
TASKING Embedded
Debugger User Guide

MA000-038 (v1.0r3) April 13, 2018

Copyright © 2018 TASKING BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.

Table of Contents
1. Preparing for First Use .. 1

1.1. Installing the Software .. 1
1.1.1. Installation for Windows .. 1
1.1.2. Licensing .. 2
1.1.3. Installing the Software in an Existing Eclipse Environment 6
1.1.4. Bulk Installation into Existing Eclipse Environments ... 9

1.2. How to Use the Documentation .. 10
1.3. Related Publications ... 11

2. Setting up a Project .. 13
2.1. Create a Project .. 13
2.2. Configuring the Target .. 17
2.3. Project Properties .. 20
2.4. Using the Sample Projects .. 22

3. Debugging your Application .. 23
3.1. Create a Debug Configuration .. 23
3.2. Start a Debug Session .. 24
3.3. Stepping through the Application .. 26
3.4. Setting and Removing Breakpoints .. 27
3.5. Reload Current Application .. 28
3.6. End a Debug Session ... 28
3.7. Multiple Debug Sessions ... 28

4. Debugger Reference ... 31
4.1. Debug Configuration Dialog ... 31
4.2. Pipeline and Cache During Debugging ... 37
4.3. TASKING Debug Perspective ... 38

4.3.1. Debug View ... 39
4.3.2. Breakpoints View .. 40
4.3.3. File System Simulation (FSS) View ... 42
4.3.4. Disassembly View ... 43
4.3.5. Expressions View .. 43
4.3.6. Memory View ... 43
4.3.7. Compare Application View .. 45
4.3.8. Heap View ... 45
4.3.9. Logging View .. 45
4.3.10. RTOS View .. 45
4.3.11. Registers View .. 46
4.3.12. Trace View ... 47
4.3.13. Devices View .. 48

4.4. Multi-core Hardware Debugging .. 49
4.5. Programming a Flash Device ... 50

4.5.1. Boot Mode Headers ... 52
5. Debug Target Configuration Files ... 55

5.1. Custom Board Support ... 55

iii

iv

TASKING Embedded Debugger User Guide

Chapter 1. Preparing for First Use
This chapter guides you through the installation process of the TASKING® Embedded Debugger. It also
describes which documentation is available and how you best can use it.

In this manual, TASKING Embedded Debugger and TASKING Debugger are used as synonyms.

1.1. Installing the Software

This section describes the installation of the software for Windows.TASKING products are protected with
TASKING license management software (TLM). To use a TASKING product, you must install that product
and install a license.

1.1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:

• 64-bit version of Windows 7 or higher

• 2 GHz Pentium class processor

• 4 GB memory

• 3 GB free hard disk space

• Screen resolution: 1024 x 768 or higher

Installation

1. If you received a download link, download the software and extract its contents.

- or -

If you received an USB flash drive, insert it into a free USB port on your computer.

2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on
the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license
key, this is described in Section 1.1.2, Licensing.

5. When the installation asks to install the Eclipse IDE, you have two options:

• Enable Eclipse IDE if you want to use the Eclipse Mars SR1 that is part of this installation.

1

• Disable Eclipse IDE if you intend to run the TASKING Embedded Debugger from within an existing
Eclipse environment. See Section 1.1.3, Installing the Software in an Existing Eclipse Environment.

1.1.2. Licensing

TASKING products are protected with TASKING license management software (TLM).To use a TASKING
product, you must install that product and install a license.

The following license types can be ordered from Altium.

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.1.2.3.2, Installing Server Based
Licenses (Floating or Node-Locked) and Section 1.1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used.

For information about installing a floating license see Section 1.1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

• Client based (also known as 'standalone').The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

• Server based (also known as 'network based'). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server".You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual.You can order it as a separate product (SW000089).

2

TASKING Embedded Debugger User Guide

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

1.1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Obtaining a server based license (floating or node-locked)

• Order a TASKING product from Altium or one of its distributors.

A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, Altium needs to know the
computer ID that uniquely identifies your computer.You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tlm/download.shtml.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:\Tasking\getcid
Computer ID: 5Dzm-L9+Z-WFbO-aMkU-5Dzm-L9+Z-WFbO-aMkU-MDAy-Y2Zm

The computer ID is displayed on your screen.

3. Order a TASKING product from Altium or one of its distributors and supply the computer ID.

A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.

http://www.tasking.com/support/tlm/faq.shtml

This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest Altium Sales & Support Center or Value Added
Reseller.

3

Preparing for First Use

http://www.tasking.com/support/tlm/download.shtml
http://www.tasking.com/support/tlm/faq.shtml

1.1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server. No other data is transmitted.

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers lic1.tasking.com .. lic4.tasking.com at the TCP ports 8080, 8936 or 80.
Make sure that the firewall in your network has transparent access enabled for one of these ports.

1.1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)

If you do not have received your license key, read Section 1.1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2.You can order a local license server as a separate product (product code
SW000089).

2. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

4

TASKING Embedded Debugger User Guide

3. In the License key field enter the license key you have received from Altium and click Next to
continue.

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

4. Select your License type and click Next to continue.

You can find the license type in the email or paper that contains the license key.

5. Select Remote TASKING license server to use one of the remote TASKING license servers, or
select Local TASKING license server for a local license server.The latter requires optional software.

6. (For local license server only) specify the Server name and Port number of the local license server.

7. Click Finish to complete the installation.

1.1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.1.2.1, Obtaining a License
before continuing.

1. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

5

Preparing for First Use

2. In the License key field enter the license key you have received from Altium and click Next to
continue.

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

3. Select Node-locked client based license and click Next to continue.

4. In the License file content field enter the contents of the license file you have received from Altium.

The license data is stored in the file licfile.txt in the etc directory of the product.

5. Click Finish to complete the installation.

1.1.3. Installing the Software in an Existing Eclipse Environment

If you have an existing Eclipse integrated development environment (IDE), you can add the TASKING
Embedded Debugger software as plug-ins with the Install New Software feature.

Requirements

• Eclipse Mars (SR1 or SR2) for Windows 64-bit

6

TASKING Embedded Debugger User Guide

Installation

1. First install the software as explained in Section 1.1.1, Installation for Windows. Since you want to
install the software as plug-ins into an existing Eclipse environment, it is not necessary to select the
Eclipse IDE feature. So, you can disable Eclipse IDE in step 5.

