CodeWright 6.5
User Guide

11117171717171774

1111111171177777777

String rs;

cellColor =

inputCoior

npu
itleF

Copyright © 1991 — 2000 Starbase Corporation. All rights reserved. Premia Corporation is now
owned by Starbase Corporation.

The following copyright message is required due to the inclusion of CTL3D.DLL with our
product:

Portions © Microsoft Corporation, 1985-1995. All rights reserved.

Publication History

October, 1991 First Release

February, 1992 Updated for 1.1

June, 1992 Updated for 2.0

August, 1993 Updated for 3.0

August, 1994 Updated for 3.1

November, 1995 Reformatted and updated for 4.0
January, 1997 Updated for 5.0

May, 1999 Reformatted and updated for 6.0
October, 1999 Updated for 6.0b

April, 2000 Updated for 6.0d

Aug, 2000 Updated for 6.5

Trademarks

Starbase® and CodeWright ® are registered trademarks of Starbase Corporation.

CodeSense™, CodeFolio™, ChromaCode™ and ChromaCoding™ are trademarks of Starbase
Corporation.

Code Composer Studio™ and Texas Instruments™ are trademarks of Texas Instruments
Incorporated. TICCSync only works with Code Composer Studio™ from Texas Instruments™.
MERANT™ is a trademark of MERANT International Limited. PVCS® is a registered
trademark of MERANT Solutions Incorporated.

Borland C++®, Borland C+ + Builder®, BRIEF®, and Delphi® are registered trademarks of
Borland.com, a division of Inprise Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.

Windows™, Visual C++™, and Visual Basic™ are trademarks of Microsoft Corporation.
Epsilon™ is a trademark of Lugaru, Inc.

AppBasic uses WinWrap® Basic, Copyright © 1993-1996, Polar Engineering and Consulting.
Sentry Spelling-Checker Engine, Copyright © 1993-1997, Wintertree Software Inc.

Contact Information

Starbase Corporation

9615 SW Allen Blvd., Suite 107

Beaverton, Oregon 97005

Phone: (503) 641-6000; Fax: (503) 641-6001

Email: codesales(@starbase.com or codesupport@starbase.com
World Wide Web: http://www.starbase.com

Table of Contents

Publication History
Trademarks
Contact Information

TABLE OF CONTENTS

CHAPTER OUTLINE

Chapter 1: Introduction

Chapter 2: Run CodeWright for the First Time

Chapter 3: Build Your First Project

Chapter 4: Command Key, Libraries, & Environment
Chapter 5: View Setups and Language Support
Chapter 6: Editing & Printing

Chapter 7: Projects, Project Spaces, and Workspaces
Chapter 8: Set up a Compiler

Chapter 9: Version Control

Chapter 10: Synchronization

Chapter 11: Search and Replace and Navigational Tools
Chapter 12: Checking and Reformatting Files

Chapter 13: Custom Interface

Chapter 14: File Loading, Backup and FTP

Chapter 15: Large Files

Chapter 16:Extend CodeWright

Chapter 17: UNIX

Chapter 18:Configuration Files & Command Line Parameters
Appendix A: TagWnn Utility

1- INTRODUCTION

What's In This Chapter
What Makes CodeWright Different
Additional Product Support
Web Page
Internet Mail
Fax
Phone Support
Key Editor Features

O©COWOWWOWONNIN ORARPRPEPEPPRPWVWOWWONNNN - = = =

2- RUN CODEWRIGHT FOR THE FIRST TIME 17
Configuration Wizards 17
A First Look 18
The Menu Bar 19

Table of Contents

File Menu 19

Edit Menu 20
Search Menu 20
Project Menu 21
Text Menu 22
Document Menu 22
Customize Menu 23
Tools Menu 25
Window Menu 26
The Difference between Windows and Documents 26

Details of the Window Menu 26

Help Menu 27
Output and Project Windows 27
Output Window 27
The Project Window 28
More on the Open Tab 29

The Standard Toolbar 30
3- BUILD YOUR FIRST PROJECT 33
Making CodeWright Projects and Project Spaces 33
Creating a Project Space 33

Setting Project Defaults 34
Creating a Project 34

Adding Files to a Project 35

Project | Properties 36

Project Tools 36

Project Window File View 36

4- COMMAND KEY, LIBRARIES, & ENVIRONMENT 39
API Command Dialog/Prompt 39
APl Command Key 40
Command Completion 40

APl Command Completion Example 41
Customize|Libraries: Loading CodeWright Add-Ons 42
General Environment Settings 42
5- VIEW SETUPS AND LANGUAGE SUPPORT 45
View Setups: Colors, Window Attributes, Scrollbars, Fonts, Etc.45
CodeWright View Setups 47
Default View Setup 48

Output Window View Setup 48

Using View Setups 48
CodeWright Language Support 49
Language Support Lexers and DLL's 49

iv Table of Contents

Language DLLs 50

Customize|Libraries 50
ChromaCoding Lexers 51
Creating a Lexer 52
Configuring Options in the Language Dialog 60
File Type List 61
Options Tab 61
Tabs/Indenting Tab 62
Templates Tab 62
Coloring Tab 62
CodeSense Tab 64
Format Tab 64
Comments Tab 64
Adding a New File Type to the Language Dialog 64
Aliasing 65
Creating a Language Support DLL 66
6- EDITING & PRINTING 67
Templates and Brace Expansion 67
Templates 67
Language Specific Templates 67
Creating and Modifying Language Specific Templates 68
Non-Language-Specific Templates, Function and File Headers, and
Macros in Templates 69
Template Macros 70
CodeFolio Snippets 74
Using an Existing Code Snippet 75
Adding a Code Snippet 77
Creating a Snippet from the Current Document or Clipboard 77
Deleting or Renaming a Snippet 78
Editing a Snippet 78
Adding or Removing Snippets Directories 79
Brace Matching and Brace Expansion 80
Brace Function: Finding Unmatched Braces 80
Brace Highlighting 81
Brace Locating 81
BraceFindEx 81
Brace Expansion 82
Align Beginning and End of Block 82
Indenting 83
Setting Spaces and Tabs 83
Seek Indentation and Smart Indenting 84
Block Alignment 84

Table of Contents v

Name Completion 85

CodeSense 86
Where CodeSense Gets its Information 86
Library and Project Databases 86
CodeSense for Files that are Open in CodeWright 88
CodeSense Global Configuration Dialog 88
Create CodeSense Library Database 89

Edit CodeSense Library Database Location 90

Delete CodeSense Library Database 90

Parser Priority/Resource Use 91
CodeSense Databases 91
Database Files 92
Database Corruption 93
CodeSense: Main Features 94
Name Completion 94
Auto-list Members 95
Auto-type Info 95
Auto-Parameter Info 96
Extending CodeSense Functionality 96
ANSI and Unicode CodeSense Translations 96
Disable CodeSense for Sections of Code Only 96

Project Matches in Non-Project Files 97
Consolidate Matching Lookup Definitions 97
Symbol Lookups 97
Troubleshooting 98
Comments and Comment Boxes 99
HTML Editing 100
HTML Language Support 100
HTML Popup Menu 100
WYSIWYG Editor/Viewer 100
HTML Viewing - Web Browser Interface 100
Viewing and Editing Internet Files: Installation Instructions 101
Using HTML WYSIWYG 101
XML Split Window Viewer 102
COBOL Editing 103
COBOL Lexer and DLL 103
COBOL Extensions 104
Resequence Line Numbers 104

Line Number Handling when Lines are Copied or Moved 105

Toggle COBOL Comment 105
Automatic Time/Date Stamp on Modified Lines 105

String Literals Automatically Continue on New Lines 105
Validate Line Number Sequence 106

Patch File Shows Changes in a File 106

vi Table of Contents

Hex Editing 107

Insert vs. Overtype Mode 107
Handy Hex-Editing Tips and Features 108
Clipboard and Scrap Buffers 108
Scrap Buffers 108
Multiple Clipboard/Scrap Buffers 109
Clipboard/Scrap Viewer 109

API Assistant 110
Using the API Assistant 110
Using the Checkboxes 111

APl Assistant Example 111
API Assistant Databases 112
Modifying the Database 113
Automation Tools 113

Using Help in CodeWright 113
Indexing and Accessing Help Files 113
Indexing .HLP Help Files 114
Accessing MSVC 6.0 Help Files 114
Accessing Compiled Microsoft HTML (.CHM) Help Files 115
Accessing MSVC 5.0 (.IVT) Help Files 115
Accessing MSVC 4.0 ((MVB) Help Files 116
Printing 117
Print Configurations 117
Paper Selection Override 117
Color Printing 118
Print Preview 118
Multi-Copy Printing 118
Printing Line Numbers 118
Wrapping Long Lines in Printed Documents 118
Print Headers and Footers 118

7- PROJECTS, PROJECT SPACES, AND WORKSPACES 121
Definitions 121
What is a Project? 121
What is a Project Space? 122
What is a Workspace? 122
Creating a Project Space 122
The Project Properties List and Project Settings 124
Project Properties List 124

Default Settings 124
Working Directory 125
Creating a Project and the Members Tab of Project Properties 125
Creating a New Project 126
Adding Files to a Project 127

Table of Contents vii

Adding Existing Projects to a Space 127
Auto Detect File Type to Load or Create Projects and Project Spac-

es 129
Reading External Makefiles and Visual Studio Workspaces 129

Steps for Setting up New Makefile/Workspace Parsers 131
Synchronize Makefile/Workspace with Project/Project Space 131
Characteristics of the File View Tab 132
Directories Tab of Project Properties 133
Storing Configuration Options with a Project 135
Reading Configuration Settings from Other Files 136
Tools Tab of Project Properties 137
Tool Categories 137
Build Tools 138
Compile Tools 139
Custom Tools 140

VCS Tools 141

Setting up Project Tools 142
Command Options on the Tools Tab 143
Filename Component Macros 144
Response File 146
Symbolic Macros 146
Errors tab of Project Properties 147
Custom Error Parsers 149
Navigating Build and Rebuild Command Output 151
Traversing the Output 152
Filters tab of Project Properties 153
Project Setup Checklist 154
Using Project Spaces 155
Selecting or Changing Projects 155
Selecting or Changing Project Spaces 155
Using Projects 156
Loading Files for Editing 156
Creating, Selecting and Saving Workspaces 156
Creating a New Workspace 157
Automatic Saving 157
Loading an Existing Workspace 158
Searching Project Space and Project Files 158
Selecting files for Check-in or Check-out 158
Project Files 159
Configuration and State Hierarchy 159
8- SET UP A COMPILER 161
Categories of Command Line Tools 161
Compiler Definition 162

viii Table of Contents

Response File Contents 163

Compiler Command Line 163
Build Command Line 163
Other Tool Categories 164
Special Considerations 164
Modifying the Command Line Environment 164
Displaying Output in CodeWright (FTEE and VDOS) 165
FTEE 166
Use VDOS 166
Version Control Commands 167
9- VERSION CONTROL 169
Using Version Control in CodeWright 169
Version Control Menu 169
Source Code Revision Control - Maintenance 170
Version Control and CodeWright Projects 171

Associate Version Control Projects with CodeWright Projects 171
Add Version Control Project Files to a CodeWright Project 172
Add CodeWright Project Files to an SCC Provider Project 173

Current Project Tree List 174

VCS and the User-Defined Popup Menu 175
Modifying the Standard Popup: A Simple Example 175
Making Your Own Version Control Popup Menu 176

Using Multiple Configuration/Project Files (DOS VCS Utilities Only) 176
Version Control Integration Configuration 178
Using a Command Line Version Control Provider 178
Adding a New Command Line Provider to Version Control Setup Di-

alog 179
Customizing Version Control Commands 179

Default Command-Line Version Control Commands Described 180
Additional Tips 182
CodeWright SCC Integration with Version Control Systems 183
Version Control for Use with a Source Code Provider DLL 183
Location of the SCC Provider DLLs 184

10- SYNCHRONIZATION 185
Initial CodeWright Setup 185

CodeWright's Synchronization Wizard, and Loading CWSync.DLL 186
Synchronization Setup From Within the Development Environ-

ments 186
MSVC++ File Synchronization 187
VCSync Setup 187
A First View 189
Delphi File Synchronization 189

Table of Contents ix

DPRSync Setup 190

A First View 191
Known Problems 191
Borland C++ File Synchronization 191
BCWSync Setup 192

A First View 193
Borland C++ Builder File Synchronization 193
BCBSync Setup 193

A First View 194
Visual Basic File Synchronization 195
VBSync Setup 196

A First View 197

Tl Code Composer Studio File Synchronization 197
TICCSync Setup 198

A First View 199
Bi-directional Synchronization 199
Sync Configuration Options 199
Accessing Menu Iltems via Synchronization 201
11- SEARCH AND REPLACE AND NAVIGATIONAL TOOLS 203
Search and Replace and Regular Expressions 203
Search and Replace Dialog 204
Search and Replacement Edit Boxes 204

Save Settings 204
Multiple Sources Search Dialog 205
Search and Replacement Edit Boxes 205
Current Directory 206
Multiple Source Options 206

File Pattern 206

Search List 207

Search Subdirectories 207

Edit Modified Files 207
Threaded 208

Send Listing to Output Window 208

Edit Search List 208
Search Pattern 208
Patterns List 209

Drive and Directory Lists 209

Include Directory 209

List Editing Buttons 209

Default Button 209
Default Options 209
Search Direction 210
Replacement 210

X Table of Contents

Prompt
Search Options
Matches
Start
Example: Multi-Source Search
Fast Find on Standard Right-Click Popup
Incremental Searching
Quick Search
Toolbar Search
Regular Expressions
Special Characters
Escape Sequences
Matching a Character
Character Classes
Escaping Characters in a Class
[teration Qualifiers
Examples
Regular Expressions: Positioning at Beginning/End of Line
Alternation and Grouping
Reference Groups and Replacement Strings
Placing the Cursor
Examples
Searching for Spaces, Tabs and other Blank Characters
Searching for Spaces or Tabs
Searching for New lines
Searching for control characters (binary/hex data)
Searching for New lines: Issues
Selective Display
Selective Display Options:
Pre-processed View
Viewing/Hiding Lines
Browse, Tags, Symbols and Objects
Which Navigational Tool Should | Use?
Browser
Tags
Outline Symbols
Objects Window
Browser Support
Selecting a Database
Traversing the Tree
Label Bitmaps
Browser Toolbar
Tags Support

Table of Contents

211
212
212
213
213
214
215
215
216
216
217
218
219
219
219
220
220
221
221
222
223
223
224
224
224
225
225
226
226
227
227
228
228
229
229
229
229
229
230
230
231
231
235

Xi

Tags Setup 235

Using the Tags Database 236

Outline Symbols: Overview 236
What are Symbols? 236
Symbol Scanning 238
Outline Window 238

Outline Scanning 240
Symbol Parsers 240
Symbols Database 241

Popup Symbols Menu 242
Objects Window 242
Display an Object Hierarchy 242

Using the Objects Window 244
Objects Window and CodeSense 244
Objects Window Popup Menu 244
Symbols vs. Objects vs. Tags 246
Pros and Cons of Tags, Browsers, and Symbols 247
Bookmarks 247
Global and Local Bookmarks 247
Graphical Bookmark Images 248

Setting and Removing Bookmarks 248
Bookmarks Dialog 248
Bookmarks Window 249
Bookmarks Window: Global Bookmarks 249
Bookmarks Window: Local Bookmarks 250
Bookmarks Window: "Other Documents" Node 250
Auto-Expand/Collapse 250
Button Links 250
How it Works 250

What you See 251
Defining Buttons 251

12- CHECKING AND REFORMATTING FILES 253
Differencing 253
Interleaved Differencing 254
Difference Analysis Dialog for Interleaved Differencing 254
Interleaved Document 255
Side-by-Side Differencing 256
Difference Analysis Dialog for Side-by-Side Differencing 256
Side-By-Side Difference Window 257

Using Difference Utilities 261
Merging 262
Using the Merge Files Dialog 262
Merge Output 263

Xii Table of Contents

Removing Changes with Merge 264
Format Source 265
Setting up Your Formatting Criteria 265
Using the Format Feature 267
Spell Check 268
Check Spelling 268
General Tab of Check Spelling 268

Word Format Tab of Check Spelling 269
Advanced Tab of Check Spelling 271
Documents Tab of Check Spelling 272
Dictionaries Dialog 273
Dictionaries 273

13- CUSTOM INTERFACE 275
Dockable Toolbars and Windows 275
Toolbars 275
Auto-hide Toolbars 277
What Does Dockable Mean? 277
Toolbar Docking Precedence 277
Enabling and Disabling Toolbars 278
Docking and Moving Toolbars and Windows 278
Docking a Toolbar or Window Manually 278
Undocking a Toolbar or Window 279
Customizing Toolbars and Buttons 279
Adding New Toolbars 279
Adding and Changing Toolbar Buttons 280
Binding a Function to a Button 281
Combo Box History Lists 282
Editing Combo box History Lists 282
Customizing Menus 283
Menu Editor 283
Menus 283

Menu Items and Submenus 284
Changing the Functionality of a Menu Iltem 285

Adding a Menu ltem 286
Customizing External Operations within CodeWright 287
User-Definable Popup Menus 288
Editing or Creating a Popup Menu 288

Popup Menu Semantics 291
Dynamic Menu Generation 293
Supporting Popup Menu Functions 294
Using Keymaps 294
CUA Key Commands 295

BRIEF Key Commands 295

Table of Contents Xiii

Mouse Commands

296

Mouse Scrolling Speed 296
Inclusive or Exclusive Selection 296
Closed Selections 297
Column Marking 297
Line Selections 297
Word Selections 298
Status Line Actions 298
Text Drag and Drop 299
Mouse Copy and Move 299
Creating Windows with a Mouse 300
Drag-and-Drop File Loading 300
Expand / Collapse Selective Display 301
Reassigning Keys and Mouse Actions 301
Keymap-Specific Assignments 301
Customizing with Keybindings 301
Keystroke Recording/Playback 302
Recording a Keystroke Macro 302

Saving a Macro 302
Binding Keystrokes to Functions or Macros 303

14- FILE LOADING, BACKUP AND FTP 305
File Loading, Reloading and Validation 305
File Backups and Auto-save 307
Global Backup and Auto-Save Settings 308
Backup Settings for Specific File Types 310
Backup Settings for Individual Files 311
Formatting the Backup Specification 312
Format Controls 313
Transformation Patterns 314
Making Files Read-only 315
File Types 316
Individual Files 316
Individual File upon Opening 317
FTP: File Transfer in CodeWright 318
16- LARGE FILES 319
Swap Blocks 319
How to Change the Number of Swap Blocks 319
Block Size 320
Consider Your Resources 321
Backup Files 321
Scroll Bars 321
Pre-loading Files 322

Xiv

Table of Contents

Turn off ChromaCoding 323
Saving Large Files 324
Default File Saving Method 324

File Rewrite Save Method (for Files over TMB) 325

16- EXTEND CODEWRIGHT 327
CodeWright API 328
Using the API from the Command Key 328
Displaying Return Values With the Command Key 328

Run Multiple Commands 329
Examples of Command Key Usage 329
Command Key Expression Evaluation 330
Macros, Macro Languages and DLL's 331
Macros and Macro Languages 331
DLL Extensions 333
Where is it Defined? 333
Perl 334
Getting Started with Perl 334
Creating and Editing Perl Scripts 335
Supplied Perl Macros 335

Perl Window 335

Popup Menu and Options 336

Online Help 336
Loading and Running Scripts 336
Running a Script Directly 337
Loading a Perl macro 337
Accessing CodeWright Functions from Perl Scripts 339
Importing Names into Perl's Namespace 339
Unloading a Perl macro 340

Using Perl's Debug Mode 340
Accessing Perl functions 340
Avoiding Ambiguity 341

Special APl Functions for Perl 341
Files used by Perl for CodeWright 343
Other Perl Resources 344
AppBasic 344
Getting Started 345
Two Editors 345

Special Keybindings 346

Two Toolbars 347

Popup Menu 347

Online Help 347
UserDialog Editor 347

Object Browser 348

Table of Contents XV

Creating a Macro 348
Creating a Handler 349
Object and Proc Drop-down Lists 350
Private Sub Main 351
Tips on Creating Macros 351
Creating a Modal User Dialog 352
Running the Macro 355
Creating an EventHandler in AppBasic 355
Sample EHTEST.CWB 356

Debugging Your AppBasic Macro 356
Break Points 357
Evaluate Expression and Add Watch 357
Object Browser 357

Load Macros Dialog 358

AppBasic Sample Macros 359

AppBasic-related APl Commands 359

AppBasic Window Configuration 360
Example Configuration File Settings 361

Exported Functions in CWBASIC.DLL 361

API (C-like) Macros 363

APl Macros Defined 363

Getting Started with APl Macros 364
Creating a Macro 364
Editing a Macro 364
Special Editing Keystrokes 364
Editing APl Macros in a CodeWright Window 365
Running a Macro 365

Language Definition 365
Comments 366
Identifier Naming Rules 366
Data Types for Variables 366
Declaring Variables and Arrays 366
Literal Values 368
Array Initializers 369
Automatic Type Conversion 370
Expressions 371
Statements and Statement Blocks 379
Program Flow of Control Structures 379
Run-time Error Handling 382
CodeWright Event Handling 382
Differences between APl Macros and C 383
String functions 384

Making and Modifying CodeWright DLLs 3856

XVi

Table of Contents

Core Services 387

CWSTART DLL 387
CWDIALOG DLL 390
CWHELP DLL 390
Keyboard Command Sets 390
Supplemental Language Support 391
Auxiliary Services 392
Sample DLL 392
Dissecting a CodeWright DLL 393
The _init Function 393
Exporting Functions 393
Making Changes and Additions 394
Changing Existing Functions 394
Adding Your Own Functions 394
Creating New Keymap Command Sets 395
Keymap _init Function 395
Keymap Function 395
Flag Initialization 395
Basic Assignments 396
Keymap-Specific Assignments 396
Menu Accelerators 396
Recompiling a DLL 397
Using and Modifying the Makefiles 397
Adding Files 398
Compile and Link Options 398
Link Libraries 398
Microsoft Link 398
Borland Link 399
Using Your Own DLL 400
Installing Your DLL 400
Load Functions at Startup 401
Load DLL as Needed 401
17- UNIX 403
End-of-Line (EOL) Characters 403
Make UNIX EOL Characters the Default 403
Enable Auto-sense File Type Option 404
Change EOL Characters in the Source File 404
Macro for Automating UNIX EOL Conversion 405
Compiling UNIX Programs from CodeWright 406
Preserving Filename Case and File Securities between UNIX and
Windows Environments 406
18- CONFIGURATION FILES & COMMAND LINE PARAMETERS 407

Table of Contents XVii

Configuration and State 407
Location of the Configuration File 407
Introduction to Configuration and State 408

Configuration File 408
State File 409
Other Files Containing Configuration Data 409
Example File 410
Example Interpretation 411
Processing At Startup 412
Order of Processing 412
Descriptions of Sections 413
User-Defined Sections 414
Relating Checkboxes to Functions 416
State File 417
Location of the State File 417
Contents of the State File 418

Command Line Parameters 419
Filenames 420
Parameters 420

-C<configlLoc> 421

-C- 421

-G <lineNumber> 422

CW32 -g215 422

CW32 -heapalloc 422

CW32 -k mycua 422

-L <library> 423

CW32 -N 423

-P <section> 424

CW32 -s h:\home\ericj 425
Command Files 426
CW32 -s- 426

A- TAGSWNN UTILITY 427
TagsWnn Command Line Options 427

INDEX 435

XViii

Table of Contents

Chapter Outline

The Chapter Outline provides an overview of the chapters in this manual.

Chapter 1: Introduction

The first chapter of this manual is a brief introduction to CodeWright. It includes a
list of some of the latest and greatest features and information on where to get
additional product support.

