
MB060–024–00–00
Doc. ver.: 1.2

TriCore v2.0

C Compiler,

Assembler, Linker

Reference Guide

A publication of

Altium BV

Documentation Department

Copyright  2002-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

TRICORE C LANGUAGE 1-1

1.1 Introduction 1-3.

1.2 Data Types 1-4.

1.3 Keywords 1-6.

1.4 Function Qualifiers 1-9.

1.5 Intrinsic Functions 1-12.

1.5.1 Minium and maximum of (Short) Integers 1-13.

1.5.2 Fractional Arithmetic Support 1-14.

1.5.3 Packed Data Type Support 1-15.

1.5.4 Interrupt Handling 1-18.

1.5.5 Insert Single Assembly Instruction 1-19.

1.5.6 Register Handling 1-20.

1.5.7 Insert / Extract Bit-fields and Bits 1-21.

1.5.8 Miscellaneous Intrinsic Functions 1-23.

1.6 Pragmas 1-24.

1.7 Predefined Macros 1-25.

LIBRARIES 2-1

2.1 Introduction 2-3.

2.1.1 Header Files 2-4.

2.1.2 C Library Functions 2-9.

2.1.3 C Library Reentrancy 2-63.

TRICORE ASSEMBLY LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Built-in Assembly Functions 3-3.

3.2.1 Overview of Built-in Assembly Functions 3-3.

3.2.2 Detailed Description of Built-in Assembly Functions 3-6. .

3.3 Assembler Directives and Controls 3-18.

3.3.1 Overview of Assembler Directives 3-18.

3.3.2 Detailed Description of Assembler Directives 3-20.

3.3.3 Overview of Assembler Controls 3-66.

3.3.4 Detailed Description of Assembler Controls 3-67.

Table of ContentsVI
C
O
N
T
E
N
T
S

TOOL OPTIONS 4-1

4.1 Compiler Options 4-3.

4.2 Assembler Options 4-57.

4.3 Linker Options 4-94.

4.4 Control Program Options 4-137.

4.5 Make Utility Options 4-162.

4.6 Archiver Options 4-191.

LIST FILE FORMATS 5-1

5.1 Assembler List File Format 5-3.

5.2 Linker Map File Format 5-5.

OBJECT FILE FORMATS 6-1

6.1 ELF/DWARF Object Format 6-3.

6.2 Motorola S-Record Format 6-4.

6.3 Intel Hex Record Format 6-8.

LINKER SCRIPT LANGUAGE 7-1

7.1 Introduction 7-3.

7.2 Structure of a Linker Script File 7-3.

7.3 Syntax of the Linker Script Language 7-6.

7.3.1 Identifiers 7-7.

7.3.2 Expressions 7-7.

7.3.3 Built-in Functions 7-8.

7.3.4 LSL Definitions in the Linker Script File 7-10.

7.3.5 Memory and Bus Definitions 7-10.

7.3.6 Architecture Definition 7-12.

7.3.7 Derivative Definition 7-14.

7.3.8 Processor Definition and Board Specification 7-15.

7.3.9 Section Placement Definition 7-15.

7.4 Expression Evaluation 7-18.

Table of Contents VII

• • • • • • • •

7.5 Semantics of the Architecture Definition 7-19.

7.5.1 Defining an Architecture 7-20.

7.5.2 Defining Internal Busses 7-20.

7.5.3 Defining Address Spaces 7-21.

7.5.4 Mappings 7-23.

7.6 Semantics of the Derivative Definition 7-26.

7.6.1 Defining a Derivative 7-26.

7.6.2 Instantiating Core Architectures 7-27.

7.6.3 Defining Internal Memory and Busses 7-27.

7.7 Semantics of the Board Specification 7-29.

7.7.1 Defining a Processor 7-29.

7.7.2 Instantiating Derivatives 7-30.

7.7.3 Defining External Memory and Busses 7-30.

7.8 Semantics of the Section Layout Definition 7-32.

7.8.1 Defining a Section Layout 7-32.

7.8.2 Creating and Locating Groups of Sections 7-33.

7.8.3 Creating or Modifying Special Sections 7-39.

7.8.4 Conditional Group Statements 7-41.

CPU FUNCTIONAL PROBLEMS 8-1

8.1 Introduction 8-3.

8.2 CPU Functional Problem bypasses TC1 V1.2 8-5.

8.3 CPU Functional Problem bypasses TC1 V1.3 8-16.

MISRA C RULES 9-1

INDEX

Table of ContentsVIII
C
O
N
T
E
N
T
S

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

Windows Users

The documentation explains and describes how to use the TriCore

toolchain to program a TriCore DSP. The documentation is primarily aimed

at Windows users. You can use the tools either with the graphical

Embedded Development Environment (EDE) or from the command line in

a command prompt window.

Unix Users

For UNIX the toolchain works the same as it works for the Windows

command line.

Directory paths are specified in the Windows way, with back slashes as in

\ctc\bin . Simply replace the back slashes by forward slashes for use

with UNIX: /ctc/bin .

Structure

The TriCore documentation consists of a User's Guide which includes a

Getting Started section and a separate Reference Guide (this manual).

First you need to install the software and make it run under the licence

manager FLEXlm. This is described in Chapter 1, Software Installation and
Configuration, of the User's Guide.

After installation you are ready to follow the Getting Started in Chapter 2

of the User's Guide.

Next, move on with the other chapters in the User's Guide which explain

how to use the compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Guide

to lookup specific options and details to make fully use of the TriCore

toolchain.

TriCore Reference GuideX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: TriCore C Language

Contains overviews of all language extensions:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

Chapter 2: Libraries

Contains overviews of all library functions you can use in your C source.

First libraries are listed per header file that contains the prototypes. These

tables also show the level of implementation per function. Second, all

library functions are listed and discussed into detail.

Chapter 3: TriCore Assembly Language

Contains an overview of all assembly functions that you can use in your

assembly source code.

Chapter 4: Tool Options

Contains a description of all tool options:

• Compiler options

• Assembler options

• Linker options

• Control program options

• Make utility options

• Archiver options

Chapter 5: List File Formats

Contains a description of the following list file formats:

• Assembler List File Format

• Linker Map File Format

Manual Purpose and Structure XI

• • • • • • • •

Chapter 6: Object File Formats

Contains a description of the following object file formats:

• ELF/DWARF Object Formats

• Motorola S-Record Format

• Intel Hex Record Format

Chapter 7: Linker Script Language

Contains a description of the linker script language (LSL).

Chapter 8: CPU Functional Problems

Contains a description of the TASKING TriCore toolchain software

solutions for functional problems and deviations from the electrical

specifications and timing specifications for some TriCore derivatives.

Chapter 9: MISRA C Rules

Contains a description the supported and unsupported MISRA C code

checking rules.

TriCore Reference GuideXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

ctc [-?]

Both ctc and ctc –? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,

separating each item with a comma.

Example

ctc [option]... filename

You can read this line as follows: enter the command ctc with or without

an option, follow this by zero or more options and specify a filename. The

following input lines are all valid:

ctc test.c
ctc –g test.c
ctc –g –E test.c

Not valid is:

ctc –g

According to the syntax description, you have to specify a filename.

Manual Purpose and Structure XIII

• • • • • • • •

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making

serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as

EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

TriCore Reference GuideXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

C Standards

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

More information on the standards can be found at

http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),

Programming languages - C [TASKING, TK0071-14]

MISRA C

• Guidelines for the Use of the C Language in Vehicle Based Software

[MISRA]

See also http://www.misra.org.uk

TASKING Tools

• TriCore C Compiler, Assembler, Linker User's Guide

[TASKING, MA060-024-00-00]

• TriCore C++ Compiler User's Guide

[TASKING, MA060-012-00-00]

• TriCore CrossView Pro Debugger User's Guide

[TASKING, MA060-043-00-00]

TriCore

• TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3

[2002-09, Infineon]

• TriCore2 Architecture Overview Handbook [2002, Infineon]

• TriCore Embedded Application Binary Interface [2000, Infineon]

1

TRICORE
C LANGUAGE

C
H

A
P

T
E

R

TriCore Reference Guide1–2
C

 L
A

N
G

U
A

G
E

1

C
H

A
P

T
E

R

TriCore C Language 1–3

• • • • • • • •

1.1 INTRODUCTION

The TASKING TriCore C compiler fully supports the ANSI C standard but

adds possibilities to program the special functions of the TriCore.

This chapter contains complete overviews of the following C language

extensions of the TASKING TriCore C compiler:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

TriCore Reference Guide1–4
C

 L
A

N
G

U
A

G
E

1.2 DATA TYPES

The TASKING TriCore C compiler ctc supports the following data types:

Type Keyword Size
(bit)

Align
(bit) Ranges

Bit __bit 8 8 0 or 1

Boolean _Bool 8 8 0 or 1

Character char

signed char
8 8 –27 .. 27–1

unsigned char 8 8 0 .. 28–1

Integral short

signed short
16 16 –215 .. 215–1

unsigned short 16 16 0 .. 216–1

int

signed int

long

signed long

32 16 –231 .. 231–1

unsigned int

unsigned long
32 16 0 .. 232–1

enum 8
16
32

8
16

–27 .. 27–1
–215 .. 215–1
–231 .. 231–1

long long

signed
 long long

64 32 –263 .. –263–1

unsigned
 long long 64 32 0 .. 264–1

Pointer pointer to data

pointer to func
32 32 0 .. 232–1

Floating
Point float 32 16

–3.402e38 .. –1.175e–38

1.175e–38 .. 3.402e38

double

long double
64 32

–1.797e308 .. –2.225e–308

2.225e–308 .. 1.797e308

Fract __sfract 16 16 [–1, 1>

__fract 32 32 [–1, 1>

TriCore C Language 1–5

• • • • • • • •

RangesAlign
(bit)

Size
(bit)KeywordType

Accum __laccum 64 64 [–131072,131072>

Packed __packb

signed __packb
32 16 4x: –27 .. 27–1

unsigned __packb 32 16 4x: 0 .. 28–1

__packhw

signed __packhw
32 16 2x: –215 .. 215–1

unsigned
__packhw

32 16 2x: 0 .. 216–1

Table 1-1: Data Types

TriCore Reference Guide1–6
C

 L
A

N
G

U
A

G
E

1.3 KEYWORDS

__a0, __a1, __a8, __a9

The data object is located in a section that is addressable with a

sign-extended 16-bit offset from address register A0, A1, A8 or A9
respectively.

__asm()

With the __asm() keyword you can use assembly instructions in the C

source and pass C variables as operands to the assembly code.

__asm(”instruction_template ”
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

instruction_template Assembly instructions that may contain

parameters from the input list or output list in

the form: %parm_nr [.regnum]

 %parm_nr[.regnum] Parameter number in the range 0 .. 9. With the

optional .regnum you can access an individual

register from a register pair or register quad. For

example, with register pair d0/d1 , .0 selects

register d0 .

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before

the inputs are read, so this output must not be

the same register as any input.

 constraint _char Constraint character: the type of register to be

used for the C_expression.

 C_expression Any C expression. For output parameters it must

be an lvalue, that is, something that is legal to

have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

TriCore C Language 1–7

• • • • • • • •

Constraint
character

Type Operand Remark

a Address register a0 .. a15

d Data register d0 .. d15

e Data register pair e0 .. e7

m Memory variable Stack or memory operand

number Type of operand it
is associated with

same as
%number

Indicates that %number and
number are the same register.

Table 1-2: Available input/output operand constraints

For more information on __asm, see section 3.6, Using Assembly in the C
Source, in Chapter TriCore C Language of the User's Guide.

__at()

With the attribute __at() you can place an object at an absolute address.

int myvar __at(0x100);

__atbit()

If you have defined a 32-bits base variable (int , long) you can declare a

single bit of that variable as a bit variable with the keyword __atbit() .

The syntax is:

__atbit(name, offset)

name is the name of an integer variable in which the bit is located. offset
(range 0-31) is the bit-offset within the variable.

__circ

The TriCore C compiler supports the __circ keyword for circular buffers.

For more information see section 3.4.1, Circular Buffers, in Chapter

TriCore C Language of the User's Guide.

TriCore Reference Guide1–8
C

 L
A

N
G

U
A

G
E

__near
__far

With keyword __near the declared data object will be located in the first

16 kB of a 256 MB block. These parts of memory are directly addressable

with the absolute addressing mode.

With keyword __far the data object can be located anywhere in the

indirect addressable memory region.

__sfrbit16
__sfrbit32

With the data type qualifiers __sfrbit16 and __sfrbit32 you can

declare bit fields in special function registers. These keywords force 16-bit

or 32-bit access.

For more information see section 3.4.2, Declare an SFR Bit Field: __sfrbit16
and __sfrbit32, in Chapter TriCore C Language of the User's Guide.

TriCore C Language 1–9

• • • • • • • •

1.4 FUNCTION QUALIFIERS

__enable_
__bisr_()

During the execution of an interrupt service routine or trap service routine,

the system blocks the CPU from taking further interrupt requests. You can

immediately re-enable the system to accept interrupt requests:

__interrupt(vector) __enable_ isr(void)
__trap(class) __enable_ tsr(void)

The function qualifier __bisr_() also re-enables the system to accept

interrupt requests. In addition, the current CPU priority number (CCPN) in

the interrupt control register is set:

__interrupt(vector) __bisr_(CCPN) isr(void)
__trap(class) __bisr_(CCPN) tsr(void)

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Guide.

__indirect

Functions are default called with a single word direct call. However, when

you link the application and the target address appears to be out of reach

(+/- 16 MB from the callg or jg instruction), the linker generates an

error. In this case you can use the __indirect keyword to force the less

efficient, two and a half word indirect call to the function:

int __indirect foo(void)
{
...
}

inline
__noinline

You can use the inline qualifier to tell the compiler to inline the function

body instead of calling the function. Use the __noinline qualifier to tell

the compiler not to inline the function body.

TriCore Reference Guide1–10
C

 L
A

N
G

U
A

G
E

inline int func1(void)
{
 // inline this function
}

__noinline int func2(void)
{
 // do not inline this function
}

For more information see section 3.9.1, Inlining Functions: inline, in
Chapter TriCore C Language of the User's Guide.

__interrupt()
__interrupt_fast()

You can use the qualifier __interrupt() to declare a function as an

interrupt service routine.

void __interrupt(vector_number) isr(void)
{
...
}

The vector_number identifies the entry into the interrupt vector table

(0..255). Unlike other interrupt systems, the priority number (PIPN) of the

interrupt now being serviced by the CPU identifies the entry into the

vector table.

When you define an interrupt service routine with the

__interrupt_fast() qualifier, the interrupt handler is directly placed in

the interrupt vector table, thereby eliminating the jump code.

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Guide.

__trap()
__trap_fast()
__syscallfunc()

The definition of a trap service routine is similar to the definition of an

interrupt service routine. Trap functions cannot accept arguments and do

not return anything:

TriCore C Language 1–11

• • • • • • • •

void __trap(class) tsr(void)
{
...
}

The argument class identifies the entry into the trap vector table. TriCore

defines eight classes of trap functions. Each class has its own trap handler.

When you define a trap service routine with the __trap_fast()
qualifier, the trap handler is directly placed in the trap vector table,

thereby eliminating the jump code.

A special kind of trap service routine is the system call trap. With a system

call the trap service routine of class 6 is called. For the system call trap, the

trap identification number (TIN) is taken from the immediate constant

specified with the function qualifier __syscallfunc() :

__syscallfunc(TIN)

The TIN is a value in the range 0 and 255. You can only use

__syscallfunc() in the function declaration. A function body is useless,

because when you call the function declared with __syscallfunc() , a

trap class 6 occurs which calls the corresponding trap service routine.

For more information see section 3.9.2, Interrupt and Trap Functions, in
Chapter TriCore C Language of the User's Guide.

__stackparm

The function qualifier __stackparm changes the standard calling

convention of a function into a convention where all function arguments

are passed via the stack, conforming a so called stack model. This qualifier

is only needed for situations where you need to use an indirect call to a

function for which you do not have a valid prototype.

void __stackparm stack_func (int);

TriCore Reference Guide1–12
C

 L
A

N
G

U
A

G
E

1.5 INTRINSIC FUNCTIONS

The TASKING TriCore C compiler recognizes intrinsic functions that serve

the following purposes:

• Minimum and maximum of (short) integers

• Fractional data type support

• Packed data type support

• Interrupt handling

• Insert single assembly instruction

• Register handling

• Insert / extract bit-fields and bits

• Miscellaneous

All intrinsic functions begin with a double underscore character (__). You

can use intrinsic functions as if they were ordinary C functions.

TriCore C Language 1–13

• • • • • • • •

1.5.1 MINIUM AND MAXIMUM OF (SHORT) INTEGERS

The next table provides an overview of the intrinsic functions that return

the minium or maximum of a signed integer, unsigned integer or short

integer.

Intrinsic Function Description

int __min(int,int) Return minimum of two
integers

short __mins(short,short) Return minimum of two
short integers

unsigned int
 __minu(unsigned int, unsigned int)

Return minimum of two
unsigned integers

int __max(int,int) Return maximum of two
integers

short __maxs(short,short) Return maximum of two
short integers

unsigned int
 __maxu(unsigned int, unsigned int)

Return maximum of two
unsigned integers

Table 1-3: Intrinsic Functions for obtaining min/max values

TriCore Reference Guide1–14
C

 L
A

N
G

U
A

G
E

1.5.2 FRACTIONAL ARITHMETIC SUPPORT

The next table provides an overview of intrinsic functions to convert

fractional values. Note that the TASKING TriCore C compiler fully supports

the fractional type so normally you should not need these intrinsic

functions (except for __mulfractlong). For compatibility reasons the

TASKING TriCore C compiler does support these functions.

Conversion of Fractional Values

Intrinsic Function Description

long
 __mulfractlong(__fract,long)

Integer part of __fract x long

__sfract
 __round16(__fract)

Convert __fract to __sfract

__fract
 __getfract(__accum)

Convert __accum to __fract

short
 __clssf(__sfract)

Count the consecutive
number of bits that have the
same value as bit 15 of an
__sfract

__sfract
 __shasfracts(__sfract,int)

Left/right shift of an __sfract

__fract
 __shafracts(__fract,int)

Left/right shift of an __fract

__laccum
 __shaaccum(__laccum,int)

Left/right shift of an __laccum

Table 1-4: Intrinsic Functions for Conversion of Fractional Values

TriCore C Language 1–15

• • • • • • • •

1.5.3 PACKED DATA TYPE SUPPORT

The next table provides an overview of the intrinsic functions for

initialization of packed data type.

Initialize Packed Data Types

Intrinsic Function Description

__packb __initpackbl(long) Initalize __packb with a
long integer

__packb __initpackb(int,int,int,int) Initalize __packb with four
integers

__packhw __initpackhwl(long) Initalize __packhw with a
long integer

__packhw __initpackhw(int,int) Initalize __packhw with two
integers

Table 1-5: Intrinsic Functions to Initialize Packed Data Types

Extract Values from Packed Data Types

The next table provides an overview of the intrinsic functions to extract a

single byte or halfword from a __packb or __packhw data type.

Intrinsic Function Description

char __extractbyte1(__packb) Extract first byte from a __packb

char __extractbyte2(__packb) Extract second byte from a __packb

char __extractbyte3(__packb) Extract third byte from a __packb

char __extractbyte4(__packb) Extract fourth byte from a __packb

short __extracthw1(__packhw) Extract first short from a __packhw

short __extracthw2(__packhw) Extract second short from a __packhw

char __getbyte1(__packb *) Extract first byte from a __packb

char __getbyte2(__packb *) Extract second byte from a __packb

char __getbyte3(__packb *) Extract third byte from a __packb

char __getbyte4(__packb *) Extract fourth byte from a __packb

TriCore Reference Guide1–16
C

 L
A

N
G

U
A

G
E

DescriptionIntrinsic Function

short __gethw1(__packhw *) Extract first integer from a __packhw

short __gethw2(__packhw *) Extract short integer from a __packhw

Table 1-6: Intrinsic Functions to Extract Values from Packed Data Types

Insert Values into Packed Data Types

The next table provides an overview of the intrinsic functions to insert a

single byte or halfword into a __packb or __packhw data type.

Intrinsic Function Description

__packb __insertbyte1(__packb, char) Insert char into first byte of
a __packb

__packb __insertbyte2(__packb, char) Insert char into second byte
of a __packb

__packb __insertbyte3(__packb, char) Insert char into third byte of
a __packb

__packb __insertbyte4(__packb, char) Insert char into fourth byte
of a __packb

__packhw __inserthw1(__packhw, short) Insert short into first
halfword of a __packhw

__packhw __inserthw2(__packhw, short) Insert short into second
halfword of a __packhw

void __setbyte1(__packb *, char) Insert first byte into a
__packb

void __setbyte2(__packb *, char) Insert second byte into a
__packb

void __setbyte3(__packb *, char) Insert third byte into a
__packb

void __setbyte4(__packb *, char) Insert fourth byte into a
__packb

void __sethw1(__packhw *, short) Insert first integer into a
__packhw

void __sethw2(__packhw *, short) Insert short integer into a
__packhw

Table 1-7: Intrinsic Functions to Insert Values into Packed Data Types

TriCore C Language 1–17

• • • • • • • •

Combine Packed Data Types into a Packed Word

The next table provides an overview of the intrinsic functions to combine

the value of packed data types into a packed word. You can combine two

__packb (2 x 4 bytes) into a long long or two __packhw (2 x 2

halfwords) into a long long.

The packed word is a double register that is represented by the additional

datatype __packw . To access the values in a _packw variable, you can use

a union data type: typedef double __packw .

These intrinsics are only supported for the TriCore2 (––is-tricore2).

Intrinsic Function Description

unsigned long long
 __transpose_byte(__packb,__packb)

Combine two __packb

unsigned long long
 __transpose_hword(__packhw,__packhw)

Combine two __packhw

Table 1-8: Intrinsic Functions to Combine Packed Data Types

Calculate Absolute Values of Packed Data Type Values

The next table provides an overview of the intrinsic functions to calculate

the absolute value of packed data type values.

Intrinsic Function Description

__packb __absb(__packb) Absolute value of __packb

__packhw __absh(__packhw) Absolute value of __packhw

__sat __packhw
 __abssh(__sat __packhw)

Absolute value of __packhw
using saturation

Table 1-9: Intrinsic Functions to Calculate Absolute Values

Calculate Minimum Packed Data Type Values

The next table provides an overview of the intrinsic functions to calculate

the minimum from two packed data type values.

TriCore Reference Guide1–18
C

 L
A

N
G

U
A

G
E

Intrinsic Function Description

__packb __minb(__packb,__packb) Minimum of two __packb
values

unsigned __packb __minbu(unsigned
__packb, unsigned __packb)

Minimum of two unsigned
__packb values

__packhw __minh(__packhw,__packhw) Minimum of two __packhw
values

unsigned __packhw __minhu(unsigned
__packhw, unsigned __packhw)

Minimum of two unsigned
__packhw values

Table 1-10: Intrinsic Functions to Calculate Absolute Values

1.5.4 INTERRUPT HANDLING

The next table provides an overview of the intrinsic functions to read or

set interrupt handling:.

Intrinsic Function Description

void __enable (void) Enable interrupts immediately at
function entry

void __disable (void) Disable interrupts Only supported
for TriCore1.

int __disable_and_save (void) Disable interrupts and return
previous interrupt state (enabled or
disabled). Only supported for
TriCore2 (–– is–tricore2).

void __restore (int) Restore interrupt state. Only
supported for TriCore2
(–– is–tricore2).

void __bisr (int) Set CPU priority number [0..512]
and enable interrupts immediately
at function entry

void __sysc (int) Call a system call function number

Table 1-11: Intrinsic Functions for Interrupt Handling

TriCore C Language 1–19

• • • • • • • •

1.5.5 INSERT SINGLE ASSEMBLY INSTRUCTION

The next table provides an overview of the intrinsic functions that you can

use to insert a single assembly instruction.

You can also use inline assembly but these intrinsics provide a shorthand

for frequently used assembly instructions.

See section 3.6, Using Assembly in the C Source: __asm() of the

User's Guide

Intrinsic Function Description

void __debug(void) Insert DEBUG instruction

void __dsync(void) Insert DSYNC instruction

void __isync(void) Insert ISYNC instruction

void __svlcx(void) Insert SVLCX instruction

void __rslcx(void) Insert RSLCX instruction

void __nop(void) Insert NOP instruction

Table 1-12: Intrinsic Functions for Inserting Assembly Instructions

TriCore Reference Guide1–20
C

 L
A

N
G

U
A

G
E

1.5.6 REGISTER HANDLING

Access Control Registers

The next table provides an overview of the intrinsic functions that you can

use to acces control registers.

Intrinsic Function Description

int __mfcr(int) move contents of the addressed core SFR
into a data register

void __mtcr (int,int) move contents of a data register (second int)
to the addressed core SFR (first int)

Table 1-13: Intrinsic Functions for Accessing Control Registers

Perform Register Value Operations

The next table provides an overview of the intrinsic functions that operate

on a register and return a value in another register.

Intrinsic Function Description

int __clz (int) Count leading zeros in int

int __clo (int) Count leading ones in int

int __cls (int) Count number of redundant sign bits (all
consecutive bits with the same value as bit 31)

int __satb (int) Return saturated byte

int __satbu (int) Return saturated unsigned byte

int __sath (int) Return saturated halfword

int __sathu (int) Return saturated unsigned halfword

int __abs (int) Return absolute value

int __abss (int) Return absolute value with saturation

int __parity (int) Return parity

Table 1-14: Intrinsic Functions for Performing Register Value Operations

TriCore C Language 1–21

• • • • • • • •

1.5.7 INSERT / EXTRACT BIT-FIELDS AND BITS

Insert / Extract Bit-fields

The next table provides an overview of the intrinsic functions to insert or

extract a bit-field.

Intrinsic Function Description

int __extr (int value ,
 int pos ,int width)

Extract a bit–field (bit pos to bit
pos+width) from value

unsigned int __extru (int
 value ,int pos ,int width)

Same as __extr() but return bit–field
as unsigned integer

int __insert (int src ,int
 trg , int pos ,int width)

Extract bit–field (bit pos to bit
pos+width) from src and insert it in trg.

int _ins(int trg , int trgbit ,
 int src , int srcbit)

Return trg but replace trgbit by srcbit
in src.

int _insn(int trg , int trgbit ,
 int src , int srcbit)

Return trg but replace trgbit by inverse
of srcbit in src.

Table 1-15: Intrinsic Functions to Insert / Extract Bit-fields

Atomic Load-Modify-Store

With the next intrinsic function you can peform atomic Load-Modify-Store

of a bit-field from an integer value. This function uses the IMASK and

LDMST instruction. The intrinsic writes the number of bits of an integer

value at a certain address location in memory with a bitoffset. The number

of bits must be a constant value.

Intrinsic Function

void __imaskldmst(int* address ,int value ,int bitoffset ,int bits)

Store a single bit

With the intrinsic macro __putbit() you can store a single bit atomicly

in memory at a specified bit offset. The bit at offset 0 in value is stored at

an address location in memory with a bitoffset.

This intrinsic is implemented as a macro definition which uses the

_imaskldmst() intrinsic:

#define __putbit (value, address, bitoffset) __imaskldmst
 (address, value, bitoffset, 1)

TriCore Reference Guide1–22
C

 L
A

N
G

U
A

G
E

Intrinsic Macro

void __putbit(int value , int* address , int bitoffset)

Load a single bit

With the intrinsic macro __getbit() you can load a single bit from

memory at a specified bit offset. A bit value is loaded from an address
location in memory with a bitoffset and returned as an unsigned integer

value.

This intrinsic is implemented as a macro definition which uses the

__extru() intrinsic function:

#define _getbit (address, bitoffset) _extru (*(address),
 bitoffset, 1)

Intrinsic Macro

unsigned integer __getbit(int* address , int bitoffset)

TriCore C Language 1–23

• • • • • • • •

1.5.8 MISCELLANEOUS INTRINSIC FUNCTIONS

Multiply and Scale Back

The next intrinsic multiplies two 32-bit numbers to an intermediate 64-bit

result, and scales back the result to 32 bits. To scale back the result, 32 bits

are extracted from the intermediate 64-bit result: bit 63-offset to bit

31-offset.

Intrinsic Function

int __mulsc(int a, int b, int offset)

Swap Mask

The next intrinsic exchanges the values of value and memory, but only

those bits that are allowed by mask. Before the __swapmsk instruction is

generated, the parameters value and mask are moved into a double

register.

This intrinsic is only supported for the TriCore2 (––is-tricore2).

Intrinsic Function

void __swapmsk (int value , int mask, int * memory)

Initialize Circular Pointer

With the next intrinsic you can initialize a circular pointer with a

dynamically allocated buffer at run-time.

Intrinsic Function

__circ void * __initcirc(void * buf , unsigned short bufsize ,
 unsigned short byteindex)

See also Section 3.4.1, Circular Buffers, in Chapter TriCore C Language of

the User's Guide.

TriCore Reference Guide1–24
C

 L
A

N
G

U
A

G
E

1.6 PRAGMAS

Pragmas are keywords in the C source that control the behavior of the

compiler. Pragmas overrule compiler options and keywords. The syntax is:

#pragma name–of–pragma

The compiler recognizes the following pragmas, other pragmas are

ignored.

Pragma name Description

align { n|restore} Specifies object alignment

clear
noclear

Specifies ’clearing’ of non–initialized
static/public variables

default_a0_size value Threshold for ’__a0’ allocation

default_near_size value Threshold for ’__near’ allocation

inline
noinline
smartinline

Specifies function inlining

optimize flags
endoptimize

Controls compiler optimizations

pack {2|0} Specifies packing of structures

section type [=]” name” Changes section names

section code_init
section data_overlay

At startup copy code to RAM
Allow overlaying data sections

source
nosource

Specifies which C source lines must
be shown in assembly output

switch {auto|jumptab|
 linear|lookup|restore}

Specifies switch statement

Table 1-16: Pragmas

For more information see section 3.7, Pragmas to Control the Compiler, in
Chapter TriCore C Language of the User's Guide.

TriCore C Language 1–25

• • • • • • • •

1.7 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the

TASKING TriCore C compiler supports the predefined macros as defined in

Table 1-17. The macros are useful to make conditional C code.

Macro Description

__DOUBLE_FP__ Defined when you do not use compiler option –F
(Treat double as float)

__SINGLE_FP__ Defined when you use compiler option –F (Treat
double as float)

__FPU__ Defined when you use compiler option
–– fpu–present (Use hardware floating point
instructions)

__CTC__ Identifies the compiler. You can use this symbol to flag
parts of the source which must be recognized by the
ctc compiler only. It expands to the version number of
the compiler.

__TASKING__ Identifies the compiler as the TASKING TriCore
compiler. It expands to 1.

__DSPC__ Indicates conformation to the DSP–C standard. It
expands to 1.

__DSPC_VERSION__ Expands to the decimal constant 200001L.

Table 1-17: Predefined macros

TriCore Reference Guide1–26
C

 L
A

N
G

U
A

G
E

2

LIBRARIES
C

H
A

P
T

E
R

TriCore Reference Guide2–2
L
IB
R
A
R
IE
S

2

C
H

A
P

T
E

R

Libraries 2–3

• • • • • • • •

2.1 INTRODUCTION

This chapter contains an overview of all library functions that you can call

in your C source. This includes all functions of the standard C library

(libc.a) and some functions of the floating-point library (libfp.a or

libfpt.a).

Section 2.1.1, Header Files, gives an overview of relevant header files and

shows which header file you must include for the functions and/or macros

that you use in your C source.

Section 2.1.2, C Library Functions, alphabetically lists all library functions

you can use in detail. All listed functions reside in the standard C library

(libc.a) unless stated otherwise.

Section 2.1.3, C Library Reentrancy, gives an overview of which functions

are reentrant and which are not.

The following libraries are included in the TriCore (ctc) toolchain. Both

EDE and the control program cctc automatically select the appropriate

libraries depending on the specified TriCore derivative.

Library to link Description

libc.a C library
(With full printf/scanf functionality. Some functions require the
floating point library. Also includes the startup code.)

libcs.a C library single precision (compiler option –F)
(With full printf/scanf functionality. Some functions require the
floating point library. Also includes the startup code.)

libcs_fpu.a C library single precision with FPU instructions (compiler
option –F and ––fpu–present)

libfp.a Floating point library (non–trapping)

libfpt.a Floating point library (trapping)
(Control program option –fptrap)

libfp_fpu.a Floating point library (non–trapping, with FPU instructions)
(Compiler option ––fpu–present)

libfpt_fpu.a Floating point library (trapping, with FPU instructions)
(Control program option –fptrap , compiler option
––fpu–present)

librt.a Run–time library

Table 2-1: Overview of libraries

TriCore Reference Guide2–4
L
IB
R
A
R
IE
S

2.1.1 HEADER FILES

In the table below you can find which header file you must include for the

library functions or macros you use in your C source.

Some functions are not completely implemented because their

implementaion depends on the context where your application will run.

These functions are for example all I/O related functions. Where possible,

CrossView Pro's file system simulation is implemented which enables you

to debug your application.

Explanation:

Yes - Fully implemented

FSS - Implemented via CrossView Pro's file system simulation
Empty- Delivered as a skeleton

Header file Function or
maco name

Imple–
mented

Comments

assert.h assert() macro Yes Macro definition

ctype.h isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper
_tolower
_toupper
isascii
toascii

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI

errno.h Yes Only Macros

fcntl.h open FSS Contains also definitions of flags
used by _open

float.h copysign
isinf
isfinite
isnan
scalb

Yes
Yes
Yes
Yes
Yes

Libraries 2–5

• • • • • • • •

CommentsImple–
mented

Function or
maco name

Header file

limits.h Yes Only Macros

locale.h localeconv
setlocale

Empty
Empty

No OS present
No OS present

math.h acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

setjmp.h longjmp
setjmp

Yes
Yes

signal.h raise
signal

Yes
Yes

stdarg.h va_arg
va_end
va_start

Yes
Yes
Yes

stddef.h Yes Only Macros

TriCore Reference Guide2–6
L
IB
R
A
R
IE
S

CommentsImple–
mented

Function or
maco name

Header file

stdio.h clearerr
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
perror
printf
putc
putchar
puts
remove
rename
rewind
scanf
setbuf
setvbuf
sprintf
sscanf
tmpfile
tmpnam

ungetc
vfprintf
vprintf
vsprintf

Yes
FSS
Yes
Yes
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
Yes
FSS
FSS
FSS
FSS
Empty
Empty
FSS
FSS
Yes
Yes
Yes
Yes
Empty
Empty

Yes
FSS
FSS
Yes

Delivered as a random name
generator, but should use
some process ID.

Libraries 2–7

• • • • • • • •

CommentsImple–
mented

Function or
maco name

Header file

_close
_open
_lseek
_read
_unlink
_write

FSS
FSS
FSS
FSS
FSS
FSS

Defined in fss__close.c
Defined in fss__open.c
Defined in fss__lseek.c
Defined in fss__read.c
Defined in fss__unlink.c
Defined in fss__write.c

stdlib.h abort
abs
atexit
atoac
atof
atofr
atoi
atol
atolac
atolfr
bsearch
calloc
div
exit
free
getenv
labs
ldiv
malloc
qsort
rand
realloc
strtoac
strtod
strtofr
strtol
strtolac
strtolfr
strtoul
srand
system
mblen
mbstowcs
mbtowc
wcstombs
wctomb

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty
Empty
Empty
Empty
Empty
Empty

Calls _exit() in cstart

Calls _exit() in cstart

No OS present

No OS present
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported

TriCore Reference Guide2–8
L
IB
R
A
R
IE
S

CommentsImple–
mented

Function or
maco name

Header file

string.h memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty

wide chars not supported

wide chars not supported

time.h asctime
clock
ctime
difftime
gmtime
localtime
mktime
strftime
time

Yes
Empty
Yes
Yes
Yes
Yes
Yes
Yes
Yes

real time clock not supported
Uses SYSTIM0 register

unistd.h access
chdir
close
getcwd
lseek
read
stat
unlink
write

FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS

Defined in fss_access.c
Defined in fss_chdir.c
Defined in fss_close.c
Defined in fss_getcwd.c
Defined in fss_lseek.c
Defined in fss_read.c
Defined in fss_stat.c
Defined in fss_unlink.c
Defined in fss_write.c

Table 2-2: Overview of header files

Libraries 2–9

• • • • • • • •

2.1.2 C LIBRARY FUNCTIONS

_close

#include <stdio.h>
int _close(int fd);

Low level file close function. _close is used by the functions close and

fclose. The given file descriptor should be properly closed, any buffer is

already flushed. This function interfaces to CrossView Pro's file system

simulation.

_lseek

#include <stdio.h>
off_t _lseek(int fd, off_t offset, int whence);

Low level file positioning function. _lseek is used by all file positioning

functions (fgetpos, fseek, fsetpos, ftell, rewind). This function interfaces to

CrossView Pro's file system simulation.

_open

#include <stdio.h>
int _open(int fd, int flags);

Low level file open function. _open is used by the functions fopen and

freopen. The given file descriptor should be properly opened. This

function interfaces to CrossView Pro's file system simulation.

_read

#include <stdio.h>
size_t _read(int fd, char *buffer, size_t count);

Low level input function. It reads a sequence of characters from a file. This

function interfaces to CrossView Pro's file system simulation.

Returns the number of characters read.

TriCore Reference Guide2–10
L
IB
R
A
R
IE
S

_tolower

#include <ctype.h>
int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an

uppercase character. This is a non-ANSI function.

Returns the converted character.

_toupper

#include <ctype.h>
int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a

lowercase character. This is a non-ANSI function.

Returns the converted character.

_unlink

#include <stdio.h>
int _unlink(const char *name);

Low level file remove function. _unlink is used by the function remove.

This function interfaces to CrossView Pro's file system simulation.

_write

#include <stdio.h>
size_t
_write(int fd, char *buffer, size_t count);

Low level ouput function. It writes a sequence of characters to a file. This

function interfaces to CrossView Pro's file system simulation.

Returns the number of characters correctly written.

Libraries 2–11

• • • • • • • •

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally. It calls the function _exit , which is

defined in the start-up module.

Returns nothing.

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the

permissions of a file on the host. mode specifies the type of access and is a

bit pattern constructed by a logical OR of the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.

F_OK Checks to see if the file exists.

Returns zero if successful,

-1 on error.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos-1(x) of x in the range [0, π],

x ∈ [-1, 1].

TriCore Reference Guide2–12
L
IB
R
A
R
IE
S

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1989\n\0

Returns the time in string form.

asin

#include <math.h>
double asin(double x);

Returns the arcsine sin-1(x) of x in the range [-π/2, π/2],

x ∈ [-1, 1].

assert

#include <assert.h>
void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled

without NDEBUG defined, it checks if expr is true. If it is true, then a line

like:

”Assertion failed: expression , file filename , line num”

is printed.

Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan-1(x) of x in the range [-π/2, π/2].

x ∈ [-1, 1].

Libraries 2–13

• • • • • • • •

atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan-1(y/x) in the range [-π, π].

atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.

Returns zero, if program terminates normally.

non-zero, if the registration cannot be made.

atoac

#include <stdlib.h>
__accum atoac(const char *s);

Converts the initial portion of the string pointed to by s to a accumulator

value. Initial white spaces are skipped

Returns accumulator value of the converted string,

zero when the conversion failed.

See also "strtoac"

atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the double value.

TriCore Reference Guide2–14
L
IB
R
A
R
IE
S

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the integer value.

atofr

#include <stdlib.h>
__fract atofr(const char * s)

Converts the initial portion of the string pointed to by s to a fractional

value. Initial white spaces are skipped.

Returns fractional value of the converted string,

zero when the conversion failed.

See also "strtofr"

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the long value.

Libraries 2–15

• • • • • • • •

atolac

#include <stdlib.h>
__laccum atolac(const char *s);

Converts the initial portion of the string pointed to by s to a long

accumulator value. Initial white spaces are skipped

Returns long accumulator value of the converted string,

zero when the conversion failed.

See also "strtolac"

atolfr

#include <stdlib.h>
__lfract atolfr(const char *restrict s)

Converts the initial portion of the string pointed to by s to a long

fractional value. Initial white spaces are skipped.

Returns long fractional value of the converted string,

zero when the conversion failed.

See also "strtolfr"

bsearch

#include <stdlib.h>
void *bsearch(const void *key,
 const void *base, size_t n, size_t size, int (* cmp)
 (const void *, const void *));

This function searches in an array of n members, for the object pointed to

by ptr . The initial base of the array is given by base . The size of each

member is specified by size . The given array must be sorted in ascending

order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL

when not found.

TriCore Reference Guide2–16
L
IB
R
A
R
IE
S

calloc

#include <stdlib.h>
void *calloc(size_t nobj, size_t size);

The allocated space is filled with zeros. The maximum space that can be

allocated can be changed by customizing the heap size. By default no

heap is allocated. When "calloc()" is used while no heap is defined, the

linker gives an error.

Returns a pointer to space in external memory for nobj items of

size bytes length.

NULL if there is not enough space left.

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x , as a double.

chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the

current directory on the host to the directory indicated by path .

Returns zero if successful,

-1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.

Returns nothing.

Libraries 2–17

• • • • • • • •

clock

#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns number of microseconds since the last reset, assuming a 100

MHz cpu.

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.

This function calls _close.

Returns zero if successful,

-1 on error.

copysign

#include <float.h>
double copysign(double d, double sign);

IEEE-754-1985 recommended function. Copy the sign of the second

argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

cos

#include <math.h>
double cos(double x);

Returns the cosine of x .

TriCore Reference Guide2–18
L
IB
R
A
R
IE
S

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x .

ctime

#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This

function is the same as:

asctime(localtime(tp));

Returns the local time in string form.

difftime

#include <time.h>
double
difftime(time_t time2, time_t time1);

Returns the result of time2 – time1 in seconds.

div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

Libraries 2–19

• • • • • • • •

exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()' returns with status
as the return value.

Returns zero, on successful termination.

exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function ex.

fabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x . |x|

fclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,

frees any automatically allocated buffer, then closes the stream .

Returns zero if the stream is successfully closed, or EOF on error.

feof

#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is

set.

TriCore Reference Guide2–20
L
IB
R
A
R
IE
S

ferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set.

fflush

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If

stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

fgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream .

Returns the read character, or EOF on error.

fgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed

to by stream in the object pointed to by ptr . The type fpos_t is

suitable for recording such values.

Returns zero if successful,

a non-zero value on error.

Libraries 2–21

• • • • • • • •

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n-1 characters from the given stream into the

array s until a newline is found.

Returns s , or NULL on EOF or error.

floor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x , as a double.

fmod

#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of x/y , with the same sign as x .

If y is zero, the result is implementation-defined.

fopen

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.

You can specify the following values for mode:

 "r" read; open text file for reading

 "w" write; create text file for writing; if the file already exists its

contents is discarded

 "a" append; open existing text file or create new text file for

writing at end of file

TriCore Reference Guide2–22
L
IB
R
A
R
IE
S

 "r+" open text file for update; reading and writing

 "w+" create text file for update; previous contents if any is

discarded

 "a+" append; open or create text file for update, writes at end of

file

The update mode (with a '+') allows reading and writing of the same file.

