglp | oglpf 1 oglpl l oglp Returns the base-e logarithm of (1+x) .x <> -1.(Not
implemented)

| 0g2 | og2f | og2l | 0g2 Returns the base-2 logarithm of x. x>0. (Not implemented)

il ogb ilogbf ilogbl il ogb Returns the signed exponent of x as an integer. x>0. (Not

implemented)

| ogb | ogbf | ogbl | ogb Returns the exponent of x as a signed integer in value in
floating-point notation. x > 0. (Not implemented)

frexp, Idexp, modf, scalbn, scalbin

math.h tgmath.h Description

frexp frexpf frexpl frexp Splits a float x into fraction f and exponent n, so that:
f=0.00r0.5<|f|<1.0and f*2" = x. Returns f, stores n.

| dexp | dexpf | dexpl | dexp Inverse of f r exp. Returns the result of x*2".
(x and n are both arguments).

nmodf nmodf f nodf | - Splits a float x into fraction f and integer n, so that:
| f| < 1.0 and f+n=x. Returns f, stores n.

scal bn scal bnf scalbnl scalbn Computes the result of x* FLT_RADI X". efficiently, not
normally by computing FLT_RADI X" explicitly.

scal bl n scal bl nf scal bl nl scal bl n Same as scal bn but with argumentn as | ong int.

621

TASKING SmartCode - 8051 User Guide

Rounding functions

math.h tgmath.h Description

ceil ceilf ceill ceil Returns the smallest integer not less than x, as a double.

floor floorf floorl floor Returns the largest integer not greater than x, as a double.

rint rintf rintl rint Returns the rounded integer value as an i nt according
to the current rounding direction. See f env. h. (Not
implemented)

Irint lrintf Ilrintl Irint Returns the rounded integer value as a |l ong i nt
according to the current rounding direction. See f env. h.
(Not implemented)

Ilrint Ilrintf Ilrintl Ilrint Returns the rounded integer value asal ong | ong i nt
according to the current rounding direction. See f env. h.
(Not implemented)

near byi nt nearbyi ntf nearbyintl nearbyi nt Returns the rounded integer value as a floating-point
according to the current rounding direction. See f env. h.
(Not implemented)

round roundf roundl round Returns the nearest integer value of x as int.
(Not implemented)

Iround Iroundf Iroundl |round Returnsthe nearestinteger value of x as long int.
(Not implemented)

Il round Iroundf Ilroundl |Iround Returnsthe nearestinteger value of x as long long int.
(Not implemented)

trunc truncf truncl trunc Returns the truncated integer value x. (Not implemented)

Remainder after division

math.h tgmath.h Description

f nod f nodf f nodl f nod Returns the remainder r of x- ny. n is chosen as
trunc(xly).r has the same sign as x.

renai nder renai nderf renai nderl renai nder Returns the remainderr of x- ny. n is chosen as
trunc(xly).r may not have the same sign as x. (Not
implemented)

renguo renguof renguol rengquo Same as remainder. In addition, the argument * quo is

Power and absolute-value functions

given a specific value (see ISO). (Not implemented)

math.h tgmath.h Description
cbrt cbrtf cbrtl cbrt Returns the real cube root of x (=xl’ 3). (Not implemented)
f abs f absf f absl f abs Returns the absolute value of x (| x|). (abs, | abs,| | abs,

622

div,ldiv,|ldiv aredefinedinstdlib. h)

Libraries

math.h tgmath.h Description

fma f maf f mal fma Floating-point multiply add. Returns x*y+z. (Not
implemented)

hypot hypotf hypot! hypot Returns the square root of x2+y?.
pow powf pow power Returns x raised to the power y (xY).
sqrt sqrtf sqrtl sqrt Returns the non-negative square root of x. x 0.

Manipulation functions: copysign, nan, nextafter, nexttoward

math.h tgmath.h Description

copysi gn copysi gnf copysignl| copysi gn Returns the value of x with the sign of y.

nan nanf nanl - Returns a quiet NaN, if available, with content indicated
through t agp.

(Not implemented)

nextafter nextafterf nextafterl nextafter Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.
(Not implemented)

nexttoward nexttovardf nexttovard nexttoward Same as next af t er, except that the second argument
in all three variants is of type long double. Returns vy if

X=y.
(Not implemented)

Positive difference, maximum, minimum

math.h tgmath.h Description

fdim f di nf fdinm fdim Returns the positive difference between: | x- y]| .
(Not implemented)

f max f maxf f max| f max Returns the maximum value of their arguments.
(Not implemented)

fmn fm nf fmnl fmn Returns the minimum value of their arguments.
(Not implemented)

Error and gamma (Not implemented)

math.h tgmath.h Description

erf erff erfl erf Computes the error function of x.
(Not implemented)

erfc erfcf erfcl erc Computes the complementary error function of x.
(Not implemented)

| ganma | gammaf | gammal | gamma Computes the * | oge| IT'(X) |
(Not implemented)

tgama tgamaf tgammal tganma Computes I'(x)
(Not implemented)

623

TASKING SmartCode - 8051 User Guide

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true. These macros are type generic and therefore do not have
a parallel function in t gmat h. h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

i sgreater - Returns the value of (x) > (y)

i sgreat erequal - Returns the value of (x) >= (y)

i sl ess - Returns the value of (x) < (y)

i sl essequal - Returns the value of (x) <= (y)

i sl essgreater - Returns the value of (x) < (y) |] (x) > (y)

i sunor der ed - Returns 1 if its arguments are unordered, O otherwise.

Classification macros

The next are implemented as macros. These macros are type generic and therefore do not have a parallel
function in t gmat h. h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

fpcl assify - Returns the class of its argument:
FP_I NFI NI TE, FP_NAN, FP_NORVAL, FP_SUBNORVAL or
FP_ZERO

isfinite - Returns a nonzero value if and only if its argument has a finite
value

i sinf - Returns a nonzero value if and only if its argument has an infinite
value

i snan - Returns a nonzero value if and only if its argument has NaN value.

i snor mal - Returns a nonzero value if an only if its argument has a normal
value.

signbit - Returns a nonzero value if and only if its argument value is
negative.

11.1.15. setjmp.h

The set j np and | ongj np in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal . h

int setjnp(jnp_buf Records its caller's environment in env and returns O.
env)

voi d | ongj np(j mp_buf Restores the environment previously saved with a call to set j np() .
env, int status)

624

Libraries

11.1.16. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

SI A NT
SIG LL
SI GFPE An erroneous arithmetic operation (for example, zero divide, over f | ow)

1 Receipt of an interactive attention signal

2

3
SIGSEGY 4 Aninvalid access to storage

5

6

Detection of an invalid function message

S| GTERM
S| GABRT

A termination request sent to the program
Abnormal termination, such as is initiated by the abort function

The next function sends the signal sig to the program:

int raise(int sig)

The next function determines how subsequent signals will be handled:
signal function *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

SI G _DFL Default behavior is used
SIG I GN The signal is ignored

The function returns the previous value of si gnal f unct i on for the specific signal, or SI G_ERRIif an
error occurs.

11.1.17. stdalign.h

This C11/C17 header file contains the following macro definitions about alignment:

#define alignas _Alignas
#define __alignas_is_defined 1

#define alignof _Alignof
#define __alignof_is_defined 1

11.1.18. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed foras f printf and vfprintf.va_copy is new in ISO C99. This header file contains the
following macros:

va_arg(va_list ap,type) Returns the value of the next argument in the variable argument list.

Its return type has the type of the given argument t ype. A next call to
this macro will return the value of the next argument.

625

TASKING SmartCode - 8051 User Guide

va_copy(va_list dest, This macro duplicates the current state of sr ¢ in dest, creating a

va_list src) second pointer into the argument list. After this call, va_arg() may be
used on sr ¢ and dest independently.

va_end(va_list ap) This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_start(va_list ap, This macro initializes ap. After this call, each call to va_arg() will return

| ast ar g) the value of the next argument. In our implementation, va_| i st cannot

contain any bit type variables. Also the given argument | ast ar g must
be the last non-bit type argument in the list.

11.1.19. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++. You are allowed to #undef i ne or redefine the macros below.

#define bool _Bool
#define true 1
#define fal se 0
#define _ bool true false are _defined 1

11.1.20. stddef.h
This header file defines the types for common use:

ptrdiff _t Signed integer type of the result of subtracting two pointers.
size_t Unsigned integral type of the result of the si zeof operator.

wchar _t Integer type to represent character codes in large character sets.

Besides these types, the following macros are defined:

NULL Expands to O (zero).
of f set of (_type, Expands to an integer constant expression with type si ze_t that is the offset
_menber) in bytes of _nenber within structure type _t ype.

11.1.21. stdint.h

See Section 11.1.8, inttypes.h and stdint.h
11.1.22. stdio.h and wchar.h

Types

The header file st di 0. h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar . h. The header file wchar . h also
includes st di 0. h.

626

Libraries

In the C language, many /O facilities are based on the concept of streams. The st di 0. h header file
defines the data type FI LE which holds the information about a stream. A FI LE object is created with
the function f open. The pointer to this object is used as an argument in many of the in this header file.
The FI LE object can contain the following information:

« the current position within the stream
» pointers to any associated buffers

* indications of for read/write errors

» end of file indication

The header file also defines type f pos_t as an unsi gned | ong.

Macros
stdio.h Description
NULL Expands to 0 (zero).
BUFSI Z Size of the buffer used by the set buf /set vbuf function: 512
EOF End of file indicator. Expands to -1.
WEOF End of file indicator. Expands to UINT_MAX (defined inl i m ts. h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar . h).
FOPEN_IMAX Number of files that can be opened simultaneously: 10
FI LENAME_MAX Maximum length of a filename: 100
_|I OFBF Expand to an integer expression, suitable for use as argument to the set vbuf function.
_I OLBF
_| ONBF
L_t npnam Size of the string used to hold temporary file names: 8 (tmpxxxxx)
TIVP_MAX Maximum number of unique temporary filenames that can be generated: 0x8000
SEEK_CUR Expand to an integer expression, suitable for use as the third argument to the f seek
SEEK_END function.
SEEK_SET
stderr Expressions of type "pointer to FILE" that point to the FILE objects associated with
stdin standard error, input and output streams.
st dout
File access
stdio.h Description
f open(nane, node) Opens a file for a given mode. Available modes are:

627

TASKING SmartCode - 8051 User Guide

stdio.h

f cl ose(name)

ffl ush(nane)

f reopen(name, node,
stream

set buf (stream buffer)

set vbuf (st ream buf f er, node,
si ze)

Formatted input/output

Description
"rt read; open text file for reading
"w' write; create text file for writing;
if the file already exists, its contents is discarded
"a append; open existing text file or

create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous
contents if any is discarded
append; open or create text file for update,
writes at end of file

at

(FSS implementation)

Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)

If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)

Similar to fopen, but rather than generating a new value of type FILE *,
the existing value is associated with a new stream. (FSS implementation)

If buffer is NULL, buffering is turned off for the stream. Otherwise, setbuf
is equivalentto: (voi d) setvbuf (stream buffer, | OFBF, BUFSI Z) .

Controls buffering for the stream; this function must be called before reading
or writing. Mode can have the following values:

_| OFBF causes full buffering

_| OLBF causes line buffering of text files

_| ONBF causes no buffering.

If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

The f or mat string of pri nt f related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be

built in order:

* Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence than space.

space a negative number is preceded with a sign, positive numbers with a space.

0 specifies padding to the field width with zeros (only for numbers).

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

628

Libraries

A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '- ' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also *' may be specified, the value is then taken from the next argument, which is
assumed to be of type i nt .

A period. This separates the minimum field width from the precision.

A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also *' may be specified, the value is then taken
from the next argument, which is assumed to be of type i nt .

A length modifier 'h', *hh', 'I', II', ‘L', '}, '2" or 't'. 'h" indicates that the argument is to be treated as a shor t
orunsi gned short.'hh'indicates that the argument is to be treated as a char or unsi gned char.
'I'should be used if the argumentis al ong integer, 'll' foral ong | ong. L' indicates that the argument
isal ong doubl e.'j'indicates a pointertoi nt nax_t orui nt max_t, 'z'indicates a pointerto si ze_t
and 't indicates a pointerto ptrdi ff _t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Character Printed as

d
o

X,

u
C
S

f,
e

Ji int, signed decimal

int, unsigned octal

X int, unsigned hexadecimal in lowercase or uppercase respectively
int, unsigned decimal
int, single character (converted to unsigned char)

char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

F double

,E double

9,G double
a, A double

n

p

int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

pointer

% No argument is converted, a ‘%' is printed.

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

629

TASKING SmartCode - 8051 User Guide

The format string can contain :

 Blanks or tabs, which are skipped.

* Normal characters (not '%"), which should be matched exactly in the input stream.

» Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

* A'* meaning that no assignment is done for this field.

* A number specifying the maximum field width.

» The conversion characters d, i , n, 0, u and x may be preceded by 'h' if the argument is a pointer to
short ratherthani nt, or by 'hh'if the argument is a pointer to char , or by 'l (letter ell) if the argument
is a pointer to | ong or by 'll' for a pointer to | ong | ong, 'j' for a pointer to i nt max_t or ui nt max_t,
'z' for a pointer to si ze_t or't' for a pointer to pt rdi f f _t . The conversion characters e, f, and g
may be preceded by 'I' if the argument is a pointer to doubl e rather than f | oat , and by 'L’ for a pointer
toal ong doubl e.

A conversion specifier. "*', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not. The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d
i

nw O X < O

e, E
g,G
a, A

630

int, signed decimal.

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

int, unsigned octal.

int, unsigned decimal.

int, unsigned hexadecimal in lowercase or uppercase.
single character (converted to unsigned char).

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

float

float

float

float

int *, the number of characters written so far is written into the argument. No scanning is done.
pointer; hexadecimal value which must be entered without Ox- prefix.

Libraries

Character Scanned as

[...] Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the ']' character in the set of scanning
characters.

[~..] Matches a string of input characters not in the set between the brackets. A NULL character

is added to terminate the string. Specifying []...] includes the ']’ character in the set.
% Literal '%', no assignment is done.

scanf conversion characters

stdio.h wchar.h Description
f scanf (st ream fwscanf (st ream Performs a formatted read from the given stream.
format, ...) format, ...) Returns the number of items converted

successfully. (FSS implementation)

scanf (format,...) wscanf (format, ...) Performs a formatted read from st di n. Returns
the number of items converted successfully. (FSS
implementation)

sscanf (*s, format, swscanf(*s, format, Performs aformatted read from the string s.
2) ca) Returns the number of items converted
successfully.

vfscanf (stream vfwscanf (stream Same asf scanf /f wscanf , but extra arguments
format, arg) format, arg) are given as variable argument list arg. (See
Section 11.1.18, stdarg.h)

vscanf (format, arg) vwscanf(format, arg) Sameassscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 11.1.18, stdarg.h)

vsscanf(*s, format, vswscanf(*s, format, Same as scanf /mscanf, but extra arguments

arg) arg) are given as variable argument list arg. (See
Section 11.1.18, stdarg.h)

fprintf(stream fwprintf(stream Performs a formatted write to the given stream.

format, ...) format, ...) Returns EOF/WEOF on error. (FSS

implementation)

printf(format, ...) worintf(format, ...) Performsaformatted write to the stream st dout .
Returns EOF/WEOF on error. (FSS
implementation)

sprintf(*s, format, - Performs a formatted write to string s. Returns
) EOF/WEOF on error.
snprintf(*s, n, swprintf(*s, n, Same as spri nt f, but n specifies the maximum
format, ...) format, ...) number of characters (including the terminating
null character) to be written.
viprintf(stream viwprintf(stream Same as fprintf/fwprintf, butextra
format, arg) format, arg) arguments are given as variable argument list

arg. (See Section 11.1.18, stdarg.h) (FSS
implementation)

631

TASKING SmartCode - 8051 User Guide

stdio.h wchar.h Description
vprintf(format, arg) vwprintf(format, Sameasprintf/wprintf,butextraarguments
arg) are given as variable argument list arg. (See

vsprintf(*s, format, vswprintf(*s,
arg) format, arg)
Character input/output

stdio.h wchar.h

Section 11.1.18, stdarg.h) (FSS implementation)

Same as spri nt f /swpri nt f, but extra
arguments are given as variable argument list
arg. (See Section 11.1.18, stdarg.h)

Description

fgetc(stream fgetwe(strean)

getc(stream getwec(stream

get char (st din) get wchar (st di n)

fgets(*s, n, strean) fgetws(*s, n,
stream

gets(*s) -

ungetc(c, strean)
fputc(c, stream
putc(c, stream

putwec(c, stream

put char (¢, stdout)

fputs(*s, stream

632

ungetwc(c, stream

fputwe(c, stream

put wchar (¢, stdout)

fputws(*s, stream

Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

Same as f get c/f get we except that is
implemented as a macro.

(FSS implementation)

NOTE: Currently #defined as

get char () /get wechar () because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

Reads one character from the st di n stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.

(FSS implementation)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

(C90/C99 only) Reads characters from the st di n
stream into array s until end-of-file is encountered
or a newline is found. The newline is replaced by
a NULL character. Returns s or NULL on EOF.
(FSS implementation)

Pushes character c back onto the input stream.
Returns EOF/WEOF on error.

Put character ¢ onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)
Same as f puc/f put we except that is
implemented as a macro. (FSS implementation)

Put character c onto the st dout stream. Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

Libraries

stdio.h wchar.h Description

puts(*s) - Writes string s to the st dout stream. Returns
EOF/WEOF on error. (FSS implementation)

Direct input/output

stdio.h Description

fread(ptr, si ze, nobj , strean) Reads nobj members of size bytes from the given stream into the
array pointed to by ptr. Returns the number of elements successfully
read. (FSS implementation)

fwite(ptr,size, nobj, strean) Writes nobj members of size bytes from to the array pointed to by ptr
to the given stream. Returns the number of elements successfully
written. (FSS implementation)

Random access

stdio.h Description
fseek(stream offset, Sets the position indicator for stream. (FSS implementation)
origin)

When repositioning a binary file, the new position origin is given by the following macros:

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK _END 2 offset characters from the end of the file

ftell (stream Returns the current file position for stream, or -1L on error.
(FSS implementation)

rewi nd(stream Sets the file position indicator for the stream to the beginning of the
file. This function is equivalent to:
(void) fseek(stream OL, SEEK_SET);
clearerr(stream;
(FSS implementation)

f get pos(stream pos) Stores the current value of the file position indicator for stream in the
object pointed to by pos. (FSS implementation)

f set pos(stream pos) Positions st r eamat the position recorded by f get pos in *pos. (FSS
implementation)

Operations on files

stdio.h Description

renmove(file) Removes the named file, so that a subsequent attempt to open it fails.
Returns a non-zero value if not successful.

rename(ol d, new) Changes the name of the file from old hame to new name. Returns
a non-zero value if not successful.

633

TASKING SmartCode - 8051 User Guide

stdio.h Description

tnpfile() Creates a temporary file of the mode "wb+" that will be automatically

removed when closed or when the program terminates normally.
Returns afi | e pointer.

t npnan(buf fer) Creates new file names that do not conflict with other file names

currently in use. The new file name is stored in a buffer which must
have room for L_tmpnam characters. Returns a pointer to the
temporary name. The file names are created in the current directory
and all start with "tmp". At most TMP_MAX unique file names can be
generated.

Error handling

stdio.h Description

clearerr(stream Clears the end of file and error indicators for stream.

ferror(stream Returns a non-zero value if the error indicator for stream is set.
feof (stream Returns a non-zero value if the end of file indicator for stream is set.
perror(*s) Prints s and the error message belonging to the integer er r no. (See

Section 11.1.4, errno.h)

11.1.23. stdlib.h and wchar.h

The header file st dl i b. h contains general utility functions which fall into the following categories (Some
have parallel wide character, declared in wchar . h)

Numeric conversions
Random number generation
Memory management
Environment communication
Searching and sorting
Integer arithmetic

Multibyte/wide character and string conversions.

Macros

EXI T_SUCCES Predefined exit codes that can be used in the exi t function.

0

EXI T_FAI LURE

1

RAND_MAX Highest number that can be returned by the r and/sr and function.
32767

634

Libraries

MB_CUR_MAX 1 Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 11.1.12, locale.h).

Numeric conversions

The following functions convert the initial portion of a string *s to a doubl e, i nt, 1 ong i nt and| ong
| ong i nt value respectively.

doubl e atof (*s)
i nt atoi (*s)
| ong atol (*s)

I ong | ong atol | (*s)

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. * endp will point to the first character not used by the conversion.

stdlib.h wchar.h
fl oat strtof (*s, **endp) f1 oat west of (*s, **endp)
doubl e strtod(*s, **endp) doubl e west od(*s, **endp)

| ong double strtold(*s,**endp) | ong doubl e westol d(*s, **endp)

The following functions convert the initial portion of the string *sto a | ong, | ong | ong, unsi gned
| ong and unsi gned | ong | ong respectively. Base specifies the radix. * endp will point to the first
character not used by the conversion.

stdlib.h

wchar.h

long strtol (*s,**endp, base)
long long strtoll

(*s, **endp, base)
unsi gned | ong strtoul

(*s, **endp, base)
unsi gned long long strtoull

(*s, **endp, base)

Random number generation

| ong westol (*s, **endp, base)
| ong | ong westol |

(*s, **endp, base)
unsi gned | ong wcst oul

(*s, **endp, base)
unsi gned | ong | ong westoul |

(*s, **endp, base)

rand Returns a pseudo random integer in the range 0 to RAND_MAX.

srand(seed) Same as rand but uses seed for a new sequence of pseudo random numbers.