Chapter 2: Run CodeWright for the First Time

Chapter 2 describes how the initial CodeWright screen looks and briefly goes over
the items on the main menu and standard toolbar. Most of the items will be given a
preliminary description only, and will be described in greater detail in other
chapters.

Chapter 3: Build Your First Project

This chapter quickly describes the process for building a CodeWright project within
a project space. The chapter is short, intending to be a preliminary guide only, to the
steps for building a CodeWright project. CodeWright projects and project spaces will
be described in more detail in the chapter on Projects, Project Spaces, and Workspaces,
later in the manual.

Chapter 4: Command Key, Libraries, &
Environment

The API Command, Libraries, and Environment options on the Tools and
Customize menus are used and referred to extensively throughout this manual. For
this reason, they have been described as close to the beginning of the manual as
possible. They are necessary and handy tools that are used for many CodeWright
operations.

Chapter 5: View Setups and Language
Support

Chapter 5 provides information for setting up CodeWright's visual environment,
such as colors, fonts, scroll bars, and line numbers. It also goes through the steps

necessary for creating and/or loading language support for languages that were
previously unsupported in CodeWright.

Chapter Outline 1

Most of CodeWright's available language support modules are loaded out-of-the-
box, but there are a few that need to be loaded manually. For those languages for
which no language support modules are provided (whether loaded or not),
CodeWright has two methods for creating language support. Chapter 5 describes
those methods. Chapter 5 also talks about how to configure CodeWright to
ChromaCode languages that are embedded in other languages (e.g. JavaScript in an
HTML file).

Chapter 6: Editing & Printing

Chapter 6 provides information about the various editing features available in
CodeWright, such as template expansion, file and function headers, CodeFolio
Snippets, and automatic indenting. CodeWright's CodeSense and API Assistant
features, utilities that insert functions with their necessary parameters and flags, are
also described, along with the Clipboard/Scrap, COBOL, HTML, XML, and print
features. The chapter also explains the process for setting CodeWright up to access
help from different environments.

Chapter 7: Projects, Project Spaces, and
Workspaces

Chapter 7 provides detailed instructions for building and using CodeWright
projects, project spaces, and workspaces. The chapter describes the Project|
Properties dialog and how external tools can be set up in the dialog.

Chapter 8: Set up a Compiler

Chapter 8 talks about setting CodeWright up to use DOS compilers. CodeWright is
not a compiler, nor does it provide one. CodeWright can, however, be configured to
use third-party DOS compilers. Once the compiler's command-line command is
properly set, CodeWright will use the command in a DOS shell to compile the
current edit buffer. When properly set up, compiles can be done from within
CodeWright with the push of a button.

Chapter 9: Version Control

Chapter 9 discusses the process for using existing version control systems from
within the CodeWright environment. There are 3 sections in this chapter. The first
section describes CodeWright's version control interface, i.e. the menus, dialogs, and
buttons that are used for performing version control operations. The second and
third sections describe the two alternative methods for integrating CodeWright with
version control systems: Command Line integration, or integration via the SCC
Application Programming Interface (API). Which of the two methods to use depends
on the type of version control system being used.

2 Chapter Outline

Chapter 10: Synchronization

This chapter talks about the various Synchronization programs that come with
CodeWright, and how they are used. With Synchronization, CodeWright can be
used in conjunction with certain GUI-based development environments, such as
Microsoft Visual Studio. Starbase's Sync Technology coordinates tasks performed in
CodeWright with tasks performed in the synchronized environment. It is designed
to make the many features in CodeWright available to the synchronized
environment. Synchronization programs are available for Microsoft Visual Studio,
Microsoft Visual Basic, Borland Delphi, Borland C++, Borland C++ Builder, and
Texas Instruments Code Composer Studio.

Chapter 11: Search and Replace and
Navigational Tools

This chapter has detailed information about CodeWright's Search and Replace
feature including information on using regular expressions. It also describes other
code-navigation tools that come with CodeWright, specifically: Tags, Symbols, the
Objects Window, Selective Display, Bookmarks, and Button Links.

Chapter 12: Checking and Reformatting Files

When the editing is finished, it may be necessary to check, reformat, and/or
compare/merge the finished file with previous versions. This chapter covers the tools
that CodeWright supplies for this purpose. The reformat and file-checking tools
include Differencing, Merging, Format Source, and Spell Check.

Chapter 13: Custom Interface

Chapter 13 describes CodeWright's toolbars and talks about modifying existing
keystrokes; modifying, adding, and removing menu items and toolbar buttons; and
making keystroke macros. It briefly describes the keymap-choices that are available
in CodeWright, the main ones being CUA, BRIEE Epsilon, and vi. It also describes
some of the mouse actions CodeWright has that are not available in most other
editors, such as column selection and text dragging and dropping.

Chapter Outline 3

Chapter 14: File Loading, Backup and FTP

Chapter 14 talks about CodeWright's Autosave, File Backup, and FTP features. It also
discusses the file-validation and file-preloading features, which are designed to
prevent file-loss and/or file-corruption.

Chapter 15: Large Files

The steps for preparing CodeWright to handle files as large as 2 Gigabytes are
covered in this chapter.

Chapter 16:Extend CodeWright

CodeWright is a fairly complete product. There is not much that it lacks.
Nevertheless, there always seems to be one job for which necessary tools just can't be
found. If this is the case, CodeWright has some tools for extending the editor. These
tools consist of three macro languages (Perl, AppBasic, and API Macros), and DLL-
source code. They are provided in the event that CodeWright doesn't already have
the necessary functions for handling the task at hand. These tools can be used
together (i.e. a macro that uses a function from a DLL or another macro, or vice
versa), or on their own. DLL Add-Ons can be written in any programming language,
and they can be loaded interactively from within the editor. Chapter 16 describes
these tools in detail.

Chapter 17: UNIX

CodeWright is a Windows-only product. That is to say that it can't be installed on
any operating system other than Windows (NT 4.0, 95, 98, 2000, ME). Even so, it is
possible to edit UNIX files in CodeWright. The main difference between files edited
on UNIX systems and files edited on Windows systems are the characters that make
up the ends of lines. Chapter 17 describes CodeWright features for automatically
detecting and inserting the proper End of Line characters. It also provides other
information about editing UNIX files in CodeWright.

Chapter 18:Configuration Files & Command
Line Parameters

There are a number of files CodeWright uses for maintaining configuration
information. These files are stored by default in CodeWright's installation directory
(project files being the exception), but they can be stored in any directory desired.
The files are listed and manipulated in CodeWright's Project| Properties

| Directories dialog, which is described in the chapter on Projects, Project Spaces, and
Workspaces. Chapter 18 briefly describes the two main configuration files used by
CodeWright, CWRIGHTINI, and CWRIGHT.PST. It also describes command line
parameters that can be used for specifying different configuration files, different
files, and different CodeWright states (among other things), to load when the
CodeWright executable loads.

4 Chapter Outline

Appendix A: TagWnn Utility

TAGSWnn (TAGSW16 or TAGSW32, depending on your platform) is the Tags
program supplied with CodeWright. It automatically generates a tags database and
compiles it into a format that can be used by CodeWright's built-in browser. The
program is run when Build Tags is selected from the Project menu. You may not
ever need to run the program from the command line, but in the event that you do,
or if you just wish to know more about the program, its options are briefly described
in this appendix.

Chapter Outline 5

Chapter Outline

Chapter | 1

1- Introduction

CodeWright is an editor with features geared towards software programmers. It is
designed to support multiple programming languages in that (at a minimum) it
ChromaCodes™ the syntax elements of the language. It is the first professional-
quality, extensible programmer's editor written for Windows from the ground up.

What's In This Chapter

This chapter introduces CodeWright and lists some of the features that make it a
great tool for editing needs. It specifically covers the following items:

M What makes CodeWright different.
W Additional product support.
W A list describing some of CodeWright's key features.

What Makes CodeWright Different

Listed below are some of the things that make CodeWright different from other
editors:

B CodeWright is from Starbase Corporation, which ensures guaranteed
satisfaction and the best support available.

W CodeWrightis nota port of a program from DOS, UNIX, or any other operating
system.

B CodeWright is the innovator. Here are just a few of the innovations
CodeWright brought to programmer’s editors under Windows:

v Syntax Highlighting (ChromaCode)
v DLL extensibility

v Merge and Difference

v Elided text (Selective Display)
v/ Help Manager

1- Introduction 7

IDE integration
API Assistance
Button Links
HTML viewer

MVB, IVT, and HTML help file support along with traditional HLP help file
support.

Additional Product Support

NN N SN

If a problem arises in using or programming CodeWright, there are a number of
resources you can use. First, check the README.TXT file that was shipped along
with CodeWright. Itis placed in CodeWright's home directory during installation. It
will warn you about any known "gotchas" that are not covered by the manuals. The
next places to look for help are in the Getting Started manual, this User’s Guide, and
the online help files.

Web Page

You can access our home page on the Internet’'s World Wide Web using the following
URL: http://www.starbase.com. Information and services available there include:

H messaging to sales and product support
W pricing and product descriptions
HW problem and enhancement report forms

B downloading of Add-Ons and patches

Internet Mail

You can send email to codesupport@starbase.com, and we will assist you as soon as
practical. For sales matters, use the address codesales@starbase.com.

Fax
A fax will normally get a quick response. Our fax number is (503) 641-6001.

Phone Support

If you urgently need some information in order to continue using CodeWright, or if
you have an urgent bug report, give us a call. The phone number is (503) 207-1190.

8 1- Introduction

Key Editor Features

The following list describes some of the items CodeWright provides for making the
task of editing easier. Combined, they make CodeWright the most powerful
Windows editing tool on any platform.

Key Editing Features

Category/ Feature
Chapter
Introduction Flexible multiple-window, multiple-file interface.

Edit as many files in as many windows as your
resources allow.

Run CodeWright Configuration Wizards: to assist you in setting up
for the First the Help Index file, setting up synchronization, etc.
Time Includes an Answer Wizard.

Support available for Microsoft's HTML Help
Viewer.

Customization Shortcut on the Status bar allows
you to quickly access many of the items you’ll want
to configure.

Document/Window Manager has a Window tab
that consolidates settings that affect individual
documents and windows.

Wrap option on the Display tab of the Document/
Window Manager allows you to wrap text on the
display only, adjusting the wrap column
automatically when you resize the window. Check
Column and enter a column number to wrap at a
specified column. Check the Words box to avoid
splitting words at the wrap column.

New Forward and back buttons on the standard toolbar
allow documents and document positions to be
navigated based on a history of the documents and
positions that have been accessed during the
current CodeWright session.

1- Introduction 9

Key Editing Features

Category/
Chapter

Feature

View Setups and
Language
Support

Tile specified windows horizontally or vertically, all
in one row, from the Document/Window Manager
or globally from Customize |Environment.

ChromaCoding Lexers: Interactively create
ChromaCoding lexers to color the syntax for your
programming language.

New

Embedded language support. Configure
CodeWright to ChromaCode languages that are
embedded in other languages. Set a different
background color for embedded language blocks.

New

Split Windows. Windows can be split up to 4 ways
using the appropriate CUA key sequence, or using
splitter ‘notches’ that are available on vertical and
horizontal scrollbars.

New

Support for keywords that can be defined by the
user. For example, XML allows users to define
unique keywords for their projects. CodeWright has
an option and controls for parsing and coloring
those keywords.

New

New ChromaCoding lexers for XML, ASE, PHE, Cold
Fusion Mark up Language, Cold Fusion script, and
others.

View Setups for storing sets of colors, fonts and
window attributes under individual names.

Background and foreground palette colors can be
changed (up to 16 million colors, if supported by
your display).

Associate a View Setup with a particular file type on
the updated Language dialog.

ChromaCode™ use of color to signal changed lines
or highlight language syntax.

10

1- Introduction

Key Editing Features

Category/ Feature
Chapter
Editing & Multiple Clipboards/Scrap Buffers allow copying
Printing more than one item for later use without

overwriting previous items.

An auto-increment clipboard option increments the
clipboard/scrap buffer to be used, just prior to
copying or cutting the new content.

New

CodeSense for Java.

Clipboard and Scrapboard viewer is available in the
ClipView tab on the Output Window for viewing
and selectively pasting items in the current buffer.

Enhanced command line editing allows you to
select text on the command line for cut and paste.
Keyboard shortcuts are available for the command
line prompt.

CodeSense: Parses C/C++ and Java source files, to
provide word completion for symbols; function
parameter help; and symbol definition help.

New

COBOL Extensions: Automatically insert COBOL
line numbers, toggle comment delimiters, insert
time/date stamps to modified lines, more.

CodeFolio Snippets: New CodeFolio tab on the
Project Window. Provides a directory of code
samples, specific to programming languages, which
may be inserted into the current document. User
may add Snippets to the directory.

Zoom functionality is now available on the Print
Preview dialog.

Hex mode for editing binary files, including
inserting and deleting bytes.

Unlimited Undo and Redo of commands (from the
Edit menu).

1- Introduction

11

Key Editing Features

Category/
Chapter

Feature

Powerful Templates for language constructs,
personalized function headers and more. Any
CodeWright API function that can be executed
interactively can be executed within a template.

New

WYSIWYG HTML editing with a toolbar for quickly
inserting graphics, tables, and commonly used tags
and attributes.

API Assistant helps you accurately complete
function calls by showing you the types and options
for each parameter defined for the function. Check
the desired boxes; it then constructs the proper call
for insertion into your text.

Projects, Project
Spaces and
Workspaces

Project spaces: Multiple projects may be displayed
at a time within a project space.

Synchronization

Bi-directional Synchronization with Microsoft
Visual Studio and Texas Instruments Code
Composer Studio (files in CodeWright will
automatically open in the other environment using
the bi-directional sync buttons on the MSDevSync
and TICCSync toolbars).

New

Synchronization with Texas Instruments Code
Composer Studio.

Special synchronization with Compiler
Environments including Borland’s C+ + IDE,
Microsoft’s VC++ Workbench, Borland’s Delphi,
Borland’s C+ + Builder, Visual Basic 6.0 and Texas
Instruments Code Composer Studio.

Search and
Replace and
Navigational
Tools

Save and restore cursor position when closing and
re-opening CodeWright.

12

1- Introduction

Key Editing Features

Category/
Chapter

Feature

Selective Display mode for selecting which lines to
make visible or invisible. Allows selecting lines to
be viewed with grep-like commands, or by
preprocessing #ifdefs — you name it.

New

Objects tab on the Project Window displays a
hierarchical view of C/C++ and Java objects/
symbols that are associated with the name that is
typed in the Identifier box at the top of the window.
It can be used to view and browse code.

New

Preserve and restore selective display in all open
documents when closing and re-opening
CodeWright.

Complete support of regular expressions in
searching and replacement.

Multi-document or file-based search and replace,
including searches across multiple lines and
replacement groups.

Button Links let you reference and view external
documents, such as diagrams and word processor
files, or organize notes into a To Do list. These Links
appear as graphical buttons within the text file.

Several types of browsing, including Tags, Microsoft
.BSC files, and Outline Symbols.

Unlimited local and global bookmarks.

Checking and
Reformatting
Files

Expanded spell check dialog and additional
dictionaries for languages other than English.

The spell checker will check the spelling of source
code comments and strings only, if desired. Spell
check the whole buffer, or just the selection.

Side-by-side Differencing, Difference Editing, and
Merging of files.

1- Introduction

13

Key Editing Features

Category/
Chapter

Feature

Custom
Interface

Auto-hide toolbars, and auto-hide menus in Full
Screen mode.

New

Toolbar docking precedence. Allow toolbars to take
advantage of up to two full horizontal or vertical
edges of the CodeWright window.

Interactively definable Toolbars for quick mouse
access to common commands.

Use Windows' features, including resizable
Common Dialogs for familiar operation, Drag and
Drop for convenient file loading, E-mail integration,
and Tabbed Dialogs (property sheets) to simplify
dealing with settings and options.

File Loading,
Backup and FTP

Auto-save limit: Allows you to limit the size of files
that are auto-saved.

Additional auto-save features on the
Environment|Backup dialog for controlling the
directory and file extension to be used for auto-
saved files.

FTP: Transfer files from within CodeWright. The
FTP feature supports file structures for UNIX,
Tandem Guardian, and VMS hosts.

Optional auto-save at scheduled intervals or during
idle periods.

Large Files

Line length and file size virtually unlimited.

Extend
CodeWright

Enhanced API Macro Language.

CUA, BRIEE Epsilon, or vi style key commands.

Completely remappable keyboard — Create your
own command set.

14

1- Introduction

Key Editing Features

Category/
Chapter

Feature

New APImacros support arrays.

Configurable and Extensible through Macros and
DLLs.

1- Introduction

16

16

1- Introduction

Chapter | 2

2- Run CodeWright for the
First Time

This section describes the way CodeWright looks when it is first loaded, giving some
tips about things to know before getting started. Many of the items described will be
deferred to other chapters in this manual for more information. The descriptions
provided are brief, intended only to familiarize the user with the initial CodeWright
environment.

Configuration Wizards

If the option to load CodeWright after installation is chosen, the CodeWright screen
will display with the Configuration Wizard Choices on top. Configuration Wizards
assist with various jobs in CodeWright. They walk through the steps necessary for
some of the more complicated configuration tasks. The Wizard Choices include:

H The Answer Wizard: Displays lists of help topics in response to queries entered
in the form of questions.

B The Help Index File Wizard: Goes through steps for configuring the help index
file. For more information about configuring help, see the topic Using Help in
CodeWright in the chapter on Editing & Printing.

B The Sync Technology Wizard: Goes through the steps needed to configure
CodeWright to synchronize with selected development environments.
Supported environments are:

v Microsoft Visual Basic (V6.0)

Microsoft Visual Studio (V5.x or V6.x).

Borland C++(V5.0)

Borland C+ + Builder (V4.0 and V5.0)

Borland Delphi 32 (V4.0 and V5.0)

v Texas Instruments Code Composer Studio (V1.0 and V1.1)

4
4
4
4

For more information about CodeWright's Sync technology, see the chapter on
Synchronization.

2- Run CodeWright for the First Time 17

B The CodeSense Libraries Wizard: Brings up the CodeSense Global
Configuration dialog where libraries that point to designated C /C++ and Java
files are created. The libraries are used by CodeWright's CodeSense feature.
When properly configured, the CodeSense feature provides advanced syntax
help and word completion for code that is being typed. See the chapter on
Editing & Printing for more information.

A First Look

After completing any necessary configuration tasks, and accessing needed help tips,
the Configuration Wizard and Tip of the Day dialogs can be closed. The resulting
CodeWright screen displays a menu bar at the top, with the Standard toolbar docked
directly beneath. The window docked on the left is the Project Window, and the
window docked on the bottom is the Output Window. All of these items will be
described briefly in the remainder of this chapter.

Initial CodeWright Screen

{ CodeWright
File Edit Search Project Text Document Customize Tools ‘Window Help

E=N I N a— YK)
Identifier: 'I ” ‘ — -‘

=] B3

™ lgnore Case

v
El‘-l-n: e| BIE «|» [\ Buid £ FileFind)_Seach £ Browse £ Difference {_Shel £ Peil £ AppBasic /

[Sting specified without closing qule. <l I I

Two files open by default with the initial CodeWright session: README.TXT and
UPDATE.TXT. README.TXT contains important information about the latest
release, and UPDATE.TXT lists the latest features. It's a good idea to read through
these documents before closing them.

18 2- Run CodeWright for the First Time

The Menu Bar

The menu bar consists of ten items, described in the following topics.

File Menu

The first menu is the File menu. The File menu is intended for standard file
operations, i.e. New, Open, Save, Print etc. Additional items are described (or
deferred to other chapters for more information) below:

B Difference and Merge. The Difference and Merge utilities are described in
detail in the chapter on Checking and Reformatting Files.

B The Find menu-item is used for finding files on any storage medium. Standard
DOS wildcard characters can be used when searching for files with this option.

B Send Mail and Reload. Send Mail sends files via MS mail or cc:Mail, and
Reload reloads the current file from disk.

B Change Directory accesses a dialog that allows the current directory to be
changed.

B Filters. The Filters dialog defines file specifications or wildcard patterns, such as
*.¢, to filter files of interest from otherwise long lists of files. It's a good idea to
set the filters during the initial CodeWright session so that they'll be ready to use
in the future. Here are a few useful filters:

Description Pattern
Text files * TXT;*.RTF
Initialization files * INI;*.CFG
Make files * MAK; *.

To store filter settings with the current project, check the box Save Filename
Filters in project file. If the box is checked but no project is open, the settings
are stored as default settings for use with future projects.

B Print and Print Setup. The last two items on the File menu, Print and Print
Setup, are described in more detail in the chapter entitled Editing & Printing.

Note: Loading alibrary in CodeWright's Customize | Libraries dialog
optionally turns on an additional FTP item on the File menu. The
FTP item can be used for transferring files from CodeWright to
remote hosts. For more information on CodeWright's FTP feature,
refer to the chapter on File Loading, Backup and FTP

2- Run CodeWright for the First Time 19

Edit Menu

The first two sections of the Edit menu contain standard editing items, such as
Undo, Redo, Cut, Copy and Paste. Three items that may not be familiar are the Scrap
Buffer, Append, and Erase items:

B The Scrap Buffer item selects the Scrap Buffer for cut/paste operations.

BM The Append item adds selected text to the end of the selected clipboard/scrap
buffer.

B The Erase item clears the selected clipboard/scrap buffer.

CodeWright's Scrap and Clipboard features are both described in more detail in the
chapter on Editing & Printing.

The third section of the Edit menu has options for inserting items into the current
buffer:

B Insert File brings up a dialog for selecting a file to be inserted into the current
document.

B Insert Literal brings up a dialog for entering characters into the document that
would otherwise trigger a command. The literal may be chosen using ASCII,
Hex, or Decimal values.

B Insert Link inserts a button link at the cursor position in the current document.
Button links are special action buttons that CodeWright lets you embed in your
text files. You may use them to view bitmapped images, bring up a related
document or spreadsheet, run a macro or just to make notes. View Links (the
last item on the Edit menu) is used for viewing the contents of the Button Links
database.

Button Links are described in more detail in the chapter on Search and Replace
and Navigational Tools.

In the Macros section of the Edit menu, Record, Playback, Keystroke Macros, and
Run Key Macro are for making, testing, editing and using Keystroke Macros.
CodeWright's Keystroke Macros are described in greater detail in the chapter on
Custom Interface.

Search Menu

The Search menu contains all the items necessary for performing search and
replacement operations on single or multiple files. All of CodeWright's search
features are described in detail in the chapter on Search and Replace and Navigational
Tools. The one item worth describing here is Options. Search | Options brings up the
Default Search and Replace Settings dialog, where you set up searches to operate
the way you expect.

20 2- Run CodeWright for the First Time

It is prudent to set search options before editing so that some of the following issues

might be addressed:

B Should the search be case sensitive?

B Should there be a prompt on replacement by default?

B Should regular expressions be found?

B Should matching text be selected (highlighted)? If so, should it be momentary
or continuous? If continuous, should Restrict to Selection be turned off so that
Search Again will work as expected?

B Should the word that the cursor sits on be in the Search dialog by default, or

should the word be typed?

Project Menu

The Project menu is used for creating, opening, closing and manipulating projects,
project spaces, and workspaces:

Projects are used to organize and store individual sets of files and configuration
settings. A project, at a minimum, is a list of files that you find it useful to group
together logically.

Project Spaces organize sets of projects. Each project must be part of a project
space. If an existing project is opened without first creating a project space, a
project space will automatically be created to envelop the project.

Workspaces preserve options and settings for the currently open windows and
documents; this can include project and non-project files. Reload the
workspace to pick up where you left off with those files.