In this mode the function fflush must be called between a read and a write

or vice versa. By including the letter b after the initial letter, you can

indicate that the file is a binary file. E.g. "rb" means read binary, "w+b"

means create binary file for update. The filename is limited to

FILENAME_MAX characters. At most FOPEN_MAX files may be open at

once.

fprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Performs a formatted write to the given stream .

See also "printf()", "_write()".

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream .

See also "_write()".

Returns EOF on error.

Libraries 2–23

• • • • • • • •

fputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream . The terminating NULL character is not

written.

See also "_write()".

Returns NULL if successful, or EOF on error.

fread

#include <stdio.h>
size_t fread(void *ptr, size_t size,
 size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array

pointed to by ptr .

See also "_read()".

Returns the number of successfully read objects.

free

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

allocated by a call to "calloc()", "malloc()" or "realloc()". Otherwise the

behavior is undefined.

See also "calloc()", "malloc()" and "realloc()".

Returns nothing

TriCore Reference Guide2–24
L
IB
R
A
R
IE
S

freopen

#include <stdio.h>
FILE * freopen(const char *filename,
 const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function

is normally used to change the files associated with stdin, stdout, or stderr.

See also "fopen()".

Returns stream , or NULL on error.

frexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is

returned, and a power of 2, which is stored in *exp . If x is zero, both

parts of the result are zero. For example: frexp(4.0, &var) results in

0.5·23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

fscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream .

See also "scanf()", "_read()".

Returns the number of items converted successfully.

Libraries 2–25

• • • • • • • •

fseek

#include <stdio.h>
int fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream . A subsequent read or write will

access data beginning at the new position. For a binary file, the position is

set to offset characters from origin , which may be SEEK_SET for the

beginning of the file, SEEK_CUR for the current position in the file, or

SEEK_END for the end-of-file. For a text stream, offset must be zero, or

a value returned by ftell . In this case origin must be SEEK_SET.

Returns zero if successful,

a non-zero value on error.

fsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *ptr);

Positions stream at the position recorded by fgetpos in *ptr .

Returns zero if successful,

a non-zero value on error.

ftell

#include <stdio.h>
long ftell(FILE *stream);

Returns the current file position for stream , or

-1L on error.

TriCore Reference Guide2–26
L
IB
R
A
R
IE
S

fwrite

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size,
 size_t nobj, FILE *stream);

Writes nobj members of size bytes to the given stream from the array

pointed to by ptr .

Returns the number of successfully written objects.

getc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream . Currently #defined as

getchar(), because FILE I/O is not supported.

See also "_read()".

Returns the character read or EOF on error.

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.

See also "_read()".

Returns the character read or EOF on error.

Libraries 2–27

• • • • • • • •

getcwd

#include <unistd.h>
char * getcwd(char * buf, size_t size);

Use the file system simulation feature of CrossView Pro to retrieve the

current directory on the host.

Returns the directory name if successful,

NULL on error.

getenv

#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with name, or NULL if no

string exists.

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The

newline is replaced by a NULL-character.

See also "_read()".

Returns a pointer to the read string or NULL on error.

gmtime

#include <time.h>
struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not

available.

TriCore Reference Guide2–28
L
IB
R
A
R
IE
S

isalnum

#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when c is an alphabetic character or a

number ([A-Z][a-z][0-9]).

isalpha

#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character

([A-Z][a-z]).

isascii

#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is

a non-ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non-zero value when c is a control character.

isdigit

#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0-9]).

Libraries 2–29

• • • • • • • •

isfinite

#include <float.h>
int isfinite(double d);

IEEE-754-1985 recommended function. Test the given variable on being a

finite (IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.

isgraph

#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.

isinf

#include <float.h>
int isinf(double d);

IEEE-754-1985 recommended function. Test the given variable on being

an infinite (IEEE-754) value.

Returns zero if the variable is not +-infinite, else non-zero.

islower

#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a-z]).

TriCore Reference Guide2–30
L
IB
R
A
R
IE
S

isnan

#include <float.h>
int isnan(double d);

IEEE-754-1985 recommended function. Test the given variable on being a

NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.

isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.

ispunct

#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when c is a punctuation character (such as

'.', ',', '!', etc.).

isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space,

tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#include <ctype.h>
int isupper(int c);

Returns a non-zero value when c is an uppercase character ([A-Z]).

Libraries 2–31

• • • • • • • •

isxdigit

#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit

([0-9][A-F][a-f]).

labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
double ldexp(double x, int n);

Returns the result of: x· 2n.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder

are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

TriCore Reference Guide2–32
L
IB
R
A
R
IE
S

localeconv

#include <locale.h>
struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values

appropriate for the formatting of numeric quantities according to the rules

of the current locale.

Returns a pointer to the filled-in object.

localtime

#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

log

#include <math.h>
double log(double x);

Returns the natural logarithm ln(x), x>0 .

log10

#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0 .

Libraries 2–33

• • • • • • • •

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The

function calling the corresponding call to setjmp() may not be terminated

yet. The value of val may not be zero.

Returns nothing.

lseek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

Moves read-write file offset. This function calls _lseek.

Returns the resulting pointer location if successful,

-1 on error.

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be

allocated can be changed by customizing the heap size. By default no

heap is allocated. When "malloc()" is used while no heap is defined, the

linker gives an error.

Returns a pointer to space in external memory of size bytes length.

NULL if there is not enough space left.

TriCore Reference Guide2–34
L
IB
R
A
R
IE
S

mblen

#include <stdlib.h>
int mblen(const char *s, size_t n);

Determines the number of bytes comprising the multi-byte character

pointed to by s , if s is not a null pointer. Except that the shift state is not

affected. At most n characters will be examined, starting at the character

pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs,
 const char *s, size_t n);

Converts a sequence of multi-byte characters that begins in the initial shift

state from the array pointed to by s , into a sequence of corresponding

codes and stores these codes into the array pointed to by pwcs , stopping

after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a

terminating zero code, if any), or (size_t) -1 if an invalid

multi-byte character is encountered.

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc,
 const char *s, size_t n);

Determines the number of bytes that comprise the multi-byte character

pointed to by s . It then determines the code for value of type wchar_t
that corresponds to that multi-byte character. If the multi-byte character is

valid and pwc is not a null pointer, the mbtowc function stores the code in

the object pointed to by pwc. At most n characters will be examined,

starting at the character pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

Libraries 2–35

• • • • • • • •

memchr

#include <string.h>
void *memchr(const void *cs, int c, size_t n);

Checks the first n bytes of cs on the occurrence of character c .

Returns NULL when not found, otherwise a pointer to the found

character is returned.

memcmp

#include <string.h>
int memcmp(const void *cs, const void *ct,
 size_t n);

Compares the first n bytes of cs with the contents of ct .

Returns a value < 0 if cs < ct ,

0 if cs = = ct ,

or a value > 0 if cs > ct .

memcpy

#include <string.h>
void *memcpy(void *s, const void *ct, size_t n);

Copies n characters from ct to s . No care is taken if the two objects

overlap.

Returns s

memmove

#include <string.h>
void *memmove(void *s, const void *ct, size_t n);

Copies n characters from ct to s . Overlapping objects will be

handled correctly.

Returns s

TriCore Reference Guide2–36
L
IB
R
A
R
IE
S

memset

#include <string.h>
void *memset(void *s, int c, size_t n);

Fills the first n bytes of s with character c .

Returns s

mktime

#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x . It

stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
int offsetof(type, member);

Returns the offset for the given member in an object of type.

Libraries 2–37

• • • • • • • •

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls _open.

See also "fopen()".

Returns the file descriptor if successful (a non-negative integer), or

-1 on error.

perror

#include <stdio.h>
void perror(const char *s);

Prints s and an implementation-defined error message corresponding to

the integer errno , as if by:

fprintf(stderr, "%s: %s\n", s, "error message");

The contents of the error message are the same as those returned by the

strerror function with the argument errno .

See also the "strerror()" function.

Returns nothing.

pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0 , or if x<0 and y is not an integer.

Returns the result of x raised to the power of y : xy.

TriCore Reference Guide2–38
L
IB
R
A
R
IE
S

printf

#include <stdio.h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream.

See also "_write()".

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion

specifiers. Each conversion specifier should be preceded by a '%'

character. The conversion specifier should be build in order:

- Flags (in any order):

– specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.

+ has higher precedence as space.

space a negative number is preceded with a sign, positive numbers

with a space.

0 specifies padding to the field width with zeros (only for

numbers).

specifies an alternate output form. For o, the first digit will be

zero. For x or X, "0x" and "0X" will be prefixed to the

number. For e, E, f, g, G, the output always contains a

decimal point, trailing zeros are not removed.

- A number specifying a minimum field width. The converted

argument is printed in a field with at least the length specified here.

If the converted argument has fewer characters than specified, it will

be padded at the left side (or at the right when the flag '–' was

specified) with spaces. Padding to numeric fields will be done with

zeros when the flag '0' is also specified (only when padding left).

Instead of a numeric value, also '* ' may be specified, the value is

then taken from the next argument, which is assumed to be of type

int.

- A period. This separates the minimum field width from the

precision.

Libraries 2–39

• • • • • • • •

- A number specifying the maximum length of a string to be printed.

Or the number of digits printed after the decimal point (only for

floating point conversions). Or the minimum number of digits to be

printed for an integer conversion. Instead of a numeric value, also

'* ' may be specified, the value is then taken from the next

argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to

be treated as a short or unsigned short number. 'l' should be used if

the argument is a long integer. 'L' indicates that the argument is a

long double.

Flags, length specifier, period, precision and length modifier are optional,

the conversion character is not. The conversion character must be one of

the following, if a character following '%' is not in the list, the behavior is

undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase
respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s char *, the characters from the string are printed until
a NULL character is found. When the given precision
is met before, printing will also stop

f double

e, E double

g, G double

n int *, the number of characters written so far is written
into the argument. This should be a pointer to an inte-
ger in default memory. No value is printed.

p pointer (hexadecimal 24–bit value)

r __fract, __sfract

R __laccum

% No argument is converted, a ’%’ is printed.

Table 2-3: Printf conversion characters

TriCore Reference Guide2–40
L
IB
R
A
R
IE
S

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream.

See also "_write()".

Returns EOF on error.

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

See also "_write()".

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

See also "_write()".

Returns NULL if successful, or EOF on error.

Libraries 2–41

• • • • • • • •

qsort

#include <stdlib.h>
void qsort(
 const void *base, size_t n, size_t size,
 int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is

given by base . The size of each member is specified by size . The given

array is sorted in ascending order, according to the results of the function

pointed to by cmp.

Returns nothing.

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the program.

See also "signal()".

Returns zero if successful, or a non-zero value if unsuccessful.

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to

RAND_MAX.

read

#include <unistd.h>
size_t read(int fd, char * buffer, size_t count);

Reads a sequence of characters from a file. This function calls _read.

See also "_read()".

TriCore Reference Guide2–42
L
IB
R
A
R
IE
S

realloc

#include <stdlib.h>
void *realloc(void *p, size_t size);

Reallocates the space for the object pointed to by p. The contents of the

object will be the same as before calling realloc().The maximum space that

can be allocated can be changed by customizing the heap size. By default

no heap is allocated. When "realloc()" is used while no heap is defined,

the linker gives an error.

See also "malloc()".

Returns NULL and *p is not changed, if there is not enough space for

the new allocation. Otherwise a pointer to the newly

allocated space for the object is returned.

remove

#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or

a non-zero value, if the attempt fails.

rename

#include <stdio.h>
int rename(const char *oldname,
 const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or

a non-zero value, if the attempt fails.

Libraries 2–43

• • • • • • • •

rewind

#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the

beginning of the file. This function is equivalent to:

(void) fseek(stream, 0L, SEEK_SET);

clearerr(stream);

Returns nothing.

scalb

#include <float.h>
double scalb(double d, int power);

IEEE-754-1985 Recommended function.

Returns d * 2^power for integral values power without computing

2^N.

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

See also "_read()".

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default

memory) of the type which is specified in the format string.

The format string may contain :

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the

input stream.

- Conversion specifications, starting with a '%' character.

TriCore Reference Guide2–44
L
IB
R
A
R
IE
S

Conversion specifications should be built as follows (in order) :

- A '*', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i , n, o, u and x can be preceeded by

'h' if the argument is a pointer to short rather than int , or by 'l'

(letter ell) if the argument is a pointer to long . The conversion

characters e, f , and g can be preceeded by 'l' if a pointer double
rather than float is in the argument list, and by 'L' if a pointer to a

long double .

- A conversion specifier. '*', maximum field width and length modifier

are optional, the conversion character is not. The conversion

character must be one of the following, if a character following '%'

is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character

is not. The conversion character must be one of the following, if a

character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer can be octal (i.e. with a leading 0) or
hexadecimal (leading ”0x” or ”0X”), or just decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

s char *, a string of non white space characters. The
argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

f float

e, E float

g, G float

n int *, the number of characters written so far is written
into the argument. No scanning is done.

p pointer; hexadecimal 24–bit value which must be en-
tered without 0x– prefix.

r __fract, __sfract

Libraries 2–45

• • • • • • • •

Scanned asCharacter

R __laccum

[...] Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ’]’
character in the set of scanning characters.

[^...] Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying [^]...] includes the ’]’
character in the set.

% Literal ’%’, no assignment is done.

Table 2-4: Scanf conversion characters

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream , if buf is NULL.

Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ)

Returns nothing.

See also "setvbuf(�)".

setjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns 0 after a direct call to setjmp(). Calling the function "longjmp()"

using the saved env restores the current environment and

jumps to this place with a non-zero return value.

See also "longjmp()".

TriCore Reference Guide2–46
L
IB
R
A
R
IE
S

setlocale

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program's locale as specified by the

category and locale arguments.

Returns the string associated with the specified category for the

new locale if the selection can be honored.

null pointer if the selectioin cannot be honored.

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
 int mode, size_t size);

Controls buffering for the stream ; this function must be called before

reading or writing. mode can have the following values:

_IOFBF causes full buffering

_IOLBF causes line buffering of text files

_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be

allocated. size determines the buffer size.

Returns zero if successful

a non-zero value for an error.

See also "setbuf(�)".

Libraries 2–47

• • • • • • • •

signal

#include <signal.h>
void (*signal(int sig, void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handler is

SIG_DFL, the default behavior is used; if handler is SIG_IGN, the signal

is ignored; otherwise, the function pointed to by handler will be called,

with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort
SIGFPE arithmetic error, e.g. zero divide or overflow

SIGILL illegal function image, e.g. illegal instruction

SIGINT interactive attention, e.g. interrupt

SIGSEGV illegal storage access, e.g. access outside

memory limits

SIGTERM termination request sent to this program

When a signal sig subsequenly occurs, the signal is restored to its default

behavior; then the signal-handler function is called, as if by

(*handler)(sig) . If the handler returns, the execution will resume

where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or

SIG_ERR if an error occurs.

sin

#include <math.h>
double sin(double x);

Returns the sine of x .

sinh

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x .

TriCore Reference Guide2–48
L
IB
R
A
R
IE
S

sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.

See also "printf()".

sqrt

#include <math.h>
double sqrt(double x);

Returns the square root of x . √x , where x ≥ 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random

numbers to be returned by subsequent calls to srand(). When srand is

called with the same seed value, the sequence of pseudo-random

numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string.

See also "scanf()".

Libraries 2–49

• • • • • • • •

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on

the host platform.

Returns zero if successful,

-1 on error.

strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s , including the trailing NULL character.

Returns s

strchr

#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string

cs . If not found, NULL is returned.

strcmp

#include <string.h>
int strcmp(const char *cs, const char *ct);

Compares string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

TriCore Reference Guide2–50
L
IB
R
A
R
IE
S

strcoll

#include <string.h>
int strcoll(const char *cs, const char *ct);

Compares string cs to string ct . The comparison is based on strings

interpreted as appropriate to the program's locale.

Returns <0 if cs < ct,
0 if cs = = ct ,

>0 if cs > ct .

strcpy

#include <string.h>
char *strcpy(char *s, const char *ct);

Copies string ct into the string s , including the trailing NULL character.

Returns s

strcspn

#include <string.h>
size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

not in the string ct .

strerror

#include <string.h>
char *strerror(size_t n);

Returns pointer to implementation-defined string corresponding to

error n.

Libraries 2–51

• • • • • • • •

strftime

#include <time.h>
size_t strftime(char *s, size_t smax,
 const char *fmt,
 const struct tm *tp);

Formats date and time information from the structure *tp into s according

to the specified format fmt . fmt is analogous to a printf format. Each

%c is replaced as described below:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c local date and time representation
%d day of the month (01-31)
%H hour, 24-hour clock (00-23)
%I hour, 12-hour clock (01-12)
%j day of the year (001-366)
%m month (01-12)
%M minute (00-59)
%p local equivalent of AM or PM
%S second (00-59)
%U week number of the year, Sunday as first day of the

week (00-53)
%w weekday (0-6, Sunday is 0)
%W week number of the year, Monday as first day of the

week (00-53)
%x local date representation
%X local time representation
%y year without century (00-99)
%Y year with century
%Z time zone name, if any
%% %

Ordinary characters (including the terminating `\0`) are copied into s . No

more than smax characters are placed into s .

Returns the number of characters ('\0' not included), or

zero if more than smax characters where produced.

TriCore Reference Guide2–52
L
IB
R
A
R
IE
S

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in cs , not counting the NULL

character.

strncat

#include <string.h>
char *strncat(char *s, const char *ct, size_t n);

Concatenates string ct to string s , at most n characters are copied. Add a

trailing NULL character.

Returns s

strncmp

#include <string.h>
int strncmp(const char *cs, const char *ct,
 size_t n);

Compares at most n bytes of string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

strncpy

#include <string.h>
char *strncpy(char *s, const char *ct, size_t n);

Copies string ct onto the string s , at most n characters are copied. Add a

trailing NULL character if the string is smaller than n characters.

Returns s

Libraries 2–53

• • • • • • • •

strpbrk

#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in cs of any character out of

string ct . If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs, int c);

Returns a pointer to the last occurrence of c in the string cs . If not

found, NULL is returned.

strspn

#include <string.h>
size_t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

in the string ct .

strstr

#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs .

Returns NULL if not found.

TriCore Reference Guide2–54
L
IB
R
A
R
IE
S

strtoac

#include <stdlib.h>
__accum strtoac(const char *restrict s,
 char **restrict endp)

Converts the initial portion of the string pointed to by s to a accumulator

value. Initial white spaces are skipped. When endp is not a NULL pointer,

after this function is called, *endp will point to the first character not used

by the conversion.

Returns accumulator value of the converted string,

zero when the conversion failed.

See also "atoac"

strtod

#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.

Initial white spaces are skipped. When endp is not a NULL pointer, after

this function is called, *endp will point to the first character not used by

the conversion.

Returns the read value.

strtofr

#include <stdlib.h>
__fract strtofr(const char *restrict s,
 char **restrict endp)

Converts the initial portion of the string pointed to by s to a fractional

value. Initial white spaces are skipped. When endp is not a NULL pointer,

after this function is called, *endp will point to the first character not used

by the conversion.

Returns fractional value of the converted string,

zero when the conversion failed.

See also "atofr"

Libraries 2–55

• • • • • • • •

strtok

#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct . It

terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.

Initial white spaces are skipped. Then a value is read using the given

base . When base is zero, the base is taken as defined for integer

constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

strtolac

#include <stdlib.h>
__laccum strtolac(const char *restrict s,
 char **restrict endp)

Converts the initial portion of the string pointed to by s to a long

accumulator value. Initial white spaces are skipped. When endp is not a

NULL pointer, after this function is called, *endp will point to the first

character not used by the conversion.

Returns long accumulator value of the converted string,

zero when the conversion failed.

See also "atolac"

TriCore Reference Guide2–56
L
IB
R
A
R
IE
S

strtolfr

#include <stdlib.h>
__lfract strtolfr(const char *restrict s,
 char **restrict endp)

Converts the initial portion of the string pointed to by s to a long

fractional value. Initial white spaces are skipped. When endp is not a

NULL pointer, after this function is called, *endp will point to the first

character not used by the conversion.

Returns long fractional value of the converted string,

zero when the conversion failed.

See also "atolfr"

strtoul

#include <stdlib.h>
unsigned long strtoul(
 const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned

long integer. Initial white spaces are skipped. Then a value is read using

the given base . When base is zero, the base is taken as defined for

integer constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#include <string.h>
size_t
strncmp(char *ct, const char *cs, size_t n);

Transforms the string pointed to by cs and places the resulting string into

the array pointed to by ct . No more than n characters are placed into the

resulting string pointed to by ct , including the terminating null character.

Returns the length of the transformed string.

Libraries 2–57

• • • • • • • •

system

#include <stdlib.h>
int system(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is

NULL; or an implementation-dependent value, if s is not

NULL.

tan

#include <math.h>
double tan(double x);

Returns the tangent of x .

tanh

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x .

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp , if tp is not NULL.

Returns the current calendar time, or -1 if the time is not available.

TriCore Reference Guide2–58
L
IB
R
A
R
IE
S

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+" that will be automatically

removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be

created.

tmpnam

#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a

different name is created.

tmpnam(NULL) creates a string that is not the name of an existing file,

and returns a pointer to an internal static array. tmpnam(s) creates a

string and stores it in s and also returns it as the function value. s must

have room for at least L_tmpnam characters. At most TMP_MAX different

names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii

#include <ctype.h>
int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non-ANSI

function.

Returns the converted value.

Libraries 2–59

• • • • • • • •

tolower

#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

toupper

#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase

character, otherwise c is returned.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This

function calls _unlink.

Returns zero if file is successfully removed, or

a non-zero value, if the attempt fails.

TriCore Reference Guide2–60
L
IB
R
A
R
IE
S

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.

It's return type has the type of the given argument type . A

next call to this macro will return the value of the next

argument.

va_end

#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It

should be called before the function using the macro 'va_start' is

terminated (ANSI specification).

va_start

#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap . After this call, each call to va_arg() will return

the value of the next argument. In our implementation, va_list cannot

contain any bit type variables. Also the given argument lastarg must be

the last non-bit type argument in the list.

vfprintf

#include <stdio.h>
int vfprintf(FILE *stream,
 const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()", "_write()".

Libraries 2–61

• • • • • • • •

vprintf

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Does a formatted write to standard output. Instead of a variable argument

list as for printf(), this function expects a pointer to the list.

See also "printf()", "_write()".

vsprintf

#include <stdio.h>
int vsprintf(char *s, const char *format,
 va_list arg);

Does a formatted write a string. Instead of a variable argument list as for

printf(), this function expects a pointer to the list.

See also "printf()", "_write()".

wcstombs

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs,
 size_t n);

Converts a sequence of codes that correspond to multi-byte characters

from the array pointed to by pwcs , into a sequence of multi-byte

characters that begins in the initial shift state and stores these multi-byte

characters into the array pointed to by s , stopping if a multi-byte character

would exceed the limit of n total bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating

null character, if any), or (size_t) -1 if a code is

encountered that does not correspond to a valid multi-byte

character.

TriCore Reference Guide2–62
L
IB
R
A
R
IE
S

wctomb

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte

corresponding to the code whose value is wchar (including any change in

the shift state). It stores the multi-byte character representation in the array

pointed to by s (if s is not a null pointer). At most MB_CUR_MAX

characters are stored. If the value of wchar is zero, the wctomb function is

left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not

correspond to a valid multi-byte character.

write

#include <unistd.h>
size_t write(int fd, char * buffer, size_t count);

Write a sequence of characters to a file. This function calls _write.

See also "_write()".

Libraries 2–63

• • • • • • • •

2.1.3 C LIBRARY REENTRANCY

Some of the functions in the C library are reentrant, others are not. The

table below shows the functions in the C library, whether they are

reentrant and, if not, the reason why. Note that some of the functions are

not reentrant because they set the global variable 'errno'. If your program

does not check this variable and errno is the only reason for the function

not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes

refers to a footnote because the explanation is to lengthy for the table.

Function Reentrant Cause

abort no Calls exit

abs yes –

access no Uses global File System Simulation buffer,
_fss_buffer

acos no Function sets errno when error occurs.
If errno not used, acos is reentrant.

asctime no asctime defines static array for broken–down
time string.

asin no Function sets errno when error occurs.
If errno not used, asin is reentrant.

atan yes –

atan2 yes –

atexit no atexit defines static array with function pointers
to execute at exit of program.

atof yes –

atoi yes –

atol yes –

bsearch yes –

calloc no calloc uses static buffer management
structures. See malloc (5).

ceil yes –

chdir no Uses global File System Simulation buffer,
_fss_buffer

cleanup no Calls fclose. See (1)

clearerr no Modifies iob[]. See (1)

TriCore Reference Guide2–64
L
IB
R
A
R
IE
S

CauseReentrantFunction

clock yes –

close no Calls _close

_close no Uses global File System Simulation buffer,
_fss_buffer

cos yes –

cosh no cosh calls exp(), which sets errno. If errno is
discarded, cosh is reentrant.

ctime no Calls asctime

difftime yes –

div yes –

_doflt no Uses I/O functions which modify iob[].
See (1).

_doprint no Uses indirect access to static iob[] array. See
(1).

_doscan no Uses indirect access to iob[] and calls ungetc
(access to local static ungetc[] buffer). See (1).

exit no Calls fclose indirectly which uses iob[]
calls functions in _atexit array. See (1).
To make exit reentrant kernel support is
required.

exp no Sets errno. If errno not used, exp is reentrant.

fabs yes –

fclose no Uses values in iob[]. See (1).

feof no Uses values in iob[]. See (1).

ferror no Uses values in iob[]. See (1).

fflush no Modifies iob[]. See (1).

fgetc no Uses pointer to iob[]. See (1).

fgetpos no Sets the variable errno and uses pointer to
iob[]. See (1) / (2).

fgets no Uses iob[]. See (1).

_filbuf no Uses iob[]. See (1).

floor yes –

_flsbuf no Uses iob[]. See (1).

fmod yes –

Libraries 2–65

• • • • • • • •

CauseReentrantFunction

fopen no Uses iob[] and calls malloc when file open for
buffered IO. See (1)

fprintf no Uses iob[]. See (1).

fputc no Uses iob[]. See (1).

fputs no Uses iob[]. See (1).

fread no Calls fgetc. See (1).

free no free uses static buffer management structures.
See malloc (5).

freopen no Modifies iob[]. See (1).

frexp yes –

fscanf no Uses iob[]. See (1)

fseek no Uses iob[] and calls _doscan.
Acesses ungetc[] array. See (1).

fsetpos no Uses iob[] and sets errno. See (1) / (2).

ftell no Uses iob[] and sets errno. Calls _lseek.
See (1) / (2).

fwrite no Uses iob[]. See (1).

getc no Uses iob[]. See (1).

getchar no Uses iob[]. See (1).

getcwd no Uses global File System Simulation buffer,
_fss_buffer

getenv yes Skeleton only.

_getflt no Uses iob[]. See (1).

gets no Uses iob[]. See (1).

gmtime no gmtime defines static structure

halloc no Needs kernel support. See malloc (5).

hcalloc no hcalloc uses static buffer management
structures. See malloc (5).

hfree no hfree uses static buffer management
structures. See malloc (5).

hrealloc no See malloc (5).

_iob no Defines static iob[]. See (1).

_ioread no Depends on low level I/O implementation.
Uses iob[]. See (1).

TriCore Reference Guide2–66
L
IB
R
A
R
IE
S

CauseReentrantFunction

_iowrite no Depends on low level I/O implementation.
Uses iob[]. See (1).

isalnum yes –

isalpha yes –

isascii yes –

iscntrl yes –

isdigit yes –

isgraph yes –

islower yes –

isprint yes –

ispunct yes –

isspace yes –

isupper yes –

isxdigit yes –

_itoa yes –

labs yes –

ldexp no Sets errno. See (2).

ldiv yes –

localeconv – Skeleton function

localtime yes

log no Sets errno. See (2).

log10 no Calls log. See (2).

longjmp yes –

lseek no Calls _lseek

_lseek no Uses global File System Simulation buffer,
_fss_buffer

ltoa yes –

malloc no Needs kernel support. See (5).

mblen – Skeleton function

mbstowcs – Skeleton function

mbtowc – Skeleton function

memchr yes –

Libraries 2–67

• • • • • • • •

CauseReentrantFunction

memcmp yes –

memcpy yes –

memmove yes –

memset yes –

mktime yes –

modf yes –

open no Calls _open

_open no Uses global File System Simulation buffer,
_fss_buffer

perror no Uses errno. See (2)

pow no Sets errno. See (2)

printf no Uses iob[]. See (1)

putc no Uses iob[]. See (1)

putchar no Uses iob[]. See (1)

puts no Uses iob[]. See (1)

qsort yes –

raise no Updates the signal handler table

rand no Uses static variable to remember latest
random number. Must diverge from ANSI
standard to define reentrant rand. See (4).

read no Calls _read

_read no Uses global File System Simulation buffer,
_fss_buffer

realloc no See malloc (5).

remove – Skeleton only.

rename – Skeleton only.

rewind – Skeleton only.

sbrk no Allocates memory which is assigned at locate
time. Needs kernel for memory management.

scanf no Uses iob[], calls _doscan. See (1).

setbuf no Sets iob[]. See (1).

setjmp yes –

setlocale – Skeleton function

TriCore Reference Guide2–68
L
IB
R
A
R
IE
S

CauseReentrantFunction

setvbuf no Sets iob and calls malloc. See (1) / (5).

signal no Updates the signal handler table

sin yes –

sinh no Sinh calls exp() which sets errno.
If errno is discarded sinh is reentrant.

sprintf no Calls doprint. See (1).

sqrt no Sets errno. See (2).

srand no See rand

sscanf no Calls _doscan

stat no Uses global File System Simulation buffer,
_fss_buffer

strcat yes –

strchr yes –

strcmp yes –

strcoll – Skeleton function

strcpy yes –

strcspn yes –

strerror yes –

strftime yes –

strlen yes –

strncat yes –

strncmp yes –

strncpy yes –

strpbrk yes –

strrchr yes –

strspn yes –

strstr yes –

strtod yes –

strtok no Strtok saves last position in string in local
static variable. This function is not reentrant by
design. See (4).

strtol no Sets errno. See (2).

strtoul no Sets errno. See (2).

Libraries 2–69

• • • • • • • •

CauseReentrantFunction

strxfrm – Skeleton function

system – Skeleton function

tan no Sets errno. See (2).

tanh no Uses sinh for calculation.

time no Uses static variable which defines initial start
time

tmpfile no Uses iob[]. See (1).

tmpnam no Uses local buffer to build filename.
Function can be adapted to use user buffer.
This makes the function non ANSI. See (4).

toascii yes –

tolower yes –

toupper yes –

ungetc no Uses static buffer to hold ungetted characters
for each file. Can be moved into iob structure.
See (1).

unlink no Calls _unlink

_unlink no Uses global File System Simulation buffer,
_fss_buffer

vfprintf no Uses iob[], calls doprint. See (1).

vprintf no Uses iob[], calls doprint. See (1).

vsprintf no Calls doprint.

wcstombs – Skeleton function

wctomb – Skeleton function

write no Calls _write

_write no Uses global File System Simulation buffer,
_fss_buffer

Table 2-5: C library reentrancy

TriCore Reference Guide2–70
L
IB
R
A
R
IE
S

Several functions in the C library are not reentrant due to the following

reasons:

- The iob[] structure is static. This influences all I/O functions.

- The ungetc[] array is static. This array holds the characters (one

for each stream) when ungetc() is called.

- The variable errno is globally defined. The following functions

read or modify errno :

acos, asin, _doprint, _doscan, exp, fgetpos,
fsetpos, ftell, log, log10, perror, pow, rewind,
sqrt, strerror, strtol, strtoul, tan

- _doprint and _doscan use static variables for e.g. character

counting in strings.

- Some string functions use locally defined (static) buffers. This is

prescribed by ANSI.

- malloc uses a static heap space.

The following description discusses these items into more detail. The

numbers at the begin of each paragraph relate to the number references in

the table above.

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly

caused by the static declaration of the iob[] array. The functions which use

elements of this array access these elements via pointers (FILE *).

Building a multi-process system that is created in one link-run is hard to

do. The C language scoping rules for external variables make it difficult to

create a private copy of the iob[] array. Currently, the iob[] array has

external scope. Thus it is visible in every module involved in one link

phase. If these modules comprise several tasks (processes) in a system

each of which should have its private copy of iob[] , it is apparent that

the iob[] declaration should be changed. This requires adaption of the

library to the multi-tasking environment. The library modules must use a

process identification as an index for determining which iob[] array to

use. Thus the library is suitable for interfacing to that kernel only.

Libraries 2–71

• • • • • • • •

Another approach for the iob[] declaration problem is to declare the

array static in one of the modules which create a task. Thus there can be

more than one iob[] array is the system without having conflicts at link

time. This brings several restrictions: Only the module that holds the

declaration of the static iob[] can use the standard file handles stdin ,

stdout and stderr (which are the first three entries in iob[]). Thus all

I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno . After

completion of the function the user program may consult this variable to

see if some error occurred. Since most of the functions that set errno
already have a return type (this is the reason for using errno) it is not

possible to check successful completion via the return type.

The library routines can set errno to the values defined in errno.h . See

the file errno.h for more information.

errno can be set to ERR_FORMAT by the print and scan functions in the

C library if you specify illegal format strings.

errno can be set to ERR_NOFLOAT by the scan functions if you use

floating point formatting while using the SMALL formatting routines. See

also the next section Printf and Scanf Formatting Routines.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the

Tricore C library supports long and pointer conversion routines for input

and output.

errno can be set to ERANGE by the following functions: exp() ,

strtol() , strtoul() and tan() . These functions may produce results

that are out of the valid range for the return type. If so, the result of the

function will be the largest representable value for that type and errno is

set to ERANGE.

errno is set to EDOM by the following functions: acos() , asin() ,

log() , pow() and sqrt() . If the arguments for these functions are out of

their valid range (e.g. sqrt(–1)), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell() ,

fsetpos() and fgetpos() .

TriCore Reference Guide2–72
L
IB
R
A
R
IE
S

(3) ungetc

Currently the ungetc buffer is static. For each file entry in the iob[]

structure array, there is one character available in the buffer to unget a

character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local

static buffer. This is according to the ANSI definition. Changing this

function such that it creates the name in a user specified buffer requires

another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the

position in the string for subsequent calls. This function is not reentrant by

design. Making it reentrant requires support of a kernel to store the

information on a per process basis.

rand() generates a sequence of random numbers. The function uses the

value returned by a previous call to generate the next value in the

sequence. This function can be made reentrant by specifying the previous

random value as one of the arguments. However, then it is no longer a

standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this

implementation is not reentrant. Making a reentrant malloc requires that

the sbrk() function can do some sort of system call to obtain free

memory space on a per process basis. This is not easy to solve within the

current context of the library. This requires adaption to a kernel.

This paragraph on reentrancy applies to multi-process environments only.

If reentrancy is required for calling library functions from an exception

handler, another approach is required. For such a situation it is of no use

to allocate e.g. multiple iob[] structures. In such a situation several

pieces of code in the library have to be declared 'atomic': this means that

interrupts have to be disabled while executing an atomic piece of code.

3

TRICORE ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

TriCore Reference Guide3–2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

TriCore Assembly Language 3–3

• • • • • • • •

3.1 INTRODUCTION

This chapter contains a detailed description of all built-in assembly

functions directives and controls. For a description of the TriCore

instruction set, refer to the TriCore Architecture v1.3 Manual [2000,

Infineon].

3.2 BUILT-IN ASSEMBLY FUNCTIONS

3.2.1 OVERVIEW OF BUILT-IN ASSEMBLY FUNCTIONS

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,

random value, and min/max functions.

• Conversion functions provide conversion between integer, floating

point, and fixed point fractional values.

• String functions compare strings, return the length of a string, and

return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an

address.

• Assembler mode functions relating assembler operation.

The following tables provide an overview of all built-in assembler

functions.

TriCore Reference Guide3–4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@ACS(expr) Arc cosine

@ASN(expr) Arc sine

@AT2(expr1,expr2) Arc tangent

@ATN(expr) Arc tangent

@CEL(expr) Ceiling function

@COH(expr) Hyperbolic cosine

@COS(expr) Cosine

@FLR(expr) Floor function

@L10(expr) Log base 10

@LOG(expr) Natural logarithm

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@POW(expr1,expr2) Raise to a power

@RND() Random value

@SGN(expr) Returns the sign of an expression as –1, 0 or 1

@SIN(expr) Sine

@SNH(expr) Hyperbolic sine

@SQT(expr) Square root

@TAN(expr) Tangent

@TNH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

TriCore Assembly Language 3–5

• • • • • • • •

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating–point

@CVI(expr) Convert floating–point to integer

@FLD(base,value,
 width[,start])

Shift and mask operation

@FRACT(expr) Convert floating–point to 32–bit fractional

@SFRACT(expr) Convert floating–point to 16–bit fractional

@LNG(expr) Concatenate to double word

@LUN(expr) Convert long fractional to floating–point

@RVB(expr1[,expr2]) Reverse order of bits in field

@UNF(expr) Convert fractional to floating–point

@LSB(expr) Get least significant byte of a word

@MSB(expr) Get most significant byte of a word

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,strt]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(str1,expr,expr) Returns a sbustring

Overview of macro functions

Function Description

@ARG(symbol|expr) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

TriCore Reference Guide3–6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of address calculation functions

Function Description

@HI(expr) Returns upper 16 bits of expression value

@HIS(expr) Returns upper 16 bits of expression value, adjusted
for signed addition

@LO(expr) Returns lower 16 bits of expression value

@LOS(expr) Returns lower 16 bits of expression value, adjusted
for signed addition

Overview of assembler mode functions

Function Description

@ASPCP() Returns the name of the pcp assembler executable

@ASTC() Returns the name of the assembler executable

@CPU(string) Test if CPU type is selected

@DEF(symbol) Returns 1 if symbol has been defined

@EXP(expr) Expression check

@INT(expr) Integer check

@LST() LIST control flag value

3.2.2 DETAILED DESCRIPTION OF BUILT-IN

ASSEMBLY FUNCTIONS

@ABS(expression)

Returns the absolute value of expression as an integer value.

Example:

AVAL .SET @ABS(–2.1) ; AVAL = 2

@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range

zero to pi. The result of expression must be between -1 and 1.

Example:

ACOS .SET @ACS(–1.0) ;ACOS = 3.1415926535897931

TriCore Assembly Language 3–7

• • • • • • • •

@ARG(symbol | expression)

Returns an integer 1 if the macro argument represented by symbol or

expression is present, 0 otherwise. If the argument is a symbol it must be

single-quoted and refer to a dummy argument name. If the argument is an

expression it refers to the ordinal position of the argument in the macro

dummy argument list. The assembler issues a warning if this function is

used when no macro expansion is active.

Example:

.IF @ARG(’TWIDDLE’) ;twiddle factor provided?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range

-pi/2 to pi/2. The result of expression must be between -1 and 1.

Example:

ARCSINE .SET @ASN(–1.0) ;ARCSINE = –1.570796

@ASPCP()

Returns the name of the PCP assembler executable. This is 'aspcp' for the

PCP assembler.

Example:

ANAME: .byte @ASPCP() ; ANAME = ’aspcp’

@ASTC()

Returns the name of the assembler executable. This is 'astc' for the TriCore

assembler.

Example:

ANAME: .byte @ASTC() ; ANAME = ’astc’

@AT2(expr1,expr2)

Returns the arc tangent of expr1/expr2 as a floating-point value in the

range -pi to pi. Expr1 and expr2 must be separated by a comma.

Example:

ATAN2 .EQU @AT2(–1.0,1.0) ;ATAN2 = –0.7853982

TriCore Reference Guide3–8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@ATN(expression)

Returns the arc tangent of expression as a floating-point value in the range

-pi/2 to pi/2.

Example:

ATAN .SET @ATN(1.0) ;ATAN = 0.78539816339744828

@CAT(string1,string2)

Concatenates the two strings into one string. The two strings must be

enclosed in single or double quotes.

Example:

.DEFINE ID ”@CAT(’Tri’,’Core’)” ;ID = ’TriCore’

@CEL(expression)

Returns a floating-point value which represents the smallest integer greater

than or equal to expression.

Example:

CEIL .SET @CEL(–1.05) ;CEIL = –1.0

@CNT()

Returns the number of arguments of the current macro expansion as an

integer. The assembler issues a warning if this function is used when no

macro expansion is active.

Example:

ARGCNT .SET @CNT() ;reserve argument count

@COH(expression)

Returns the hyperbolic cosine of expression as a floating-point value.

Example:

HYCOS .EQU @COH(VAL) ;compute hyperbolic cosine

TriCore Assembly Language 3–9

• • • • • • • •

@COS(expression)

Returns the cosine of expression as a floating-point value.

Example:

.WORD –@COS(@CVF(COUNT)*FREQ) ;compute cosine value

@CPU(string)

Returns an integer 1 if string corresponds to the selected CPU type; 0

otherwise. See also the assembler option –C (Select CPU).

Example:

IF @CPU(”tc2”) ;TriCore 2 specific part

@CVF(expression)

Converts the result of expression to a floating-point value.

Example:

FLOAT .SET @CVF(5) ;FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should

be used with caution since the conversions can be inexact (e.g.,

floating-point values are truncated).

Example:

INT .SET @CVI(–1.05) ;INT = –1

@DEF(symbol)

Returns an integer 1 if symbol has been defined, 0 otherwise. symbol may

be any label not associated with a .MACRO or .SDECL directive. If symbol
is quoted it is looked up as a .DEFINE symbol; if it is not quoted it is

looked up as an ordinary label.

Example:

.IF @DEF(’ANGLE’) ;is symbol ANGLE defined?

.IF @DEF(ANGLE) ;does label ANGLE exist?

TriCore Reference Guide3–10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error.

Returns 1 if the expression can be evaluated correctly. With the @EXP
function, you prevent the assembler of generating an error if expression
contains an error. No test is made by the assembler for warnings. The

expression may be relative or absolute.

Example:

.IF !@EXP(3/0) ;Do the IF on error
 ;assembler generates no error

.IF !(3/0) ;assembler generates an error

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start
is omitted, zero (least significant bit) is assumed. All arguments must be

positive integers and none may be greater than the target word size.

Returns the shifted and masked value.

Example:

VAR1 .EQU @FLD(0,1,1) ;turn bit 0 on, VAR1=1
VAR2 .EQU @FLD(0,3,1) ;turn bit 0 on, VAR2=1
VAR3 .EQU @FLD(0,3,2) ;turn bits 0 and 1 on, VAR3=3
VAR4 .EQU @FLD(0,3,2,1) ;turn bits 1 and 2 on, VAR4=6
VAR5 .EQU @FLD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)

Returns a floating-point value which represents the largest integer less

than or equal to expression.

Example:

FLOOR .SET @FLR(2.5) ;FLOOR = 2.0

@FRACT(expression)

This function returns the 32-bit fractional representation of the floating

point expression. The expression must be in the reange [-1,+1>.

Example:

.WORD @FRACT(0.1), @FRACT(1.0)

TriCore Assembly Language 3–11

• • • • • • • •

@HI(expression)

Returns the upper 16 bits of a value. @HI(expression) is equivalent to

((expression >>16) & 0xffff) .