Memory management
mal | oc(si ze)

space.

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated

TASKING SmartCode - 8051 User Guide

aligned_alloc(alignnent, (C11/C17 only) Allocates space for an object whose alignment is specified

si ze)

cal I oc(nobj, si ze)

free(*ptr)

real l oc(*ptr, si ze)

by alignment and with size size.
The allocated space is not initialized. Returns a pointer to the allocated
space.

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the
allocated space.

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the mal | oc or cal | oc function.

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the end of
the old region will be discarded. If the new size is larger than the old size,
all of the old contents are preserved and any bytes in the new object
beyond the size of the old object will have indeterminate values.

Environment communication

abort ()
atexit (*func)

exit(status)

_Exit(status)

at _qui ck_exi t (*func)

qui ck_exi t (status)

getenv(*s)

systen(*s)

636

Causes abnormal program termination. If the signal SIGABRT is caught,
the signal handler may take over control. (See Section 11.1.16, signal.h).

func points to a function that is called (without arguments) when the
program normally terminates.

Causes normal program termination. Acts as if mai n() returns with status
as the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

Same as exi t, but not registered by the at exi t function or signal
handlers registered by the si gnal function are called.

(C11/C17 only) Registers the function pointed to by func to be called
(without arguments) when qui ck_exi t is called. Returns zero if the
registration succeeds, nonzero if it fails.

(C112/C17 only) Causes normal program termination. Calls all functions
registered by the at _qui ck_exi t function, in the reverse order of their
registration, and then calls _Exi t .

Searches an environment list for a string s. Returns a pointer to the
contents of s.
NOTE: this function is not implemented because there is no OS.

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

Libraries

Searching and sorting

bsear ch(*key,
*base, n, size,
*cnp)

gsort (*base, n,
si ze, *cnp)

Integer arithmetic

int abs(j)
I ong | abs(j)
long long |labs(j)

div_t div(x,y)
Idiv_t Idiv(x,y)
I1div_t Ildiv(x,y)

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

Compute the absolute value ofanint,long int,andlong long intj
respectively.

Compute x/y and x%y in a single operation. X and y have respectively type
int,long int andl ong | ong int.The resultis stored in the members
quot andremofstruct div_t,ldiv_t andl|div_t which have the
same types.

Multibyte/wide character and string conversions

nbl en(*s, n)

mbt owc (* pwe, *s, n)
wet onb(*s, we)

nbst owcs(*pwes, *s, n)

west onbs(*s, *pwes, n)

Determines the number of bytes in the multibyte character pointed to by s. At
most n characters will be examined. (See also nbr | en in Section 11.1.29,
wchar.h).

Converts the multibyte character in s to a wide character code and stores it in
pwc. At most n characters will be examined.

Converts the wide character wc into a multibyte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

Converts a sequence of multibyte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also nmbsrt owcs in Section 11.1.29, wchar.h).

Converts a sequence of wide characters in the array pointed to by pwcs into
multibyte characters and stores at most n multibyte characters into the string
pointed to by s. (See also wcsr t owrb in Section 11.1.29, wchar.h).

11.1.24. stdnoreturn.h

This C11/C17 header file contains the following macro definition:

#define noreturn Noreturn

637

TASKING SmartCode - 8051 User Guide

11.1.25. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char . However, many functions have also parallel wide character functions which take arguments of
type *wchar _t . These functions are declared in wchar . h.

Copying and concatenation functions

string.h wchar.h

Description

menmcpy(*sl, *s2, n) wencpy(*sl, *s2, n)
nenmove(*sl, *s2, n) wiemmove(*s1, *s2, n)
strcpy(*sl, *s2) wescpy(*sl, *s2)
strncpy(*sl, *s2, n) wesncpy(*sl, *s2, n)
strcat(*sl, *s2) wcscat(*sl, *s2)

strncat (*s1, *s2, n) wesncat (*s1, *s2, n)

Comparison functions

string.h wchar.h

Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

Same as mentpy, but overlapping strings are handled
correctly. Returns *s1.

Copies *s2 into *s1 and returns *s1. If *s1 and *s2 overlap
the result is undefined.

Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

Appends not more than n characters from *s2 to *s1 and
returns *sl. If *s1 and *s2 overlap the result is undefined.

Description

nencnp(*sl, *s2, n) wrentnp(*sl, *s2, n)

strcenp(*sl, *s2) wescnp(*sl, *s2)

strncnp(*sl, *s2, n) wesnenp(*sl, *s2, n)

strcoll (*s1,*s2) wescol | (*s1, *s2)

strxfrn{*sl, *s2,n) wesxfrn{*sl, *s2, n)

638

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or >0 if *s1 > *s2,

Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
==%*s2, or >0 if *s1 > *s2.

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or >0 if *s1 > *s2.

Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or >0 if *s1 > *s2, (See Section 11.1.12, locale.h)

Transforms (a local) string *s2 so that a comparison
between transformed strings with st r cnp gives the same
result as a comparison between non-transformed strings
with st r col | . Returns the transformed string *s1.

Libraries

Search functions

string.h wchar.h Description

menchr (*s, c, n) wnenchr (*s, ¢, n) Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

strchr(*s, c) weschr (*s, ¢) Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

strrchr(*s,c) wesrchr(*s, c) Returns a pointer to the last occurrence of character ¢ in *s
or the null pointer if not found.

strspn(*s,*set) wesspn(*s, *set) Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

strcspn(*s, *set) wescspn(*s, *set) Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

strpbrk(*s, *set) wespbrk(*s, *set) Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

strstr(*s,*sub) wcsstr(*s, *sub) Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

strtok(*s,*dlm) westok(*s,*dl m A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

Miscellaneous functions

string.h wchar.h Description

menset (*s,c,n) wnenset (*s, c,n) Fills the first n bytes of *s with character ¢ and returns *s.

strerror(errno) - Typically, the values for errno come fromi nt errno.This
function returns a pointer to the associated error message.
(See also Section 11.1.4, errno.h)

strlen(*s) wesl en(*s) Returns the length of string *s.

11.1.26. time.h and wchar.h

The header file t i ne. h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

cl ock_t unsigned | ong |ong
time_t unsigned | ong

The type st ruct t mbelow is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The st ruct t mtype is defines as follows:

struct tm

{

639

TASKING SmartCode - 8051 User Guide

nt t m sec;

}s

/* seconds after the minute - [0, 59] */

i

i nt tmmn; /* minutes after the hour - [0, 59] */
i nt t m_hour; /* hours since mdnight - [0, 23] */
i nt t m_nday; /* day of the nonth - [1, 31] */
i nt t m_non; /* nonths since January - [0, 11] */
i nt tmyear; /* year since 1900 */
i nt t m wday; /* days since Sunday - [0, 6] */
i nt t m yday; /* days since January 1 - [0, 365] */
i nt tm.isdst; /* Daylight Saving Tine flag */

Time manipulation

cl ock

difftinme(ti,t0)
nmktime(tm *tp)
time(*tiner)

Time conversion

asctine(tm*tp)

ctime(*tiner)

gntime(*timer)

| ocal ti me(*tiner)

Formatted time

Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

Returns the difference t1-t0 in seconds.

Converts the broken-down time in the structure pointed to by tp, to a value of type
ti me_t.The return value has the same encoding as the return value of the t i me
function.

Returns the current calendar time. This value is also assigned to *t i ner.

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Feb 04 16: 15: 14 2013\ n\ 0. Returns a pointer to this string.

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: ascti me(l ocal ti me(tiner))

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

The next function has a parallel function defined in wehar . h:

time.h

wchar.h

strftime(*s, smax, *fnt,tm *tp) wesftime(*s, smax, *fnt,tm*tp)

Formats date and time information from st ruct t m*tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of st r f t i me is locale-specific using
the LC_TI ME category (see Section 11.1.12, locale.h).

You can use the next conversion specifiers:

640

%a
%A
%b
%B
%c
%C
%d
%D
%e
%F
%g
%G
%h
%H
%I
%j
%m
%M
%n
%p
%r
%R
%S
%t
%T
%u
%U
%V
%w
%W
%X
%X
%y
%Y
%z
%Z

abbreviated weekday name

full weekday name

abbreviated month name

full month name

locale-specific date and time representation (same as ¥Ya % % % %)
last two digits of the year

day of the month (01-31)

same as % %6/ %y

day of the month (1-31), with single digits preceded by a space
ISO 8601 date format: %v- %m %d

last two digits of the week based year (00-99)

week based year (0000—9999)

same as %b

hour, 24-hour clock (00-23)

hour, 12-hour clock (01-12)

day of the year (001-366)

month (01-12)

minute (00-59)

replaced by newline character

locale's equivalent of AM or PM

locale's 12-hour clock time; same as % : %vt %5 %

same as % 9YM

second (00-59)

replaced by horizontal tab character

ISO 8601 time format: % %vt %S

ISO 8601 weekday number (1-7), Monday as first day of the week
week number of the year (00-53), week 1 has the first Sunday
ISO 8601 week number (01-53) in the week-based year
weekday (0-6, Sunday is 0)

week number of the year (00-53), week 1 has the first Monday
local date representation

local time representation

year without century (00-99)

year with century

ISO 8601 offset of time zone from UTC, or nothing

time zone name, if any

Libraries

641

TASKING SmartCode - 8051 User Guide

%% %

11.1.27. uchar.h
The C11/C17 header file uchar . h declares types and functions for manipulating Unicode characters.

This header file declares the types:

char 16_t Unsigned integer type used for 16-bit characters.

char32_t Unsigned integer type used for 32-bit characters.

size_t Unsigned integer type of the result of the si zeof operator.
wchar _t Integer type to represent character codes in large character sets.

The functions perform conversions between multibyte characters and Unicode characters. In these
functions, ps points to struct nbst at e_t which holds the conversion state information necessary to
convert between sequences of multibyte characters and Unicode characters:

t ypedef struct

{
wchar _t wc_value; /* wide character val ue sol ved
so far */
unsi gned short n_bytes; /* nunber of bytes of solved
mul tibyte */
unsi gned short encoding; /* encoding rule for w de
character <=> multibyte
conversion */
} nbstate_t;

nbrtocl6(*pcl6, *s, n, *ps) Converts a multibyte character *s to a 16-bit character *pc16 according
to conversion state ps.

clértonmb(*s, cl6, *ps) Converts a 16-bit character c16 to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

nbrtoc32(*pc32, *s, n, *ps) Converts a multibyte character *s to a 32-bit character *pc32 according
to conversion state ps.

c32rtonmb(*s, c32,*ps) Converts a 32-bit character c32 to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

11.1.28. unistd.h

The file uni st d. h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for | st at and f st at which are not implemented. This header file is not
defined in ISO C99.

642

access(*nane, node)

chdi r (*pat h)
cl ose(fd)
get cwd(*buf, si ze)

| seek(fd, of f set, whence)
read(fd, *buff, cnt)

st at (*nane, *buff)
| st at (*nane, *buff)
fstat(fd, *buff)
unl i nk(*nane)
wite(fd, *buff,cnt)

11.1.29. wchar.h

Many functions inwchar .
together. (See Section 11.
string.h and wchar.h and

Libraries

Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

R_OK Checks read permission.

W OK Checks write permission.

X_OK Checks execute (search) permission.
F_OK Checks to see if the file exists.

(FSS implementation)

Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)

File close function. The given file descriptor should be properly closed. This
function calls _cl ose() . (FSS implementation)

Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

Moves read-write file offset. Calls _| seek() . (FSS implementation)

Reads a sequence of characters from a file. This function calls _r ead() . (FSS
implementation)

Use file system simulation to stat() a file on the host platform. (FSS
implementation)

This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat’-ed, not the file that it refers to. (Not implemented)

This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

Write a sequence of characters to a file. Calls _wri t e() . (FSS implementation)

h represent the wide character variant of other functions so these are discussed
1.22, stdio.h and wchar.h, Section 11.1.23, stdlib.h and wchar.h, Section 11.1.25,
Section 11.1.26, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multibyte characters
and wide characters. In these functions, ps points to struct mbst at e_t which holds the conversion state

information necessary to
t ypedef struct
{

wchar _t

unsi gned short

unsi gned short

convert between sequences of multibyte characters and wide characters:

wc_val ue; /* wide character val ue sol ved
so far */

n_byt es; /* nunber of bytes of solved
mul ti byte */

encoding; /* encoding rule for wde

643

TASKING SmartCode - 8051 User Guide

character <=> nultibyte
conversion */
} nbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multibyte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

nbsi ni t (*ps) Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

nfosrt ones(*pues, **src, n, *ps) Restartable version of nbst owcs. See Section 11.1.23, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input sequence
of multibyte characters is specified indirectly by src.

wesrtonbs(*s, **src, n, *ps) Restartable version of west onbs. See Section 11.1.23, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

nmbrt owc(*pwe, *s, n, *ps) Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also nbt owc in Section 11.1.23, stdlib.h and

wchar.h.

wertonb(*s, we, *ps) Converts a wide character wc to a multibyte character according to
conversion state ps and stores the multibyte character in *s.

bt owc(c) Returns the wide character corresponding to character c. Returns WEOF
on error.

wct ob(c) Returns the multibyte character corresponding to the wide character c.

The returned multibyte character is represented as one byte. Returns
EOF on error.

nbrl en(*s, n, *ps) Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

11.1.30. wctype.h

Most functions in wct ype. h represent the wide character variant of functions declared in ct ype. h and
are discussed in Section 11.1.2, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

wct ype(*property) Constructs a value of type wet ype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 11.1.12, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
i swet ype function.

i swct ype(we, desc) Tests whether the wide character we is a member of the class represented by
wet ype_t desc. Returns a non-zero value if tested true.

644

Function

Libraries

Equivalent to locale specific test

swal nunm(we)

swal pha(wc)

swentrl (we)
swdi gi t (we)
swgr aph(we)
sw ower (we)

swpri nt (wc)

swpunct (we)

swspace(we)

swupper (we)

swxdi tig(we)

wct rans(* property)

t owct rans(we, desc)

Function

swetype(we, wet ype("al nunt'))

swet ype(we, wet ype("al pha"))

swetype(we, wetype(“cntrl ™))
swetype(we, wetype("digit"))
swet ype(we, wet ype(" graph"))

swetype(we, wet ype("1 ower ™))

swetype(we, wetype("print"))

swet ype(we, wet ype(" punct ™))

swet ype(we, wet ype(" space"))

swet ype(we, wet ype(" upper ™))

swetype(we, wet ype("xdigit"))

Constructs a value of type wet ype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 11.1.12,
locale.h) of the current locale, a non-zero value is returned that can be used as an
argument in the t owct r ans function.

Transforms wide character wc into another wide character, described by desc.

Equivalent to locale specific transformation

t o ower (wc)
t owupper (wc)

towct rans(wc, wctrans("t ol ower")
towct rans(we, wet rans("t oupper")

11.2. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note
that some of the functions are not reentrant because they set the global variable 'errno’ (or call other
functions that eventually set 'errno’). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is too lengthy for the table.

Function Not reentrant because

_close Uses global File System Simulation buffer, _dbg_request

_doflt Uses I/0 functions which modify iob[]. See (1).

_doprint Uses indirect access to static iob[] array. See (1).

_doscan Uses indirect access to iob[] and calls ungetc (access to local static

ungetc[] buffer). See (1).

645

TASKING SmartCode - 8051 User Guide

Function Not reentrant because

_Exit See exit.

_filbuf Uses iob[], which is not reentrant. See (1).

_fl sbuf Uses iob[]. See (1).

_getflt Uses iob[]. See (1).

_iob Defines static iob[]. See (1).

_|I seek Uses global File System Simulation buffer, _dbg_request
_open Uses global File System Simulation buffer, _dbg_request
_read Uses global File System Simulation buffer, _dbg_request
_unlink Uses global File System Simulation buffer, _dbg_request
_Wite Uses global File System Simulation buffer, _dbg_request
abort Calls exit

abs | abs |1 abs
access

acos acosf acosl
acosh acoshf acoshl
al i gned_al | oc
asctine

asi n asinf asinl
asi nh asi nhf asinhl

at _quick_exit

atan atanf atanl
atan2 atan2f atan2l
at anh at anhf atanhl
atexit

at of

at oi

at ol

bsearch

bt owc

clértonb

c32rtonb

cabs cabsf cabsl
cacos cacosf cacosl
cacosh cacosh cacoshl

646

Uses global File System Simulation buffer, _dbg_request
Sets errno.

Sets errno via calls to other functions.

See malloc (5).

asctime defines static array for broken-down time string.
Sets errno.

Sets errno via calls to other functions.

at_quick_exit defines static array with function pointers to execute
when quick_exit is called.

Sets errno via calls to other functions.

atexit defines static array with function pointers to execute at exit of
program.

Sets errno. Uses static internal_state variable.
Sets errno. Uses static internal_state variable.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.

Function

Not reentrant because

Libraries

cal | oc

carg cargf cargl

casi n casinf casinl
casi nh casi nh casi nhl
catan catanf catanl
cat anh catanhf catanhl
cbrt cbrtf cbrtl
ccos ccosf ccosl
ccosh ccoshf ccoshl
ceil ceilf ceill
cexp cexpf cexpl
chdir

ci mag ci magf ci magl
cl eanup

clearerr

cl ock

clog clogf clogl

cl ose

conj conjf conjl

copysi gn copysi gnf
copysi gnl

cos cosf cosl
cosh coshf coshl

cpow cpowf cpow
cproj cprojf cprojl
creal crealf creall
csin csinf csinl
csi nh csinhf csinhl
csqrt csqrtf csqrtl
ctan ctanf ctanl
ctanh ctanhf ctanhl
ctine

difftime

div Idiv Ildiv

erf erfl erff

calloc uses static buffer management structures. See malloc (5).

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
(Not implemented)

Sets errno via calls to other functions.
Sets errno via calls to other functions.

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

Calls fclose. See (1)
Modifies iob[]. See (1)

Uses global File System Simulation buffer, _dbg_request

Sets errno via calls to other functions.

Calls _close

cosh calls exp(), which sets errno. If errno is discarded, cosh is

reentrant.
Sets errno via calls to other functions.

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Calls asctime

(Not implemented)

647

TASKING SmartCode - 8051 User Guide

Function

Not reentrant because

erfc erfcf erfcl
exit

exp expf expl
exp2 exp2f exp2
expnl expmif expmil
fabs fabsf fabsl
fcl ose
fdimfdinf fdim
f ecl ear except

f eget env

feget exceptfl ag
f egetround

f ehol dexcept

f eof

f er ai seexcept
ferror

f esetenv
fesetexceptfl ag
fesetround

f et est except

f eupdat eenv
fflush

fgetc fgetwe

f get pos

fgets fgetws
floor floorf floorl
frma fmaf frma
fmax frmaxf fmaxl
fmn fmnf fmnl
frod frnodf fnod
f open

fpcl assify
fprintf fwprintf
fputc fputwe

648

(Not implemented)

Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required.

Sets errno.

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)
Modifies iob[]. See (1).

Uses pointer to iob[]. See (1).
Sets the variable errno and uses pointer to iob[]. See (1) / (2).
Uses iob[]. See (1).

(Not implemented)

(Not implemented)

(Not implemented)

Uses iob[] and calls malloc when file open for buffered 10. See (1)

Uses iob[]. See (1).
Uses iob[]. See (1).

Function

Libraries

Not reentrant because

fputs fputws

fread

free

freopen

frexp frexpf frexp
fscanf fwscanf

f seek

f set pos

fstat

ftell

fwite

getc getwe

get char getwchar
get cwd

getenv

gets getws

gntine

hypot hypotf hypot
ilogb ilogbf ilogbl
maxabs

maxdi v

sal num i swal num

sal pha i swal pha

sascii iswascii
sbl ank i swbl ank
scntrl iswentrl
sdigit iswdigit
sfinite

sgraph i swgraph

sgreater

sgr eat er equal
si nf

sl ess

sl essequal

sl essgreater

Uses iob[]. See (1).

Calls fgetc. See (1).

free uses static buffer management structures. See malloc (5).
Modifies iob[]. See (1).

Uses iob[]. See (1)

Uses iob[] and calls _Iseek. Accesses ungetc|] array. See (1).
Uses iob[] and sets errno. See (1) / (2).

(Not implemented)

Uses iob[] and sets errno. Calls _Iseek. See (1) / (2).

Uses iob[]. See (1).

Uses iob[]. See (1).

Uses iob[]. See (1).

Uses global File System Simulation buffer, _dbg_request
Skeleton only.

Uses iob[]. See (1).

gmtime defines static structure

Sets errno via calls to other functions.