Options on the Project menu include:

Project Space, which displays a submenu containing New, Open, and Close, for
creating, opening, and closing project spaces, respectively. The submenu also
contains options to add or remove projects from the project space. Project|Set
Current is for opening a project within a project space.

Compile, Compile(Debug), Build, Rebuild, Rebuild (Debug), Debug, and
Execute have to be configured in the Project|Properties dialog in order to use
them. More information about CodeWright projects are provided in the
chapters on Build Your First Project and Projects, Project Spaces, and Workspaces.

2- Run CodeWright for the First Time 21

Text Menu

The Text menu has various items for formatting and editing text. Some of these
items, like Selective Display, the Comment items, and Format Source, are discussed
in-depth in various chapters. The other items are fairly self-explanatory and will be
briefly described here.

B Word Wrap enables and disables automatic line wrapping. The lines will wrap
at the right-margin mark, which is set on the General tab of the Tools |
Customize| View Setups dialog. On that dialog, if Wrap Display Mode is
selected, but Wrap Column is not, the right-margin will be automatically
adjusted when the window is resized.

B The Upper and Lower menu items will respectively capitalize or un-capitalize
selected text.

B The Slide In and Slide Out menu items will slide the current line or the current
selection right (in) or left (out) the length of a tab stop. The Prompted Slide In/
Out items prompt the user for some text that will be used to slide the text in or
out.

B The Left Justify, Right Justify, and Center items will position text within a
column or line selection as their names describe.

B The Enumerate menu item inserts line numbers in ascending or descending
order for selected text, and Format Columns aligns columns within a selected
block.

Document Menu

The Document menu has items that access dialogs and perform operations that are
commonly used on documents. The first and second sections contain fairly self-
explanatory items for creating, closing, clearing and maneuvering documents. The
third section has items for inserting and moving between bookmarks. Bookmarks
are described in detail in the chapter on Search and Replace and Navigational Tools.

The last item on the Document menu accesses the Document/Window Manager
dialog. The Document/Window Manager dialog lists documents and windows that
are currently open in CodeWright. It can be used to change the attributes of the open
windows and documents on an individual basis.

The Document/Window Manager dialog contains a window listing the files and
windows currently open, within which files can be selected for manipulation. The
window's file-icons represent the different document/window-states that the files
are in (as described in the online help topic Document/Window Manager Dialog), as
well as their read-only or modified status.

All operations performed from Document/Window Manager can be performed on a
per-document or per-window basis.

22 2- Run CodeWright for the First Time

Document/Window Manager

Document/window Manager [%]

[List: R=read only, M=modified P =TTl = S A [

4

General I Options | Tabs/Indenting | Display | Window |

Filename: R RTT | Cunent Position
File Size: 920 Memary: 920 Line: |23
File date: 6/20/00 4:43:44 PM I~ Beadonlyfie | Cob |1

memo. xml [E:\Wworkshoptdownloads\sampleshinter
help.xml [E:\wo ads\samplestintel

I~ Sorted Documents: 1 of 2 selected Windows: 1 of 2 selected

Document name: |
Cancel
Output name: |

[V Make backups Spec: |

Some of the things that can be done in Document/Window Manager include:

Specifying indent options.
Tiling/cascading individually selected documents or windows.

Setting different View Setups (fonts, colors, etc) for individual documents/
windows.

Changing display modes (e.g. Selective or Hex displays).
Changing window attributes (e.g. scrollbars, line numbers).

Setting soft line Wrap (located on the Display tab) - Wraps lines without
inserting a line feed, adjusting the wrap column as the window is resized.
Check Column and enter a number to wrap at a specified column. Check the
Words option to avoid splitting words at the wrap column.

Customize Menu

Use the items on theCustomize menu to configure various parts of CodeWright.

B The Environment item accesses the Environment dialog, which has a number of

tabs for manipulating the CodeWright environment. For example, setting
backup files and backup specifications is done on the Backup tab of the
Environment dialog, and modifying menus in done on the Menu tab.

Portions of the Environment dialog are discussed in the chapter Command Key,
Libraries, & Environment. However, since the tabs in the dialog relate to a wide
variety of features in CodeWright, the items in the dialog will be covered
throughout this manual.

2- Run CodeWright for the First Time 23

24

The Read Configuration Data item on the Customize menu accesses a dialog
that allows certain configuration settings to be read from any file into the
current configuration file. Configuration files contain settings that tell
CodeWright how it should look and behave.

The Libraries option on the Customize menu is used for interactively loading
CodeWright DLLs (or Add-Ons) to extend the functionality of the CodeWright
program. A number of commonly used Add-Ons are contained in the list of
CodeWright Libraries on the Load CodeWright DLL dialog. CodeWright
Libraries can be quickly and conveniently loaded by placing checkmarks next to
the ones to be loaded. More Add-Ons are available on Starbase's WebPages, at
http://www.starbase.com.

The Toolbars and Keyboard menu items bring up the Toolbar Customization
and Assign Keys dialogs, respectively. Descriptions for how these dialogs are
used can be found in the chapter on Custom Interface.

The View Setups option accesses a dialog used for viewing and changing view
setups which store sets of document and window preferences, such as colors,
fonts, line numbers, and scroll bars.

The ChromaCoding Lexers option accesses the ChromaCoding Lexer Settings
dialog. Here you can create or modify lexers to color the various elements of
your programming language “vocabulary”. The vocabulary of a language
includes identifiers, braces, preprocessors, keywords, operators, strings and
comments.

The Language option accesses a dialog that is used for controlling language-
specific features, such as ChromaCoding (syntax coloring), and template
expansion.

Note: View Setups, ChromaCoding Lexers, and Language are described in
the chapter on View Setups and Language Support.

The CodeSense Global Configuration option accesses the CodeSense Global
Configuration screen. CodeSense will complete function names as they are
being typed and automatically suggest appropriate parameters to be inserted
for the function. It is available for C /C++ and Java files. CodeSense works by
parsing the programming libraries that you add on the CodeSense Global
Configuration screen, as well as project source files and files that are open in
CodeWright. CodeSense must also be configured on the

Customize | Language | CodeSense dialog to be used. For more information on

CodeSense, refer to the chapter on Editing & Printing.

An additional CobolExt Settings item is available on the Customize menu when
COBOL Extensions is loaded in Customize | Language. See the topic COBOL
Extensions in the chapter Editing and Printing.

Many of the items available on the Customize menu may also be accessed

directly by right-clicking on the Customization shortcut icon 9 on the status
bar.

2- Run CodeWright for the First Time

Tools Menu

The Tools menu has a variety of tools for manipulating and extending CodeWright.
Items on this menu are described/referenced below:

The first five items on the Tools menu, (with the exception of API Command),
are for CodeWright's macro languages:

v The API Macros and Run API Macro menu items are used for making and
running CodeWright API Macros.

v The AppBasic Macros and Perl Macros menu items both have submenus
containing items for loading and working with AppBasic and Perl Macros.

Macros are described in greater detail in the chapter on Extend CodeWright.
(The API Command option is described in the chapter on Command Key,
Libraries and General Environment.)

The Version Control item on the Tools menu accesses a submenu containing
items that either run version control operations or that access dialogs used for
running or setting up version control in CodeWright.

When looking at this submenu, it is important to remember that CodeWright
does not come with its own version control utility. Instead, it integrates with
existing version control systems using one of two methods: command line
integration or SCC API integration. More information about using version
control from within CodeWright can be found in the chapter on Version Control.

The Spell Check option on the Tools menu accesses CodeWright's spell checker.
CodeWright's spell checker is described in more detail in the chapter on Checking
and Reformatting Files.

The next three items before Customize are handy utilities for performing
sundry tasks:

v The Filter option brings up a dialog that lets you perform an external
operation on the current document or a selected portion of it.

v The Shell option runs a command shell.

v/ The Shell Command option brings up a dialog that invokes a Windows/
DOS application.

The last section of the Tools menu is optional. It contains tools that may vary if
CodeWright has been customized. Custom tools are set up in the
Project|Properties dialog on the Tools tab. These are described more
comprehensively in the chapter on Projects, Project Spaces, and Workspaces.

2- Run CodeWright for the First Time 25

Window Menu

Similar to the Document menu, the Window menu is used for manipulating and
creating windows opened in CodeWright. It is important to understand how
CodeWright differentiates "'windows" and "documents". Depending on the
configurations that have been made in CodeWright, the files that are open may not
always be contained in their own windows. The difference between windows and
documents is described below.

The Difference between Windows and Documents

Some confusion may arise when attempting to discern how CodeWright differenti-
ates "windows" and "documents”. Depending on the keymap being used, docu-
ments open in CodeWright may not all appear in their own window.

B Most of the keymap emulations that CodeWright provides (e.g. BRIEE Epsilon,
and vi) use one window for all documents by default. While there may be 10
documents open, only one of them will be seen at a time in the one window that
is open. This characteristic defers to the DOS days of the editors from which the
referenced keymap emulations were derived.

B The CUA keymap, however, uses one window for every document. Therefore,
in CUA, each window will contain its own document.

The "document per window..." characteristic can be toggled for any keymap using
One Document per Window in Customize |Environment | General. Keymaps are
described in the chapter Custom Interface.

Details of the Window Menu
The items on the Window menu are fairly self-explanatory:

B New Window creates a new window. If a document is open, the new window
will contain a second instance of that document.

M Full Screen puts documents into full-screen mode, eliminating the clutter
caused by menus and toolbars, maximizing editing space.

B Tile and Cascade are alternative ways to arrange CodeWright windows.

B Arrange Icons arranges minimized windows at the bottom of the CodeWright
screen. The Close All option closes all windows that are open.

B The Project and Output options toggle the Project and Output Windows off
and on. A brief description of these windows is provided in the next topic Project
and Output Windows.

B The Manager option accesses the Document/Window Manager dialog. This is
the same dialog that is accessed when clicking the Manager option on the
Document menu. For more information about the Document/Window
Manager, see the topic Document Menu, in this manual.

26 2- Run CodeWright for the First Time

Help Menu

CodeWright's Help menu is for accessing and configuring CodeWright’s online help
and API Assistant. More information on Help and the API Assistant can be found in
the chapter on Editing & Printing.

Output and Project Windows

The default CodeWright screen has two system windows, one docked on the
bottom, and one on the left. The window docked on the bottom is called the Output
Window. The window docked on the left is called the Project Window. These two
windows can be "undocked" by dragging them away from any edge of the
CodeWright screen.

B Further information on customizing the Output and Project Windows can be
found in the chapter on Custom Interface.

BW The Output Window is described to a greater extent in various chapters of this
manual, as it contains a number of tabs that relate to various features in
CodeWright.

B The Project Window is described in greater detail in the chapter on Projects,
Project Spaces, and Workspaces.

Output Window

The Output Window initially has seven tabs and is docked on the bottom edge of the
CodeWright screen. Three more tabs can optionally be added by loading the Add-
Ons for the AppBasic and Perl macro languages, and the Add-On for the Clipboard/
Scrap Viewer. Add-Ons are loaded using the Customize | Libraries dialog.

The Output Window

\ Buld A FileFind) Search A Browse A Difference £ Shell £ Symbols / ‘

Uses for the tabs of the Output Window vary, but they are generally used for
displaying and manipulating the results of operations in CodeWright.

The default tabs of the Output Window are:
B Build tab: Displays the results of builds or compiles.
W File Find tab: Displays the results of file searches produced by File|Find.

2- Run CodeWright for the First Time 27

B Search tab: Displays the results of string searches produced from search
operations.

Browse tab: Displays tags or browser database files.

|
B Difference tab: Displays the differences of two files, side-by-side.
B Shell tab: Acts as a virtual DOS shell.

|

Symbols tab: Allows you to navigate through files, similarly to the Browse tab.

The Project Window
The Project Window is initially docked on the left edge of the CodeWright screen.

Project Window

Project [~ %]
C:\...\MACROS\MySpace.psp

MySpace (3 Projects) -
E1E cob (5 Files) |

4

| 6] Header Files
[ISERR} Other Files

=2 MyProjl (5 Files)
B MyProj2 (7 Files)

+[) editprev.cub >
KN [

E1433 Source Files
i+ cobe
“[) cobemc

] Resources
“[) cob.def

(] Source Files

i+ Header Files

+{1] Resources
=143 Other Files

£ @ e B

Like the Output Window, the Project Window contains several tabs. The tabs are for
viewing information about projects and other files. The tabs (from left to right) are:

File View tab: Lists the files in the current project in hierarchical form, and lets
you operate on individual files or groups of files. More information about the
File View tab can be found in the chapter on Projects, Project Spaces, and
Workspaces.

Outline tab: Presents a hierarchical view of Symbols in project files and any
other files that are currently loaded. More information about Symbols and the
Outline tab can be found in the chapter on Search and Replace and Navigational
Tools.

Objects tab: The Objects tab displays a hierarchical view of C/C++ and Java
objects/symbols. The objects/symbols displayed are associated with the name
that is typed in the Identifier box at the top of the window. The window can be
used to view and browse code. More information about the Objects tab can be
found in the chapter on Search and Replace and Navigational Tools.

28 2- Run CodeWright for the First Time

B Bookmarks tab: Gives a view of local and global bookmarks defined in

documents. More information about Bookmarks and the Bookmarks tab can be

found in the chapter on Search and Replace and Navigational Tools.

B Open tab: Acts like a persistent File Open dialog and file manager in one. It

presents a list of icons representing valid drives from which to choose, a

directory tree, a place to specify a file filter to limit the files displayed, and a box
where matching files are listed. Double-click on any of the files listed to load it
for viewing or editing. More information on the Open tab is provided in the

next section: More on the Open tab.

B CodeFolio tab: Presents a directory tree of pre-defined chunks of text that can

be specific to programming languages. The text can be inserted into your

current document. Custom and user-defined Snippets can also be added to the

window. Refer to the topic CodeFolio Snippets in the chapter on Editing &
Printing for more information.

More on the Open Tab

The Project Window’s Open tab is a handy tool for file-operations. Opening files is
just the beginning of what it can do. There are a total of 20 other operations that can
be performed, as represented by a series of icons on the tab’s frame. Tool tips (small

popup messages) describe each of the icons.

Project Window: Open Tab

Project [~|x]
I. vl B =a
ER N =T
(= cwright Bl =e
B2 cw32 5 =
(£ ADAB3 =~ X
£ ADDFX &4 =h
£ ASSIST FE =i
Ous ol g i
Bk
Mame [Ext | 1 g
DelsL1 isu A =Em
README T =in
DelsL7 isu =lo
DelsL8 isu F44f Elp
DelsL15 isu Elq
cwbasic mnu gs
DelsL12 isu @
DelsL13 SRR |
r‘\rnjur e -
EF..IEE D.I'E:D.leﬂ.. BD.] B’E..I

Use the File Open Tab - Configure dialog to remove, add, or reconfigure the icons

on the Open tab. To access this dialog, click on the Configuration Dialog button

11

2- Run CodeWright for the First Time

29

The following displays:

File Open Tab — Configure

I~ View Columns

I~ Show Tool Buttons

Options—————————
I™ Show hidden files E @ Crestenewfie
IV Color read-grly files " [¥) Open selected filefs)
V' Show drive buttons [Ell @ Invoke selected filefs)
8 "::d"'ed I™ Place buttons attop & W Pt selected fiefs)

® (N'o g IV Load unassociated &L @ Delete selected flefs) o dire
I Name completion] Copy selected fiefs)
I |Ltpoty &) @ Rename/Move selected fief
I~ Resolve shortcuts

" [t. W Change current directory

™ Refresh on app activate) Vi iSet by e of ooloct T

L sotBy I™ Reverse sott order £ ! o

Cancel Help I Up' I Down

Two of the icons you can set for the Open tab are for user-defined commands: &
and . User-defined commands can be set to perform any operation on files

selected within the window. The user commands must be CodeWright API function
calls, rather than DOS commands or the like. You may, however, execute DOS
commands by specifying the API function ExecUserCmnd (help on ExecUserCmnd
can be found in CodeWright's online help).

Example:

ExecUserCmnd “Dir”

The File Open Tab - Configure dialog is also used to set whether or not to display
hidden files, file timestamps, file sizes and file attributes. The timestamps, file sizes
and file attributes are only visible as Tooltips that display when the mouse cursor
pauses over a file in the window.

The Standard Toolbar

CodeWright has several toolbars, but only the Standard toolbar is turned on by
default. Since the Standard toolbar is part of the default CodeWright screen, it will be
introduced here; all of the toolbars are described in more detail in the chapter on
Custom Interface.

Standard Toolbar
|[e-»-lasags malo= -1## |

30 2- Run CodeWright for the First Time

The Standard toolbar consists of the following:

The first two buttons on the standard toolbar are forward and back buttons.
They allow documents and document positions to be navigated based on a
history of documents and positions that have been accessed during the current
CodeWright session. Drop-down lists are available for each button. The drop-
down lists allow specific documents to be accessed without having to cycle
through all the documents in the list.

The nine buttons that follow the forward and back buttons are for editing and
file operations: creating, opening and saving files; printing; cutting, copying
and pasting text; and redo/undo of the last change made.

The next item on the Standard toolbar is the Toolbar Search Box. The Toolbar
Search Box refers to the search capability built into the Standard toolbar in the
form of a drop-down list box control. It provides the most immediate,
convenient way to perform simple searches. The Toolbar Search honors all of
the settings in the Search Options dialog.

v To use the Toolbar Search, type in the string you wish to search for, and

press //_l .

The next two buttons on the Standard toolbar are also related to searching:
v Press | ™ to repeat the last search

v/ Press "™t to search for the word under the cursor in the current
document.

The last button on the Standard toolbar (the question mark) is for accessing
CodeWright's online Help.

2- Run CodeWright for the First Time 31

32

2- Run CodeWright for the First Time

Chapter | 3

3= Build Your First Project

This chapter provides a quick guide for building CodeWright projects and project
spaces. Projects and project spaces are covered more fully in Projects, Project Spaces,
and Workspaces.

CodeWright projects offer a means for storing related files as a unit. They make
version control operations simpler and more convenient, and they store unique
configuration settings, like compiler commands, with each project.

Project spaces are an extension of the project facility. They store sets of projects,

allowing multiple projects to be displayed at a time. A project space must be open
before a project can be created.

Making CodeWright Projects and
Project Spaces

The appropriate order for making projects is as follows:

1. Create a project space.

2. Make default settings.

3. Create projects and/or add existing projects to project space.
4

Add files to projects.

Creating a Project Space

To create a project space, do the following:

1. Click Project|Project Space| New.

2. Click Browse to set the directory in which the project space will be stored.

3. Name the project space. Project space configuration files use .PSP extensions.

Note: The chapter Projects, Project Spaces, and Workspaces describes the Look
in directory for external workspace option.

3- Build Your First Project 33

4. Click OK. The project space is created, and the Project|Properties dialog
appears, with the Members tab on top. The new project space is displayed in
the list box on the left. Projects may be added to spaces, and files are
subsequently added to projects, in this dialog. The information about creating
projects and adding files is contained in the topics Creating a Project and Adding
Files to a Project. But before the project is created, it is necessary to set the project
defaults, as explained in the next section.

Setting Project Defaults

Configuration settings for new projects are inherited from the <Default Settings>
item in CodeWright's Project Properties dialog. Changes made to the settings while
a project is selected will be stored with that project only. Closing the project will
cause all settings to revert to the defaults. For this reason, it may be a good idea to set
some configurations for <Default Settings> before the project is created, so that the
settings won't change when the project is closed. For example, it may be wise to set
up the compiler before creating a project so that the settings won't be lost when the
project is closed. (Information for setting up a compiler can be found in the chapter
Set up a Compiler. Information on project settings can be found in the chapter on
Projects, Project Spaces, and Workspaces.)

To make default settings, highlight <Default Settings> in the Project| Properties
dialog, and then make various configuration settings in the different tabs of the
dialog. Once desired <Default Settings> have been established, appropriate
modifications can be made for projects on a per-project basis.

Creating a Project

Once a project space has been created, individual projects can be created for the
space. Projects are created in the Project| Properties | Members dialog. This dialog
should appear immediately after a new project space has been created. To otherwise
access the dialog, select Project|Properties, and then click the Members tab. Carry
out the following steps to create a CodeWright project:

1. Highlight the current project space in the listbox on the left.
2. Click & to access the Add New Project to Project Space dialog. (The same

dialog can be accessed using the Add New Project item on the Project|Project
Space menu.)

3. Inthe Add New Project to Project Space dialog, click Browse to make sure that
the directory the project is being created in is appropriate, then name the
project.

34 3- Build Your First Project

Add New Project to Project Space

Current Dir
CACW32

Eilename:

ectory:

f
v Look
Makefile:
Type:

in same directory for external makefile

I~ &uto sync makefile

ﬂlowse...l oK I Cancell Help |
A

4. Click OK. CodeWright creates a new configuration file in the chosen directory
with the name that was typed and a .PJT extension.

Adding Files to a Project

Files can

be added once the project has been created. Complete the following:

1. Access the Members tab of the Project|Properties dialog.

2. Highlight the project in the listbox on the left.

3. Add

the files using one of the following methods:

Click to access the Scan Existing Files into Project dialog. Add
individual files by typing in the name or add multiple files using file filters
(e.g.*.C). Paths are optional (e.g. C:\TEST*.H). Use the [...] button to
browse for different directories.

Multiple filters can be used by separating each filter with semi-colons (e.g.
.C;.H;*.CPP). The Include Subdirectories option causes files in
subdirectories of the current directory to be included with files that are
added.

T=H
Click |QI to access the Select One or More Files to Add to Project dialog.
Add individual files by double clicking or typing the name. Add multiple

files by [SHFT]| or clicking.

Use the External Makefile option to read files from an existing makefile.
See Reading External Makefiles in the chapter Projects, Project Spaces, and
Workspaces.

Use the VCS Project option to read files from a version-control-project-file
(see Using Version Control in CodeWright, in the Chapter Version Control).

3- Build Your First Project 35

Files that are included in the project are listed in the Files listbox in the center of the
dialog. Files can be deleted from the project by selecting them in the listbox and
pressing the Delete button.

Project Properties Members

[@ <Default Settings> Directories | Members I Tooks | Enars | Fiters |
B cwstat P“] Project: C\cwiight\cw3Z\CWS TARTAcwstart pit
RN oostart (39 Files) —

a [Fies: B A<
TRowight\owaZ\CWS TART\cwatarth 5
C:h\ewright\ow32\CWSTART\cwstart.c
CAcwight\cw3ACWS TARTAUtLC
C\cwight\cw3\CWS TARTAcollapse.c

Cihowright\cw32\CWS TART Aentab.c
Ci\ewright\ow32\CWS TARTAcpp.c
Ci\owright\ow32\CWS TARTAcursor.c
Ci\owright\cow32\CWS TARThexecmac.c
C:\ewright\ow32\CWSTART \repeat.c
Ci\ewright\ow32\CWS TART \tags.c
Ci\owrightyow32\CWS TART \language.c
Cihowrightycw32\CWS TART \compile. ¢

A raarinl bt Ca A WS TART A tahsat LI
I~ Hide files already in project 00f 39 selected
Extemal Makefile:
’7C’\cwrﬂ\k\chZ\Dﬁ/START\cwslavl 8w ‘
VCS Project:
cumizard Bl
I~ Add project files to VCS Project

Cancel | Help |,
4

Project|Properties

The Project| Properties dialog is where all project configurations are set. Most of the
settings made in this dialog can be used without an open project, in which case they
would be global settings and would become the defaults. More information on the
Project|Properties dialog is provided in the chapter on Projects, Project Spaces, and
Workspaces.

Project Tools

Once the necessary files have been added in the Members tab of the Project|
Properties dialog, the project space and projects are basically complete. Before
clicking OK, though, it often desirable to set up some tools in the dialog's Tools tab.
See the topic Tools Tab of Project Properties in the chapter Projects, Project Spaces and
Workspaces for more information.