2. Start your existing Eclipse Mars (eclipse.exe).

The Workspace Launcher dialog appears.

3. Enter the path to the workspace.

In the remainder of this manual, we assume you use the default.

4. Enable the option Use this as the default and do not ask again.

5. Click OK to proceed.

The Eclipse IDE opens.

6. From the Help menu, select Install New Software.

The Available Software dialog appears.

7. Click Add.

The Add Repository dialog appears.

7

Preparing for First Use

8. Click Archive.

The Repository archive dialog appears.

9. Browse to the directory where the TASKING Embedded Debugger was installed in Section 1.1.1,
Installation for Windows, select the eclipse_dbg_vx.yrz.zip archive in the
eclipse_p2_repository directory, where vx.yrz is your product version, and click Open.

10. Click OK in the Add Repository dialog.

The TASKING Tools software is available in the list of Available Software.

8

TASKING Embedded Debugger User Guide

11. In the Available Software dialog, enable the TASKING Tools and click Next.

The Install Details dialog appears.

12. Click Next.

The Review Licenses dialog appears.

13. Read the END-USER LICENSE AGREEMENT - TASKING, select I accept the terms of the license
agreement and click Finish.

14. Click Yes to restart Eclipse for the changes to take effect.

1.1.4. Bulk Installation into Existing Eclipse Environments

If you have to install the TASKING Embedded Debugger into existing Eclipse environments on a large
number of computers you may want to distribute one and the same instance of the p2 repository including
the license files (licopt.txt) to all computers involved without having to execute the install program
on each computer. This functionality is called "bulk installation".

To facilitate a bulk installation

1. Install the TASKING Embedded Debugger once in the regular way as described in Section 1.1.1,
Installation for Windows. Since you want to install the software as plug-ins into an existing Eclipse
environment, it is not necessary to select the Eclipse IDE feature. So, you can disable Eclipse IDE
in step 5.

9

Preparing for First Use

2. Copy the eclipse_p2_repository directory and the licensing options file licopt.txt to a
(temporary) directory that is accessible by all target computers.

3. For each target computer, follow the procedure described in Section 1.1.3, Installing the Software in
an Existing Eclipse Environment without the first step, and in step 9 instead of using the installation
program to get the p2 repository, browse to the existing eclipse_p2_repository you copied at
step 2.

4. Copy the licence options file licopt.txt to all computers. It is also allowed to store this file on a
network drive.

5. On all computers where you copied licopt.txt to in step 4, set the environment variable
TSK_OPTIONS_FILE_Product-Code-version to the location of licopt.txt. For example:

TSK_OPTIONS_FILE_SW000038v1_0r1 = install-dir\licopt.txt

Restrictions

Keep in mind that installing the TASKING Embedded Debugger this way has a few restrictions:

• No Script Debugger will be installed

• No menu items will be added to your Windows Start menu.

1.2. How to Use the Documentation

The documentation for the TASKING embedded debugger consists of:

• online documentation for Eclipse

• this user guide

It is strongly recommended to read the documentation in this order.

Getting acquainted with Eclipse

If you are new to Eclipse, start familiarizing with Eclipse. Eclipse comes with several online documents.
One document describes how Eclipse is organized as a Workbench, with Perspectives that contain Views;
another document explains how to create a sample C/C++ project, build and debug it (CDT documentation).

To start with this documentation:

1. Start Eclipse.

2. From the Help menu, select Help Contents.

The help screen overlays the Eclipse Workbench.

3. In the left pane, select Workbench User Guide to learn more about working in Eclipse.

10

TASKING Embedded Debugger User Guide

4. Continue with C/C++ Development User Guide, open the Getting Started entry and select
Debugging projects to learn more about debugging.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

TASKING Embedded Debugger User Guide (this manual)

The TASKING Embedded Debugger User Guide contains specific information for the TASKING embedded
debugger. Its content overrides any information found in the Eclipse and CDT documentation.

The next chapters of this manual explain how to setup and use the TASKING embedded debugger.

1.3. Related Publications

TriCore

• TriCore 1 32-bit Unified Processor Core, Volume 1 Core Architecture, V1.3 & V1.3.1 Architecture User's
Manual, V1.3.8 [2007-11, Infineon]

• TriCore 1 32-bit Unified Processor Core, Volume 2 Instruction Set, V1.3 & V1.3.1 Architecture User's
Manual, V1.3.8 [2007-11, Infineon]

• TC1xxx User's Manual, V2.0 [2007, Infineon]

• TriCore 1 32-bit Unified Processor Core, Embedded Applications Binary Interface (EABI), V1.3, V1.3.1
& V1.6 Architecture User’s Manual, v2.5 [2008-01, Infineon]

PCP

• PCP/DMA Architecture Specification, Rev. 1.13M [1998-09, Infineon]

• Peripheral Control Processor (PCP) User’s Manual, V1.1.4 [1998-12, Infineon]

• PCP2 Target Specification, V1.0 [2000-06, Infineon]

MCS

• AURIX TC27x 32-Bit Single-Chip Microcontroller Target Specification [V2.4, 2011-08, Infineon]

8051

• TASKING 8051 ELF/DWARF Application Binary Interface (EDABI) v1.1 [2009, Altium]

ARM

• ARM Architecture Reference Manual - ARM DDI 0100I [2005, ARM Limited]

• ARMv7-M Architecture Reference Manual - ARM DDI 0403D [2010, ARM Limited]

11

Preparing for First Use

• Cortex-M3 Technical Reference Manual [ARM Limited]

• Cortex Microcontroller Software Inferface Standard (CMSIS)

12

TASKING Embedded Debugger User Guide

Chapter 2. Setting up a Project
This tutorial shows how to create an embedded software project with the TASKING Embedded Debugger.
The example assumes you have created an absolute ELF file with a TASKING VX-toolset for TriCore.
The steps to create and debug projects for other TASKING toolsets such as, MCS, 8051 and ARM, are
similar to that of the TriCore toolset.

By now you should be familiar with the Eclipse workbench, perspectives and views. If you are not, please
read the Eclipse documentation as described in Section 1.2, How to Use the Documentation.

2.1. Create a Project

Set the TASKING C/C++ perspective

Before creating a TASKING Embedded Debugger project, it is necessary to have the TASKING C/C++
perspective on the workbench. By default, this should be the case when you start Eclipse, but if it is not,
do the following:

1. Start Eclipse.

Eclipse starts with the last saved workbench layout.