(Not implemented)

649

TASKING SmartCode - 8051 User Guide

Not reentrant because

Function

i sl oner isw ower
i snan

i snor mal

i sprint iswprint
i spunct iswpunct

sspace i swspace
sunor der ed

supper i swupper

swal num

swal pha
swentrl

swct ype
swdi gi t
swgr aph
sw ower

swpri nt

swpunct

swspace

swupper

swxditig

sxdigit iswxdigit

| dexp | dexpf | dexpl
| ganma | ganmaf
Ilrintf

Il round IIroundf

| ganmal
I'lrint Ilrintl

I'l roundl
| ocal econv

|l ocal tine
| og | ogf

| 0g10 | ogl0f
| oglp | oglpf

| ogl
| oglol
1 oglpl
| 0g2 | og2f | og2l
| ogb | oghf
I ongj np

Irint Irintf

| round | roundf

| ogbl

lrintl

| roundl

650

Sets errno. See (2).
(Not implemented)
(Not implemented)
(Not implemented)
N.A.; skeleton function

Sets errno. See (2).

Sets errno via calls to other functions.

(Not implemented)
(Not implemented)
(Not implemented)
(Not implemented)

(Not implemented)

Function

Not reentrant because

Libraries

| seek

| st at

mal | oc

nbl en

nmbrl en

nbrtocl6

nbrt oc32

nbrt owe

nbsi ni t

nmbsrt owcs

nbst owcs

nbt owc

menchr wrenchr
mencnp wrencnp
Mencpy wrencpy
nMenmove WTenmove
nmenset wrenset
nkti me

nmodf nodff nodfl
nan nanf nanl

near byi nt near byi nt f
near byi nt |

nextafter nextafterf
next afterl

nexttoward nexttowar df

next t owar d

of f set of

open

perror

pow powf pow
printf wprintf
put c putwc

put char putwchar
puts

gsort

qui ck_exi t

Calls _Iseek

(Not implemented)

Needs kernel support. See (5).

N.A., skeleton function
Sets errno.

Sets errno. Uses static internal_state variable.
Sets errno. Uses static internal_state variable.
Sets errno. Uses static internal_state variable.

Sets errno.
N.A., skeleton function
N.A., skeleton function

(Not implemented)
(Not implemented)

(Not implemented)

(Not implemented)

Calls _open

Uses errno. See (2)
Sets errno. See (2)
Uses iob[]. See (1)
Uses iob[]. See (1)
Uses iob[]. See (1)
Uses iob[]. See (1)

Calls _Exit.

651

TASKING SmartCode - 8051 User Guide

Function Not reentrant because

rai se Updates the signal handler table

rand Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

read Calls _read

real |l oc See malloc (5).

remai nder remai nderf (Not implemented)

r emai nder |

renove Uses global File System Simulation buffer, _dbg_request

renguo renguof renguol (Not implemented)

rename Uses global File System Simulation buffer, _dbg_request

rewi nd
rint rintf rintl

round roundf roundl
scal bl n scal bl nf scal bl nl
scal bn scal bnf scal bnl

scanf wscanf

set buf

setjnp
setlocal e

set vbuf

si gnal

signbit

sin sinf sinl

si nh sinhf sinhl
snprintf swprintf
sprintf

sqrt sqrtf sqrtl
srand

sscanf swscanf
st at

strcat wcscat
strchr wcschr
strcnp wescnp
strcoll wcscol
strcpy wescpy
strcspn wescspn

652

Eventually calls _Iseek
(Not implemented)
(Not implemented)

Uses iob[], calls _doscan. See (1).
Sets iob[]. See (1).

N.A.; skeleton function

Sets iob and calls malloc. See (1) / (5).
Updates the signal handler table

Sets errno via calls to other functions.
Sets errno. See (2).

Sets errno. See (2).

Sets errno. See (2).

See rand

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

Libraries

Function Not reentrant because

strerror -
strftime wesftine -
strlen wcsl en -
strncat wcsncat -
strncnp wesncnp -
strncpy wesncpy -
strpbrk wespbrk -
strrchr wesrchr -
strspn wesspn -
strstr wesstr -
strtod westod -
strtof wcst of -
strtoi max Sets errno via calls to other functions.

strtok wcst ok strtok saves last position in string in local static variable. This function
is not reentrant by design. See (4).

strtol wecstol Sets errno. See (2).
strtold westold -

strtoul wcstoul Sets errno. See (2).
strtoul |l westoul | Sets errno. See (2).
st rt oumax Sets errno via calls to other functions.

strxfrmwesxfrm -

system N.A; skeleton function

tan tanf tanl Sets errno. See (2).

tanh tanhf tanhl Sets errno via call to other functions.

t ganma t ganmaf tganmmal (Not implemented)

tinme Uses static variable which defines initial start time
tnpfile Uses iob[]. See (2).

t npnam Uses local buffer to build filename.

Function can be adapted to use user buffer. This makes the function
non ISO C. See (4).

toascii -
t ol ower -
t oupper -
towct rans -
t o ower -
t owupper -

653

TASKING SmartCode - 8051 User Guide

Function

Not reentrant because

trunc truncf truncl

unget ¢ unget wc

unl i nk

viprintf viwprintf
vfscanf vfwscanf
vprintf vwprintf
vscanf vwscanf
vsprintf vswprintf
vsscanf vswscanf
wert onmb

wesrt onbs

west oi max

west onbs

west oumax

wct ob

wct onb

wctrans

wet ype

wite

Table: C library reentrancy

(Not implemented)

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

Uses global File System Simulation buffer, _dbg_request
Uses iob[]. See (1).

Calls _doscan

Uses iob[]. See (2).

Calls _doscan

Sets errno.

Sets errno.

Sets errno. Uses static internal_state variable.
Sets errno.

Sets errno via calls to other functions.

N.A.; skeleton function

Sets errno via calls to other functions.

N.A.; skeleton function

Calls _write

Several functions in the C library are not reentrant due to the following reasons:

* Thei ob[] structure is static. This influences all 1/0O functions.

» The unget c[] array is static. This array holds the characters (one for each stream) when unget c()

is called.

» The variable er r no is globally defined. Numerous functions read or modify er r no

» _doprint and _doscan use static variables for e.g. character counting in strings.

» Some string functions use locally defined (static) buffers. This is prescribed by ANSI.

» mal | oc uses a static heap space.

The following description discusses these items in more detail. The numbers at the beginning of each
paragraph relate to the number references in the table above.

(1) iob structures

654

Libraries

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the i ob[] array. The functions which use elements of this array access these elements via pointers (
FILE *).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the i ob[] array. Currently, the

i ob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of

i ob[], itis apparent that the i ob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment. The library modules must use a process identification as an index
for determining which i ob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the i ob[] declaration problem is to declare the array static in one of the modules
which create a task. Thus there can be more than one i ob[] array is the system without having conflicts
at link time. This brings several restrictions: Only the module that holds the declaration of the statici ob[]

can use the standard file handles st di n, st dout and st der r (which are the first three entriesini ob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable er r no. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set

er r no already have a return type (this is the reason for using er r no) it is not possible to check successful
completion via the return type.

The library routines can set er r no to the values defined in er r no. h. See the file er r no. h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

er r no will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

er r no can be set to ERANGE by the following functions: exp(), strtol (),strtoul () andtan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and er r no is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asi n(), ! og(), pow() andsqrt().If the
arguments for these functions are out of their valid range (e.g.sqrt(-1)), errno is set to EDOM.

er rno can be setto ERR_POS by the file positioning functionsftel | (), fset pos() andf get pos().
(3) ungetc

Currently the ungetc buffer is static. For each file entry in the i ob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

655

TASKING SmartCode - 8051 User Guide

t npnan{) creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls. This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required for
calling library functions from an exception handler, another approach is required. For such a situation
it is of no use to allocate e.g. multiple i ob[] structures. In such a situation several pieces of code in
the library have to be declared 'atomic': this means that interrupts have to be disabled while executing
an atomic piece of code.

656

Chapter 12. List File Formats

This chapter describes the format of the assembler list file and the linker map file.

12.1. Assembler List File Format

The assembler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 5.5, Generating a List File.

The list file consists of a page header and a source listing.

Page header
The page header is repeated on every page:

TASKI NG Snart Code vx.yrz - 8051 assenbler Build yynmddqq
Title Page 1

ADDR CCDE CYCLES LINE SOURCE LI NE

The first line contains version information. The second line can contain a title which you can specify with
the assembler control $TI TLE and always contains a page number. The third line is empty and the fourth
line contains the headings of the columns for the source listing.

With the assembler controls $[NO| LI ST, $PAGELENGTH, $PAGEW DTH, $[NO| PAG NG, and with the
assembler option --list-format you can format the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CCDE CYCLES LINE SOURCE LI NE
1 ; Modul e start

0000 9 _main:

10 .using O
0000 7Frr 1 1 12 nov R7, #LOW _1str)
0002 7Err 1 2 13 nov R6, #H GH(_1str)
0004 12rrrr 2 4 14 gcal | _printf
0000 38 .ds 2

| RESERVED
0001

657

TASKING SmartCode - 8051 User Guide

ADDR This column contains the memory address. The address is a hexadecimal number
that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

CODE This is the object code generated by the assembler for this source line, displayed
in hexadecimal format. The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CYCLES The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

LINE This column contains the line number. This is a decimal number indicating each
input line, starting from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of the source line from the
assembly source file.

For the . SET and . EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

12.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (. obj) to output sections. Locate information is not
present, because that is not available for an 8051 project. External symbols are listed per space with their
absolute address, both sorted on symbol and sorted on address. For details on how to generate a map
file, see Section 6.10, Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see. To
specify the same for the global map file, use linker option --global-map-file-format. Both options have
the same defaults and accept the same arguments.

In Eclipse the linker map file (project. mapxm) is generated in the output directory of the build configuration,
usually Debug or Rel ease. You can open the map file by double-clicking on the file name.

658

List File Formats

[El myproject.mapxml = 0O |[g= Outline X i =0
(= Select table: | Link Result MRENE| Teel and Invocation
Processed Files
Link Result
~ Cross References
[in] File [in] Section [in] Size (MALU) [out] Offset [out] Section [out] Size (MAL) Undefined symbols
cstart.obj Sinterrupt_0 (21) 0x 00000003 ox0 Sinterrupt_0 (21) 0x00000003 Call Graph
_Exit.ob) _Exit (1117) 000000002 O _Exit (1177) Dx 00000002 v Overlay
init.obj __BORD (36) O 00000001 O __BORD (1200) Dx 00000001 Overlay: stack_data (1208)
_doprint_int.obj _BORD (302) 0x00000001 0x0 __BORD (1200) 0x 00000001 Paths
printf.obj __BORD (413) 000000001 0x0 __BORO (1200) 000000001 Overlay: stack_xdata (1209)
_iob.obj __BORD (442) 0x00000001 0x0 __BORD (1200) 0x00000001 Paths
fgetc.obj __BORO (456) 0x00000001 OxO __BORD (1200) 0%00000001 Remnoved Sections
fputc.obj __BORD (473) 000000001 O __BORD (1200) D 00000007
ungetc.obj __BORO (550) O 00000001 O __BORD (1200) Dx 00000001
_filbuf.obj __BORD (654) Oz 00000001 O __BORD (1200) Dx 00000001
_flsbuf.obj __BORD (807) O 00000001 Ok __BORD (1200) Ox 00000001
fclose.obj __BORD (841) 000000001 Ox __BORD (1200) Dx 00000001
fflush.obj __BORD (929) O 00000001 Ok __BORD (1200) Ox 00000001 Y]

Each page displays a part of the map file. You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

Icon Action Description

=) Back Goes back one page in the history list.

=y Forward Goes forward one page in the history list.

B Next Table Shows the next table from the drop-down list.

2 Previous Table Shows the previous table from the drop-down list.

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction.

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (. obj) to output sections.

[in] File The name of an input object file.

659

TASKING SmartCode - 8051 User Guide

[in] Section A section name and id from the input object file. The number between '()" uniquely
identifies the section.

[in] Size The size of the input section.

[out] Offset The offset relative to the start of the output section.

[out] Section The resulting output section name and id.

[out] Size The size of the output section.

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown.

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain . CALLS directives.

The following example is a part of a call graph in the textual version of the map file (. map):
__start [2,24]

I
+-- _main [2,22]
I
+-- _printf [2,20]
I

I

I

I

| +-- __doprint [2,18]

I I

| +-- _doprint_noarg.src:_$cocofun_1 [2, 2]
I I

| +-- _doprint_noarg.src:_$cocofun_2 [2, 2]
I I

| +-- __io_putc [2,16]

I I

[+-- _fputc [2,14]

I [

| | +-- __flsbuf [s0:2,12]

I [

| | | +-- _flsbuf.src:_$cocofun_12 *

660

List File Formats

| | |

| | +-- _flsbuf.src:_$cocofun_8 [2,4]

| | | |

| | | +-- _flsbuf.src:_$cocofun_18 *
| | | |

[[[+-- __INCI XD *

| | |

A * after a function name indicates that the call tree starting with this function is shown separately, with
a * in front of the function name.

A *in front of a function name indicates that the function is not considered a "root" in the call graph
since it is called by one or more other functions.

An additional R (not shown in this example) indicates this function is part of a recursive call chain. If
both a leaf and the root of a tree are marked this way, all nodes in between are in a recursive chain.

An'__INDIRECT__'entry (not shown in this example) indicates an indirect function call. It is not an
actual function. Each function listed as a caller of the __INDIRECT___ placeholder symbol places a call
through a function pointer. Each function listed as a callee of the __INDIRECT___ placeholder symbol
has its address taken (and used).

[] after a function contains information about the stack usage. The first field is the amount of stack
used by the function and the second field is the amount of stack used by the function including its
callees.

In the graphical version of the map file, you can expand or collapse a single node. Use the '/ = buttons
to expand/collapse all nodes in the call graph. Hover the mouse over a function (root, callee or node) to
see information about the stack usage.

]

S, _start

@ _init
4 @ _main
printf

stack: =l

- used by function: 2 cocofun_2
- used by function + callees: 20|cocofun_1
stack: s1

- used by function: 0
- used by function + callees: 0

Press 'F2' for focus,
4 @ _tisout

a @ _flsbuf.sre_Scocofun_9
= _flsbuf.src:_Scocofun_18
a @ _flsbufsre_Scocofun_8
= _flsbuf.src:_Scocofun_18
= _INCIXD

Icon Meaning Description

& Root

This function is the top of the call graph. If there are interrupt handlers, there
can be several roots.

661

TASKING SmartCode - 8051 User Guide

Icon Meaning Description

This function is referenced by several No leaf functions. Right-click on the
) Callee function and select Expand all References to see all functions that
reference this function. Select Back to Caller to return to the calling function.

@ Node A normal node (function) in the call graph.

This function calls a function which is listed separately in the call graph.
& Caller Right-click on the function and select Go to Callee to see the callee. Hover
the mouse over the function to see a popup with all callees.

Overlay

This part of the map file shows how the static stack is organized. This part also shows the locate overlay
information if you used overlay groups in the linker script file.

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+Isl (processor and memory info). You can print this information to a separate file with

linker option --Isl-dump.

You can expand or collapse a part of the information.

Locate Rules
This part of the map file shows the rules the linker uses to locate sections.

Address space The names of the address spaces as defined in the linker script file (*. | sl). The
names are constructed of the der i vat i ve name followed by a colon "', the cor e
name, another colon "' and the space name.

Type The rule type:
ordered/ conti guous/clustered/ unrestricted

Specifies how sections are grouped. By default, a group is 'unrestricted’ which
means that the linker has total freedom to place the sections of the group in the
address space.

absol ut e

The section must be located at the address shown in the Properties column.
ranged

The section must be located anywhere in the address ranges shown in the
Properties column; end addresses are not included in the range.

662

List File Formats

page

The sections must be located in some address range with a size not larger than
shown in the Properties column; the first number is the page size, the second part
is the address range restriction within the page.

ranged page

Both the ranged and the paged restriction apply. In the Properties column the
range restriction is listed first, followed by the paged restriction between parenthesis.
bal | ooned

After locating all sections, the largest remaining gap in the space is used completely
for the stack and/or heap.

Properties The contents depends on the Type column.

Prio The locate priority of the rule. A higher priority value gives a rule precedence over
a rule with a lower priority, but only if the two rules have the same type and the
same properties. The relative order of rules of different types or different properties
is not affected by this priority value. You can set the priority with the priority
group attribute in LSL

Sections The sections to which the rule applies;
restrictions between sections are shown in this column:

< ordered
| conti guous
+ clustered

For contiguous sections, the linker uses the section order as shown here. Clustered
sections can be located in any relative order.

Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the
optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

Section The name of the section which has been removed.

File The name of the input object file where the section is removed from.

Library The name of the library where the object file is part of.

Symbol The symbols that were present in the section.

Reason The reason why the section has been removed. This can be because the section

is unreferenced or duplicated.

663

TASKING SmartCode - 8051 User Guide

664

Chapter 13. Object File Formats

This chapter describes the format of several object files.

13.1. ELF/DWARF Object Format

The TASKING toolset for 8051 by default produces objects in the ELF/DWARF 3 format.
For a complete description of the ELF format, please refer to the Tool Interface Standard (TIS).

For a complete description of the DWARF format, please refer to the DWARF Debugging Information
Format Version 3. See http://dwarfstd.org/

The implementation of the ELF object format and the DWARF 3 debug information for the TASKING
toolset for 8051 is described in the TASKING 8051 ELF/DWARF Application Binary Interface (EDABI)
v1.2 [2018, TASKING].

13.2. Intel Hex Record Format

Intel Hex records describe the hexadecimal object file format for 8-bit, 16-bit and 32-bit microprocessors.
The hexadecimal object file is an ASCII representation of an absolute binary object file. There are six
different types of records:

» Data Record (8-, 16, or 32-bit formats)

» End of File Record (8-, 16, or 32-bit formats)

» Extended Segment Address Record (16, or 32-bit formats)
» Start Segment Address Record (16, or 32-bit formats)

» Extended Linear Address Record (32-bit format only)
 Start Linear Address Record (32-bit format only)

To generate an Intel Hex output file see linker option --output.

By default the linker generates records in the 32-bit format (4-byte addresses).

General Record Format

In the output file, the record format is:

‘: ‘ length ‘ offset | type ‘ content checksum

where:

is the record header.

665

http://dwarfstd.org/

TASKING SmartCode - 8051 User Guide

length

offset

type

content
checksum

666

is the record length which specifies the number of bytes of the content field. This
value occupies one byte (two hexadecimal digits). The linker outputs records of
255 bytes (32 hexadecimal digits) or less; that is, length is never greater than OxFF.

is the starting load offset specifying an absolute address in memory where the
data is to be located when loaded by a tool. This field is two bytes long. This field
is only used for Data Records. In other records this field is coded as four ASCII
zero characters ('0000").

is the record type. This value occupies one byte (two hexadecimal digits). The
record types are:

Byte Type Record Type

00 Data

01 End of file

02 Extended segment address (not used)
03 Start segment address (not used)

04 Extended linear address (32-bit)

05 Start linear address (32-bit)

is the information contained in the record. This depends on the record type.

is the record checksum. The linker computes the checksum by first adding the

binary representation of the previous bytes (from length to content). The linker

then computes the result of sum modulo 256 and subtracts the remainder from
256 (two's complement). Therefore, the sum of all bytes following the header is
zero.

Object File Formats

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant bytes (bits 16-31) of the absolute
address of the first data byte in a subsequent Data Record:

‘: ‘ 02 ‘ 0000 ‘ 04 ‘ upper_address checksum |

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) nodul o 4G

where:
address is the base address, where the two most significant bytes are the upper_address
and the two least significant bytes are zero.
offset is the 16-bit offset from the Data Record.
index is the index of the data byte within the Data Record (0 for the first byte).
Example:
: 020000040000FA
| | | _ checksum
| | |_ upper_address
| | |_ type
| |_ offset
| _ length

Data Record

The Data Record specifies the actual program code and data.

|: ‘ length | offset | 00 | data checksum |

The length byte specifies the number of data bytes. The linker has an option (--hex-record-size) that
controls the length of the output buffer for generating Data records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address specified in the Extended Address
Record it specifies an absolute address in memory where the data is to be located when loaded by a tool.

Example:

0F00200000232222754E00754F04AF4FAE4E22C3

| | | _ checksum
| || |_ data

| | |_ type

| |_ offset

| _ length

667

TASKING SmartCode - 8051 User Guide

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution start address.

‘: ‘ 04 ‘ 0000 ‘ 05 ‘ address checksum

With linker option --hex-format=S you can prevent the linker from emitting this record.
Example:

: 0400000500001604DD

| | | _ checksum
| | |_ address

|

| _

I

| |_ type

| _ offset
| engt h

End of File Record

The hexadecimal file always ends with the following end-of-file record:

: 00000001FF
| | |_ checksum

I
| | |_ type
| |_ offset

| _ length

13.3. Motorola S-Record Format

To generate a Motorola S-record output file see linker option --output.
By default, the linker produces output in Motorola S-record format with three types of S-records (4-byte

addresses): S0, S3 and S7. Depending on the size of addresses you can force other types of S-records.
They have the following layout:

SO - record

‘SO ‘ length ‘ 0000 comment checksum

A linker generated S-record file starts with an SO record with the following contents:

I k51
S00700006C6B3531BB

The SO record is a comment record and does not contain relevant information for program execution.

where:

668

Object File Formats

SO0 is a comment record and does not contain relevant information for program
execution.

length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

comment contains the name of the linker.

checksum is the record checksum. The linker computes the checksum by first adding the

binary representation of the bytes following the record type (starting with the length
byte) to just before the checksum. Then the one's complement is calculated of this
sum. The least significant byte of the result is the checksum. The sum of all bytes
following the record type is OXFF.