Project Window File View
Once the project space has been populated with all the appropriate projects, and the

projects have their necessary files and configurations, the OK button can be pressed
for the Project| Properties dialog. The project space is then created.

36 3- Build Your First Project

For a graphical display of the project space, click the File View tab of the Project
Window. The project space and its included projects will be displayed. The projects
can be further expanded to display each project's member-files. An example of the
File View tab, expanded to show project space, projects and files, follows:

Project Window: File View

Project [- | X]

C\.. \MACRDS\MySpace.psp

|&) MySpace (3 Projects) il

=G cob (5 Files]

© =143 Source Files

[cobe

[coberc

[Header Files

[Resources

SRS | Other Files

D cob.def

53 MyProil (5 Files)

B, MyProi2 (7 Files)
+(] Source Files
’D Header Files
i+ Resources
(=423 Other Files

e D editprev.cwb L’LI
e g] e |e o |

To load project files for editing, double-click on them in the window, or click on the
Load Files item in the Project menu.

For more information on CodeWright projects, see the chapter on Projects, Project
Spaces, and Workspaces.

3- Build Your First Project 37

38

3- Build Your First Project

Chapter | 4

4- Command Key,
Libraries, & Environment

The API Command, Libraries, and Environment options on the Tools and
Customize menus are used and referred to extensively throughout this manual. For
this reason, they are briefly described here. They are necessary tools that are used for
many CodeWright operations.

APl Command Dialog/Prompt

Select the API Command item on CodeWright's Tools menu to bring up a prompt
that interactively runs CodeWright API functions.

API Command

APl Command [X|
Command:

|| Cancel I

V

API (Application Program Interface) functions drive the interface between the
operating system and application programs. This includes the way the application
communicates with the services the operating system makes available. For example,
APIs make it possible to open windows, display message boxes, and load dialogs.

CodeWright has numerous API functions, many of which are available for
interactive use from within the CodeWright editor. CodeWright APIs can be used to
change keystrokes, buttons, and menu commands; they can be used in the macros
and DLLs that extend CodeWright; and they can be used interactively from the API
Command prompt.

4- Command Key, Libraries, & Environment 39

Do the following to use the API Command menu item to run CodeWright's APIs on

the fly. Type in the function name and any necessary parameters, and press .

Refer to CodeWright's online help for information on CodeWright APIs.

In addition to the menu item, the API Command prompt can be accessed with a
special keystroke, appropriately named the Command Key. The API Command Key/
Prompt is described next.

APl Command Key

If you find you want to do something in CodeWright for which there is neither a key
command nor a menu entry, you can probably do it using the Command Key:

W If you are using the CUA or the vi keymap command set, the Command Key is
[l
/1

B If you are using the BRIEF-compatible keymap command set, the Command
Key is [F0]], which in BRIEF also provides access to the BRIEF interpreter.

HW In keymaps where there is no KeyCommand assignment, selecting API
Command from the Tools menu will always access the prompt.

When you press the Command Key or choose API Command from the Tools menu,
a prompt appears on the status line or in a popup dialog box, depending on which is
enabled, like so:

Command:

You respond to the prompt by entering a CodeWright API function call, much as you
would enter it in CodeWright's C source code. Press /@ﬂ.ﬂ to send the command off
for processing.

Note: To specify a status line Command Key, choose the Use Command
Line Prompt option on the Customize | Environment | General
dialog. Refer to the topic Command Line Response Editing, in the
online help, for command line key sequences.

Command Completion

The API Command prompt has a handy command completion feature which
completes function names using the first few characters of the function for reference.
This feature is available for both the status line prompt and the popup dialog.

With command completion you can enter as much of a command (function name) as

you can recall and press the key to receive a list of all commands that begin
with the same characters as the incomplete command.

40 4- Command Key, Libraries, & Environment

APl Command Completion Example
Complete the following steps to see an example of API command completion:

1. Select Tools| API Command.

2. Enter the word color and press 8], The following dialog displays.

Command Completion for "color"

Colordlternate2
Color<ernate3
Colorélternated
Color<ernateS
Color<ernate6
Colorélternate?
Color<ernate8
ColorAlternate9
ColorButton
ColorCommandLine

ColorComments

ColorDiftAdd

ColorDiffDel =~

0K I Cancel |

2

3. Select the desired command from the list to place it on the command line for
you.

If you want a complete list of the commands available just press the key
without entering anything at the prompt. To filter the list more selectively, use the
characters .* before and after characters that you know you want to see. For example,
if you want to see all commands that contain the word ‘tab’ type the following in the
Command Key:

tab.*
Then press [[A8]|

(More information about using CodeWright's API and the Command Key can be
found in the chapter Extend CodeWright.)

4- Command Key, Libraries, & Environment 41

Customize|Libraries: Loading
CodeWright Add-Ons

The Libraries option on the Customize menu is used for interactively loading
CodeWright DLLs (or Add-Ons) that extend the functionality of the CodeWright
program. A number of commonly used Add-Ons are contained in the list of
CodeWright Libraries in the Libraries dialog. The CodeWright Libraries can be
quickly and conveniently loaded by placing checkmarks next to the ones to be
loaded. (More Add-Ons are available in the SUPPORT directory of the CodeWright
CD or from Starbase's WebPages at http://www.starbase.com.)

Note: DLLs (Dynamic Link Libraries) are software used by Microsoft's
Windows to provide services to applications. Some DLLs are
automatically loaded when needed by a program, and others must
be loaded at system startup. DLLs can be written in any
programming language used for Windows programming. Three
terms are used when referring to CodeWright DLLs: Add-Ons,
Libraries, and DLLs.

Loading a library in the Customize | Libraries dialog adds a line similar to the
following in the CWRIGHTINI file (described in the chapter on Configuration Files &
Command Line Parameters) and loads the DLL into CodeWright:

[LibPreload]
LibPreload=CWHTML.DLL

General Environment Settings

The General tab of the Environment dialog (accessed from the Customize menu) is
another item for which some early description is necessary. The Environment option
accesses a dialog that deals with a number of different areas in CodeWright. For
example, the Environment dialog is where backup files are specified, and it is also
where CodeWright menus can be reconfigured. The other tabs of the Environment
dialog are described in various chapters of this manual. The Environment dialog's
General tab is given some attention here because it has options that broadly affect
CodeWright's general behavior.

The General tab of the Environment dialog is used for setting various items in the
CodeWright environment. The settings in this dialog affect file loading, file saving,
file validation, keystroke and mouse behavior, and window options. For example,
the option Tile using single row/column in the General tab affects the Vertical/
Horizontal Tile options on the Window menu. When the option is marked,
CodeWright has 'true' vertical and horizontal tiling, as displayed.

42 4- Command Key, Libraries, & Environment

True Vertical Window Tiling

File Edit Search Project Test Document Customize Tools Window Help
e = - g < -1
- B HEH& % B @M= 4 a4 | ¢
lentifier: I 'I
—— | EEEE] e (o> e (of> CIE . o> e o
0 | //,}‘/:’eadef—_ #tinclude S| /= ‘)‘fleade—‘
S ThIS £ - | —| #include | /= —|
* automs * S | #include -
= Lodear. AR A AR AR * #tinclude *
- * Frile: * #include =
* Some s * fesc: * #include #
* seclic * »* #include * 77z
* Firect) * 7#hz #include * For
*_anaLhe * ror #include * eyt
_ FHOrgE #include » oxt #include - FOR
* revisi #include - FER #include - £y
* ook 2 #include - any #include - nor
- #include - [#include - tha
= fHerge #include - tha #include - pEF
= porgeb #tinclude = PEF #tinclude = PFE
= Hergeh #tinclude - PFG #tinclude - so4
- #include - 504 #include - oxp
= Note ¢ f#tinclude - exp -
* coptazrx|| #include * = =~ * Dotz
Output M
-
I lgnore Case -
'.3|EE|-::|0| DI G| | » |\ Buid £ FileFind) Search A Browse A Difference A_Shell A_Perl A_AppBasic
File: C:\cwright\cw32\AUTOMAGNAUTOMAG.C <al=a=5 Ins Line: 1 Col: 1

Itis a good idea to set options in Customize | Environment| General before
beginning any editing tasks.

Other concerns addressed by the settings in the Environment dialog include the
following:

v Whether system prompts (e.g. API Command dialog/prompt) should popup in
a dialog, or be displayed on the status line. Often, the preference is the status

line prompt, the setting for which is Use Command Line Prompt.

Whether windows and documents operate as a single unit, as they do in most
Windows applications, or independently. The toggle for this functionality is
One Document Per Window.

Whether a list of recently loaded files should appear at the bottom of the File
menu. This option that can be quite handy for reloading files, and is turned on
by marking Show File List on File Menu.

v/ Various file loading and file validation concerns.

The State tab allows you to save state information between CodeWright sessions.
Ask yourself a couple of questions:

v Do you want CodeWright to remember and load the last file you were working
on, all files, or no files?

v Do you want to save bookmarks between sessions?

4- Command Key, Libraries, & Environment 43

API Command, Customize | Libraries, and Customize | Environment | General are
important items that are referred to frequently throughout this manual. They have
therefore been briefly covered as close to the beginning of the manual as possible.

44 4- Command Key, Libraries, & Environment

Chapter | 5

5- View Setups and
Language Support

One of the first things you will likely want to do before beginning any editing in
CodeWright is personalize the basics, like colors and scroll bars. In CodeWright, all
colors, fonts, line numbers, scroll bars, and other window attributes are stored in
View Setups. View Setups are "color schemes" with a kick. They store named sets of
colors with individual fonts, rulers and other window-related features. Background
and foreground colors can be controlled for individual screen elements, or for the
window as a whole. The first part of this chapter talks about view setups and the
dialog used for setting them.

The second part of this chapter covers CodeWright's main claim to fame, which is
programming language support. Since colors are a primary concern in language
support, and colors are a principal part of view setups, view setups seem to be a
natural lead-in to language support. Language support features like ChromaCoding
(lexical coloring for keywords, comments, etc), template expansion, and smart
indenting are essential when editing source code. If those features are not
immediately apparent during editing, it will be necessary to understand the process
for turning them on or creating them.

View Setups: Colors, Window
Attributes, Scrollbars, Fonts, Etc.

All items that pertain to CodeWright's visual environment, such as colors, scroll bars,
line numbers, and window settings, are part of CodeWright view setups. View
setups are controlled and manipulated in the View Setups dialog, which is accessed
by clicking on the Customize | View Setups menu options. There are four tabs on the
View Setups dialog: General, Visibles, Font and Colors.

5- View Setups and Language Support 45

46

Use the General tab to set window attributes like scroll bars (with scrollbars
come 'notches' for window-splitting functionality), line numbers, and margins.
Use the Highlight Current Line option (in combination with the Use
Background Only option on the Colors tab) to maintain font style and
foreground colors.

Use the Visibles tab to manipulate "Visibles", a term used to describe the
characters that can be used to make invisible characters, such as spaces and tabs,
appear on the display. To turn Visibles on, mark the Visibles option. To give the
Visibles a slightly softer color, mark Use Visibles Color. The main listbox lists
the characters that are currently being used for display. The characters can be
changed using the combo-box just above the list of visibles.

Use the Font tab to change screen fonts only. The fonts selected in the dialog do
not affect printed documents. The print dialog has separate font settings for
that. Items to note:

v Font styles can be combined.

v The font style for individual screen elements can be changed, but only
when the selected font supports the styles.

Note: Many of the view setups, including Default, are set to use the
Fixedsys' font. This gives two benefits: ChromaCoding font styles
now display when first installed, and users that need the extended
umlaut (European) characters are supported by default.

Use the Colors tab to change screen colors. Colors can be changed for all text
colors (i.e. the background as a whole), using the Synchronize text background
option, or for individual screen elements only, by selecting the element and
then changing the colors.

Background and foreground palette colors can be changed (up to 16-million
colors if your display supports it). Several default view setups are provided to
illustrate this feature (see the drop-down list in the View Setup field).

5- View Setups and Language Support

View Setups: Colors

General | Visiles | Colors] Fort |

Screen Element:

Wiew Setup: | Qutput window hd

- Color Pal

Text Selection]

Functions [Alternate 7]

Eoreground;

Save As.

[>Se|enlinn DElete
Window Text

Tt ERCCERCTT G
Comments Background:
Keywords Defaults
Strings [Alternate 1) 1 Ieipl IO
Numbers [Alternate 7) ™ Synchionizs text backaround Test
Braces [Alternate 3]
Preprocess [Alternate 4] Edit palette colors... | Sfele [0

Operators [Alternate 8] _'D;n;": P —
when cokr T
User 1 [Alternate 5] £

~Use calor Fontetys
User 2 [(Alternate 6) € Foregound | I Ecld Cancel
User 3 [Alternate 9] % Background | T Jialic

User 4 [Alternate 10] =] " Both I=| rri=ine

FlEk Ll EEEE

Help

Any combination of changes (whether the changes are color and font, window and
color, Visibles and color, etc) made in the View Setups dialog can be saved with a
name using the Save As button. Just click the Save As button, and give the view
setup a new or existing name. Different view setups can be selected from the drop-
down list under the View Setup combo box.

Any view setups can be restored to the settings that were made prior to entering the
dialog, using the Reset button. The Defaults button returns only the Default and
Output view setups to their defaults. The Test button displays the latest changes to
the current CodeWright screen. The Apply button brings up the Apply View Setup
dialog, which allows the selected view setup, with any changes, to be immediately
applied to the Current Window, All User Windows, or to be made the Default view
setup.

CodeWright View Setups

CodeWright supplies several view setups out-of-the-box. They are listed for selection
in the drop down list under the View Setups combo box. Many supplied View
Setups have '(16-bit)' as part of their names. This means more than 256 colors are
needed to reproduce the palettes (16-bit color is the same as 65536 colors).

Among the list of view setups, the ones named Default and Output Window are of
particular interest. Both of these view setups affect windows in a particular way and
have additional screen elements available for modification.

Note: Screen elements are the elements on the CodeWright screen whose
colors can be changed. Examples of screen elements are functions
and keywords for supported programming languages. Screen
elements are listed in the Screen Element List in the View Setups
dialog.

5- View Setups and Language Support 47

W If the Default view setup is selected, additional screen elements are available for
controlling colors and fonts of system elements such as the status bar. The items
are in the System group at the bottom of the list.

W If the Output Window View Setup is chosen, additional screen elements are
available for controlling window attributes of the Output Window.

Default View Setup

The Default view setup is the view setup that is initially associated with all
CodeWright windows. Changes made to this view setup will affect all windows that
do not have view setups otherwise associated with them. If you would like to use
another view setup as the default, there are two ways to do this:

B Use the Save As button in the View Setups dialog to save the selected view
setup as Default, or

B Mark Make Default in the Apply View Setup dialog while the desired view
setup is selected in the View Setups dialog.

Output Window View Setup

Changing the Output Window view setup changes colors of screen elements in the
Output Window. To change window settings for individual tabs of the Output
Window, make the changes, then save the view setup as

"Output Window n"

(Where n stands for the number, 0-9, of the tab being changed).

Using View Setups

As mentioned, windows in CodeWright are initially associated with the Default
view setup. To use any other view setup, it must be associated with a CodeWright
window. With this in mind, consider or do the following to change the colors and
window attributes of a window or set of windows:

B Change the options for the Default view setup in the View Setups dialog in
order to change the colors, fonts, and other window attributes of a window
associated with the Default view setup.

B Associate any view setup with the current (on top) open window by selecting
the view setup and then marking Current Window in the Apply View Setup
dialog (accessed by clicking Apply in the View Setups dialog).

B Associate any view setup with selected open windows by choosing the view
setup for the selected windows in the Document/Window Manager dialog.

48 5- View Setups and Language Support

B Associate any view setup with all open windows by marking All User Windows
in the Apply View Setup dialog (accessed by clicking Apply in the View Setups
dialog).

B Associate any view setup with windows (open or not) containing files of a
certain file type (i.e. .C, .H, .CPT etc), by choosing the view setup for the selected
file type in Customize |Language | Coloring.

Since much of CodeWright's language support involves colors, and view setups have
something to do with color, CodeWright's language support is described next.

CodeWright Language Support

CodeWright's language support can consist of the following elements:
B ChromaCoding

HW Template Expansion

W Smart Indenting

B Brace Expansion

Languages that are supported out-of-the-box include file-types with the following
extensions: .C, .CPE .JAVA, HTML, and .ASM. There are also some languages for
which language support Add-Ons are available but not loaded; in those cases, a
simple procedure for loading the Add-Ons is all that is required to enable the
support. Ultimately, support can be made for any programming language, through
the creation of ChromaCoding Lexers and language Add-Ons. The following topics
discuss lexers and Add-Ons, and the various ways they are configured to provide
support for languages that are not immediately supported by CodeWright out-of-
the-box.

Language Support Lexers and DLL's

The first thing any programmer expects to see when loading source code files into
CodeWright is color, or ChromaCoding, for the syntax elements of the source code's
language. A programmer might also expect other language support features, such as
template expansion, to be immediately available. Depending on the language,
however, this may not always be the case.

Some languages are supported by default in CodeWright. For example, when files
with .C extensions are opened in CodeWright, ChromaCoding is immediately
apparent and template expansion can be enabled and used by marking a single
option in the Customize |Language dialog. In this sense, files with .C file-type
extensions are supported by CodeWright out-of-the-box. When a language is
supported out-of-the-box it often gets its functionality from CodeWright's
CWSTART.DLL, which loads automatically each time CodeWright is launched.

5- View Setups and Language Support 49

For language support that is available but not loaded out-of-the-box, there are two
options:

B The support can be obtained from external Add-Ons (DLLs) which must be
loaded manually,

OR

B The support can be obtained from a Lexer, that can be created and/or modified
in the ChromaCoding Lexer Settings dialog.

The topics that follow describe the two methods for adding language support to
CodeWright. CodeWright language DLLs are covered first, followed by a discussion
of CodeWright ChromaCoding Lexers. When reading the following information,
keep in mind that ChromaCoding Lexers are the easiest way to create new language
support for CodeWright. ChromaCoding provided by lexers is also faster, meaning
that color display will be smoother. However, lexers do not support Smart Indenting,
Template Expansion, or Brace Expansion. These features are provided by other
means.

It is possible to use Add-Ons together with lexers. In such cases, the lexer's
ChromaCoding functionality will take precedence, but the Add-On will still provide
other language support features.

Language DLLs

When language support is obtained from a DLL, the first thing to do is make sure
that the DLL for the language is in the CodeWright directory. Some language
support DLLs are already in the CodeWright directory. Many more can be found in
the \Support directory on CodeWright CDs, or can be downloaded from Starbase's
webpages. On the webpages, the support comes in the form of a zip file, which
contains the supporting DLL, some source code, perhaps a keyword file and a
README file. CodeWright CDs maintain the same Add-On files in unzipped format,
in the \Support directory.

Customize|Libraries

After making sure that the appropriate DLL is in the CodeWright directory, the
library needs to be loaded. CodeWright libraries (including language support) are
loaded using CodeWright's Customize | Libraries dialog. The DLLs will add
functionality to CodeWright, whether that functionality is language support, or
some other feature.

50 5- View Setups and Language Support

Some Add-Ons are listed in the Libraries dialog, in the list of CodeWright Libraries.
If a language is not supported out-of-the-box, the first place to look is in the list of
CodeWright Libraries. Loading a library from the list is as simple as putting a
checkmark next to the item to be loaded. If the language is not listed explicitly, it may
be available in the \Support directory of the CodeWright CD, as mentioned. The
library can be loaded by clicking Add and browsing for the appropriate DLL. When
loading an Add-On from the CD, it is a good idea to first copy the Add-On to a
directory on your local hard drive (preferably the CodeWright installation directory)
so that it will be available after the CD has been removed. For more information
about the Libraries dialog, see the topic Customize|Libraries: Loading CodeWright Add-
Ons in the chapter on Command Key, Libraries and General Environment.

ChromaCoding Lexers

ChromaCoding Lexers provide language support (i.e. ChromaCoding) for
programming languages being edited in CodeWright. They store collections of
settings to color various elements of the programming language's "vocabulary".
Those "vocabulary” elements include identifiers, braces, preprocessors, keywords,
operators, strings and comments.

Lexers are the easiest way to add support for a language that CodeWright did not
previously support. ChromaCoding Lexers can be created or modified in the
ChromaCoding Lexer Settings dialog.

ChromaCoding Lexer Settings

ChromaCoding Lexer Settings []
Beverat | wods | Comments | Stings | Mumbers | Lot ML |

~ Iderifi Save As...
Identifier

i

Identifier Characters:
Fist: [ozZaz Folows [4Z2209 MEm

™ Identifiers fallowed by '[* are functions

Delete

i~ Brace character:

<317

Colars...
[V Use brace characters 1 and 2 to delimit coloring [HTHL]

¥ Exclude coloring text with regex
Expression: [0K]
[<MCDATAMAFRRL

Groups: |1 Cancel

™ lonore case [Whole word

FElE

Help

There are two ways to access the ChromaCoding Lexer Settings dialog:
B Click the ChromaCoding Lexers item on the Customize menu.

B Click the Settings button on the Customize | Language | Coloring dialog.

5- View Setups and Language Support 51

Some lexers are provided in the drop-down list under the ChromaCoding Lexer
Settings dialog's lexer combo box. Default settings on the tabs of the ChromaCoding
Lexer Settings dialog will vary depending upon the lexer selected.

If a desired lexer does not exist, it can be created.

Creating a Lexer

To create a Lexer, complete the following sections:

Make a Lexer Name.

Define Identifier/Brace Characters and Text to Exclude from Coloring.
Define Keywords.

Define Comments.

Define String Delimiters.

Define Numbers.

Make a Lexer Name
To make a Lexer Name:

1.In the ChromaCoding Lexer Settings dialog click New.
2.Type a descriptive name for the lexer.

3.Click OK to exit the Add Lexer dialog.

A new Lexer will appear in the Lexer: combo box.

Define Identifier/Brace Characters and Text to Exclude from Coloring
On the General tab of the ChromaCoding Lexer Settings dialog, define
identifier characters and brace characters for the language, and any text to be
excluded from coloring by this lexer.

After the lexer name has been created, identifier characters must be defined.
Identifier characters are characters that distinguish “identifiers” from other
elements of the language. Identifiers can best be described as a set of characters
used to make up the "words" of the language. Keywords and function names are
identifiers, but operators are not. If identifier characters are not defined,
ChromaCoding for identifiers will not work.

52 5- View Setups and Language Support

ChromaCoding Lexer Settings | General

ChromaCoding Lexer Seltings [<]
I ‘Words I Comments I Shings I MNumbers | Lexer. oL jv
- Identifier SIS
Identifier Characters:
Fist [6Zaz Folowr [6Zs208 | NLI
I Identifiers followed by [are functions Delete
i~ Brace character
<x 7
LColars...
¥ Use brace characters 1 and 2 to delimit coloring (HTHL)
v Exclude coloring text with regex
Expression: [0K] QK I
[<MEDATAMIAFRRL
Groups [1 Cancel
™ lonorecase [~ Whole word
Help

Character classes (described under the topic Regular Expressions in the chapter on
Search and Replace and Navigational Tools) can be used when defining identifier
characters.

Example: 2A-za-z$
A-Za-z0-9$

Note: Certain regular expression characters must be escaped with a back
slash (\) in order to use them literally. For example, to specify a dash (-
) character as an identifier character, enter it as \-.

There are three fields in the Identifier Characters section:

M The First field is for characters that will normally appear as the first
character of an Identifier.

B The Follow field is for characters that will normally follow the first
character of each Identifier.

B A checkbox that indicates whether Identifiers followed by parentheses are
functions (like C++).

The options in the Brace Characters section apply to certain languages only and
indicate the following;:

B If braces are used, which ones should be colored.