2. To open the TASKING C/C++ perspective: from the Window menu, select Perspective » Open
Perspective » Other... » TASKING C/C++.

The name of the perspective is displayed in the title bar of the workbench window.

Create a TASKING Debug Project with the New Project wizard

1. From the File menu, select New » Project

The New Project wizard appears.

13

2. Select TASKING Project » TASKING TriCore Debug Project and click Next.

The TriCore Debug Project page appears.

3. In the Project name field enter the name of the project (for example myproject).

In the Location field you will see the location where the new project will be stored. To change the
default location, you can uncheck the Use default location check box and browse for an alternative
location. However, use the default location for now and click Next.

The Executable Files page appears.

14

TASKING Embedded Debugger User Guide

4. In the Select executable field, enter the full path to an absolute ELF file, or use the Browse button
to choose an executable file. For example:

C:\Users\name\workspace_ctc_vx.yrz\myproject\Debug\myproject.elf

(Optional) If you choose Select directory, you can specify a directory containing the executable
file(s). In that case select one or more executable files in the C/C++ Executable Files box.

5. Click Next.

The Processor page appears.

6. Select the same target processor that was used to build the application with, for example TC27xB
(under AURIX Family). Afterwards you can always change the processor in the Project » Properties
for dialog.

7. Click Next.

The Target Settings page appears.

15

Setting up a Project

8. In order to debug your project you need to create a debug configuration.

• Select a target.You can select a target board or a simulator. For this example we select the TriCore
1.6.x Instruction Set Simulator.

• (Optional) If you selected a target board, specify the Configuration and Connection settings.
For the simulator you can skip this.

• (Optional) If you selected a target board, enable Import board configuration.Your project settings,
such flash settings will be adjusted to the selected board configuration for you to build your
application.

• Enable Add launch configuration to the project. This allows you to debug your project.

For details on all the tabs in this dialog, see Section 4.1, Debug Configuration Dialog.

9. Open the Source tab and click Add.

The Add Source dialog appears.

10. Select File System Directory and click OK.

16

TASKING Embedded Debugger User Guide

The Add File System Directory dialog appears.

11. In the Directory field, enter the full path to the directory where the source files of your project are
located, or use the Browse button to select the directory. For example:

C:\Users\name\workspace_ctc_vx.yrz\myproject

12. Enable Search subfolders.

13. Click OK.

The directory is added to the Source Lookup Path. This way the debugger knows where to find the
sources of your project.

14. Click Finish to finish the wizard and to create the project.

The project has now been created and is the active project. The executable file is linked to the file
you selected. The new project will let you debug but not build the executable.

2.2. Configuring the Target

In order to debug your application, your project needs information about the target execution environment.
The target can be a simulator or an evaluation board. If you are using the TASKING simulator you do not
need to configure a target, you only need a launch configuration to start the debugger.

If you are using an evaluation board you have to create a launch configuration for your board in order to
debug on a board. For all boards you also need to import a board configuration into your project. Based
on your selections your project settings are adjusted, such as the processor, startup registers and flash
settings.

The steps below are only necessary if you have not configured the target when you created a
project with the New Project wizard, or if you want to create another configuration.

17

Setting up a Project

Import TriCore board configuration

1. From the File menu in Eclipse, select Import.

The Import wizard appears.

2. Expand TASKING C/C++, select Board Configuration and click Next.

The Import Board Configuration page appears.

3. Select your project (myproject) and project configuration (Debug) and click Next.

The Select a processor page appears.

18

TASKING Embedded Debugger User Guide

4. If you want to change the project's processor, select a different processor.

5. Click Next.

The Select a target and configuration page appears.

6. In the Target field, select the target evaluation board that you use to debug your application. By
default only the boards are shown for the selected processor.

7. In the Configuration field, select the configuration that matches the settings on your board.

8. Enable Add launch configuration to the project. This allows you to debug your project.

For details on all the tabs in this dialog, see Section 4.1, Debug Configuration Dialog.

9. Open the Source tab and click Add.

The Add Source dialog appears.

19

Setting up a Project

10. Select File System Directory and click OK.

The Add File System Directory dialog appears.

11. In the Directory field, enter the full path to the directory where the source files of your project are
located, or use the Browse button to select the directory. For example:

C:\Users\name\workspace_ctc_vx.yrz\myproject

12. Enable Search subfolders.

13. Click OK.

The directory is added to the Source Lookup Path. This way the debugger knows where to find the
sources of your project.

14. Click the Finish button to import the configuration settings.

Your project settings, such as processor and flash settings are adjusted to the selected board
configuration for you to debug your application. Note that only those registers are changed that are
needed for the board to operate.

The information in the Import Board Configuration wizard is based on Debug Target Configuration (DTC)
files. DTC files define all possible configurations for a debug target. For more information on DTC files,
see Chapter 5, Debug Target Configuration Files.

2.3. Project Properties

In the Properties dialog (Project » Properties for project) you can change the target processor and
change register values.

To change the target processor (core)

1. From the Project menu, select Properties for.

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To change the startup registers

The startup registers must be known to the debugger at the start of a debug session. When you create
a new project and when you use the Import Board Configuration wizard, the registers are set as required
for the specified board. In the Startup Registers page you can change the register values.

1. From the Project menu, select Properties for.

20

TASKING Embedded Debugger User Guide

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Startup Registers.

In the right pane the Startup Registers page appears.

3. Specify the registers and their settings that must be known to the debugger at the start of a debug
session. If you click on the Default button, the register value is changed to the default as defined in
the SFR files from the include\sfr directory of the product.

4. Click OK.

The file cstart.h in your project is updated with the new values.

The values of the startup registers for a project are only set to their default values at project
creation for the at that time selected processor.

When you switch to a different processor afterwards, in the Project » Properties for » C/C++
Build » Processor property page, the registers are not set to their defaults again. The reason for
that is that you may have set specific values in the startup registers that you want to keep.

If you want to set all registers to their default values for the selected processor, you can do that
any time by clicking on the Restore Defaults button on the Project » Properties for » C/C++
Build » Startup Registers property page.

When you use the Import Board Configuration wizard to import (register) settings required for a
certain board, only the registers needed to get the board going in the default situation are changed.

21

Setting up a Project

2.4. Using the Sample Projects

The TASKING Embedded Debugger comes with a number of examples.You can import the examples
via the Welcome page. This is an alternative for importing existing projects via the File » Import »
TASKING C/C++ » TASKING target Embedded Debugger Example Projects wizard.