S1/S2/S3-record

This record is the program code and data record for 2-byte, 3-byte or 4-byte addresses respectively.

‘Sl ‘ length ‘ address ‘ code bytes | checksum ‘
‘SZ ‘ length ‘ address ‘ code bytes | checksum ‘
’SS ‘ length ‘ address ’ code bytes | checksum ‘
where:
S1 is the program code and data record for 2-byte addresses.
S2 is the program code and data record for 3-byte addresses.
S3 is the program code and data record for 4-byte addresses (this is the default).
length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).
address contains the code or data address.
code bytes contains the actual program code and data.
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S3070000FFFE6E6825
|] [| _ checksum
|] | _ code
| |_ address
| _ length

S7/S8/S9 -record

This record is the termination record for 4-byte, 3-byte or 2-byte addresses respectively.

‘S? ‘ length ‘ address ‘ checksum

669

TASKING SmartCode - 8051 User Guide

‘SS ‘ length ‘ address ‘ checksum |
‘89 ‘ length ‘ address ‘ checksum ‘
where:
S7 is the termination record for 4-byte addresses (this is the default). S7 is the
corresponding termination record for S3 records.
S8 is the termination record for 3-byte addresses. S8 is the corresponding termination
record for S2 records.
S9 is the termination record for 2-byte addresses. S9 is the corresponding termination
record for S1 records.
length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).
address contains the program start address.
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S70500001604E0
|] | _checksum
| |_ address
| _ length

13.4. Binary Object Format

With linker option --chip-output=:BIN you tell the linker to produce a binary output file for each memory
chip.

The data of a binary output file represents the first MAU (minimal addressable unit) in the memory (at
offset zero) up to the last data MAU of the application in the memory. Any memory location included in
the file that is not occupied by application data is set to zero.

670

Chapter 14. Linker Script Language (LSL)

To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information. The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

14.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack.

This specification is normally written by TASKING. TASKING supplies LSL files in the i ncl ude. | sl
directory. The architecture definition of the LSL file should not be changed by you unless you also modify
the core's hardware architecture. If the LSL file describes a multi-core system an architecture definition
must be available for each different type of core.

See Section 14.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

TASKING provides LSL descriptions of supported derivatives, along with "SFR files", which provide easy
access to registers in /O sub-systems from C and assembly programs. When you build an ASIC or use
a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

671

TASKING SmartCode - 8051 User Guide

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 14.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 14.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 14.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

 convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory,

672

Linker Script Language (LSL)

form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 14.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_nane

{

/1 Specification core architecture
}
derivative derivative_nane
{

/1 Derivative definition
}
processor processor_nane
{

/'l Processor definition
}

menory and/or bus definitions

section_| ayout space_nanme

{
}

/'l section placenent statenments

14.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension . | sl . Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

14.2.1. Preprocessing

When the linker loads an LSL file, the linker first processes it with a C-style prepocessor. As such, it strips
C and C++ comments. Lines starting with the # character are taken as commands for the preprocessor.
You can use the standard ISO C99 preprocessor directives, including:

#include "file"
#include <file>

Preprocess and include file file at this point in the LSL file.

For example:

673

TASKING SmartCode - 8051 User Guide

#include "arch.Isl"

Preprocess and include the file ar ch. | sI at this point in the LSL file.

#i f condition

#el se

#endi f

If the condition evaluates to a non-zero value, copy the following lines, up to an #el se or #endi f
command, skip lines between #el se and #endi f, if present. If the condition evaluates to zero, skip the

lines up to the #el se command, or #endi f if no #el se is present, and copy the lines between the
#el se and #endi f commands.

#i fdef identifier
#el se
#endi f

Same as #i f, but with def i ned(i denti fi er) as condition.

#error text

Causes a fatal error the given message (optional).

14.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A::=B = Aisdefined as B

A::=BC = Aisdefined as B and C; B is followed by C

A::=B| C = AisdefinedasBorC

0I1 = zero or one occurrence of B

>70 = zero of more occurrences of B

>71 = one of more occurrences of B

| DENTI FI ER = acharacter sequence starting with 'a’-'z', 'A'-'Z' or '_". Following
characters may also be digits and dots "'

STRI NG = sequence of characters not starting with \n, \r or \t

DQSTRI NG = " STRING " (double quoted string)

CCT_NUM = octal number, starting with a zero (06, 045)

DEC_NuUM = decimal number, not starting with a zero (14, 1024)

674

Linker Script Language (LSL)

HEX_NUM = hexadecimal number, starting with '0x' (0x0023, 0xFF00)

OCT_NUM DEC_NUMand HEX_NUMcan be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/ * */'or C++ style '/ /.

14.2.3. Identifiers and Tags

arch_name = | DENTI FI ER
bus_nane = | DENTI FI ER
core_nane = | DENTI FI ER
derivative_nane = | DENTI FI ER
file_nane = DQSTRI NG
group_nane = | DENTI FI ER
heap_nane = section_nane
map_narme = | DENTI FI ER
mem_nane = | DENTI FI ER
proc_nane = | DENTI FI ER
section_name = DQSTRI NG
space_nane = | DENTI FI ER

st ack_nane = section_nane
synbol _nane = DQSTRI NG

tag attr = (tag<, tag>""9)
t ag = tag = DQSTRI NG

A tag is an arbitrary text that can be added to a statement.

14.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

nunber OCT_NUM
DEC_NUM

HEX_NUM

nunber

synbol _nane
unary_op expr

expr binary_op expr
expr ? expr : expr
(expr)
function_call

expr

unary_op ! /1 1ogical NOT
~ /1 bitw se conpl emrent

- /1 negative val ue

675

TASKING SmartCode - 8051 User Guide

N /1 exclusive OR
* /1 multiplication
/ /1 division

bi nary_op

I

I

| % /1 nodul us

| + /] addition

| - /1 subtraction
| >> /1 right shift
| << /1 left shift
| == /1 equal to

| = /1 not equal to
I

I

I

I

I

I

I

I

> /1 greater than

< /1 less than

>= [/ greater than or equal to
<= /] less than or equal to

& /1 bitwi se AND
| /1 bitw se OR
&% /! logical AND
|] /1 logical OR

14.2.5. Built-in Functions
function_call = absolute (expr)

| addressof (addr_id)

| checksum (checksum al go , expr , expr)
| exists (section_nane)
| max (expr , expr)
| min (expr , expr)
| sizeof (size_id)

addr _id .= sect : section_nane
| group : group_nane
| mem: nmem . nane

checksum al go 1= crc32w

size_id sect : section_nane

| group : group_nane
| mem: nmem . nane

» Every space, bus, memory, section or group you refer to, must be defined in the LSL file.

» The addr essof () and si zeof () functions with the gr oup or sect argument can only be used in
the right hand side of an assignment. The si zeof () function with the nemargument can be used
anywhere in section layouts.

» The checksun() function can only be used in a st ruct statement.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

676

Linker Script Language (LSL)

absolute()
i nt absolute(expr)
Converts the value of expr to a positive integer.

absol ute("l abel A"-"I abel B")

addressof()
int addressof(addr_id)

Returns the offset of addr_id, which is a named section, group, or memory in the address space of the
section layout. If the referenced object is a group or memory, it must be defined in the LSL file. To get
the offset of the section with the name asect :

addressof (sect: "asect")

This function only works in assignments and st r uct statements.

checksum()
int checksum(checksum al go, expr, expr)

Returns the computed checksum over a contiguous address range. The first argument specifies how the
checksum must be computed (see below), the second argument is an expression that represents the
start address of the range, while the third argument represents the end address (exclusive). The value
of the end address expression must be strictly larger than the value of the start address (i.e. the size of
the checksum address range must be at least one MAU). Each address in the range must point to a valid
memory location. Memory locations in the address range that are not occupied by a section are filled with
zeros.

The only checksum algorithm (checksum_algo) currently supported is crc32w. This algorithm computes
the checksum using a Cyclic Redundancy Check with the "CRC-32" polynomial 0OXEDB88320. The input
range is processed per 4-byte word. Those 4 bytes are passed to the checksum algorithm in reverse
order if the target architecture is little-endian. For big-endian targets, this checksum algorithm is equal to
a regular byte-wise CRC-32 implementation. Both the start address and end address values must be
aligned on 4 MAUs. The behavior of this checksum algorithm is undefined when used in an address space
that has a MAU size not equal to 8.

checksum(crc32w,
addressof (mem foo),
addressof (mremfoo) + sizeof(nemfoo))

This function only works in st r uct statements.

exists()

int exists(section_nane)

677

TASKING SmartCode - 8051 User Guide

The function returns 1 if the section section_name exists in one or more object file, O otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.
To check whether the section mysect i on exists in one of the object files that is specified to the linker:

exi sts("nysection")

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the highest value of two symbols:
max("syml" , "synmR")

min()

int mn(expr, expr)

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:
mn("synml" , "symR")

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

si zeof (sect: "asection")

The gr oup and sect arguments only works in assignments and st r uct statements. The memargument
can be used anywhere in section layouts. If the referenced object is a group or memory, it must be
defined in the LSL file.

14.2.6. LSL Definitions in the Linker Script File

<definition>>"1

description
definition = architecture_definition
| derivative_definition

| board_spec

| section_definition

| section_setup

» Atleast one ar chi t ect ure_defi ni ti on must be present in the LSL file.

678

Linker Script Language (LSL)

14.2.7. Memory and Bus Definitions

0|1{

mem def :1= nmenory nem.name <tag_attr> <mem descr : >>70 }

 Amem def defines a memory with the mem_name as a unique name.
mem descr 1= type = <reserved>’?
mu = expr

size = expr

speed = nunber
priority = nunber
exec_priority = nunber

mem t ype

fill <= fill _val ues>%1t
wite_unit = expr
mappi ng

 Anem def contains exactly onet ype statement.

* Amem def contains exactly one mau statement (non-zero size).

« Anem def contains exactly one si ze statement.

 Anmem def contains zero or one pri ority (or speed) statement (if absent, the default value is 1).
 Anem def contains zero or one exec_pri ority statement.

* Amem def contains zero oronefil | statement.

* Amem def contains zero oronewri te_unit statement.

« Anem def contains at least one mappi ng

mem_type o= rom /] attrs = rx
| ram /] attrs =rw
| nvram [l attrs = rwx
| bl ockram
fill_val ues D= expr
| [expr <, expr>70]
bus_def ::= bus bus_nane { <bus_descr ;> }

* Abus_def statement defines a bus with the given bus_nane as a unique name within a core
architecture.

bus_descr u =
dth = expr // bus width, nr
/1 of data bits
mappi ng /1 legal destination
/1 'bus' only

679

TASKING SmartCode - 8051 User Guide

» The mau and wi dt h statements appear exactly once in a bus_descr . The default value for wi dt h is
the mau size.

The bus width must be an integer times the bus MAU size.
e The MAU size must be non-zero.

» A bus can only have a nappi ng on a destination bus (through dest = bus:).

mappi ng map <map_nane>°'1 (map_descr <, map_descr>>7C)
map_descr ;.= dest = destination
dest _dbits = range
dest _offset = expr
size = expr

src_dbits = range
src_offset = expr
reserved

priority = number
exec_priority = nunber
tag

» A map_descr requires at least the si ze and dest statements.

 Amap_descr contains zero or one pri ori ty statement (if absent, the default value is 0).
* A map_descr contains zero or one exec_pri ori ty statement.

» Each map_descr can occur only once.

» You can define multiple mappings from a single source.

» Overlap between source ranges or destination ranges is not allowed.

» Ifthe src_dbi ts ordest _dbits statement is not present, its value defaults to the wi dt h value if
the source/destination is a bus, and to the nau size otherwise.

» The r eser ved statement is allowed only in mappings defined for a memory.
destination ! = space : space_nane
| bus : <proc_nane |
core_nane :>%1 pus_nane
» Aspace_nane refers to a defined address space.
* Aproc_nane refers to a defined processor.

» Acore_nane refers to a defined core.

¢ Abus_nane refers to a defined bus.

The following mappings are allowed (source to destination)

680

Linker Script Language (LSL)

* space => space
e space => bus
* bus => bus
e memory => bus
range D= expr .. expr

» With address ranges, the end address is not part of the range.

14.2.8. Architecture Definition

architecture_definition
::= architecture arch_nane
<(paranmeter_list)>01
<ext ends arch_nane
<(argument _|ist)>01 5011
{ <arch_spec>>" }

 Anarchitecture_definition defines a core architecture with the given ar ch_nane as a unique
name.

» Atleast one space_def and at least one bus_def have to be present in an
architecture_definition.

e Anarchitecture_definitionthatusesthe ext ends construct defines an architecture that inherits
all elements of the architecture defined by the second ar ch_nan®e. The parent architecture must be
defined in the LSL file as well.

parameter_li st .= parameter <, paraneter>>"

par anet er | DENTI FI ER <= expr>°?

0

argument _I i st expr <, expr>>7

arch_spec .= bus_def
| space_def
| endi anness_def
space_def .= space space_name <tag attr>"! { <space descr;>>7 }

» Aspace_def defines an address space with the given space_nane as a unique name within an
architecture.

space_descr space_property ;
section_definition //no space ref

reserved_range

space_property id = nunber // as used in object
mau = expr

align = expr

681

TASKING SmartCode - 8051 User Guide

copy_t abl e_def
start _address

mappi ng

| page_size = expr <[range] <| [range]>"%0I1
| page

| direction = direction

| stack_def

| heap_def

I

I

I

* Aspace_def contains exactly one i d and one mau statement.
» Aspace_def contains at most one al i gn statement.

» Aspace_def contains at most one page_si ze statement.

» Aspace_def contains at least one nappi ng.

st ack_def ::= stack stack_nane (stack_heap_descr
<, stack_heap_descr >0)

» Astack_def defines a stack with the st ack_nan® as a unique name.

heap_def ::= heap heap_nane (stack_heap_descr
<, stack_heap_descr >0)

* A heap_def defines a heap with the heap_nane as a unigue name.

st ack_heap_descr nmn_size = expr

grows = direction
align = expr

attributes
tag

* The m n_si ze statement must be present.
e The mi n_si ze value must be 1 or greater.
» You can specify at most one al i gn statement and one gr ows statement.

direction .= low_to_high
| high_to_l ow

« If you do not specify the gr ows statement, the stack and heap grow | ow- t o- hi gh.

copy_t abl e_def .= copytable <(copy_table_descr
<, copy_table_descr >>0)>0l1

» Aspace_def contains at most one copyt abl e statement.

» Exactly one copy table must be defined in one of the spaces.

682

Linker Script Language (LSL)

copy_tabl e_descr align = expr

| copy_unit = expr

| dest <space_nane>°'! = space_nane

| page

| tag

* The copy_uni t is defined by the size in MAUs in which the startup code moves data.

» The dest statementis only required when the startup code initializes memory used by another processor
that has no access to ROM.

* A space_nane refers to a defined address space.

start_addr ::= start_address (start_addr_descr
<, start_addr_descr>"")

start _addr_descr ::= run_addr = expr
| synbol = synbol _nane

» Asynbol _nane refers to the section that contains the startup code.

501

reserved_range ;.= reserved <tag_attr expr .. expr ;
» The end address is not part of the range.
endi anness_def .. = endi anness { <endi anness_type; > }
endi anness_t ype .= big

| little

14.2.9. Derivative Definition

derivative definition
::= derivative derivative_nane
<(paraneter list)>01
<extends derivative _name <(argument |ist)>01
<, derivative name <(argunent_|ist)>01>>70 01
{ <derivative_spec>" }

 Aderivative_definition defines a derivative with the given deri vati ve_nane as a unique
name.

derivative_spec = core_def

| bus_def

| mem def

| section_definition // no processor nane
| section_setup

cor e_def ::= core core_nane { <core_descr ;>"0}

* Acore_def defines a core with the given cor e_nane as a unique name.

683

TASKING SmartCode - 8051 User Guide

» Atleast one cor e_def must be presentinaderivati ve_definition.

core_descr ::= architecture = arch_nane
<(argunent _list)>01
| copytabl e_space <core_nane
| endi anness = (endi anness_type
<, endi anness_type>"=)
| inport core_nane
| space_id_offset = nunber

:>01 space_nanme

* An ar ch_narne refers to a defined core architecture.
» Exactly one ar chi t ect ur e statement must be presentin a cor e_def .

» Exactly one copyt abl e_space statement must be presentin a cor e_def, or in exactly one space
in that core, a copyt abl e statement must be present.

14.2.10. Processor Definition and Board Specification

boar d_spec ;= proc_def
| bus_def
| mem def
proc_def .= processor proc_nane
{ proc_descr ; }
proc_descr .= derivative = derivative_nane

<(argunent _list)>01
» Aproc_def defines a processor with the pr oc_nan®e as a unique name.

* If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

e Aderivative_nane refers to a defined derivative.

» Aproc_def contains exactly one deri vat i ve statement.

14.2.11. Section Setup

section_setup space_ref <tag attr>0?
{ <section_setup_iten>0 }

section_setup

section_setup_item
;= reserved_range

stack_def ;

heap_def ;

copy_tabl e_def ;

start _address ;

ref erence_space_restriction ;

nodi fy |inktime_nodification

684

Linker Script Language (LSL)

ref erence_space_restriction
.= prohibit_references_to space_ref
<, space_ref >

I'inktinme_nodification
c:= dinput (input_mnodifier <, input_nodifi er>>70)
{ <sel ect_section_statenent ; >>=0 }
i nput_nodi fier space = space_ref
attributes = < <+/-> attribute>™

copy
nocopy

e Ani nput _nodi fi er contains at most one space statement.

* Aninput _nodi fier contains at most one att ri but es statement.

14.2.12. Section Layout Definition
section_definition ::= section_| ayout <space_ref>°"1
<(space_l ayout _properties)>01
{ <section_statement>""}
» A section definition inside a space definition does not have a space_r ef .

« All global section definitions have a space_r ef .

space_r ef .= <proc_nane>"! : <core_nanme>0l?!
space_name <| space_name>>"°

« If more than one processor is present, the pr oc_name must be given for a global section layout.

« If the section layout refers to a processor that has more than one core, the cor e_namne must be given
in the space_ref.

* A proc_nane refers to a defined processor.
» A core_nane refers to a defined core.
* A space_nane refers to a defined address space.

space_| ayout _properties
::= space_| ayout _property <, space_|ayout_ property >
space_| ayout _property
;.= locate_direction

| tag
|l ocate direction ::= direction = direction
direction = low_to_high

| high_to_low

685

TASKING SmartCode - 8051 User Guide

» A section layout contains at most one di r ect i on statement.

« If you do not specify the di r ect i on statement, the locate direction of the section layout is
| owt o- hi gh.

section_stat ement
::= sinple_section_statenent ;
| aggregate_section_stat enent

si mpl e_secti on_st at ement
: assi gnnent

sel ect _secti on_st at ement

speci al _secti on_st at ement

mencopy_st at enent

assi gnnent .= synbol _name assign_op expr

assi gn_op HHE
sel ect _section_statenment
.= select <ref _tree>%?! <section_nanme>%1
<section_sel ecti ons>1

» Eitherasecti on_nane or at least one secti on_sel ecti on must be defined.

section_sel ections

(section_selection
<, section_sel ection>"")

section_sel ection
c:= attributes = < <+|-> attribute>>

| tag
 +attribute means: select all sections that have this attribute.
« -attribute means: select all sections that do not have this attribute.
speci al _section_st at enent
::= heap heap_nane <stack_heap_nods>?1
| stack stack_nane <stack_heap_nods>?1!
| copytable
| reserved section_nane <reserved_specs>1

» Special sections cannot be selected in load-time groups.

st ack_heap_nods ::= (stack_heap_nod <, stack_heap_nod>""C)
st ack_heap_nod 1= size = expr
| tag

reserved_specs (reserved_spec <, reserved_spec>""C)

686

reserved_spec

Linker Script Language (LSL)

attributes

fill _spec

size = expr

alloc_all owed = absolute | ranged

» Ifareserved section has attributes r, rw, X, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no

image).

mencopy_st at ement

mencopy_spec =

nencopy section_nane
(mentopy_spec <, mentopy_spec>’l1)

nmenory = nenory_reference
fill_spec

« A menctopy statement must contain exactly one menor y statement.

* A menctopy statement can contain at mostone fil | _spec.
fill_spec o= fill = fill _values
fill _val ues D= expr

[expr <, expr>>70]

aggr egat e_secti on_st at enent

group_descr D=

{ <section_statenent>"" }
group_descr

i f _statenent
section_creation_statenent
struct _st at enent

>O| 1 >0| 1

group <group_nane <(group_specs)
section_st at ement

» For every group with a name, the linker defines a label.