B Whether the first two braces defined should delimit keywords, numbers,
and strings for coloring (i.e. elements are only colored when surrounded by
braces, like HTML).

Mark the Exclude Coloring Text with Regex option to allow text that matches
the regular expression you enter to be skipped over by other coloring
definitions. Define the regex expression with the following fields:

5- View Setups and Language Support 53

B Expression: The regular Expression pattern is used to parse matches from
files that use the corresponding ChromaCoding lexer. The lexer will then
exclude from coloring the parts of the matches designated by the reference
groups within the pattern.

v The word [illegal] will appear above the edit box if the pattern in the
box is not a valid regular expression. The word [OK] will appear if the
regular expression is valid.

v Itmight be helpful to create the regular expression in the Search dialog
so you can readily see what is matched. Once the pattern has been
created, it can be pasted in the Expression box.

B Groups: Place one or more space-separated numbers in the Groups box to
indicate which reference groups in the Expression box should be used to
match strings that are to be excluded from coloring.

If no reference groups are specified, the whole expression in the Expression
box will be used. If more than one group exists in the pattern, only the
groups that are specified by the numbers in the Groups box will be used.
Note that reference groups in regular expression patterns are counted from
left to right starting at 1.

B Ignore Case: Mark Ignore Case to have any occurrence of a match by the
Expression pattern excluded from coloring, regardless of case (upper, lower
or mixed).

B Whole Word: Mark Whole word to have the ChromaCoding lexer exclude
from coloring only matches that are surrounded by whitespace or Word
Delimiters.

Define Keywords

On the Words tab of the ChromaCoding Lexer Settings dialog, add any
keywords, operators (e.g. +,-,*,&), or preprocessor words (if appropriate) that
the ChromaCoding Lexer should color.

5- View Setups and Language Support

ChromaCoding Lexer Settings | Words

ChromaCoding Lexer Settings

General | Words] Commerts | Stings | Numhers |

" Keywards
" Preprocessar

Get... |

Lexer: [xML

r List getting: Sl
I lgnore case
I | Al uihite aftenfist

= GllGvat cammert st

al

2l
I | Wfuist sttt it coliimm ore
¥ Identify words with reges —|
Erpression: [OK]

Groups: I—

Delete

Lolors.

r ltem settings

™| Celon remaindeneline
I= | lgriere rematden sfiline
I | WG vihiite o function:
(oI Ealr aperator
= [preneded byhiank
= (ol sved by Blank

i

Cancel

I
oy
o

Use the following steps to add words:

1. Choose the radio button for the group (i.e. Keywords, Operators, etc)
that the items will be added to.

2. Click the New button on the left.

3. In the resulting Add Words dialog, type the appropriate character(s)
for the word to add.

Notes:

v Items can be deleted from a list by selecting the item and pressing
Delete.

v The Get button adds items from a file. Click it to bring up the Get
Words from File dialog. Use the Get Words from File dialog to
browse for the file containing the items to be added. The Get
Words from File dialog can only read whitespace separated
words. It can not differentiate words from other characters like
parentheses, colons, etc.

v Added items will display in the center list-box.

v The Edit button can be used to modify one or more words in a list.

v "User..." items are for user-defined keywords, which can be

5- View Setups and Language Support

colored differently than the Keywords items. (Colors are set in the
View Setups dialog, described in the previous topic on View
Setups: Colors, Window Attributes, Scrollbars, Fonts, etc.)

55

v The option Identify words with regex in ChromaCoding Lexer
Settings | Words is for file types (languages) that allow keywords
to be recognized that may be specific to a document, but are not
part of the language definition.

Since these dynamic keywords may vary from file to file, there is
no way to define a list of them for the ChromaCoding lexer.
Because of this, the lexer will not be able to color them in
CodeWright.

Identify words with regex solves this problem. It enables
controls and an edit box that are used to define and configure a
regular expression; the regular expression parses words from
files that use the corresponding ChromaCoding lexer. The lexer
will then know which words to color.

It might be helpful to create the regular expression in the Search
dialog so you can readily see what is matched. Once the pattern
has been created, it can be pasted in the Expression box.

v The List Settings section has items that apply to whole lists of
keywords (i.e. if keywords is chosen, the options apply to the list
of keyword elements, if operators is chosen, the options apply to
the list of operator elements). Certain items apply only to certain
lists. For example, Allow White After First (which causes
preprocessors to color even if whitespace appears after the first
character) can be used for lists of Preprocessors only.

v The Item Settings section has options that only apply to
individually selected items.

v Certain checkboxes on the Words tab apply only to certain sets.
For example, Ignore Remainder of Line is only available for the list
of Preprocessor keywords. This option tells the Lexer not to
ChromaCode any text after the selected preprocessor. It is handy
for languages like C++ that have preprocessor lines like:

W #include "exports.h"
B where "exports.h" would otherwise be incorrectly colored as a

string.

(Refer to CodeWright's online help for additional information on the options
available on the Words tab.)
Define Comments

On the Comments tab, define all the appropriate comment delimiters for each
comment set. The configurations made in this dialog will tell the
ChromaCoding Lexer when to color comments.

56 5- View Setups and Language Support

ChromaCoding Lexer Settings | Comments

ChromaCoding Lexer Settings [x]
Strings | Numbers | Lexer: |HTML jv

General | Words

Muliine Comment E Add Line Comment Savede)
New...
Add Multi-ine Comment
Delete
Delete Comment
€ Begin Column: I
& Colors...
¢ Use Delimiter
Start Delimiter: |<!-- End Delimiter: |->
™ If preceded by whitespace ™ Must be last on line
I~ Orly whitespace
Cancel
Delimiter column: ™ Nested comments allowed
Help

To define single line comment delimiters, click the Add Line Comment button.
To define multi-line comment delimiters, click Add Multi-line Comment. Each
time either of the buttons is clicked, the Begin Column or Use Delimiter options
become available, depending on which radio button is chosen at the time.

B If asingle-line comment is being added, the right side of the Use Delimiter
section is not available.

B If a multi-line comment is being added, the Begin Column option will not
be available.

Finish setting up the comment support by completing the fields and command
options that apply to the characteristics of the comments for the language in
question.

(See CodeWright's online help for more information on the Comments tab.)

Define String Delimiters

On the Strings tab of the ChromaCoding Lexer Settings dialog, choose the
options necessary to tell the ChromaCoding Lexer how to color single- or
double-quoted string delimiters. If the language in question does not use
quoted strings, mark the option(s) that specify that Single/Double quote does
not start a string.

5- View Setups and Language Support 57

58

ChromaCoding Lexer Settings | Strings

ChromaCoding Lexer Settings |]
General | Words | Comments | Numbers I Loser IHTML j’
- Single quoted string Save As...
& Single quote does not start a sting
€ Stiing only contains one character New.

" Quote is escaped with a quote
" Quote is escaped with a backslash
¢ Quote is escaped with character(s) l_
™ End quote can be on following lines
I~ Traiing backslash continues line

Pl

Delete

. Colors... I
r~ Double quoted strings
¢ Double quote does not start a string
€ Sting only contains one character
& Quote is escaped with a quote
€ Quote is escaped with a backslash l_
¢ Quote is escaped with character(s) Cancel I

¥ End quote can be on following lines
™ Traiing backslash continues line

Define Numbers

On the Numbers tab, define any numbers that should be colored by the
ChromaCoding Lexer for the language in question. The available number types
are:

Float
Hexadecimal
Decimal
Octal

Binary

No Type

The number types only serve to identify an entry. They are there for
convenience. When one of the types is chosen, the most appropriate number set
is automatically inserted in the Digits field. The name of the chosen type is also
displayed, for reference purposes, beside the number set in the Numbers List
Box. The other settings in the dialog control how the elements are
ChromaCoded by the lexer.

5- View Setups and Language Support

ChromaCoding Lexer Settings | Numbers

General | ‘Words I Comments I Stiings I Lexer IHTML j'
Hexadecimal 0x 0-Sa-fA-F SayeAs... I
Decimal o3 Add Number -

ew...
Delete Numberl Delete I
~ Type Ch.
B Diots [oselr | b oo |
i :egtadelcimal @ Stats it [Dx— _']
ecimal
- ;olal € Ends with: l— _’]
@ I~ | Restrict first digit to 0-9 sl I
" Notype Optional end characters I— o

Use the following steps to define number elements:

1. Click Add Number, then choose the number type to be applied. A new item
will appear in the list box at the top of the dialog.

2. Add the numbers to the Digits field.

4

v

Character classes (such as 0-9, indicating all numbers between 0 and 9)
can be used.

Commonly used character classes for the selected number type can be
quickly inserted using the popup menu displayed with the black right-

arrow button ﬁ, to the immediate right of the Digits field.

For each added set of numbers, beginning and ending characters can
be specified for the ChromaCoding Lexer using the Starts With and
Ends With fields. This is for programming languages that delimit
numbers with specific starting or ending characters.

The Starts With and Ends With fields also have black right-arrow
buttons to access popup menus containing commonly used beginning
and ending characters.

The Restrict first digit to 0-9 option is available when using the Ends
With field. It restricts the lexer to color numbers that end with specified
characters only if the first digit is numerical.

The field labeled Optional end characters specifies that
ChromaCoding include the characters in the box when coloring any
numbers that end with them.

5- View Setups and Language Support 59

Completing the Lexer

B When all the appropriate language characteristics have been added to the
Lexer, click OK for the dialog.

B If you want to delete a lexer, choose it from the drop-down list under the
Lexer combo box at the top of the ChromaCoding Lexer Settings dialog,
and click the Delete button.

Click Cancel to undo any changes made during the current session of the
ChromaCoding Lexer Settings dialog.

Configuring Options in the Language Dialog

Whether language support is obtained from a language DLL or a ChromaCoding
Lexer, the configurations for the language need to be set up. This is done in the
Language dialog, accessed by selecting the Customize | Language menu items.

The Language dialog is where all CodeWright's language features are stored and
controlled. CodeWright's language features consist of settings and support that are
associated with file type extensions (i.e. .C, .TXT, .ASM, etc). The available features
vary depending on the extension of the file.

Customize | Language

File type: Options | Tabs/Indenting | Templates | Colring | CodeSense! <[»
powy Document Options EOF/EOL————————
o I™ Bead-only I~ UnigEOL

o I” Overtype CulZEOF

hop ¥ Record unda info e

Eml ¥ Make backups ™ Output

ini

java

mac =~ Backupspec: |
Mapped to: Word delimiters: |"AZa20-9_ _I

<None>

WordWrap—————————————————————— [~ Virtual Lines

New Type... I™ Line wiapping tett [T 2]| | Enate
Delete Type I™ Wrap confinuously” Right: [?Ei Limit: [_25 Ei
Map Type to...

Cancel Help

Some of the options in the Language dialog are available for any file type, while
others are only available for file types for which a language support module is
available. For example, the Paste Indenting feature can be used for any file type,
while Brace Expansion features (described in the chapter on Editing & Printing) are
only available for C and C+ + files. If a language support module does not provide
support for a particular feature in the dialog, the feature will not be available.

60 5- View Setups and Language Support

The Language dialog has seven tabs, which will be described here, along with a few
other elements of the dialog. The main thing to remember when making changes in
the Language dialog is that the changes are file-type specific. That is, changes apply
only to files with extensions that are highlighted in the File Type list at the time of
the change.

File Type List

The File Type list on the left-hand side of the Language dialog lists all of the
available file types for CodeWright.

File Types

File type:

FR—
.asm
.c

.cpp
LCHX
h

-hpp
“htm

-html
Nigl) —
java
.mac ~|
Mapped to:

<None>
A file type is the extension of a given file (e.g..C). It is used for selecting the file type
whose settings will be viewed or modified. The file type associated with the current
document is selected initially, if it is in the list. If it is not in the list, it can be added,
or the default settings (indicated by file type .*) will apply. To select more than one

extension at a time, use [T - or [SHFT]-click.

Options Tab

The Customize | Language | Options dialog has options for controlling certain
attributes and functions for files of the selected type. Some of the options available
are as follows:

B Read-only controls whether files of the selected type should be opened as Read-
only.

H Make backups controls whether backup files should be made for files of the
selected type.

B UNIXEOL controls whether UNIX EOL characters should be inserted when the
Enter key is pressed in files of the selected type.

B Whether and how Word Wrap should be used in files of the selected type.

5- View Setups and Language Support 61

Most of the features in the Language | Options dialog are also available on a per-
document, non-file-type-specific basis, in the Document/Window | Manager dialog.

Tabs/Indenting Tab

The Tabs/Indenting tab of the Language dialog has options for controlling and
customizing how CodeWright handles tabs, virtual space, and auto-indenting. It also
offers a choice of several popular forms of block Alignment Styles which are used
when inserting templates and/or when using brace expansion. The available
alignment styles are:

B Unindented Block
B Line Saver

B Indented Block

Most of the features in the Language | Tabs/Indenting dialog are also available on a
per-document, non-file-type-specific basis, in the Document/Window | Manager
dialog.

Templates Tab

The Templates tab of the Language dialog is for turning on, examining, deleting, and
redefining language templates associated with the selected extension. More
information about templates is available in the chapter on Editing & Printing.

Coloring Tab

The Coloring tab of the Language dialog has options for controlling how
ChromaCoding operates. It is also where CodeWright is configured to provide
ChromaCoding support for languages that are embedded in other languages. The
items in the dialog that are of special interest are the Lexer and DLL options, and the
Embedded Languages and Scripts section.

B Mark the Lexer radio button to make the Lexer options available and to cause
the combo-box to display the currently selected Lexer, as described in the
section on ChromaCoding Lexers. ChromaCoding lexers maintain numerous
settings that add support to and for programming languages edited in
CodeWright. To choose a different lexer, select it from the drop-down list under
the combo. The lexer displayed in the combo box will be associated with the
selected file type in the File Type list.

The Settings button can be used to access the ChromaCoding Lexer Settings
dialog, used for making new ChromaCoding Lexers. The dialog can also be
accessed by clicking the ChromaCoding Lexers option on the Customize menu.

B Mark the DLL radio button to have CodeWright use a DLL, rather than a lexer,
for language support. Marking the DLL option enables two additional buttons.

62 5- View Setups and Language Support

v The Keywords button accesses the DLL Extension Keywords dialog, used
for defining and editing a file of keywords to supplement the ones
predefined by the DLL.

v The Coloring button accesses the DLL Coloring dialog, used for controlling
ChromaCoding color-timing and the number of comment lines that will be
colored. If there is no DLL loaded for the selected file type, the DLL radio
button will be unavailable.

These buttons are not available when the Lexer option is chosen.

B The Embedded Languages and Scripts section has the following components
and rules:

v The Configure button accesses the Embedded Language Configuration
dialog. The button will not be available if the selected file type does not use
a ChromaCoding lexer for ChromaCoding support.

The Embedded Language Configuration dialog uses regular expressions to
parse programming languages that are embedded in other programming
languages (e.g. JavaScript in an HTML file). It then colors the embedded
language using a designated ChromaCoding lexer. Other language support
features, such as template expansion, are also provided. With the proper
configurations, CodeWright will be able to distinguish the embedded
language from the main language, and provide support for both.

Embedded Language Configuration

- Lexer names ions used
| [Hx] 2]+

VBScript bas

Pattern:

IV lgnore case
(- Defin
Expression: [OK] Group for lexer name; |3 Ei

KT Fmetal W+hitp-equiv] \twnT=] W conts

cipttype | Sl

Star

Expression: [OK] Group ,3_5

|<[tin*script([in]+language] inJ*=[\t*'(text/)?([a-2]+)")7] \tn]>
I™ Contains lexername I~ Lever name is optionzl

End
Expression: [0K]
</ \npscript] Mn>

0K Cancel| Previous| Nest New | Remove| Help
4

Help for the dialog is available online, under the topic Embedded Language
Configuration. See the topic Regular Expressions in the chapter Search and
Replace and Navigational Tools for help with regular expressions.

v <not defined> will appear if no embedded languages have been defined
for the file type. <n defined> will appear if one or more embedded
languages have been defined, where # is the number of defined languages.

5- View Setups and Language Support 63

v There must be an existing ChromaCoding lexer that provides color support
for the embedded language in order for the embedded language
configuration to work. If an appropriate lexer does not exist, it can be
created in the ChromaCoding Lexer Settings dialog.

v The option Use 'background override' color in Customize
| Language | Coloring allows different background colors to be set for blocks
of embedded code. It uses the colors that are defined for the screen element
'Background Override' in Customize | View Setups. Use 'background
override' color is file type specific and should be marked for the file type of
the parent language.

CodeSense Tab

The CodeSense tab of the Language dialog is used for selecting and manipulating
the Name Completion, Outline Symbols, and CodeSense features. These features
parse specified text from files being edited which is then used for editing or
navigational purposes. More information about Name Completion and CodeSense
can be found in the chapter on Editing & Printing. Symbols are described in the
chapter on Search and Replace and Navigational Tools.

Format Tab

The Format tab of the Language dialog contains options for Code Reformatting or
beautifying. These options are used by the Format Source item on the Text menu.
Format Source is explained in more detail in the chapter on Checking and Reformatting
Files.

Comments Tab

The Comments tab of the Language dialog is for setting the parameters for the
Comment and Comment Box menu items on the Text menu. The Comment features
are explained in more detail in the chapter on Editing & Printing.

Adding a New File Type to the Language
Dialog

Before CodeWright can color a file, it has to know the file's type (i.e. .C, .TXT, etc).
Usually the file type will already be defined, but not always. If it isn't defined, it will

need to be added to the File Type list in the Language dialog. Do the following to
add a new file type and then associate it with language support:

1. Select New Type and add the extension for the language (without the ', which
is automatically added). Once the file type has been added, select it in the list of
file types on the left.

64 5- View Setups and Language Support

2. In the same dialog, select the Coloring tab.

W If the file type will be getting its ChromaCoding support from a Lexer, select
the Lexer radio button and choose the appropriate Lexer from the Lexer
combo-box to associate it with the selected file type.

W If the file type will be getting its ChromaCoding support from a DLL, mark
the DLL radio button.

3. Once the language support method has been established, check and configure
the options on Tabs/Indenting tab (these features will be covered in the chapter
on Editing & Printing) and on the Coloring tab to enable language-specific
editing features and coloring for the file type.

When a source file with the new extension is opened, syntax colors (ChromaCoding)
should be visible. Other features that the corresponding Add-On or lexer has been
designed to support should also be available.

Aliasing

If there isn't a language support DLL for a particular file type, there are two options
available: add support by creating a lexer (described in the previous section) or
create a DLL. There is some information on creating a language DLL at the end of
this chapter and also in the chapter on Extend CodeWright.

An alternative way to add language support is to alias the unsupported file type
with a supported one. If the code style of the unsupported language is similar to one
that is supported, all the templates, keywords and coloring for the existing file type
will be used by the unsupported file type. Keywords can be added to the supported
file type's list for additional coloring.

To alias, or map, a file type to one that already exists:

1. Go to the Customize | Language dialog and press the New Type button.

2. Add the _new_ file type.

3. Highlight the _new_ file type in the list of file types on the left.

4

Press the Map Type To button and enter the file type that will be the alias for the
unsupported language.

5. Save and exit the dialog.

When source files of the unsupported extension are opened, they will use the
language support of the file type they are mapped to.

5- View Setups and Language Support 65

Some of the tabs in the Language dialog will be unavailable for mapped or aliased
files. This is because mapped file types use the language-specific functions of the
type to which they are mapped. In such cases, mapped file types can only be
changed by changing options for the original file type to which the unsupported
language is mapped.

Creating a Language Support DLL

If there is no Add-On available to support the programming language you are
editing, it is possible to make one. A module is provided in the \Support directory of
the CodeWright CD that contains source code for a generic language support Add-
On. The source code could be used as a frame of reference for building a custom
DLL that will provide support for the language in question. The module is called
GENICL50.

An alternative option when creating a language Add-On is to use the source code for
the language currently supported that most closely matches the language to be
added. Source code for most CodeWright DLLs (including CWSTARTDLL) is
available in subdirectories of the main CodeWright directory for Full CodeWright
installations. The closer the commenting of the supported language is to the
language for which support is being added, the simpler the task will be. (Creation of
alanguage support DLL is an extensive topic for which more detailed information is
provided in the chapter on Extend CodeWright.)

66 5- View Setups and Language Support

Chapter | 6

6- Editing & Printing

This chapter covers most of CodeWright's special features that help make editing
easier. Things like Template and Brace Expansion will be covered extensively.
Functions and dialogs used for inserting Comment Boxes, File and Function
Headers, CodeFolio Snippets and completed API functions (API Assistant and
CodeSense) will also be discussed along with “hex-mode” editing and CodeWright's
COBOL, HTML and XML features. The chapter also describes CodeWright's Print
dialog and explains the process for configuring CodeWright's online help to access
help from different environments.

Templates and Brace Expansion

Refer to the following discussion of Templates, Template Macros, CodeFolio
Snippets, and Brace Matching and Expansion.

Templates

Templates may be language specific (i.e. associated with a particular programming
language) or language independent. They are useful for taking the drudgery out of
repetitive editing tasks. They are designed to insert frequently used text into files at
the press of a button, or to automatically expand common statements used in
programming languages when appropriate abbreviations are typed.

Language Specific Templates

Language specific template expansion is activated on a per-file-type basis in the
Customize| Language | Templates dialog. To use it, highlight the appropriate file
type and mark the Template Expansion option. Templates work in the following
way (using C++ "if" statement as an example):

Example: Type if, and then press the space bar.

The appropriate ending statement and any necessary parentheses,
curly braces, etc, will be inserted in the appropriate positions for the
statement, like so:

if O

6- Editing & Printing 67

CodeWright's templates have a macro capability that makes them useful for much
more than just language constructs. The next sections go over the necessary
information for creating templates used for language constructs and they describe
the advanced features provided by template macros.

Creating and Modifying Language Specific Templates

Before adding or changing a template, it is a good idea to become familiar with the
templates that are already defined. CodeWright associates templates with the file
type of any given programming language in order to make them language specific.

Two methods are provided for adding template constructs, or changing existing
ones:

Templates defined for a particular file type can be viewed, added and changed
on the Customize |Language|Templates dialog . Use the dialog to see, create
and modify the abbreviations that trigger template expansion and the string
values associated with them.

Add templates by directly editing CodeWright's configuration file. Use a call to
ExtAssignTemplate under the [Templates] heading of the CWRIGHTINI file.
ExtAssignTemplate is a CodeWright API.

There are three string parameters used by ExtAssignTemplate. The first tells
what file extension to associate the template with (e.g., .C, .5C...). The second
specifies a word or abbreviation that is to trigger the template expansion, for

example "if", "else", and so on. The third string is the template itself.

For more information:

v Help for CodeWright APIs can be found in CodeWright's online help using
the Search For Help On... menu item on the Help menu.

v More information on CWRIGHTINI is provided in the chapter on
Configuration Files & Command Line Parameters.

There are special characters defined for use in language templates that give
CodeWright useful instructions. The following table defines those characters:

Character Purpose
\n New Line. Simulates pressing enter at this point.
& Specifies cursor position after template insertion.
@ Issues a backspace.
\c Insert ‘c’ literally, (e.g., \&, \@, \\)
\t Insert a tab.
68 6- Editing & Printing

Examples:

Most templates will take up more than one line in the document. There is a need,
therefore, to specify the locations of new lines in the template string. In most
templates, you will also need to specify a location in which the cursor is to be
placed after the template is inserted.

Here are some sample template strings, that give an idea of how these special
characters are used to construct templates:

"if (&) \n{\n}"
"do \n{\n\t&\n}\n while();"
"for (&; ;)\n{\n}"

Finally, here is how the complete ExtAssignTemplate line might look in the
configuration file:

ExtAssignTemplate=".PAS", "proc", "Procedure
& () ; \nBegin\nEnd;"

This example adds a template for use when editing files with the extension .PAS.
When the word "proc" is typed, followed by a space, a template for a Pascal
Procedure is inserted in the document. The cursor is positioned at the point
where the name of the procedure would be entered.