Import an existing project from the Welcome page

1. From the Help menu, select Welcome.

The Welcome page appears.

2. Click the following button:

The Welcome Samples page appears.

3. Under TASKING Embedded Debugger click TriCore examples or ARM examples.

The Import examples dialog appears.

4. Select the example projects you want to import into the current workspace.

5. Click Finish

The original examples are copied into the current workspace.

The project(s) should now be visible in the C/C++ Projects view.

22

TASKING Embedded Debugger User Guide

Chapter 3. Debugging your Application
This chapter guides you through a number of examples using the TASKING Embedded debugger.

The example used in this chapter assumes you have made a project named myproject with the following
C source (myproject.c):

#include <stdio.h>

int main(void)
{
 int i;
 for (i=1; i<=3; i++)
 {
 printf("%d\n",i);
 }
 printf("Hello world, ");
 printf("this is \n");
 printf("a small %dst\n",i-3);
 printf("debugging example.\n");
}

3.1. Create a Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

You can create a launch configuration when you create a new project with the New Project wizard. In
Section 2.1, Create a Project we created one for the TASKING simulator. At any time you can change
this configuration. If you have not enabled option Add launch configuration to the project in the wizard,
you have to create a custom debug configuration for your target board or the TASKING simulator. For a
target board you can also create a launch configuration when you use the Import Board Configuration
wizard. This was explained in Section 2.2, Configuring the Target.

To debug a project, you need at least one opened and active project in your workbench. In this
chapter, it is assumed that the project myproject created in Section 2.1, Create a Project is
opened and active in your workbench.

Create or customize your debug configuration

To create or change a debug configuration follow the steps below.

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

23

2. Select TASKING C/C++ Debugger and click the New launch configuration button (
) to add a new configuration.
Or: In the left pane, select the configuration you want to change, for example, TASKING C/C++
Debugger » myproject.

3. In the Name field enter the name of the configuration. By default, this is the name of the project, but
you can give your configuration any name you want to distinguish it from the project name. For
example enter myproject.simulator to identify the simulator debug configuration.

4. On the Target tab, select the TriCore 1.6.x Instruction Set Simulator or any of the target boards.

5. Open the Source tab and click Add.

The Add Source dialog appears.

6. Select File System Directory and click OK.

The Add File System Directory dialog appears.

7. In the Directory field, enter the full path to the directory where the source files of your project are
located, or use the Browse button to select the directory. For example:

C:\Users\name\workspace_ctc_vx.yrz\myproject

8. Enable Search subfolders.

For details on all the tabs in the Debug Configurations dialog, see Section 4.1, Debug Configuration
Dialog.

3.2. Start a Debug Session

1. From the Debug menu select Debug project.

Alternatively you can click the button in the main toolbar.

The TASKING Debug perspective is associated with the TASKING C/C++ Debugger. Because the
TASKING C/C++ perspective is still active, Eclipse asks to open the TASKING Debug perspective.

2. Optionally, enable the option Remember my decision and click Yes.

The debug session is launched. This may take a few seconds.

24

TASKING Embedded Debugger User Guide

• The Debug view shows your running application. Because of the settings in the debug configuration,
execution has suspended at the first instruction in the function main().

• The Editor view shows the C source files of your application and shows the line where the execution
has suspended.

• The Variables view shows the variables in your application.

For details on each view, see Section 4.3, TASKING Debug Perspective.

Debugging a PCP project

When you use the simulator, the Debug view will show the TriCore core and the PCP as separate threads.
When you select a thread this changes the context in the Disassembly view.

25

Debugging your Application

3.3. Stepping through the Application

At this moment your application is executing but suspended on the function main(). This means the C
startup code has been executed already. From this point, you can step through your application while
inspecting what happens.

1. From the Debug menu, select Step Over, or press F6, or click on the Step Over button () in the
Debug view.

The highlight in the Edit view moves to the next statement.

2. Press F6 again.

The highlight in the Edit view moves to the next statement.

In the Variables view, you can inspect the value of the variable i. It is now set to 1.

3. Press F6 again.

The printf statement has been executed now. The bottom area of your workbench now shows a
new view: FSS # 1 - myproject.

FSS stands for File System Simulation. The FSS view simulates the input and output to and from
the target board or simulator when you are debugging. The value of int i is printed and sent to the
FSS view for output.

To clear the FSS view, right-click in the view and select Clear.

To restart your application, from the Debug menu, select Restart ().

4. Step further through your application.

Watch the value of int i in the Variables view and observe the output in the FSS view. The output
is only flushed after a newline (\n)!

Interrupt aware stepping

When you debug your application in an interrupt enabled environment, it might be useful to enable

Interrupt aware stepping ().This prevents stepping into an interrupt handler when an interrupt occurs.

If an interrupt source continues generating interrupts while the target is stopped (either manually or by
hitting a breakpoint), a following single step will always enter the Interrupt Service Routine (ISR). This
can lead to some problems during single stepping.

With interrupt aware stepping enabled, interrupts are temporarily disabled after the target has stopped.
When execution resumes the interrupts are restored.

26

TASKING Embedded Debugger User Guide

3.4. Setting and Removing Breakpoints

Instead of stepping, you can set breakpoints to suspended the application at a certain point.

A breakpoint is set on an executable line of a program. If a breakpoint is enabled during debugging, the
execution suspends before that line of code executes.

Add breakpoints

To add a breakpoint:

• Double-click the marker bar located in the left margin of the C/C++ Editor next to the line of code where
you want to add a breakpoint.

A dot is displayed in the marker bar and in the Breakpoints view, along with the name of the associated
file. When the breakpoint is actually set, a check mark appears in front of the dot.

Disable breakpoints

You can disable a breakpoint or completely remove it. To disable a breakpoint, do one of the following:

• In the Breakpoints view, disable a breakpoint by clearing the check box.

• In the Editor view, right-click on a breakpoint dot in the margin and select Disable Breakpoint.

The blue breakpoint dot turns white.

Remove breakpoints

To completely remove the breakpoint, do one of the following:

• In the Breakpoints view, right-click on a breakpoint and select Remove.

• In the Editor view, right-click on a breakpoint dot in the margin and select Toggle Breakpoint.

• In the Editor view, double-click on a breakpoint.

The blue breakpoint dot disappears.