» No two groups for address spaces of a core can have the same gr oup_nane.

gr oup_specs

group_spec e

group_spec <, group_spec >°

group_al i gnment
attributes

copy

nocopy

group_| oad_addr ess

fill <= fill_values>%1t
group_page
group_run_address
group_type

al | ow cross_references

687

TASKING SmartCode - 8051 User Guide

| priority = nunber

| tag
» The al | ow cross-r ef er ences property is only allowed for overlay groups.
» The copy and nocopy properties cannot be applied both to the same group.
» Sub groups inherit all properties from a parent group.
group_al i gnment ::= align = expr

attributes = <attribute>"!

attributes

/1 readabl e sections

/1 writable sections

/1 execut abl e code sections
/] initialized sections

/] scratch sections

/1 blanked (cleared) sections
/] protected sections

TCow—XxXs =

attribute

group_| oad_address
::= | oad_addr <= | oad_or_run_addr>%1

group_page .= page <= expr>l?

| page_size = expr <[range] <| [range]>>"90l1

run_addr <= | oad_or_run_addr>%1

group_run_address ::

:= clustered
| contiguous
| ordered
| overlay

group_type

» For non-contiguous groups, you can only specify gr oup_al i gnnent and attri but es.
» The over | ay keyword also sets the cont i guous property.
» The cl ust er ed property cannot be set together with cont i guous or or der ed on a single group.

| oad_or _run_addr ::= addr_absol ute
| addr_range <| addr_range>>"°

addr _absol ute D= expr
| menmory_reference [expr]

» An absolute address can only be set on ordered groups.

addr _r ange D expr .. expr]

=
| menory_reference
| menmory_reference [expr .. expr]

688

Linker Script Language (LSL)

» The parent of a group with an addr _r ange or page restriction cannot be or der ed, cont i guous or
cl ustered.

» The end address is not part of the range.
nmemory reference ::= mem: <proc_nane :>’'' nemnane </ map_name>0?
* A proc_nane refers to a defined processor.
« A nem_nane refers to a defined memory.
* A map_nane refers to a defined memory mapping.

i f_statenent o= if (expr) section_statenent
<el se section_statenent>01

section_creation_statenent
;= section section_nane (section_specs)
{ <section_statenent2>>0}

section_specs .= section_spec <, section_spec >
secti on_spec attributes
fill _spec

size = expr

bl ocksi ze = expr
overflow = secti on_nane
tag

section_statenent 2
: sel ect _section_statenent ;

group_descr?2

{ <section_statenment2>""0 }

group_descr2 ::= group <group_nanme>l1
(group_specs2)
section_statenment 2

0

group_specs2 group_spec2 <, group_spec2 >>°

group_spec?2 group_al i gnnent
attributes

| oad_addr
nocopy

tag

struct _stat enent
::= struct { <struct_item™ }

struct_item ;= expr : nunber

689

TASKING SmartCode - 8051 User Guide

14.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol. Symbol references are
only allowed in symbol assignments and st r uct statements.

14.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
ext ends
endi anness
bus
mau
wi dt h
map
space
id
mau
align
page_si ze
page
direction
st ack
m n_si ze
gr ows
align
fixed
attributes
heap
m n_si ze
gr ows
align
fixed
attributes
copyt abl e
align
copy_uni t
dest
page
reserved
start_address
run_addr
synbol
map

690

big little

low to_high high_to_Iow

low to_high high_to_Iow

low to_high high_to_Iow

b

Linker Script Language (LSL)

map
dest bus space
dest _dbits
dest _of fset
si ze
src_dbits
src_of f set
priority
exec_priority

14.4.1. Defining an Architecture

With the keyword ar chi t ect ur e you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

archi tecture nane

{
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

definitions

architecture name_chil d_arch extends name_parent _arch

{
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture. You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

definitions

architecture name_child_arch (parni, par m2=1)
ext ends nanme_parent _arch (argunents)

{
}

definitions

14.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the wi dt h statements.

691

TASKING SmartCode - 8051 User Guide
» The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus. This field is required
and must be non-zero.

» The wi dt h field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

» The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 14.4.4, Mappings.

bus bus_nane

{

mau = 8;

wi dth = 8;

map (map_description);
}

14.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

» Thei d field defines how the addressing space is identified in object files. In general, each address
space has a unique ID. The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

» The nau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required
and must be non-zero.

* The al i gn value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUSs.

* The page_si ze field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 14.8.2, Creating and Locating
Groups of Sections.

» With the optional di r ect i on field you can specify how all sections in this space should be located.
This can be either from | ow_t o_hi gh addresses (this is the default) or from hi gh_t o_| owaddresses.

» The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 14.4.4, Mappings.

Stacks and heaps
» The st ack keyword defines a stack in the address space and assigns a hame to it. The architecture

definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the st ack keyword in Section 14.8.3, Creating or Modifying Special Sections.

692

Linker Script Language (LSL)

The stack is described in terms of a minimum size (m n_si ze) and the direction in which the stack
grows (gr ows). This can be either from | ow_t o_hi gh addresses (stack grows upwards, this is the
default) or from hi gh_t o_| owaddresses (stack grows downwards). The mi n_si ze is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword f i xed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

A stack may have an at t ri but es property with value b. Such a stack must be cleared at program
startup. No other attributes are allowed.

Optionally you can specify an alignment for the stack with the argument al i gn. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

» The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 14.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 14.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

Copy tables

» The copyt abl e keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code. You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument al i gn. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_uni t argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table. The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

Reserved address ranges
» Thereser ved keyword specifies to reserve a part of an address space even if not all of the range is

covered by memory. See also the r eser ved keyword in Section 14.8.3, Creating or Modifying Special
Sections.

693

TASKING SmartCode - 8051 User Guide

Start address

The st art _addr ess keyword specifies the start address for the position where the C startup code is
located. When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The synmbol argument specifies the name of the label in the application code that should be located
at the specified start address. The synbol argument is required. The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the r un_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_nanme

{

}

id=1;

mau = 8;

align = 8;

page_size = 1;

stack nanme (mn_size = 1k, grows = |ow_to_high);
reserved start_address .. end_address;
start_address (run_addr = 0x0000,

symbol = "start_| abel")
map (map_description);

14.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

space => space
space => bus
bus => bus

memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

694

Linker Script Language (LSL)

» The src_of f set argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

» The si ze argument specifies the number of addresses that are mapped. This argument is required.

* The dest _of f set argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (sr c_dbi t s =begi n. . end) and the
range of destination data lines you want to map them to (dest _dbits =first.. | ast).

* The src_dbi t s argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

» The dest _dbi t s argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

A mapping can optionally have a name which can be referenced in an address assignment.

If you define a memory and the memory mapping must not be used by default when locating sections in
address spaces, you can specify the r eser ved argument. This marks all address space areas that the
mapping points to as reserved. If a section has an absolute or address range restriction, the reservation
is lifted and the section may be located at these locations. This feature is only useful when more than
one mapping is available for a range of memory addresses, otherwise the nenor y keyword with the same
name would be used.

For example:

menory Xxrom

{
mau = 8§;
size = 1M
type = rom
map cached (dest=bus: spe: fpi _bus, dest_offset=0x80000000,
size=1lM;
map not _cached (dest=bus: spe: fpi _bus, dest_offset=0xa0000000,
size=1lM reserved);
}

Mapping priority

If you define a memory you can set a locate priority on a mapping with the keywords pri ority and
exec_pri ority.The values of these priorities are relative which means they add to the priority of
memories. Whereas a priority set on the memory applies to all address space areas reachable through
any mapping of the memory, a priority set on a mapping only applies to address space areas reachable
through the mapping. The memory mapping with the highest priority is considered first when locating. To
set only a priority for non-executable (data) sections, add a pri ori t y keyword with the desired value
and an exec_pri ority setto zero. To set only a priority for executable (code) sections, simply set an
exec_priority keyword to the desired value.

695

TASKING SmartCode - 8051 User Guide

The default for a mapping pri ori ty is zero, while the default for exec_pri ori ty is the same as the
specified pri ori ty.If you specify a value for pri ori ty in LSL it must be greater than zero. A value
for exec_pri ori ty must be greater or equal to zero.

For more information about priority values see the description of the memory pri ori ty keyword.

nmenory dspram

{
mau = 8;
size = 112k;
type = ram
map (dest=bus:tcO: fpi _bus, dest_offset=0xd0000000,
size=112k, priority=8, exec_priority=0);
map (dest=bus:sri, dest_offset=0x70000000,
si ze=112Kk);
}

From space to space

If you map an address space to another address space (nesting), you can do this by mapping the subspace
to the containing larger space. In this example a small space of 64 KiB is mapped on a large space of 16
MB.

space smal |
{
id=2;
mau = 4,
map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);
}

From space to bus
All spaces that are not mapped to another space must map to a bus in the architecture:

space | arge

{
id=1;
mau = 4,
map (src_offset = 0, dest_offset = 0,
dest = bus: bus_nane, size = 16M);
}

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i _bus. This internal bus
resides on a core called nycor e. The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords sr c_dbi t s and dest _dbi t s specify which source data lines are
mapped on which destination data lines.

696

Linker Script Language (LSL)

architecture nycore

{
bus i _bus
{
mu = 4,
}
space i _space
{
map (dest=bus:i_bus, size=256);
}
}
bus e_bus
{
mau = 16;
wi dth = 16;
map (dest = bus:nycore:i_bus, src_dbits = 0..7, dest_dbits =0..7)
}

It is not possible to map an internal bus to an external bus.

14.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
ext ends
core
architecture
i mport
space_i d_of f set
copyt abl e_space
bus
mau
wi dt h
map
menory
type reserved rom ram nvram bl ockram
mau
si ze
speed
priority
exec_priority
fill
wite_unit
map

697

TASKING SmartCode - 8051 User Guide

section_| ayout
section_setup

map
dest bus space
dest dbits
dest of fset
size
src_dbits
src_of f set
priority
exec_priority
reserved

14.5.1. Defining a Derivative

With the keyword der i vat i ve you define a derivative and assign a unique name to it. The name is used
to refer to it at other places in the LSL file:

derivative nane

{
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in one or more parent derivatives and extend this with a child derivative that contains specific features.
The child inherits all features of the parent (cores and memories). With the keyword ext ends you create
a child derivative:

definitions

derivative nane_child_deriv extends nane_parent_derivs

{
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative. You can use them in any expression
within the derivative definition.

definitions

derivative nane_child_deriv (parndl, parn2=1)
ext ends name_parent _deriv (argunents)
{

}

definitions

14.5.2. Instantiating Core Architectures
With the keyword cor e you instantiate a core architecture in a derivative.

» With the keyword ar chi t ect ur e you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

698

Linker Script Language (LSL)

For example, if you have two cores (called nycor e_1 and nycor e_2) that have the same architecture
(called nycor ear ch), you must instantiate both cores as follows:

core nycore_1

{

architecture = mycorearch;
}
core nycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycor ear chl expects two parameters which are used in the architecture
definition:

core nycore

{
}

architecture = mycorearchl (1, 2);

With the keyword i nport you can combine multiple cores with the same architecture into a single link
task. The imported cores share a single symbol namespace.

The address spaces in each imported core must have a unique ID in the link task. With the keyword
space_i d_of f set you specify for each imported core that the space IDs of the imported core start
at a specific offset.

With the keyword copyt abl e_space you can specify that writable sections for a core must be initialized
by using the copy table of a different core.

core nycore_1

{
architecture = nycorearch;
space_id_offset = 100; // add 100 to all space IDs in
/1l the architecture definition
copyt abl e_space = mycore: nyspace; // use copytable fromcore mycore
}
core nycore_2
{
architecture = nycorearch;
space_i d_offset = 200; // add 200 to all space IDs in
/1l the architecture definition
copyt abl e_space = mycore: nyspace; // use copytable fromcore mycore
}

core nycore

{

architecture = nycorearch;
i mport mycore_1; // add all address spaces of nycore_1 for |inking

699

TASKING SmartCode - 8051 User Guide

i mport nycore_2; // add all address spaces of nycore_2 for |inking

14.5.3. Defining Internal Memory and Buses

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memaory) is usually defined
in the board specification (See Section 14.6.3, Defining External Memory and Buses).

The t ype field specifies a memory type:
« rom read-only memory - it can only be written at load-time

< ramrandom access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

e nvram non volatile ram - writing is possible both at load-time and run-time

* bl ockr am writing is possible both at load-time and run-time. Changes are applied in RAM, so after
a full device reset the data in a blockram reverts to the original state.

The optional r eser ved qualifier before the memory type, tells the linker not to locate any section in
the memory by default. You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 14.8.2, Creating and Locating Groups of Sections).

The mau field specifies the MAU size (Minimum Addressable Unit) of the memory. This field is required
and must be non-zero.

The si ze field specifies the size in MAU of the memory. This field is required.

The pri ori ty field specifies a locate priority for a memory. The speed field has the same meaning
but is considered deprecated. By default, a memory has its priority set to 1. The memories with the
highest priority are considered first when trying to locate a rule. Subsequently, the next highest priority
memories are added if the rule was not located successfully, and so on until the lowest priority that is
available is reached or the rule is located. The lowest priority value is zero. Sections with an or der ed
and/or cont i guous restriction are not affected by the locate priority. If such sections also have a page
restriction, the locate priority is still used to select a page.

If an exec_pri ori ty is specified for a memory, the regular priority (either specified or its default
value) does not apply to locate rules with only executable sections. Instead, the supplied value applies
for such rules. Additionally, the exec_pri ori t y value is used for any executable unrestricted sections,
even if they appear in an unrestricted rule together with non-executable sections.

The map field specifies how this memory maps onto an (internal) bus. The mapping can have a name.
Mappings are described in Section 14.4.4, Mappings.

The optional wri t e_uni t field specifies the minimum write unit (MWU). This is the minimum number
of MAUSs required in a write action. This is useful to initialize memories that can only be written in units
of two or more MAUSs. If wri t e_uni t is not defined the minimum write unit is 0.

700

Linker Script Language (LSL)

» Theoptional fi | | field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

nenory nmem nanme

{

type = rom

mau = 8;

wite unit = 4;

fill = Oxaa;

size = 64k;

priority = 2;

map map_nane (map_description);
}

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 14.4.2,
Defining Internal Buses.

14.6. Semantics of the Board Specification

Keywords in the board specification

processor
derivative
bus
mau
wi dt h
map
nmenory
type reserved rom ram nvram bl ockram
mau
si ze
speed
priority
exec_priority
fill
wite_unit
map

map
dest bus space
dest _dbits
dest _of f set
si ze
src_dbits
src_of f set
priority
exec_priority
reserved

701

TASKING SmartCode - 8051 User Guide

14.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions. In this
case the linker assumes that for each derivative definition in the LSL file there is one processor. The
linker uses the derivative name also for the processor.

With the keyword pr ocessor you define a processor. You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_nane

{
}

processor definition

14.6.2. Instantiating Derivatives

With the keyword der i vat i ve you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called nypr oc_1 and mypr oc_2) that
have the same derivative (called myder i v), you must instantiate both processors as follows:

processor nyproc_1

{

derivative = nyderiv;
}
processor nyproc_2
{

derivative = nyderiv;
}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myder i v1 expects two parameters which are used in the derivative definition:

pr ocessor mnyproc

{
}

derivative = nyderivl (2,4);

14.6.3. Defining External Memory and Buses
It is common to define external memory (off-chip) and external buses at the global scope (outside any

enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

702

Linker Script Language (LSL)

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory. You can override
this behavior by specifying one or more memory definitions.

menory nem name

{

type = rom

mau = 8§;

wite_unit = 4;

fill = Oxaa;

size = 64k;

priority = 2;

map map_nane (rmap_description);
}

For a description of the keywords, see Section 14.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses. These are buses that are present on the target
board.

bus bus_nane

{

mau = 8;

width = 8;

map (map_description);
}

For a description of the keywords, see Section 14.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

14.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup

st ack
mn_size
gr ows low to _high high to |ow
align
fixed
id

heap

703

TASKING SmartCode - 8051 User Guide

nmn_size
grows low to_high high_to | ow
align
fixed
id
copyt abl e
align
copy_uni t
dest
page
reserved
start_address
run_addr
synbol
prohi bit_references_to
nmodi fy i nput
space
attributes

copy
nocopy

14.7.1. Setting up a Section

With the keyword sect i on_set up you can define stacks, heaps, copy tables, start address and/or
reserved address ranges outside their address space definition. In addition you can configure space
reference restrictions and input section modifications.

section_setup ::ny_space

{

reserved address range

stack definition

heap definition

copy table definition

start adress

space reference restrictions

i nput section nodifications
}

See the subsections Stacks and heaps, Copy tables, Start address and Reserved address ranges in
Section 14.4.3, Defining Address Spaces for details on the keywords st ack, heap, copyt abl e and
reserved

Space reference restrictions

With a space reference restriction, references from the section setup's address space to sections in
specific address spaces can be deleted and blocked. If sections, for example code, in space A are not
allowed or not able to access sections (functions or variables) in space B, you can configure this in LSL
as follows:

section_setup :: A

{
704

Linker Script Language (LSL)

prohi bit_references_to ::B;

}

The linker emits an error when such a reference is found in a relocation.

Input section modifications

Before sections are located and before selections defined in secti on_| ayout are performed, you can
still modify a few section properties. These are:

» change the address space of a section
» add (+w) or remove (- w) the writable attribute
» add (+p) or remove (- p) the protected attribute

» change a noclear/scratch section into a clear/blank section (at t ri but es=+b) and vice versa
(attributes=-b)

» prevent an initialized writable section from being copied from ROM to RAM, without making it read-only,
using the nocopy keyword.

You cannot set the protected attribute on linker created sections like reserved sections and output sections.

Sections are selected the same way as in groups in a secti on_I| ayout . Instead of at t ri but es=+w
you can use the copy keyword.

section_setup :: A

{
nodi fy input (space=::B, attributes=+w)
{
sel ect "nysection";
}
}

Note that the new address space must be used to select a modified section in a secti on_| ayout.To
locate the section mysect i on in the example somewhere, it must be selected in a secti on_| ayout
for space : : B. If the link result is output to a file, for example by only linking or incremental linking, the
modified properties are exported. So, when the resulting file is used in another invocation of the linker,
the section can appear in a different address space.

14.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_| ayout

direction low to_high high_to_low
group

align

attributes +- rwxbisp

705

TASKING SmartCode - 8051 User Guide

copy
nocopy
fill
ordered
conti guous
clustered
overl ay
al l ow_cross_references
| oad_addr
mem
run_addr
mem
page
page_si ze
priority
sel ect
st ack
si ze
heap
si ze
reserved
si ze
attributes r wx
fill
al | oc_al | oned absol ute ranged
copytabl e
mencopy
nenory
fill
section
si ze
bl ocksi ze
attributes r wx
fill
overfl ow
struct
checksum

if

el se

14.8.1. Defining a Section Layout

With the keyword sect i on_| ayout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space. You can precede the address space name with a processor name and/or core name,
separated by colons. You can omit the processor name and/or the core name if only one processor is

706

Linker Script Language (LSL)

defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like ": : ny_space". A reference to a space of the only core on
a specific processor in the system could be "my_chi p: : my_space". The next example shows a section
definition for sections in the ny_space address space of the processor called my_chip:

section_l ayout my_chip::ny_space (locate_direction)

{
}

section statenments

Locate direction

With the optional keyword di r ect i on you specify whether the linker starts locating sections from

| ow_t o_hi gh (default) or from hi gh_t o_| ow. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_|layout ::ny_space (direction = high_to_low)

{
}

section statenents

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory parts
where to locate the section.

14.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group (group_specifications)

{
}

With the sect i on_st at enent s you generally select sets of sections to form the group. This is described
in subsection Selecting sections for a group.

section_statenments

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 14.8.3, Creating or Modifying Special Sections.

With the gr oup_speci fi cat i ons you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword sel ect you can select one or more sections for the group. You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard selection pattern:

707

TASKING SmartCode - 8051 User Guide

* matches any number of characters

? matches with a single character in the section name

\ escape character, takes the next character literally, you can use it to escape the
special characters *, ?,[,],(,),| soitis nottreated as a wildcard pattern

[abc] matches with a single 'a’, 'b' or 'c' character

[a-2] matches with any single character in the range 'a' to 'z'

(pattern) matches the specified pattern

patternl | pattern2 matches either patternl or pattern2 (or both)

group (...)

{
sel ect "nysection";
select "*";

}

The first sel ect statement selects the section with the name "nmysect i on". The second sel ect
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

When you use wildcards, the linker skips inlined vector sections and sections with an absolute address

from the selection process. For example, when you want to specify restrictions on code sections excluding
vector handler code, you should use a wildcard to select the code sections. sel ect "code*"; will not
select vector handler code sections, whereas sel ect "code"; does.

Note that when you select sections with an exact name (no wildcard special characters), all sections with
that name are automatically protected against unreferenced section removal. With a selection using
wildcard special characters, matching sections are selected, but matching sections that are unreferenced
may be removed. For example, when you escape a wildcard special character *, ?,[,1,(,),| with\

it is not considered as a wildcard.