Example:

mov.u d2,#@LO(COUNT)
addih d2,d2,#@HI(COUNT) ; upper 16 bits of COUNT

@HIS(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition.

@HIS(expression) is equivalent to (((expression +0x800)>>16) &
0xffff) .

Example:

movh.a a3,#@HIS(label)
lea a3,[a3]@LOS(label)

@INT(expression)

Returns an integer 1 if expression has an integer result; otherwise, it

returns a 0. The expression may be relative or absolute.

Example:

.IF @INT(TERM) ;Test if result is an integer

@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value.

expression must be greater than zero.

Example:

LOG .EQU @L10(100.0) ;LOG = 2

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN .SET @LEN(’string’) ;SLEN = 6

TriCore Reference Guide3–12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@LNG(expr1,expr2)

Concatenates the 16-bit expr1 and expr2 into a 32-bit word value such

that expr1 is the high half and expr2 is the low half.

Example:

LWORD .WORD @LNG(HI,LO) ;build long word

@LO(expression)

Returns the lower 16 bits of a value. @LO(expression) is equivalent to

expression & 0xffff) .

Example:

mov.u d2,#@LO(COUNT) ;lower 16 bits of COUNT
addih d2,d2,#@HI(COUNT)

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value.

expression must be greater than zero.

Example:

LOG .EQU @LOG(100.0) ;LOG = 4.605170

@LOS(expression)

Returns the lower 16 bits of a value, adjusted for a signed addition.

@LOS(expression) is equivalent to (((expression +0x8000) &
0xffff) – 0x8000) .

Example:

movh.a a3,#@HIS(label)
lea a3,[a3]@LOS(label)

@LSB(expression)

Returns the least significant byte of the result of the expression.

expression is interpreted as a half word (16 bit).

Example:

VAR1 .SET @LSB(0x34) ;VAR1 = 0x34
VAR2 .SET @LSB(0x1234) ;VAR2 = 0x34
VAR3 .SET @LSB(0x654321) ;VAR3 = 0x21

TriCore Assembly Language 3–13

• • • • • • • •

@LST()

Returns the value of the $LIST ON/OFF control flag as an integer.

Whenever a $LIST ON control is encountered in the assembler source, the

flag is incremented; when a $LIST OFF control is encountered, the flag is

decremented.

Example:

.DUP @ABS(@LST()) ;list unconditionally

@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should

represent a binary fraction.

Example:

DBLFRC1 .EQU @LUN(0x40000000) ;DBLFRC1 = 0.5
DBLFRC2 .EQU @LUN(3928472) ;DBLFRC2 = 0.007354736
DBLFRC3 .EQU @LUN(0xE0000000) ;DBLFRC3 = –0.75

@MAC(symbol)

Returns an integer 1 if symbol has been defined as a macro name, 0

otherwise.

Example:

.IF @MAC(DOMUL) ;does macro DOMUL exist?

@MAX(expr1[,exprN]...)

Returns the greatest of expr1,...,exprN as a floating-point value.

Example:

MAX: .BYTE @MAX(1,–2.137,3.5) ;MAX = 3.5

@MIN(expr1[,exprN]...)

Returns the least of expr1,...,exprN as a floating-point value.

Example:

MIN: .BYTE @MIN(1,–2.137,3.5) ;MIN = –2.137

TriCore Reference Guide3–14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@MSB(expression)

Returns the most significant byte of the result of the expression.

expression is interpreted as a half word (16 bit).

Example:

VAR1 .SET @MSB(0x34) ;VAR1 = 0x00
VAR2 .SET @MSB(0x1234) ;VAR2 = 0x12
VAR3 .SET @MSB(0x654321) ;VAR3 = 0x43

@MXP()

Returns an integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

.IF @MXP() ;macro expansion active?

@POS(str1,str2[,start])

Returns the position of str2 in str1 as an integer, starting at position start. If
start is not given the search begins at the beginning of str1. If the start
argument is specified it must be a positive integer and cannot exceed the

length of the source string. Note that the first position in a string is

position 0.

Example:

ID .EQU @POS(’TriCore’,’Core’) ;ID = 3
ID2 .EQU @POS(’ABCDABCD’,’B’,2) ;ID2 = 5

@POW(expr1,expr2)

Returns expr1 raised to the power expr2 as a floating-point value. expr1
and expr2 must be separated by a comma.

Example:

BUF .EQU @CVI(@POW(2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED .EQU @RND() ;save initial SEED value

TriCore Assembly Language 3–15

• • • • • • • •

@RVB(expr1,expr2)

Reverse the order of bits in expr1 delimited by the number of bits in

expr2. If expr2 is omitted the field is bounded by the target word size.

Both expressions must be 16-bit integer values.

Example:

VAR1 .SET @RVB(0x200) ;reverse all bits, VAR1=0x40
VAR2 .SET @RVB(0xB02) ;reverse all bits, VAR2=0x40D0
VAR3 .SET @RVB(0xB02,2) ;reverse bits 0 and 1,
 ;VAR3=0xB01

@SCP(str1,str2)

Returns an integer 1 if the two strings compare, 0 otherwise. The two

strings must be separated by a comma.

Example:

.IF @SCP(STR,’MAIN’) ;does STR equal MAIN?

@SFRACT(expression)

This function returns the 16-bit fractional representation of the floating

point expression. The expression must be in the reange [-1,+1>.

Example:

.WORD @SFRACT(0.1), @SFRACT(1.0)

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative,

0 if zero, 1 if positive. The expression may be relative or absolute.

Example:

VAR1 .SET @SGN(–1.2e–92) ;VAR1 = –1
VAR2 .SET @SGN(0) ;VAR2 = 0
VAR3 .SET @SGN(28.382) ;VAR3 = 1

@SIN(expression)

Returns the sine of expression as a floating-point value.

Example:

.WORD @SIN(@CVF(COUNT)*FREQ) ;compute sine value

TriCore Reference Guide3–16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@SNH(expression)

Returns the hyperbolic sine of expression as a floating-point value.

Example:

HSINE .EQU @SNH(VAL) ;hyperbolic sine

@SQT(expression)

Returns the square root of expression as a floating-point value. expression
must be positive.

Example:

SQRT1 .EQU @SQT(3.5) ;SQRT1 = 1.870829
SQRT2 .EQU @SQT(16) ;SQRT2 = 4

@SUB(string,expression1,expression2)

Returns the substring from string as a string. Expression1 is the starting

position wihtin string, and expression2 is the length of the desired string.

The assembler issues an error if either expression1 or expression2 exceeds

the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID ”@SUB(’TriCore’,3,4)” ;ID = ’Core’

@TAN(expression)

Returns the tangent of expression as a floating-point value.

Example:

TANGENT .SET @TAN(1.0) ;TANGENT = 1.5574077

@TNH(expression)

Returns the hyperbolic tangent of expression as a floating-point value.

Example:

HTAN .SET @TNH(1) ;HTAN = 0.76159415595

TriCore Assembly Language 3–17

• • • • • • • •

@UNF(expression)

Converts expression to a floating-point value. expression should represent

a 16-bit binary fraction.

Example:

FRC .EQU @UNF(0x4000) ;FRC = 0.5

@XPN(expression)

Returns the exponential function (base e raised to the power of

expression) as a floating-point value.

Example:

EXP .EQU @XPN(1.0) ;EXP = 2.718282

TriCore Reference Guide3–18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3.3 ASSEMBLER DIRECTIVES AND CONTROLS

3.3.1 OVERVIEW OF ASSEMBLER DIRECTIVES

Assembler directives are grouped in the following categories:

• Assembly control directives

• Symbol definition directives

• Data definition / Storage allocation directives

• Macro and conditional assembly directives

• Debug directives

The following tables provide an overview of all assembler directives.

Overview of assembly control directives

Directive Description

.COMMENT Start comment lines

.DEFINE Define substitution string

.END End of source program

.FAIL Programmer generated error message

.INCLUDE Include secondary file

.MESSAGE Programmer generated message

.NAME Identification for object file (instead of file name)

.ORG Initialize memory space and location counters to
create a nameless section

.SDECL Declare a section with name, type and attributes

.SECT Activate a declared section

.UNDEF Undefine DEFINE symbol

.WARNING Programmer generated warning

TriCore Assembly Language 3–19

• • • • • • • •

Overview of symbol definition directives

Directive Description

.EQU Assign permanent value to a symbol

.EXTERN External symbol declaration

.GLOBAL Global section symbol declaration

.LOCAL Local symbol declaration

.SET Set temporary value to a symbol

.SIZE Set size of symbol in the ELF symbol table

.TYPE Set symbol type in the ELF symbol table

Overview of data definition / storage allocation directives

Directive Description

.ALIGN Define alignment

.ACCUM Define 64–bit constant of 18 + 46 bits format

.ASCII / .ASCIIZ Define ASCII string without / with ending NULL byte

.BYTE Define constant byte

.FLOAT / .DOUBLE Define a 32–bit / 64–bit floating point constant

.FRACT / .SFRACT Define a 16–bit / 32–bit constant fraction

.SPACE Define storage

.WORD / .HALF Define a word / half–word constant

Overview of macro and conditional assembly directives

Directive Description

.DUP / .ENDM Duplicate sequence of source lines

.DUPA / .ENDM Duplicate sequence with arguments

.DUPC / .ENDM Duplicate sequence with characters

.DUPF / .ENDM Duplicate sequence in loop

.EXITM Exit macro

.IF / .ELIF / .ELSE /

.ENDIF
Conditional assembly

.MACRO / .ENDM Define macro

.PMACRO Purge macro definition

TriCore Reference Guide3–20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of debug directives

Function Description

.CALLS Passes call information to object file. Used by the
linker to build a call graph.

.SYMB Passes debug information to object file. Used by
CrossView Pro for debugging.

3.3.2 DETAILED DESCRIPTION OF ASSEMBLER

DIRECTIVES

Some assembler directives can be preceeded with a label. If you do not

preceede an assembler directive with a label, you must use white space

instead (spaces or tabs). The assembler recognizes both upper and lower

case for directives.

TriCore Assembly Language 3–21

• • • • • • • •

.ACCUM

Syntax

[label:] .ACCUM argument[,argument]...

Description

With the .ACCUM directive (Define 64-bit Constant) the assembler allocates

and initializes two words of memory (64 bits) for each argument. Use

commas to separate multiple arguments.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of

two bytes. If an argument is NULL its corresponding address location is

filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler

issues a warning and saturates the fractional value.

Example

ACC: .ACCUM 0.1,0.2,0.3

Related information

.SPACE (Define storage)

.FRACT / .SFRACT (Define 32-bit / 16-bit constant fraction)

TriCore Reference Guide3–22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.ALIGN

Syntax

.ALIGN expression

Description

With the ALIGN directive you instruct the assembler to align the location

counter. Default the assembler aligns on one byte.

When the assembler encounters the ALIGN directive, it advances the

location counter to an address that is aligned as specified by expression
and places the next instruction on that address. The assembler fills the

'gap' with NOP instructions. If the location counter is already aligned on

the specified alignment, it remains unchanged.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify

another value, the assembler changes the alignment to the next higher

power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value

occurring in that secton.

A label is not allowed with this directive.

Example

.ALIGN 16 ; the assembler aligns
add d2,d2,d4 ; this instruction at 16 bytes and
 ; fills the ’gap’ with NOP instructions

.ALIGN 12 ; WRONG: not a power of two, the
add d2,d2,d4 ; assembler aligns this instruction at
 ; 16 bytes and issues a warning

Related information

-

TriCore Assembly Language 3–23

• • • • • • • •

.ASCII/.ASCIIZ

Syntax

[label:] .ASCII string[,string]...

[label:] .ASCIIZ string[,string]...

Description

With the .ASCII or .ASCIIZ directive the assembler allocates and

initializes memory each string.

The .ASCII directive does not add a NULL byte to the end of the string.

The .ASCIIZ directive does add a NULL byte to the end of the string. Use

commas to separate multiple strings.

Example

STRING: .ASCII ”Hello world”

STRING: .ASCIIZ ”Hello world”

With the .BYTE directive you can obain exactly the same effect:

STRING: .BYTE ”Hello world” ; without a NULL byte
STRING: .BYTE ”Hello world”,0 ; with a NULL byte

Related information

.SPACE (Define storage)

.BYTE (Define a constant byte)

.WORD / .HALF (Define a word / halfword)

TriCore Reference Guide3–24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.BYTE

Syntax

[label] .BYTE argument[,argument]...

Description

With the .BYTE directive (Define Constant Byte) the assembler allocates

and initializes a byte of memory for each argument.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument

is NULL its corresponding byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Integer arguments are stored as is, but must be byte values (within the

range 0-255); floating-point numbers are not allowed. If the evaluated

expression is out of the range [-256, +255] the assembler issues an error.

For negative values within that range, the assembler adds 256 to the

specified value (for example, -254 is stored as 2).

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

.BYTE ’R’ ; = 0x52

.BYTE ’AB’,,’D’ ; = 0x41420043

Example

TABLE .BYTE ’two’,0,’strings’,0
CHARS .BYTE ’A’,’B’,’C’,’D’

TriCore Assembly Language 3–25

• • • • • • • •

Related information

.SPACE (Define storage)

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.WORD / .HALF (Define a word / halfword)

TriCore Reference Guide3–26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.CALLS

Syntax

.CALLS 'caller', 'callee'

Description

Create a flow graph reference between caller and callee. The linker needs

this information to build a call graph. Caller and Callee are names of

functions.

When you compile with the option -g (include debugging information),

the compiler inserts these directives to pass call tree information. Normally

it is not necessary to use the .CALLS directive in hand coded assembly.

A label is not allowed with this directive.

Example

To indicate that the function main calls the function nfunc :

.CALLS ’main’, ’nfunc’

Related information

-

TriCore Assembly Language 3–27

• • • • • • • •

.COMMENT

Syntax

.COMMENT delimiter

.

.

delimiter

Description

With the COMMENT directive (Start Comment Lines) you can define one or

more lines as comments. The first non-blank character after the .COMMENT
directive is the comment delimiter. The two delimiters are used to define

the comment text. The line containing the second comment delimiter will

be considered the last line of the comment. The comment text can include

any printable characters and the comment text will be produced in the

source listing as it appears in the source file.

A label is not allowed with this directive.

Example

.COMMENT + This is a one line comment +

.COMMENT * This is a multiple line
 comment. Any number of lines
 can be placed between the two
 delimiters.
 *

Related information

-

TriCore Reference Guide3–28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.DEFINE

Syntax

.DEFINE symbol string

Description

With the .DEFINE directive you define a substitution string that you can

use on all following source lines. The assembler searches all succeeding

lines for an occurrence of symbol, and replaces it with string.

This directive is useful for providing better documentation in the source

program. Symbol must adhere to the restrictions for labels. That is, a

symbol can consist of letters, digits and underscore characters (_), and the

first character cannot be a digit.

The assembler issues a warning if you redefine an existing symbol.

Macros represent a special case. .DEFINE directive translations are applied

to the macro definition as it is encountered. When the macro is expanded

any active .DEFINE directive translations will again be applied.

A label is not allowed with this directive.

Example

If the following .DEFINE directive occurred in the first part of the source

program:

.DEFINE SIZE ’32’

then the source line below:

.SPACE SIZE

would be transformed by the assembler to the following:

.SPACE 32

Related information

.UNDEF (Undefine .DEFINE symbol)

.SET (Set temporary value to a symbol)

TriCore Assembly Language 3–29

• • • • • • • •

.DUP / .ENDM

Syntax

[label] .DUP expression
 .

 .

 .ENDM

Description

The sequence of source lines between the .DUP and .ENDM directives will

be duplicated by the number specified by the integer expression. If the

expression evaluates to a number less than or equal to 0, the sequence of

lines will not be included in the assembler output. The expression result

must be an absolute integer and cannot contain any forward references to

address labels (labels that have not already been defined). You can nest

the .DUP directive to any level.

If you specify label, it gets the value of the location counter at the start of

the DUP directive processing.

Example

Consider the following source input statements,

COUNT .SET 3
 .DUP COUNT ; NOP BY COUNT
 NOP
 .ENDM

This is expanded as follows:

COUNT .SET 3
 NOP
 NOP
 NOP

Related information

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Reference Guide3–30
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.DUPA / .ENDM

Syntax

[label] .DUPA dummy,argument[,argument]...
 .

 .

 .ENDM

Description

With the .DUPA and .ENDM directives (Duplicate Sequence with

Arguments) you can repeat a block of source statements for each

argument. For each repetition, every occurrence of the dummy parameter

within the block is replaced with each succeeding argument string. If an

argument includes an embedded blank or other assembler-significant

character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of

the DUPA directive processing.

Example

Consider the following source input statements,

.DUPA VALUE,12,,32,34

.BYTE VALUE

.ENDM

This is expanded as follows:

.BYTE 12

.BYTE VALUE

.BYTE 32

.BYTE 34

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Assembly Language 3–31

• • • • • • • •

.DUPC / .ENDM

Syntax

[label] .DUPC dummy,string

 .

 .

 .ENDM

Description

With the .DUPC and .ENDM directives (Duplicate Sequence with

Characters) you can repeat a block of source statements for each character

of string. For each repetition, every occurrence of the dummy parameter

within the block is replaced with each succeeding character in the string.

If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of

the DUPC directive processing.

Example

Consider the following source input statements,

.DUPC VALUE,’123’

.BYTE VALUE

.ENDM

This is expanded as follows:

.BYTE 1

.BYTE 2

.BYTE 3

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Reference Guide3–32
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.DUPF / .ENDM

Syntax

[label] .DUPF dummy,[start],end[,increment]
 .

 .

 .ENDM

Description

With the .DUPF and .ENDM directives (Duplicate Sequence in Loop) you

can repeat a block of source statements (end - start) + 1 times when

increment is 1. Start is the starting value for the loop index; end
represents the final value. Increment is the increment for the loop index; it

defaults to 1 if omitted (as does the start value). The dummy parameter

holds the loop index value and may be used within the body of

instructions.

If you specify label, it gets the value of the location counter at the start of

the DUPF directive processing.

Example

Consider the following source input statements,

.DUPF NUM,0,7
MOV D\NUM,#0
.ENDM

This is expanded as follows:

MOV D0,#0
MOV D1,#0
MOV D2,#0
MOV D3,#0
MOV D4,#0
MOV D5,#0
MOV D6,#0
MOV D7,#0

TriCore Assembly Language 3–33

• • • • • • • •

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.MACRO (Define Macro)

TriCore Reference Guide3–34
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.END

Syntax

.END [expression]

Description

With the optional END directive you tell the assembler that the logical end

of the source program is reached. If the assembler finds assembly source

lines beyond the .END directive, it ignores those lines and issues a

warning.

The expression is only permitted here for compatibility reasons. It is

ignored during assembly.

You cannot use the END directive in a macro expansion.

A label is not allowed with this directive.

Example

.END ;End of source program

Related information

-

TriCore Assembly Language 3–35

• • • • • • • •

.EQU

Syntax

symbol .EQU expression

Description

With the .EQU directive you assign the value of expression to symbol
permanently. Once defined, you cannot redefine the symbol.

The expression can be relative or absolute and forward references are

allowed.

Example

To assign the value 0x4000 permanently to the symbol A_D_PORT:

A_D_PORT .EQU 0x4000

You cannot redefine the symbol A_D_PORT after this.

Related information

.SET (Set temporary value to a symbol)

TriCore Reference Guide3–36
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.EXITM

Syntax

.EXITM

Description

With the .EXITM directive (Exit Macro) the assembler will immediately

terminate a macro expansion. It is useful when you use it with the

conditional assembly directive .IF to terminate macro expansion when,

for example, error conditions are detected.

A label is not allowed with this directive.

Example

CALC .MACRO XVAL,YVAL
 .IF XVAL<0
 .FAIL ’Macro parameter value out of range’
 .EXITM ;Exit macro
 .ENDIF
 .
 .
 .
 .ENDM

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop),

.MACRO (Define Macro)

TriCore Assembly Language 3–37

• • • • • • • •

.EXTERN

Syntax

.EXTERN symbol[,symbol]...

Description

With the .EXTERN directive (External Symbol Declaration) you specify that

the list of symbols is referenced in the current module, but is not defined

within the current module. These symbols must either have been defined

outside of any module or declared as globally accessible within another

module with the .GLOBAL directive.

If you do not use the .EXTERN directive to specify that a symbol is

defined externally and the symbol is not defined within the current

module, the assembler issues a warning and inserts the .EXTERN directive

for that symbol.

A label is not allowed with this directive.

Example

.EXTERN AA,CC,DD ;defined elsewhere

Related information

.GLOBAL (Global symbol declaration)

.LOCAL (Local symbol declaration)

TriCore Reference Guide3–38
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.FAIL

Syntax

.FAIL [{str | exp}[,{str | exp}]...]

Description

With the .FAIL directive (Programmer Generated Error) you tell the

assembler to output an error message during the assembling process.

The total error count will be incremented as with any other error. The

.FAIL directive is for example useful in combination with conditional

assembly for exceptional condition checking. The assembly process

proceeds normally after the error has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated error. The assembler outputs a space between each argument.

A label is not allowed with this directive.

Example

.FAIL ’Parameter out of range’

Related information

.MESSAGE (Programmer Generated Message),

.WARNING (Programmer Generated Warning)

TriCore Assembly Language 3–39

• • • • • • • •

.FLOAT/.DOUBLE

Syntax

[label] .FLOAT argument[,argument]...

[label] .DOUBLE argument[,argument]...

Description

With the .FLOAT or .DOUBLE directive the assembler allocates and

initializes one word (32 bits) or a double-word (64 bits) of memory for

each argument.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or

with the 'e' format as used in the C language. 12.457 and +0.27E–13 are

legal floating-point constants.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

If the evaluated argument is too large to be represented in a single word /

double-word, the assembler issues an error.

Examples

FLT: .FLOAT 12.457,+0.27E–13

DBL: .DOUBLE 12.457,+0.27E–13

Related information

.SPACE (Define storage)

TriCore Reference Guide3–40
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.FRACT/.SFRACT

Syntax

[label:] .FRACT argument[,argument]...

[label:] .SFRACT argument[,argument]...

Description

With the .FRACT or .SFRACT directive the assembler allocates and

initializes one word of memory (32 bits) or a halfword (16 bits) for each

argument. Use commas to separate multiple arguments.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of

two bytes. If an argument is NULL its corresponding address location is

filled with zeros.

If the evaluated argument is out of the range [-1, +1> , the assembler

issues a warning and saturates the fractional value.

Example

FRCT: .FRACT 0.1,0.2,0.3

SFRCT: .SFRACT 0.1,0.2,0.3

Related information

.SPACE (Define storage)

.ACCUM (Define 64-bit constant fraction in 18+46 bits format)

TriCore Assembly Language 3–41

• • • • • • • •

.GLOBAL

Syntax

.GLOBAL symbol[,symbol]...

Description

With the .GLOBAL directive (Global Section Symbol Declaration) you

declare one of more symbols as global. This means that the specified

symbols are defined within the current section or module, and that those

definitions should be accessible by all modules.

Only symbols that are defined with the .EQU directive can be made

global.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed with this directive.

Example

 .SDECL ”.data.io”,DATA
 .SECT ”.data.io”
 .GLOBAL LOOPA ; LOOPA will be globally
 ; accessible by other modules
LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA

Related information

.EXTERN (External symbol declaration)

.LOCAL (Local symbol declaration)

TriCore Reference Guide3–42
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.IF / .ELIF / .ELSE / .ENDIF

Syntax

.IF expression
 .

 .

[.ELIF expression] (the .ELIF directive is optional)

 .

 .

[.ELSE] (the .ELSE directive is optional)

 .

 .

.ENDIF

Description

With the .IF/ .ENDIF directives you can create a part of conditional

assembly code. The assembler assembles only the code that it reaches.

The expression must evaluate to an absolute integer and cannot contain

forward references. If expression evaluates to zero, the .IF -condition is

considered FALSE. Any non-zero result of expression is considered as

TRUE.

You can nest .IF directives to any level. The .ELSE , .ELIF and .ENDIF
directives always refer to the nearest previous .IF directive.

A label is not allowed with this directive.

Example

Suppose you have an assemble source file with specific code for a test

version, for a demo version and for the final version. Within the assembly

source you define this code conditionally as follows:

.IF TEST

... ; code for the test version

.ELIF DEMO

... ; code for the demo version

.ELSE

... ; code for the final version

.ENDIF

TriCore Assembly Language 3–43

• • • • • • • •

Before assembling the file you can set the values of the symbols .TEST
and .DEMO in the assembly source before the .IF directive is reached. For

example, to assemble the demo version:

TEST .SET 0
DEMO .SET 1

You can also define the symbols on the command line with the option –D:

astc –DDEMO –DTEST=0 test.src

Related information

-

TriCore Reference Guide3–44
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.INCLUDE

Syntax

.INCLUDE 'string' | <string>

Description

With the .INCLUDE directive you direct the assembler to include another

file before the resulting file is assembled. The .INCLUDE directive works

similarly to the #include statement in C.

The string specifies the filename of the secondary file. The filename must

be compatible with the operating system and can include a directory

specification.

The order in which the assembler searches for include files is:

1. The current directory if only a filename is given, unless the <string>

syntax is used, or in the directory specified in string if you specify both

a pathname and a filename.

2. The path that is specified with the assembler option –I.

3. The path that is specified in the environment variable ASTCINC when

the product was installed.

4. The default directory ...\ctc\include .

A label is not allowed with this directive.

Example

.INCLUDE ’storage\mem.asm’ ; include file

.INCLUDE <data.asm> ; Do not look in
 ; current directory

Related information

Assembler option –I (Add directory to include file search path) in section

4.2, Assembler Options, of Chapter Tool Options.

TriCore Assembly Language 3–45

• • • • • • • •

.LOCAL

Syntax

.LOCAL symbol[,symbol]...

Description

By default, labels in a module are defined "global". With the .LOCAL
directive (Local Section Symbol Declaration) you declare one of more

symbols as local. This means that the specified symbols are explicitly local

to the section or module in which you define them.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed with this directive.

Example

 .SDECL ”.data.io”,DATA
 .SECT ”.data.io”
 .LOCAL LOOPA ; LOOPA is local to this section

LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA

Related information

.EXTERN (External symbol declaration)

.GLOBAL (Global symbol declaration)

TriCore Reference Guide3–46
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.MACRO / .ENDM

Syntax

macro_name .MACRO [dumarg[,dumarg]...]

 .

 macro_definition_statements
 .

 .

 .ENDM

Description

With the .MACRO directive you define a macro. Macros provide a

shorthand method for handling a repeated pattern of code or group of

instructions. You can define the pattern as a macro, and then call the

macro at the points in the program where the pattern would repeat. The

.ENDM directive indicates the end of the macro.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the dummy

arguments.

• Body, which contains the code or instructions to be inserted when the

macro is called.

• Terminator, which indicates the end of the macro definition (ENDM
directive).

The dummy arguments are symbolic names that the macro processor

replaces with the literal arguments when the macro is expanded (called).

Each dummy argument must follow the same rules as symbol names.

Dummy argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined

until the primary macro is expanded.

Example

The macro definition:

CONSTD .MACRO reg,value ;header
 mov.u reg,#lo(value) ;body
 addih reg,reg,#hi(value)
 .ENDM ;terminator

TriCore Assembly Language 3–47

• • • • • • • •

The macro call:

 .SDECL ”.data”,DATA
 .SECT ”.data”

 CONSTD d4,0x12345678

 .END

The macro expands as follows:

 mov.u d4,#lo(0x12345678)
 addih d4,d4,#hi(0x12345678)

Related information

.DUP (Duplicate Sequence of Source Lines),

.DUPA (Duplicate Sequence with Arguments),

.DUPC (Duplicate Sequence with Characters),

.DUPF (Duplicate Sequence in Loop)

Section 4.9, Macro Operations, in Chapter Assembly Language of the

User's Guide.

TriCore Reference Guide3–48
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.MESSAGE

Syntax

.MESSAGE [{str | exp}[,{str | exp}]...]

Description

With the .MESSAGE directive (Programmer Generated Message) you tell

the assembler to output an information message durring assembly.

The error and warning counts will not be affected. The .MESSAGE
directive is for example useful in combination with conditional assembly

for informational purposes. The assembly proceeds normally after the

message has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

message. The assembler outputs a space between each argument.

A label is not allowed with this directive.

Example

.DEFINE LONG ”SHORT”

.MESSAGE ’This is a LONG string’

.MESSAGE ”This is a LONG string”

Within single quotes, the defined symbol LONG is not expanded. Within

double quotes the symbol LONG is expanded. So, the actual message is

printed as:

This is a LONG string
This is a SHORT string

Related information

.FAIL (Programmer Generated Error)

.WARNING (Programmer Generated Warning)

TriCore Assembly Language 3–49

• • • • • • • •

.NAME

Syntax

.NAME "str"

Description

With the .NAME directive you give an identification to the generated object

file. The linker and or debugger uses this identification (instead of the file

name) to refer to the file.

When you use the control program cctc, this name may become a random

name.

Example

Suppose the assembler assembles the file test.src and generates

test.o . To change the identification (used by the linker and debugger)

from the name "test" into "strcat":

.NAME ”strcat”

TriCore Reference Guide3–50
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.ORG

Syntax

.ORG [abs-loc][,sect_type][,attribute]...

Description

With the .ORG directive you can specify an absolute location (abs_loc) in
memory of a section. This is the same as a .SDECL/.SECT without a

section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter.

abs-loc must be an absolute expression. If abs_loc is not

specified, then the value is zero.

sect_type An optional section type:

code code section

data data section

attribute An optional section attribute:

 Code attibutes:

init section is copied from ROM to RAM at startup

noread section can be executed from but not read

 Data attibutes:

noclear section is not cleared during startup

max data overlay with other parts with the same

name, is implicit a type of 'noclear'

rom data section remains in ROM

A label is not allowed with this directive.

Example

; define a section on location 100 decimal
.org 100

; define a relocatable nameless section
.org

; define a relocatable data section
.org ,data

TriCore Assembly Language 3–51

• • • • • • • •

; define a data section on 0x8000
.org 0x8000,data

Related information

.SDECL (Declare section name and attributes)

.SECT (Activate a declared section)

TriCore Reference Guide3–52
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.PMACRO

Syntax

.PMACRO symbol[,symbol]...

Description

With the .PMACRO directive you tell the assembler to purge the specified

macro from the macro table, reclaiming the macro table space.

A label is not allowed with this directive.

Example

.PMACRO MAC1,MAC2

This statement causes the macros named MAC1 and MAC2 to be purged.

Related information

.MACRO (Define Macro)

TriCore Assembly Language 3–53

• • • • • • • •

.SDECL

Syntax

.SDECL "name", type [, attr]... [AT address]

Description

With the .SDECL directive you can define a section with a name, type and

optional attributes. Before any code or data can be placed in a section,

you must use the .SECT directive to activate the section.

This directive uses the following arguments:

type: A section type:

code code section

data data section

attribute: An optional section attribute:

 Code attibutes:

init section is copied from ROM to RAM at startup

noread section can be executed from but not read

 Data attibutes:

noclear section is not cleared during startup

max data overlay with other parts with the same

name, is implicit a type of 'noclear'

rom data section remains in ROM

Sections with attribute noclear are not zeroed at startup. This is a default

attribute for data sections. You can only use this attribute with a data
type section. This attribute is only useful with BSS sections, which are

cleared at startup by default.

The attribute init defines that the code section contains initialization

data, which is copied from ROM to RAM at program startup.

Sections with the attribute rom contain data to be placed in ROM. This

ROM area is not executable.

When data sections with the same name occur in different object

modules with the attribute max, the linker generates a section with a size

that is the largest of the sizes in the individual object modules. The

attribute max only applies to data sections.

TriCore Reference Guide3–54
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The name of a section can have a special meaning for locating sections.

The name of code sections should always start with ".text " (or

".pcptext " for PCP code). With data sections, the prefix in the name is

important. The prefix determines if the section is initialized, constant or

uninitialized and which addressing mode is used.

Name prefix Type of DATA section

.data initialized

.zdata initialized, abs 18 addressing

.sdata initialized, a0 addressing

.data_a8 initialized, a8 addressing

.data_a9 initialized, a9 addressing

.rodata constant data

.zrodata constant data, abs 18 addressing

.srodata constant data, a0 addressing

.rodata_a8 constant data, a8 addressing

.rodata_a9 constant data, a9 addressing

.bss uninitialized

.zbss uninitialized, abs 18 addressing

.sbss uninitialized, a0 addressing

.bss_a8 uninitialized, a8 addressing

.bss_a9 uninitialized, a9 addressing

.ldata a1 addressing (read only constants, literal data)

.pcpdata pcp data

Table 3-1: Data section name prefixes

Note that the compiler uses the following name convention:

prefix.module-name.function-or-object-name

Examples:

.sdecl ”.text.t.main”, CODE ; declare code section

.sect ”.text.t.main” ; activate section

.sdecl ”.data.t.var1”, DATA ; declare data section

.sect ”.data.t.var1” ; activate section

TriCore Assembly Language 3–55

• • • • • • • •

.sdecl ”.text.intvec.00a”, CDOE ; declare interrupt
 ; vector table entry for interrupt 10
.sect ”.text.intvec.00a” ; activate section

.SECT (Activate a declared section)

.ORG (Initialize a nameless section)

TriCore Reference Guide3–56
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SECT

Syntax

.SECT "name" [, RESET]

Description:

With the .SECT directive you activate a previously declared section with

the name name. Before you can activate a section, you must define the

section with the .SDECL directive. You can activate a section as many

times as you need.

With the section attribute RESET you can reset counting storage allocation

in data sections that have section attribute max.

Examples:

.sdecl ”.zdata.t.var2”, DATA ; declare data section

.sect ”.zdata.t.var2” ; activate section

.SDECL (Declare a section with name, type and attributes)

.ORG (Initialize a nameless section)

TriCore Assembly Language 3–57

• • • • • • • •

.SET

Syntax

symbol .SET expression

 .SET symbol expression

Description

With the .SET directive you assign the value of expression to symbol
temporarily. If a symbol was defined with the .SET directive, you can

redefine that symbol in another part of the assembly source, using the

.SET .

The .SET directive is useful in establishing temporary or reusable counters

within macros. Expression must be absolute and forward references are

allowed.

Example

COUNT .SET 0 ; Initialize COUNT. Later on you can
 ; assign other values to the symbol COUNT.

Related information

..EQU (Assign permanent value to a symbol)

TriCore Reference Guide3–58
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SIZE

Syntax

.SIZE symbol, expression

Description

With the .SIZE directive you set the size of the specified symbol to the

value represented by expression.

The .SIZE directive may occur anywhere in the source file unless the

specified symbol is a function. In this case, the .SIZE directive must occur

after the function has been defined.

Example

main:
 . ; function main
 .
 ret
 .SIZE main,(*–main)

Related information

.TYPE (Set Symbol Type)

TriCore Assembly Language 3–59

• • • • • • • •

.SPACE

Syntax

[label] .SPACE expression

Description

With the .SPACE directive (Define Storage) the assembler reserves a block

of bytes in memory. The reserved block of memory is not initialized to any

value.

With expression you specify the number of bytes you want to reserve, and

how much the location counter will advance. The expression must be an

integer greater than zero and cannot contain any forward references to

address labels (labels that have not yet been defined).

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Example

S_BUF .SPACE 12 ; Sample buffer

Related information

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.BYTE (Define a constant byte)

.FLOAT / .DOUBLE (Define a 32-bit / 64-bit floating point constant)

.WORD / .HALF (Define a word / halfword)

TriCore Reference Guide3–60
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.SYMB

Syntax

.SYMB string, expression [, abs_expr] [, abs_expr]

Description

When you compile with the option -g (include debugging information),

the compiler inserts the .SYMB directives to pass high-level language

symbolic debug information via the assembler (and linker) to the

debugger.

Expression can be any expression. Abs_expr can be any expression

resulting in an absolute value.

The .SYMB directive is not meant for hand coded assembly and is

documented here for completeness only.

Example

If you compile a C file test.c with the -g option, you might find the

following .SYMB directives in your assembly listing file:

.symb TOOL, ”TASKING TriCore C compiler vx.y”, 1

.symb TYPE, 256, ”bit”, ’g’, 0, 1

.symb FILE, ”test.c”

Related information

-

TriCore Assembly Language 3–61

• • • • • • • •

.TYPE

Syntax

symbol .TYPE typeid

Description

With the .TYPE directive you set a symbol's type to the specified value in

the ELF symbol table. Valid symbol types are:

FUNC The symbol is associated with a function or other

executable code.

OBJECT The symbol is associated with an object such as a

variable, an array, or a structure.

FILE The symbol name represents the filename of the

compilation unit.

Example

Afunc .TYPE FUNC

Related information

.SIZE (Set Symbol Size)

TriCore Reference Guide3–62
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.UNDEF

Syntax

.UNDEF symbol

Description

With the .UNDEF directive you can undefine a substitution string that was

previously defined with the .DEFINE directive. The substitution string

associated with symbol is released, and symbol will no longer represent a

valid .DEFINE substitution.

A label is not allowed with this directive.

Example

.UNDEF SIZE ; Undefines the SIZE substitution string
 ; that was previously defined with the
 ; .DEFINE directive

Related information

.DEFINE (Define Substitution String)

TriCore Assembly Language 3–63

• • • • • • • •

.WARNING

Syntax

.WARNING [{str | exp}[,{str | exp}]...]

Description

With the .WARNING directive (Programmer Generated Warning) you tell

the assembler to output a warning message during the assembling process.

The total warning count will be incremented as with any other warning.

The .WARNING directive is for example useful in combination with

conditional assembly for exceptional condition checking. The assembly

process proceeds normally after the warning has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated warning. The assembler outputs a space between each

argument.

A label is not allowed with this directive.

Example

.WARNING ’parameter too large’

Related information

.FAIL (Programmer Generated Error),

.MESSAGE (Programmer Generated Message)

TriCore Reference Guide3–64
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

.WORD/.HALF

Syntax

[label] .WORD argument[,argument]...

[label] .HALF argument[,argument]...

Description

With the .WORD or .HALF directive the assembler allocates and initializes

one word (32 bits) or a halfword (16 bits) of memory for each argument.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument

is NULL its corresponding byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

.WORD ’R’ ; = 0x52

.WORD ’ABCD’ ; = 0x41424344

.HALF ’R’ ; = 0x52

.HALF ’AB’ ; = 0x4142

.HALF ’ABCD’ ; = 0x4142
 0x4344

If the evaluated argument is too large to be represent in a word /

halfword, the assembler issues an error.

TriCore Assembly Language 3–65

• • • • • • • •

Examples

WRD: .WORD 14,1635,0x34266243,’ABCD’

HLF: .HALF 14,1635,0x2662,’AB’

With the .BYTE directive you can obain exactly the same effect:

WRD: .BYTE 14,0,0,0,1635%256,6,0,0,
 0x43,0x62,0x26,0x34,’D’,’C’,’B’,’A’

HLF: .BYTE 14,0,1635%256,6,0x62,0x26,’B’,’A’

Related information

.SPACE (Define storage)

.ASCII / .ASCIIZ (Define ASCII string without/with ending NULL)

.BYTE (Define a constant byte)

TriCore Reference Guide3–66
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3.3.3 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls.

Overview of assembler listing controls

Function Description

$LIST ON / OFF Generation of assembly list file temporary ON/OFF

$LIST ”flags” Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRINT Specify alternative name for assembly list file

$NOPRINT Disable list file generation

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file

$TITLE Set program title in headerof assembly list file

Overview of miscellaneous assembler controls

Function Description

$CASE ON / OFF Case sensitive user names ON/OFF

$DEBUG ON / OFF Generation of symbolic debug ON/OFF

$DEBUG ”flags” Select debug information

$FPU Allow single precision floating point instructions

$HW_ONLY Prevent substitution of assembly instructions by
smaller or faster instructions

$IDENT LOCAL /
GLOBAL

Assembler treats labels by default as local or global

$MMU Allow memory management instructions

$OBJECT Alternative name for the generated object file

$TCdefect ON / OFF Enable/disable assembler check for specified
functional problem

$TC2 Allow TriCore 2 instructions

$WARNING OFF Suppress all or some warnings

TriCore Assembly Language 3–67

• • • • • • • •

3.3.4 DETAILED DESCRIPTION OF ASSEMBLER

CONTROLS

The assembler recognizes both upper and lower case for controls.

TriCore Reference Guide3–68
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$CASE ON / OFF

Syntax

$CASE ON (default)

$CASE OFF

Description

With the $CASE ON and $CASE OFF controls you specify whether the

assembler operates in case sensitive mode or not. Default the assembler

operates in case sensitive mode.

Example

;begin of source
$CASE OFF ; assembler in case insensitive mode

Related option

Assembler option –c (Switch to case insensitive mode) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Assembly Language 3–69

• • • • • • • •

$DEBUG ON / OFF

Syntax

$DEBUG ON

$DEBUG OFF

$DEBUG "flags"

Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation

of debug infomation on or off. ($DEBUG ON is similar to the assembler

option -gl).

If you use $DEBUG control with flags, you can set the following flags:

a/A assembler source line information

h/H pass HLL debug information

You cannot use these two types of debug information both. So,

$DEBUG ”ah” is not allowed.

l/L local symbols debug information

s/S always debug; either "AhL" or "aHl"

Debug information that is generated by the C compiler, is always passed

to the object file.

Example

;begin of source
$DEBUG ON ; generate local symbols debug information

Related option

Assembler option –g (Select debug information) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

-

TriCore Reference Guide3–70
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$FPU

Syntax

$FPU

Description

With the $FPU control you instruct the assembler to accept and encode

single precision floating point instructions in the assembly source file.

When you use this control, the define __FPU__ is set to 1. Default the

define __FPU__ is set to 0 which tells the assembler not to accept single

precision floating point instructions.

Example

;begin of source
$FPU ; the use of single precision FPU instructions
 ; in this source is allowed.

Related option

Assembler option ––fpu-present (Allow the use of single precision

floating point instructions) in section 4.2, Assembler Options, of Chapter

Tool Options.

Related information

-

TriCore Assembly Language 3–71

• • • • • • • •

$HW_ONLY

Syntax

$HW_ONLY

Description

Normally the assembler replaces instructions by other, smaller or faster

instructions. For example, the instruction jeq d0,#0,label1 is replaced

by jz d0,label1 .

With the $HW_ONLY control you instruct the assembler to encode all

instruction as they are. The assembler does not substitute instructions with

other, faster or smaller instructions.

Example

;begin of source
$HW_ONLY ; the assembler does not substitute
 ; instructions with other, smaller or
 ; faster instructions.

Related option

Assembler option –Og (Allow generic instructions) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Guide3–72
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$IDENT

Syntax

$IDENT LOCAL

$IDENT GLOBAL

Description

With the controls $IDENT LOCAL and $IDENT GLOBAL you tell the

assembler how to treat symbols that you have not specified explicitly as

local or global with the assembler directives .LOCAL or .GLOBAL.

Default the assembler treats all symbols as local symbols unless you have

defined them explicitly as global.