Example

With the techniques described above:

1. Set a line breakpoint on the code line printf("a small %dst\n",i-3);.

2. Clear the FSS view.

3. Restart your application.

The application suspends when entering the main() function because this was defined in the Debug
configuration.

27

Debugging your Application

4. To resume execution, from the Debug menu, select Resume, or press F8, or click on the Resume

button ().

The application suspends execution, before this line is executed. The FSS view now shows:

1
2
3
Hello world, this is

5. Resume execution again to finish execution.

Note that though the application has finished execution, it has not been terminated yet.Your debug
session is still active.

3.5. Reload Current Application

When your application had changed, for example because you solved a bug, you can reload the application
in the debugger without restarting it.

1. Make the necessary changes in your source.

2. Rebuild your application in your toolset product.

3. Click on the Reload current application button ().

The new application is loaded in the debugger.

3.6. End a Debug Session

To end the debug session:

1. From the Debug menu select Terminate or click on the Terminate button ().

2. To remove the debug session from the Debug view, right-click on the debug session and select

Remove All Terminated or click on the Remove All Terminated Launches button () in the Debug
view.

3.7. Multiple Debug Sessions

It is possible to run multiple debug sessions. To do so, just repeat the steps for starting a debug session.
First make sure that you have terminated all debug sessions.

1. From the Window menu, select Preferences.

The Preferences dialog appears.

28

TASKING Embedded Debugger User Guide

2. Select TASKING » Debugger Start-up.

3. Enable the option Allow multiple simultaneous debug sessions.

4. Select what you want to happen When trying to start another debug session for the same
configuration. Select Re-download to download the absolute file again, or select Start new session,
or select Prompt to get a question each time you try to start a new session.

5. Click OK.

6. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

7. Select the debug configuration myproject.simulator and click on the Debug button.

The debug session launches.

8. Repeat steps 1 and 2, but in step 2 choose myproject.board.

There are now two debug sessions for the same application. In case you have multiple projects, you can
make dedicated debug configurations for them.You can use these debug configurations to run multiple
debug sessions at the same time.

Each session uses its own FSS view for output. In the Debug view you can select the debug session (or
file in the debug session) for which you want to inspect, for example, the value of its variables in the
Variables view.

29

Debugging your Application

30

TASKING Embedded Debugger User Guide

Chapter 4. Debugger Reference
This chapter describes the debugger and how you can run and debug a C or C++ application.This chapter
only describes the TASKING specific parts.

4.1. Debug Configuration Dialog

This section describes the Debug Configurations dialog (Debug » Debug Configurations). The dialog
shows several tabs.

Target tab

On the Target tab you can select on which target the application should be debugged. An application
can run on an external evaluation board, or on a simulator using your own PC. On this tab you can also
select the connection settings. The information in this tab is based on the Debug Target Configuration
(DTC) files as explained in Chapter 5, Debug Target Configuration Files.

Initialization tab

On the Initialization tab enable one or more of the following options:

31

• Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or flashed)
earlier. If downloading fails, the debugger will shut down.

• Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

• Reset target

If enabled, the target is immediately reset after downloading has completed.

• Goto main

If enabled, only the C startup code is processed when the debugger is launched.The application stops
executing when it reaches the first C instruction in the function main(). Usually you enable this option
in combination with the option Reset Target.

• Break on exit

If enabled, the target halts automatically when the exit() function is called.

• Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds to
find out if the breakpoint is hit. In this field you can change the polling frequency.

• Initialize Target Board

32

TASKING Embedded Debugger User Guide

Some target boards contain a power supply chip which needs to be initialized every time after power-on,
before hardware debugging is started. If enabled, the target board is initialized automatically before
the start of a debug session. If disabled, you need to initialize the target board manually via the Devices
view. See Section 4.3.13, Devices View.

Initialization tab: Flash settings

• Use default flash settings (recommended)

By default, the flash settings are derived from the .dtc file for the chosen target processor. So, when
you change processors the flash settings change automatically. If you do not want that, you can specify
your own flash settings.You can click Restore Defaults to restore the default flash settings.

• Monitor file

Filename of the monitor, usually an Intel Hex or S-Record file.

• Sector buffer size

Specifies the buffer size for buffering a flash sector.

• Workspace address

The address of the workspace of the flash programming monitor.

Project tab

On the Project tab, you can set the properties for the debug configuration such as a name for the project
and the application binary file(s) which are used when you choose this configuration.

33

Debugger Reference

• In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project myproject is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

• In the Binary files group box, you can choose one or more binary files to debug. The file
myproject.elf is automatically selected from the active project.

The order of the binary files matters. Use the Up and Down buttons to change the order. If there are
multiple files, the application start address is taken from the first file that defines one. An ELF file always
defines one, whereas Hex files may not.

Note that conflicts between symbols could arise, for example when you download two ELF files that
both contain the function main(). When you download multiple files, we recommend that the first
binary file is an ELF file that contains the startup code and main() and that the other files are auxiliary
Hex files.

To add a binary file

1. Click Add... to add a binary file.

The Add Binary File dialog appears.

2. Specify the binary file, use the Search... button to select one from the active project, or use the
Browse... button to search the file system.

3. Optionally, specify an address offset. The value will be added to all target addresses in the binary
file.

Note that the address offset will be applied only to code, data and the start address, not to debug
information. Specifying a non-zero offset is not recommended for an ELF/DWARF file. If the offset
causes an address to underflow or overflow an error occurs.

Arguments tab

If your application's main() function takes arguments, you can pass them in this tab.

34

TASKING Embedded Debugger User Guide

Arguments are conventionally passed in the argv[] array. Because this array is allocated in target
memory, make sure you have allocated sufficient memory space for it.

When you made your project with a TASKING VX-toolset product, make sure you have set the following
options before you build your project:

• In your TASKING VX-toolset product, in the C/C++ perspective select Project » Properties for to open
the Properties dialog. Expand C/C++ Build » Startup Configuration. Enable the option Enable passing
argc/argv to main() and specify a Buffer size for argv.

Source tab

On the Source tab, you can add the directory where the source files of your project are located.

35

Debugger Reference

Miscellaneous tab

On the Miscellaneous tab you can specify several file locations.

• Debugger location

The location of the debugger itself. This should not be changed.

• FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.