« Theattri but es field selects all sections that carry (or do not carry) the given attribute. With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set. You can specify one or more of the following attributes:

 r readable sections

e w writable sections

e X executable sections

« i initialized sections

* b sections that should be cleared at program startup
« s scratch sections (not cleared and not initialized)

* p protected sections

708

Linker Script Language (LSL)

To select all read-only sections:

group (...)
{

}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

select (attributes = +r-w);

» With ther ef _t r ee field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root’ of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

3. The sections have no absolute restriction (as is the case for all wildcard selections)
For example, to select the code sections referenced from f 0o1:

group refgrp (contiguous, run_addr=nmem ext_c)

{
}

If section f 001 references f 002 and f 002 references f 003, then all these sections are selected by
the selection shown above.

select ref_tree "fool" (attributes=+x);

Locating a group

group group_nanme (group_specifications)

{
}

With the gr oup_speci fi cat i ons you actually define how the linker must locate the group. You can
roughly define three things: 1) assign properties to the sections in a group like alignment and read/write
attributes, 2) define the mutual order in the address space for sections in the group and 3) restrict the
possible addresses for the sections in a group.

section_statenments

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels __| c_gb_group_nane and __| ¢c_ge_gr oup_nane mark the begin and

end of the group respectively, where the begin is the lowest address used within this group and the end
is the highest address used. Notice that a group not necessarily occupies all memory between begin and
end address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the sections in a group like alignment and read/write attributes.

709

TASKING SmartCode - 8051 User Guide

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

The al i gn field tells the linker to align all sections in the group according to the align value. The
alignment of a section is first determined by its own initial alignment and the defined alignment for
the address space. Alignments are never decreased, if multiple alignments apply to a section, the
largest one is used.

The at t ri but es field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table. This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections. You cannot apply both copy and nocopy to the same
statement.

2. Define the mutual order of sections in an LSL group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

710

Note that when you use the linker optimization option --optimize=+copytable-compression,
unrestricted sections affected by the copy table are located as if they were in a clustered LSL group.
This option is enabled by default.

The or der ed keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A’, 'B' and 'C'. By default the linker
places the sections in the address space like ‘A’ - 'B' - 'C', where section 'A’ gets the lowest possible
address. With di recti on=hi gh_t o_| owin the secti on_| ayout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A’, where section 'A’ gets the highest possible
address.

The cont i guous keyword tells the linker to locate the sections in the group in a single address
range. Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be 'alignment
gaps' between the sections.

When you define a group that is both or der ed and cont i guous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

The cl ust er ed keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as cont i guous. Otherwise, it gets split into two or more
blocks.

Linker Script Language (LSL)

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fi | | keyword. When no fill
pattern is specified, the gaps are treated as reserved (scratch) space. You can have the gaps filled
with data by supplying an expression argument to the fi | | property. The result of the expression,
or list of expressions, is used as values to write to memory, each in a MAU.

» The over | ay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
__lc_cb_section_nane is defined as the load-time start address of the section. The symbol
__lc_ce_section_nane is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword al | ow_cr oss_r ef er ences tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overlay)

{
group a
{
select "ny_ovl _pl";
sel ect "ny_ovl _p2";
}
group b
{
select "ny_ovl _ql";
}
}

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule this
load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

* Therun_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not. The location of the sections in a group can be restricted either to a single absolute

711

TASKING SmartCode - 8051 User Guide

712

address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (ordered, run_addr = 0xaO00f 0000)

A group with an absolute address must be ordered, the first section in the group is located at the
specified absolute address.

You can use the '[of f set]’ variant to locate the group at the given absolute offset in memory:
group (ordered, run_addr = nem Al 0x1000])

A group with an absolute address must be ordered, the first section in the group is located at the
specified absolute offset in memory.

Arange can be an absolute space address range, written as [expr .. expr], acomplete memory
device, written as mem nmem _nane, or a memory address range, mem nem _nane[expr .. expr

]

group (run_addr = mem nmy_dram

You can use the '|' to specify an address range of more than one physical memory device:
group (run_addr = mem A | nem B)

When used in top-level section layouts, a memory name refers to a board-level memory. You can
select on-chip memory with mem pr oc_nane: nem_nane. If the memory has multiple parallel
mappings towards the current address space, you can select a specific named mapping in the
memory by appending / map_name to the memory specifier. The linker then maps memory offsets
only through that mapping, so the address(es) where the sections in the group are located are
determined by that memory mapping.

group (run_addr = nem CPUL: A/ cached)

The | oad_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, |oad_addr)

{
select "nydata"; // select ROM copy of nydata:

/1 "[nydata]"
}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

Linker Script Language (LSL)

< At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

* The start addresses cannot be set to absolute values for unrestricted groups.

< For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

« For any group, if the run-time start address is not set, the linker selects an appropriate address.

« If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

With the page_si ze keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_si ze keyword in Section 14.4.3, Defining
Address Spaces.

With the pri ori t y keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like r un_addr and

page.

group (priority=2)

{
sel ect "inportantcodel”;
sel ect "inportantcode2";

14.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

713

TASKING SmartCode - 8051 User Guide

Stack

» The keyword st ack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is st ack.

With the keyword si ze you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the m n_si ze argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword f i xed.

group (...)
{
stack "mystack" (size = 2k);
}
The linker creates two labels to mark the begin and end of the stack, __| c_ub_st ack_nane for the

begin of the stack and __| c_ue_st ack_nan® for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

See also the st ack keyword in Section 14.4.3, Defining Address Spaces.

Heap

» The keyword heap tells the linker to reserve a dynamic memory range for the mal | oc() function.
Each heap section has a name. With the keyword si ze you can change the size for the heap. If the
si ze is not specified, the linker uses the size given by the m n_si ze argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword f i xed.

group (...)
{
heap "nyheap" (size = 2k);
}
The linker creates two labels to mark the begin and end of the heap, __| c_ub_heap_nane for the

begin of the heap and __| c_ue_heap_nane for the end of the heap. The linker allocates space for
the heap when a reference to either of the section labels exists in one of the input object files.

Reserved section

» The keyword r eser ved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword si ze you can specify a size for a given reserved area
or section. If the size is set to 0, then no other properties can be set for the reserved section.

group (...)
{

}

reserved "nyreserved" (size = 2k);

714

Linker Script Language (LSL)

The optional fi | | field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as

values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section.With al | oc_al | owed=absol ut e sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section. The same applies for reserved sections with al | oc_al | owed=r anged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the at t ri but es field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Properties set in LSL [Resulting section properties
attributes |filled access memory |content

X yes <rom> executable
r yes r <rom> data

r no r <rom> scratch

rxX yes r <rom> executable
rw yes rw <ram> data

rw no rw <ram> scratch
rwx yes rw <ram> executable
?r oup (...)

reserved "nyreserved" (size = 2k,
attributes = rw, fill = Oxaa);

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, __| ¢_ub_nane for the begin
of the section and __| c_ue_nan® for the end of the reserved section.

Output sections

» The keyword sect i on tells the linker to accumulate sections obtained from object files (“input sections™)
into an output section of a fixed size in the locate phase. You can select the input sections with sel ect
statements. You can use groups inside output sections, but you can only setthe al i gn, attri but es,
nocopy and | oad_addr properties and the | oad_addr property cannot have an address specified.

Thefill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have initialized code or data you must specify a fill pattern. If you do not specify
afill pattern, all input sections must be scratch sections (not cleared and not initialized), or BSS sections.
The fill pattern is aligned at the start of the output section.

715

TASKING SmartCode - 8051 User Guide
In the following example, the sections nyi nput 1 and nyi nput 2 are assumed to have initialized data,
sothefill keyword is needed on the output section.

As with a reserved section you can use the at t ri but es field to set the access type of the output
section.

?roup (...)
section "nmyoutput” (size = 4k, attributes =r,
fill = Oxaa)
{
sel ect "nyinput1";
sel ect "nyi nput2";
}

}

The available room for input sections is determined by the si ze, bl ocksi ze and over f | owfields.
With the keyword si ze you specify the fixed size of the output section. The value of the si ze property
must be greater than zero. Input sections are placed from output section start towards higher addresses
(offsets). When the end of the output section is reached and one or more input sections are not yet
placed, an error is emitted. If however, the over f | owfield is set to another output section, remaining
sections are located as if they were selected for the overflow output section.

In the following example, the sections . dat a. t sk1. * and . dat a. t sk2. * do not contain initialized

data, sothe fil | keyword should not be used on the output section.
group (...)
{
section "tskl data" (size=4k, attributes=rw,
overflow = "overfl ow data")
{
select ".data.tskl.*"
}
section "tsk2_data" (size=4k, attributes=rw,
overflow = "overfl ow data")
{
select ".data.tsk2. *"
}
section "overflow data" (size=4k, attributes=rw)
{
}

}

With the keyword bl ocksi ze , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)
{

section "flash_code" (blocksize=4k, attributes=rx,
fill=0)
{

716

Linker Script Language (LSL)

select "*.flash";

}

If the content of the section is 1 mau, the size will be 4 KiB, if the content is 11 KiB, the section will be
12 KiB, etc. If you use si ze in combination with bl ocksi ze, the si ze value is used as default (minimal)
size for this section. If it is omitted, the default size will be of bl ocksi ze. It is not allowed to omit both
si ze and bl ocksi ze from the section definition. A value of zero is allowed for the si ze property if it
sets a default size.

The linker creates two labels to mark the begin and end of the section, __| ¢_ub_nane for the begin
of the section and __| c_ue_nan® for the end of the output section.

When the copy property is set on an enclosing group, a ROM copy is created for the output section
and the output section itself is made writable causing it to be located in RAM by default. For this to
work, the output section and its input sections must be read-only and the output section must have a
fill property.

A copy table can also be inserted into an output section, but only if two additional conditions are met:
« The copy table is the last section added to the output section.

e There must be sufficient room in the output section to accommodate the additional size of the copy
table.

A copy table will likely increase in size after being added to the output section, so if you would add
sections after the copy table selection, this would overwrite part of the copy table. The linker will emit
an error message if either of the conditions is not met.

group (...)

{
section "nyoutput _thl" (size = 4k, attributes =r, fill = 0)
{

sel ect "nyinput”;
select "table"; // select the copy table

Copy table

» The keyword copyt abl e tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, __| ¢c_ub_t abl e for the begin
of the section and __| c_ue_t abl e for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

717

TASKING SmartCode - 8051 User Guide

Memory copy sections

» If a memory (usually RAM) needs to be initialized by a different core than the one(s) that will use it, a
copy of the contents of the memory can be placed in a section using a mencopy statement in a
secti on_| ayout . All data (including code) present in the specified memory is then placed in a new
section with the provided name and appropriate attributes. Unused areas in the memory are filled in
the section using the supplied fill pattern or with zeros if no fill pattern is specified. If the memory contains
a memory copy section the result is undefined. The actual initialization of the memory at run-time needs
to be done separately, this LSL feature only directs the linker to make the data located in the memory
available for initialization. Note that a memory of type r amcannot hold initialized data, use type
bl ockr aminstead.

Structures

» Astruct statementinasecti on_| ayout creates a section and fills it with numbers that each occupy
one or more MAUSs. The new section must be named by providing a double-quoted string after the
st ruct keyword. Each element has the form expr : number ;, where the expression provides the value
to insert in the section and the number determines the number of MAUs occupied by the expression
value. Elements are placed in the section in the order in which they appear in the st r uct body without
any gaps between them. Multi-MAU elements are split into MAUs according to the endianness of the
target. Ast r uct section is read-only and it cannot be copied to RAM at startup (using the copy group
attribute). No default alignment is set.

For example,

struct "nystruct"”

{
0x1234 T2
addressof (mem foo) D4
addressof (memfoo) + sizeof(nemfoo) 4;
checksun(crc32w,
addressof (mremfoo),
addressof (mtemfoo) + sizeof(nemfoo)) : 4}
}

14.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names. You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the :=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_| ayout

{

_lc_cp" :="__lc_ub_table";

718

Linker Script Language (LSL)

/1 when the synbol __lIc_cp occurs as an undefined reference
/1 in an object file, the linker generates a copy table

}

14.8.5. Conditional Group Statements
Within a group, you can conditionally select sections or create special sections.

» With thei f keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

» The optional el se keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group (...)
{
if (exists("mysection"))
sel ect "nysection";
el se
reserved "nyreserved" (size=2k);

719

TASKING SmartCode - 8051 User Guide

720

Chapter 15. CERT C Secure Coding Standard

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING toolset.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:
 athree-letter mnemonic representing the section of the standard

» atwo-digit numeric value in the range of 00-99

« the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

C compiler invocation
With the C compiler option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can

use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

15.1. Preprocessor (PRE)

PREO1-C Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

721

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html

TASKING SmartCode - 8051 User Guide

PREO2-C

PRE10-C

PRE11-C

Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the

I = operator was omitted. Enclosing the constant - 1 in parenthesis will prevent the incorrect
interpretation and force a compiler error:

#define EOF -1 // should be (-1)
int getchar(void);
void f(void)
{
if (getchar() EOF) // != operator onitted
{
[* ... %]
}
}

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do- whi | e statement, so
the macro can appear safely inside i f clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

Do not conclude a single statement macro definition with a semicolon
Macro definitions consisting of a single statement should not conclude with a semicolon. If

required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

15.2. Declarations and Initialization (DCL)

DCL30-C

DCL31-C

722

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the TASKING C compiler assumes an implicit declaration and continues translation after
issuing a warning message (W505 or W535).

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html

DCL32-C

DCL35-C

CERT C Secure Coding Standard

Guarantee that mutually visible identifiers are unique

The compiler encountered two or more identifiers that are identical in the first 31 characters.
The ISO C99 standard allows a compiler to ignore characters past the first 31 in an identifier.
Two distinct identifiers that are identical in the first 31 characters may lead to problems when
the code is ported to a different compiler.

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void nmy_function(int a);
int main(void)
{
int (*new_function)(int a) = my_function;
return (*new_function)(10); /* the behavior is undefined */

}

15.3. Expressions (EXP)

EXPO1-C

EXP12-C

EXP30-C

EXP32-C

EXP33-C

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

Do not ignore values returned by functions
The compiler gives this warning when the result of a function call is ignored at some place,
although it is not ignored for other calls to this function. This warning will not be issued when

the function result is ignored for all calls, or when the result is explicitly ignored with a (void)
cast.

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use
of an Ivalue with non-volatile-qualified type, the behavior is undefined.

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack
or in the register allocated for the variable. Consequently, uninitialized memory can cause a

program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

723

http://doc.tasking.com/cert/dcl32.html
http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html

TASKING SmartCode - 8051 User Guide

EXP34-C

EXP37-C

EXP38-C

Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the compiler. When there is no prototype information available at the call,

the compiler cannot check the number of arguments and the types of the arguments. This
message is issued to warn about this situation.

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

15.4. Integers (INT)

INT30-C

INT34-C

INT35-C

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.
Do not shift a negative number of bits or more bits than exist in the operand
The shift count of the shift operation may be negative or greater than or equal to the size of

the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

15.5. Floating Point (FLP)

FLP30-C

FLP35-C

FLP36-C

724

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

http://doc.tasking.com/cert/exp34.html
http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html

CERT C Secure Coding Standard

15.6. Arrays (ARR)

ARRO1-C

ARR34-C

ARR35-C

Do not apply the sizeof operator to a pointer when taking the size of an array

A function parameter declared as an array, is converted to a pointer by the compiler. Therefore,
the sizeof operator applied to this parameter yields the size of a pointer, and not the size of
an array.

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.
Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

15.7. Characters and Strings (STR)

STR30-C

STR33-C

STR34-C

STR36-C

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

Do not specify the bound of a character array initialized with a string literal

The compiler issues this warning when the character buffer initialized by a string literal does
not provide enough room for the terminating null character.

15.8. Memory Management (MEM)

MEMOO-C Allocate and free memory in the same module, at the same level of abstraction

The compiler issues this warning when the result of the call to malloc(), calloc() or realloc()
is discarded, and therefore not free()d, resulting in a memory leak.

MEMO08-C Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

725

http://doc.tasking.com/cert/arr01.html
http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html

TASKING SmartCode - 8051 User Guide

MEM30-C

MEM31-C

MEM32-C

MEM33-C

MEM34-C

MEM35-C

Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to
unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

Free dynamically allocated memory exactly once
Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To

eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.
Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

Allocate sufficient memory for an object

The compiler issues this warning when the size of the object(s) allocated by malloc(), calloc()

or realloc() is smaller than the size of an object pointed to by the result pointer. This may be
caused by a sizeof expression with the wrong type or with a pointer type instead of the object

type.

15.9. Environment (ENV)

ENV32-C

All atexit handlers must return normally

The compiler issues this warning when an atexit() handler is calling a function that does not
return. No atexit() registered handler should terminate in any way other than by returning.

15.10. Signals (SIG)

SIG30-C
SIG32-C

726

Call only asynchronous-safe functions within signal handlers
Do not call longjmp() from inside a signal handler
Invoking the longjmp() function from within a signal handler can lead to undefined behavior

if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

http://doc.tasking.com/cert/mem30.html
http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html
http://doc.tasking.com/cert/sig32.html

CERT C Secure Coding Standard

15.11. Miscellaneous (MSC)

MSC32-C Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

727

http://doc.tasking.com/cert/msc32.html

TASKING SmartCode - 8051 User Guide

728

Chapter 16. MISRA C Rules

This chapter contains an overview of the supported and unsupported MISRA C rules.

16.1. MISRA C:1998

This section lists all supported and unsupported MISRA C:1998 rules.
See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

1. (R) The code shall conform to standard C, without language extensions.
X 2. (A) Other languages should only be used with an interface standard.

3. (A) Inline assembly is only allowed in dedicated C functions.
X 4. (A) Provision should be made for appropriate run-time checking.

5. (R) Only use characters and escape sequences defined by ISO C.
X 6. (R) Character values shall be restricted to a subset of ISO 106460-1.

7. (R) Trigraphs shall not be used.

8. (R) Multibyte characters and wide string literals shall not be used.

9. (R) Comments shall not be nested.

10. (A) Sections of code should not be "commented out".

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

* aline ends with ';', or

 aline starts with '}, possibly preceded by white space

11. (R) Identifiers shall not rely on significance of more than 31 characters.
12. (A) The same identifier shall not be used in multiple name spaces.
13. (A) Specific-length typedefs should be used instead of the basic types.
14. (R) Useunsigned char orsigned char instead of plain char .

X 15. (A) Floating-point implementations should comply with a standard.

16. (R) The bit representation of floating-point numbers shall not be used.
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

729

TASKING SmartCode - 8051 User Guide

17. (R) typedef names shall not be reused.

18. (A) Numeric constants should be suffixed to indicate type.
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

19. (R) Octal constants (other than zero) shall not be used.
20. (R) All object and function identifiers shall be declared before use.
21. (R) Identifiers shall not hide identifiers in an outer scope.
22. (A) Declarations should be at function scope where possible.
X 23. (A) Alldeclarations at file scope should be static where possible.
24. (R) Identifiers shall not have both internal and external linkage.
X 25. (R) Identifiers with external linkage shall have exactly one definition.
26. (R) Multiple declarations for objects or functions shall be compatible.
X 27. (A) External objects should not be declared in more than one file.
28. (A) Theregister storage class specifier should not be used.
29. (R) The use of atag shall agree with its declaration.

30. (R) Allautomatics shall be initialized before being used .
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

31. (R) Braces shall be used in the initialization of arrays and structures.
32. (R) Only the first, or all enumeration constants may be initialized.

33. (R) Theright hand operand of & or | | shall not contain side effects.
34. (R) The operands of a logical & or | | shall be primary expressions.
35. (R) Assignment operators shall not be used in Boolean expressions.
36. (A) Logical operators should not be confused with bitwise operators.
37. (R) Bitwise operations shall not be performed on signed integers.

38. (R) A shift count shall be between 0 and the operand width minus 1.
This violation will only be checked when the shift count evaluates to a constant value
at compile time.

39. (R) The unary minus shall not be applied to an unsigned expression.
40. (A) sizeof should not be used on expressions with side effects.

X 41. (A) The implementation of integer division should be documented.
42. (R) The comma operator shall only be used in a f or condition.
43. (R) Don't use implicit conversions which may result in information loss.
44. (A) Redundant explicit casts should not be used.
45. (R) Type casting from any type to or from pointers shall not be used.

730

46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.

71.
72.
73.
74.
75.

R

(A)
(A)
(A)
R
(A)
R
R
R
(A)
R
(R
R
R
(A)
R
(R
(A)
R
R
(A)

(A)
R
R
R

R
R
R
R
R

MISRA C Rules

The value of an expression shall be evaluation order independent.

This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

No dependence should be placed on operator precedence rules.
Mixed arithmetic should use explicit casting.

Tests of a (non-Boolean) value against 0 should be made explicit.
F.P. variables shall not be tested for exact equality or inequality.
Constant unsigned integer expressions should not wrap-around.
There shall be no unreachable code.

All non-null statements shall have a side-effect.

A null statement shall only occur on a line by itself.

Labels should not be used.

The got o statement shall not be used.

The cont i nue statement shall not be used.

The br eak statement shall not be used (except in a swi t ch).
Ani f or loop body shall always be enclosed in braces.

Alli f, el se if constructs should contain a final el se.

Every non-empty case clause shall be terminated with a br eak.
All swi t ch statements should contain a final def aul t case.

A swi t ch expression should not represent a Boolean case.
Every swi t ch shall have at least one case.

Floating-point variables shall not be used as loop counters.

A f or should only contain expressions concerning loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Iterator variables should not be modified in a f or loop.
Functions shall always be declared at file scope.
Functions with variable number of arguments shall not be used.

Functions shall not call themselves, either directly or indirectly.

A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

Function prototypes shall be visible at the definition and call.

The function prototype of the declaration shall match the definition.
Identifiers shall be given for all prototype parameters or for none.
Parameter identifiers shall be identical for declaration/definition.
Every function shall have an explicit return type.