Example

;begin of source
$IDENT GLOBAL ; assembly labels are global by default

Related option

Assembler option –i (Treat labels by default local / global) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

Assembler directive .LOCAL (Local symbol declaration)

Assembler directive .GLOBAL (Global symbol declaration)

TriCore Assembly Language 3–73

• • • • • • • •

$LIST ON / OFF

Syntax

$LIST ON

 .

 . ; assembly source lines

 .

$LIST OFF

Description

If you generate a list file with the assembler option –l, you can use the

$LIST ON and $LIST OFF controls to specify which source lines the

assembler must write to the list file. Without the command line option –l,

the $LIST ON and $LIST OFF controls have no effect.

The $LIST ON control actually increments a counter that is checked for a

positive value and is symmetrical with respect to the $LIST OFF control.

Note the following sequence:

; Counter value currently 1
$LIST ON ; Counter value = 2
$LIST ON ; Counter value = 3
$NOLIST OFF ; Counter value = 2
$NOLIST OFF ; Counter value = 1

The listing still would not be disabled until another NOLIST control was

issued.

A label is not allowed with this control.

Example

Suppose you assemble the following assembly source with the assembler

option –l:

.SDECL ”.text”,CODE

.SECT ”.text”

... ; source line in list file
$LIST ON
... ; source line not in list file
$LIST
... ; source line also in list file
.END

TriCore Reference Guide3–74
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The assembler generates a list file with the following lines:

.SDECL ”.text”,CODE

.SECT ”.text”

... ; source line in list file
$LIST ON
... ; source line also in list file
.END

Related option

Assembler option –l (Generate list file) in section 4.2, Assembler Options,
of Chapter Tool Options.

Related information

Assembler control $LIST (Exclude / include lines in assembly list file)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

TriCore Assembly Language 3–75

• • • • • • • •

$LIST flags

Syntax

Begin of assembly file

$LIST "flags"

Description

If you generate a list file with the assembler option –l, you can use the

$LIST controls to specify which type of source lines the assembler must

exclude from the list file. Without the command line option –l, the $LIST
control has no effect.

You can set the following flags to remove or include lines:

c/C Lines with assembler controls

d/D Lines with section directives (.SECT and .SDECL)

e/E Lines with symbol definition directives (.EXTERN, .GLOBAL,

.LOCAL, .CALLS)

g/G Lines with generic instruction expansion

i/I Lines with generic instructions

l/L #Line source lines

m/M Lines with macro definitions (.MACRO and .DUP)

n/N Empty source lines

p/P Lines with conditional assembly

q/Q Lines with the .EQU or .SET directive

s/S Lines with symbolic debug information (.SYMB)

v/V Lines with .EQU or .SET values

w/W Wrapped part of a line

x/X Lines with expanded macros

y/Y Lines with cycle counts

If you do not specify this control or the assembler option -Lflag, the

assembler uses the default: –LcDEGilMnPqsVWXy.

Example

To exclude assembly files with controls from the list file:

;begin of source
$LIST ”c”

TriCore Reference Guide3–76
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related option

Assembler option –L (List file formatting options) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

Assembler control $LIST ON / OFF (Assembly list file ON / OFF)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

TriCore Assembly Language 3–77

• • • • • • • •

$MMU

Syntax

$MMU

Description

With the $MMU control you instruct the assembler to accept and encode

memory management instructions in the assembly source file.

When you use this control, the define __MMU__ is set to 1.

Example

;begin of source
$MMU ; the use of memory management instructions
 ; in this source is allowed.

Related option

Assembler option ––mmu-present (Allow the use of memory

management instructions) in section 4.2, Assembler Options, of Chapter

Tool Options.

Related information

-

TriCore Reference Guide3–78
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$OBJECT

Syntax

$OBJECT "file"

$OBJECT OFF

Description

With the $OBJECT control you can specify an alternative name for the

generated object file. With the $OBJECT OFF control, the assembler does

not generate an object file at all.

Example

;Begin of source
$object ”x1.o” ; generate object file x1.o

Related option

Assembler option –o (Define output filename) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

-

TriCore Assembly Language 3–79

• • • • • • • •

$PAGE

Syntax

$PAGE [width,length,blanktop,blankbtm,blankleft]

Description

If you generate a list file with the assembler option –l, you can use the

$PAGE control to format the generated list file.

width Number of characters on a line (1-255). Default is 132.

length Number of lines per page (10-255). Default is 66. As a special

case a page length of 0 (zero) turns off all headers, titles,

subtitles, and page breaks.

blanktop Number of blank lines at the top of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankbtm Number of blank lines at the bottom of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankleft Number of blank columns at the left of the page. Default = 0.

Specify a value smaller than width.

If you use the $PAGE control without arguments, it causes a 'formfeed': the

next source line is printed on the next page in the list file. The $PAGE
control itself is not printed.

You can omit an argument by using two adjacent commas. If the

remaining arguments after an argument are all empty, you can omit them.

Example

$PAGE ; formfeed, the next source line is printed
 ; on the next page in the list file.

$PAGE 96 ; set page width to 96. Note that you can
 ; omit the last four arguments.

$PAGE ,,3,3; use 3 line top/bottom margins.

Related option

-

TriCore Reference Guide3–80
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related information

Assembler control $STITLE (Set program subtitle in header of list file)

Assembler control $TITLE (Set program title in header of list file)

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

Assembler option –L (List file formatting options) in Section 4.2, Assembler
Options, of Chapter Tool Options.

TriCore Assembly Language 3–81

• • • • • • • •

$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option –l, you can use the

$PRCTL control to send control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to

the listing file (the control line itself is not printed unless there is an error).

You can specify the following arguments:

exp a byte expression which may be used to encode

non-printing control characters, such as ESC.

string an assembler string. which may be of arbitrary length, up to

the maximum assembler-defined limits.

The $PRCTL control can appear anywhere in the source file; the assembler

sends out the control string at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed,

the assembler insures that all error summaries, symbol tables, and

cross-references have been printed before sending out the control string.

In this manner, you can use a PRCTL control to restore a printer to a

previous mode after printing is done.

Similarly, if the $PRCTL control appears as the first line in the first input

file, the assembler sends out the control string before page headings or

titles.

Example

$PRCTL $1B,’E’ ; Reset HP LaserJet printer

Related option

-

Related information

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

TriCore Reference Guide3–82
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$PRINT / $NOPRINT

Syntax

$PRINT(file)

$NOPRINT

Description

If you generate a list file with the assembler option –l, you can use the

$PRINT control to specify an alternative name for the assembly list file.

With the $NOPRINT control, you overrule the assembler option -l and no

list file is generated at all.

Example

$PRINT(mylist.lst) ; generate an assembler list file
 with the name ’mylist.lst’.

Related option

-

Related information

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

TriCore Assembly Language 3–83

• • • • • • • •

$STITLE

Syntax

$STITLE "title"

Description

If you generate a list file with the assembler option –l, you can use the

$STITLE control to specify the program subtitle which is printed at the

top of all succeeding pages in the assembler list file below the title.

The specified subtitle is valid until the assembler encouters a new STITLE
control. Default, the subtitle is empty.

The $STITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

$TITLE ’This is the title’
$STITLE ’This is the subtitle’

The header of the second page in the list file will now be:

TASKING TriCore Assembler v x. yr z Build nnn SN 00000000
This is the title Page 2
This is the subtitle

Related option

-

Related information

Assembler control $TITLE (Set program title in header of list file)

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

TriCore Reference Guide3–84
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$TC

Syntax

$TCdefect ON

$TCdefect OFF

Description

With this control you can enable or disable specific CPU functional

problem checks.

To enable the assembler checks for all TriCore CPU TC112 problems

(respectively TC113 problems) at once, use the control $TC112_DEFECTS
(respectively $TC113_DEFECTS).

Example

$TC112_COR1 ON ; enable assembler check for CPU
 functional problem TC112_COR1

Related option

Assembler option ––silicon-bug (Check on CPU functional defect) in

section 4.2, Assembler Options, of Chapter Tool Options.

Related information

See Chapter 8, CPU Functional Problems, for more information about the

individual problems.

TriCore Assembly Language 3–85

• • • • • • • •

$TC2

Syntax

$TC2

Description

With the $TC2 control you instruct the assembler to accept and encode

TriCore 2 instructions in the assembly source file.

When you use this control, the define __TC2__ is set to 1.

Example

;begin of source
$TC2 ; the use of TriCore 2 instructions
 ; in this source is allowed.

Related option

Assembler option ––is-tricore2 (Allow the use of TriCore 2 instructions)

in section 4.2, Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Guide3–86
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$TITLE

Syntax

$TITLE "title"

Description

If you generate a list file with the assembler option –l, you can use the

$TITLE control to specify the program title which is printed at the top of

each page in the assembler list file.

Default, the title is empty.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

TITLE ’This is the title’

The header of the list file will now be:

TASKING TriCore Assembler v x. yr z Build nnn SN 00000000
This is the title Page 1

Related option

-

Related information

STITLE (Set program subtitle in header of assembly list file)

TriCore Assembly Language 3–87

• • • • • • • •

$WARNING OFF

Syntax

$WARNING OFF

$WARNING OFF number

Description

With the $WARNING OFF control you can suppresses all warning

messages or specific warning messages.

• Default, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed.

Example

$WARNING OFF ; all warning messages are suppressed

$WARNING OFF 135 ; suppress warning message 135

Related option

Assembler option –w (Suppress some or all warnings) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

-

TriCore Reference Guide3–88
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4

TOOL OPTIONS
C

H
A

P
T

E
R

TriCore Reference Guide4–2
T

O
O

L
 O

P
T

IO
N

S

4

C
H

A
P

T
E

R

Tool Options – Compiler 4–3

• • • • • • • •

4.1 COMPILER OPTIONS

This section lists all compiler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option –n sends output to stdout

instead of a file and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

ctc –Oac test.c
ctc ––optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

TriCore Reference Guide4–4
T

O
O

L
 O

P
T

IO
N

S

–? (––help)

EDE

-

Command line syntax

–?

––help

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line

options:

ctc –?
ctc ––help
ctc

Related information

-

Tool Options – Compiler 4–5

• • • • • • • •

–A (––language)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable or disable the options Allow language extension keywords

and Allow C++ style comments in ISO C90 mode.

Command line syntax

–A[flags]

––language=[flags]

You can set the following flags:

k/K (+/–keywords) Allow language extension keywords

p/P (+/–comments) Allow C++ style comments in ISO C90

Default

–Akp

Description

With this option you control the language extensions the compiler can

accept. Default the TriCore C compiler allows all language extensions.

–A is the equivalent of –AKP and disables all language extensions.

With –Ak you tell the compiler to allow language extension keywords,

such as __fract . Use –AK to tell the compiler to generate a syntax error

when it finds a language extension keyword in your C source.

With –Ap you tell the compiler to allow C++ style comments (//) in ISO

C90 mode (option –c90). In ISO C99 mode this style of comments is

always accepted.

TriCore Reference Guide4–6
T

O
O

L
 O

P
T

IO
N

S

Example

ctc –AkP –c90 test.c
ctc ––language=+keywords,–comments ––iso=90 test.c

The compiler compiles in ISO C90 mode, accepts keywords but ignores

C++ style comments.

Related information

Compiler option –c (ISO C standard)

Tool Options – Compiler 4–7

• • • • • • • •

––align

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option ––align to the Additional options field.

Command line syntax

––align=value

Default

––align=1

Description

By default the TriCore compiler aligns objects to the minimum alignment

required by the architecture. With this option you can increase this

alignment for objects of four bytes or larger. The value must be a power of

two.

Example

To align all objects of four bytes or larger on a 4-byte boundary, enter:

ctc ––align=4 test.c

Instead of this option you can also specify the following pragma in your C

source:

#pragma align 4

With #pragma align restore you can return to the previous alignment

setting.

Related information

Section 3.7, Controlling the Compiler: Pragmas, in Chapter TriCore C
Language of the TriCore User's Guide.

TriCore Reference Guide4–8
T

O
O

L
 O

P
T

IO
N

S

–C (––cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select the target processor.

Command line syntax

–Ccpu

––cpu=cpu

Description

With this option you define the target processor for which you create your

application.

Based on the target processor the compiler automatically detects whether a

FPU-unit is present and whether the architecture is a TriCore2. This means

you do not have to specify the compiler options ––fpu-present and

––is-tricore2 explicitly when one of the supported derivatives is selected.

The compiler automatically includes the register file reg cpu .sfr , unless

you specify compiler option ––no-tasking-sfr.

Example

In EDE, the target CPU has the following settings:

• Target processor: TC10GP

To define this on the command line:

ctc –Ctc10gp test.c
ctc ––cpu=tc10gp test.c

The compiler compiles test.c for the TC10GP processor and includes

the register file regtc10gp.sfr .

To avoid conflicts, make sure you specify the same target processor to the

assembler.

Tool Options – Compiler 4–9

• • • • • • • •

Related information

Compiler option ––no-tasking-sfr (Do not include SFR file)

Assembler option –C (Select CPU)

Control program option –C (Use SFR definitions for CPU)

Section 5.5, Specifying a Target Processor, in Chapter Using the Compiler of

the User's Guide.

TriCore Reference Guide4–10
T

O
O

L
 O

P
T

IO
N

S

–c (––iso)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Select the ISO C standard C90 or C99.

Command line syntax

–c{90|99}

––iso={90|99}

Default

–c99

Description

With this option you select the ISO C standard. C90 is also referred to as

the "ANSI C standard". C99 refers to the newer ISO/IEC 9899:1999 (E)

standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

ctc –c90 test.c
ctc ––iso=90 test.c

Related information

Compiler option –A (Language extensions)

Tool Options – Compiler 4–11

• • • • • • • •

––cse-all-addresses

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option ––cse-all-addresses to the Additional options field.

Command line syntax

––cse-all-addresses

Description

With this option you tell the compiler to make all addresses available for

common subexpression evaluation.

Normally the compiler ignores __near and __a x addresses for common

subexpressions. However, depending on the use of address registers and

whether stack and/or addressed memory are internal or external, it might

be wise to consider them for CSE.

Example

ctc ––cse–all–addresses –Oc test.c

The compiler makes all addresses available for common subexpression

evaluation.

Related information

Compiler option –Oc (Common subexpression elimination)

TriCore Reference Guide4–12
T

O
O

L
 O

P
T

IO
N

S

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enter a macro name and/or definition in the Define user macros

field.

Use commas to separate multiple macro definitions.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor.

If you only specify a macro name (no macro definition), the macro

expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line, use the

option –D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the compiler with the option –f file.

Defining macros with this option (instead of in the C source) is, for

example, useful to compile conditional C source as shown in the example

below.

Tool Options – Compiler 4–13

• • • • • • • •

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

void main(void)
{
#if DEMO
 demo_func(); /* compile for the demo program */
#else
 real_func(); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

ctc –DDEMO test.c
ctc –DDEMO=1 test.c

ctc ––define=DEMO test.c
ctc ––define=DEMO=1 test.c

Note that all four invocations have the same effect.

The next example shows how to define a macro with arguments. Note that

the macro name and definition are placed between double quotes because

otherwise the spaces would indicate a new option.

ctc –D”MAX(A,B)=((A) > (B) ? (A) : (B))”

Related information

Compiler option –U (Undefine macro)

Compiler option –f (Specify an option file)

TriCore Reference Guide4–14
T

O
O

L
 O

P
T

IO
N

S

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option the compiler displays a description and explanation of the

specified error message(s) on stdout (usually the screen). The compiler

does not compile any files.

If you want the output in a file, you have to use output redirection.

Example

To display an explanation of message number 282, enter:

ctc ––diag=282

This results in the following message and explanation:

E282: unterminated comment

Make sure that all every comment starting with /* has
a matching */. Nested comments are not possible.

To write an explanation of all errors and warnings in HTML format to file

cerrors.html , enter:

ctc ––diag=html:all > cerrors.html

Tool Options – Compiler 4–15

• • • • • • • •

Related information

Section 5.9, C Compiler Error Messages, in Chapter Using the Compiler of

the User's Guide.

TriCore Reference Guide4–16
T

O
O

L
 O

P
T

IO
N

S

–E (––preprocess)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enable the option Store the C compiler preprocess output

(<file>.pre).

4. Enable or disable the options Keep comments and Strip #line

source position info.

Command line syntax

–E[flags]

––preprocess[=flags]

You can set the following flags (when you specify–E without flags, the

default is –ECP):

c/C (+/–comments) Keep comments

p/P (+/–noline) Strip #line source position info

Description

With this option you tell the compiler to preprocess the C source. EDE

stores the preprocess output in the file name.pre (where name is the

name of the C source file to compile). EDE also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout.

To capture the information in a file, specify an output file with the

option –o.

With –Ec you tell the preprocessor to keep the comments from the C

source file in the preprocessed output.

With –Ep you tell the preprocessor to strip the #line source position

information (lines starting with #line). These lines are normally

processed by the assembler and not needed in the preprocessed output.

When you leave these lines out, the output is more orderly to read.

Tool Options – Compiler 4–17

• • • • • • • •

Example

ctc –EcP test.c –o test.pre

ctc ––preprocess=+comments,–noline test.c
 ––output=test.pre

The compiler preprocesses the file test.c and sends the output to the

file test.pre . Comments are included but the line source position

information is not stripped from the output file.

Related information

-

TriCore Reference Guide4–18
T

O
O

L
 O

P
T

IO
N

S

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the compiler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .err .

Example

To write errors to errors.err instead of stderr , enter:

ctc ––error–file=errors.err test.c

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Compiler 4–19

• • • • • • • •

–F (––no-double)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Single precision floating point only.

Command line syntax

–F

––no-double

Description

With this option you tell the compiler to treat variables of the type double
as float . Because the float type takes less space, execution speed

increases and code size decreases, both at the cost of less precision.

Example

ctc –F test.c

The file test.c is compiled where variables of the type double are

treated as float .

Related information

-

TriCore Reference Guide4–20
T

O
O

L
 O

P
T

IO
N

S

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option –f to the Addtional options field.

In EDE you can save your options in a file and restore them to call the

compiler with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional options

field, the options are added to the compiler options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

Command line syntax

–f file,...

––option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the compiler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Tool Options – Compiler 4–21

• • • • • • • •

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Ctc10gp
–s
test.c

Specify the option file to the compiler:

ctc –f myoptions

This is equivalent to the following command line:

ctc –Ctc10gp –s test.c

Related information

-

TriCore Reference Guide4–22
T

O
O

L
 O

P
T

IO
N

S

––fpu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select a (user defined TriCore) option.

4. Enable the option FPU present (on user defined CPU).

5. Expand the C Compiler entry and select Miscellaneous.

6. Enable the option Use hardware single precision floating point

instructions.

Command line syntax

––fpu-present

Description

With this option the compiler can generate single precision floating point

instructions in the assembly file. When you select this option, the macro

_FPU is defined in the C source file.

Example

To allow the use of floating point unit (FPU) instructions in the assembly

code, enter:

ctc ––fpu–present test.c

Related information

Compiler option –C (Use SFR definitions for CPU)

Tool Options – Compiler 4–23

• • • • • • • •

–g (––debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Debug Information.

3. Enable the option Generate symbolic debug infomation

Command line syntax

–g

––debug-info

Description

With this option you tell the compiler to add directives to the output file

for including symbolic information. This facilitates high level debugging

but increases code size. For the final application, compile your C files

without debug information.

When you specify a high optimization level, the debug comfort may

decrease. Therefore, the compiler issues warning W555 if the debug

comfort would be decreased as a result of the chosen optimizations.

Example

To add symbolic debug information to the output file, enter:

ctc –g test.c

Related information

-

TriCore Reference Guide4–24
T

O
O

L
 O

P
T

IO
N

S

–H (––include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

–Hfile,...

––include-file=file,...

Description

With this option you include one extra file at the beginning of each C

source file, before other includes. This is the same as specifying #include
” file ” at the beginning of each of your C sources.

Example

ctc –Hstdio.h test1.c test2.c

The file stdio.h is included at the beginning of both test1.c and

test2.c .

Related information

Compiler option –I (Add directory to include file search path)

Section 5.6, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Guide.

Tool Options – Compiler 4–25

• • • • • • • •

–I (––include-directory)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Enter one or more search paths in the Include Files Path field.

Command line syntax

–Ipath,...

––include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source

(only for #include files that are enclosed in "")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CTCINC when

the product was installed.

4. The default directory c:\ctc\include .

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include ”myinc.h”

You can call the compiler as follows:

ctc –Iinclude test.c

First the compiler looks in the directory where test.c is located for the

file myinc.h .

TriCore Reference Guide4–26
T

O
O

L
 O

P
T

IO
N

S

Then the compiler looks in the include subdirectory relative to the

current directory for the stdio.h file and, if it was not found yet, also for

the myinc.h file (this option).

If the file(s) are still not found, the compiler searches in the enviroenment

variable and then in the default include directory.

Related information

Compiler option –H (Include file at the start of a compilation)

Section 5.6, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Tool Options – Compiler 4–27

• • • • • • • •

––indirect

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Call functions indirect.

Command line syntax

––indirect

Description

With this option you tell the compiler to generate code for indirect

function calling.

Example

ctc ––indirect test.c

The compiler generates far calls for all functions.

Related information

See also section 3.9.3, Function Calling Modes: __indirect, in Chapter

TriCore C Language of the User's Guide.

TriCore Reference Guide4–28
T

O
O

L
 O

P
T

IO
N

S

––inline-max-incr /

––inline-max-size

EDE

-

Command line syntax

––inline-max-incr=percentage

––inline-max-size=threshold

Default

––inline-max-incr=25

––inline-max-size=10

Description

With these options you can control the function inlining optimization

process of the compiler. These options have only effect when you have

enabled the inlining optimization (option –Oi).

Regardless of the optimization process, the compiler always inlines all
functions that have the function qualifier inline .

With the option ––inline-max-size you can specify the maximum size of

functions that the compiler inlines as part of the optimization process. The

compiler always inlines all functions that are smaller than the specified

threshold. The threshold is measured in compiler internal units and the

compiler uses this measure to decide which functions are small enough to

inline. The default threshold is 10.

After the compiler has inlined all functions that have the function qualifier

inline and all functions that are smaller than the specified threshold, the

compiler looks whether it can inline more functions without increasing the

code size too much. With the option ––inline-max-incr you can specify

how much the code size is allowed to increase. Default, this is 25% which

means that the compiler continues inlining functions until the resulting

code size is 25% larger than the original size.

Tool Options – Compiler 4–29

• • • • • • • •

Example

ctc ––inline–max–incr=40 ––inline–max–size=15 test.c

The compiler first inlines all functions with the function qualifier inline
and all functions that are smaller than the specified threshold of 15. If the

code size has still not increased with 40%, the compiler decides which

other functions it can inline.

Related information

Compiler option –O (Specify optimization level)

Section 3.9.1, Inlining Functions, in Chapter TriCore C Language of the

User's Guide.

TriCore Reference Guide4–30
T

O
O

L
 O

P
T

IO
N

S

––integer-enumeration

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Use 32-bit integers for enumeration.

Command line syntax

––integer-enumeration

Description

With this option you tell the compiler to use (32-bit) integers for

enumerations. Without this option, the compiler uses the smallest suitable

integer type.

Example

ctc ––integer–enumeration test.c

The compiler uses 32-bit integers for enumerations.

Related information

-

Tool Options – Compiler 4–31

• • • • • • • •

––is-tricore2

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-2).

Command line syntax

––is-tricore2

Description

With this option the compiler can generate TriCore 2 instructions in the

assembly file. When you select this option, the macro _TC2 is defined in

the C source file.

Example

To allow the use of TriCore 2 instructions in the assembly code, enter:

ctc ––is–tricore2 test.c

Related information

Compiler option –C (Use SFR definitions for CPU)

TriCore Reference Guide4–32
T

O
O

L
 O

P
T

IO
N

S

–k (––keep-output-files)

EDE

EDE always removes the .src file when errors occur during compilation.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during compilation, the resulting .src file may be

incomplete or incorrect. With this option you keep the generated output

file (.src) when an error occurs.

By default the compiler removes the generated output file (.src) when an

error occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to inspect the generated assembly

source. Even if it is incomplete or incorrect.

Example

ctc –k test.c

When an error occurs during compilation, the generated output file

test.src will not be removed.

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Compiler 4–33

• • • • • • • •

––misrac

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

Command line syntax

––misrac={all | number [-number],... }

Description

With this option you specify to the compiler which MISRA C rules must be

checked. With the option ––misrac=all the compiler checks for all

supported MISRA C rules.

Example

ctc ––misrac=9–13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13

violation in file test.c .

Related information

See Chapter 9 MISRA C Rules for a list of all supported MISRA C rules.

Linker option ––misra-c-report.

TriCore Reference Guide4–34
T

O
O

L
 O

P
T

IO
N

S

–N (––default-near-size)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Allocation.

3. Enter a threshold value in the Threshold for '__near' allocation

field.

Command line syntax

–N[threshold]

––default-near-size[=threshold]

Default

–N8

Description

With this option you can specify a threshold value for __near allocation.

If you do not specify __near or __far in the declaration of an object, the

compiler chooses where to place the object. The compiler allocates objects

smaller or equal to the threshold in __near sections. Larger objects are

allocated in __a0 if you specified

The default threshold is eight bytes.

If you specify –N without a threshold value, all objects will be allocated

__near , including arrays an string constants.

Instead of this option you can also use #pragma default_near_size in the

C source.

Example

ctc –N12 test.c

Data elements smaller than or equal to 12 bytes are allocated in __near
sections.

Tool Options – Compiler 4–35

• • • • • • • •

Related information

Compiler option –Z (maximum size in bytes for data elements that are

default located in __a0 sections)

Section 3.3.1, Declare a Data Object in a Special Part of Memory, in

Chapter TriCore C Language of the User's Guide.

TriCore Reference Guide4–36
T

O
O

L
 O

P
T

IO
N

S

–n (––stdout)

EDE

-

Command line syntax

–n

––stdout

Description

With this option you tell the compiler to send the output to stdout (usually

your screen). No files are created.

This option is for example useful to quickly inspect the output or to

redirect the output to other tools.

Example

ctc –n test.c

The compiler sends the output (normally test.src) to stdout and does

not create the file test.src .

Related information

-

Tool Options – Compiler 4–37

• • • • • • • •

––no-tasking-sfr

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Disable the option Automatic inclusion of '.sfr' file.

Command line syntax

––no-tasking-sfr

Description

With this option the compiler does not include the register file

reg cpu .sfr as based on the compiler option -C.

Use this option if you want to use your own set of SFR files.

Example

ctc –Ctc11ib ––no–tasking–sfr test.c

The register file regtc11ib.sfr is not included.

Related information

Compiler option –C (Use SFR definitions for CPU)

TriCore Reference Guide4–38
T

O
O

L
 O

P
T

IO
N

S

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

Command line syntax

–O[flags]
––optimize[=flags]

You can set the following flags:

a/A (+/–coalesce) Coalescer: remove unnecessary moves

c/C (+/–cse) Common subexpression elimination

e/E (+/–expression) Expression simplification

f/F (+/–flow) Control flow optimization and

code reordering

g/G (+/–glo) Generic assembly optimizations

i/I (+/–inline) Function inlining

k/K (+/–schedule) Instruction scheduler

l/L (+/–loop) Loop transformations

m/M (+/–simd) Perform SIMD optimizations

o/O (+/–forward) Forward store

p/P (+/–propagate) Constant propagation

s/S (+/–subscript) Subscript strength reduction

w/W (+/–pipeline) Software pipelining

y/Y (+/–peephole) Peephole optimizations

Use the following options for predefined sets of flags:

–O0 (––optimize=0) No optimization.

Alias for: –OACEFGIKLMOPSWY

–O1 (––optimize=1) Few optimizations

Alias for: –OaCefgIKLMOPSWy

–O2 (––optimize=2) Medium optimization (default)

Alias for: –OacefgIklMopswy

Tool Options – Compiler 4–39

• • • • • • • •

–O3 (––optimize=3) Full optimization

Alias for: –Oacefgiklmopswy

Default

–O2

Description

With this option you can control the level of optimization. If you do not

use this option, the default optimization level is medium optimization
(option –O2 or –O or –OacefgIklMopswy).

When you use this option to specify a set of optimizations, you can

overrule these settings in your C source file with

#pragma optimize flag and #pragma endoptimize .

In addition to the option –O, you can specify the option –t. With this

option you specify whether the used optimizations should optimize for

more speed (regardless of code size) or for smaller code size (regardless of

speed).

Example

The following invocations are equivalent and result all in the default

medium optimization set:

ctc test.c

ctc –O2 test.c
ctc ––optimize=2 test.c

ctc –O test.c
ctc ––optimize test.c

ctc –OacefgIklpswy test.c
ctc ––optimize=+coalesce,+cse,+expression,+flow,
 +glo,–inline,+schedule,+loop,+propagate,
 +subscript,+pipeline,+peephole test.c

TriCore Reference Guide4–40
T

O
O

L
 O

P
T

IO
N

S

Related information

Compiler option –t (Trade off between speed (–t0) and size (–t4))

#pragma optimize flag
#pragma endoptimize

Section 5.3, Compiler Optimizations, in Chapter Using the Compiler of the

User's Guide.

Tool Options – Compiler 4–41

• • • • • • • •

–o (––output)

EDE

-

Command line syntax

–ofile

––output=file

Description

With this option you can specify another filename for the output file of the

compiler. Without this option the basename of the C source file is used

with extension .src .

EDE names the output file always after the C source file.

Example

ctc –o output.src test.c
ctc ––output=output.src test.c

The compiler creates the file output.src for the compiled file test.c .

Without the option –o, like EDE, the compiler uses the names of the input

file and creates test.src .

Related information

-

TriCore Reference Guide4–42
T

O
O

L
 O

P
T

IO
N

S

–R (––rename-sections)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option –R to the Addtional options field.

Command line syntax

–R [name]

––rename-sections[=name]

Description

The compiler defaults to a section naming convention, using a memory

type abbreviation, the module name and a symbol name, for example

.text. module_name . symbol_name for code sections. In case a module

must be loaded at a fixed address or a data section needs a special place

in memory, you can use the -R option to generate a different section

name (section_type.name). You can now use this unique section name in

the linker script file for locating.

When you use -R without a value, the compiler uses the default section

naming.

Example

To generate the section name section_type.NEW instead of the default

section name section_type.mod_name, enter:

ctc –RNEW test.c

To generate the section name section_type instead of the default section

name section_type.mod_name, enter:

ctc –R”” test.c

Related information

Section 3.10, Compiler Generated Sections, in Chapter TriCore C Language
of the User's Guide.

Tool Options – Compiler 4–43

• • • • • • • •

–s (––source)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Merge C source code with assembly in output

file (.src).

Command line syntax

–s

––source

Description

With this option you tell the compiler to merge C source code with

generated assembly code in the output file. The C source lines are

included as comments.

Example

ctc –s test.c

The output file test.src contains the original C source lines as

comments, besides the generated assembly code.

Related information

-

TriCore Reference Guide4–44
T

O
O

L
 O

P
T

IO
N

S

––silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the bypasses you want to enable.

Command line syntax

––silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc112 All TriCore 1 v1.2 (TC112) workarounds

all-tc113 All TriCore 1 v1.3 (TC113) workarounds

cor1 workaround for TC112 COR1

cor4 workaround for TC112 COR4

cor7 workaround for TC112 COR7

cor10 workaround for TC112 COR10

cor13 workaround for TC112 COR13

cor14 workaround for TC112 COR14

cor16 workaround for TC112 COR16

cor17 workaround for TC112 COR17

cpu5 workaround for TC113 CPU5

cpu9 workaround for TC113 CPU9

cpu11 workaround for TC113 CPU11

cpu14 workaround for TC113 CPU14

cpu15 workaround for TC113 CPU15

cpu16 workaround for TC113 CPU16

dmu1 workaround for TC113 DMU1

lfi2 workaround for TC113 LFI2

lfi3 workaround for TC113 LFI3

Description

With this option you tell the compiler to use software workarounds for

some CPU functional problems.

Tool Options – Compiler 4–45

• • • • • • • •

Example

ctc ––silicon–bug=cpu5,cpu9 test.c

The compiler uses workarounds for TC113 problems CPU5 and CPU9.

Related information

See Chapter 8, CPU Functional Problems, for more information about the

individual problems and workarounds.

TriCore Reference Guide4–46
T

O
O

L
 O

P
T

IO
N

S

––switch

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option ––switch to the Addtional options field.

Command line syntax

––switch=arg

You can give one of the following arguments:

auto Compiler determines the best switch method

linear Use linear jump chain code

jumptab Generate jump tables

lookup Generate lookup tables

Default

––switch=auto

Description

With this option you tell the compiler which code must be generated for a

switch statement: a jump chain (linear switch), a jump table or a lookup

table. By default, the compiler will automatically choose the most efficient

switch implementation based on code and data size and execution speed.

Example

ctc ––switch=jumptab test.c

The compiler uses a table filled with target addresses for each possible

switch value.

Instead of this option you can also specify the following pragma in your C

source:

#pragma switch jumptab

Tool Options – Compiler 4–47

• • • • • • • •

Related information

See also section 3.11, Switch Statement, in Chapter TriCore C Language of

the User's Guide.

TriCore Reference Guide4–48
T

O
O

L
 O

P
T

IO
N

S

–t (––tradeoff)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select a trade-off level in the Size/speed trade-off box.

Command line syntax

–t{0|1|2|3|4}

––tradeoff={0|1|2|3|4}

Default

–t0

Description

If the compiler uses certain optimizations (option –O), you can use this

option to specify whether the used optizations should opimize for more

speed (regardless of code size) or for smaller code size (regardless of

speed).

Default the compiler optimizes the selected optimizations for more speed

(–t0).

If you have not used the option –O, the compiler uses default medium

optimization, so you can still specify the option –t.

Example

To set the trade-off level for the used optimizations:

ctc –t4 test.c
ctc ––tradeoff=4 test.c

The compiler uses the default medium optimization level and optimizes

for code size rather than for speed.

Related information

Compiler option –O (Specify optimization level)

Tool Options – Compiler 4–49

• • • • • • • •

–U (––undefine)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Disable one or both predefined macros.

Command line syntax

–Umacro_name

––undefine=macro_name

Description

With this option you can undefine an earlier defined macro as with

#undef . The TriCore compiler predefines the following macros:

#define __TASKING__ 1
#define __CTC__ compiler_version_nr

This option is for example useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE__ current source filename
__LINE__ current source line number (int type)
__TIME__ hh:mm:ss
__DATE__ Mmm dd yyyy

Example

To undefine the predefined macro __TASKING__:

ctc –U__TASKING__ test.c
ctc ––undefine=__TASKING__ test.c

Related information

Compiler option –D (Define macro)

Section 3.8, Predefined Macros, in Chapter Using the Compiler of the Users
Guide.

TriCore Reference Guide4–50
T

O
O

L
 O

P
T

IO
N

S

–u (––uchar)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Treat 'char' variables as unsigned instead of

signed.

Command line syntax

–u

––uchar

Description

Treat 'character' type variables as 'unsigned character' variables. By default

char is the same as specifying signed char . With -u char is the same

as unsigned char .

Example

With the following command char is treated as unsigned char :

ctc –u test.c
ctc ––uchar test.c

Related information

-

Tool Options – Compiler 4–51

• • • • • • • •

–V (––version)

EDE

-

Command line syntax

–V

––version

Description

Display version information. The compiler ignores all other options or

input files.

Example

ctc –v
ctc ––version

The compiler does not compile any files but displays the following version

information:

TASKING TriCore VX–toolset C compiler v xx . yr z Build 000
Copyright 2002 Altium BV Serial# 00000000

Related information

-

TriCore Reference Guide4–52
T

O
O

L
 O

P
T

IO
N

S

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr]

––no-warnings[=nr]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option –w multiple times.

Example

To suppress all warnings:

ctc test.c –w
ctc test.c ––no–warnings

To suppress warnings 135 and 136:

ctc test.c –w135 –w136
ctc test.c ––no–warnings=135 ––no–warnings=136

Tool Options – Compiler 4–53

• • • • • • • •

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

TriCore Reference Guide4–54
T

O
O

L
 O

P
T

IO
N

S

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the compiler to treat warnings as errors.

Example

ctc ––warnings–as–errors test.c

When a warning occurs, the compiler considers it as an error.

Related information

Compiler option –w (suppress some or all warnings)

Tool Options – Compiler 4–55

• • • • • • • •

–Z (––default-a0-size)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Allocation.

3. Enter a threshold value in the Threshold for '__a0' allocation field.

Command line syntax

–Z[threshold]

––default-a0-size[=threshold]

Default

–Z0

Description

With this option you can specify a threshold value for __a0 allocation. If

you do not specify a memory qualifier such as __near or __far in the

declaration of an object, the compiler chooses where to place the object

based on the size of the object.

First, the size of the object is checked against the -N threshold, according

to the description of the –N option. If the size is larger than the -N

threshold, but lower or equal to the –Z threshold, the object is allocated in

__a0 memory. Larger objects, arrays and strings will be allocated __far .

The default –Z threshold is zero, which means that the compiler will never

use __a0 memory unless you specify the –Z option. When you use the –Z

option without a threshold value, all objects not allocated __near ,

including arrays and string constants, will be allocated in __a0 memory.

Allocation in __a0 memory means that the object is addressed indirectly,

using A0 as the base pointer. The total amount of memory that can be

addressed this way is 64 Kbytes.

Instead of this option you can also use #pragma default_a0_size in the C

source.

TriCore Reference Guide4–56
T

O
O

L
 O

P
T

IO
N

S

Example

ctc –Z12 test.c

Data elements smaller than or equal to 12 bytes are allocated in __a0
sections.

Related information

Compiler option –N (maximum size in bytes for data elements that are

default located in __near sections)

Section 3.3.1, Declare a Data Object in a Special Part of Memory, in

Chapter TriCore C Language of the User's Guide.

Tool Options – Assembler 4–57

• • • • • • • •

4.2 ASSEMBLER OPTIONS

This section lists all assembler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option –V displays version

header information and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

astc –Lmx test.src
astc ––list–format=+macro,+macro–expansion test.src

When you do not specify an option, a default value may become active.

TriCore Reference Guide4–58
T

O
O

L
 O

P
T

IO
N

S

–? (––help)

EDE

-

Command line syntax

–?

––help

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line

options:

astc –?
astc ––help
astc

Related information

-

Tool Options – Assembler 4–59

• • • • • • • •

–C (––cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select the target processor.

Command line syntax

–Ccpu

––cpu=cpu

Description

With this option you define the target processor for which you create your

application.

Based on the target processor the assembler automatically detects whether

a MMU or FPU-unit is present and whether the architecture is a TriCore2.

This means you do not have to specify the assembler options

––mmu-present, ––fpu-present and ––is-tricore2 explicitly when one

of the supported derivatives is selected.

The assembler automatically includes the register file reg cpu .def , unless

you specify assembler option ––no-tasking-sfr.

Example

In EDE, the target CPU has the following settings:

• Target processor: TC11IB

To define this on the command line:

astc –Ctc11ib test.src
astc ––cpu=tc11ib test.src

The assembler assembles test.src for the TC11IB processor and

includes the register file regtc11ib.def . Furthermore the assembler

allows MMU instructions to be used.

TriCore Reference Guide4–60
T

O
O

L
 O

P
T

IO
N

S

To avoid conflicts, make sure you specify the same target processor as you

did for the compiler.

Related information

Assembler option ––no-tasking-sfr (Do not include .def file)

Compiler option –C (Use SFR definitions for CPU)

Control program option –C (Use SFR definitions for CPU)

Section 6.5, Specifying a Target Processor, in Chapter Using the Assembler
of the User's Guide.

Tool Options – Assembler 4–61

• • • • • • • •

–c (––case-insensitive)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Disable the option Assemble case sensitive.

Command line syntax

–c

––case-insensitive

Description

With this option you tell the assembler not to distinguish between upper

and lower case characters. Default the assembler considers upper and

lower case characters as different characters.

Disabling the option Assemble case sensitive in EDE is the same as

specifying the option –c on the command line.

Assembly source files that are generated by the compiler must always be

assembled case sensitive. When you are writing your own assembly code,

you may want to specify the case insensitve mode.

Example

To assemble case insensitive:

astc –c test.src
astc ––case–insensitive test.src

The assembler considers upper and lower case characters as being the

same. So, for example, the label LabelName is the same label as

labelname .

Related information

Linker option ––case-sensitive (Link case insensitive)

TriCore Reference Guide4–62
T

O
O

L
 O

P
T

IO
N

S

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Enter a macro name and/or definition in the Define user macros

field.

Use commas to separate multiple macro definitions.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler

preprocessor. If you only specify a macro name (no macro definition), the

macro expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line you can use the

option –D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the assembler with the option –ffile.

Defining macros with this option (instead of in the assembly source) is, for

example, useful in combination with conditional assembly as shown in the

example below.

This option has the same effect as defining symbols via the .DEFINE ,

.SET , and .EQU directives. (similar to #define in the C language). With

the .MACRO directive you can define more complex macros.

Tool Options – Assembler 4–63

• • • • • • • •

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

.IF DEMO == 1
 ... ; instructions for demo application
.ELSE
 ... ; instructions for the real application
.ENDIF

You can now use a macro definition to set the DEMO flag:

astc –DDEMO test.src
astc –DDEMO=1 test.src

astc ––define=DEMO test.src
astc ––define=DEMO=1 test.src

Note that all four invocations have the same effect.

Related information

Assembler option –f (Specify an option file)

Section 4.9.5, Conditional Assembly, in Chapter TriCore Assembly
Language of the User's Guide.

TriCore Reference Guide4–64
T

O
O

L
 O

P
T

IO
N

S

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option the assembler displays a description and explanation of

the specified error message(s) on stdout (usually the screen). The

assembler does not assemble any files.

If you want the output in a file, you have to use output redirection.

Example

To display an explanation of message number 240, enter:

astc ––diag=240

This results in the following message and explanation:

W240: additional input files will be ignored

The assembler supports only a single input file. All
other input files are ignored.

To write an explanation of all errors and warnings in HTML format to file

aserrors.html , enter:

astc ––diag=html:all > aserrors.html

Tool Options – Assembler 4–65

• • • • • • • •

Related information

Section 6.8, Assembler Error Messages, in Chapter Using the Assembler of

the User's Guide.

TriCore Reference Guide4–66
T

O
O

L
 O

P
T

IO
N

S

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the assembler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .ers .

Example

To write errors to errors.ers instead of stderr , enter:

astc ––error–file=errors.ers test.src

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Assembler 4–67

• • • • • • • •

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Add the option –f to the Addtional options field.

In EDE you can save your options in a file and restore them to call the

assembler with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional options

field, the options are added to the assembler options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

Command line syntax

–f file,...

––option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the assembler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

TriCore Reference Guide4–68
T

O
O

L
 O

P
T

IO
N

S

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Ctc10gp
test.src

Specify the option file to the assembler:

astc –f myoptions

This is equivalent to the following command line:

astc –Ctc10gp test.src

Related information

-

Tool Options – Assembler 4–69

• • • • • • • •

––fpu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select a (user defined TriCore) option.

4. Enable the option FPU present (on user defined CPU).

5. Expand the Assembler entry and select Miscellaneous.

6. Enable the option Allow hardware floating point instructions.

Command line syntax

––fpu-present

Description

With this option you can use single precision floating point instructions in

the assembly code. When you select this option, the define __FPU__ is set

to 1. Default the define __FPU__ is set to 0.