36

TASKING Embedded Debugger User Guide

• ORTI file and KSM module

If you wish to use the debugger's special facilities for kernel-aware debugging, specify the name of a
Kernel Debug Interface (KDI) compatible KSM module (shared library) in the appropriate edit box. The
TASKING Embedded Debugger comes with a KSM suitable for RTOS kernels. If you wish to use this,
browse for the file orti_radm.dll (Windows) or orti_radm.so (UNIX) in the ctc\bin directory
of the product. See also the description of the RTOS view.

• GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the generation
of internal log files.These are primarily intended for use by or at the request of Altium support personnel.

• Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this option
may result in a noticeable improvement, as the debugger will then avoid re-reading registers and
memory while the target remains halted. However, be aware that this may cause the debugger to show
the wrong data if tasks with a higher priority or external sources can influence the halted target's state.

• Launch in background

When this option is disabled you will see a progress bar when the debugger starts. If you do not want
to see the progress bar and want that the debugger launches in the background you can enable this
option.

• Use linker/locator memory map file (.mdf) for memory map

You can use this option to find errors in your application that cause access to non-existent memory or
cause an attempt to write to read-only memory. When building your project, the linker/locator creates
a memory description file (.mdf) file which describes the memory regions of the target you selected
in your project properties. The debugger uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

4.2. Pipeline and Cache During Debugging

The pipeline and the cache(s) of the TriCore architecture are implemented in such a way that there is no
automatic coherency between the state as seen by the CPU itself and that seen by the debugger via
OCDS. For example, if the target halts on a breakpoint, a memory value read via OCDS may not represent
the "real" value as implied by the program logic if the value still has to be written back from the cache.

The TASKING debugger has a special "sync(hronize)-on-halt" facility to bring about this coherency. Every
time the target halts, the debugger will execute a routine that flushes the pipeline and the caches insofar
as necessary. This routine will be added to a new TriCore project when you use a TriCore VX-toolset
product, unless you disable the option Include debugger synchronization utility in the New C/C++
Project wizard, which you may want to do if you do not intend to use the TASKING debugger. For example,
for third-party debuggers this synchronization utility might not be necessary. In any case, by default the

37

Debugger Reference

code will be linked in only in the Debug configuration, not in the Release configuration (via the Exclude
from build facility).

For more information see the TASKING VX-toolset for TriCore User Guide.

4.3.TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

38

TASKING Embedded Debugger User Guide

4.3.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

DescriptionSession itemIcon

Launch configuration name and launch typeLaunch instance

Debugger name and stateDebugger instance

Thread number and stateThread instance

Stack frame number, function, file name, and file line numberStack frame
instance

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,
the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session.You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar.

Controlling debug sessions

DescriptionActionIcon

Removes all terminated launches.Remove all

Resets the target system and restarts the application.Reset target
system

Restarts the application. The target system is not reset.Restart

Resumes the application after it was suspended (manually, breakpoint,
signal).

Resume

Suspends the application (pause). Use the Resume button to continue.Suspend

Right-click menu. Restarts the selected debug session when it was
terminated. If the debug session is still running, a new debug session is
launched.

Relaunch

Reloads the current application without restarting the debug session. The
application does restart of course.

Reload current
application

39

Debugger Reference

DescriptionActionIcon

Ends the selected debug session and/or process. Use Relaunch to restart
this debug session, or start another debug session.

Terminate

Right-click menu. As terminate. Ends all debug sessions.Terminate all

Right-click menu. Ends the debug session and removes it from the Debug
view.

Terminate and
remove

Right-click menu. Ends the debug session and relaunches it. This is the
same as choosing Terminate and then Relaunch.

Terminate and
Relaunch

Detaches the debugger from the selected process (useful for debugging
attached processes).

Disconnect

Stepping through the application

DescriptionActionIcon

Steps to the next source line or instruction.Step into

Steps over a called function. The function is executed and the application
suspends at the next instruction after the call.

Step over

Executes the current function. The application suspends at the next
instruction after the return of the function.

Step return

Toggle. If enabled, the stepping functions are performed on instruction level
instead of on C source line level.

Instruction
stepping

Toggle. If an interrupt source continues generating interrupts while the
target is stopped (either manually or by hitting a breakpoint), a following
single step will always enter the Interrupt Service Routine (ISR). This can
lead to some problems during single stepping.With interrupt aware stepping
enabled, interrupts are temporarily disabled after the target has stopped.
When execution resumes the interrupts are restored.

Interrupt aware
stepping

Miscellaneous

DescriptionActionIcon

Right-click menu. Copies the stack as text to the windows clipboard.You
can paste the copied selection as text in, for example, a text editor.

Copy Stack

Right-click menu. Opens the debug configuration dialog to let you edit the
current debug configuration.

Edit project...

Right-click menu. Opens the Edit Source Lookup Path window to let you
edit the search path for locating source files.

Edit Source
Lookup...

4.3.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in Section 3.4, Setting and Removing Breakpoints.

40

TASKING Embedded Debugger User Guide

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button opens the Breakpoints menu.

Types of breakpoints

To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button ().

The Breakpoints dialog appears.

Each tab lets you set a breakpoint of a special type.You can set the following types of breakpoints:

• File breakpoint

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

• Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

• Address

The target halts when it reaches the specified instruction address.

• Stack

The target halts when it reaches the specified stack level.

• Data

The target halts when the given variable or memory location (specified in terms of an absolute address)
is read or written to, as specified.

• Instruction

The target halts when the given number of instructions has been executed.

• Cycle

The target halts when the given number of clock cycles has elapsed.

• Timer

The target halts when the given amount of time elapsed.

41

Debugger Reference

In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition.The condition is an expression which evaluates to 'true' (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true'.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4': the
first four iterations are ignored.

4.3.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can import it into your workspace
via File » Import » TASKING C/C++ » TASKING Embedded Debugger Example Projects.) Per
debugging session, you can have more than one FSS view, each of which is associated with a positive
integer. By default, the view "FSS #1" is associated with the standard streams stdin, stdout, stderr
and stdaux. Other views can be accessed by opening a file named "terminal window <number>", as
shown in the example below.

FILE * f3 = fopen("terminal window 3", "rw");
fprintf(f3, "Hello, window 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 4.1, Debug Configuration Dialog):

1. On the Debugger tab, select the Miscellaneous sub-tab.

2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code and the debugger takes place via a breakpoint, which
incidentally is not shown in the Breakpoints view. Depending on the situation this may be a hardware
breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

When you use MIL linking/splitting the C library is translated along with your application. Therefore you
need to build your application with debug information generation enabled when FSS support is needed.