Non-Language-Specific Templates, Function and File
Headers, and Macros in Templates

The templates described up to this point are language specific. Templates that can be
used independently of a language’s file type extension will be described next.
Template macros (macros that perform specific functions inside templates) will also
be described. Note that template macros can be used in language specific templates
as well as non-language-specific templates.

Two templates provided with CodeWright are prime examples of non-language-
specific templates. These templates insert C++ function and file headers into the
current document. Even though the headers contain C++ language constructs, they
can be modified, or new ones can be created, that will insert any kind of text,
whether for a programming language or not. The templates are contained in two
files in the CodeWright home directory named FILE.TPL and FUNCT.TPL.

6- Editing & Printing 69

Two buttons on the Edit toolbar are used to insert the contents of FILE.TPL and
FUNCTTPL into the current document. The buttons use the function
ExtExpandTemplate to insert the templates. The same function can be used to insert
templates with any CodeWright button or Keystroke. Details for the
ExtExpandTemplate function can be found in CodeWright's online help.

Note: The Edit toolbar is turned on by marking the Visible option for Edit
in the list of toolbars on the Toolbars tab of the Customize | Toolbars
dialog.

To see examples of how ExtExpandTemplate is used, take a look at the function
bindings for the function and file header buttons on the Edit toolbar. The function
bindings for the toolbars can be viewed on the Bindings tab of the Customize

| Toolbars dialog. To view the function bindings, highlight the Edit item in the list of
toolbars and scroll through the toolbar's buttons in the right window. As you scroll
through the buttons, you will see the function binding for each button in the
Function Bindings edit box at the bottom of the dialog. The first two buttons on the
Edit toolbar are the buttons that insert the headers. The function binding for the
function header appears like this:

ExtExpandTemplate $ffunct.tpl$

This command uses the %f template macro to insert the contents of FUNCTTPL. The
contents of FUNCT.TPL will make up the function header. The trailing $ is used to
delimit the filename string.

The function binding for the file header appears like this:

ExtExpandTemplate $ffile.tpl$

Note that the two function bindings are exactly the same except for the names of the
template files. Template macros are described next.

Template Macros

True to their name, template macros like %f can also be used within templates.
FUNCTTPL contains the '%q' macro. When it is expanded, it presents a prompt that
queries the user for information, which will be used when the template is inserted.
In the following examples we show before and after shots of FUNCT.TPL after it has
been modified with extra template macros, to illustrate their use.

70 6- Editing & Printing

Example: FUNCTTPL without modifications:

/*
** %gEnter function name:$
*

PARAMETERS:

DESCRIPTION:

RETURNS :

* %k ok ok X %

The second line contains the %q 'query' macro, which requests the
name of the function.

Example: FUNCTTPL with modifications:

srep*60

** SgEnter function name:$
*

PARAMETERS: &
DESCRIPTION:

RETURNS:

CREATED: %date %time

BY: %eUSERNAMES

% ok ok ok X % ok X

6- Editing & Printing 71

These are the macros that were added:

srep This macro repeats the* character 60
times.
& This specifies where the cursor should

be placed at the end of the insertion.

%date This inserts the current date.
Stime This inserts the current time.
%e This inserts the value associated with

the specified environment variable,
USERNAME. Again, the $ character is
used to delimit the string.

Below is an example of a header that was added by the expansion of
the modified template file:

/***

** MyFunc

*

PARAMETERS:
DESCRIPTION:

RETURNS :

CREATED: 08/16/95 11:45:50

L S I

BY: milow

These are just a few of the things that can be done with template macros. A table
containing a complete list of the % template macros available follows:

Macros in Templates
% Macro form Description
$colNum Move the cursor to column Num of the current line.
%date Insert a date string at cursor position. (mm/dd/yy format)
sdb Delete to the beginning of the line.
sdcNum Delete Num characters at cursor.

72 6- Editing & Printing

Macros in Templates

% Macro form

Description

sde Delete to the end of the line.

sd1Num Delete Num lines, beginning with the current.

sdw Delete the word at the cursor.

$eEnvVar$ Insert the string value associated with environment
variable EnVar.

$fFilename$ Insert the named file at the cursor. Any template macros
within the file are also processed.

shome Move the cursor to the beginning of the line.

%$1lineNum Move the cursor to the line named by Num.

smdNum Move down Num lines.

smeof Move the cursor to the end of the file.

smeol Move the cursor to the end of the line.

smlNum Move the cursor left by Num columns.

smrNum Move the cursor right by Num columns.

smulNum Move up Num lines.

% Num When Num is 0 to 9, it refers to a user-definable string that
may be different for each extension. Any macros contained
in these strings are also expanded. These definitions are
normally stored in your configuration file or
CWRIGHTEXT. The macros 0 through 3 are used for
custom indentation in predefined language templates. See
ExtSetTemplateMacro.

Higher numbered macros (10 through 31) are not extension
specific, but are otherwise similarly definable. They are
reserved for the use of individual users.

%open Open a new line following the current. Similar to going to
the end of the line and pressing

$qPrompt$ Query for string to insert, using the string Prompt to prompt
the user.

$repCNum Insert Num repetitions of character C.

6- Editing & Printing

73

Macros in Templates

% Macro form Description

Yresponse Insert data acquired from %q macro. Allows the data to be
used more than once. More than one response can be used
by adding a number to the end of the macro, e.g.

$responsel.
Srestore Restore a saved position.
$save Save a position for later restoration.
Stime Insert a formatted time string. (hh:mm:ss)
stof Move cursor to the top (first line) of the file. Requires

%home to position cursor at the first character of the file.

$xFuncCall$ Execute the CodeWright API function call in FuncCall. This
may be any function that could be assigned to a key or
otherwise executed through LibFunctionExec.

The function and file headers and template macros described in this section can also
be used and inserted with CodeWright's CodeFolio Snippets feature, described in
the next section CodeFolio Snippets.

CodeFolio Snippets

CodeFolio Snippets are similar to templates, but more flexible in how they are used.
They are pre-defined chunks of code or text, which may be inserted into your
current document. The style/structure of code or text following a Snippet is
unaffected.

Snippets have a default file extension of .TPL; configuration details for Snippets are
stored in the file CODESNIPINI.

To see a directory of the Snippets that are shipped with CodeWright, click on the

CodeFolio (right-most) tab of the Project Window. The directory tree is organized by
language type, as follows:

74 6- Editing & Printing

Project Window: Code Folio Tab

Eﬁ File Header

@. Function Header
B bas

a File Header

@ Function Header
M e

Eﬁ Dialog Procedure
@I File Header

a Function Header
Eﬁ Main

@ Topedef Stuct

B wirMainbpp v
ol
cElelelals |

In addition to using the Snippets that are shipped with CodeWright, you may add
directories containing your own Snippets to the CodeFolio tab (refer to Adding or
Removing Snippets Directories, in this chapter). Snippets may also be edited to
conform to your own needs (see Editing a Snippet, also in this chapter).

Using an Existing Code Snippet

There are three ways to place an existing Snippet into a document. Begin by
creating a new document (File|New) or opening an existing document (File| Open)
into the Client Area. Then click on the CodeFolio (right-most) tab of the Project
Window:

1% File: Wiesu ‘ £= Outline I 8 Dbjects I & Bookmarks I = Open I [} CodeFalio r

Execute a Snippet by doing one of the following;:

B Left-click on the desired Snippet and drag it to your file. The Snippet will be
placed where you drop the icon.

B Double-click on the desired Snippet. It will be automatically inserted at your
cursor position in the file.

B Right-click on the desired Snippet. Select Insert from the popup menu. The
Snippet will be inserted at your cursor position in the file.

6- Editing & Printing 75

Below is an example of the CFUNCT.TPL snippet after it has been executed in a new

document:
C Function Header Snippet

FUNCTION: Test_Function

PARAMETERS:

*

*

*

* DESCRIPTION:
*

* RETURNS:

*

Other examples of Snippets include the following:

HTML Document Setup

<HTML>

<HEAD>
<TITLE>Test</TITLE>
</HEAD>

<BODY>
<H1>Test</H1>
</BODY>

</HTML>

VBFUNCT.TPL

'

'

' ** Test

'

' Parameters:

'

"Description:

1
'Returns:
1
1

'

76

6- Editing & Printing

Adding a Code Snippet

You may save portions of code that you have written as Snippets for later use.
Complete the following steps:

1. Create a new file.
2. Type or paste in the desired code.
3. Save the file with a .TPL extension in the CodeWright Snippets directory.

Creating a Snippet from the Current Document or Clipboard

You can paste selected text from the current document, or text from the clipboard,
and save that text as a new Snippet. Complete the following steps:

1. Copy the desired text to the clipboard, or select the text in your document.

2. Right-click on the Snippet directory in which to save the new Snippet, or drag
the selection to the appropriate Snippet directory folder.
3. The following menu displays:

Add Directory

Remove Directory

Create Snippet from selection...
Create Snippet from Clipboard...

Insert
Edit...
Delete

Properties...

Edit this menu...

4. Select Create Snippet from selection or Create Snippet from Clipboard, as
appropriate.

5. Complete the Code Snippet Properties dialog that displays, defining the
display name and storage directory for your new snippet. You can also choose
whether to expand macros (see the topic Template Macros for information about
macros) upon insertion, whether to match the level of indentation at the
insertion location, or whether to insert code “as is”. If you want to insert the
snippet at the cursor (even if mid-line) mark the checkbox accordingly.

6- Editing & Printing 77

Code Snippet Properties

Display Name:

File Name: JC:\CW32\Snippetsthtmishtmibttn. tol

Insertion Options
% Expand macros when inserting into document
" Indent code when inserting into document

€ Insert code 'as is' when inserting into document

™ Insert at cursor location [not always at the beginning of a line)

Cancel |

Deleting or Renaming a Snippet

You can delete or change the display name of a Snippet from the popup menu.

B To permanently delete a Snippet from your system:
1. Right-click on the name of the Snippet in the CodeFolio tab’s tree directory.
2. Select Delete.

B To reference the Snippet as a different name:
1. Right-click on the name of the Snippet in the CodeFolio tab’s tree directory.
2. Select Rename. The name of the Snippet should now be highlighted.
3. Edit the name directly.

Renaming a Snippet does not change the name of the underlying file; it only
changes the reference to the Snippet on the CodeFolio tab. To determine the
actual name of the Snippet file:

v Right-click on the name of the Snippet in the tree directory.

v Select Properties. The Code Snippet Properties dialog displays, with the
actual filename in the File Name field.

Editing a Snippet
If you wish to edit the actual content of a Snippet, complete the following steps:

1. Right-click on the name of the Snippet in the CodeFolio tab’s tree directory.

2. Select Edit Template from the popup menu. The Snippet is displayed in a
separate window.

78 6- Editing & Printing

3. Editas desired. Select File|Save from the main menu to save your changes.

4. Close the Snippet file.

Adding or Removing Snippets Directories

You can add or remove a root level node from the tree directory on the CodeFolio
tab.

Note: To create or remove a subdirectory of an existing Snippets directory,
you must add/delete the folder outside of the CodeFolio tab (e.g.
from Microsoft Explorer).

To add a root level directory:

1. Right-click on the directory under which the new directory should be placed.
2. Select Add Directory from the popup menu.

3. Browse for and select the desired Snippets directory on your system.

A sample directory tree with a user-added directory named UserAdded follows:

CodeFolio Snippets with User-Added Directory

Project [-]
P Chcwright\cw32\Snippetsh
[0 C\cwrightvew32

B asm
D bas
Blec
(] cobol

Dcer
3 bl
D java
.
&) [per
(] Usertdded

@ ChewrightyUserddded

To remove a root level directory:
1. Right-click on the directory you wish to remove from view.
2. Select Remove Directory from the popup menu.

When you remove a directory, you are not actually deleting the underlying files; you
are simply removing the directory and files from this view. When you delete the last
root-level directory, the system uses the default Snippets directory.

6- Editing & Printing 79

Brace Matching and Brace Expansion

Brace matching support in CodeWright works several ways:

B The current buffer is checked to see that braces are balanced. This form is useful
for checking syntax.

B The text between a set of braces is highlighted. This form is useful in visualizing
the scope of the block defined by the braces and indenting blocks.

B The matching brace is located and the cursor is moved to it, either momentarily
or permanently.

Brace matching is performed by functions assigned to keys or buttons. Several of
these functions are already available on buttons on CodeWright's Edit toolbar. To
turn on the Edit toolbar, mark the Visible option for the Edit toolbar on the
Customize |Toolbars| Toolbars dialog. You may wish to customize these
assignments or make new assignments. Information on customizing buttons and
keystrokes is found in the chapter Custom Interface.

Brace Function: Finding Unmatched Braces

There is a function supplied with CodeWright, Brace(), that looks for unmatched
braces in the current buffer. All braces that are to be matched can be specified. One
way to invoke the Brace function is to use CodeWright's AP Command Key. The API
Command Key accesses a prompt or dialog from which CodeWright APIs can be
interactively used to perform their associated function. To access the API Command
Key, use one of the following methods:

W Press if you are using the CUA keymap.

B Press if you are using the BRIEF-compatible keymap.

W Select API Command from the Tools menu.

The Command Key is described in more detail in the chapter Command Key, Libraries,
& Environment.

To match all curly braces within a file, respond to the Command: prompt as follows:

Command: Brace TRUE

v Toignore braces in comments, just omit the TRUE parameter, or supply FALSE
as a parameter instead.

The function shows its progress by displaying the number of the line it is processing
on the status line. If the function finds an unmatched curly brace, the cursor is
positioned on that curly brace.

80 6- Editing & Printing

Brace Highlighting

There are two functions that examine or operate on the text between matching curly
braces and parentheses:

B The first function is BraceMatchNext, which looks for the next left brace or
parenthesis, locates its mate, and then highlights the text between them. On
subsequent calls, this function will find pairs nested within the highlighted set,
or a pair following the highlighted set.

B The second function is BraceMatch, which operates similarly to
BraceMatchNext, except that it searches for a match to the brace at the cursor
position. If the curly brace at the cursor is a left brace or parenthesis, the
function searches forward for its mate. If it is a right curly brace or parenthesis,
the function instead searches backward for the mate. If neither a left nor a right
parenthesis or brace is at the cursor position, the function searches forward for
the next matching set.

Note: Since BraceMatch looks at the current cursor position, it is not
effective for highlighting a series of blocks in sequence. Subsequent
calls, will find the pair that is already highlighted.

If the parameter to this function is omitted, it will look for braces only. Passing a
non-zero parameter to either of these two functions will cause it to look for
matching parentheses in addition to curly braces.

Brace Locating

The function BraceFind is provided for locating the brace, parenthesis, or square
bracket that is the mate for the one at the cursor position. It does not create a
highlight, but just positions the cursor at the corresponding object.

The function also has a "kissing" mode that can be activated by giving the function a
TRUE or 1 value as a parameter. In this mode, the cursor moves to the
corresponding object, but only momentarily. After a brief pause, the cursor returns
to its original position. This provides allows you to verify that the appropriate block
or clause is closed.

BraceFindEx

BraceFindEx() is another brace-matching function that can be used from
CodeWright's API Command dialog (API Command on the Tools menu), or bound
to a button or keystroke.

6- Editing & Printing 81

BraceFindEx is an extended brace search and match function. It has a number of
flags that can be used together or individually for more flexible brace matching.
An example of how the BraceFindEx function is used follows:

Example: The following combination of flags works for finding braces within
quotes.

BraceFindEx BRACE BRACES|BRACE PARENS|BRACE FORWARD

Brace functions are documented in CodeWright's online help.

Brace Expansion

Brace Expansion is a special key assignment for C and C++ language support. It is
activated on the Customize | Language | Tabs/Indenting dialog. Brace Expansion
works in the following way:

v Type abrace. It is automatically positioned. The closing brace is instantly
inserted in the correct position and the cursor is placed between them.

Brace Expansion operates very much like the brace template in template expansion.
The difference between template expansion and brace expansion is that brace
expansion instantly inserts braces whenever the left brace ({) key is typed, while
template expansion doesn’t insert braces until the space bar is pressed. The sequence
used by template expansion may be unnatural for some programmers, and
therefore, brace expansion provides an alternative. Brace expansion may also be
useful for users who do not want full template expansion, but who want the benefits
of automatic brace insertion.

Align Beginning and End of Block

Align <begin/end block> is a brace-expansion feature in CodeWright that
automatically positions language constructs that begin and end blocks (such as
braces in C and C++) as you type them.

Example: If the alignment setting on the Customize| Language | Tabs/
Indenting is set to Unindented Block, the closing block delimiter
will be aligned with the opening block delimiter as it is typed. This
will occur whether the closing delimiter is typed at column 3 or 30.

82 6- Editing & Printing

Align <begin/end block> is similar to Brace Expansion, except that it does not
instantly insert both the closing and opening block delimiters as they are typed. It
just realigns the closing block delimiter as it is typed. The checkboxes for Align
<begin/end block> are located on the Tabs/Indenting tab of the Customize

| Language dialog and are only available if the language support for the associated
file type supports it. The options for Align <begin/end block> and Brace
Expansion are mutually exclusive.

Indenting

Refer to the following discussions on:
W Setting Spaces and Tabs

B Seek Indentation and Smart Indenting
W Block Alignment

Setting Spaces and Tabs

Before editing a file it may be necessary to control which characters are inserted
when the tab key is pressed. In some cases, it is undesirable to have actual tab
characters inserted in a file. CodeWright has an option for setting the tab key to
insert spaces rather than tabs on the Customize | Language | Tabs/Indenting dialog.
To set the tab key to insert spaces, mark Use Spaces. Remember that all changes
made in the Language dialog are language specific, so be sure to highlight the file
type of the language of choice before making any changes.

The Tabs/Indenting tab is also where you set the size of tab-stops. The string placed
in the Tab Columns editbox describes where tab stops will occur. Tab stops are
placed at the columns specified in the string. For evenly spaced tab stops, you need
not specify more than two column numbers. CodeWright calculates the interval
between the last two column numbers and repeats that interval between tab stops all
the way out to the number specified in the Maximum Column field. The column
count begins with 1, not 0.

Example: A 4-column tab stop would be set by inserting the following
numbers: 59.

It works this way:

The cursor starts in column 1. When the tab key is pressed, 4 columns

Sth

are added, putting the cursor in the 5! column. When the tab key is

pressed again, 4 columns are added, putting the cursor in the gth
column, and so on, thus explaining the reason for the "5" and "9".

Tab settings can also be set on a per-document or per-window basis in the
Document | Manager | Tabs/Indenting dialog.

6- Editing & Printing 83

Seek Indentation and Smart Indenting

Two Indenting features, enabled in Customize | Language | Tabs/Indenting, are
designed to make editing tasks easier. The features are Seek Indentation and Smart
Indenting.

B The Seek Indentation function searches backward for a line containing
printable characters and duplicates its level of indentation. It has options for the
type of white space to be inserted when the indentation occurs. The white space
options consist of spaces, tabs or virtual space.

B Smart Indenting automatically indents according to common usage for the line
of the language being edited. If the word (or character) being typed is one for
which the following line is commonly indented, the indention occurs after

pressing [E! l .

Example: Alinein a.C file might end with an open curly brace, or begin with

_! to terminate the line after the curly

brace, the next line will automatically be indented.

while. When you press [

Smart Indenting may be thought of as an extension of the Seek-Indentation feature.
Smart Indenting may be used with Seek Indentation turned off, but leaving it on
ensures the most consistent appearance.

True to its name, Smart Indenting will be smart enough not to automatically indent
lines that are being typed in a comment. The languages for which Smart Indenting
is supported include C, C+ +, Pascal, dBASE, Visual Basic and Paradox.

Block Alignment

All the editing features that have been discussed in this chapter so far deal with
potentially indenting blocks of code. Since preferences may differ as to how
indenting should occur, CodeWright offers several different indentation styles to
choose from. These styles are set on the Tabs/Indenting tab of the Language dialog.

84 6- Editing & Printing

Customize | Language | Tabs/Indenting

Language

File type:

Options
 Tabs

& Use tabs
€ Use spaces

~Auto-ndent
& Use yirtual space
€ Use spaces
€ Use tabs
€ Use tab mode

Tab columns: |59 € Duplicate Existing
€ None
Max. column: =
200 tl ™ Seek Indentation
rAligned Indenting r~Alignment Style
Mapped to: I~ Paste Indenting ' Unindented Block
<None> € Line Saver

New Type...
Delete Type

™ Brace Expansion

I~ Smart Indenting

€ Indented Block
- Example

<statement>

<begin-block>

Templates | Coloring | CodeSense? 4 Dl

<end-block>

Map Type to...

Cancel I Help I

The Alignment Style option in Customize | Language | Tabs/Indenting is for
selecting between several popular forms of block indentation to be used for brace
expansion and template expansion. Choose from the following indentation styles:

B Unindented Alignment: Places the block delimiters ({ and }, BEGIN and END,
or whatever) at the same level of indent as the controlling statement that
precedes the block. Statements between the block delimiters are indented.

B Line Saver Alignment: Places the opening block delimiter ({ or BEGIN, for
example) on the same line as the controlling statement that precedes the block.
The closing block delimiter (} or END, for example) is at the same level of
indent as the controlling statement. Statements between the block delimiters
are indented.

B Indented Alignment: Block delimiters ({ and }, BEGIN and END, for example)
are indented, compared to the controlling statement that precedes the block.
Statements between the block delimiters are not indented.

Thus far this chapter has discussed CodeWright features that aid with repetitious
editing tasks. The chapter will continue along these lines by discussing features that
help with editing by offering information and reminders about parts of the file being
edited. These features include Name Completion, CodeSense, and Comments and
Comment Boxes, as well as hex editing, HTML editing, Clipboard and Scrap
features, the API Assistant, and help index file configuration.

Name Completion

CodeWright's Name Completion will automatically complete strings that occur in
either the current document or the CodeSense database, as the strings are typed.

6- Editing & Printing 85

The strings that name completion draws from are parsed as follows:

B Strings that occur in the current document are parsed by the Word delimiters
listed in the Customize | Language | Options. The word delimiters are
customizable.

M Strings that are contained in CodeSense databases are parsed by one of the
following:

v By file-type specific parsers that are listed in the Outline Parsers dialog.
Click Symbol Patterns in Customize | Language | CodeSense to access the
dialog.

v By CodeSense (see the following topic CodeSense for more information).

Name Completion is turned on by marking Name Completion in Customize |
Language | CodeSense. The option is enabled by default. Additional settings are also
available on this dialog.

v To use Name Completion, type the first few characters of the variable, class,
symbol name or other word to be completed and press -Space.

CodeSense

CodeWright offers a feature called CodeSense that provides advanced "word"
completion for .C, .CPE, .H, .HPP and .JAVA files. It works by gathering information
about functions, methods, structures, unions, and other pieces of code in source files
and then using the information for editing and informational purposes. The
following topics describe CodeSense in detail and offer some troubleshooting tips in
the event that the feature does not work as expected.

Where CodeSense Gets its Information

CodeSense gets its information from databases and from files that are open in
CodeWright. The next topics describe how that information is derived.

Library and Project Databases

The core of the CodeSense feature is composed of databases that store information
gathered from parsed code. The information for the databases is found in the
following places:

B From C/C++ and Java source files in any of the library databases listed in
Customize |CodeSense Global Configuration.

B From C/C++ and Java source files in CodeWright projects.

B From C/C++ and Java source files that are listed in the file list on CodeWright's
Symbols Window. Files in projects should already be in the list. The next topic
describes how to add files to this list.