Example

To allow the use of floating point unit (FPU) instructions in the assembly

code, enter:

astc ––fpu–present test.src

Related information

Assembler option –C (Select CPU)

TriCore Reference Guide4–70
T

O
O

L
 O

P
T

IO
N

S

–g (––debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Debug Information.

3. Enable one or more debug options.

You cannot use Assembly source line information and Pass HLL

debug information simultaneously.

Command line syntax

–g[flag]

––debug-info[=flag]

You can set the following flags:

a/A (+/–asm) Assembly source line information

h/H (+/–hll) Pass HLL debug information

l/L (+/–local) Local symbols debug information

s/S (+/–smart) Smart debug information

Default

–gs

Description

With this option you tell the assembler to generate debug information. If

you do not use this option or if you specify –g without any flags, the

default is –gs.

You cannot specify –gah. Either the assembler generates assembly source

line information, or it passes HLL debug information.

When you specify –gs, the assembler selects which flags to use. If high

level language information is available in the source file, the assembler

passes this information (same as –gAhL). If not, the assembler generates

assembly source line information and local symbols debug information

(same as –gaHl).

Tool Options – Assembler 4–71

• • • • • • • •

Example

To disable symbolic debug information, turn all flags off:

astc –gAHLS test.src
astc ––debug–info=–asm,–hll,–local,–smart test.src

To enable smart debugging, enter:

astc –gs test.src
astc ––debug–info=+smart test.src

Related information

-

TriCore Reference Guide4–72
T

O
O

L
 O

P
T

IO
N

S

–H (––include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

–Hfile,...

––include-file=file,...

Description

With this option you include one extra file at the beginning of the

assembly source file, before other includes. This is the same as specifying

.INCLUDE ’ file ’ at the beginning of your assembly sources.

Example

astc –Hmyinc.inc test1.src

The file myinc.inc is included at the beginning of test1.src before it

is assembled.

Related information

Assembler option –I (Add directory to include file search path)

Section 6.6, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Guide.

Tool Options – Assembler 4–73

• • • • • • • •

–I (––include-directory)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Enter one or more search paths in the Include Files Path field.

Command line syntax

–Ipath,...

––include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly

source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASTCINC when

the product was installed.

4. The default directory c:\ctc\include .

Example

Suppose that your assembly source file test.src contains the following

line:

.INCLUDE ’myinc.inc’

You can call the assembler as follows:

astc –Ic:\proj\include test.src

First the assembler looks in the directory where test.src is located for

the file myinc.inc . If it does not find the file, it looks in the directory

c:\proj\include for the file myinc.inc (this option).

TriCore Reference Guide4–74
T

O
O

L
 O

P
T

IO
N

S

Related information

Section 6.6, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Assembler option –H (Include file at the start of the input files)

Tool Options – Assembler 4–75

• • • • • • • •

–i (––symbol-scope)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Select the default label mode: Local or Global.

Command line syntax

–i{g|l}

––symbol-scope={global|local}

Default

–il

Description

With this option you tell the assembler how to treat symbols that you have

not specified explicitly as global or local.

Default the assembler treats all symbols as local symbols unless you have

defined them explicitly as global.

Example

astc –ig test.src
astc ––symbol–scope=global test.src

The assembler treats all symbols as global symbols unless they are defined

as local symbols in the assembly source file.

Related information

-

TriCore Reference Guide4–76
T

O
O

L
 O

P
T

IO
N

S

––is-tricore2

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (user defined TriCore-2).

Command line syntax

––is-tricore2

Description

With this option you can use TriCore 2 instructions in the assembly code.

When you select this option, the define __TC2__ is set to 1.

Example

To allow the use of TriCore 2 instructions in the assembly code, enter:

astc ––is–tricore2 test.src

Related information

Assembler option –C (Select CPU)

Tool Options – Assembler 4–77

• • • • • • • •

–k (––keep-output-files)

EDE

EDE always removes the .o file when errors occur during assembly.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during assembly, the resulting .o file may be incomplete

or incorrect. With this option you keep the generated object file (.o)

when an error occurs.

By default the assembler removes the generated object file (.o) when an

error occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated object. For

example when you know that a particular error does not result in a

corrupt object file.

Example

astc –k test.src

When an error occurs during assembly, the generated output file test.o
will not be removed.

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

TriCore Reference Guide4–78
T

O
O

L
 O

P
T

IO
N

S

–L (––list-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the options to include that information in the list file.

Command line syntax

–Lflags

––list-format=flags

You can set the following flags:

0 same as –LCDEGILMNPQSVWXY

1 same as –Lcdegilmnpqsvwxy

c/C (+/–control) Assembler controls

d/D (+/–section) Section directives

e/E (+/–symbol) Symbol definition directives

g/G (+/–generic-expansion) Generic instruction expansion

i/I (+/–generic) Generic instructions

l/L (+/–line) #line source lines

m/M (+/–macro) Macro definitions

n/N (+/–empty-line) Empty source lines

p/P (+/–conditional) Conditional assembly

q/Q (+/–equate) Assembler .EQU and .SET directives

s/S (+/–hll) HLL symbolic debug information

v/V (+/–equate-values) Assembler .EQU and .SET values

w/W (+/–wrap-lines) Wrapped source lines

x/X (+/–macro-expansion) Macro expansions

y/Y (+/–cycle-count) Cycle counts

Default

–LcDEGilMnPqsVWXy

Tool Options – Assembler 4–79

• • • • • • • •

Description

With this option you specify which information you want to include in the

list file. Use this option in combination with the option –l (––list-file).

If you do not specify this option, the assembler uses the default:

–LcDEGilMnPqsVWXy.

Example

astc –l –Ldm test.src
astc ––list–file ––list–format=+section,+macro
 test.src

The assembler generates a list file that includes all default information plus

section directives and macro definitions.

Related information

Assembler option –l (Generate list file)

Assembler option –tl (Display section information in list file)

Linker option –M (Generate map file)

Section 5.1, Assembler List File Format, in Chapter List File Formats.

TriCore Reference Guide4–80
T

O
O

L
 O

P
T

IO
N

S

–l (––list-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option Generate list file.

Command line syntax

–l

––list-file

Description

With this option you tell the assembler to generate a list file. A list file

shows the generated object code and the relative addresses. Note that the

assembler generates a relocatable object file with relative addresses.

Example

To generate a list file with the name test.lst , enter:

astc –l test.src
astc ––list–file test.src

Related information

Assembler option –L (List file formatting options)

Linker option –M (Generate map file)

Section 5.1, Assembler List File Format, in Chapter List File Formats.

Tool Options – Assembler 4–81

• • • • • • • •

–m (––preprocessor-type)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Select No preprocessor or the TASKING preprocessor.

Command line syntax

–m{n|t}

––preprocessor-type={none|tasking}

Default

–mt

Description

With this option you select the preprocessor that the assembler will use.

Default, the assembler uses the TASKING preprocessor.

When the assembly source file does not contain any preprocessor

symbols, you can specify the assembler not to use a preprocessor.

Example

astc test.src
astc –mt test.src
astc ––preprocessor=tasking test.src

These invocations have the same effect: the assembler preprocesses the

file test.src with the TASKING preprocessor.

Related information

-

TriCore Reference Guide4–82
T

O
O

L
 O

P
T

IO
N

S

––mmu-present

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enable the option Allow memory management instructions.

This option is only available (and relevant) for specific target processors.

See option –C (––cpu) to select a target processor.

Command line syntax

––mmu-present

Description

With this option you can use memory management instructions in the

assembly code. When you select this option, the define __MMU__ is set to

1.

Example

To allow the use of memory management unit (MMU) instructions in the

assembly code, enter:

astc ––mmu–present test.src

Related information

Assembler option –C (Select CPU)

Tool Options – Assembler 4–83

• • • • • • • •

––no-tasking-sfr

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Disable the option Include '.def' file.

Command line syntax

––no-tasking-sfr

Description

With this option the assembler does not include the register file

reg cpu .def as based on the assembler option -C.

Use this option if you want to use your own set of SFR '.def' files.

Example

astc –Ctc11ib ––no–tasking–sfr test.src

The register file regtc11ib.def is not included, but the assembler allows

the use of MMU instructions due to -C.

Related information

Assembler option –C (Select CPU)

TriCore Reference Guide4–84
T

O
O

L
 O

P
T

IO
N

S

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Optimization.

3. Enable or disable the optimization suboptions.

Command line syntax

–Oflags

––optimize=flags

You can set the following flags:

g/G (+/–generics) Allow generic instructions

s/S (+/–instr-size) Optimize instruction size

Default

–Ogs

Description

With this option you can control the level of optimization. If you do not

use this option, –Ogs is the default.

Example

The following invocations are equivalent and result all in the default

optimizations:

astc test.src
astc –Ogs test.src
astc ––optimize=+generics,+instr–size test.src

Related information

Section 6.3, Assembler Optimizations, in Chapter Using the Assembler of the

User's Guide.

Tool Options – Assembler 4–85

• • • • • • • •

–o (––output)

EDE

-

Command line syntax

–ofile

––output=file

Description

With this option you can specify another filename for the output file of the

assembler. Without this option, the basename of the assembly source file is

used with extension .o .

EDE names the output file always after the assembly source file.

Example

astc –o relobj.o asm.src
astc ––output=relobj.o asm.src

The assembler creates the file relobj.o for the assembled file asm.src .

Without the option –o, like EDE, the assembler uses the name of the input

file and creates asm.o .

Related information

-

TriCore Reference Guide4–86
T

O
O

L
 O

P
T

IO
N

S

––silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the CPU functional problems you want to check for.

Command line syntax

––silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc112 All TriCore 1 v1.2 (TC112) checks

all-tc113 All TriCore 1 v1.3 (TC113) checks

cor1 check for TC112 COR1

cor4 check for TC112 COR4

cor6 check for TC112 COR6

cor7 check for TC112 COR7

cor10 check for TC112 COR10

cor13 check for TC112 COR13

cor15 workaround for TC112 COR15

cor16 workaround for TC112 COR16

cor17 check for TC112 COR17

cpu9 check for TC113 CPU9

cpu11 check for TC113 CPU11

cpu13 workaround for TC113 CPU13

cpu14 check for TC113 CPU14

cpu15 check for TC113 CPU15

cpu16 check for TC113 CPU16

dmu1 check for TC113 DMU1

lfi2 check for TC113 LFI2

lfi3 check for TC113 LFI3

pmu1 workaround for TC113 PMU1

pmu3 workaround for TC113 PMU3

Tool Options – Assembler 4–87

• • • • • • • •

Description

With this option you tell the assembler to check for some CPU functional

problems. The assembles gives a warning when the specified problem is

present.

Example

astc ––silicon–bug=cpu5,cpu9 test.src

The assembler checks for TC113 problems CPU5 and CPU9 and gives a

warning when the problem is present.

Related information

See Chapter 8, CPU Functional Problems, for more information about the

individual problems.

TriCore Reference Guide4–88
T

O
O

L
 O

P
T

IO
N

S

–t (––section-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option Generate list file.

4. Enable the option Display section information.

EDE always writes the section information to the list file.

Command line syntax

–tflags

––section-info=flags

You can set the following flags:

c/C (+/–console) Display section information on stdout .

l/L (+/–list) Write section information to the list file.

Description

With this option you tell the assembler to display section information. For

each section its memory space, size, total cycle counts and name is listed

on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the

section and the total accumulated count for all repeated instructions

(REP/DO). In the case of nested loops it is possible that the total

supersedes the section total.

With –tl, the assembler writes the section information to the list file. You

must specify this option in combination with the option –l (generate list

file).

Tool Options – Assembler 4–89

• • • • • • • •

Example

astc –l –tcl test.src
astc –l ––section–info=+console,+list test.src

The assembler generates a list file and writes the section information to

this file. The section information is also displayed on stdout .

Section summary:

 REL 4 .zbss_clr_test1
 REL 46 .text_test1
 REL 4 .zdata_rom_test1

Related information

Assembler option –l (Generate list file)

TriCore Reference Guide4–90
T

O
O

L
 O

P
T

IO
N

S

–V (––version)

EDE

-

Command line syntax

–V

––version

Description

Display version information. The assembler ignores all other options or

input files.

Example

astc –V
astc ––version

The assembler does not assemble any files but displays the following

version information:

TASKING TriCore VX–toolset Assembler v xx . yr z Build nnn
Copyright years Altium BV Serial# 00000000

Related information

-

Tool Options – Assembler 4–91

• • • • • • • •

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr,...]

––no-warnings[=nr,...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option –w multiple times.

Example

To suppress all warnings:

astc –w test.src
astc ––no–warnings test.src

To suppress warnings 135 and 136:

astc –w135,136 test.src
astc ––no–warnings=135,136 test.src

TriCore Reference Guide4–92
T

O
O

L
 O

P
T

IO
N

S

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Assembler 4–93

• • • • • • • •

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the assembler to treat warnings as errors.

Example

astc ––warnings–as–errors test.src

When a warning occurs, the assembler considers it as an error.

Related information

Assembler option –w (suppress some or all warnings)

TriCore Reference Guide4–94
T

O
O

L
 O

P
T

IO
N

S

4.3 LINKER OPTIONS

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. EDE invokes the linker

via the control program. Therefore, it uses the syntax of the control

program to pass options and files to the linker.

See section 4.4, Control Program Options.

If necessary, you can specify a command line option in EDE.

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enter one or more command line options in the Additional options

field.

Because EDE uses the control program, EDE automatically precedes the
option with -Wlk and -Wlc to pass the option via the control program
directly to the link and locate phase of the linker.

For example, if you enter the option –DDEMO in the Additional
options field, EDE generates the options -Wlk-DDEMO
-Wlc-DDEMO for the control program which tells the control program
to pass the option -DDEMO to the linker..

Be aware that some options are not useful in EDE or just will not have any

effect. For example, the option –k keeps files after an error occurred.

When you specify this option in EDE, it will have no effect because EDE

always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Tool Options – Linker 4–95

• • • • • • • •

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

ltc –mfkl test.o
ltc ––map–file–format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

TriCore Reference Guide4–96
T

O
O

L
 O

P
T

IO
N

S

–?/–H (––help)

EDE

-

Command line syntax

–?

–H

––help

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line

options:

ltc –?
ltc –H
ltc ––help
ltc

Related information

-

Tool Options – Linker 4–97

• • • • • • • •

––case-insensitive

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker/Locator entry and select Linker.

3. Disable the option Link case sensitive.

Command line syntax

––case-insensitive

Description

With this option you tell the linker to consider upper and lower case

characters the same. By default the linker considers upper and lower case

characters as different characters.

Disabling the option Link case sensitive in EDE is the same as specifying

the option ––case-insensitive on the command line.

Assembly source files that are generated by the compiler must always be

assembled and thus linked case sensitive. When you have written your

own assembly code and specified to assemble it case insensitive, you must

also link the .o file case insensitive.

Example

To link case insensitive:

ltc ––case–insensitive test.o

The linker considers upper and lower case characters as being the same.

So, for example, the label LabelName is considered the same label as

labelname .

Using the control program to pass the option directly to the linker:

cctc –Wlk––case–insensitive test.o

Related information

Assembler option –c (Assemble case insensitive)

TriCore Reference Guide4–98
T

O
O

L
 O

P
T

IO
N

S

–c (––chip-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Output Format.

3. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Command line syntax

–cformat[:addr_size][,format[:addr_size]]...

––chip-format=format[:addr_size][,format[:addr_size]]...

You can specify the following formats:

IHEX Intel Hex

SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length).

For Intel Hex you can use the values: 1, 2 and 4 (default). For Motorola S

you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3

records).

Description

With this option you specify the Intel Hex or Motorola S-record output

format for loading into a PROM-programmer. The linker generates a file

for each memory chip.

Use option -F (––format) to specify an absolute (debugging) output

format.

Examples

Generate Intel Hex output files for each chip:

ltc –cIHEX test1.o test2.out
ltc ––chip–format=IHEX test1.o test2.out

Tool Options – Linker 4–99

• • • • • • • •

Related information

Linker option –F (output format),

Section 6.2, Motorola S-Record Format,
Section 6.3, Intel Hex Record Format, in Chapter Object File Formats.

TriCore Reference Guide4–100
T

O
O

L
 O

P
T

IO
N

S

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –D to the Additional options field.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker

preprocessor. If you only specify a macro name (no macro definition), the

macro expands as '1'.

You can specify as many macros as you like: you can use the option –D

multiple times. If the command line exceeds the limit of the operating

system, you can define the macros in an option file which you then must

specify to the linker with the option –ffile.

Define macro to the preprocessor, as in #define. Any number of symbols

can be defined. The definition can be tested by the preprocessor with #if,

#ifdef and #ifndef, for conditional locating.

Example

To define the RESET vector, interrupt table start address and trap table start

address which is used in the linker script file tc1v1_3.lsl , enter:

ltc test.o –otest.elf –dtc1v1_3.lsl –DRESET=0xa0000000
 –DINTTAB=0xa00f0000 –DTRAPTAB=0xa00f2000

Related information

Linker option –f (Name of invocation file)

Tool Options – Linker 4–101

• • • • • • • •

–d (––lsl-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Script File.

3. Select Use standard description for selected derivative or select

Use project specific processor description and specify a name.

Command line syntax

–dfile

––lsl-file=file

Description

With this option you specify a linker script file to the linker. If you do not

specify this option, the linker does not use a script file. You can specify

the existing file target .lsl or the name of a manually created linker

script file. You can use this option multiple times. The linker processes the

LSL files in the order in which they appear on the command line.

The linker script file contains vital information about the core for the

locating phase of the linker. A linker script file is coded in LSL and

contains the following types of information:

• the architecture partition describes the core's hardware architecture.

• the memory partition describes the physical memory available in the

system.

• the section partition describes how to locate sections in memory.

Example

To read linker script file information from file tc1v1_3.lsl :

ltc –dtc1v1_3.lsl test.o

Using the control program:

cctc –dtc.lsl test.o

TriCore Reference Guide4–102
T

O
O

L
 O

P
T

IO
N

S

Related information

Chapter 7, Linker Script Language.

Tool Options – Linker 4–103

• • • • • • • •

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option the linker displays a description and explanation of the

specified error message(s) on stdout (usually the screen). The linker

does not process any files.

If you want the output in a file, you have to use output redirection.

Example

To display an explanation of message number 104, enter:

ltc ––diag=104

This results in the following message and explanation:

E104: unresolved external(s)

The linker could not resolve all external symbols. This is an
error when the incremental linking option is disabled.

To write an explanation of all errors and warnings in HTML format to file

lerrors.html , enter:

ltc ––diag=html:all > lerrors.html

TriCore Reference Guide4–104
T

O
O

L
 O

P
T

IO
N

S

Related information

Section 7.9, Linker Error Messages, in Chapter Using the Linker of the User's
Guide.

Tool Options – Linker 4–105

• • • • • • • •

–e (––extern)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –e in the Additional options field.

Command line syntax

–e symbol
––extern=symbol

Description

With this option you force the linker to consider the given symbol as an

undefined reference. The linker tries to resolve this symbol by extracting

the corresponding symbol definition from a library. If the symbol is

defined in an object file, this option has no influence on the link process.

Suppose you are linking from a library. Because the library itself already

has been compiled and assembled, the linker does not find any

unresolved symbols. Hence, the linker will not extract any module from

the library. When you force a symbol to be undefined, the linker extracts

those modules that contain the symbol.

This option is, for example, useful if the startup code is part of a library.

Because your own application does not refer to the startup code, you can

force the startup code to be extracted by specifying the symbol _START as

an unresolved external.

Example:

Consider the following invocation:

ltc mylib.a

Nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a .

ltc –e _START mylib.a
ltc ––extern=_START mylib.a

TriCore Reference Guide4–106
T

O
O

L
 O

P
T

IO
N

S

In this case the linker searches for the symbol _START in the library and

(if found) extracts the object that contains _START, the startup code. If this

module contains new unresolved symbols, the linker looks again in

mylib.a . This process repeats until no new unresolved symbols are

found.

Related information

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Guide.

Tool Options – Linker 4–107

• • • • • • • •

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the linker redirects error messages to a file.

If you do not specify a filename, the error file is task1.elk .

Example

ltc ––error–file=my.elk test.o

The linker writes error messages to the file my.elk instead of stderr .

Related information

Linker option ––warnings-as-errors (Treat warnings as errors)

TriCore Reference Guide4–108
T

O
O

L
 O

P
T

IO
N

S

–F (––format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Output Format.

3. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Command line syntax

–Fformat

––format=format

You can specify the following formats:

ELF ELF/DWARF

IEEE IEEE-695

Description

With this option you specify the output format for the resulting (absolute)

object file. The default output format is ELF/DWARF, which can directly be

used by the CrossView Pro debugger.

Use option -c (––chip-format) to create Intel Hex or Motorola S-record

output files for loading into a PROM-programmer.

Examples

Generate ELF/DWARF output file:

ltc –FELF test1.o test2.out –otest.elf
ltc ––format=ELF test1.o test2.out ––output=test.elf

Related information

Linker option ––chip-format (Hex files per chip)

Section 6.1, ELF/DWARF Object Format, in Chapter Object File Formats.

Tool Options – Linker 4–109

• • • • • • • •

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –f to the Additional options field.

In EDE you can save your options in a file and restore them to call the

linker with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional options

field, the options are added to the linker options you have set in the

Project Options dialog. Only in extraordinary cases you may want to use

them in combination.

Command line syntax

–f file,...

––option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the linker.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

TriCore Reference Guide4–110
T

O
O

L
 O

P
T

IO
N

S

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Mmymap (generate a map file)

test.o (input file)

–Lc:\mylibs (additional search path for system libraries)

Specify the option file to the linker:

ltc –f myoptions
ltc ––option–file=myoptions

This is equivalent to the following command line:

ltc –Mmymap test.o –Lc:\mylibs

Related information

-

Tool Options – Linker 4–111

• • • • • • • •

––first-library first

EDE

-

Command line syntax

––first-library-first

Description

When the linker processes a library it searches for symbols that are

referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference the linker extracts the

object that contains the definition from the library.

By default the linker processes object files and libraries in the order in

which they appear at the command line. If you specify the option

––first-library-first the linker always tries to take the symbol definition

from the library that appears first on the command line before scanning

subsequent libraries.

This is for example useful when you are working with a newer version of

a library that partially overlaps the older version. Because they do not

contain exactly the same functions, you have to link them both. However,

when a function is present in both libraries, you may want the linker to

extract the most recent function.

With this option, you tell the linker to scan the libraries from left to right,

and extract the symbol from the first library where the linker finds it.

Example:

ltc ––first–library–first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a ,

normally the function in b.a would be extracted. With this option the

linker first tries to extract the symbol from the first library a.a .

Related information

Linker option ––no-rescan (Do not rescan libraries)

TriCore Reference Guide4–112
T

O
O

L
 O

P
T

IO
N

S

–k (––keep-output-files)

EDE

EDE always removes the output files when errors occurred.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during linking, the resulting output file may be

incomplete or incorrect. With this option you keep the generated output

files when an error occurs.

By default the linker removes the generated output files when an error

occurs. This is useful when you use the make utility mktc. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated file. For example

when you know that the error(s) do not result in a corrupt output file, or

when you want to inspect the output file, or send it to Altium support.

Example

ltc –k test.o
ltc ––keep–output–files test.o

When an error occurs during linking, the generated output file test.elf
will not be removed.

Related information

-

Tool Options – Linker 4–113

• • • • • • • •

–L (––library-directory /

––ignore-default-library-path)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Add a pathname in the Library Files Path field.

3. In the Library Files Path field, add the pathnames of the directories

where the linker should look for library files.

If you enter multiple paths, separate them with a semicolon (;).

Command line syntax

–Lpath,...

––library-directory=path,...

–L

––ignore-default-library-path

Description

With this option you can specify the path(s) where your system libraries,

specified with the -l option, are located. If you want to specify multiple

paths, use the option –L for each separate path.

By default path this is $(PRODDIR)\ctc\lib directory.

If you specify only –L (without a pathname) or the long option

––ignore-default-library-path, the linker will not search the default

path and also not in the paths specified in the environment variable

LIBTC1V1_2, LIBTC1V1_3 or LIBTC2. So, the linker ignores steps 2, 3 and

4 as listed below.

The priority order in which the linker searches for system libraries

specified with the -l option is:

1. The path that is specified with the -L option.

2. The path that is specified in the environment variable LIBTC1V1_2,

LIBTC1V1_3 or LIBTC2 when the product was installed.

TriCore Reference Guide4–114
T

O
O

L
 O

P
T

IO
N

S

3. The default directory c:\ctc\lib .

4. The processor specific directory, for example c:\ctc\lib\tc1 .

Example

Suppose you call the linker as follows:

ltc test.o –Lc:\mylibs –lc

First the linker looks in the directory c:\mylibs for library libc.a (this

option).

If it does not find the requested libraries, it looks in the directory that is set

with the environment variable LIBTC1V1_2, LIBTC1V1_3 or LIBTC2.

Then the linker looks in the default directory c:\ctc\lib for libraries.

Related information

Linker option –l (Link system library)

Section 7.4.2, How the Linker Searches Libraries, in Chapter Using the
Linker of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Tool Options – Linker 4–115

• • • • • • • •

–l (––library)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Enable the option Link default C libraries.

Command line syntax

–lname
––library=name

Description

With this option you tell the linker to search also in system library

lib name.a , where name is a string. The linker first searches for system

libraries in any directories specified with –Lpath, then in the directories

specified with the environment variable LIBTC1V1_2, LIBTC1V1_3 or

LIBTC2, unless you used the option –L without a directory.

If you use the libc.a library, you must always link the libfp.a library

as well. Remember that the order of the specified libraries is important!

Example

To search in the system library libfp.a (floating-point library):

ltc test.o mylib.a –lfp

The linker links the file test.o and first looks in mylib.a (in the current

directory only), then in the system library libfp.a to resolve unresolved

symbols.

Related information

Linker option –L (Additional search path for system libraries)

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Guide.

TriCore Reference Guide4–116
T

O
O

L
 O

P
T

IO
N

S

––link-only

EDE

-

Command line syntax

––link-only

Description

With this option you suppress the locating phase. The linker stops after

linking. The linker complains if any unresolved references are left.

Example:

ltc ––link–only hello.o

The linker checks for unresolved symbols and creates the file hello.out .

Using the control program:

cctc –cl hello.o

Related information

Control program option –cl (Stop after linking)

Tool Options – Linker 4–117

• • • • • • • •

––lsl-check

EDE

-

Command line syntax

––lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and

exits. No linking or locating is performed.

Example:

To check the LSL file(s) and exit:

ltc ––lsl–check –dmylslfile.lsl

Related information

Linker option –d (Linker script file)

Linker option ––lsl-dump (Dump LSL info)

TriCore Reference Guide4–118
T

O
O

L
 O

P
T

IO
N

S

––lsl-dump

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the option Dump processor and memory info from LSL

file.

Command line syntax

––lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in

a separate file, independent of the -M (generate map file) option. If you

do not specify a filename, the file ltc.ldf is used.

Example

ltc ––lsl–dump=mydump.ldf test.o

The linker dumps the processor and memory info from the LSL file in the

file mydump.ldf .

Related information

Linker option –m (Map file formatting options)

Tool Options – Linker 4–119

• • • • • • • •

–M (––map-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the option Generate a map file (.map).

Command line syntax

–M[file]
––map-file[=file]

Description

With this option you tell the linker to generate a linker map file. If you do

not specify a filename, the linker uses the same basename as the output

file with the extension .map .

A linker map file is a text file that shows how the linker has mapped the

sections and symbols from the various object files (.o) to the linked object

file. A locate part shows the absolute position of each section. External

symbols are listed per space with their absolute address, both sorted on

symbol and sorted on address.

With the option -m (map file formatting) you can specify which parts you

want to place in the map file.

Example

To generate a map file (test.map):

ltc –Mtest.map test.o

The control program by default tells the linker to generate a map file.

Related information

Linker option –m (Map file formatting options)

Section 5.2, Linker Map File Format, in Chapter List File Formats.

TriCore Reference Guide4–120
T

O
O

L
 O

P
T

IO
N

S

–m (––map-file-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the options to include that information in the map file.

Command line syntax

–mflags

––map-file-format=flags

You can set the following flags:

0 same as –mcfkLMorS (link info)

1 same as –mCfKlmoRs (locate info)

2 same as –mcfklmors (all)

c/C (+/–callgraph) Call graph info

f/F (+/–files) Processed files info

k/K (+/–link) Link result info

l/L (+/–locate) Locate result info

m/M (+/–memory) Memory usage info

o/O (+/–overlay) Overlay info

r/R (+/–crossref) Cross references info

s/S (+/–lsl) Processor and memory info

Default

–mCfklMORS

Description

With this option you specify which information you want to include in the

map file. Use this option in combination with the option –M

(––map-file).

If you do not specify this option, the linker uses the default:

–mCfklMORS.

Tool Options – Linker 4–121

• • • • • • • •

Example

ltc –Mtest.map –mFr test.o
ltc ––map–file=test.map ––map–file–format=+crossref,
 –files test.o

The linker generates the map file test.map that includes all default

information plus the cross reference part, but not the processed files part.

Related information

Linker option –M (Generate map file)

Section 5.2, Linker Map File Format, in Chapter List File Formats.

TriCore Reference Guide4–122
T

O
O

L
 O

P
T

IO
N

S

––misra-c-report

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration.

4. Enable the option Produce a MISRA C report.

Command line syntax

––misra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance

report. This report lists the various modules in the project with the

respective MISRA C settings at the time of compilation. If you do not

specify a filename, the file name.mcr is used.

Example

ltc ––misra–c–report test.o

The linker creates a MISRA C report file test.mcr .

Related information

Compiler option ––misrac

Tool Options – Linker 4–123

• • • • • • • •

–N (––no-rom-copy)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –N to the Additional options field.

Command line syntax

–N

––no-rom-copy

Description

With this option the linker will not generate a ROM copy for data sections.

A copy table is generated and contains entries to clear BSS section.

However, no entries to copy data sections from ROM to RAM are placed in

the copy table.

The data sections are initialized when the application is downloaded. The

data sections are not re-initialized when the application is restarted.

Example

ltc –N test.o
ltc ––no–rom–copy test.o

The linker does not generate a copy table.

Related information

-

TriCore Reference Guide4–124
T

O
O

L
 O

P
T

IO
N

S

––no-rescan

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

––no-rescan

Description

When the linker processes a library it searches for symbol definitions that

are referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference the linker extracts the

object that contains the definition from the library. The linker processes

object files and libraries in the order in which they appear at the command

line.

When all objects and libraries are processed the linker checks if there are

unresolved symbols left. If so, the default behavior of the linker is to

rescan all libraries in the order given at the command line. The linker

stops rescanning the libraries when all symbols are resolved, or when the

linker could not resolve any symbol(s) during the rescan off all libraries.

Notice that resolving one symbol may introduce new unresolved symbols.

With this option, you tell the linker to scan the object files and libraries

only once. When the linker has not resolved all symbols after the first

scan, it reports which symbols are still unresolved. This option is useful if

you are building your own libraries. The libraries are most efficiently

organized if the linker needs only one pass to resolve all symbols.

Example:

To scan the libraries only once:

ltc ––no–rescan test.o a.a b.a

The linker resolves all unresolved symbols while scanning the object files

and libraries and reports all remaining unresolved symbols after this scan.

Tool Options – Linker 4–125

• • • • • • • •

Related information

Linker option ––first-library-first (Scan libraries in the specified order)

TriCore Reference Guide4–126
T

O
O

L
 O

P
T

IO
N

S

––non-romable

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option to the Additional options field.

Command line syntax

––non-romable

Description

With this option you tell the linker that the application is not romable. The

linker will locate all ROM sections in RAM. A copy table is generated and

is located in RAM. When the application is started, that data and BSS

sections are re-initialized.

Example

ltc ––non–romable test.o

The linker locates all ROM sections in RAM.

Related information

-

Tool Options – Linker 4–127

• • • • • • • •

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Optimization.

3. Enable or disable the optimization suboptions.

Command line syntax

–Oflags

––optimize=flags

You can set the following flags:

l/L (+/–first-fit-decreasing)

Use a 'first fit decreasing' algorithm to locate

unrestricted sections in memory.

t/T (+/–copytable-compression)

Locate (unrestricted) sections in such a way that

the size of the copy table is as small as possible.

Use the following options for predefined sets of flags:

–O0 (––optimize=0) No optimization.

Alias for: –OLT

–O1 (––optimize=1) Normal optimization (default).

Alias for: –OLt

–O2 (––optimize=2) All optimizations.

Alias for: –Olt

Default

–O1

Description

With this option you can control the level of optimization. If you do not

use this option, –OLt is the default.

TriCore Reference Guide4–128
T

O
O

L
 O

P
T

IO
N

S

Example

The following invocations are equivalent and result all in the default

optimizations.

ltc test.o
ltc –OLt test.o
ltc ––optimize=–first–fit–decreasing,
 +copytable–compression test.o

Related information

Section 7.2.3, Linker Optimizations, in Chapter Using the Linker of the

User's Guide.

Tool Options – Linker 4–129

• • • • • • • •

–o (--output-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –o in the Additional options field.

Command line syntax

–ofile
––output-file=file

Description

By default, the linker generates the file task1.elf .

With this option you specify another name for the linker output file.

EDE and the control program name the output file always after the first

input file with the extension .elf .

Example

To create the output file test.elf instead of task1.elf :

ltc test.o –otest.elf

Related information

-

TriCore Reference Guide4–130
T

O
O

L
 O

P
T

IO
N

S

–r (––incremental)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –r in the Additional options field.

Command line syntax

–r

––incremental

Description

Normally the linker links and locates the specified object files. With this

option you tell the linker only to link the specified files. The linker creates

a linker output file .out . You then can link this file again with other

object files until you have reached the final linker output file that is ready

for locating.

In the last pass, you call the linker without this option with the final linker

output file .out . The linker will now locate the file.

Example

In this example, the files test1.o , test2.o and test3.o are

incrementally linked:

ltc –r test1.o –otest.out (test1.o and test2.o are linked)

ltc –r test3.o test.out (test3.o is linked)

ltc test.out (test.out is located)

Related information

Section 7.5, Incremental Linking, in Chapter Using the Linker of the User's
Guide.

Tool Options – Linker 4–131

• • • • • • • •

–S (––strip-debug)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the options to include that information in the map file.

4. Disable the option Include symbolic debug information.

Command line syntax

–S

––strip-debug

Description

With this option you specify not to include symbolic debug information in

the resulting output file.

Example

ltc –S test.o –otest.elf
ltc ––strip–debug test.o ––output=test.elf

The linker generates the object file test.elf without symbolic debug

information.

Related information

Linker option –M (Generate map file)

TriCore Reference Guide4–132
T

O
O

L
 O

P
T

IO
N

S

–V (––version)

EDE

-

Command line syntax

–V

Description

Display version information. The linker ignores all other options or input

files.

Example

ltc –V
ltc ––version

The linker does not link any files but displays the following version

information:

TASKING TriCore VX–toolset object linker v x. yr z Build 000
Copyright years Altium BV Serial# 00000000

Related information

-

Tool Options – Linker 4–133

• • • • • • • •

–v (––verbose)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the option Print the name of each file as it is processed.

Command line syntax

–v

Description

With this option you put the linker in verbose mode. The linker prints the

filenames and the link passes while it processes the files. It also shows

which objects are extracted from libraries. With this option you can

monitor the current status of the linker.

Example

ltc test.o –lc –lfp –lrt –v

The linker links the file test.o and displays the steps it performs.

ltc I405: activating pre link phase
ltc I406: activating link phase
ltc I401: start linking task ”task1”
ltc I415: reading file ”./test.o”
ltc I413: start processing library ”/ctc/lib/tc1/libc.a”
ltc I416: reading file ”cstart.o” from library ”libc.a”
...
ltc I414: start rescanning libraries
...
ltc I407: activating post link phase
ltc I408: activating pre locate phase
ltc I409: activating locate phase
...
ltc I418: binding locator symbols
ltc I411: activating post locate phase
ltc I410: activating file producing phase
ltc I401: start producing files for task ”task1”

Related information

-

TriCore Reference Guide4–134
T

O
O

L
 O

P
T

IO
N

S

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr[,nr]...]
––no-warnings[=nr[,nr]...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warnings

are suppressed. Separate multiple warnings by commas.

Example:

To suppress all warnings:

ltc –w test.o
ltc ––no–warnings test.o

To suppress warnings 113 and 114:

ltc –w113,114 test.o
ltc ––no–warnings=113,114 test.o

Tool Options – Linker 4–135

• • • • • • • •

Related information

Linker option ––warnings-as-errors (Treat warnings as errors)

TriCore Reference Guide4–136
T

O
O

L
 O

P
T

IO
N

S

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the linker to treat warnings as errors.

When the linker detects an error, it tries to continue the link process and

reports other errors and warnings. However, the linker will exit with an

exit status not equal zero (!= 0) and will not produce any output files.

Example

ltc ––warnings–as–errors test.o

When a warning occurs, the linker considers it as an error.

Related information

Linker option –w (Suppress some or all warnings)

Tool Options – Control Program 4–137

• • • • • • • •

4.4 CONTROL PROGRAM OPTIONS

The control program cctc facilitates the invocation of the various

components of the TriCore toolchain from a single command line. The

control program is a command line tool so there are no equivalent options

in EDE.

For the linker options in EDE, EDE invokes the linker via the control

program. Therefore, it uses the syntax of the control program to pass

options and files to the linker. See section 4.3, Linker Options, for an

overview of the EDE linker options and the corresponding command line

linker options.

Some options are interpreted by the control program itself; other options

are passed to those programs in the toolchain that accept the option.

Recognized input files

The control program recognizes the following input files:

• Files with a .cc , .cxx or .cpp suffix are interpreted as C++ source

programs and are passed to the C++ compiler.

• Files with a .c suffix are interpreted as C source programs and are

passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly

source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source

files. They are directly passed to the assembler.

• Files with a .a or .elb suffix are interpreted as library files and are

passed to the linker.

• Files with a .o suffix are interpreted as object files and are passed to

the linker.

• Files with a .out suffix are interpreted as linked object files and are

passed to the locating phase of the linker. The linker accepts only one

.out file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and

is passed to the linker.

Normally, the control program tries to compile, assemble, link and locate

all source files to absolute object files. There are however, options to

suppress the assembler, link or locate stage.

TriCore Reference Guide4–138
T

O
O

L
 O

P
T

IO
N

S

–?

Command line syntax

–?

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line

options:

cctc –?
cctc

Related information

-

Tool Options – Control Program 4–139

• • • • • • • •

–C

Command line syntax

–Ccpu

Description

With this option you define the target processor for which you create your

application. Default the control program generates an object file for the

TC10GP.

Based on the target processor, the compiler includes the register file

reg cpu .sfr and the assembler includes the file reg cpu .def .

Example

In EDE, the target CPU has the following settings:

• Target processor: TC10GP

To define this on the command line:

cctc –Ctc10gp test.c

The control program generates an absolute object file test.elf for the

TC10GP processor. The compiler includes the register file

regtc10gp.sfr and the assembler includes the file regtc10gp.def .

Related information

Compiler option –C (Use SFR definitions for CPU)

Assembler option –C (Select CPU)

Section 5.5, Specifying a Target Processor, in Chapter Using the Compiler of

the User's Guide.

TriCore Reference Guide4–140
T

O
O

L
 O

P
T

IO
N

S

–c++

Command line syntax

–c++

Description

With this option you tell the control program to treat all .c files as C++

files instead of C files. This means that the control program calls the C++

compiler prior to the C compiler and forces the linker to link C++ libraries.

Example

cctc –c++ test.c

The file test.c is considered to be a C++ file.

Related information

Control program option –noc++ (Force C++ files to C mode)

Tool Options – Control Program 4–141

• • • • • • • •

–cc/–cs/–c/–cl

Command line syntax

–cc

–cs

–c

–cl

Description

Normally the control program generates an absolute object file of the

specified output format from the file you supplied as input.

With this option you tell the control program to stop after a certain

number of phases.

–cc Stop after C++ files are compiled to intermediate C files (.ic)

–cs Stop after C++ files or C files are compiled to assembly (.src)

–c Stop after the files are assembled to objects (.o)

–cl Stop after the files are linked to a linker object file (.out)

Example

To generate the object file test.o :

cctc –c test.c

The control program stops after the file is assembled. It does not link nor

locate the generated output.

Related information

-

TriCore Reference Guide4–142
T

O
O

L
 O

P
T

IO
N

S

–cm

Command line syntax

–cm

Description

With this option you force the control program to invoke the C++

muncher.

Example

cctc –cm test.cc

The control program always invokes the C++ muncher when generating

test.elf .

Related information

-

Tool Options – Control Program 4–143

• • • • • • • •

–cp

Command line syntax

–cp

Description

With this option you force the control program to invoke the C++

pre-linker.

Example

cctc –cp test.cc

The control program always invokes the C++ pre-linker when generating

test.elf .

Related information

-

TriCore Reference Guide4–144
T

O
O

L
 O

P
T

IO
N

S

–elf

Command line syntax

–elf

Description

With this option you tell the control program to generate an ELF/DWARF

object file.

Example

cctc –elf test.c

The control program generates the ELF/DWARF object file test.elf from

test.c .

Related information

Linker option –Fformat (Output format)

Section 6.1, ELF/DWARF Object Format, in Chapter Object File Formats.

Tool Options – Control Program 4–145

• • • • • • • •

–f

Command line syntax

–f file

Description

Instead of typing all options on the command line, you can create a option

file which contains all options and file you want to specify. With this

option you specify the option file to the control program.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

TriCore Reference Guide4–146
T

O
O

L
 O

P
T

IO
N

S

Example

Suppose the file myoptions contains the following lines:

–nomap
–elf
test.c

Specify the option file to the control program:

cctc –m myoptions

This is equivalent to the following command line:

cctc –nomap –elf test.c

Tool Options – Control Program 4–147

• • • • • • • •

–fptrap

Command line syntax

–fptrap

Description

Default the control program uses the non-trapping floating point library

(libfp.a). With this option you tell the control program to use the

trapping floating point library (libfpt.a).

If you use the trapping floating point library, exceptional floating point

cases are intercepted and can be handled separately by an application

defined exception handler. Using this library decreases the execution

speed of your application.

Example

cctc –fptrap test.c

Link the trapping floating point library when generating the object file

test.elf .

Related information

-

TriCore Reference Guide4–148
T

O
O

L
 O

P
T

IO
N

S

–ieee

Command line syntax

–ieee

Description

With this option you tell the control program to generate an IEEE-695

object file.

Example

cctc –ieee test.c

The control program generates the IEEE-695 object file test.abs from

test.c .

Related information

Linker option –Fformat (Output format)

Tool Options – Control Program 4–149

• • • • • • • •

–ihex

Command line syntax

–ihex

Description

With this option you tell the control program to generate an Intel hex

object file.

Example

cctc –ihex test.c

The control program generates the Intel hex object file test.hex from

test.c .

Related information

Linker option –Fformat (Output format)

Section 6.3, Intel Hex Record Format, in Chapter Object File Formats.