42

TASKING Embedded Debugger User Guide

4.3.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. If you are debugging a multi-core project, each thread
has its own Disassembly view.

To open a thread specific Disassembly view, select a stack frame in a thread in the Debug view and click

the Open thread specific Disassembly View button ().

The Address field shows the address of the current selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

4.3.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.

The Add Watch Expression dialog appears.

2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

• You can access target registers directly using #NAME. For example "arr[#R0 << 3]" or "#TIMER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCIN".

• Expressions may contain target function calls like for example "g1 + invert(&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

4.3.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages.You can address memory using expressions such as:

• 0x0847d3c

• (&y)+1024

• *ptr

43

Debugger Reference

Monitors

To monitor process memory, you need to add a monitor:

1. In the Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.

The Monitor Memory dialog appears.

3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:

1. In the Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.

Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer, unsigned integer or traditional.You can add or remove renderings
per monitor. Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.

The Add Memory Rendering dialog appears.

2. Select the rendering you want (Traditional, Hex, ASCII, Signed Integer, Unsigned Integer or Hex
Integer) and click Add Rendering(s).

To remove a rendering:

1. Right-click on a memory address in the rendering.

2. From the popup menu, select Remove Rendering.

Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

44

TASKING Embedded Debugger User Guide

4.3.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view
manually, or your application overwrote parts of the memory.

• To check for differences, click the Compare button.

4.3.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

 string = (char *) malloc(100);
 strcpy (string, "abcdefgh");
 free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

• After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (0x0, 0x0, ...).

• After the second line, "abcdefgh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

• The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

4.3.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

4.3.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING Embedded Debugger ships with a KSM supporting
the ISO 17356 standard.You have to create your own Run Time Interface (ORTI) and specify this file on
the Miscellaneous tab while configuring a customized debug configuration (see also Section 4.1, Debug
Configuration Dialog):

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.

Or: click the New launch configuration button () to add a new configuration.

45

Debugger Reference

3. Open the Miscellaneous tab.

4. In the ORTI file field, specify the name of your own ORTI file.

5. If you want to use the supplied KSM suitable for RTOS kernels, in the KSM module field browse for
the file orti_radm.dll (Windows) or orti_radm.so (UNIX) in the ctc\bin directory of the
product.

The debugger supports ORTI specifications v2.0 and v2.1.

4.3.11. Registers View

In the Registers view you can examine the value of registers while stepping through your application. If
you are debugging a multi-core project, each thread has its own Registers view.The registers are organized
in a number of register groups, which together contain all known registers.You can select a group to see
which registers it contains. This view has a number of features:

• While you step through the application, the registers involved in the step turn yellow. If you scroll in the
view or switch groups, some registers may appear on a lighter yellow background, indicating that the
debugger does not know whether the registers have changed because the debugger did not read the
registers before the step began.

Registers view:

46

TASKING Embedded Debugger User Guide

Thread specific Registers view:

• To open a thread specific Registers view, select a thread in the Debug view and click the Open thread

specific Registers View button ().

• You can change each register's value.

• For some registers the menu entry Symbolic Representation is available in their right-click popup
menu. This opens a new view which shows the internal fields of the register. (Alternatively, you can
double-click on a register). For example, the SCU_CCUCON0 register from the SCU group may be
shown as follows:

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Write button.

• You can search for a specific register: right-click on a register and from the popup menu select Find
Register.... Enter a group or register name filter, click the register you want to see and click OK. The
register of your interest will be shown in the view.

4.3.12.Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

• Right-click in the Trace view and select Trace.

A check mark appears when tracing is enabled.

47

Debugger Reference

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these.The view is updated automatically
each time the target halts.

4.3.13. Devices View

The Devices view shows which target boards are connected to your PC.The list of attached target boards
has no specific relation with your Embedded Debugger project.

DescriptionActionIcon

Right-click menu and toolbar. Initializes the selected target board.Initialize Target
Board

Right-click menu and toolbar. When you have connected or disconnected
a board and in the Preferences dialog polling is disabled, you can manually
refresh the display of this view.

Refresh

Drop-down menu. Open the Preferences dialog.Menu

Some target boards contain a power supply chip which needs to be initialized every time after power-on,
before hardware debugging is started. This initialization is necessary before starting a debug session,
otherwise communication is not possible.You can do this initialization manually or automatically. Any of
the listed target boards can be initialized, you need to take care that the target board is initialized when
needed. Initialization is never harmful.

Initialize target board manually

1. Connect the target board. If the board does not appear in the Devices view automatically, click the

Refresh button ().

The board is visible in the Devices view.

2. Click in the Debug Target Configuration field and from the drop-down menu select the configuration
that matches your target board.

3. Right-click on the target board and select Initialize Target Board, or click the Initialize Target Board

button ().

Initialize target board automatically

1. Open the Debug Configurations dialog (Debug » Debug Configurations).

48

TASKING Embedded Debugger User Guide

2. On the Initialization tab, enable Initialize target board.

The target board will be initialized automatically before the debug session starts.

Polling of target boards

At startup of the debugger the Devices view shows the list of attached target boards. By default this list
is not refreshed.You can set a polling interval for automatic refreshing.

1. From the drop-down menu or right-click menu in the Devices view, select Preferences.

The Preferences (Filtered) dialog appears. This is a filtered version from the standard Preferences
dialog (Window » Preferences » TASKING » Devices).

2. Enable Poll connected target boards and fill in a Polling interval in seconds. The default is 10
seconds.

If polling is disabled, you have to refresh the Devices view manually after you connected or disconnected
a board.

4.4. Multi-core Hardware Debugging

The TASKING debugger supports multi-core hardware debugging. When you start the debugger for a
multi-core device (AURIX), you can debug all TriCore cores of the selected device.

The following picture shows the example tc_cpp-multi-core-test, which is a C++ multi-core
application and is debugged on an Infineon TriBoard TC29x.

For each of the three TriCore cores of the TC29x a separate thread is started. The example shows the
situation where Thread [core 0] is suspended, Thread [core 1] is running and Thread [core
2] is suspended.

Suspend or resume a thread/core

You can suspend or resume each of the threads independent from the other threads.

1. Select the thread you want to suspend or resume.

49

Debugger Reference

2. Click the Suspend () or Resume () button.

In the example above Thread [core 1] has been selected (highlighted color). When you click the
Suspend button or Resume button this only effects Thread [core 1].