731

TASKING SmartCode - 8051 User Guide

76. (R) Functions with no parameters shall have a voi d parameter list.
77. (R) An actual parameter type shall be compatible with the prototype.
78. (R) The number of actual parameters shall match the prototype.

79. (R) The values returned by voi d functions shall not be used.

80. (R) Void expressions shall not be passed as function parameters.

81. (A) const should be used for reference parameters not modified.

82. (A) A function should have a single point of exit.

83. (R) Every exit point shall have a r et ur n of the declared return type.
84. (R) Forvoi d functions, r et ur n shall not have an expression.

85. (A) Function calls with no parameters should have empty parentheses.

86. (A) Ifafunction returns error information, it should be tested.
A violation is reported when the return value of a function is ignored.

87. (R) #incl ude shall only be preceded by other directives or comments.
88. (R) Non-standard characters shall not occur in #i ncl ude directives.

89. (R) #incl ude shall be followed by either <fi | enane>or"fil enane".
90. (R) Plain macros shall only be used for constants/qualifiers/specifiers.
91. (R) Macros shall not be #def i ne'd and #undef 'd within a block.

92. (A) #undef should not be used.

93. (A) A function should be used in preference to a function-like macro.

94. (R) A function-like macro shall not be used without all arguments.

95. (R) Macro arguments shall not contain pre-preprocessing directives.
A violation is reported when the first token of an actual macro argument is '#'.

96. (R) Macro definitions/parameters should be enclosed in parentheses.
97. (A) Don't use undefined identifiers in pre-processing directives.
98. (R) A macro definition shall contain at most one # or ## operator.

99. (R) Alluses of the #pr agma directive shall be documented.
This rule is really a documentation issue. The compiler will flag all #pr agna directives
as violations.

100. (R) defi ned shall only be used in one of the two standard forms.
101. (A) Pointer arithmetic should not be used.

102. (A) No more than 2 levels of pointer indirection should be used.
A violation is reported when a pointer with three or more levels of indirection is
declared.

103. (R) No relational operators between pointers to different objects.
In general, checking whether two pointers point to the same object is impossible. The
compiler will only report a violation for a relational operation with incompatible pointer
types.

104. (R) Non-constant pointers to functions shall not be used.
105. (R) Functions assigned to the same pointer shall be of identical type.

732

106.
107.

108.
109.

110.

111.
112.
113.
114.
115.
X 116.
X 117.
118.
1109.
120.
121.
122.
123.
124.
125.
126.
127.

R
R

R
R

(R)

R
R
R
R
R
(R
R
R
R
R
R
R
(R)
R
R
R
R

MISRA C Rules

Automatic address may not be assigned to a longer lived object.

The null pointer shall not be de-referenced.
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

All st ruct /uni on members shall be fully specified.

Overlapping variable storage shall not be used.
A violation is reported for every uni on declaration.

Unions shall not be used to access the sub-parts of larger types.
A violation is reported for a uni on containing a st r uct member.

Bit-fields shall have type unsi gned int orsigned int.
Bit-fields of type si gned i nt shall be at least 2 bits long.

All st ruct /uni on members shall be named.

Reserved and standard library names shall not be redefined.
Standard library function names shall not be reused.
Production libraries shall comply with the MISRA C restrictions.
The validity of library function parameters shall be checked.
Dynamic heap memory allocation shall not be used.

The error indicator er r no shall not be used.

The macro of f set of shall not be used.

<l ocal e. h> and the set | ocal e function shall not be used.
The setj np and | ongj np functions shall not be used.

The signal handling facilities of <si gnal . h> shall not be used.
The <st di 0. h> library shall not be used in production code.
The functions at of /at oi /at ol shall not be used.

The functions abor t /exi t /get env/syst emshall not be used.
The time handling functions of library <t i me. h> shall not be used.

16.2. MISRA C:2004

This section lists all supported and unsupported MISRA C:2004 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory

rule.

733

TASKING SmartCode - 8051 User Guide

Environment

1.1
1.2
X 1.3
X 1.4
X 1.5

R

R
(R

R

(A)

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

No reliance shall be placed on undefined or unspecified behavior.

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

Floating-point implementations should comply with a defined floating-point standard.

Language extensions

21
2.2
2.3
24

R
R
(R)
(A)

Assembly language shall be encapsulated and isolated.
Source code shallonlyuse /* ... */ style comments.
The character sequence / * shall not be used within a comment.

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}, possibly preceded by
white space

Documentation

X 3.1
X 3.2
X 3.3
34
35
X 3.6

R
(R
(A)

(R)

R

R

All usage of implementation-defined behavior shall be documented.
The character set and the corresponding encoding shall be documented.

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

All uses of the #pr agma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pr agma directives as
violations.

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

Character sets

4.1
4.2

734

(R
R

Only those escape sequences that are defined in the ISO C standard shall be used.
Trigraphs shall not be used.

Identifiers
51 (R)
52 (R)
53 (R)
54 (R)
55 (A)
56 (A
57 (A

Types
6.1 (R)
6.2 (R)
6.3 (A
64 (R)
65 (R)

Constants
71 (R)

MISRA C Rules

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

At ypedef name shall be a unique identifier.
A tag name shall be a unique identifier.
No object or function identifier with static storage duration should be reused.

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

No identifier name should be reused.

The plain char type shall be used only for storage and use of character values.

si gned and unsi gned char type shall be used only for the storage and use of
numeric values.

t ypedef s that indicate size and signedness should be used in place of the basic
types.

Bit-fields shall only be defined to be of type unsi gned i nt orsigned int.
Bit-fields of type si gned i nt shall be at least 2 bits long.

Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and definitions

8.1

8.2

8.3

8.4
8.5
8.6
8.7

8.8

R

R

R

R
R
R
R

R

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

If objects or functions are declared more than once their types shall be compatible.
There shall be no definitions of objects or functions in a header file.
Functions shall be declared at file scope.

Obijects shall be defined at block scope if they are only accessed from within a single
function.

An external object or function shall be declared in one and only one file.

735

TASKING SmartCode - 8051 User Guide

89 (R)
x 810 (R)
8.11 (R)
8.12 (R)
Initialization
9.1 (R
92 (R)
93 (R)

An identifier with external linkage shall have exactly one external definition.

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

The st at i c storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

All automatic variables shall have been assigned a value before being used. This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Arithmetic type conversions

736

10.1

10.2

10.3

10.4

10.5

10.6

R

(R

R
(R

R

(R)

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:

a) it is not a conversion to a wider integer type of the same signedness, or

b) the expression is complex, or

c¢) the expression is not constant and is a function argument, or

d) the expression is not constant and is a return expression.

The value of an expression of floating type shall not be implicitly converted to a
different type if:

a) it is not a conversion to a wider floating type, or

b) the expression is complex, or

c) the expression is a function argument, or

d) the expression is a return expression.

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

If the bitwise operators ~ and << are applied to an operand of underlying type
unsi gned char orunsi gned short, the result shall be immediately cast to the
underlying type of the operand.

A "U" suffix shall be applied to all constants of unsi gned type.

MISRA C Rules

Pointer type conversions

111

11.2

11.3
114

115

Expressions

R

R

(A)
(A)

R

121 (A
122 (R)
123 (R)
124 (R)
125 (R)
126 (A
127 (R)
128 (R)
129 (R)
12.10 (R)
12.11 (A)
12.12 (R)
12.13 (A)

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

A cast should not be performed between a pointer type and an integral type.

A cast should not be performed between a pointer to object type and a different pointer
to object type.

A cast shall not be performed that removes any const or vol at i | e qualification
from the type addressed by a pointer.

Limited dependence should be placed on C's operator precedence rules in
expressions.

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

The si zeof operator shall not be used on expressions that contain side effects.
The right-hand operand of a logical && or | | operator shall not contain side effects.
The operands of a logical & or | | shall be primary-expressions.

The operands of logical operators (&&, | | and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and!).

Bitwise operators shall not be applied to operands whose underlying type is signed.

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand. This violation will only
be checked when the shift count evaluates to a constant value at compile time.

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

The comma operator shall not be used.
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

The increment (++) and decrement (- -) operators should not be mixed with other
operators in an expression.

Control statement expressions

13.1

R

Assignment operators shall not be used in expressions that yield a Boolean value.

737

TASKING SmartCode - 8051 User Guide

132 (A
133 (R)
134 (R)
135 (R)
13.6 (R)
13.7 (R)

Control flow
141 (R)
142 (R)
143 (R)
14.4 (R)
145 (R)
146 (R)
147 (R)
148 (R)
149 (R)
14.10 (R)

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

Floating-point expressions shall not be tested for equality or inequality.

The controlling expression of af or statement shall not contain any objects of floating
type.

The three expressions of a f or statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Numeric variables being used within a f or loop for iteration counting shall not be
modified in the body of the loop.

Boolean operations whose results are invariant shall not be permitted.

There shall be no unreachable code.

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

The got o statement shall not be used.
The cont i nue statement shall not be used.

For any iteration statement there shall be at most one break statement used for loop
termination.

A function shall have a single point of exit at the end of the function.

The statement forming the body of aswi t ch,while,do ... whileorfor
statement be a compound statement.

Anif (expression) construct shall be followed by a compound statement. The
el se keyword shall be followed by either a compound statement, or another i f
statement.

Allif ... else if constructs shall be terminated with an el se clause.

Switch statements

738

151

15.2
15.3
154
15.5

R

R
R
R
R

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a swi t ch statement.

An unconditional br eak statement shall terminate every non-empty swi t ch clause.
The final clause of a switch statement shall be the def aul t clause.

A swi t ch expression shall not represent a value that is effectively Boolean.

Every swi t ch statement shall have at least one case clause.

Functions
16.1 (R)
16.2 (R)
16.3 (R)
16.4 (R)
16,5 (R)
166 (R)
16.7 (A)
16.8 (R)
16.9 (R)
16.10 (R)

MISRA C Rules

Functions shall not be defined with variable numbers of arguments.

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

Identifiers shall be given for all of the parameters in a function prototype declaration.
The identifiers used in the declaration and definition of a function shall be identical.
Functions with no parameters shall be declared with parameter type voi d.

The number of arguments passed to a function shall match the number of parameters.

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

All exit paths from a function with non-void return type shall have an explicit r et ur n
statement with an expression.

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

Pointers and arrays

x 171 (R)
x 172 (R)
173 (R)
174 (R)
175 (A)
176 (R)

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

Array indexing shall be the only allowed form of pointer arithmetic.

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

Structures and unions

181 (R)
182 (R)
X 18.3 (R)

All structure or union types shall be complete at the end of a translation unit.
An object shall not be assigned to an overlapping object.
An area of memory shall not be reused for unrelated purposes.

739

TASKING SmartCode - 8051 User Guide

18.4

(R

Unions shall not be used.

Preprocessing directives

191

19.2

19.3

194

19.5

19.6

19.7

19.8

19.9

19.10

19.11

19.12

19.13
19.14

19.15

19.16

19.17

(A)
(A)
(R
R

(R)
R
(A)
(R
R
R
R
R

(A)
(R)

R
R

(R

#i ncl ude statements in a file should only be preceded by other preprocessor
directives or comments.

Non-standard characters should not occur in header file names in #i ncl ude
directives.

The #i ncl ude directive shall be followed by either a <fi | enane>or"fil enanme"
sequence.

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

Macros shall not be #def i ne'd or #undef 'd within a block.

#undef shall not be used.

A function should be used in preference to a function-like macro.

A function-like macro shall not be invoked without all of its arguments.

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

All macro identifiers in preprocessor directives shall be defined before use, exceptin
#i f def and #i f ndef preprocessor directives and the def i ned() operator.

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

The # and ## preprocessor operators should not be used.

The def i ned preprocessor operator shall only be used in one of the two standard
forms.

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

All #el se, #el i f and #endi f preprocessor directives shall reside in the same file
asthe #i f or #i f def directive to which they are related.

Standard libraries

X

740

20.1

20.2
20.3

R

(R)
R

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

The names of standard library macros, objects and functions shall not be reused.
The validity of values passed to library functions shall be checked.

204 (R)
205 (R)
206 (R)
207 (R)
208 (R)
209 (R)
20.10 (R)
20.11 (R)
20.12 (R)

MISRA C Rules

Dynamic heap memory allocation shall not be used.

The error indicator er r no shall not be used.

The macro of f set of , in library <st ddef . h>, shall not be used.

The set j np macro and the | ongj np function shall not be used.

The signal handling facilities of <si gnal . h> shall not be used.

The input/output library <st di 0. h> shall not be used in production code.

The library functions at of , at oi and at ol from library <st dl i b. h> shall not be
used.

The library functions abort, exi t, get env and syst emfrom library <st dl i b. h>
shall not be used.

The time handling functions of library <t i me. h> shall not be used.

Run-time failures

X 21.1

R

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle run-time faults.

16.3. MISRA C:2012

This section lists all supported and unsupported MISRA C:2012 rules.

See also Section 3.7.2, C Code Checking: MISRA C.

A number of MISRA C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (M) is a mandatory rule, (R) is a
required rule, (A) is an advisory rule.

A standard C environment

11

1.2
1.3

Unused code

21
2.2
2.3

R

(A)
R

R
R
(A)

The program shall contain no violations of the standard C syntax and constraints,
and shall not exceed the implementation's translation limits.

Language extensions should not be used.
There shall be no occurrence of undefined or critical unspecified behavior.

A project shall not contain unreachable code.
There shall be no dead code.
A project should not contain unused type declarations.

741

TASKING SmartCode - 8051 User Guide

24 (A
25 (A
26 (A
27 (A
Comments
31 (R
32 (R

A project should not contain unused tag declarations.
A project should not contain unused macro declarations.
A function should not contain unused label declarations.
There should be no unused parameters in functions.

The character sequences / * and // shall not be used within a comment.
Line-splicing shall not be used in// comments.

Character sets and lexical conventions

41 (R)
42 (A

Identifiers
51 (R)
52 (R)
53 (R)
54 (R)
55 (R)
56 (R)
57 (R)
58 (R)
59 (A)

Types
6.1 (R)
62 (R)

Octal and hexadecimal escape sequences shall be terminated.
Trigraphs should not be used.

External identifiers shall be distinct.
Identifiers declared in the same scope and name space shall be distinct.

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Macro identifiers shall be distinct.

Identifiers shall be distinct from macro names.

At ypedef name shall be a unique identifier.

A tag name shall be a unique identifier.

Identifiers that define objects or functions with external linkage shall be unique.
Identifiers that define objects or functions with internal linkage should be unique.

Bit-fields shall only be declared with an appropriate type.
Single-bit named bit-fields shall not be of a signed type.

Literals and constants

7.1
7.2

7.3
7.4

742

R
(R

(R)
R

Octal constants shall not be used.

A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsi gned type.

The lowercase character "l " shall not be used in a literal suffix trivial.

A string literal shall not be assigned to an object unless the object's type is "pointer
to const -qualified char ".

MISRA C Rules

Declarations and definitions

81 (R)
82 (R
83 (R)
84 (R)
85 (R)
86 (R)
87 (A
88 (R
89 (A
8.10 (R)
8.11 (A)
8.12 (R)
8.13 (A)
8.14 (R)
Initialization
91 (M)
92 (R)
93 (R)
94 (R)
95 (R)

Types shall be explicitly specified.
Function types shall be in prototype form with named parameters.
All declarations of an object or function shall use the same names and type qualifiers.

A compatible declaration shall be visible when an object or function with external
linkage is defined.

An external object or function shall be declared once in one and only one file.
An identifier with external linkage shall have exactly one external definition.

Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

The st at i ¢ storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

An object should be defined at block scope if its identifier only appears in a single
function.

An inline function shall be declared with the st at i ¢ storage class.
When an array with external linkage is declared, its size should be explicitly specified.

Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique.

A pointer should point to a const -qualified type whenever possible.

Therestrict type qualifier shall not be used.

The value of an object with automatic storage duration shall not be read before it has
been set.

The initializer for an aggregate or union shall be enclosed in braces.
Arrays shall not be partially initialized.
An element of an object shall not be initialized more than once.

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

The essential type model

10.1
10.2

10.3

10.4

R
R

R

R

Operands shall not be of an inappropriate essential type.

Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations.

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

743

TASKING SmartCode - 8051 User Guide

10.5
10.6

10.7

10.8

(A)
R

R

(R)

The value of an expression should not be cast to an inappropriate essential type.

The value of a composite expression shall not be assigned to an object with wider
essential type.

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type.

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer type conversions

111

11.2

11.3

114

115
116
11.7

11.8

11.9

Expressions

121
12.2

12.3
12.4
125

R

R)

R

(A)

(A)
R
R

R

R

(A)
R

(A)
(A)
(M)

Side effects

13.1
13.2

744

(R)
R

Conversions shall not be performed between a pointer to a function and any other
type.

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

A conversion should not be performed between a pointer to object and an integer
type.

A conversion should not be performed from pointer to voi d into pointer to object.
A cast shall not be performed between pointer to voi d and an arithmetic type.

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

A cast shall not remove any const orvol ati | e qualification from the type pointed
to by a pointer.

The macro NULL shall be the only permitted form of integer null pointer constant.

The precedence of operators within expressions should be made explicit.

The right hand operand of a shift operator shall lie in the range zero to one less than
the width in bits of the essential type of the left hand operand.

The comma operator should not be used.
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

The si zeof operator shall not have an operand which is a function parameter
declared as "array of type".

Initializer lists shall not contain persistent side effects.

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

13.3

13.4
13.5

13.6

(A)

(A)
(R)

(M)

MISRA C Rules

A full expression containing an increment (++) or decrement (- -) operator should
have no other potential side effects other than that caused by the increment or
decrement operator.

The result of an assignment operator should not be used.

The right hand operand of a logical & or | | operator shall not contain persistent side
effects.

The operand of the si zeof operator shall not contain any expression which has
potential side effects.

Control statement expressions

141 (R)
142 (R)
143 (R)
14.4 (R)

Control flow
151 (A)
15.2 (R)
153 (R)
15.4 (A)
155 (A)
156 (R)
157 (R)

A loop counter shall not have essentially floating type.
A f or loop shall be well-formed.
Controlling expressions shall not be invariant.

The controlling expression of an i f statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

The got o statement should not be used.
The got o statement shall jump to a label declared later in the same function.

Any label referenced by a got o statement shall be declared in the same block, or in
any block enclosing the got o statement.

There should be no more than one br eak or got o statement used to terminate any
iteration statement.

A function should have a single point of exit at the end.

The body of an iteration-statement or a selection-statement shall be a
compound-statement.

Allif ... else if constructs shall be terminated with an el se statement.

Switch statements

16.1
16.2

16.3
16.4
16.5

16.6
16.7

R
R

R
R
(R)

R
R

All swi t ch statements shall be well-formed.

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a swi t ch statement.

An unconditional br eak statement shall terminate every switch-clause.
Every swi t ch statement shall have a def aul t label.

A def aul t label shall appear as either the first or the last switch label of a swi t ch
statement.

Every swi t ch statement shall have at least two switch-clauses.
A switch-expression shall not have essentially Boolean type.

745

TASKING SmartCode - 8051 User Guide

Functions
171 (R)
17.2 (R)
17.3 (M)
17.4 (M)
175 (A)
17.6 (M)
17.7 (R)
17.8 (A

The features of <st dar g. h> shall not be used.
Functions shall not call themselves, either directly or indirectly.
A function shall not be declared implicitly.

All exit paths from a function with non-voi d return type shall have an explicitr et ur n
statement with an expression.

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

The declaration of an array parameter shall not contain the st at i ¢ keyword between
the[1.

The value returned by a function having non-voi d return type shall be used.
A function parameter should not be modified.

Pointers and arrays

18.1

18.2

18.3

18.4
18.5
18.6

18.7
18.8

(R
(R
R

(A)
(A)
(R

R
(R)

A pointer resulting from arithmetic on a pointer operand shall address an element of
the same array as that pointer operand.

Subtraction between pointers shall only be applied to pointers that address elements
of the same array.

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

The +, - , += and - = operators should not be applied to an expression of pointer type.
Declarations should contain no more than two levels of pointer nesting.

The address of an object with automatic storage shall not be copied to another object
that persists after the first object has ceased to exist.

Flexible array members shall not be declared.
Variable-length array types shall not be used.

Overlapping storage

191
19.2

(M)
(A)

An object shall not be assigned or copied to an overlapping object.
The uni on keyword should not be used.

Preprocessing directives

20.1

20.2

20.3

746

(A)

R

R

#i ncl ude directives should only be preceded by preprocessor directives or
comments.

The' ," or\ characters and the / * or// character sequences shall not occur in a
header file name.

The #i ncl ude directive shall be followed by either a <fi | ename>or"fi | enane”
sequence.

20.4
20.5
20.6
20.7

20.8

20.9

20.10
20.11

20.12

20.13
20.14

R
(A)
(R)
R

R
R

(A)
R

R

R
R

MISRA C Rules

A macro shall not be defined with the same name as a keyword.
#undef should not be used.
Tokens that look like a preprocessing directive shall not occur within a macro argument

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

The controlling expression of a #i f or #el i f preprocessing directive shall evaluate
toOor 1.

All identifiers used in the controlling expression of #i f or #el i f preprocessing
directives shall be #def i ne'd before evaluation.