TriCore Reference Guide4–150
T

O
O

L
 O

P
T

IO
N

S

–noc++

Command line syntax

–noc++

Description

With this option you tell the control program to treat all .cc files as C files

instead of C++ files. This means that the control program does not call the

C++ compiler and forces the linker to link C libraries.

Example

cctc –noc++ test.cc

The C++ file test.cc is considered to be a normal C file.

Related information

Control program option –c++ (Force C files to C++ mode)

Tool Options – Control Program 4–151

• • • • • • • •

–nolib

Command line syntax

–nolib

Description

Default the control program specifies the standard C libraries and run-time

library to the linker.

With this option you tell the control program not to specify the standard C

libraries and run-time library to the linker.

In this case you must specify the libraries you want to link to the linker

with the option –llibrary_name. The control program recognizes the

option –l as an option for the linker.

Example

cctc –nolib test.c

The control program does not specify any libraries to the linker. In normal

cases this would result in unresoved externals.

To specify your own libraries (libmy.a) and avoid unresolved externals:

cctc –nolib –lmy test.c

Related information

Linker option –l (Search also in system library lib x.a)

TriCore Reference Guide4–152
T

O
O

L
 O

P
T

IO
N

S

–nomap

Command line syntax

–nomap

Description

Default the control program generates a linker map file (.map). With this

option you tell the control program to skip the generation of a linker map

file.

Example

cctc –nomap test.c

The control program does not generate the linker map file test.map .

Related information

Linker option –M (Generate map file)

Tool Options – Control Program 4–153

• • • • • • • •

–o

Command line syntax

–ofile

Description

Default, the control program generates a file with the same basename as

the first specified input file. With this option you specify another name for

the resulting absolute object file.

Example

cctc test.c prog.c

The control program generates an ELF/DWARF object file (default) with

the name test.elf .

To generate the file result.elf :

cctc –oresult.elf test.c prog.c

Related information

-

TriCore Reference Guide4–154
T

O
O

L
 O

P
T

IO
N

S

––silicon-bug

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Bypasses.

3. Select the bypasses you want to enable.

Command line syntax

––silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc112 All TriCore 1 v1.2 (TC112) workarounds

all-tc113 All TriCore 1 v1.3 (TC113) workarounds

cor1 workaround for TC112 COR1

cor3 workaround for TC112 COR3

cor4 workaround for TC112 COR4

cor6 workaround for TC112 COR6

cor7 workaround for TC112 COR7

cor10 workaround for TC112 COR10

cor13 workaround for TC112 COR13

cor14 workaround for TC112 COR14

cor15 workaround for TC112 COR15

cor16 workaround for TC112 COR16

cor17 workaround for TC112 COR17

cpu5 workaround for TC113 CPU5

cpu9 workaround for TC113 CPU9

cpu11 workaround for TC113 CPU11

cpu13 workaround for TC113 CPU13

cpu14 workaround for TC113 CPU14

cpu15 workaround for TC113 CPU15

cpu16 workaround for TC113 CPU16

dmu1 workaround for TC113 DMU1

lfi2 workaround for TC113 LFI2

lfi3 workaround for TC113 LFI3

pmu1 workaround for TC113 PMU1

pmu3 workaround for TC113 PMU3

Tool Options – Control Program 4–155

• • • • • • • •

Description

With this option the control program tells the compiler/assembler/linker to

use software workarounds for some CPU functional problems.

Example

cctc ––silicon–bug=cpu5,cpu9 test.c

The compiler uses workarounds for TC113 problems CPU5 and CPU9.

Related information

See Chapter 8, CPU Functional Problems, for more information about the

individual problems and workarounds.

TriCore Reference Guide4–156
T

O
O

L
 O

P
T

IO
N

S

–srec

Command line syntax

–srec

Description

With this option you tell the control program to generate a Motorola

S-record object file.

Example

cctc –srec test.c

The control program generates the Motorola S-record object file

test.sre from test.c .

Related information

Linker option –Fformat (Output format)

Section 6.2, Motorola S-Record Format, in Chapter Object File Formats.

Tool Options – Control Program 4–157

• • • • • • • •

–tmp

Command line syntax

–tmp

Description

Default, the control program removes intermediate files like the .src file

(result of the compiler phase) and the .out file (result of the linking

phase).

With this option you tell the control program to keep temporary files it

generates while creating the absolute object file.

Example

cctc –tmp test.c

The control program keeps all intermediate files it generates while creating

the absolute object file test.elf .

Related information

-

TriCore Reference Guide4–158
T

O
O

L
 O

P
T

IO
N

S

–Wtool

Command line syntax

–Wploption Pass option directly to the C++ prelinker

–Wcpoption Pass option directly to the C++ compiler

–Wcoption Pass option directly to the C compiler

–Waoption Pass option directly to the assembler

–Wpcpoption Pass option directly to the second assembler

–Wlkoption Pass option directly to the linker

–Wlcoption Pass option directly to the locating phase of the linker

Description

With this option you tell the control program to call a tool with the

specified option. The control program does not use the option itself, but

specifies it directly to the tool which the control program calls.

Example

cctc –Wlk–r test.c

The control program does not use the option –r but calls the linker with

the option –r (ltc –r).

Related information

-

Tool Options – Control Program 4–159

• • • • • • • •

–V

Command line syntax

–V

Description

Display version information. The control program ignores all other options

or input files.

Example

cctc –V

The control program does not call any tools but displays the following

version information:

TASKING TriCore VX–toolset control program v x. yr z Build nnn
Copyright years Altium BV Serial# 00000000

Related information

-

TriCore Reference Guide4–160
T

O
O

L
 O

P
T

IO
N

S

–v/–v0

Command line syntax

–v

–v0

Description

With this option you put the control program in verbose mode. With the

option -v the control program performs it tasks while it prints the steps it

performs to stdout . With the option –v0 the control program only prints

the steps it would do without actually performing these steps.

Example

cctc –v test.c

The control program processes the file test.c and displays the steps it

performs:

+ ctc/bin/ctc –o /tmp/cc12440b.src test.c

+ ctc/bin/astc /tmp/cc12440b.src –o test.o

+ ctc/bin/ltc –r test.o –lc –lfp –lrt –L/ctc/lib/tc1 –o/tmp/cc12440c.out

+ ctc/bin/ltc –FELF –M –d/ctc/etc/tc.lsl /tmp/cc12440c.out –otest.elf

Related information

-

Tool Options – Control Program 4–161

• • • • • • • •

–wc++

Command line syntax

–wc++

Description

The C++ compiler may generate a compiled C++ file (.ic) that causes

warnings during compilation or assembling. With this option you tell the

control program to show these warnings. Default C++ warnings are

suppressed.

Example

cctc –wc++ test.cc

The control program calls the C++ compiler which generates the C file

(test.ic). If this file causes warnings during compilation or assembling,

these warnings are shown.

Related information

-

TriCore Reference Guide4–162
T

O
O

L
 O

P
T

IO
N

S

4.5 MAKE UTILITY OPTIONS

When you build a project in EDE, EDE generates a makefile and uses the

graphical make utility wmk to build all your files. However, you can also

use the make utility mktc from the command line to build your project.

The invocation syntax is:

mktc [option ...] [target ...] [macro =def]

This section describes all options for the make utility. The make utility is a

command line tool so there are no equivalent options in EDE.

Tool Options – Make Utility 4–163

• • • • • • • •

Defining Macros

Command line syntax

macro=definition

Description

With this argument you can define a macro and specify it to the make

utility.

A macro definition remains in existence during the execution of the

makefile, even when the makefile recursively calls the make utility again.

In the recursive call, the macro acts as an environment variable. This

means that it is overruled by definitions in the recursive call. Use the

option –e to prevent this.

You can specify as many macros as you like. If the command line exceeds

the limit of the operating system, you can define the macros in an option
file which you then must specify to the compiler with the option –m file.

Defining macros on the command line is, for example, useful in

combination with conditional processing as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo

program and a real program:

ifdef DEMO # the value of DEMO is of no importance
 real.out : demo.o
 ltc demo.o main.o –lc –lfp –lrt
else
 real.out : real.o
 ltc real.o main.o –lc –lfp –lrt
endif

real.elf : real.out
 ltc –FELF –oreal.elf real.out

You can now use a macro definition to set the DEMO flag:

mktc real.elf DEMO=1

In both cases the absolute obect file real.elf is created but depending

on the DEMO flag it is linked with demo.o or with real.o .

TriCore Reference Guide4–164
T

O
O

L
 O

P
T

IO
N

S

Related information

Make utility option –e (Environment variables override macro definitions)

Make utility option –m (Name of invocation file)

Tool Options – Make Utility 4–165

• • • • • • • •

–?

Command line syntax

–?

Description

Displays an overview of all command line options.

Example

The following invocation displays a list of the available command line

options:

mktc –?

Related information

-

TriCore Reference Guide4–166
T

O
O

L
 O

P
T

IO
N

S

–a

Command line syntax

–a

Description

Normally the make utility rebuilds only those files that are out of date.

With this option you tell the make utility to rebuild all files, without

checking whether they are out of date.

Example

mktc –a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

Tool Options – Make Utility 4–167

• • • • • • • •

–c

Command line syntax

–c

Description

EDE uses this option for the graphical version of make when you create

sub-projects. In this case make calls another instance of make for the

sub-project. With the option –c, the make utility runs as a child process of

the current make.

The option –c overrules the option –err.

Example

The following command runs the make utility as a child process:

mktc –c

Related information

Make utility option –err (Redirect error message to file)

TriCore Reference Guide4–168
T

O
O

L
 O

P
T

IO
N

S

–D/–DD

Command line syntax

–D

–DD

Description

With the option –D the make utility prints every line of the makefile to

standard output as it is read by mktc.

With the option –DD not only the lines of the makefile are printed but

also the lines of the mktc.mk file (implicit rules).

Example

mktc –D

Each line of the makefile that is read by the make utility is printed to

standard output (usually your screen).

Related information

-

Tool Options – Make Utility 4–169

• • • • • • • •

–d/–dd

Command line syntax

–d

–dd

Description

With the option –d the make utility shows which files are out of date and

thus need to be rebuild. The option –dd gives more detail than the option

–d.

Example

mktc –d

Shows which files are out of date and rebuilds them.

Related information

-

TriCore Reference Guide4–170
T

O
O

L
 O

P
T

IO
N

S

–e

Command line syntax

–e

Description

If you use macro definitions, they may overrule the settings of the

environment variables.

With the option –e, the settings of the environment variables are used

even if macros define otherwise.

Example

mktc –e

The make utility uses the settings of the environment variables regardless

of macro definitions.

Related information

-

Tool Options – Make Utility 4–171

• • • • • • • •

–err

Command line syntax

–err file

Description

With this option the make utility redirects error messages and verbose

messages to a specified file.

With the option –s the make utility only displays error messages.

Example

mktc –err error.txt

The make utility writes messages to the file error.txt .

Related information

Make utility option –s (Do not print commands before execution)

TriCore Reference Guide4–172
T

O
O

L
 O

P
T

IO
N

S

–f

Command line syntax

–f my_makefile

Description

Default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of

the file makefile . Multiple –f options act as if all the makefiles were

concatenated in a left-to-right order.

Example

mktc mymake

The make utility uses the file mymake to build your files.

Related information

-

Tool Options – Make Utility 4–173

• • • • • • • •

–G

Command line syntax

–G path

Description

Normally you must call the make utility mktc from the directory where

your makefile and other files are stored.

With the option –G you can call the make utility from within another

directory. The path is the path to the directory where your makefile and

other files are stored and can be absolute or relative to your current

directory.

Example

Suppose your makefile and other files are stored in the directory

\currdir\myfiles . When your current directory is \currdir , you can

call the make utility as follows:

mktc –G myfiles

Related information

-

TriCore Reference Guide4–174
T

O
O

L
 O

P
T

IO
N

S

–i

Command line syntax

–i

Description

When an error occurs during the make process, the make utility exits with

a certain exit code.

With the option –i, the make utility exits without an error code, even

when errors occurred.

Example

mktc –i

The make utility exits without an error code, even when an error occurs.

Related information

-

Tool Options – Make Utility 4–175

• • • • • • • •

–K

Command line syntax

–K

Description

With this option the make utility keeps temporary files it creates during the

make process. The make utility stores temporary files in the directory that

you have specified with the environment variable TMPDIR or in the

default 'temp' directory of your system when the TMPDIR variable is not

specified.

Example

mktc –K

The make utility preserves all temporary files.

Related information

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

TriCore Reference Guide4–176
T

O
O

L
 O

P
T

IO
N

S

–k

Command line syntax

–k

Description

When during the make process the make utility encounters an error, it

stops rebuilding your files.

With the option –k, the make utility only stops building the target that

produced the error. All other targets defined in the makefile are built.

Example

mktc –k

If the make utility encounters an error, it stops building the current target

but proceeds with the other targets that are defined in the makefile.

Related information

Make utility option –S (Undo the effect of –k)

Tool Options – Make Utility 4–177

• • • • • • • •

–m

Command line syntax

–m file

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and flags you want to specify. With

this option you specify the option file to the make utility.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –m multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

TriCore Reference Guide4–178
T

O
O

L
 O

P
T

IO
N

S

Example

Suppose the file myoptions contains the following lines:

–k
–err errors.txt
test.elf

Specify the option file to the make utility:

mktc –m myoptions

This is equivalent to the following command line:

mktc –k –err errors.txt test.elf

Related information

-

Tool Options – Make Utility 4–179

• • • • • • • •

–n

Command line syntax

–n

Description

With this option you tell the make utility to perform a dry run. The make

utility shows what it would do but does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if

you call the make utility.

Example

mktc –n

The make utility does not perform any tasks but displays what it would do

if called without the option –n.

Related information

Make utility option –s (Do not print commands before execution)

TriCore Reference Guide4–180
T

O
O

L
 O

P
T

IO
N

S

–p

Command line syntax

–p

Description

Normally, if a command in a target rule in a makefile returns an error or

when the target construction is interrupted, the make utility removes that

target file. With this option you tell the make utility to make all target files

precious. This means that all dependency files are never removed.

Example

mktc –p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in section 8.3.2, Writing a Makefile in Chapter

Using the Utilities of the Reference Guide.

Tool Options – Make Utility 4–181

• • • • • • • •

–q

Command line syntax

–q

Description

With this option the make utility does not perform any tasks but only

returns an error code. A zero status indicates that all target files are up to

date, a non-zero status indicates that some or all target files are out of

date.

Example

mktc –q

The make utility only returns an error code that indicates whether all target

files are up to date or not. It does not rebuild any files.

Related information

-

TriCore Reference Guide4–182
T

O
O

L
 O

P
T

IO
N

S

–r

Command line syntax

–r

Description

When you call the make utility, it first reads the implicit rules from the file

mktc.mk , then it reads the makefile with the rules to build your files. (The

file mktc.mk is located in the \etc directory of the TriCore toolchain.)

With this option you tell the make utility not to read mktc.mk and to rely

fully on the make rules in the makefile.

Example

mktc –r

The make utility does not read the implicit make rules in mktc.mk .

Related information

-

Tool Options – Make Utility 4–183

• • • • • • • •

–S

Command line syntax

–S

Description

With this option you cancel the effect of the option –k. This is never

necessary except in a recursive make where the option –k might be

inherited from the top-level make via MAKEFLAGS or if you set the option

–k in the environment variable MAKEFLAGS.

Example

mktc –S

The effect of the option –k is cancelled so the make utility stops with the

make process after it encounters an error.

The option –k in this example may have been set with the environment

variable MAKEFLAGS or in a recursive call to mktc in the makefile.

Related information

Make utility option –k (On error, abandon the work for the current target

only)

TriCore Reference Guide4–184
T

O
O

L
 O

P
T

IO
N

S

–s

Command line syntax

–s

Description

With this option you tell the make utility to perform its tasks without

printing the commands it executes. Error messages are normally printed.

Example

mktc –s

The make utility rebuilds your files but does not print the commands it

executes during the make process.

Related information

Make utility option –n (Perform a dry run)

Tool Options – Make Utility 4–185

• • • • • • • •

–t

Command line syntax

–t

Description

With this option you tell the make utility to touch the target files, bringing

them up to date, rather than performing the rules to rebuild them.

Example

mktc –t

The make utility updates out-of-date files by giving them a new date and

time stamp. The files are not actually rebuild.

Related information

-

TriCore Reference Guide4–186
T

O
O

L
 O

P
T

IO
N

S

–time

Command line syntax

–time

Description

With this option you tell the make utility to display the current date and

time on standard output.

Example

mktc –time

The make utility displays the current date and time and updates

out-of-date files.

Related information

-

Tool Options – Make Utility 4–187

• • • • • • • •

–V

Command line syntax

–V

Description

Display version information. The make utility ignores all other options or

input files.

Example

mktc –v

The make utility does not perform any tasks but displays the following

version information:

TASKING TriCore VX–toolset program builder v xx . yr z Build nnn
Copyright year Altium BV Serial# 00000000

Related information

-

TriCore Reference Guide4–188
T

O
O

L
 O

P
T

IO
N

S

–W

Command line syntax

–W target

Description

With this option the make utility considers the specified target file always

as up to date and will not rebuild it.

Example

mktc –W test.elf

The make utility rebuilds out of date targets in the makefile except the file

test.elf which is considered now as up to date.

Related information

-

Tool Options – Make Utility 4–189

• • • • • • • •

–w

Command line syntax

–w

Description

With this option the make utility sends error messages and verbose

messages to standard out. Without this option, the make utility sends these

messages to standard error.

This option is only useful on UNIX systems.

Example

mktc –w

The make utility sends messages to standard out instead of standard error.

Related information

-

TriCore Reference Guide4–190
T

O
O

L
 O

P
T

IO
N

S

–x

Command line syntax

–x

Description

With this option the make utility shows extended error messages.

Extended error messages give more detailed information about the exit

status of the make utility after errors. EDE uses this option for the

graphical version of make.

Example

mktc –x

If errors occur, the make utility gives extended information.

Related information

-

Tool Options – Archiver 4–191

• • • • • • • •

4.6 ARCHIVER OPTIONS

The archiver and library maintainer artc is a tool to build library files and

it offers the possibility to replace, extract and remove modules from an

existing library.

The invocation syntax is:

artc key_option [sub_option ...] library [object_file]

This section describes all options for the archiver. Some suboptions can

only be used in combination with certain key options. They are described

together. Suboptions that can always be used are described separately.

The archiver is a command line tool so there are no equivalent options in

EDE.

Description Option Suboption

Display an overview of all options –?

Display version information –V

Print object module to standard output –p

Main functions

Delete object module from library –d –v

Move object module to another position –m –a –b –v

Replace or add an object module –r –a –b –c –u –v

Print a table of contents of the library –t –s0 –s1

Extract an object module from the library –x –v

Table 4-1: Overview of archiver options and suboptions

TriCore Reference Guide4–192
T

O
O

L
 O

P
T

IO
N

S

–?

Command line syntax

–?

Description

Displays an overview of all command line options.

Example

The following invocations display a list of the available command line

options:

artc –?
artc

Related information

-

Tool Options – Archiver 4–193

• • • • • • • •

-d

Command line syntax

-d [-v]

Description

Delete the specified object modules from a library. With the suboption -v

the archiver shows which files are removed.

-v Verbose: the archiver shows which files are removed.

Example

artc –d lib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library lib.a .

artc –d –v lib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library lib.a and

displays which files are removed.

Related information

-

TriCore Reference Guide4–194
T

O
O

L
 O

P
T

IO
N

S

–m

Command line syntax

–m [–a posname] [–b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how

programs are linked if a symbol is defined in more than one member.

Default, the specified members are moved to the end of the archive. Use

the suboptions –a or –b to move them to a specified place instead.

–a posname Move the specified object module(s) after

the existing module posname.

–b posname Move the specified object module(s) before

the existing module posname.

Example

Suppose the library lib.a contains the following objects (see option –t):

obj1.o
obj2.o
obj3.o

To move obj1.o to the end of lib.a :

artc –m lib.a obj1.o

To move obj3.o just before obj2.o :

artc –m –b obj3.o lib.a obj2.o

The library lib.a after these two invocations now looks like:

obj3.o
obj2.o
obj1.o

Related information

Archiver option –t (Print library contents)

Tool Options – Archiver 4–195

• • • • • • • •

–p

Command line syntax

–p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other

files or tools that serve your own purposes. Normally you do not need this

option.

Example

artc –p lib.a obj1.o > file.o

The archiver prints the file obj1.o to standard output where it is

redirected to the file file.o . The effect of this example is very similar to

extracting a file from the library but in this case the 'extracted' file gets

another nam.

Related information

-

TriCore Reference Guide4–196
T

O
O

L
 O

P
T

IO
N

S

–r

Command line syntax

–r [–a posname] [–b posname] [–c] [–u] [–v]

Description

You can use the option –r for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option –r normally adds a new module to the library. However, if the

library already contains a module with the specified name, the existing

module is replaced. If you specify a library that does not exist, the archiver

creates a new library with the specified name.

If you add a module to the library without specifying the suboption –a or

–b, the specified module is added at the end of the archive. Use the

suboptions –a or –b to insert them to a specified place instead.

–a posname Add the specified object module(s) after the

existing module posname.

–b posname Add the specified object module(s) before

the existing module posname.

–c Create a new library without checking

whether it already exists. If the library

already exists, it is overwritten.

–u Insert the specified object module only if it

is newer than the module in the library.

–v Verbose: the archiver shows which files are

removed.

The suboptions –a or –b have no effect when an object is added to the

library.

Tool Options – Archiver 4–197

• • • • • • • •

Examples

Suppose the library lib.a contains the following objects (see option –t):

obj1.o

To add obj2.o to the end of lib.a :

artc –r lib.a obj2.o

To insert obj3.o just before obj2.o :

artc –r –b obj2.o lib.a obj3.o

The library lib.a after these two invocations now looks like:

obj1.o
obj3.o
obj2.o

Creating a new library

To create a new library file, add an object file and specify a library that

does not yet exist:

artc –r obj1.o newlib.a

The archiver creates the library newlib.a and adds the object obj1.o to

it.

To create a new library file and overwrite an existing library, add an object

file and specify an existing library with the supoption –c:

artc –r –c obj1.o lib.a

The archiver overwrites the library lib.a and adds the object obj1.o to

it. The new library lib.a only contains obj1.o .

Related information

Archiver option –t (Print library contents)

TriCore Reference Guide4–198
T

O
O

L
 O

P
T

IO
N

S

–t

Command line syntax

–t [–s0|–s1]

Description

Print a table of contents of the library to standard out. With the

suboption –s you the archiver displays all symbols per object file.

–s0 Displays per object the library in which it resides, the

name of the object itself and all symbols in the object.

–s1 Displays only the symbols of all object files in the

library.

Example

artc –t lib.a

The archiver prints a list of all object modules in the library lib.a .

artc –t –s0 lib.a

The archiver prints per object all symbols in the library. This looks like:

prolog.o
 symbols:
lib.a:prolog.o:___Qabi_callee_save
lib.a:prolog.o:___Qabi_callee_restore
div16.o
 symbols:
lib.a:div16.o:___udiv16
lib.a:div16.o:___div16
lib.a:div16.o:___urem16
lib.a:div16.o:___rem16

Related information

-

Tool Options – Archiver 4–199

• • • • • • • •

–V

Command line syntax

–V

Description

Display version information. The archiver ignores all other options or

input files.

Example

artc –V

The archiver does not perform any tasks but displays the following version

information:

TASKING TriCore VX–toolset ELF archiver v xx . yr z Build nnn
Copyright year Altium BV Serial# 00000000

Related information

-

TriCore Reference Guide4–200
T

O
O

L
 O

P
T

IO
N

S

–x

Command line syntax

–x [–o] [–v]

Description

Extract an existing module from the library.

–o Give the extracted object module the same date as the

last-modified date that was recorded in the library.

Without this suboption it receives the last-modified

date of the moment it is extracted.

–v Verbose: the archiver shows which files are extracted.

Example

To extract the file obj.o from the library lib.a :

artc –x lib.a obj1.o

If you do not specify an object module, all object modules are extracted:

artc –x lib.a

Related information

-

Tool Options – Archiver 4–201

• • • • • • • •

–w

Command line syntax

–wlevel

Description

With this suboption you tell the archiver to suppress all warnings above

the specified level. The level is a number between 0 - 9.

The level of a message is printed between parentheses after the warning

number. If you do not use the –w option, the default warning level is 8.

Example

To suppresses warnings above level 5:

artc –x –w5 lib.a obj1.o

Related information

-

TriCore Reference Guide4–202
T

O
O

L
 O

P
T

IO
N

S

5

LIST FILE FORMATS
C

H
A

P
T

E
R

TriCore Reference Guide5–2
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

5

C
H

A
P

T
E

R

List File Formats 5–3

• • • • • • • •

5.1 ASSEMBLER LIST FILE FORMAT

The assembler list file is an additional output file of the assembler that

contains information about the generated code.

The list file consists of a page header and a source listing.

Page header

The page header consists of four lines:

TASKING TriCore VX–toolset Assembler v x. yr z Build nnn SN 00000000
This is the page header title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains information about the assembler name, version

number and serial number. The second line contains a title specified by

the TITLE (first page) assembler directive and a page number. The third

line is empty. The fourth line contains the heading of the source listing.

Source listing

The following is a sample part of a listing. An explanation of the different

columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE
 .
 .
0002 850F0008 26 ld.a a15,world
0006 F4AF 27 st16.a [a10],a15
0008 91000040 28 movh.a a4,#@his(_2_ini)
000C D9440000 29 lea a4,[a4]@los(_2_ini)
0010 1D000000 30 jg printf
 .
 .
0000 44 buf: .space 4
 | RESERVED
0003

The meaning of the different columns is:

ADDR This column contains the memory address. The

address is a hexadecimal number that represents the

offset from the beginning of a relocatable section or

the absolute address for an absolute section. The

address only appears on lines that generate object

code.

TriCore Reference Guide5–4
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

CODE This is the object code generated by the assembler for

this source line, displayed in hexadecimal format. For

lines that allocate space, the code field contains the

text "RESERVED".

CYCLES The first number in this column is the number of

instruction cycles needed to execute the instruction(s)

as generated in the CODE field. The second number is

the accumulated cycle count of this section.

LINE This column contains the line number. This is a

decimal number indicating each input line, starting

from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of

the source line from the assembly source file.

For the .SET and .EQU directives the ADDR and CODE columns do not

apply. The symbol value is listed instead.

Related information

See section 6.7, Generating a List File, in Chapter Using the Assembler of

the User's Guide for more information on how to generate a list file and

specify the amount of list file information.

List File Formats 5–5

• • • • • • • •

5.2 LINKER MAP FILE FORMAT

The linker map file is an additional output file of the linker that shows

how the link phase has mapped the sections and symbols from the various

object files (.o) to output sections. The locate part shows the absolute

position of each section. External symbols are listed per space with their

absolute address, both sorted on symbol and sorted on address.

With the linker option -m (map file formatting) you can specify which

parts of the map file you want to see.

Example (part of) linker map file

TriCore VX–toolset object linker – mapfile (task: task1)

–––

** File Part ************************************

* Processed files:

==================

 File | From archive | Symbol causing the extraction

 –––

 cstart.o | libc.a | _START

 hello.o | |

 printf.o | libc.a | printf

************************************* Call Graph Part *********************************

** Link Part ************************************

* Section translation:

======================

 [in] File | [in] Section | [in] Size | [out] Offset | [out] Section

 –––

 hello.o | .text.hello.main | 0x00000014 | 0x00000000 | .text.hello.main

 –––

 cstart.o | .text.libc | 0x000001ce | 0x00000000 | .text.libc

 strcpy.o | .text.libc | 0x00000024 | 0x000001d0 |

 cinit.o | .text.libc | 0x0000004e | 0x000001f4 |

 –––

 printf.o | .text.printf.printf | 0x0000002a | 0x00000000 | .text.printf.printf

TriCore Reference Guide5–6
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

*********************************** Cross Reference Part ******************************

* Defined symbols:

==================

 Definition file | Definition section | Symbol | Referenced in

 –––

 _doflt.o | .text._doflt._doflt | _doflt | _doprint.o

 _doprint.o | .text._doprint._doprint | _doprint | printf.o

 cstart.o | .text.libc.reset | _START | hello.o

 hello.o | .text.hello.main | main | cstart.o

 hello.o | .zdata.hello.world | world |

* Undefined symbols:

====================

 Symbol | Referenced in

 –––

 _LITERAL_DATA_ | cstart.o

 _SMALL_DATA_ | cstart.o

 _lc_cp | cinit.o

*************************************** Overlay Part **********************************

*************************************** Locate Part ***********************************

* Section translation:

======================

 Space | Chip | Group | Section | Size | Space addr | Chip addr

 –––

 TC1920:tc:csa | dsram | | csa | 0x00001000 | 0xd0000000 | 0x00000000

 –––

 TC1920:tc:linear | ext_c | cstart | .text.libc | 0x00000242 | 0xa0000000 | 0x00000000

 | ext_c2| | [.data.libc]| 0x000000f8 | 0xb0000000 | 0x00000000

* Symbol translation:

=====================

 Space | Symbol | Address || Space | Address | Symbol

 –––

 TC1920:tc:csa | _lc_ub_csa | 0xd0000000 || TC1920:tc:csa | 0xd0000000 | _lc_ub_csa

 | _lc_ue_csa | 0xd0001000 || | 0xd0001000 | _lc_ue_csa

 –––

 TC1920:tc:linear | _START | 0xa0000242 || TC1920:tc:linear | 0xa000013c | _exit

 | _exit | 0xa000013c || | 0xa0000242 | _START

 | printf | 0xa0001f90 || | 0xa0001f90 | printf

********************************* Linker Script File Part *****************************

*************************************** Memory Part ***********************************

List File Formats 5–7

• • • • • • • •

The meaning of the different parts is:

File Part

This part of the map file shows all processed files. This also includes

object files that are extracted from a library, with the symbol that led to the

extraction

Call Graph Part

This part of the map file contains a schematic overview that shows how

(library) functions call each other. To obtain call graph information, the

assembly file must contain .CALLS directives which you must manually

add to the assembly source.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mc (call graph info).

Link Part: Section translation

This part of the map file shows per object file how the link phase has

mapped the sections from the various object files (.o) to output sections.

[in] File The name of an input object file.

[in] Section A section name from the input object file.

[in] Size The size of the input section.

[out] Offset The offset relative to the start of the output section.

[out] Section The resulting output section name.

The input sections .text.libc in the object modules cstart.o ,

strcpy.o and cinit.o in the example above are all mapped on the

output section .text.libc on succeeding offsets.

Cross Reference Part

This part of the map file lists all symbols defined in the object modules

and for each symbol the object modules that contain a reference to the

symbol are shown. Also, symbols that remain undefined are shown.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mr (cross references info).

TriCore Reference Guide5–8
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

Overlay Part

This part of the map file shows how the static stack is organized. This part

is empty for the TriCore. This part also shows the locate overlay

information if you used overlay groups in the linker script file.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mo (overlay info).

Locate Part: Section translation

This part of the map file shows the absolute position of each section in the

absolute object file. It is organized per address space, memory chip and

group.

Space The names of the address spaces as defined in the

linker script file (tc*.lsl). The names are

constructed of the derivative name followed by a

colon ':', the core name, another colon ':' and the

space name. For example: TC1920:tc:linear

Chip The names of the memory chips as defined in the

linker control file (tc.i) and the memory_layout
part of the linker script file (tc*.lsl).

Group Sections can be ordered in groups. These are the

names of the groups as defined in the linker script file

(tc*.lsl) with the keyword group in the

section_layout part.

Section The name of the section. Names within square

brackets [] will be copied during initialization from

ROM to the corresponding section name in RAM.

Size The size of the section.

Space addr The absolute address of the section in the address

space.

Chip addr The absolute offset of the section from the start of a

memory chip.

List File Formats 5–9

• • • • • • • •

Locator Part: Symbol translation

This part of the map file lists all external symbols per address space name,

both sorted on address and sorted on symbol name.

Space The names of the address spaces as defined in the

linker script file (tc*.lsl). The names are

constructed of the derivative name followed by a

colon ':', the core name, another colon ':' and the

space name. For example: TC1920:tc:linear

Symbol The name of the symbol.

Address The absolute address of the symbol in the address

space.

Linker Script File Part

This part of the map file shows the processor and memory information of

the linker script file.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -ms (processor and memory info). You

can print this information to a separate file with linker option

––lsl-dump.

Memory Part

This part of the map file shows the memory usage in totals and

percentages for spaces and chips. The largest free block of memory per

space and per chip is also shown.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mm (memory usage info).

Related information

Section 7.8, Generating a Map File, in Chapter Using the Linker of the

User's Guide.

Linker option –M (Generate map file)

TriCore Reference Guide5–10
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

6

OBJECT FILE
FORMATS

C
H

A
P

T
E

R

TriCore Reference Guide6–2
O

B
JE

C
T

 F
O

R
M

A
T

S 6

C
H

A
P

T
E

R

Object File Formats 6–3

• • • • • • • •

6.1 ELF/DWARF OBJECT FORMAT

The TriCore toolchain by default produces objects in the ELF/DWARF 2

(.elf) format.

The ELF/DWARF 2 Object Format for the TriCore toolchain follows the

convention as described in the TriCore Embedded Application Binary
Interface [2000, Infineon].

For a complete description of the ELF and DWARF formats, please refer to

the Tools Interface Standards on Intel's website for developers:

http://developer.intel.com/vtune/tis.htm

TriCore Reference Guide6–4
O

B
JE

C
T

 F
O

R
M

A
T

S

6.2 MOTOROLA S-RECORD FORMAT

With the -cSREC option the linker produces output in Motorola S-record

format with three types of S-records: S0, S2 and S8. With the -cSREC:2 or

-cSREC4 option you can force other types of S-records. They have the

following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A linker generated S-record file starts with a S0 record with the following

contents:

length_byte : 0x6

comment : ltc (TriCore linker)

checksum : 0xB6

 l t c
S00600006C7463B6

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0xFF.

S1 - record

With the -cSREC:2 option of the linker, the actual program code and data

is supplied with S1 records, with the following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Object File Formats 6–5

• • • • • • • •

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The linker has an option that controls the length of the output buffer for

generating S1 records. The default buffer length is 32 code bytes.

The checksum calculation of S1 records is identical to S0.

S2 - record

With the -cSREC:3 option of the linker, which is the default, the actual

program code and data is supplied with S2 records, with the following

layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

For the TriCore the linker generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The linker has an option that controls the length of the output buffer for

generating S2 records. The default buffer length is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S3 - record

With the -cSREC:4 option of the linker, the actual program code and data

is supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

TriCore Reference Guide6–6
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The linker has an option that controls the length of the output buffer for

generating S3 records.

The checksum calculation of S3 records is identical to S0.

S7 - record

With the -cSREC:4 option of the linker, at the end of an S-record file, the

linker generates an S7 record, which contains the program start address. S7

is the corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S7 records is identical to S0.

S8 - record

With the -cSREC:3 option of the linker, which is the default, at the end of

an S-record file, the linker generates an S8 record, which contains the

program start address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9
 | | |_checksum
 | |_ address
 |_ length

Object File Formats 6–7

• • • • • • • •

The checksum calculation of S8 records is identical to S0.

S9 - record

With the -cSREC:2 option of the linker, at the end of an S-record file, the

linker generates an S9 record, which contains the program start address. S9

is the corresponding termination record for S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Example:

S9030210EA
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S9 records is identical to S0.

TriCore Reference Guide6–8
O

B
JE

C
T

 F
O

R
M

A
T

S

6.3 INTEL HEX RECORD FORMAT

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the TriCore the linker generates records in the 32-bit format (4-byte

addresses, linker option -cIHEX).

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁ
ÁÁÁ
ÁÁÁ

type
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

content
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The linker outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than 0xFF.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Object File Formats 6–9

• • • • • • • •

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32–bit)

05 Start linear address (32–bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The linker computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The linker then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

TriCore Reference Guide6–10
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁ
ÁÁÁ
ÁÁÁ

00

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The linker has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

Object File Formats 6–11

• • • • • • • •

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

05
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000500FF0003F5
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

TriCore Reference Guide6–12
O

B
JE

C
T

 F
O

R
M

A
T

S

7

LINKER SCRIPT
LANGUAGE

C
H

A
P

T
E

R

TriCore Reference Guide7–2
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7

C
H

A
P

T
E

R

Linker Script Language 7–3

• • • • • • • •

7.1 INTRODUCTION

To make full use of the linker, you can write a script with information

about the architecture of the target processor and locating information.

The language for the script is called the Linker Script Language (LSL). This

chapter first describes the structure of an LSL file. The next section

contains a summary of the LSL syntax. Finally, in the remaining sections,

the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can

simultaneously link and locate all programs for all cores available on a

target board. The target board may be of arbitrary complexity. A simple

target board may contain one standard processor with some external

memory that executes one task. A complex target board may contain

multiple standard processors and DSPs combined with configurable

IP-cores loaded in an FPGA. Each core may execute a different program,

and external memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics

(that are of interest to the linker) of your specific target board and of the

cores installed on the board. Second it enables you to specify how

sections should be located in memory.

7.2 STRUCTURE OF A LINKER SCRIPT FILE

 A script file generally consists of the following parts:

The architecture definition (required)

In essence an architecture definition describes how the linker should

convert virtual addresses into physical addresses for a given type of core.

If the core supports multiple address spaces, then for each space the linker

must know how to perform this conversion. In this context a physical

address is an offset on a given internal or external bus. Additionally the

architecture definition contains information about items such as the

(hardware) stack and the interrupt vector table.

Typically an architecture definition is written by Altium and should not be

changed by you unless you also modify a core's hardware architecture. If

the LSL file describes a multi-core system an architecture definition must

be available for each different type of core.

TriCore Reference Guide7–4
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

See section 7.5, Semantics of the Architecture Definition for detailed

descriptions of LSL in the architecture definition.

The derivative definition (required)

The derivative definition describes the configuration of the internal

(on-chip) bus and memory system. Basically it tells the linker how to

convert offsets on the busses specified in the architecture definition into

offsets in internal memory. A derivative definition must be present in an

LSL file. Microcontrollers and DSPs often have internal memory and I/O

sub-systems apart from one or more cores. The design of such a chip is

called a derivative. Altium provides LSL descriptions of supported

derivatives, along with "SFR files", which provide easy access to registers

in I/O sub-systems from C and assembly programs. When you build an

ASIC or use a derivative that is not (yet) supported by the TASKING tools,

you may have to write a derivative definition.

See section 7.6, Semantics of the Derivative Definition for a detailed

description of LSL in the derivative definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the

processor definition instantiates one derivative only (single-core

processor). A processor that contains multiple cores having the same

(homogeneous) or different (heterogeneous) architecture can also be

described by instantiating multiple derivatives of the same or different

types in separate processor definitions.

See section 7.7, Semantics of the Board Specification for a detailed

description of LSL in the processor definition.

The memory and bus definitions (optional)

Memory and bus definition are used within the context of a derivative

definition to specify internal memory and on-chip busses. In the context

of a board specification the memory and bus definitions are used to define

external (off-chip) memory and busses. Given the above definitions the

linker can convert a logical address into an offset into an on-chip or

off-chip memory device.

See section 7.7.3, Defining External Memory and Busses, for more

information on how to specify the external physical memory layout.

Internal memory for a processor should be defined in the derivative

definition for that processor.

Linker Script Language 7–5

• • • • • • • •

The board specification

The processor definition and memory and bus definitions together form a

board specification. LSL provides language constructs to easily describe

single-core and heterogeneous or homogeneous multi-core systems. The

board specification describes all characteristics of your target board's

system busses, memory devices, I/O sub-systems, and cores that are of

interest to the linker. Based on the information provided in the board

specification the linker can for each core:

• convert a virtual address to a physical addresses (offsets within a

memory device)

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within

the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control

where input sections are located. Features are provided such as: the

ability to place sections at a given load-address or run-time address, to

place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given

core is specified on the command line when you invoke the linker. The

linker will link and locate all sections of all tasks simultaneously. From the

section layout definition the linker can deduce where a given section may

be located in memory, form the board specification the linker can deduce

which physical memory is (still) available while locating the section.

See section 7.8, Semantics of the Section Layout Definition,, for more

information on how to locate a section at a specific place in memory.

Skeleton of a Linker Script File

The skeleton of a linker script file now looks as follows:

architecture architecture_name
{
 architecture definition
}

derivative derivative_name
{
 derivative definition
}

TriCore Reference Guide7–6
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

processor processor_name
{
 processor definition
}

memory definitions and/or bus definitions

section_layout space_name
{
 section placement statements
}

7.3 SYNTAX OF THE LINKER SCRIPT LANGUAGE

The following lexicon is used to describe the syntax of the Linker Script

Language:

A ::= B = A is defined as B
A ::= B C = A is defined as B and C; B is followed by C
A ::= B | C = A is defined as B or C
0|1 = zero or one occurrence of B
>=0 = zero of more occurrences of B
>=1 = one of more occurrences of B

IDENTIFIER = a character sequence starting with 'a'-'z', 'A'-'Z', _ , . or @

STRING = sequence of characters not starting with \n, \r or \t

DQSTRING = ” STRING ” (double quoted string)

OCT_NUM = octal number, starting with a zero (06, 045)
DEC_NUM = decimal number, not starting with a zero (14, 1024)
HEX_NUM = hexadecimal number, starting with '0x' (0x0023, 0xFF00)

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M

(mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are

higher order terms that are defined in the same or in one of the other

sections.

Linker Script Language 7–7

• • • • • • • •

7.3.1 IDENTIFIERS

arch_name ::= IDENTIFIER
bus_name ::= IDENTIFIER
core_name ::= IDENTIFIER
derivative_name ::= IDENTIFIER
file_name ::= DQSTRING
group_name ::= IDENTIFIER
mem_name ::= IDENTIFIER
proc_name ::= IDENTIFIER
section_name ::= DQSTRING
space_name ::= IDENTIFIER
stack_name ::= section_name
symbol_name ::= DQSTRING

7.3.2 EXPRESSIONS

The expressions and operators in this section work the same as in ANSI C.

number ::= OCT_NUM
 | DEC_NUM
 | HEX_NUM

assignment ::= symbol_name assign_op expr ;

assign_op ::= =
 | :=

expr ::= number
 | symbol_name
 | unary_op expr
 | expr binary_op expr
 | expr ? expr : expr
 | (expr)
 | function_call

unary_op ::= ! // logical NOT
 | ~ // bitwise complement
 | – // negative value

TriCore Reference Guide7–8
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

binary_op ::= ^ // exclusive OR
 | * // multiplication
 | / // division
 | % // modulus
 | + // addition
 | – // subtraction
 | >> // right shift
 | << // left shift
 | == // equal to
 | != // not equal to
 | > // greater than
 | < // less than
 | >= // greater than or equal to
 | <= // less than or equal to
 | & // bitwise AND
 | | // bitwise OR
 | && // logical AND
 | || // logical OR

7.3.3 BUILT-IN FUNCTIONS

function_call ::= absolute (expr)
 | addressof (addr_id)
 | max (expr , expr)
 | min (expr , expr)
 | sizeof (size_id)

addr_id ::= sect : section_name
 | mem : mem_name
 | group : group_name

size_id ::= sect : section_name
 | group : group_name

• Every space, bus, memory, section or group your refer to, must be

defined in the LSL file.