86 6- Editing & Printing

Add a File to Symbols Window File List

Some CodeSense information is gathered from files listed in the Symbols
Window file list. Files that are in the current project will already be in the list. To
add additional files to the list, do the following;:

1. Click the Symbols tab of the Output Window (located by default at the
bottom of the CodeWright screen).

Symbols Window

File List Symbok: [COuterClass ~] Di\example.cpp

bool Check6(); =

Gouterciass::Couterciass()

n_1Blocker = 0;

\ Buid £ FileFind A Search £ Browse £ Difference A Shell A Per £ ClipView) Symbols / ‘

2. Click the File List button to access the Edit Symbol File List dialog.

Edit Symbol File List

Edit Symbol File List - C:\CW32\COB\cob.sbl [X]

File Name: Directories:

B s R
cua Al & Cancel
cuabak = w32
cuac 5 cUA Help
cua def

uah

cua pit

cuarc
cua sbl =l Invert
00f 11 selected e

List Files of Type: Drives: —

[0 Fies() =l cMAINDRVE | Network .

Symbol Source Files: 00f 4 selected
C\CW32\C0B\cob.c
C:ACW32\C0B\coberr.c
C:ACW32\C0B\cob.def Add
CACW32\C0B\cob h

Delete
Invert
Clear
7

3. Typein or browse for the file to be added to the list.

The following steps will also work to access the Edit Symbol File List dialog:

1. Right-click on the left most status bar icon O to access the CodeSense
popup menu.

2. Click Edit Symbol DB File List to access the Edit Symbol File List dialog.
3. Typein or browse for the file to be added to the list.

6- Editing & Printing 87

CodeSense for Files that are Open in CodeWright

In addition to the information that CodeSense gets from library and project
databases, it also gets information from C/C+ + and Java files that are open in
CodeWright. The scanning process for open files relies on the option CodeSense
DLL in the Customize | Language | CodeSense dialog. Make sure this option is
selected for the appropriate file types (.C/.CPP and .JAVA).

CodeSense information that is gathered from open files is stored in memory rather
than in databases. It is specific to the files that are open and will only be available
while the files are open. This feature allows CodeSense to display information from
files that have not yet been saved to disk.

CodeSense Global Configuration Dialog

The bulk of the information for CodeSense is gathered from and stored in
CodeSense library databases. CodeSense library databases are listed in the
CodeSense Global Configuration dialog. They start out as directory locations for C/
C++ and Java files. Several default library databases can be installed with the
CodeWright installation. They will appear in the dialog if they were installed. If the
appropriate library database is not available with the CodeWright installation, it can
be created.

Regardless of the manner in which a library comes to be listed in the CodeSense
Global Configuration dialog, it must always be scanned at least once in order for a
database to be created. Libraries that are installed with CodeWright have already
been scanned. If a library has not been scanned, a "(missing)" message will appear to
its immediate right. This means that it does not have an underlying database. Press
Rescan to have CodeSense scan the selected library and create a database.

CodeSense will only perform lookups on scanned library databases that have been
checked in the CodeSense Global Configuration dialog. Lookups for library
databases are done in the order in which they are listed in the dialog. Moving
libraries up and down in the list and unmarking those that are not immediately
needed will speed up the lookup process.

88 6- Editing & Printing

CodeSense Global Configuration

CodeSense Global Configuration [x|
r— Library D atabase:

W} icrosoft MFC (missing)
[Windows API+MSC Runtime [missing)
[[] Microsoft ATL (missing)

[[] Code\wright (corrupt)

[[] Borland C++ Runtime [missing) Delete
[[] Borland OWL (missing)

Edit...

e

Rescan
Update
Move Up Move Down I
r— Parser Priority
" High & Nomal C Low

™ Consolidate Matching Lookup Definitions
I~ Allow Project Database Matches in Non-Project Files

ok | cancel | sooh | Hep |

£

The CodeSense Global Configuration dialog can be accessed from three alternate
locations:

B From the Customize menu, by clicking CodeSense Global Configuration.
B From Customize|Language|CodeSense, by pressing Global Configuration.

B From the CodeSense popup menu (right-click on O on the status bar), by
pressing Global Configuration.

Create CodeSense Library Database

In many cases, it will be necessary to create a new library database pointing to source
code that CodeSense will scan. Do the following to create a CodeSense library
database:

1. Click Customize | CodeSense Global Configuration.
2. Click Add to bring up the Add Library Database dialog.

3. Give the library database a name, and then either type the path to the correct
location of the source files, or use the Browse button to browse for the correct
location.

4. If you want CodeSense to include subdirectories at the location at which files
will be scanned, put a check in the Include Subfolders when Scanning box.

5. Mark the option Full Source to have CodeSense scan all .C, .CPE, .H, and .HPP
files in the specified CodeSense library database directories. Leave the option
empty to have CodeSense scan only .H and .HPP files in the specified
directories. This option does not apply to Java. All .JAVA files will be scanned
regardless.

6- Editing & Printing 89

Click OK, then OK again. CodeSense will begin scanning the files in the
specified directory to create a database. Note that the newly-created library
must be checked in the CodeSense Global Configuration dialog in order to
make its database information available to CodeWright.

Edit CodeSense Library Database Location

The default library databases provided with the CodeWright installation may or may
not point to valid directories, depending on a system’s setup. Attempting to scan an
invalid library database will result in a message prompting to change its directory.
Do the following to change the location of a CodeSense library database:

1
2
3.
4

Click Customize | CodeSense Global Configuration.
Highlight the library to be changed.
Click Edit.

In the Edit Library Database dialog, either type the path to the correct location
of the source files, or use the Browse button to browse for the correct location.

Mark the option Full Source to have CodeSense scan all .C, .CPE, .H, and .HPP
files in the specified CodeSense library database directories. Leave the option
empty to have CodeSense scan only .H and .HPP files in the specified
directories. This option does not apply to Java. All .JAVA files will be scanned
regardless.

Click Rescan. CodeSense will begin scanning the files in the specified directory
to create a database.

Click OK, then OK again. Note that the newly-edited library must be checked
in the CodeSense Global Configuration dialog in order to make its database
information available to CodeWright.

Delete CodeSense Library Database

As mentioned, default library databases can be placed in the CodeSense Global
Configuration dialog at installation. They are there for convenience only. They may
not be useful for all systems. If inapplicable databases have been installed, it may be
desirable to delete them. Do the following to delete a CodeSense library database:

1.
2.
3.

90

Click Customize | CodeSense Global Configuration.
Highlight the library to be deleted.

Press Delete. A prompt will ultimately appear asking if the underlying database
should also be deleted. Click Yes to delete the database, then click OK.

Note: Databases that were created from the files in a CodeWright project
must be deleted outside of CodeWright, from Windows Explorer.
CodeWright should be closed before these databases are deleted. See
the topic Database Files to find out what files to delete and where they
are located.

6- Editing & Printing

Parser Priority/Resource Use

The CodeSense scanning process works on a background thread. It should not
interfere with other CodeWright processes. It has been known, however, to
occasionally be time and resource intensive. If you find that your CPU usage is high
because of CodeSense, you may want to set the parser priority to low. Mark Low in
the Parser Priority section of Customize| CodeSense Global Configuration to do
this.

CodeSense Databases

Once the necessary CodeSense library databases have been established in the
CodeSense Global Configuration dialog, and the Rescan button has been pressed if
necessary, the libraries will be scanned for information that will be stored in
databases for future use. Project and Symbols Window File List databases will be
created automatically given that:

B CodeSense DLL is marked in Customize | Language | CodeSense (marked by
default for .C, .CPFE, .H, .HPP and .JAVA files).

Customize |Language | CodeSense

File type: Tabs/Indenting | Templates | Coloring | Fomat| «|»
. - Parser Selection
€ None V' Auto type info (hover tip)
' CodeSense DLL I™ Shift or control required
€ Qutiine Symbol Parser V' Auto list members (drop list)
0y THane Comeieiont V' Auto parameter info (call tip)
r~Search Scape: ANSI/Unicode Symbols
[V Complete Document IV Show ANSI
V' Symbol Database I~ Show Unicode
Mapped to:)
<None> r~ Multiple matches: :
€ Cycle thiough Global Configuration...
@ Show list
m‘ I™ Even for single matches
Delete Type Symbol Patterns...
™ lgnore case
Map Type to..
Cancel Help

6- Editing & Printing 91

H Auto-update symbol database and Show Definitions in Symbols tab are
marked for the Symbol file option in Project|Properties | Directories.

Project| Properties | Directories

[@ <Defoul Setings> Directores | Members | Tools | Enors | Fiters |
myprojspe (2 Projects) roi

[R=]ccb t Fie) Flename: C:ACW32\COB\cob pit

g3 cua (4Files) Initisiization (ini): - C:\CW32\cwright.ini

State (pst} CACW32\cwright pst
% [Siaee System Opions i poct g

[Working directory %%
Browser Database CACW32\C0B\cob.plg
TagDatabase (tag) CA\CW32\COB\coblag
TextLik DB (Idb) C:\Cw32\cwightldb
Mark Database (mik) C:\CW32\cwight mik
E e

bl
ath
- Settings for Symbol fle-
IE \CW3\COB\cob.sbl
¥ Autoupdate symbol database e
IV Show definiions in Symbols tab

Cancel Help |,

W A CodeWright project containing C/C+ + and Java files is open and/or .C, .CPE,
.H, .HPP and .JAVA files are listed in the Symbols Window’s file list.

Database Files

CodeSense databases are comprised of the following files:

FILE.CDX
FILE.DBF
FILE.FPT
SYMBOL.CDX
SYMBOL.DBF
SYMBOL.FPT

An additional file with a .SBL extension is also included among the database files,
though it is kept separately from the other files. The files can be found at the
following locations:

B Database files that are created for CodeSense library databases are located in the
SENSEDBS\<Library Name> directory of the CodeWright home directory.

B The .SBL file is located in the CodeWright home directory when no project is
open and is called CWRIGHT.SBL.

B If a project is open, the .SBL file is located in the project’s directory and is
named <Project Name>.SBL.

B Database files that are created for CodeWright projects are located in the <.SBL
file path>\<Project Name.cs_> directory.

92 6- Editing & Printing

Database Corruption

Sometimes CodeSense databases can become corrupt. While CodeSense is designed
to detect database corruption, it is not foolproof. If it detects corruption in a database
created from a CodeSense library database, a "(Corrupted)" message will appear in
the CodeSense Global Configuration dialog to the immediate right of the library.

If database corruption is suspected, all database files including CWRIGHT.SBL
should be deleted for that database. CodeSense library databases can be deleted in
one of two ways:

B By pressing the Rescan button for a selected library in the CodeSense Global
Configuration dialog. This will cause the underlying database files to be deleted
and the coinciding source files to be rescanned.

Use the following steps to rescan a CodeSense library database:
1.Go to Customize | CodeSense Global Configuration.
2.Highlight the library database to be rescanned.

3.Press Rescan.

B By pressing the Delete button for a selected library in the CodeSense Global
Configuration dialog. A message will ultimately appear asking if the underlying
databases should also be deleted. Click Yes to delete the database. See the topic
Delete CodeSense Library Database for numbered steps to delete a library database.
Note that you will have to recreate the library database in order to rebuild it.

To rescan databases that are maintained for projects:

1. Right-click on the Symbols tab of CodeWright's Output Window.

2. Select Rescan symbol DB files from the resulting popup menu.

To delete and rescan databases that are maintained for CodeWright projects:
1. Exit CodeWright and go to Windows Explorer.
2. Navigate to the directory containing the project (.PJT) file.

3. Delete the project database. See the topic Database Files earlier in this chapter to
get a list of the files and locations that make up the database. Project files will be
rescanned automatically when the project is open so long as the following
conditions are met:

v CodeSense DLL is marked in Customize | Language | CodeSense.

v Auto-update symbol database and Show Definitions in Symbols tab are
marked for the Symbol file option in Project| Properties | Directories.

6- Editing & Printing 93

CodeSense: Main Features

CodeSense can be used once databases have been created. Before using it, though, it
is necessary to choose options that control its behavior. Some CodeSense options are
found in Customize | Language | CodeSense and some can be found in the
CodeSense Global Configuration dialog. The main features of CodeSense are
described next.

Name Completion
To have CodeSense complete or show a list of possible matches for symbols when
-Space is pressed, mark Name Completion in Customize | Language

| CodeSense. Once marked, the option can be used by pressing -Space at
appropriate times while typing. The option is marked by default for .C, .CPE .H,

.HPP and .JAVA file types.
Vitual long DLL _CUAeventCheckVitualllong evtnum, long dat
M/

Click a selected symbol’s representative image to access the symbol’s definition.

Example:

The following Name Completion options are available in the CodeSense dialog:

H Complete Document: Searches the entire document when looking for a string
that matches the one being typed.

H Symbol Database: Searches through the Symbols database (*.SBL) for a
matching string.

B Cycle Through: If multiple matching strings are found, matches are cycled until
the desired string is found.

B Show List: If multiple matching strings are found, all matches and their
definitions are shown in a drop-down list.

B Even for Single Matches: Matching string(s) are shown in a drop-down list,
even if there is only one match, rather than automatically entering the string
into your document.

B Ignore Case: Turns off case sensitivity when searching for strings that match
what you have typed.

94 6- Editing & Printing

Auto-list Members

To have CodeSense automatically display member lists when appropriately
following symbols such as structs, classes, unions, or enums with*.’,*->’, or “::’, mark
Auto-list Members in Customize | Language | CodeSense. The option is marked by
default for .C, .CPE .H, .HPP and .JAVA file types. Once the list is displayed, use it by
either selecting the desired symbol and pressing , or by simply clicking on the
desired symbol. It will insert automatically.

Example:

_PrevPosbData.|
struct _ PrevPosData:

| col long col
& | col_ofst long col_ofst
@ | line long line

Click a symbol’s representative image to access the symbol’s definition.

Auto-type Info

To have CodeSense display a Tooltip containing a symbol’s definition as the mouse
cursor hovers over it, mark Auto-type info in Customize |Language|CodeSense.
The option is marked by default for .C, .CPE, .H, .HPE and JAVA file types.

Mark Shift or control required in Customize | Language | CodeSense to have the

[SHFT]) or keys control when the tooltip appears. The Shift or control required
option works with Auto-type Info in the following way:

B If the Auto-type Info option is NOT marked, the Shift or Control required
option is disabled, and tooltips are completely disabled.

W If the Auto-type Info option is marked, but Shift or Control required is not,
tooltips ALWAYS appear when the mouse cursor hovers over a symbol.

B If the Auto-type Info and the Shift or Control required options are both

marked, pressing [SHFT]| or while the mouse hovers over a valid symbol
causes the tooltip to appear when it otherwise would not.

Example:

EventRegister(EUENT_BUFFER_CREATED, EVENT_NORMAL, handler);
@W_DECLSPEC HEVENT WINAPI EventRegister(UINT, UINT, LPXSTR) |

Click a symbol’s representative image to access the symbol’s definition.

6- Editing & Printing 95

Auto-Parameter Info

To have CodeSense display a tooltip of appropriate parameters as a function is being
typed, mark Auto-Parameter Info in Customize | Language | CodeSense. The tooltip
displays when the function’s left parenthesis is typed. As a parameter is typed, and
commas are entered, successive parameters in the tooltip become bold, indicating
that they are next in line to be entered.

v/ Bold type will not appear for systems that use a bold font for tooltips.

Example:

MsqConfirm(LPXSTR str,|
[#1CW_DECLSPEC int WINAPI MsaConfim(LPXSTR, LPXSTR) |

Click a selected symbol’s representative icon to access the symbol’s definition.

Extending CodeSense Functionality

Consider the following additional options for enhancing your use of the CodeSense
features.

ANSI and Unicode CodeSense Translations

To have CodeSense specifically parse and display ANSI and/or Unicode versions of
the Win32 API, mark Show ANSI and/or Show Unicode in Customize |
Language|CodeSense. If these options are not marked, ANSI and Unicode versions
of Win32 APIs will not be displayed. See CodeWright's online help topic CodeSense
Tab for more information.

Disable CodeSense for Sections of Code Only
Two macros can be added to comments in C/C+ + files to disable the CodeSense
parser for specific sections of code. This can be handy for pieces of code that are not
handled well by the parser.
The macros are:
B TURN_CODESENSE_OFF
B TURN_CODESENSE_ON
Example: The CodeSense parser will not parse the following piece of code:

//TURN_CODESENSE_OFF
printf("Don't parse this");
//TURN_CODESENSE_ON

96 6- Editing & Printing

Project Matches in Non-Project Files

To have CodeSense display project database matches even if the file being edited is
not part of the current project, mark Allow Project Database Matches in Non-
Project Files in Customize| CodeSense Global Configuration.

For example, consider that the current CodeWright project and the file being edited
each contain a function named 'foo'. However, the file being edited does not belong
to the current project. CodeSense has scanned both 'foo' functions and placed them
in databases or in memory-- the project's function having been stored in the project-
database, and the current buffer's function having been stored in memory. If Allow
Project Database Matches in Non-Project Files is marked, both 'foo' functions will
display in CodeSense drop-down lists. If it is not convenient to see matches for both
functions, leave the option unmarked.

Consolidate Matching Lookup Definitions

To prevent CodeSense from displaying multiple matches for symbols that have the
exact same definition but that come from different locations in the source files, mark
Consolidate matching Lookup Definitions in Customize | CodeSense Global
Configuration. If this option is marked, only one matching definition will display in
the various CodeSense drop down lists, even if multiple matches are available in the
corresponding CodeSense library database. Note that limiting matching definitions
in drop-down lists will also limit the CodeSense ‘Goto” functionality making only
one matching symbol-definition available for access.

Symbol Lookups

CodeSense symbol lookups are done in a context-sensitive (scope sensitive) manner.
The buffer offset of a symbol is used to determine the context. For example, in the
following pseudo code, the scope of the first "str" would be "global, <foo>, <while
block>, <if block>". Therefore the definition of "str" found in the else block would
not qualify as the definition of the "stt" in the if block.
void foo(void)
{
while (TRUE)
{
if (TRUE)
{
printf(str);
}
else
{
LPSTR str = "foo";
}

6- Editing & Printing 97

The following additional information pertains to symbol lookups:

/A

When doing a member lookup, CodeSense does not care whether ":?', ->’, or
is typed. It will display the members regardless. For example, typing "Cstring->"
will display the members of Cstring even though a compiler would expect
"Cstring" to be followed by ":’.

CodeSense won't display member lists for function return values (e.g.
"GetWindow()->).

Libraries and/or project files that are currently being scanned or parsed are not
available for lookups.

If a project database is being indexed or compacted, CodeSense will wait for a
few seconds for it to finish. If it does not finish, the whole project database will
be unavailable for lookups (i.e. only library databases will be used).

Troubleshooting

If CodeSense is not performing as expected, do the following:

o8

Make sure that the necessary CodeSense library databases are checked and have
been properly scanned in Customize | CodeSense Global Configuration.

Make sure that CodeSense DLL is marked for the appropriate file type (C/C++
or Java) in Customize | Language | CodeSense and that desired configuration
options are marked.

Use the TURN_CODESENSE_OFF/ON macros to prevent troublesome blocks
of code from being scanned.

If project files aren’t being scanned, make sure that Auto-update Symbols
Database is marked in Project|Properties | Directories.

If some macro definitions are being parsed incorrectly, add them to the
[CodeSense Definitions] section of the CodeSense configuration file
CWSENSE.INIL. See the online topic CWSENSE.INI for more information.

If the correct symbol is not included in those scanned from CodeSense library
databases, make sure that the file with the symbol is either included in the
current CodeWright project, or included in the Symbols Window’s file list.

6- Editing & Printing

Comments and Comment Boxes

There are two items, Comment and Comment Box, on the Text menu, which are
used to automatically insert comments into your code. The Comment and Comment
Box menu items draw a user-defined border around selected text. This feature
makes it convenient to write the text of a comment employing word wrap, and then
to add the comment characters later. The border may be a comment block or any
decorative characters you care to use. The strings used for these borders are defined
on the Comment tab of the Language dialog.

Customize | Language | Comments

File type: Templates | Coloring I CodeSense | Format

Left Fil Right

Comment Sides: l/_ I/_

o [F
ini Comment Box Sides: l_ [_
:mz = Bottomzl”_ I_ [/_

cpp
LCRR
h

hpp
_htm
html

Mapped to: [™ Insert top of box for mid-ine selection
<None>
Set parameters for the Comment, and Comment Box items found under
New Type... | the Text menu. These items draw a user-defined border around
selected text. The border may be a comment block or any decorative
Delete Type | characters you care to use.
Map Type to... |

Cancel I Help |

Define the look of Comments and Comment Boxes as follows:

B The Commentitem adds a purely functional left and right border, which may
serve as the beginning and end of a comment. The default for this item is to add
/* to the beginning of each line or line segment in the selection, and to add */ at
the end of each.

B The Comment Box item does the same, but adds a decorative top and bottom
line. This type of comment is usually used for an eye-catching multi-line
comment at the beginning of a function or file. It is primarily for line selections,
but may also be used for column or stream selections.

The left side of the border is placed at the beginning of the line, or, in the case of
a column selection, in the first column of the selection. The right side of the
border is placed at the first tab stop to the right of the longest line in the
selection.

6- Editing & Printing 99

HTML Editing

With the ever-increasing popularity of the Internet, it has become necessary to own
at least one good HTML editor. CodeWright provides several features that make it
ideal for HTML editing. Those features are described next.

HTML Language Support

When HTML files are opened in CodeWright, ChromaCoding is immediately
available. All HTML keywords, comments, and strings are colored instantly.
Template expansion (see the topic Templates and Brace Expansion) is also available for
automatic insertion of opening and closing tags with correct cursor positioning to
allow for quick completion of code-statements.

HTML Popup Menu

CodeWright's default right click-popup menu has a handy <tag> attributes option
that displays applicable attributes for the closest open HTML tag. Just position your
cursor close to an opening HTML tag, then press your right mouse button. The first
option on the resulting popup menu will access a submenu containing a list of
applicable tag attributes, if any.

Items on the popup menu can be changed by using the Edit this menu item, or by
editing the HTML.MNU file directly (See the chapter Custom Interface).

WYSIWYG Editor/Viewer

CodeWright has an HTML WYSIWYG (What You See Is What You Get) editor/viewer
that must be turned on in Customize | Libraries to be used. See the topic Viewing and
Editing Internet Files: Installation Instructions for instructions about turning on
WYSIWYG editing. See the topic Using HTML WYSIWYG for information about how
the feature is used. CodeWright's HTML\WYSIWYG requires either Windows
95 osr2, Windows 98, Windows 2000, Windows Millennium, or Windows
NT and Internet Explorer 5 or later.

HTML Viewing - Web Browser Interface

In addition (or alternative) to the WYSIWYG editor, CodeWright offers a Web
Browser as Viewer interface that displays files being edited in certain installed web
browser(s). See CodeWright's online help topic HTML Web Browser Interface for more
information.

This viewing method must also be turned on in Customize | Libraries. The process

for enabling both of CodeWright's HTML viewing and editing features is described
next.

100 6- Editing & Printing

Viewing and Editing Internet Files: Installation
Instructions

To install CodeWright's WYSIWYG HTML editor or the web browser interface, do
the following:

B Go to Customize|Libraries and mark one of the following boxes:

v Web Browser as Viewer- installs CWWEB.DLL, to enable CodeWright's
web browser interface. See the online help topic Web Browser Interface.

v HTML WYSIWYG Editor/Viewer- installs CWHTML.DLL, to enable
CodeWright's WYSIWYG HTML editor.

B If none of the options described above are listed in the Libraries dialog, click the
Add button and select the appropriate DLL(s) from those listed in the
CodeWright directory. Both installation methods cause CodeWright to load the
library into memory. They also add lines to the CWRIGHTINI file so that the
DLL(s) will automatically load when CodeWright starts up. Examples of the
entries in CWRIGHTINI follow:

[LibPreLoad]
LibPrelLoad=cwweb.dll
LibPreLoad=cwhtml.dl1l

Using HTML WYSIWYG

Once you have loaded HTML WYSIWYG editor/viewer, do the following to use it:
1. Load an HTML file.