The # and ## preprocessor operators should not be used.

A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator.

A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

A line whose first token is # shall be a valid preprocessing directive.

All #el se, #el i f and #endi f preprocessor directives shall reside in the same file
as the #i f, #i f def or #i f ndef directive to which they are related.

Standard libraries

211

21.2
213
21.4
215
216
21.7
21.8
21.9
21.10
21.11
21.12
21.13

21.14

21.15

R

R
R
R
R
(R)
R
R
R
R
R
(A)
(M)

R

(R

#def i ne and #undef shall not be used on a reserved identifier or reserved macro
name.

A reserved identifier or macro name shall not be declared.

The memory allocation and deallocation functions of <st dl i b. h> shall not be used.
The standard header file <set j np. h> shall not be used.

The standard header file <si gnal . h> shall not be used.

The Standard Library input/output functions shall not be used.

The at of , at oi , at ol and at ol | functions of <st dl i b. h> shall not be used.
The library functions abort, exi t and syst emof <st dl i b. h> shall not be used.
The library functions bsear ch and gsort of <st dl i b. h> shall not be used.

The Standard Library time and date functions shall not be used

The standard header file <t gmat h. h> shall not be used.

The exception handling features of <f env. h> should not be used.

Any value passed to a function in <ct ype. h> shall be representable as an unsi gned
char or be the value ECF.

The Standard Library function mentnp shall not be used to compare null terminated
strings.

The pointer arguments to the Standard Library functions mentpy, mnenmove and
mentnp shall be pointers to qualified or unqualified versions of compatible types

747

TASKING SmartCode - 8051 User Guide

21.16 (R)
21.17 (M)
21.18 (M)
21.19 (M)
21.20 (M)
Resources
X 221 (R)
X 222 (M)
x 223 (R)
X 224 (M)
X 225 (M)
x 226 (M)
X 227 (R)
x 228 (R)
x 229 (R)
X 22.10 (R)

748

The pointer arguments to the Standard Library function nencnp shall point to either
a pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Use of the string handling functions from <st ri ng. h> shall not result in accesses
beyond the bounds of the objects referenced by their pointer parameters.

The si ze_t argument passed to any function in <st ri ng. h> shall have an
appropriate value.

The pointers returned by the Standard Library functions | ocal econv, get env,
set | ocal eor, strerror shall only be used as if they have pointer to const-qualified
type.

The pointer returned by the Standard Library functions ascti me, cti me, gnti ne,

| ocal tine, | ocal econv, getenv, setl ocal e orstrerror shall not be used
following a subsequent call to the same function.

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

A block of memory shall only be freed if it was allocated by means of a Standard
Library function.

The same file shall not be open for read and write access at the same time on different
streams.

There shall be no attempt to write to a stream which has been opened as read-only.
A pointer to a FI LE object shall not be dereferenced.

The value of a pointer to a FI LE shall not be used after the associated stream has
been closed.

The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

The value of er r no shall be set to zero prior to a call to an errno-setting-function.
The value of er r no shall be tested against zero after calling an errno-setting-function.

The value of er r no shall only be tested when the last function to be called was an
errno-setting-function.

	TASKING SmartCode - 8051 User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.2. Accessing Memory
	1.2.1. Memory Type Qualifiers
	1.2.1.1. Pointers with Memory Type Qualifiers
	1.2.1.2. Structure Tags with Memory Type Qualifiers
	1.2.1.3. Typedefs with Memory Type Qualifiers

	1.2.2. Memory Models
	1.2.3. Placing an Object at an Absolute Address: __at()
	1.2.4. Accessing Bits
	1.2.5. Accessing Hardware from C: __sfr, __bsfr

	1.3. Shift JIS Kanji Support
	1.4. Using Assembly in the C Source: __asm()
	1.5. GNU C Language Extensions
	1.6. Attributes
	1.7. Pragmas to Control the Compiler
	1.8. Predefined Preprocessor Macros
	1.9. Variables
	1.9.1. Automatic Variables
	1.9.2. Initialized Variables
	1.9.3. Non-Initialized Variables

	1.10. Strings
	1.11. Switch Statement
	1.12. Functions
	1.12.1. Calling Convention
	1.12.2. Stack Usage
	1.12.3. Register Usage
	1.12.4. Inlining Functions: inline
	1.12.5. Interrupt Functions
	1.12.5.1. Defining an Interrupt Service Routine: __isr, __interrupt()
	1.12.5.2. Register Bank Switching: __bankx / __nobank
	1.12.5.3. Reset Vector
	1.12.5.4. Interrupt Frame: __frame()

	1.12.6. Intrinsic Functions
	1.12.6.1. Built-in Library Functions

	1.13. Section Naming

	Chapter 2. Assembly Language
	2.1. Assembly Syntax
	2.2. Assembler Significant Characters
	2.3. Operands of an Assembly Instruction
	2.4. Symbol Names
	2.4.1. Predefined Preprocessor Symbols

	2.5. Registers
	2.6. Special Function Registers
	2.7. Assembly Expressions
	2.7.1. Numeric Constants
	2.7.2. Strings
	2.7.3. Expression Operators
	2.7.4. Symbol Types and Expression Types

	2.8. Macro Preprocessing
	2.8.1. Defining and Calling Macros
	2.8.2. Local Symbols in Macros
	2.8.3. Built-in Macro Preprocessing Functions
	Comment function: %'
	Escape function: %n
	Bracket function: %()
	Group function: %{ }
	%ERROR, %FATAL
	%EQS, %NES, %LTS, %LES, %GTS, %GES
	%EVAL
	%EXIT
	%__FILE__, %__LINE__
	%IF
	%IFDEF, %IFNDEF
	%IN, %OUT
	%INCLUDE
	%LEN
	%MATCH
	%METACHAR
	%OPTION
	%REPEAT
	%SET
	%SUBSTR
	%UNDEF
	%WHILE

	2.8.4. Macro Delimiters
	2.8.4.1. Implied Blank Delimiters
	2.8.4.2. Identifier Delimiters
	2.8.4.3. Literal Delimiters

	2.8.5. Literal Mode versus Normal Mode
	2.8.6. Algorithm for Evaluating Macro Calls

	2.9. Assembler Directives and Controls
	2.9.1. Assembler Directives
	.ALIAS
	.BIT
	.CALLS
	.CODE
	.COMPILER_ENV, .COMPILER_INVOCATION, .COMPILER_NAME, .COMPILER_VERSION
	.DATA
	.DBIT, .DB, .DW, .DL
	.DS
	.END
	.EQU
	.EXTRN
	.IDATA
	#line
	.NAME
	.MISRAC
	.PUBLIC
	.RSEG
	.SEGMENT
	.SET
	.USING
	.WEAK
	.XDATA

	2.9.2. Assembler Controls
	$ASMLINEINFO / $NOASMLINEINFO
	$DATE
	$CASE / $NOCASE
	$DEBUG / $NODEBUG
	$EJECT
	$ERRORPRINT / $NOERRORPRINT
	$LIST / $NOLIST
	$MESSAGE
	$MOD51 / $NOMOD51
	$NOEXTERNALMEMORY
	$OBJECT / $NOOBJECT
	$OPTIMIZE / $NOOPTIMIZE
	$PAGELENGTH
	$PAGEWIDTH
	$PAGING / $NOPAGING
	$PRINT / $NOPRINT
	$REGADDR / $NOREGADDR
	$REGISTERBANK / $NOREGISTERBANK
	$SAVE / $RESTORE
	$SMALLROM
	$TITLE

	2.10. Generic Instructions

	Chapter 3. Using the C Compiler
	3.1. Compilation Process
	3.2. Calling the C Compiler
	3.3. The C Startup Code
	3.4. How the Compiler Searches Include Files
	3.5. Compiling for Debugging
	3.6. Compiler Optimizations
	3.6.1. Generic Optimizations (frontend)
	3.6.2. Core Specific Optimizations (backend)
	3.6.3. Optimize for Code Size or Execution Speed

	3.7. Static Code Analysis
	3.7.1. C Code Checking: CERT C
	3.7.2. C Code Checking: MISRA C

	3.8. C Compiler Error Messages

	Chapter 4. Profiling
	4.1. What is Profiling?
	4.2. Profiling at Compile Time (Static Profiling)
	4.2.1. Step 1: Build your Application with Static Profiling
	4.2.2. Step 2: Displaying Static Profiling Results

	Chapter 5. Using the Assembler
	5.1. Assembly Process
	5.2. Calling the Assembler
	5.3. How the Assembler Searches Include Files
	5.4. Assembler Optimizations
	5.5. Generating a List File
	5.6. Assembler Error Messages

	Chapter 6. Using the Linker
	6.1. Linking Process
	6.1.1. Phase 1: Linking
	6.1.2. Phase 2: Locating

	6.2. Calling the Linker
	6.3. Linking with Libraries
	6.3.1. How the Linker Searches Libraries
	6.3.2. How the Linker Extracts Objects from Libraries

	6.4. Incremental Linking
	6.5. Importing Binary Files
	6.6. Converting Intel Hex to Binary Format
	6.7. Linker Optimizations
	6.8. Controlling the Linker with a Script
	6.8.1. Purpose of the Linker Script Language
	6.8.2. Eclipse and LSL
	6.8.3. Structure of a Linker Script File
	6.8.4. The Architecture Definition
	6.8.5. The Derivative Definition
	6.8.6. The Processor Definition
	6.8.7. The Memory Definition
	6.8.8. The Section Layout Definition: Locating Sections

	6.9. Linker Labels
	6.10. Generating a Map File
	6.11. Linker ELF Note Sections
	6.12. Linker Error Messages

	Chapter 7. Using the Utilities
	7.1. Control Program
	7.2. Make Utility amk
	7.2.1. Makefile Rules
	7.2.2. Makefile Directives
	7.2.3. Macro Definitions
	7.2.4. Makefile Functions
	7.2.5. Conditional Processing
	7.2.6. Makefile Parsing
	7.2.7. Makefile Command Processing
	7.2.8. Calling the amk Make Utility

	7.3. Make Utility mk51
	7.3.1. Calling the Make Utility
	7.3.2. Writing a Makefile
	7.3.2.1. Targets and Dependencies
	7.3.2.2. Makefile Rules
	7.3.2.3. Macro Definitions
	7.3.2.4. Makefile Functions
	7.3.2.5. Conditional Processing
	7.3.2.6. Comment, Include and Export Lines

	7.4. Archiver
	7.4.1. Calling the Archiver
	7.4.2. Archiver Examples

	7.5. HLL Object Dumper
	7.5.1. Invocation
	7.5.2. HLL Dump Output Format

	7.6. Expire Cache Utility

	Chapter 8. Using the Debugger
	8.1. Reading the Eclipse Documentation
	8.2. Debugging an 8051 Project
	8.3. Creating a Customized Debug Configuration
	8.4. Troubleshooting
	8.5. TASKING Debug Perspective
	8.5.1. Debug View
	8.5.2. Breakpoints View
	8.5.3. File System Simulation (FSS) View
	8.5.4. Disassembly View
	8.5.5. Expressions View
	8.5.6. Memory View
	8.5.7. Compare Application View
	8.5.8. Heap View
	8.5.9. Logging View
	8.5.10. RTOS View
	8.5.11. Registers View
	8.5.12. Trace View

	Chapter 9. Tool Options
	9.1. Configuring the Command Line Environment
	9.2. C Compiler Options
	C compiler option: --cache
	C compiler option: --cert
	C compiler option: --check
	C compiler option: --compact-max-size
	C compiler option: --control-flow-info
	C compiler option: --core
	C compiler option: --debug-info (-g)
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --dep-format
	C compiler option: --diag
	C compiler option: --error-file
	C compiler option: --error-limit
	C compiler option: --extend
	C compiler option: --fp-model
	C compiler option: --global-type-checking
	C compiler option: --help (-?)
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --integer-enumeration
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --make-target
	C compiler option: --max-call-depth
	C compiler option: --mil
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings / --misrac-mandatory-warnings
	C compiler option: --misrac-version
	C compiler option: --model (-M)
	C compiler option: --no-clear
	C compiler option: --no-stdinc
	C compiler option: --no-strict-aliasing
	C compiler option: --no-strict-overflow
	C compiler option: --no-vector
	C compiler option: --no-warnings (-w)
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output-file (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --profile (-p)
	C compiler option: --reentrant
	C compiler option: --registerbank
	C compiler option: --relax-compact-name-check
	C compiler option: --relax-overlay-name-check
	C compiler option: --rename-sections (-R)
	C compiler option: --romstrings
	C compiler option: --signed-bitfields
	C compiler option: --source (-s)
	C compiler option: --stdout (-n)
	C compiler option: --tradeoff (-t)
	C compiler option: --uchar (-u)
	C compiler option: --undefine (-U)
	C compiler option: --undefined-macro
	C compiler option: --vector-offset
	C compiler option: --verbose (-v)
	C compiler option: --version (-V)
	C compiler option: --warning-level (-W)
	C compiler option: --warnings-as-errors

	9.3. Assembler Options
	Assembler option: --allow-undefined-macro
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --control
	Assembler option: --core
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --dep-file
	Assembler option: --dep-format
	Assembler option: --diag
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --info-messages
	Assembler option: --kanji
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --make-target
	Assembler option: --max-nesting
	Assembler option: --no-notes
	Assembler option: --no-skip-asm-comment
	Assembler option: --no-warnings (-w)
	Assembler option: --optimize (-O)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --parameters-redefine
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --prompt
	Assembler option: --section-info (-t)
	Assembler option: ---sfr-file
	Assembler option: --symbol-scope (-i)
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors
	Assembler option: --warn-on-undefined-macro

	9.4. Linker Options
	Linker option: --binfill
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --core (-C)
	Linker option: --define (-D)
	Linker option: --dep-file
	Linker option: --dep-format
	Linker option: --diag
	Linker option: --duplicate-section-limit
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-map-file
	Linker option: --global-map-file-format
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --make-target
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --non-romable
	Linker option: --no-default-output
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors

	9.5. Control Program Options
	Control program option: --address-size
	Control program option: --check
	Control program option: --control-flow-info
	Control program option: --core
	Control program option: --cpu (-C)
	Control program option: --cpu-list
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --dep-format
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --error-file
	Control program option: --error-limit
	Control program option: --format
	Control program option: --fp-model
	Control program option: --global-type-checking
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --include-file (-H)
	Control program option: --include-sfr-file / --asm-sfr-file
	Control program option: --integer-enumeration
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --list-files
	Control program option: --lsl-core
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --model (-M)
	Control program option: --no-default-libraries
	Control program option: --no-map-file
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --processors
	Control program option: --profile (-p)
	Control program option: --reentrant
	Control program option: --registerbank
	Control program option: --signed-bitfields
	Control program option: --uchar (-u)
	Control program option: --undefine (-U)
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	9.6. Make Utility Options
	Defining Macros
	Make utility option: -?
	Make utility option: -a
	Make utility option: -c
	Make utility option: -D / -DD
	Make utility option: -d/ -dd
	Make utility option: -e
	Make utility option: -err
	Make utility option: -f
	Make utility option: -G
	Make utility option: -i
	Make utility option: -K
	Make utility option: -k
	Make utility option: -m
	Make utility option: -n
	Make utility option: -p
	Make utility option: -q
	Make utility option: -r
	Make utility option: -S
	Make utility option: -s
	Make utility option: -t
	Make utility option: -time
	Make utility option: -V
	Make utility option: -W
	Make utility option: -w
	Make utility option: -x

	9.7. Parallel Make Utility Options
	Parallel make utility option: --always-rebuild (-a)
	Parallel make utility option: --change-dir (-G)
	Parallel make utility option: --diag
	Parallel make utility option: --dry-run (-n)
	Parallel make utility option: --help (-? / -h)
	Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
	Parallel make utility option: --keep-going (-k)
	Parallel make utility option: --list-targets (-l)
	Parallel make utility option: --makefile (-f)
	Parallel make utility option: --no-warnings (-w)
	Parallel make utility option: --silent (-s)
	Parallel make utility option: --version (-V)
	Parallel make utility option: --warnings-as-errors

	9.8. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --diag
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)

	9.9. HLL Object Dumper Options
	HLL object dumper option: --blank-out (-b)
	HLL object dumper option: --class (-c)
	HLL object dumper option: --copy-table
	HLL object dumper option: --diag
	HLL object dumper option: --disassembly-intermix (-i)
	HLL object dumper option: --disassembly-without-encoding (-r)
	HLL object dumper option: --dump-format (-F)
	HLL object dumper option: --expand-symbols (-e)
	HLL object dumper option: --help (-?)
	HLL object dumper option: --hex (-x)
	HLL object dumper option: --option-file (-f)
	HLL object dumper option: --output (-o)
	HLL object dumper option: --output-type (-T)
	HLL object dumper option: --sections (-s)
	HLL object dumper option: --source-lookup-path (-L)
	HLL object dumper option: --symbols (-S)
	HLL object dumper option: --version (-V)
	HLL object dumper option: --xml-base-filename (-X)

	9.10. Expire Cache Utility Options
	Expire cache utility option: --access (-a)
	Expire cache utility option: --days (-d)
	Expire cache utility option: --diag
	Expire cache utility option: --dry-run (-n)
	Expire cache utility option: --help (-?)
	Expire cache utility option: --megabytes (-m)
	Expire cache utility option: --totals (-t)
	Expire cache utility option: --verbose (-v)
	Expire cache utility option: --version (-V)

	Chapter 10. Influencing the Build Time
	10.1. Optimization Options
	10.2. Automatic Inlining
	10.3. Code Compaction
	10.4. Compiler Cache
	10.5. Header Files
	10.6. Parallel Build
	10.7. Number of Sections

	Chapter 11. Libraries
	11.1. Library Functions
	11.1.1. assert.h
	11.1.2. ctype.h and wctype.h
	11.1.3. dbg.h
	11.1.4. errno.h
	11.1.5. fcntl.h
	11.1.6. fenv.h
	11.1.7. float.h
	11.1.8. inttypes.h and stdint.h
	11.1.9. io.h
	11.1.10. iso646.h
	11.1.11. limits.h
	11.1.12. locale.h
	11.1.13. malloc.h
	11.1.14. math.h and tgmath.h
	11.1.15. setjmp.h
	11.1.16. signal.h
	11.1.17. stdalign.h
	11.1.18. stdarg.h
	11.1.19. stdbool.h
	11.1.20. stddef.h
	11.1.21. stdint.h
	11.1.22. stdio.h and wchar.h
	11.1.23. stdlib.h and wchar.h
	11.1.24. stdnoreturn.h
	11.1.25. string.h and wchar.h
	11.1.26. time.h and wchar.h
	11.1.27. uchar.h
	11.1.28. unistd.h
	11.1.29. wchar.h
	11.1.30. wctype.h

	11.2. C Library Reentrancy

	Chapter 12. List File Formats
	12.1. Assembler List File Format
	12.2. Linker Map File Format

	Chapter 13. Object File Formats
	13.1. ELF/DWARF Object Format
	13.2. Intel Hex Record Format
	13.3. Motorola S-Record Format
	13.4. Binary Object Format

	Chapter 14. Linker Script Language (LSL)
	14.1. Structure of a Linker Script File
	14.2. Syntax of the Linker Script Language
	14.2.1. Preprocessing
	14.2.2. Lexical Syntax
	14.2.3. Identifiers and Tags
	14.2.4. Expressions
	14.2.5. Built-in Functions
	14.2.6. LSL Definitions in the Linker Script File
	14.2.7. Memory and Bus Definitions
	14.2.8. Architecture Definition
	14.2.9. Derivative Definition
	14.2.10. Processor Definition and Board Specification
	14.2.11. Section Setup
	14.2.12. Section Layout Definition

	14.3. Expression Evaluation
	14.4. Semantics of the Architecture Definition
	14.4.1. Defining an Architecture
	14.4.2. Defining Internal Buses
	14.4.3. Defining Address Spaces
	14.4.4. Mappings

	14.5. Semantics of the Derivative Definition
	14.5.1. Defining a Derivative
	14.5.2. Instantiating Core Architectures
	14.5.3. Defining Internal Memory and Buses

	14.6. Semantics of the Board Specification
	14.6.1. Defining a Processor
	14.6.2. Instantiating Derivatives
	14.6.3. Defining External Memory and Buses

	14.7. Semantics of the Section Setup Definition
	14.7.1. Setting up a Section

	14.8. Semantics of the Section Layout Definition
	14.8.1. Defining a Section Layout
	14.8.2. Creating and Locating Groups of Sections
	14.8.3. Creating or Modifying Special Sections
	14.8.4. Creating Symbols
	14.8.5. Conditional Group Statements

	Chapter 15. CERT C Secure Coding Standard
	15.1. Preprocessor (PRE)
	15.2. Declarations and Initialization (DCL)
	15.3. Expressions (EXP)
	15.4. Integers (INT)
	15.5. Floating Point (FLP)
	15.6. Arrays (ARR)
	15.7. Characters and Strings (STR)
	15.8. Memory Management (MEM)
	15.9. Environment (ENV)
	15.10. Signals (SIG)
	15.11. Miscellaneous (MSC)

	Chapter 16. MISRA C Rules
	16.1. MISRA C:1998
	16.2. MISRA C:2004
	16.3. MISRA C:2012