Update views

When you select a function in a thread, the Source view, the Register view and the Disassembly view
are updated to the contents of the thread (either running or suspended - with the latter situation up-to-date
information is shown).

Suspend or resume all threads/cores simultaneously

When you select the board, in the picture above Infineon TriBoard TC29x - TC29x, you can
suspend or resume all cores simultaneously. However, when one of the threads is running and the others
are suspended, you must suspend the running thread before you can resume all threads at once via the
board selection method. The same applies for suspending all threads at once.

4.5. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.

Setup an on-chip flash device

When you specified a target configuration board using the New Project wizard or the Import Board
Configuration wizard, as explained in Section 2.1, Create a Project and Section 2.2, Configuring the
Target, any on-chip flash devices are setup automatically.

Setup an external flash device

1. From the Project menu, select Properties for

The Properties for project dialog appears.

2. In the left pane, expand Run/Debug Settings and select Flash Programming.

The Flash Programming pane appears.

50

TASKING Embedded Debugger User Guide

3. Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

51

Debugger Reference

4. In the Device type box, expand the name of the manufacturer of the device and select a device.

The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. In the Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its
base address.

6. In the Chip width field select the width of the flash device.

7. In the Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fill in the Number of unused address lines field, if necessary.

The flash memory is added to the linker script file automatically with the tag "flash=flash-id".

To program a flash device

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. In the left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.board.

3. Open the Initialization tab

The Flash settings group box should be active.

4. Enable the option Use default flash settings (recommended)

By default, the flash settings are derived from the .dtc file for the chosen target processor. So, when
you change processors the flash settings change automatically. If you do not want that, you can
specify your own flash settings. In that case perform steps 5-7, otherwise skip to step 8.You can
click Restore Defaults to restore the default flash settings.

5. In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

6. In the Sector buffer size field, specify the buffer size for buffering a flash sector.

7. Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

8. Click Debug to program the flash device and start debugging.

4.5.1. Boot Mode Headers

Newer TriCore devices have (typically four) Boot Mode Headers (BMHs), which lie in flash memory. An
individual BMH can be either valid or invalid. For certain devices, if all BMHs are invalid, the device is

52

TASKING Embedded Debugger User Guide

normally inaccessible to the debugger. This more or less "bricks" the device because reprogramming the
flash to revalidate one of the BMHs requires the debugger, or a similar program, to use the now inaccessible
debug port. Recovery is possible via, for example, CAN, but this is cumbersome.

Therefore, the debugger has a special functionality to prevent all BMHs from being invalidated. The
debugger only allows downloading if the target application adheres to one of the following restrictions.

• It contains at least one valid non-ranged BMH. "non-ranged" means that fields ChkStart and ChkEnd
must be identical. This is a restriction needed for implementation reasons.You may use ranged BMHs,
but they do not count as valid in this context.

• It contains no code or data in at least one of the 32-byte areas covered by a BMH. If necessary, you
can instruct the linker to do this by explicitly reserving one of these ranges.The default LSL files provided
with the product already do this.

Remarks

• If your application does not contain any valid BMHs itself and would overwrite the last currently valid
one, the debugger will silently validate one of the other BMHs. This means that the debugger may
program more flash sectors than you might expect.

• Of course, your target application has the ability to reprogram flash memory for its own purpose. This
too can cause bricking, but obviously the debugger cannot prevent this.

53

Debugger Reference

54

TASKING Embedded Debugger User Guide

Chapter 5. Debug Target Configuration Files
DTC files (Debug Target Configuration files) define all possible configurations for a debug target. A debug
target can be target hardware such as an evaluation board or a simulator. The DTC files are used by
Eclipse to configure the project and the debugger. The information is used by the Import Board
Configuration wizard and the debug configuration.

5.1. Custom Board Support

When you need support for a custom board and the board requires a different configuration than those
that are in the product, it is necessary to create a dedicated DTC file.

For details about the layout of DTC files, refer to the user guide of a TASKING VX-toolset product.

To add a custom board

1. Make a copy of a .dtc file and put it in your project directory (in the current workspace).

In Eclipse, the DTC file should now be visible as part of your project.

2. Edit the file and give it a name that reflects the custom board.

The Import Board Configuration wizard in Eclipse adds DTC files that are present in your current project
to the list of available target boards.

55

56

TASKING Embedded Debugger User Guide

	TASKING Embedded Debugger User Guide
	Table of Contents
	Chapter 1. Preparing for First Use
	1.1. Installing the Software
	1.1.1. Installation for Windows
	1.1.2. Licensing
	1.1.2.1. Obtaining a License
	1.1.2.2. Frequently Asked Questions (FAQ)
	1.1.2.3. Installing a License
	1.1.2.3.1. Configure the Firewall in your Network
	1.1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.1.2.3.3. Installing Client Based Licenses (Node-Locked)

	1.1.3. Installing the Software in an Existing Eclipse Environment
	1.1.4. Bulk Installation into Existing Eclipse Environments

	1.2. How to Use the Documentation
	1.3. Related Publications

	Chapter 2. Setting up a Project
	2.1. Create a Project
	2.2. Configuring the Target
	2.3. Project Properties
	2.4. Using the Sample Projects

	Chapter 3. Debugging your Application
	3.1. Create a Debug Configuration
	3.2. Start a Debug Session
	3.3. Stepping through the Application
	3.4. Setting and Removing Breakpoints
	3.5. Reload Current Application
	3.6. End a Debug Session
	3.7. Multiple Debug Sessions

	Chapter 4. Debugger Reference
	4.1. Debug Configuration Dialog
	4.2. Pipeline and Cache During Debugging
	4.3. TASKING Debug Perspective
	4.3.1. Debug View
	4.3.2. Breakpoints View
	4.3.3. File System Simulation (FSS) View
	4.3.4. Disassembly View
	4.3.5. Expressions View
	4.3.6. Memory View
	4.3.7. Compare Application View
	4.3.8. Heap View
	4.3.9. Logging View
	4.3.10. RTOS View
	4.3.11. Registers View
	4.3.12. Trace View
	4.3.13. Devices View

	4.4. Multi-core Hardware Debugging
	4.5. Programming a Flash Device
	4.5.1. Boot Mode Headers

	Chapter 5. Debug Target Configuration Files
	5.1. Custom Board Support