• The addressof() and sizeof() functions can only be used in

the right hand side of an assignment.

You can use the following built-in functions in expressions. All functions

return a numerical value. This value is a 64-bit signed integer.

Linker Script Language 7–9

• • • • • • • •

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.

absolute(”labelA”–”labelB”)

addressof()

int addressof(addr_id)

Returns the address of addr_id, which is a named section or memory. To

get the offset of the section with the name asect :

addressof(sect: ”asect”)

This function only works in assignments.

max()

int max(expr , expr)

Returns the value of the expression that has the largest value. To get the

highest value of two symbols:

max(”sym1” , ”sym2”)

min()

int min(expr , expr)

Returns the value of the expression hat has the smallest value. To get the

lowest value of two symbols:

min(”sym1” , ”sym2”)

TriCore Reference Guide7–10
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

sizeof()

int sizeof(size_id)

Returns the size of a section or group in an object file. To get the size of

the section "asection":

sizeof(sect: ”asection”)

This function only works in assignments.

7.3.4 LSL DEFINITIONS IN THE LINKER SCRIPT FILE

description ::= < definition >>=1

definition ::= architecture_definition
 | derivative_definition
 | board_spec
 | section_definition

• At least one architecture_definition must be present in the

LSL file.

7.3.5 MEMORY AND BUS DEFINITIONS

mem_def ::= memory mem_name { < mem_descr ; >>=0 }

• A mem_def defines a memory with the mem_name as a unique

name.

mem_descr ::= type = mem_type
 | mau = expr
 | size = expr
 | speed = number
 | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one speed statement

(default value is 1).

• A mem_def contains at least one mapping .

Linker Script Language 7–11

• • • • • • • •

mem_type ::= rom // attrs = rx
 | ram // attrs = rw
 | nvram // attrs = rwx

bus_def ::= bus bus_name { < bus_descr ; >>=0 }

• A bus_def statement defines a bus with the given bus_name as a

unique name within a core architecture.

bus_descr ::= mau = expr
 | width = expr // bus width, nr
 | // of data bits
 | mapping // legal destination
 // ’bus’ only

• The mau and width statements appear exactly once in a

bus_descr . The default value for width is the mau size.

• The bus width must be an integer times the bus MAU size.

• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through

dest = bus:).

mapping ::= map (map_descr < , map_descr >>=0)

map_descr ::= dest = destination
 | dest_dbits = range
 | dest_offset = expr
 | size = expr
 | src_dbits = range
 | src_offset = expr

• A mapping requires at least the size and dest statements.

• Each map_descr can occur only once.

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value

defaults to the width value if the source/destination is a bus, and to

the mau size otherwise.

destination ::= space : space_name
 | bus : < proc_name |
 core_name : >0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

TriCore Reference Guide7–12
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

- space => space

- space => bus

- bus => bus

- memory => bus

range ::= number .. number

7.3.6 ARCHITECTURE DEFINITION

architecture_definition
 ::= architecture arch_name
 <extends arch_name >0|1
 { arch_spec >=0 }

• An architecture_definition defines a core architecture with

the given arch_name as a unique name.

• At least one space_def and at least one bus_def have to be

present in an architecture_definition .

• An architecture_definition that uses the extends construct

defines an architecture that inherits all elements of the architecture

defined by the second arch_name . The parent architecture must

be defined in the LSL file as well.

arch_spec ::= bus_def
 | space_def
 | endianness_def

space_def ::= space space_name { < space_descr ; >>=0 }

• A space_def defines an address space with the given

space_name as a unique name within an architecture.

space_descr ::= space_property ;
 | section_definition //no space ref

Linker Script Language 7–13

• • • • • • • •

space_property ::= id = number // as used in object
 | mau = expr
 | align = expr
 | page_size = expr
 | stack_def
 | heap_def
 | copy_table_def
 | start_address
 | mapping

• A space_def contains exactly one id and one mau statement.

• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def ::= stack stack_name (stack_heap_descr
 < , stack_heap_descr > >=0)

• A stack_def defines a stack with the stack_name as a unique

name.

heap_def ::= heap heap_name (stack_heap_descr
 < , stack_heap_descr > >=0)

• A heap_def defines a heap with the heap_name as a unique

name.

copy_table_def ::= copytable (copy_table_descr
 < , copy_table_descr >>=0)

• A space_def contains at most one copytable statement.

• If the architecture definition contains more than one address space,

exactly one copy table must be defined in one of the spaces. If the

the architecture definition contains only one address space, a copy

table definition is optional (it will be generated in the space).

stack_heap_descr ::= min_size = expr
 | grows = direction
 | align = expr

• The min_size statement must be present.

• You can specify at most one align statement and one grows
statement.

direction ::= low_to_high
 | high_to_low

TriCore Reference Guide7–14
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• If you do not specify the grows statement, the stack and grow

low–to–high .

copy_table_descr ::= align = expr
 | copy_unit = expr
 | dest = space_name

• The copy_unit is defined by the size in MAUs in which the startup

code moves data.

• The dest statement is only required when the startup code

initializes memory used by another processor that has no access to

ROM.

• A space_name refers to a defined address space.

start_addr ::= start_address (start_addr_descr
 <, start_addr_descr >>=0)

start_addr_descr ::= run_addr = expr
 | section = section_name

• A section_name refers to the section that contains the startup code.

endianness_def ::= endianness { < endianness_type ; >>=1 }

endianness_type ::= big
 | little

7.3.7 DERIVATIVE DEFINITION

derivative_definition
 ::= derivative derivative_name
 <extends derivative_name >0|1
 { < derivative_spec >>=0 }

• A derivative_definition defines a derivative with the given

derivative_name as a unique name.

• At least one core_def and at least one bus_def have to be

present in a derivative_definition .

derivative_spec ::= core_def
 | bus_def
 | mem_def

core_def ::= core core_name { < core_descr ; >>=0 }

• A core_def defines a core with the given core_name as a unique

name.

Linker Script Language 7–15

• • • • • • • •

core_descr ::= architecture = arch_name
 | endianness = (endianness_type
 <, endianness_type >>=0)

• An arch_name refers to a defined core architecture.

• Exactly one architecture statement must be present in a

core_def .

7.3.8 PROCESSOR DEFINITION AND BOARD

SPECIFICATION

board_spec ::= proc_def
 | bus_def
 | mem_def

proc_def ::= processor proc_name
 { proc_descr ; }

proc_descr ::= derivative = derivative_name

• A proc_def defines a processor with the proc_name as a unique

name.

• If you do not explicitly define a processor for a derivative in an LSL

file, the linker defines a processor with the same name as that

derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

7.3.9 SECTION PLACEMENT DEFINITION

section_definition ::= section_layout < space_ref >0|1
 < (space_props) >0|1
 { < section_statement >>=0 }

• A section definition inside a space definition does not have a

space_ref .

• All global section definitions have a space_ref .

space_ref ::= < proc_name >0|1 : <core_name >0|1

 : space_name

• If more than one processor is present, the proc_name must be

given for a global section layout.

TriCore Reference Guide7–16
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• If the section layout refers to a processor that has more than one

core, the core_name must be given in the space_ref .

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

space_props ::= space_property < , space_property >>=0

space_property ::= locate_direction

locate_direction ::= direction = direction

direction ::= low_to_high
 | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction

of the section layout is low–to–high .

section_statement
 ::= simple_section_statement ;
 | aggregate_section_statement

simple_section_statement
 ::= assignment
 | if_statement
 | select_section_statement
 | special_section_statement

aggregate_section_statement
 ::= { < section_statement >>=0 }
 | group_descr

select_section_statement
 ::= select < section_name >0|1
 < section_selections >0|1

• Either a section_name or at least one section_selection must

be defined.

section_selections
 ::= (section_selection
 < , section_selection >>=0)

section_selection
 ::= attributes = < < +| –> attribute >>0

• +attribute means: select all sections that have this attribute.

Linker Script Language 7–17

• • • • • • • •

• -attribute means: select all sections that do not have this

attribute.

if_statement ::= if (expr) section_statement
 < else section_statement >0|1

special_section_statement
 ::= heap stack_name < size_spec >0|1

 | stack stack_name < size_spec >0|1

 | copytable
 | reserved < section_name >0|1
 < size_spec >0|1

size_spec ::= (size = expr)

group_descr ::= group <group_name> 0|1

 < (group_specs) >0|1

 section_statement
group_specs ::= group_spec < , group_spec >>=0

group_spec ::= group_alignment
 | attributes
 | group_load_address
 | group_page
 | group_run_address
 | group_type
 | allow_cross_references

• The allow–cross–references property is only allowed for

overlay groups.

• Sub groups inherit all properties from a parent group.

group_alignment ::= align = expr

attributes ::= attributes = <attribute >>=1

group_load_address
 ::= load_addr load_or_run_addr_assignment

group_page ::= page < = expr >0|1

group_run_address ::= run_addr load_or_run_addr_assignment

group_type ::= clustered
 | contiguous
 | ordered
 | overlay

TriCore Reference Guide7–18
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• For non-contiguous groups, you can only specify

group_alignment and attributes .

• The overlay keyword also sets the contiguous property.

• The clustered property cannot be set together with contiguous
or ordered on a single group.

attribute ::= r // read–only sections
 | w // read/write sections
 | x // executable code sections
 | i // initialized sections
 | s // scratch sections
 | b // blanked (cleared) sections

load_or_run_addr_assignment
 ::= < = load_or_run_addr >0|1

load_or_run_addr ::= expr
 | memory_reference
 < | memory_reference > >=0

memory_reference ::= mem : <proc_name : >0|1

 <core_name : >0|1 mem_name

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A mem_name refers to a defined memory.

7.4 EXPRESSION EVALUATION

Only constant expressions are allowed, including sizes, but not addresses,

of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The

result of an expression can be absolute or relocatable. A symbol you

assign is created as an absolute symbol.

Linker Script Language 7–19

• • • • • • • •

7.5 SEMANTICS OF THE ARCHITECTURE DEFINITION

Keywords in the architecture definition

architecture
 extends
bus
 mau
 width
 map
space
 id
 mau
 align
 page_size
 stack
 min_size
 grows low_to_high high_to_low
 align
 heap
 min_size
 grows low_to_high high_to_low
 align
 copytable
 align
 copy_unit
 dest
 start_address
 run_addr
 section
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

TriCore Reference Guide7–20
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.5.1 DEFINING AN ARCHITECTURE

With the keyword architecture you define an architecture and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

architecture name
{
 definitions
}

If you are defining multiple core architectures that show great

resemblance, you can define the common features in a parent core

architecture and extend this with a child core architecture that contains

specific features. The child inherits all features of the parent. With the

keyword extends you create a child core architecture:

architecture name_child_arch extends name_parent_arch
{
 definitions
}

7.5.2 DEFINING INTERNAL BUSSES

With the bus keyword you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions in an architecture

definition or derivative definition define internal busses. Some internal

busses are used to communicate with the components outside the core or

processor. Such busses on a processor have physical pins reserved for the

number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the data bus. This field is required.

• The width field specifies the width (number of address lines) of the

data bus. The default value is the MAU size.

• The map keyword specifies how this bus maps onto another bus (if so).

Mappings are described in section 7.5.4, Mappings.

Linker Script Language 7–21

• • • • • • • •

bus bus_name
{
 mau = 8;
 width = 8;
 map (map_description);
}

7.5.3 DEFINING ADDRESS SPACES

With the space keyword you define a logical address space. The space

name is used to identify the address space and does not conflict with other

identifiers.

• The id field defines how the addressing space is identified in object

files. In general, each address space has a unique ID. The linker locates

sections with a certain ID in the address space with the same ID. This

field is required. In IEEE this ID is specified explicitly for sections and

symbols, ELF sections map by default to the address space with ID 1.

Sections with one of the special names defined in the ABI (Application

Binary Interface) may map to different address spaces.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the space. This field is required.

• The align value must be a power of two. The linker uses this value to

compute the start addresses when sections are concatenated. An align

value of n means that objects in the address space have to be aligned

on n MAUs.

• The page_size field sets the page size in MAUs for the address space.

It must be a power of 2. The default page size is 1. See also the page
keyword in subsection Locating a group in section 7.8.2, Creating and
Locating Groups of Sections.

• The stack keyword defines a stack in the address space and assigns a

name to it. The architecture definition must contain at least one stack

definition. Each stack of a core architecture must have a unique name.

See also the stack keyword in section 7.8.3, Creating or Modifying
Special Sections.

The stack is described in terms of a minimum size (min_size) and the

direction in which the stack grows (grows). This can be either from

low_to_high addresses (stack grows upwards, this is the default) or

from high_to_low addresses (stack grows downwards). The

min_size is required.

TriCore Reference Guide7–22
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

Optionally you can specify an alignment for the stack with the

argument align . This alignment must be equal or larger than the

alignment that you specify for the address space itself.

• The heap keyword defines a heap in the address space and assigns a

name to it. The definition of a heap is similar to the definition of a

stack. See also the heap keyword in section 7.8.3, Creating or
Modifying Special Sections.

See section 7.8, Semantics of the Section Layout Definition for

information on creating and placing stack sections.

• The copytable keyword defines a copy table in the address space.

The content of the copy table is created by the linker and contains the

start address and size of all sections that should be initialized by the

startup code. If the architecture definition contains more than one

address space, you must define exactly one copy table in one of the

address spaces. If the architecture definition contains only one address

space, the copy table definition is optional.

Optionally you can specify an alignment for the copy table with the

argument align . This alignment must be equal or larger than the

alignment that you specify for the address space itself. If smaller, the

alignment for the address space is used.

The copy_unit argument specifies the size in MAUs of information

chunks that are copied. If you do not specify the copy unit, the MAU

size of the address space itself is used.

The dest argument specifies the destination address space that the

code uses for the copy table. The linker uses this information to

generate the correct addresses in the copy table. The memory into

where the sections must be copied at run-time, must be accessible

from this destination space.

• The start_address keyword specifies the start address for the

position where the C startup code is located. When a processor is reset,

it initializes its program counter to a certain start address, sometimes

called the reset vector. In the architecture definition, you must specify

this start address in the correct address space in combination with the

name of the start section which must be located here.

The run_addr argument specifies the start address (reset vector).

The section argument specifies the name of the start section that

should be located at the specified start address. The section
argument is required.

Linker Script Language 7–23

• • • • • • • •

• The map keyword specifies how this address space maps onto an

internal bus or onto another address space. Mappings are described in

section 7.5.4, Mappings.

space space_name
{
 id = Y1;
 mau = 8;
 align = 8;
 page_size = 1;
 stack name (min_size = 1k, grows = low_to_high);
 start_address (run_addr = 0x0000,
 section = ” start_section_name ”)
 map (map_description);
}

7.5.4 MAPPINGS

You can use a mapping when you define a space, bus or memory. With

the map field you specify how addresses from the source (space, bus or

memory) are translated to addresses of a destination (space, bus). The

following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map

(specified by a source offset and a size), the destination to which you

want to map them (a bus or another address space), and the offset address

in the destination.

• The dest argument specifies the destination. This can be a bus or

another address space (only for a space to space mapping). This

argument is required.

• The src_offset argument specifies the offset of the source addresses.

In combination with size, this specifies the range of address that are

mapped. Default the source offset is 0x0000.

• The size argument specifies the number of addresses that are

mapped. This argument is required.

TriCore Reference Guide7–24
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The dest_offset argument specifies the position in the destination to

which the specified range of addresses is mapped. Default the

destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each

bus may differ. In this case you have to specify a range of source data

lines you want to map (src_dbits = begin .. end) and the range of

destination data lines you want to map them to (dest_dbits =
first .. last).

• The src_dbits argument specifies a range of data lines of the source

bus. Default all data lines are mapped.

• The dest_dbits argument specifies a range of data lines of the

destination bus. Default, all data lines from the source bus are mapped

on the data lines of the destination bus (starting with line 0).

From space to bus

All spaces that are not mapped to another space must map to a bus in the

architecture:

space large
{
 id = Y1;
 mau = 4;
 map (src_offset = 0, dest_offset = 0,
 dest = bus : bus_name , size = 16M);
}

From space to space

If you map an address space to another address space (nesting), you can

do this by mapping the subspace to the containing larger space. In this

example a small space of 64k is mapped on a large space of 16M.

space small
{
 id = Y2;
 mau = 4;
 map (src_offset = 0, dest_offset = 0,
 dest = space : large, size = 64k);
}

Linker Script Language 7–25

• • • • • • • •

From bus to bus

The next example maps an external bus called e_bus to an internal bus

called i_bus . This internal bus resides on a core called mycore . The

source bus has 16 data lines whereas the destination bus has only 8 data

lines. Therefore, the keywords src_dbits and dest_dbits specify

which source data lines are mapped on which destination data lines.

architecture mycore
{
 bus i_bus
 {
 mau = 4;
 }

 space i_space
 {
 map (dest=bus:i_bus, size=256);
 }
}

bus e_bus
{
 mau = 16;
 width = 16;
 map (dest = bus : mycore : i_bus,
 src_dbits = 0 .. 7, dest_dbits = 0 .. 7)
}

It is not possible to map an internal bus to an external bus.

TriCore Reference Guide7–26
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.6 SEMANTICS OF THE DERIVATIVE DEFINITION

Keywords in the derivative definition

derivative
 extends
core
 architecture
bus
 mau
 width
 map
memory
 type rom ram nvram
 mau
 size
 speed
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

7.6.1 DEFINING A DERIVATIVE

With the keyword derivative you define a derivative and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

derivative name
{
 definitions
}

Linker Script Language 7–27

• • • • • • • •

If you are defining multiple derivatives that show great resemblance, you

can define the common features in a parent derivative and extend this

with a child derivative that contains specific features. The child inherits all

features of the parent (cores and memories). With the keyword extends
you create a child derivative:

derivative name_child_deriv extends name_parent_deriv
{
 definitions
}

7.6.2 INSTANTIATING CORE ARCHITECTURES

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given

core has a certain architecture. The architecture name refers to an

existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2)

that have the same architecture (called mycorearch), you must

instantiate both cores as follows:

core mycore_1
{
 architecture = mycorearch;
}

core mycore_2
{
 architecture = mycorearch;
}

7.6.3 DEFINING INTERNAL MEMORY AND BUSSES

With the memory keyword you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. It is common to define internal

memory (on-chip) in the derivative definition. External memory (off-chip

memory) is usually defined in the board specification (See section 7.7.3,

Defining External Memory and Busses).

TriCore Reference Guide7–28
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The type field specifies a memory type:

- rom : read only memory

- ram : random access memory

- nvram : non volatile ram

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the memory. This field is required.

• The size field specifies the size in MAU of the memory. This field is

required.

• The speed field specifies a symbolic speed for the memory (0..4): 0 is

the fastest, 4 the slowest. The linker uses the relative speed of the

memories in such a way, that optimal speed is achieved. The default

speed is 1.

• The map field specifies how this address space maps onto an (internal)

bus. Mappings are described in section 7.5.4, Mappings.

memory mem_name
{
 type = rom;
 mau = 8;
 size = 64k;
 speed = 2;
 map (map_description);
}

With the bus keyword you define a bus in a derivative definition. Busses

are described in section 7.5.2, Defining Internal Busses.

Linker Script Language 7–29

• • • • • • • •

7.7 SEMANTICS OF THE BOARD SPECIFICATION

Keywords in the board specification

processor
 derivative
bus
 mau
 width
 map
memory
 type rom ram nvram
 mau
 size
 speed
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

7.7.1 DEFINING A PROCESSOR

If you have a target board with multiple processors that have the same

derivative, you need to instantiate each individual processor in a processor

definition. This information tells the linker which processor has which

derivative and enables the linker to distinguish between the present

processors.

If you use processors that all have a unique derivative, you may omit the

processor definitions. In this case the linker assumes that for each

derivative definition in the LSL file there is one processor. The linker uses

the derivative name also for the processor.

TriCore Reference Guide7–30
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

With the keyword processor you define a processor. You can freely

choose the processor name. The name is used to refer to it at other places

in the LSL file:

processor proc_name
{
 processor definition
}

7.7.2 INSTANTIATING DERIVATIVES

With the keyword derivative you tell the linker that the given processor

has a certain derivative. The derivative name refers to an existing

derivative definition in the same LSL file.

For examples, if you have two processors on your target board (called

myproc_1 and myproc_2) that have the same derivative (called

myderiv), you must instantiate both processors as follows:

processor myproc_1
{
 derivative = myderiv;
}

processor myproc_2
{
 derivative = myderiv;
}

7.7.3 DEFINING EXTERNAL MEMORY AND BUSSES

It is common to define external memory (off-chip) and external busses at

the global scope (outside any enclosing definition). Internal memory

(on-chip memory) is usually defined in the scope of a derivative

definition.

With the keyword memory you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. If you define memory parts in the

LSL file, only the memory defined in these parts is used for placing

sections.

Linker Script Language 7–31

• • • • • • • •

If no external memory is defined in the LSL file and if the linker option to

allocate memory on demand is set then the linker will assume that all

virtual addresses are mapped on physical memory. You can override this

behavior by specifying one or more memory definitions.

memory mem_name
{
 type = rom;
 mau = 8;
 size = 64k;
 speed = 2;
 map (map_description);
}

For a description of the keywords, see section 7.6.3, Defining Internal
Memory and Busses.

With the keyword bus you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions at the global

scope (outside any definition) define external busses. These are busses

that are present on the target board.

bus bus_name
{
 mau = 8;
 width = 8;
 map (map_description);
}

For a description of the keywords, see section 7.5.2, Defining Internal
Busses.

You can connect off-chip memory to any derivative: you need to map the

off-chip memory to a bus and map that bus on the internal bus of the

derivative you want to connect it to.

TriCore Reference Guide7–32
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.8 SEMANTICS OF THE SECTION LAYOUT DEFINITION

Keywords in the section layout definition

section_layout
 direction low_to_high high_to_low
group
 align
 attributes + – r w x b i s
 ordered
 clustered
 contiguous
 overlay
 allow_cross_references
 load_addr
 mem
 run_addr
 mem
 page
select
heap
 size
stack
 size
reserved
 size
copytable

if
else

7.8.1 DEFINING A SECTION LAYOUT

With the keyword section_layout you define a section layout for

exactly one address space. In the section layout you can specify how input

sections are placed in the address space, relative to each other, and what

the absolute run and load addresses of each section will be.

Linker Script Language 7–33

• • • • • • • •

You can define one or more section definitions. Each section definition

arranges the sections in one address space. You can precede the address

space name with a processor name and/or core name, separated by

colons. You can omit the processor name and/or the core name if only

one processor is defined and/or only one core is present in the processor.

A reference to a space in the only core of the only processor in the system

would look like "::my_space ". A reference to a space of the only core

on a specific processor in the system could be "my_chip::my_space ".

The next example shows a section definition for sections in the my_space
address space of the processor called my_chip :

section_layout my_chip::my_space (space_props)
{
 section statements
}

With the optional keyword direction you specify whether the linker

starts locating sections from low_to_high (default) or from

high_to_low . In the second case the linker starts locating sections at the

highest addresses in the address space but preserves the order of sections

when necessary (one processor and core in this example).

section_layout ::my_space (direction = high_to_low)
{
 section statements
}

If you do not explicitly tell the linker how to locate a section, the linker

decides on the basis of the section attributes in the object file and the

information in the architecture definition and memory parts where to

locate the section.

7.8.2 CREATING AND LOCATING GROUPS OF

SECTIONS

Sections are located per group. A group can contain one or more (sets of)

input sections as well as other groups. Per group you can assign a mutual

order to the sets of sections and locate them into a specific memory part.

group (group_specifications)
{
 section_statements
}

TriCore Reference Guide7–34
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

With the section_statements you generally select sets of sections to form

the group. This is described in subsection Selecting sections for a group.

Instead of selecting sections, you can also modify special sections like

stack and heap or create a reserved section. This is described in section

7.8.3, Creating or Mofifying Special Sections.

With the group_specifications you actually locate the sections in the group.

This is described in subsection Locating a group.

Selecting sections for a group

With the select keyword you can select one or more sections for the

group. You can select a section by name or by attributes. If you select a

section by name, you can use a wildcard pattern:

"*" matches with all section names

"?" matches with a single character in the section name

"\" takes the next character literally

"[abc]" matches with a single 'a', 'b' or 'c' character

"[a-z]" matches with any single character in the range 'a' to 'z'

group (...)
{
 select ”.mysection”;
 select ”*”;
}

The first select statement selects the section with the name ".mysection".

The second select statement selects all sections that were not selected

yet.

A section is selected by the first select statement that matches, in the

union of all section layouts for the address space. Global section layouts

are processed in the order in which they appear in the LSL file. Internal

core architecture section layouts always take precendence over global

section layouts.

• The attributes field selects all sections that carry (or do not carry)

the given attribute. With +attribute you select sections that have the

specified attribute set. With -attribute you select sections that do not

have the specified attribute set. You can specify one or more of the

following attributes:

- r readable sections

- w readable/writable sections

Linker Script Language 7–35

• • • • • • • •

- x executable sections

- i initialized sections

- b sections that should be cleared at program startup (BSS)

- s scratch sections (not cleared and not initialized)

To select all read-only sections:

group (...)
{
 select (attributes = +r);
}

Keep in mind that all section selections are restricted to the address space

of the section layout in which this group definition occurs.

Locating a group

group group_name (group_specifications)
{
 section_statements
}

With the group_specifications you actually define how the locator must

locate the group. You can roughly define three things: 1) assign properties

to the group like alignment and read/write attributes, 2) define the mutual

order in the address space for sections in the group and 3) assign a

load-time address or run-time address to the group.

The linker creates labels that allow you to refer to the begin and end

address of a group from within the application software. Labels

_lc_gb_ group_name and _lc_ge_ group_name mark the begin and end

of the group respectively, where the begin is the lowest address used

within this group and the end is the highest address used. Notice that a

group not necessarily occupies all memory between begin and end

address. The given label refers to where the section is located at run-time

(versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups)

and override the attributes of the input sections.

TriCore Reference Guide7–36
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The align field tells the linker to align all sections in the group and

the group as a whole according to the align value. Default the linker

uses the largest alignment constraint of either the input sections or the

alignment of the address space.

• The attributes field tells the linker to assign one or more attributes

to the sections in the group. Default the linker uses the attributes of the

input sections. The list of available attributes is the same as described

above for the selection of sections.

2. Define the mutual order of the sections in the group. By default, a group

is unrestricted which means that the linker has total freedom to place the

sections of the group in the address space.

• The ordered keyword tells the linker to locate the sections in the

same order in the address space as they appear in the group (but not

necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B'

 and 'C'. Default the linker places the sections in the address space like

'A' - 'B' - 'C', where section 'A' gets the lowest possible address. With

direction=high_to_low in the section_layout space properties,

the linker places the sections in the address space like 'C' - 'B' - 'A',

where section 'A' gets the highest possible address.

• The contiguous keyword tells the linker to locate the sections in the

group in a single address range, thus without 'gaps' between the

sections.

When you define a group that is both ordered and contiguous , this

is called a sequential group. In a sequential group the linker places

sections in the same order in the address space as they appear in the

group and leaves no 'gaps' between them.

• The clustered keyword tells the linker to locate the sections in the

group in a number of contiguous blocks. It tries to keep the number of

these blocks to a minimum. If enough memory is available, the group

will be located as if it was specified as contiguous . Otherwise, it gets

split into two or more blocks.

• The overlay keyword tells the linker to overlay the sections in the

group. The linker places all sections in the address space using a

contiguous range of addresses. (Thus an overlay group is automatically

also a contiguous group.) To overlay the sections, all sections in the

overlay group share the same run-time address.

Linker Script Language 7–37

• • • • • • • •

For each input section within the overlay the linker automatically

defines two symbols. The symbol _lc_cb_ section_name is defined

as the load-time start address of the section. The symbol

_lc_ce_ section_name is defined as the load-time end address of

the section. C (or assembly) code may be used to copy the overlaid

sections.

If sections in the overlay group contain references between groups, the

linker reports an error. The keyword allow_cross_references tells

the linker to accept cross-references. Normally, it does not make sense

to have references between sections that are overlaid.

group ovl (overlay)
{
 group a
 {
 select ”my_ovl_p1”;
 select ”my_ovl_p2”;
 }
 group b
 {
 select ”my_ovl_q1”;
 }
}

It may be possible that one of the sections in the overlay group already

has been defined in another group where it received a load-time

address. In this case the linker does not overrule this load-time address

and excludes the section from the overlay group.

3. Assign a load-time address or run-time address to the group.

By default, the position and properties of a group in an LSL file specify the

run-time addresses of its sections. The linker uses the addresses defined

by the run-time addresses when it patches symbol references in the object

code. It may be possible that you want to assign a different load-time and

run-time address to a group. The load-time address specifies where the

group's elements are loaded in at download time. The run-time address

specifies where sections are located at run-time, that is when the program

is executing. The program is responsible for copying overlay sections at

appropriate moment from its load-time location to its run-time location.

TriCore Reference Guide7–38
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The run_addr keyword defines the run-time start address. If the

run-time location of a group is set explicitly, the given order between

groups specify whether the run-time address propagates to the parent

group or not. With an expression you can specify that the group should

be located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)

With the mem keyword you can specify that the group should be

located within a physical memory device, instead of an address value:

group (run_addr = mem: my_dram)

You can use the '| ' to specify an address range of more than one

physical memory device:

group (run_addr = mem: A | mem :B)

The run_addr keyword itself (without an assignment) specifies that

the group's position in the section layout defines its run-time address,

which is the default.

group (run_addr)

• The load_addr keyword defines the load-time start address. With an

expression you can specify that the first element of the group should be

loaded at the absolute address specified by the expression:

group (load_addr = 0x00000000)

With the mem keyword you can specify that the elements of the group

should be loaded within a physical memory (or use '| ' to specify an

address range):

group (load_addr = mem: my_ram, ...)

The load_addr keyword itself (without an assignment) specifies that

the group's location defines its load-time address.

group (load_addr)

The load-time and run-time addresses of a group cannot be set at the

same time. If the load-time property is set for a group, the group (only)

restricts the positioning at load-time of the group's sections. It is not

allowed to set the address of a group that has a not-unrestricted parent

group.

Linker Script Language 7–39

• • • • • • • •

The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the

application copies the sections from their load location to their

run-time location, but only if these two addresses are different. For

non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted

groups.

• For non-overlay groups that do not have an overlay parent, the

load-time start address equals the run-time start address.

• For any group, if the run-time start address is not set, the linker

selects an appropriate address.

For overlays, the linker reserves memory at the run-time start address as

large as the largest element in the overlay group.

• The page keyword tells the linker to place the group in one page.

Instead of specifying a run-time address, you can specify a page and

optional a page number. Page numbers start from zero. Default the

linker chooses a page number by itself.

The page keyword refers to pages in the address space as defined in

the architecture definition. See also the page keyword in section 7.5.3,

Defining Address Spaces.

group (page , ...)
group (page = 3 , ...)

7.8.3 CREATING OR MODIFYING SPECIAL SECTIONS

Instead of selecting sections, you can also create a reserved section or

modify special sections like a stack or a heap, a reserved section. Because

you cannot define these sections in the input files, you must use the linker

to create them.

• The stack keyword tells the linker to reserve memory for the stack.

The name for the stack section refers to the stack as defined in the

architecture definition. If no name was specified in the architecture

definition, the default name is stack .

With the keyword size you can specify the size for the stack. If the

size is not given then the size given in the architecture definition is

used.

TriCore Reference Guide7–40
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

group (...)
{
 stack ”mystack” (size = 2k);
}

The linker creates two labels to mark the begin and end of the stack,

_lc_ub_ stack_name for the begin of the stack and

_lc_ue_ stack_name for the end of the stack. The linker allocates

space for the stack when there is a reference to either of the labels.

See also the stack keyword in section 7.5.3, Defining Address Spaces.

• The heap keyword tells the linker to reserve a dynamic memory range

for the malloc() function. Optionally you can assign a name to the

heap section. With the keyword size you can change the size for the

heap. If the size is not given then the size given in the architecture

definition is used.

group (...)
{
 heap ”myheap” (size = 2k);
}

The linker creates two labels to mark the begin and end of the heap,

_lc_ub_ heap_name for the begin of the heap and

_lc_ue_ heap_name for the end of the heap. The linker allocates

space for the heap when a reference to either of the section labels

exists in one of the input object files.

• The reserved keyword tells the linker to create a section of a given

size. The linker will not locate any other sections in the memory

occupied by a reserved section. Optionally you can assign a name to a

reserved section. With the keyword size you can specify a size for a

given reserved section.

group (...)
{
 reserved ”myreserved” (size = 2k);
}

The linker creates two labels to mark the begin and end of the section,

_lc_ub_ name for the start, and _lc_ue_ name for the end of the

reserved section.

Linker Script Language 7–41

• • • • • • • •

• The copytable keyword tells the linker to select a section that is used

as copy-table. The content of the copy-table is created by the linker. It

contains the start address and length of all sections that should be

initialized by the startup code.

The linker creates two labels to mark the begin and end of the section,

_lc_ub_table for the start, and _lc_ue_table for the end of the

copy table. The linker generates a copy table when a reference to

either of the section labels exists in one of the input object files.

7.8.4 CONDITIONAL GROUP STATEMENTS

Within a group, you can conditionally select sections or create special

sections.

• With the if keyword you can specify a condition. The succeeding

section statement is executed if the condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which

is executed in case the if-condition evaluates to FALSE (0).

group (...)
{
 if (size_of (sect:.mysection) < 2k)
 select ”.mysection”;
 else
 select ”.othersection”;
}

TriCore Reference Guide7–42
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8

CPU FUNCTIONAL
PROBLEMS

C
H

A
P

T
E

R

TriCore Reference Guide8–2
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

8

C
H

A
P

T
E

R

CPU Functional Problems 8–3

• • • • • • • •

8.1 INTRODUCTION

Infineon Technologies regularly publishes microcontroller errata sheets

reporting functional problems and deviations from the electrical

specifications and timing specifications.

The TASKING TriCore software development tools provide solutions for a

number of these functional problems in the TriCore architecture.

Support to deal with CPU functional problem is provided in three areas:

• Whenever possible and relevant, compiler bypasses will modify the

code in order to avoid the identified erroneous code sequences;

• The TriCore assembler gives warnings for suspicious or erroneous code

sequences;

• Ready-built, 'protected' standard C libraries with bypasses for all

identified TriCore CPU functional problems are included in the

toolchain.

This chapters lists a summary of identified functional problems which can

be bypassed by the TASKING TriCore tool kit.

Please refer to the Infineon errata sheets for the TriCore architecture

revision-step of your particular device, to check the need for applying any

of these bypasses. Also refer to the Infineon errata sheets for a complete

description of the CPU functional problems, as the workarounds listed

below do not describe the functional problem itself.

The syntax used by Infineon to identify a CPU functional problems is:

TC<architecture_nr><version>_<module_name><problem_nr>

For example: TC113_CPU5 (TC1, version 1.3, module �CPU", problem #5)

With the TASKING C compiler and assembler command line options,

pragmas and macro definitions you can enable or disable specific CPU

functional problem bypasses.

To enable the compiler bypasses and assembler checks for all TriCore CPU

TC112 problems (respectively TC113 problems) at once, use the command

line option ––silicon-bug=all-tc112 (respectively

––silicon-bug=all-tc113)

TriCore Reference Guide8–4
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

To enable the bypasses from the embedded development environment

(EDE):

1. From the Projects menu select Project Options...

2. Expand the Processor entry

3. Select Bypasses. Depending on the target processor you have selected,

this shows the bypasses for the TC1 v1.2 or TC1 v1.3.

The table below shows an overview of all CPU functional problems.

TC Version Functional Problem

112 COR1

112 COR3

112 COR4

112 COR6

112 COR7

112 COR10

112 COR13

112 COR14

112 COR15

112 COR16

112 COR17

113 CPU5

113 CPU9

113 CPU11

113 CPU13

113 CPU14

113 CPU15

113 CPU16

113 DMU1

113 LFI2

113 LFI3

113 PMU1

113 PMU3

Table A-2: Overview of supported TriCore CPU functional problems

CPU Functional Problems 8–5

• • • • • • • •

8.2 CPU FUNCTIONAL PROBLEM BYPASSES TC1 V1.2

TC112_COR1

Compiler and assembler option:

––silicon-bug=cor1

Assembler control:

$TC112_COR1 {on|off}

Assembler macro:

The assembler macro __TC112_COR1__ is defined if you specify the

option ––silicon-bug=cor1.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction before each LOOP, LOOP16 and LOOPU instruction.

Assembler check:

The assembler gives a warning when the preceding instruction of a LOOP,

LOOP16 or LOOPU instruction is not an ISYNC instruction:

W253: suspicious instruction concerning CPU functional
defect TC112_COR1

You can suppress this warning with the option -w253.

TriCore Reference Guide8–6
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC112_COR3

Locator option:

-D__TC112_COR3__

To bypass this CPU functional problem, a preprocessor define is used in

the tc*.lsl linker script files to restrict the size in the CSA absolute

address mapping to 32Kb scratch pad RAM on the DMU.

CPU Functional Problems 8–7

• • • • • • • •

TC112_COR4

Compiler and assembler option:

––silicon-bug=cor4

Assembler control:

$TC112_COR4 {on|off}

Assembler macro:

The assembler macro __TC112_COR4__ is defined if you specify the

option ––silicon-bug=cor4.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between a (target) label and the instruction following it This is

done when the instruction directly uses an An register for either an

effective address calculation or as the target of an indirect branch.

Assembler check:

The assembler gives a warning for an instruction using an An register for

either an effective address calculation or as the target of an indirect branch

that is located directly after a (target) label:

W254: suspicious instruction concerning CPU functional
defect TC112_COR4

You can suppress this warning with the option -w254.

TriCore Reference Guide8–8
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC112_COR6

Assembler option:

––silicon-bug=cor6

Assembler control:

$TC112_COR6 {on|off}

Assembler macro:

The assembler macro __TC112_COR6__ is defined if you specify the

option ––silicon-bug=cor6.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

There is no C compiler workaround required for this CPU functional

problem, because the compiler does not generate CALLI instructions with

a target address in register A11.

Assembler check:

The assembler generates an error for instruction CALLI A11.

CPU Functional Problems 8–9

• • • • • • • •

TC112_COR7

Compiler and assembler option:

––silicon-bug=cor7

Assembler control:

$TC112_COR7 {on|off}

Assembler macro:

The assembler macro __TC112_COR7__ is defined if you specify the

option ––silicon-bug=cor7.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction at the very top of any subroutine if it was previously beginning

with a CALL instruction and in a "multiple DMU master" situation.

Assembler check:

The assembler gives a warning when the register A11 is incorrectly

updated if there is a status "DMU not ready" on the second micro op of a

2 cycle call variant. This is due to an error in the fetch unit block.

W255: suspicious instruction concerning CPU functional
defect TC112_COR7

You can suppress this warning with the option -w255.

TriCore Reference Guide8–10
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC112_COR10

Compiler and assembler option:

––silicon-bug=cor10

Assembler control:

$TC112_COR10 {on|off}

Assembler macro:

The assembler macro __TC112_COR10__ is defined if you specify the

option ––silicon-bug=cor10.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation

of store instructions that use a circular addressing mode with an offset

value not equal to zero. An additional circular load instruction is generated

with the required offset to post-increment the circular buffer pointer.

For example:

st.w [a6/a7+c]0,d15
ld.w d15,[a6/a7+c]4

Instead of:

st.w [a6/a7+c]4,d15

Assembler check:

The assembler gives a warning for store operations that use a circular

addressing mode with an offset not equal to zero:

W256: suspicious instruction concerning CPU functional
defect TC112_COR10

You can suppress this warning with the option -w256.

CPU Functional Problems 8–11

• • • • • • • •

TC112_COR13

Compiler and assembler option:

––silicon-bug=cor13

Assembler control:

$TC112_COR13 {on|off}

Assembler macro:

The assembler macro __TC112_COR13__ is defined if you specify option

––silicon-bug=cor13.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

prior to the LOOP instruction if the loop contains a single integer

instruction that is a DVSTEP or a DVSTEP.U.

Assembler check:

The assembler gives a warning for loops that contain a single integer

instruction that is a DVSTEP or a DVSTEP.U:

W257: suspicious instruction concerning CPU functional
defect TC112_COR13

You can suppress this warning with the option -w257.

TriCore Reference Guide8–12
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC112_COR14

Compiler option:

––silicon-bug=cor14

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler uses code that

protects a divide instruction sequence against interrupts. Instead of

generating inline divide code, the C compiler generates calls to run-time

library functions that support divide operations with interrupt protection.

Next skeleton code demonstrates the protective code used in these

run-time library functions:

 ;;
 ;; Save interrupt state and disable interrupts
 ;;
 mfcr d0,#0xfe2c ; save ICR in d0
 disable ; disable interrupts

divide instructions:

 ;;
 ;; Restore interrupt state
 ;;
 jz.t d0:8,disabled ; do not enable interrupts
 enable ; when they were disabled
disabled:

The C run-time library modules involved are acircint.asm ,

dfrfr.asm , sdivmod.asm and udivmod.asm .

Assembler check:

An assembler check for this CPU functional problem is not available,

because global interrupt enable state cannot be checked at assembly level.

CPU Functional Problems 8–13

• • • • • • • •

TC112_COR15

Assembler option:

––silicon-bug=cor15

Assembler control:

$TC112_COR15 {on|off}

Assembler macro:

The assembler macro __TC112_COR15__ is if you specify the option

––silicon-bug=cor15.

Protected libraries to link:

lib\p\tc112*.a (or add lib\src\cstart.asm to your project).

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to disable the starvation protection by resetting the

BCUCON.SPE bit.

TriCore Reference Guide8–14
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC112_COR16

Compiler and assembler option:

––silicon-bug=cor16

Linker option:

-D__TC112_COR16__

Assembler control:

$TC112_COR16 {on|off}

Assembler macro:

The assembler macro __TC112_COR16__ is defined if you specify the

option ––silicon-bug=cor16.

Protected libraries to link:

lib\p\tc112*.a (or add lib\src\cstart.asm to your project).

Compiler bypass:

To bypass this CPU functional problem, the C compiler aligns circular

qualified buffers to a quad-word boundary, and the compiler sizes all

stack frames to an integral number of quad-words. See section 3.4.1,

Circular Buffers in the User's Guide, for a description on how to declare a

circular buffer.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to enable initialization of the stack pointers to a quad-word

boundary.

Linker bypass:

A preprocessor define is used in the tc*.lsl linker script files to set the

alignment of the user stack and the interrupt stack to a quad-word

alignment.

CPU Functional Problems 8–15

• • • • • • • •

TC112_COR17

Compiler and assembler option:

––silicon-bug=cor17

Assembler control:

$TC112_COR17 {on|off}

Assembler macro:

The assembler macro __TC112_COR17__ is defined if you specify the

option ––silicon-bug=cor17.

Protected libraries to link:

lib\p\tc112*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction after a DSYNC instruction. The C compiler only generates a

DSYNC instruction when bypass TC113_CPU17 is enabled.

Assembler check:

The assembler gives a warning if a DSYNC is not followed by a NOP

instruction:

W258: suspicious instruction concerning CPU functional
defect TC112_COR17

You can suppress this warning with the option -w258.

TriCore Reference Guide8–16
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

8.3 CPU FUNCTIONAL PROBLEM BYPASSES TC1 V1.3

TC113_CPU5

Compiler option:

––silicon-bug=cpu5

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an

ISYNC instruction before a loop body.

Example:

 isync
_loop_start:
 ..
 ..
 loop a8, _loop_start

Assembler check:

This CPU functional problem does not cause a run-time problem, it is only

a performance issue. Therefor no assembler checking is required to warn

you for possible run-time problems.

CPU Functional Problems 8–17

• • • • • • • •

TC113_CPU9

Compiler and assembler option:

––silicon-bug=cpu9

Assembler control:

$TC113_CPU9 {on|off}

Assembler macro:

The assembler macro __TC113_CPU9__ is defined if you specify the

option ––silicon-bug=cpu9.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates two NOP

instructions after a DSYNC instruction. The C compiler only generates a

DSYNC instruction when CPU functional problem bypass TC113_CPU14 is

enabled.

Assembler check:

The assembler gives a warning if a DSYNC is not followed by two NOP

instructions:

W259: suspicious instruction concerning CPU functional
defect TC113_CPU9

You can suppress this warning with the option -w259.

TriCore Reference Guide8–18
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC113_CPU11

Compiler and assembler option:

––silicon-bug=cpu11

Pragma:

#pragma TC113_CPU11 [on|off|restore]

Assembler control:

$TC113_CPU11 {on|off}

Assembler macro:

The assembler macro __TC113_CPU11__ is defined if you specify the

option ––silicon-bug=cpu11.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between a LDA, LDDA, LD16A and the JI instruction. The

compiler also generates a NOP before a RET and RET16 instruction if there

is no or just one instruction before RET, starting from the function entry

point.

Assembler check:

The assembler gives a warning when an LDA, LDDA, or LD16A instruction

is directly followed by a JI instruction. The assembler also gives a warning

when there is no or just one instruction (not a NOP instruction) between

label and RET or RET16:

W260: suspicious instruction concerning CPU functional
defect TC113_CPU11

You can suppress this warning with the option -w260.

CPU Functional Problems 8–19

• • • • • • • •

TC113_CPU13

Assembler option:

––silicon-bug=cpu13

Assembler macro:

The assembler macro __TC113_CPU13__ is defined if you specify the

option ––silicon-bug=cpu13.

Protected libraries to link:

lib\p\tc113*.a (or add lib\src\cstart.asm to your project).

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to enable the 16Kb D-Cache. The DCSIZ bits are set to

16Kb in the SFR register DMU_CON.

TriCore Reference Guide8–20
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC113_CPU14

Compiler and assembler option:

––silicon-bug=cpu14

Assembler control:

$TC113_CPU14 {on|off}

Assembler macro:

The assembler macro __TC113_CPU14__ is defined if you specify the

option ––silicon-bug=cpu14.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a DSYNC

instruction directly after a (interrupt) function entry point label. Also an

assembler macro is added to the run-time library functions for optionally

adding a DSYNC instruction after a function entry point label.

Assembler check:

The assembler gives a warning when the first label in a code section is not

followed by a DSYNC instruction:

W261: suspicious instruction concerning CPU functional
defect TC113_CPU14

You can suppress this warning with the option -w261.

CPU Functional Problems 8–21

• • • • • • • •

TC113_CPU15

Compiler and assembler option:

––silicon-bug=cpu15

Assembler control:

$TC113_CPU15 {on|off}

Assembler macro:

The assembler macro __TC113_CPU15__ is defined if you specify the

option ––silicon-bug=cpu15.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation

of the ST.T, SWAP and LDMST instructions. For immediate __bit and

bit-field operations alternative instructions are used.

Assembler check:

The assembler gives a warning for ST.T, SWAP and LDMST instructions:

W262: suspicious instruction concerning CPU functional
defect TC113_CPU15

You can suppress this warning with the option -w262.

TriCore Reference Guide8–22
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC113_CPU16

Compiler and assembler option:

––silicon-bug=cpu16

Assembler control:

$TC113_CPU16 {on|off}

Assembler macro:

The assembler macro __TC113_CPU16__ is defined if you specify the

option ––silicon-bug=cpu16.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP

instruction between an LDA, LDDA, LD16A and the JI or CALLI instruction

with the same address register as parameter. The compiler also generates a

NOP instruction before a RET and RET16 instruction if there is no or just

one instruction before RET, starting from the function entry point.

Assembler check:

The assembler gives a warning when an LDA, LDDA or LD16A instruction

is directly followed by a JI or CALLI instruction with the same address

register as parameter. The assembler also gives a warning when there is no

or just one instruction (not a NOP instruction) between label and RET or

RET16:

W263: suspicious instruction concerning CPU functional
defect TC113_CPU16

You can suppress this warning with the option -w263.

CPU Functional Problems 8–23

• • • • • • • •

TC113_DMU1

Compiler and assembler option:

––silicon-bug=dmu1

Assembler control:

$TC113_DMU1 {on|off}

Assembler macro:

The assembler macro __TC113_DMU1__ is defined if you specify the

option ––silicon-bug=dmu1.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation

of the ST.T, SWAP and LDMST instructions. For direct __bit and bit-field

operations, alternative instructions are used.

Assembler check:

The assembler gives a for SWAP, LDMST and ST.T instructions:

W264: suspicious instruction concerning CPU functional
defect TC113_DMU1

You can suppress this warning with the option -w264.

TriCore Reference Guide8–24
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC113_LFI2

Compiler and assembler option:

––silicon-bug=lfi2

Assembler control:

$TC113_LFI2 {on|off}

Assembler macro:

The assembler macro __TC113_LFI2__ is defined if you specify the

option ––silicon-bug=lfi2.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation

of ST.T, SWAP and LDMST instructions. For immediate __bit and bit-field

operations alternative instructions are used.

Assembler check:

The assembler gives a warning for SWAP, LDMST and ST.T instructions:

W265: suspicious instruction concerning CPU functional
defect TC113_LFI2

You can suppress this warning with the option -w265.

CPU Functional Problems 8–25

• • • • • • • •

TC113_LFI3

Compiler and assembler option:

––silicon-bug=lfi3

Assembler control:

$TC113_LFI3 {on|off}

Assembler macro:

The assembler macro __TC113_LFI3__ is defined if you specify the

option ––silicon-bug=lfi3.

Protected libraries to link:

lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the compiler avoids generation of

the ST.T, SWAP and LDMST instructions. For direct __bit and bit-field

operations alternative instructions are used.

Assembler check:

The assembler gives a warning for SWAP, LDMST and ST.T instructions:

W266: suspicious instruction concerning CPU functional
defect TC113_LFI3

You can suppress this warning with the option -w266.

TriCore Reference Guide8–26
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

TC113_PMU1

Assembler option:

––silicon-bug=pmu1

Protected libraries to link:

lib\p\tc113*.a , or add lib\src\cstart.asm to your project.

Assembler macro:

The assembler macro __TC113_PMU1__ is defined if you specify the

option ––silicon-bug=pmu1.

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to disable the split mode on the LMB bus. The SPLT bit of

the SFR register LFI_CON is set to zero.

CPU Functional Problems 8–27

• • • • • • • •

TC113_PMU3

Assembler option:

––silicon-bug=pmu3

Assembler macro:

The assembler macro __TC113_PMU3__ is defined if you specify the

option ––silicon-bug=pmu3.

Protected libraries to link:

lib\p\tc113*.a (or add lib\src\cstart.asm to your project).

Compiler bypass:

There is no compiler bypass for this problem.

Assembler bypass:

To bypass this CPU functional problem, the assembler adds a macro to the

C startup code to set the TLB-A and TLB-B mappings to a page size of 16

Kb. The SZA and SZB in the MMU_CON are set to 16 Kb.

TriCore Reference Guide8–28
C

P
U

 F
U

N
C

T
IO

N
A

L
 P

R
O

B
L

E
M

S

9

MISRA C RULES
C
H
A
P
T
E
R

TriCore Reference Guide9–2
M

IS
R

A
 C

9

C
H
A
P
T
E
R

MISRA C Rules 9–3

• • • • • • • •

Supported and unsupported MISRA C rules

A number of MISRA C rules leave room for interpretation. Other rules can

only be checked in a limited way. In such cases the implementation

decisions and possible restrictions for these rules are listed.

1. The code shall conform to standard C, without language extensions

* 2. Other languages should only be used with an interface standard

3. Inline assembly is only allowed in dedicated C functions

* 4. Provision should be made for appropriate run-time checking

5. Only use characters and escape sequences defined by ISO C

* 6. Character values shall be restricted to a subset of ISO 106460-1

7. Trigraphs shall not be used

8. Multibyte characters and wide string literals shall not be used

9. Comments shall not be nested

10. Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of comment

is C code that is commented out, or just some pseudo code. Instead,

the following heuristics are used to detect possible C code inside a

comment:

- a line ends with ';', or

- a line starts with '}', possibly preceded by white space

11. Identifiers shall not rely on significance of more than 31 characters

12. The same identifier shall not be used in multiple name spaces

13. Specific-length typedefs should be used instead of the basic types

14. Use 'unsigned char' or 'signed char' instead of plain 'char'

* 15. Floating point implementations should comply with a standard

16. The bit representation of floating point numbers shall not be used

A violation is reported when a pointer to a floating point type is

converted to a pointer to an integer type.

TriCore Reference Guide9–4
M

IS
R

A
 C

17. "typedef" names shall not be reused

18. Numeric constants should be suffixed to indicate type

A violation is reported when the value of the constant is outside the

range indicated by the suffixes, if any.

19. Octal constants (other than zero) shall not be used

20. All object and function identifiers shall be declared before use

21. Identifiers shall not hide identifiers in an outer scope

22. Declarations should be at function scope where possible

* 23. All declarations at file scope should be static where possible

24. Identifiers shall not have both internal and external linkage

* 25. Identifiers with external linkage shall have exactly one definition

26. Multiple declarations for objects or functions shall be compatible

* 27. External objects should not be declared in more than one file

28. The "register" storage class specifier should not be used

29. The use of a tag shall agree with its declaration

30. All automatics shall be initialized before being used

This rule is checked using worst-case assumptions. This means that

violations are reported not only for variables that are guaranteed to

be uninitialized, but also for variables that are uninitialized on some

execution paths.

31. Braces shall be used in the initialization of arrays and structures

32. Only the first, or all enumeration constants may be initialized

33. The right hand operand of && or || shall not contain side effects

34. The operands of a logical && or || shall be primary expressions

35. Assignment operators shall not be used in Boolean expressions

36. Logical operators should not be confused with bitwise operators

37. Bitwise operations shall not be performed on signed integers

MISRA C Rules 9–5

• • • • • • • •

38. A shift count shall be between 0 and the operand width minus 1

This violation will only be checked when the shift count evaluates

to a constant value at compile time.

39. The unary minus shall not be applied to an unsigned expression

40. "sizeof" should not be used on expressions with side effects

* 41. The implementation of integer division should be documented

42. The comma operator shall only be used in a "for" condition

43. Don't use implicit conversions which may result in information loss

44. Redundant explicit casts should not be used

45. Type casting from any type to or from pointers shall not be used

46. The value of an expression shall be evaluation order independent

This rule is checked using worst-case assumptions. This means that

a violation will be reported when a possible alias may cause the

result of an expression to be evaluation order dependent.

47. No dependence should be placed on operator precedence rules

48. Mixed arithmetic should use explicit casting

49. Tests of a (non-Boolean) value against 0 should be made explicit

50. F.P. variables shall not be tested for exact equality or inequality

51. Constant unsigned integer expressions should not wrap-around

52. There shall be no unreachable code

53. All non-null statements shall have a side-effect

54. A null statement shall only occur on a line by itself

55. Labels should not be used

56. The "goto" statement shall not be used

57. The "continue" statement shall not be used

58. The "break" statement shall not be used (except in a "switch")

TriCore Reference Guide9–6
M

IS
R

A
 C

59. An "if" or loop body shall always be enclosed in braces

60. All "if", "else if" constructs should contain a final "else"

61. Every non-empty "case" clause shall be terminated with a "break"

62. All "switch" statements should contain a final "default" case

63. A "switch" expression should not represent a Boolean case

64. Every "switch" shall have at least one "case"

65. Floating point variables shall not be used as loop counters

66. A "for" should only contain expressions concerning loop control

A violation is reported when the loop initialization or loop update

expression modifies an object that is not referenced in the loop test.

67. Iterator variables should not be modified in a "for" loop

68. Functions shall always be declared at file scope

69. Functions with variable number of arguments shall not be used

70. Functions shall not call themselves, either directly or indirectly

A violation will be reported for direct or indirect recursive function

calls in the source file being checked. Recursion via functions in

other source files, or recursion via function pointers is not detected.

71. Function prototypes shall be visible at the definition and call

72. The function prototype of the declaration shall match the definition

73. Identifiers shall be given for all prototype parameters or for none

74. Parameter identifiers shall be identical for declaration/definition

75. Every function shall have an explicit return type

76. Functions with no parameters shall have a "void" parameter list

77. An actual parameter type shall be compatible with the prototype

78. The number of actual parameters shall match the prototype

79. The values returned by "void" functions shall not be used

MISRA C Rules 9–7

• • • • • • • •

80. Void expressions shall not be passed as function parameters

81. "const" should be used for reference parameters not modified

82. A function should have a single point of exit

83. Every exit point shall have a "return" of the declared return type

84. For "void" functions, "return" shall not have an expression

85. Function calls with no parameters should have empty parentheses

86. If a function returns error information, it should be tested

A violation is reported when a the return value of a function is

ignored.

87. #include shall only be preceded by another directives or comments

88. Non-standard characters shall not occur in #include directives

89. #include shall be followed by either <filename> or "filename"

90. Plain macros shall only be used for constants/qualifiers/specifiers

91. Macros shall not be #define'd and #undef'd within a block

92. #undef should not be used

93. A function should be used in preference to a function-like macro

94. A function-like macro shall not be used without all arguments

95. Macro arguments shall not contain pre-preprocessing directives

A violation is reported when the first token of an actual macro

argument is '#'.

96. Macro definitions/parameters should be enclosed in parentheses

97. Don't use undefined identifiers in pre-processing directives

98. A macro definition shall contain at most one # or ## operator

99. All uses of the #pragma directive shall be documented

This rule is really a documentation issue. The compiler will flag all

#pragma directives as violations.

TriCore Reference Guide9–8
M

IS
R

A
 C

100. "defined" shall only be used in one of the two standard forms

101. Pointer arithmetic should not be used

102. No more than 2 levels of pointer indirection should be used

A violation is reported when a pointer with three or more levels of

indirection is declared.

103. No relational operators between pointers to different objects

In general, checking whether two pointers point to the same object

is impossible. The compiler will only report a violation for a

relational operation with incompatible pointer types.

104. Non-constant pointers to functions shall not be used

105. Functions assigned to the same pointer shall be of identical type

106. Automatic address may not be assigned to a longer lived object

107. The null pointer shall not be de-referenced

A violation is reported for every pointer dereference that is not

guarded by a NULL pointer test.

108. All struct/union members shall be fully specified

109. Overlapping variable storage shall not be used

A violation is reported for every 'union' declaration.

110. Unions shall not be used to access the sub-parts of larger types

A violation is reported for a 'union' containing a 'struct' member.

111. Bit fields shall have type "unsigned int" or "signed int"

112. Bit fields of type "signed int" shall be at least 2 bits long

113. All struct/union members shall be named

114. Reserved and standard library names shall not be redefined

115. Standard library function names shall not be reused

* 116. Production libraries shall comply with the MISRA C restrictions

* 117. The validity of library function parameters shall be checked

MISRA C Rules 9–9

• • • • • • • •

118. Dynamic heap memory allocation shall not be used

119. The error indicator "errno" shall not be used

120. The macro "offsetof" shall not be used

121. <locale.h> and the "setlocale" function shall not be used

122. The "setjmp" and "longjmp" functions shall not be used

123. The signal handling facilities of <signal.h> shall not be used

124. The <stdio.h> library shall not be used in production code

125. The functions atof/atoi/atol shall not be used

126. The functions abort/exit/getenv/system shall not be used

127. The time handling functions of library <time.h> shall not be used

* = Not supported by the TASKING TriCore C compiler

See also section 5.8, C Code Checking: MISRA C, in Chapter Using the
Compiler of the User's Guide.

TriCore Reference Guide9–10
M

IS
R

A
 C

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
#define, 4-12, 4-100

#include, 4-25

#undef, 4-49

_close, 2-9

_lseek, 2-9

_open, 2-9

_read, 2-9

_tolower, 2-10

_toupper, 2-10

_unlink, 2-10

_write, 2-10

A
abort, 2-11

abs, 2-11, 3-6

access, 2-11

accum, 3-21

acos, 2-11

acs, 3-6

align, 3-22

architecture definition, 7-3, 7-19

archiver options

-?, 4-192
-d, 4-193
-p, 4-195
-m, 4-194
-r, 4-196
-t, 4-198
-V, 4-199
-w, 4-201
-x, 4-200
add module, 4-196
create library, 4-196
delete module, 4-193
extract module, 4-200
move module, 4-194
print list of objects, 4-198
print list of symbols, 4-198

print module, 4-195
replace module, 4-196

arg, 3-7

ascii, 3-23

asciiz, 3-23

asctime, 2-12

asin, 2-12

asn, 3-7

aspcp, 3-7

assembler controls

case, 3-68
debug, 3-69
detailed description, 3-67
fpu, 3-70
hw_only, 3-71
ident, 3-72
list, 3-75
list on/off, 3-73
listing controls (overview), 3-66
miscellaneous (overview), 3-66
mmu, 3-77, 3-85
noprint, 3-82
overview, 3-66
page, 3-79
prctl, 3-81
print, 3-82
stitle, 3-83
tc, 3-78, 3-84
title, 3-86
warning off, 3-87

assembler directives

accum, 3-21
align, 3-22
ascii, 3-23
asciiz, 3-23
assembly control (overview), 3-18
byte, 3-24
calls, 3-26
comment, 3-27
conditional assembly (overview),

3-19
data definition (overview), 3-19

IndexIndex–4
IN
D
E
X

debug information (overview), 3-20
define, 3-28
detailed description, 3-20
double, 3-39
dup/endm, 3-29
dupa/endm, 3-30
dupc/endm, 3-31
dupf/endm, 3-32
end, 3-34
equ, 3-35
exitm, 3-36
extern, 3-37
fail, 3-38
float, 3-39
fract, 3-40
global, 3-41
half, 3-64
if, 3-42
include, 3-44
local, 3-45
macro/endm, 3-46
macros (overview), 3-19
message, 3-48
name, 3-49
org, 3-50
overview, 3-18
pmacro, 3-52
sdecl, 3-53
sect, 3-56
set, 3-57
sfract, 3-40
size, 3-58
space, 3-59
storage allocation (overview), 3-19
symb, 3-60
symbol definitions (overview), 3-19
type, 3-61
undef, 3-62
warning, 3-63
word, 3-64

assembler list file, 4-78

assembler options

-?, 4-58

--case-sensitive, 4-61
--cpu, 4-59
--debug-info, 4-70
--define, 4-62
--diag, 4-64
--error-file, 4-66
--fpu-present, 4-69
--help, 4-58
--include-directory, 4-73
--include-file, 4-72
--is-tricore2, 4-76
--keep-output-files, 4-77
--list-file, 4-80
--list-format, 4-78
--mmu-present, 4-82
--no-tasking-sfr, 4-83
--no-warnings, 4-91
--optimize, 4-84
--option-file, 4-67
--output, 4-85
--preprocessor-type, 4-81
--section-info, 4-88
--silicon-bug, 4-86
--symbol-scope, 4-75
--version, 4-90
--warnings-as-errors, 4-93
-C, 4-59
-c, 4-61
-D, 4-62
-f, 4-67
-g, 4-70
-H, 4-72
-I, 4-73
-i, 4-75
-k, 4-77
-L, 4-78
-l, 4-80
-m, 4-81
-O, 4-84
-o, 4-85
-t, 4-88
-V, 4-90
-w, 4-91

Index Index–5

• • • • • • • •

assembly functions

abs, 3-6
acs, 3-6
address calculation (overview), 3-6
arg, 3-7
asn, 3-7
aspcp, 3-7
assembler mode (overview), 3-6
astc, 3-7
at2, 3-7
atn, 3-8
fract, 3-8, 3-10
cel, 3-8
cnt, 3-8
coh, 3-8
conversions (overview), 3-5
cos, 3-9
cpu, 3-9
cvf, 3-9
cvi, 3-9
def, 3-9
exp, 3-10
fld, 3-10
flr, 3-10
hi, 3-11
his, 3-11
int, 3-11
l10, 3-11
len, 3-11
lng, 3-12
lo, 3-12
log, 3-12
los, 3-12
lsb, 3-12
lst, 3-13
lun, 3-13
mac, 3-13
macros (overview), 3-5
mathematical (overview), 3-4
max, 3-13
min, 3-13
msb, 3-14

mxp, 3-14
pos, 3-14
pow, 3-14
rnd, 3-14
rvb, 3-15
scp, 3-15
sfract, 3-15
sgn, 3-15
sin, 3-15
snh, 3-16
sqt, 3-16
strings (overview), 3-5
sub, 3-16
syntax, 3-3
tan, 3-16
tnh, 3-16
unf, 3-17
xpn, 3-17

assert, 2-12

assert.h, assert, 2-12

astc, 3-7

at2, 3-7

atan, 2-12

atan2, 2-13

atexit, 2-13

atn, 3-8

atoac, 2-13

atof, 2-13

atofr, 2-14

atoi, 2-14

atol, 2-14

ltolac, 2-15

atolfr, 2-15

B
bit handling, 1-21

board specification, 7-5, 7-29

bsearch, 2-15

bus definition, 7-4

IndexIndex–6
IN
D
E
X

byte, 3-24

C
C library, reentrancy, 2-63

C++ muncher, 4-142

calloc, 2-16

calls, 3-26

case, 3-68

case sensitivity, 4-97

cat, 3-8

ceil, 2-16

cel, 3-8

char type, treat as unsigned, 4-50

chdir, 2-16

clearerr, 2-16

clock, 2-17

close, 2-17

cnt, 3-8

coh, 3-8

command file, 4-20, 4-67, 4-109,

4-145, 4-177

comment, 3-27

common subexpression elimination,

4-11

compiler options

-?, 4-4
--align, 4-7
--cpu, 4-8
--cse-all-addresses, 4-11
--debug-info, 4-23
--default-a0-size, 4-55
--default-near-size, 4-34
--define, 4-12
--diag, 4-14
--error-file, 4-18
--fpu-present, 4-22
--help, 4-4
--include-directory, 4-25
--include-file, 4-24
--indirect, 4-27

--inline-max-incr, 4-28
--inline-max-size, 4-28
--integer-enumeration, 4-30
--is-tricore2, 4-31
--iso, 4-10
--keep-output-files, 4-32
--language, 4-5
--misrac, 4-33
--no-double, 4-19
--no-tasking-sfr, 4-37
--no-warnings, 4-52
--option-file, 4-20
--output, 4-41
--preprocess, 4-16
--rename-sections, 4-42
--silicon-bug, 4-44, 4-46
--source, 4-43
--stdout, 4-36
--tradeoff, 4-48
--uchar, 4-50
--undefine, 4-49
--version, 4-51
--warnings-as-errors, 4-54
-A, 4-5
-C, 4-8
-c, 4-10
-D, 4-12
-E, 4-16
-F, 4-19
-f, 4-20
-g, 4-23
-H, 4-24
-I, 4-25
-k, 4-32
-N, 4-34
-n, 4-36
--optimize, 4-38
-O, 4-38
-o, 4-41
-R, 4-42
-s, 4-43
-t, 4-48

Index Index–7

• • • • • • • •

-U, 4-49
-u, 4-50
-V, 4-51
-w, 4-52
-Z, 4-55

conditional make rules, 4-163

control program options

-?, 4-138
--silicon-bug, 4-154
-C, 4-139
-c, 4-141
-c++, 4-140
-cc, 4-141
-cl, 4-141
-cm, 4-142
-cp, 4-143
-cs, 4-141
-elf, 4-144
-f, 4-145
-fptrap, 4-147
-ieee, 4-148
-ihex, 4-149
-noc++, 4-150
-nolib, 4-151
-nomap, 4-152
-o, 4-153
-srec, 4-156
-tmp, 4-157
-V, 4-159
-v, 4-160
-v0, 4-160
-W, 4-158
-Wa, 4-158
-Wc, 4-158
-wc++, 4-161
-Wcp, 4-158
-Wlc, 4-158
-Wlk, 4-158
-Wpl, 4-158

controls

See also assembler directives
detailed description, 3-67

copy table, 4-123, 7-41

copysign, 2-17

core type, 4-59

cos, 2-17, 3-9

cosh, 2-18

cpu, 3-9

CPU type, 4-8, 4-59, 4-139

CSE, 4-11

ctime, 2-18

ctype.h

_tolower, 2-10
_toupper, 2-10
isalnum, 2-28
isalpha, 2-28
isascii, 2-28
iscntrl, 2-28
isdigit, 2-28
isgraph, 2-29
islower, 2-29
isprint, 2-30
ispunct, 2-30
isspace, 2-30
isupper, 2-30
isxdigit, 2-31
toascii, 2-58
tolower, 2-59
toupper, 2-59

cvf, 3-9

cvi, 3-9

cycle count, 4-88

D
data types, 1-4

debug, 3-69

debug information, 4-23, 4-70, 4-131

def, 3-9

define, 3-28

derivative definition, 7-4, 7-26

difftime, 2-18

directives

See also assembler directives

IndexIndex–8
IN
D
E
X

detailed description, 3-20
div, 2-18

double, 3-39

dup, 3-29

dupa, 3-30

dupc, 3-31

dupf, 3-32

E
ELF/DWARF object format, 6-3

elif, 3-42

else, 3-42

end, 3-34

endif, 3-42

enum, 4-30

equ, 3-35

errno declaration, 2-71

errno.h, 2-71

exit, 2-19

exit macro, 3-36

exitm, 3-36

exp, 2-19, 3-10

extern, 3-37

F
fabs, 2-19

fail, 3-38

fclose, 2-19

fcntl.h, open, 2-37

feof, 2-19

ferror, 2-20

fflush, 2-20

fgetc, 2-20

fgetpos, 2-20

fgets, 2-21

fld, 3-10

float, 3-39

float.h

copysign, 2-17

isfinite, 2-29
isinf, 2-29
isnan, 2-30
scalb, 2-43

floating point, single precision, 4-22,

4-69

floor, 2-21

flr, 3-10

fmod, 2-21

fopen, 2-21

fprintf, 2-22

fputc, 2-22

fputs, 2-23

fract, 3-10, 3-40

fractional arithmetic support, 1-14

fread, 2-23

free, 2-23

freopen, 2-24

frexp, 2-24

fscanf, 2-24

fseek, 2-25

fsetpos, 2-25

ftell, 2-25

functional problems, 8-3

functions, assembly, 3-3

fwrite, 2-26

G
getc, 2-26

getchar, 2-26

getcwd, 2-27

getenv, 2-27

gets, 2-27

global, 3-41

gmtime, 2-27

H
half, 3-64

header files, 2-4

Index Index–9

• • • • • • • •

hi, 3-11

his, 3-11

hw_only, 3-71

I
ident, 3-72

if, 3-42

include, 3-44

indirect function calling, 4-27

inline functions, 4-28

insert assembly instruction, 1-19

int, 3-11

Intel hex, record type, 6-8

interrupt handling, 1-18

intrinsic functions, 1-12

bit handling, 1-21
fractional data type, 1-14
insert assembly instruction, 1-19
interrupt handling, 1-18
min/max of integers, 1-13
miscellaneous, 1-23
packed data type, 1-15
register handling, 1-20

iob structures, 2-70

isalnum, 2-28

isalpha, 2-28

isascii, 2-28

iscntrl, 2-28

isdigit, 2-28

isfinite, 2-29

isgraph, 2-29

isinf, 2-29

islower, 2-29

isnan, 2-30

ISO C standard, 4-10

isprint, 2-30

ispunct, 2-30

isspace, 2-30

isupper, 2-30

isxdigit, 2-31

L
l10, 3-11

labs, 2-31

language extensions, intrinsic

functions, 1-12

ldexp, 2-31

ldiv, 2-31

len, 3-11

linker map file, 4-119

linker options

-?, 4-96
--case-insensitive, 4-97
--chip-format, 4-98
--define, 4-100
--diag, 4-103
--error-file, 4-107
--extern, 4-105
--first-library-first, 4-111
--format, 4-108
--help, 4-96
--ignore-default-library-path,

4-113
--incremental, 4-130
--keep-output-files, 4-112
--library, 4-115
--library-directory, 4-113
--link-only, 4-116
--lsl-check, 4-117
--lsl-dump, 4-118
--map-file, 4-119
--map-file-format, 4-120
--misra-c-report, 4-122
--no-rescan, 4-124
--no-rom-copy, 4-123
--no-warnings, 4-134
--non-romable, 4-126
--optimize, 4-127
--option-file, 4-109
--output-file, 4-129
--strip-debug, 4-131
--verbose, 4-133

IndexIndex–10
IN
D
E
X

--version, 4-132
--warnings-as-errors, 4-136
-c, 4-98
-D, 4-100
-d, 4-101
-e, 4-105
-F, 4-108
-f, 4-109
-H, 4-96
-k, 4-112
-L, 4-113
-l, 4-115
-M, 4-119
-m, 4-120
-N, 4-123
-O, 4-127
-o, 4-129
-r, 4-130
-S, 4-131
-t, 4-133
-V, 4-132
-v, 4-133
-w, 4-134

linker script file

architecture definition, 7-3
boad specification, 7-5
bus definition, 7-4
derivative definition, 7-4
memory definition, 7-4
processor definition, 7-4
section layout definition, 7-5

list, 3-75

list file, 4-80

assembler, 4-78
linker, 4-119

list on/off, 3-73

lng, 3-12

lo, 3-12

local, 3-45

locale.h

localeconv, 2-32
setlocale, 2-46

localeconv, 2-32

localtime, 2-32

log, 2-32, 3-12

log10, 2-32

longjmp, 2-33

los, 3-12

lsb, 3-12

lseek, 2-33

LSL expression evaluation, 7-18

LSL functions

absolute(), 7-9
addressof(), 7-9
max(), 7-9
min(), 7-9
sizeof(), 7-10

LSL keywords

align, 7-21, 7-35
allow_cross_references, 7-36
architecture, 7-20, 7-27
attributes, 7-34, 7-35
bus, 7-20, 7-23, 7-30
contiguous, 7-36
copytable, 7-22
create_section, 7-36
derivative, 7-26, 7-30
dest, 7-23
dest_dbits, 7-23
dest_offset, 7-23
direction, 7-32, 7-36
else, 7-41
extends, 7-20, 7-26
fill, 7-27, 7-30
group, 7-33, 7-35
grows, 7-21
heap, 7-22, 7-39
id, 7-21
if, 7-41
load_addr, 7-37
map, 7-23
mau, 7-20, 7-21, 7-27, 7-30
mem, 7-37
memory, 7-27, 7-30
min_size, 7-21
ordered, 7-36

Index Index–11

• • • • • • • •

overlay, 7-36
page, 7-37
page_size, 7-21
processor, 7-29
reserved, 7-39
run_addr, 7-37
section_layout, 7-32
select, 7-34
size, 7-23, 7-27, 7-30, 7-39
space, 7-21, 7-23
speed, 7-27, 7-30
src_dbits, 7-23
src_offset, 7-23
stack, 7-21, 7-39
start_address, 7-22
table, 7-39
type, 7-27, 7-30
width, 7-20

lst, 3-13

lun, 3-13

M
mac, 3-13

macro, 3-46

macros, 1-25

make utility, 4-163
macros, predefined

__DATE__, 4-49
__FILE__, 4-49
__LINE__, 4-49
__TIME__, 4-49

make utility options

-?, 4-165
-a, 4-166
-c, 4-167
-D, 4-168
-d, 4-169
-DD, 4-168
-dd, 4-169
-e, 4-170

-err, 4-171
-f, 4-172
-G, 4-173
-i, 4-174
-K, 4-175
-k, 4-176
-m, 4-177, 4-183
-n, 4-179
-p, 4-180
-q, 4-181
-r, 4-182
-s, 4-184
-t, 4-185
-time, 4-186
-V, 4-187
-W, 4-188
-w, 4-189
-x, 4-190
defining a macro, 4-163

malloc, 2-33

map file

control program option, 4-152
format, 4-120
linker, 4-119

math.h

acos, 2-11
asin, 2-12
atan, 2-12
atan2, 2-13
ceil, 2-16
cos, 2-17
cosh, 2-18
exp, 2-19
fabs, 2-19
floor, 2-21
fmod, 2-21
frexp, 2-24
ldexp, 2-31
log, 2-32
log10, 2-32
modf, 2-36
pow, 2-37

IndexIndex–12
IN
D
E
X

sin, 2-47
sinh, 2-47
sqrt, 2-48
tan, 2-57
tanh, 2-57

max, 3-13

mblen, 2-34

mbstowcs, 2-34

mbtowc, 2-34

memchr, 2-35

memcmp, 2-35

memcpy, 2-35

memmove, 2-35

memory definition, 7-4

memory management instructions,

4-82

memset, 2-36

message, 3-48

min, 3-13

min/max of integers, 1-13

MISRA C, 4-33

supported rules, 9-3
mktime, 2-36

fpu, 3-70, 3-77, 3-85

modf, 2-36

msb, 3-14

muncher, 4-142

mxp, 3-14

N
name, 3-49

noprint, 3-82

O
offsetof, 2-36

open, 2-37

optimization, 4-38, 4-84, 4-127

option file, 4-20, 4-67, 4-109, 4-145,

4-177

org, 3-50

output file, 4-41, 4-85, 4-129, 4-153

output format, 4-98, 4-108, 4-144,

4-148, 4-149, 4-156

P
packed data type support, 1-15

page, 3-79

pass option to tool, 4-158

perror, 2-37

pmacro, 3-52

pos, 3-14

pow, 2-37, 3-14

pragmas, 1-24

prctl, 3-81

predefined macros, 1-25

predefined macros in C

__CTC__, 1-25
__DOUBLE_FP__, 1-25
__DSPC__, 1-25
__DSPC_VERSION__, 1-25
__FPU__, 1-25
__SINGLE_FP__, 1-25
__TASKING__, 1-25

preprocessor, 4-81

print, 3-82

printf, 2-38

processor definition, 7-4, 7-29

putc, 2-40

putchar, 2-40

puts, 2-40

Index Index–13

• • • • • • • •

Q
qsort, 2-41

R
raise, 2-41

rand, 2-41

read, 2-41

realloc, 2-42

reentrancy, 2-63

register handling, 1-20

remove, 2-42

rename, 2-42

rename sections, 4-42

rewind, 2-43

rnd, 3-14

rvb, 3-15

S
scalb, 2-43

scanf, 2-43

scp, 3-15

sdecl, 3-53

sect, 3-56

section, summary, 4-88

section activation, 3-56

section attributes, 3-53

section declaration, 3-53

section layout definition, 7-5, 7-32

section names, 3-54

sections, rename, 4-42

set, 3-57

setbuf, 2-45

setjmp, 2-45

setjmp.h

longjmp, 2-33
setjmp, 2-45

setlocale, 2-46

setvbuf, 2-46

sfract, 3-15, 3-40

sgn, 3-15

SIGABRT, 2-47

SIGFPE, 2-47

SIGILL, 2-47

SIGINT, 2-47

signal, 2-47

signal.h

raise, 2-41
signal, 2-47

signals, 2-47

SIGSEGV, 2-47

SIGTERM, 2-47

silicon bug workaround, 4-44, 4-86,

4-154

sin, 2-47, 3-15

sinh, 2-47

size, 3-58

snh, 3-16

space, 3-59

sprintf, 2-48

sqrt, 2-48

sqt, 3-16

srand, 2-48

sscanf, 2-48

stat, 2-49

stdarg.h

va_arg, 2-60
va_end, 2-60
va_start, 2-60

stddef.h, offsetof, 2-36

stdio.h

_close, 2-9
_lseek, 2-9
_open, 2-9
_read, 2-9
_unlink, 2-10
_write, 2-10
clearerr, 2-16
fclose, 2-19
feof, 2-19
ferror, 2-20

IndexIndex–14
IN
D
E
X

fflush, 2-20
fgetc, 2-20
fgetpos, 2-20
fgets, 2-21
fopen, 2-21
fprintf, 2-22
fputc, 2-22
fputs, 2-23
fread, 2-23
freopen, 2-24
fscanf, 2-24
fseek, 2-25
fsetpos, 2-25
ftell, 2-25
fwrite, 2-26
getc, 2-26
getchar, 2-26
gets, 2-27
perror, 2-37
printf, 2-38
putc, 2-40
putchar, 2-40
puts, 2-40
remove, 2-42
rename, 2-42
rewind, 2-43
scanf, 2-43
setbuf, 2-45
setvbuf, 2-46
sprintf, 2-48
sscanf, 2-48
tmpfile, 2-58
tmpnam, 2-58
ungetc, 2-59
vfprintf, 2-60
vprintf, 2-61
vsprintf, 2-61

stdlib.h

abort, 2-11
abs, 2-11
atexit, 2-13
atoac, 2-13
atof, 2-13

atofr, 2-14
atoi, 2-14
atol, 2-14
atolac, 2-15
atolfr, 2-15
bsearch, 2-15
calloc, 2-16
div, 2-18
exit, 2-19
free, 2-23
getenv, 2-27
labs, 2-31
ldiv, 2-31
malloc, 2-33
mblen, 2-34
mbstowcs, 2-34
mbtowc, 2-34
qsort, 2-41
rand, 2-41
realloc, 2-42
srand, 2-48
strtoac, 2-54
strtod, 2-54
strtofr, 2-54
strtol, 2-55
strtolac, 2-55
strtolfr, 2-56
strtoul, 2-56
system, 2-57
wcstombs, 2-61
wctomb, 2-62

stitle, 3-83

strcat, 2-49

strchr, 2-49

strcmp, 2-49

strcoll, 2-50

strcpy, 2-50

strcspm, 2-50

strerror, 2-50

strftime, 2-51

string.h

memchr, 2-35
memcmp, 2-35

Index Index–15

• • • • • • • •

memcpy, 2-35
memmove, 2-35
memset, 2-36
strcat, 2-49
strchr, 2-49
strcmp, 2-49
strcoll, 2-50
strcpy, 2-50
strcspn, 2-50
strerror, 2-50
strlen, 2-52
strncat, 2-52
strncmp, 2-52
strncpy, 2-52
strpbrk, 2-53
strrchr, 2-53
strspn, 2-53
strstr, 2-53
strtok, 2-55
strxfrm, 2-56

strlen, 2-52

strncat, 2-52

strncmp, 2-52

strncpy, 2-52

strpbrk, 2-53

strrchr, 2-53

strspn, 2-53

strstr, 2-53

strtoac, 2-54

strtod, 2-54

strtofr, 2-54

strtok, 2-55

strtol, 2-55

strtolac, 2-55

strtolfr, 2-56

strtoul, 2-56

strxfrm, 2-56

sub, 3-16

switch statement, 4-46

symb, 3-60

system, 2-57

system libraries, 4-113, 4-115

T
tan, 2-57, 3-16

tanh, 2-57

tc, 3-78, 3-84

temporary files, 4-157

time, 2-57

time.h

asctime, 2-12
clock, 2-17
ctime, 2-18
difftime, 2-18
gmtime, 2-27
localtime, 2-32
mktime, 2-36
strftime, 2-51
time, 2-57

tmpfile, 2-58

tmpnam, 2-58

tnh, 3-16

toascii, 2-58

tolower, 2-59

toupper, 2-59

trap handling, 4-147

TriCore 2 instructions, 4-31, 4-76

type, 3-61

U
undef, 3-62

unf, 3-17

ungetc, 2-59

unistd.h

access, 2-11
chdir, 2-16
close, 2-17
getcwd, 2-27
lseek, 2-33
read, 2-41
stat, 2-49

IndexIndex–16
IN
D
E
X

unlink, 2-59
write, 2-62

unlink, 2-59

V
va_arg, 2-60

va_end, 2-60

va_start, 2-60

verbose, 4-133, 4-160

version information, 4-51, 4-90, 4-132,

4-159, 4-187, 4-188, 4-199

vfprintf, 2-60

vprintf, 2-61

vsprintf, 2-61

W
warning, 3-63

title, 3-86, 3-87

warnings, suppress, 4-91

warnings as errors, 4-54, 4-93, 4-136

warnings, suppress, 4-52, 4-134

wcstombs, 2-61

wctomb, 2-62

word, 3-64

write, 2-62

X
xpn, 3-17

	TABLE OF CONTENTS
	TRICORE C LANGUAGE
	Introduction
	Data Types
	Keywords
	Function Qualifiers
	Intrinsic Functions
	Minium and maximum of (Short) Integers
	Fractional Arithmetic Support
	Packed Data Type Support
	Interrupt Handling
	Insert Single Assembly Instruction
	Register Handling
	Insert / Extract Bit-fields and Bits
	Miscellaneous Intrinsic Functions

	Pragmas
	Predefined Macros

	LIBRARIES
	Introduction
	Header Files
	C Library Functions
	C Library Reentrancy

	TRICORE ASSEMBLY LANGUAGE
	Introduction
	Built-in Assembly Functions
	Overview of Built-in Assembly Functions
	Detailed Description of Built-in Assembly Functions

	Assembler Directives and Controls
	Overview of Assembler Directives
	Detailed Description of Assembler Directives
	Overview of Assembler Controls
	Detailed Description of Assembler Controls

	TOOL OPTIONS
	Compiler Options
	Assembler Options
	Linker Options
	Control Program Options
	Make Utility Options
	Archiver Options

	LIST FILE FORMATS
	Assembler List File Format
	Linker Map File Format

	OBJECT FILE FORMATS
	ELF/DWARF Object Format
	Motorola S-Record Format
	Intel Hex Record Format

	LINKER SCRIPT LANGUAGE
	Introduction
	Structure of a Linker Script File
	Syntax of the Linker Script Language
	Identifiers
	Expressions
	Built-in Functions
	LSL Definitions in the Linker Script File
	Memory and Bus Definitions
	Architecture Definition
	Derivative Definition
	Processor Definition and Board Specification
	Section Placement Definition

	Expression Evaluation
	Semantics of the Architecture Definition
	Defining an Architecture
	Defining Internal Busses
	Defining Address Spaces
	Mappings

	Semantics of the Derivative Definition
	Defining a Derivative
	Instantiating Core Architectures
	Defining Internal Memory and Busses

	Semantics of the Board Specification
	Defining a Processor
	Instantiating Derivatives
	Defining External Memory and Busses

	Semantics of the Section Layout Definition
	Defining a Section Layout
	Creating and Locating Groups of Sections
	Creating or Modifying Special Sections
	Conditional Group Statements

	CPU FUNCTIONAL PROBLEMS
	Introduction
	CPU Functional Problem bypasses TC1 V1.2
	CPU Functional Problem bypasses TC1 V1.3

	MISRA C RULES
	INDEX