2. Make the HTML toolbar visible (if it is not already) in Customize | Toolbars.

3. Ifnotalready depressed, depress the Toggle viewer button on the HTML

Toolbar. This turns on the WYSIWYG view. Once the button has been
depressed, several other buttons are made available. The buttons provide the
following functions:

s
v View and edit the current file in a split code/WYSIWYG window.

View the current file in a full WYSIWYG window.

4 |§| View the current file in a full code window.

v The remaining buttons perform various HTML WYSIWYG and code-
editing tasks such as inserting tags, setting colors, and inserting tables and
graphics. They will be alternately available and unavailable as they apply to
the view (code or WYSIWYG) that currently has focus.

6- Editing & Printing 101

HTML WYSIWYG editing provides the following capabilities:

B Edit HTML files as normal documents.

B Quickly insert HTML tables and graphics.

B Resize HTML tables and graphics with mouse drag operations.

Note: By default, changes made in the code window must be saved or
undone before editing in the WYSIWYG window. Conversely,
changes made in the WYSIWYG window must be updated or
abandoned before the code window can be edited. The Update

button ® transfers changes one-way, from the current window to
the opposite view.

If you wish to enable differencing/merging (so the Update button
combines changes from both views and updates both views), press

¥ t0 invoke the HTML Configuration Options dialog and mark
Enable Differencing/Merging. Also on this dialog, mark Open
Viewer in Edit Mode to open the WYSIWYG viewer in editing mode
by default, or uncheck Enable WYSIWYG Editing to disable editing
in the WYSIWYG window. You can also set these flags
programatically using the HTMLConfigFlags API function,
described under Help | CodeWright API Library.

XML Split Window Viewer

An XML Split Window Viewer option is available in CodeWright's

Customize | Libraries dialog. Check it to enable CodeWright's XML viewer. The XML
viewer takes up the top portion of a horizontally split edit window that contains a
valid XML document. The bottom portion of the window displays the document's
XML code. If the window is not already split it must be split manually. Windows can

be split using vertical scrollbars, or by using the CUA key sequence .

102 6- Editing & Printing

XML Split Window Viewer

{ CodeWright - [E:\... \samples\internet\mi\xm_validator\WeatherReport xmi] [_[0[x]
Fle Edt Seach Projct Test Document Customize Took Window Help =18] x|
|e-»-Bcass a2 1 H 8|
I I L I -
ASTATE 2]
NAME [Calformia [
alcTy
NAME [Los Angeles I
jSK\ES
[VALUE [PARTLYSUN
aHI
C F -
4] _ D
{?xml version="1.8"7> s
<WEATHERREPORT xmlns="x-schema:WleatherSchena.xnl">
<STATE NAME="California"}

<CITY NAME="Los fngeles">
gml“ ES"UﬁkUEE::PﬁET&‘ISUNNU 2

C="31 /.
<LOW C="18" F="65"/>
Partly cloudy

</Cl
<CITY NAME="Sacramento'>
<SKIES UALUE="SUNNY"'/>
=364 F=197,

"/
<LOW C="17" F="64"/>

4"/
___Sunny and hot. hd
Kl | 2

[Fie: E: LvalidalonWez [0 [@[fins [[Liner7 [Col13

CodeWright's XML split window viewer displays XML code in a collapsible grid. The
grid shows a hierarchy of the elements and element attributes in an XML document
as they relate to the document's root element. The individual elements can be
collapsed within the grid, so that only desired portions of the grid display. The grid
can also be collapsed completely so that only the root element displays. Double click
on any valid XML element or element attribute within the grid to position the text
cursor at the corresponding element within the XML code. The code will then be
ready for editing.

COBOL Editing

This section describes CodeWright’s COBOL language support and editing features.

COBOL Lexer and DLL

CodeWright's COBOL ChromaCoding support is available via a DLL or a
ChromaCoding lexer.

To use the DLL:
1. mark the option COBOL in Customize | Libraries.
2. Go to Customize |Language.

3. Select’.cob’ in the File type list. If you do not see the correct file type, click New
Type, and add it.

4. Select the Coloring tab.
5. Mark DLL.
6. Click OK.

6- Editing & Printing 103

To use the lexer:
1. Go to Customize | Language | Coloring.

2. Select’.cob’ in the File type list. If you do not see the correct file type, click New
Type, and add it.

3. Mark Lexer.

4. Choose COBOL from the drop down list.

5. Click OK.

Open a COBOL file to see ChromaCoding language support. Note that language
support DLLs and ChromaCoding lexers can be used together. If both exist, it is

advisable to use the lexer for ChromaCoding, and the DLL for other language
support features.

COBOL Extensions

CodeWright has a COBOL Extensions module that provides various COBOL-
specific functions and controls. To turn it on, mark COBOL Extensions in
Customize | Libraries. The features that are provided by the module are listed next.

Resequence Line Numbers

Cobol Extensions provides a [SHFTfR] keystroke to resequence line numbers.
This works as follows:

1. Press TR 1| A dialog will appear entitled Enter Sequence Info.

2. Enter the Start number for the line number sequence.

3. Enter the Increment number that the line number sequence will be incremented
by.

4. Press OK. Line numbers will be resequenced according to the dialog's inputs.
Note the following:

v/ The Start number will be placed at the top of the file.

v If numbers did not exist previously in the file, they will be inserted at the
far-left margin of the file, taking up the first 6 columns of the line.

v Line numbers will not be inserted if the file is not saved.

v/ Line numbers will not be inserted if there is not more than one line in the
file.

104 6- Editing & Printing

v If text already occurs at the position where a line number would be, the
number will not be inserted. However, the number will still be counted.

v/ For non-numbered lines that have numbered lines above and below them,
numbers will only insert on the lines between those lines. For non-
numbered lines that have numberd lines below them, numbers will only
insert up to those lines.

Line Number Handling when Lines are Copied or Moved

When Cobol Extensions is loaded, COBOL line numbers will become spaces at the
locations at which they are copied or moved. This will keep the numbers from being
repeated every time text is copied from one part of a file to another. New line

numbers can then be inserted using the 'Resequence' key [SHFT)fR]| (see above).

Toggle COBOL Comment

Cobol Extensions provides a [CTRfT]| keystroke to toggle a COBOL comment
delimiter. Press to have a comment delimiter (*) inserted at column 7 of the

current line. If a comment delimiter already exists in column 7, Press to
remove it.

Automatic Time/Date Stamp on Modified Lines

Time/date stamps are automatically inserted on modified lines at File | Save. Note the
following:

v The line-modified (time/date) string is inserted at column 73 of the modified
line.

v The <End> key will move the cursor to the end of the line of code, not to the
end of the line-modified (time/date) string.

v Entering a new line will not move the line-modified string off of its designated
line.

v The string that is inserted can be customized by modifying the date macros in
the History Template section of the CobolExt Settings dialog (Customize |
CobolExt Settings).

String Literals Automatically Continue on New Lines

COBOL Extensions automatically inserts -" (dash-double-quote) on newlines when
the previous line contains an open or continued string literal (no closing quote).

6- Editing & Printing 105

Validate Line Number Sequence

CTRL] [SHIFT i i i i
A [SHFTJV]) key sequence is provided to validate line number sequence. Press

[SHET)V]] to have CodeWright highlight the first line it finds that has an invalid
line number, if the line exists. If it does exist, the following message will display in
the status bar:

Sequence numbers are invalid.

If line numbers are valid, no lines will be highlighted, and the following will display
in CodeWright's status bar:

Sequence numbers are valid.

Patch File Shows Changes in a File

COBOL Extensions provides a [SHFTfE2]| key that creates a ‘patch’ file. The
patch file shows which lines are different between the file that is being edited, and
another version of the file. CodeWright locates the the other version using path and
filename information from the file being edited. The method CodeWright uses to
extract path and filename information can be customized by modifying the filename
component macros in Customize | CobolExt Settings.

For example, to create a COBOL Extensions patch file that will show the differences
between the file being edited and the backup file that CodeWright optionally creates
when the file is saved, set the following filename component macros in Customize |
CobolExt Settings:

Patch File: $v3pPATCH\%r%e
Original Source File: $v%p\%r.bak

In a modified COBOL document press [SHFT)E2]|. The above settings will create
a patch file with the same name as the file being edited. The file will be located in the
PATCH subdirectory of the file being edited. The patch file will not be created if the
PATCH directory does not exist. The patch file contains a list of line numbers for any
lines that are different between the edit file and the Original Source File. New text
in the file being edited will also be recorded in the patch file along with the line
numbers. If some of the lines in the file being edited do not have line numbers, a
message will appear, and the patch file will not be created. Press [EHFTER) to

resequence the line numbers.
The key sequence will save the current file while creating the patch

file. The contents of the patch file will be over-written every time the key sequence is
successfully completed.

106 6- Editing & Printing

For a description of filename component macros, see the topic Filename Component
Macros in the chapter Projects, Project Spaces, and Workspaces. For more information
about the CobolExt Settings dialog, see CodeWright's online help topic CobolExt
Settings.

Cobol Extensions does not require that the COBOL language support be turned on.
However, the module will be more useful if it is.

Hex Editing

A frequently used CodeWright editing feature is Hex- mode editing. Hex mode
allows you to view and edit a file in hexadecimal values. You may edit the file by
entering values for each byte, or by typing the ASCII equivalent. To enter Hex mode:

B Press [SHFT)fE]) in the CUA or the BRIEF keymap,

B Press in the vi keymap.

B Use the button on the Edit toolbar (described briefly in the chapter on Custom
Interface) that switches the current document to Hex mode.

When you enter the Hex mode, the key is redefined. It may be used to switch
from the Hex values to their ASCII equivalent, and back again. To return to Standard

mode from Hex mode, press the % key.

Hex mode displays the document offset at the left, 16 bytes of hex values in the
middle, and their ASCII equivalent to the right. The 16 hex values are divided into
four groups of four. Each value has two digits: a high nibble and a low nibble.

Insert vs. Overtype Mode

Most Hex mode editors cannot change the length of a file, and therefore are always
in overtype mode. CodeWright can insert characters while in hex mode, and it will
be in insert mode if you were in insert mode before entering Hex mode.

Note: If the file or portion of a file you are editing is length-sensitive, you
will probably want to toggle to overtype mode.

6- Editing & Printing 107

When entering text in the ASCII portion of the Hex mode display, insertions appear
as they do when you are in normal text mode, except that the text is in a rather
narrow column. When in the Binary portion of the Hex display, each byte is
displayed as two hexadecimal numbers, the high nibble on the left and the low
nibble on the right. When you type numbers (0 to F) in these positions, it changes or
inserts the character whose numerical equivalent you have typed.

You cannot insert a nibble; you must insert an entire byte. Therefore, when you type
at the high nibble position, both nibbles of the byte are inserted. The low nibble is
initially zero. The cursor is then positioned over the low nibble. The next number
you type replaces the value of the low nibble. So, as you type, you will alternately
see two nibbles inserted, and one nibble overtyped.

Handy Hex-Editing Tips and Features
Keep in mind the following CodeWright features when using Hex mode:
B Highlighting text in Hex mode will highlight the corresponding ASCII side.

B Hex characters can be copied, cut, and pasted in the same manner that ASCII
characters can, but the document to which the hex characters are being pasted
must be in hex mode in order for the pasted text to appear in hex; otherwise,
hex characters are pasted in ASCIL

B When the cursor is in the hex side of the document, a 'black on yellow' color
mark will appear for the character opposite the cursor in the corresponding
ASCII side. The color mark will appear in the same way in the hex side of the
document if the cursor is in the ASCII side. This helps track the hexadecimal
equivalent if in ASCII mode or the ASCII equivalent if in hex mode.

M The cursor will wrap on either editing side to the next/previous line when the
right/left arrow key is used.

B Tips for searching and replacing binary and hex characters can be found in the
Chapter on Search and Replace and Navigational Tools.

Clipboard and Scrap Buffers

In CodeWright, copy/paste operations can be stored in the Windows Clipboard, or in
CodeWright's Scrap Buffers. To toggle between Clipboards and Scrap Buffers, select
one or the other from the Edit menu. In both cases, multiple buffers are allowed.

Scrap Buffers

CodeWright offers the option of using Scrap Buffers as the staging area for local cut
and paste operations. Scrap Buffers can be used within or between edit documents
in CodeWright much as the Windows Clipboard is used for cut and paste operations
between applications.

108 6- Editing & Printing

Multiple Clipboard/Scrap Buffers

CodeWright allows the use of multiple Clipboards or Scrap Buffers. The number of
buffers available can be defined on the Clipboard tab of the Customize |
Environment dialog. The default is one for each.

Customize | Environment| Clipboard

General | Keymap | State | Backup | Menu | History
FieSotMode | Fom | [i | Bookmarks

Cunent Scrap Buffer: [0 12

Cut/Paste Area Multiple Scrap Buffers ————————————
’V @ Cipboard € Scrap Buffer ’V Number of Sciap Bufers: [T 2]

- Cliboard Oplions or Cokamn Selections——— | " .
Separation stiing: ¥ Enable o-increment Scrap Bufer
\n Multple Cipboards—————————
! Number of Clipboards: [T 2]
Termination string: V' Enabl a
~emneen &g i Current Clipboard: [0 EI
[I Autoincrement Cipboard

¥ Store Clipboard/Scrap Options in project file

The Clipboard propetties allows you to select between the Windows Clipboard and Code\Wiight's 4]
Scrap buffer as the staging area for cut and paste operations.

For each type, you may choose to have multiple instances, making it easier to manage a
sequence of copy/paste operations. Moreover, you may want to enable the auto-increment
option. When this is on, each time you cut or copy the next higher numbered clipboard or scrap
buffer is automatically selected prior to the operation. However, when a clipboard or scrap buffer
is erased or appended to, auto-increment does not occur.

Only the content of the current clipboard is available to other Windows applications. The
senaraton/teminatnr stinas are used nnlu with eollmn selections that are made availahle t nther

Cancel | Help

The Clipboard tab also has an Auto-increment Clipboard/Scrap Buffer option. With
either enabled, the clipboard/scrap buffer to use is incriminated immediately prior to
copying or cutting new content. If the highest numbered clipboard/scrap buffer is

th one is used next.

already the current one, the zero
Check the option Store Clipboard/Scrap Options in project file to store these
Clipboard/Scrap settings with the project currently open. If the box is checked but
no project is open, options selected on the Clipboard tab are stored as default
settings for use with future projects.

Clipboard/Scrap Viewer

An extra tab for viewing the contents of the current Clipboard or Scrap Buffer can be
turned on for the Output Window. The tab is called ClipView. Make the ClipView
tab of CodeWright's Output Window visible by marking the Clipboard/Scrap
Viewer option in the Customize | Libraries dialog.

6- Editing & Printing 109

ClipView Tab

Bl |[omm] e sy P | e
4

Does that make sense?d

\ Buid £ Fie Find { Seatch { Browse £ Diference £ Shel { Peil) CigView £ Symbols / ‘

The ClipView tab provides the following functionality:

B Select Button: Selects the currently displayed clip or scrap buffer to be the
default repository for copy/cut operations. The button is not available if the
buffer displayed in the ClipView window is already the default repository.

B Paste Button: Pastes the contents of the ClipView window.

Delete Button: Deletes the contents of the ClipView window.

B Overview Button: Allows you to view all Clipboard/Scrap buffers available (you
may have to use scroll bars to see additional buffers). When you are in
Overview mode, the Detail button returns you to the current clipboard/buffer
view only.

B Clipboard and Scrap Buffer radio buttons: Allow you to view the contents of
Clipboards or Scrap Buffers, and to select either as the current repository for
copy/cut operations.

B Increment Clipboard/Buffer: Change the number in this field to view the
contents of another Clipboard or Scrap Buffer.

Additional information on CodeWright's ClipView tab is available in the online help.

APl Assistant

The API Assistant is an editing tool for CodeWright that completes and inserts
functions, with their appropriate parameters, at the cursor position in the current
document.

Using the API Assistant

Begin using the API Assistant by selecting API Assistance On from the Help menu.
If there is a word near the cursor at the time that the API Assistant is accessed,
CodeWright will attempt to locate assistance for that word. If no word is nearby, a
prompt comes up for a subroutine or function name to look up. If more than one
occurrence of the word is found, the prompt offers a selection to choose from.

110 6- Editing & Printing

A form to be filled out is then presented. There is an edit box or set of checkboxes for
each parameter used by the subroutine or function. The parameter type is listed
next to each edit box or set of buttons. This makes it simple to ensure that all
necessary parameters are supplied, and are of the correct type. If additional
information is needed, press the Help button to see the Windows API Help entry (or
other help file entry) for that subroutine or function.

When the form is completed, press OK and the information provided is assembled
into a complete function call, including commas and parentheses, and inserted into
the document.

Using the Checkboxes

The use of checkboxes in the API Assistant is usually associated with a numeric
parameter, such as an integer. The values checked, as represented by the predefined
labels, are ORed together in the resulting function call.

APl Assistant Example

Refer to the following example on using the API Assistant:

The API Assistant could be used to help complete the MessageBox function, from
the Windows32 AP], in the following way:

1. Access API Assistance On... from the Help menu to bring up the Find

Assistance dialog.

2. Type MessageBox in the Find Assistance dialog and press to bring up a

form containing the MessageBox function and empty edit boxes to fill in for the
function's parameters. Check boxes for the function's numerous flags are also
available.

6- Editing & Printing 111

The API Assistant (MessageBox) Dialog

int MessageBox
(wHBWND hwndOwner, 7/ handle of owner window
LPCTSTR IpszTest, /7 pointer to text in message box Cancel
SR, A i e
elp
Al
l
~LPCTSTR
|IpszTexl] ‘
~LPCTSTR
|Ip:2TxHe] ‘
~UINT
I~ MB_ABORTRETRYIGNORE ™ MB_APPLMODAL
™ MB_DEFAULT_DESKTOP_ONLY I~ MB_DEFBUTTON1
™ MB_DEFBUTTON2 ™ MB_DEFBUTTON3
I~ MB_ICONASTERISK ™ MB_ICONEXCLAMATION
™ MB_ICONHAND ™ MB_ICONINFORMATION
I~ MB_ICONQUESTION ™ MB_ICONSTOP
™ MB_OK I~ MB_OKCANCEL
I~ MB_RETRYCANCEL ™ MB_SETFOREGROUND
™ MB_SYSTEMMODAL ™ MB_TASKMODAL
I~ MB_YESNOD ™ MB_YESNOCANCEL
=]

3. Fill in the necessary parameters and mark the flags to be inserted.

4. Once the desired parameters have been inserted and the necessary flags have
been chosen, click OK to insert the MessageBox function into the current file.

Currently, API Assistance is provided for the Windows API, Standard C Library
functions, Microsoft Foundation Classes, Delphi's AP, Java and Sun Java, HTML,
and the CodeWright APL

API Assistant Databases

The API Assistant gets its information from databases. The databases supplied as of
this writing are described in the table below:

Filename Description
WINAPLTDB Contains information about Windows API function calls.
CWAPLTDB Contains information about CodeWright API function

calls.

MFC.TDB Contains information about Microsoft Foundation Classes.
C.TDB Contains information about Standard C library functions.
JAVA.TDB Contains information about Java functions.
SUNJAVA.TDB Contains information about Sun Java functions.

112 6- Editing & Printing

Filename Description

HTML.TDB Contains information HTML tags.

DELPHI.TDB Contains information about Delphi functions.

Modifying the Database

One of the sample “tools” placed at the end of the Tools menu is the API Database
Editor. The API Database Editor is for modifying and making minor additions to
any of the API Assistant’s databases. More serious modifications may best be done
with the automation tools described below.

The database editor provides the primary method by which parameters may be
presented as a series of choices, rather than simple edit boxes. Presenting the
parameter as a series of choices assists the user in remembering or selecting a
reasonable value for the parameter, and it tends to validate the choice.

Automation Tools

A tool has been provided to take data, in one of several formats, and make entries in
an API Assistant database. This enables automatic creation and update of API
Assistant databases for APIs or libraries for which support is not provided.

A method needs to be created for getting the data into the proper format. This might
be done using an AWK script on source files or DDE queries to InfoView. After
getting the data in the proper format, the automation tool will do the work of
creating or updating the database. A description of the automation tools is contained
in the CodeWright's online help, under the topic API Assistant.

Using Help in CodeWright

CodeWright's help system can be configured to support multiple help files for easy
access to help topics from different environments. When CodeWright's help has

been properly configured, pressing when the cursor is positioned on a word in
the current file shows a list of help files in which that word was found. The

appropriate topic can then be chosen from the various files presented.
Indexing and Accessing Help Files

CodeWright ships with its own help files (CWHELPHLE CWAPLHLE and
CWAPPBAS.HLP). You can also index or access help files from other software
packages, so that they can be used from within CodeWright.

6- Editing & Printing 113

Help files that can be accessed from within CodeWright must be one of the
following:

B .HLP Windows help files

Microsoft Visual C++ 6.0 HTML help files
IVT Microsoft Visual C++ 5.0 help files
.MVB Microsoft C++ 4.0 help files

.CHM Compiled Microsoft HTML Help Files

Indexing .HLP Help Files

To index your .HLP help files, select Add in the Help | Configure Index dialog, and
then browse for the help file you need. When you have selected it, choose Close.
CodeWright will add this help file to the help index (CWRIGHTIDX). CodeWright
also has a Help Index File Wizard that will combine selected .IDX files with
CodeWright's .IDX file, thereby creating a more comprehensive help index with
minimal effort. The wizard can be accessed from the Configuration Wizard Choices

dialog on the Help menu. Once the index has been created, press [F1]]on a word that

is contained in the newly-indexed help file to have the word appear as a choice in a
help window. If no help topic is found, a dialog comes up listing all of the available
help files. Any of the help files listed can then be selected and a second search can be
initiated.

CodeWright can also be set up to display help from files other than .HLP files (i.e.
.MVB, .IVT, .CHM and MSVC 6.0 HTML help files). These processes will be
discussed next.

Accessing MSVC 6.0 Help Files

With the release of Visual Studio 6.0, Microsoft changed the format of its online help
and documentation system. The new system is based on Microsoft HTML Help.
CodeWright provides the ability to access MSVC's context sensitive HTML help

using the ff1] key.

To set CodeWright up to access HTML help files, go to the Configure Help Index
dialog:

1. Click the HTML Help Setup button.

2. Check Use HTML Help Viewer as default when keyword not found.

3. Click the OK button.

4. Click the Save button.

114 6- Editing & Printing

When configured, the Search For Help On item in the Help menu (or key) will
be connected to Visual Studio 6.0 Help. The first time you invoke help, the HTML
Help Viewer is launched, and a keyword lookup is performed on the topic of
interest. Subsequent help invocations bring the HTML Help Viewer to the

foreground, and perform the lookup.

Accessing Compiled Microsoft HTML (.CHM) Help Files

Compiled Microsoft HTML files can be viewed with an HTML Help Viewer
that comes with Visual Studio. Windows must have a file association for
.CHM files to the executable hh . exe for CodeWright's help system to
display a .CHM file.

To set CodeWright up to access .CHM help files, go to the Configure Help Index
dialog:
1. Press Add. The Add Helpfile Keywords dialog displays.

2. Browse for the desired .CHM file. You will probably need to select All Files in
the Files of Type drop-down list to see .CHM files.

3. Select the .CHM file and press Open. The file will now display in the Filename
window on the Configure Help Index dialog.

4. With the file still highlighted, press Edit.

5. On the Edit File Information dialog, type a Description to identify the .CHM
help file in your list.

6. Press OK to exit back to the Configure Help Index dialog, and Save to retain
your changes.

To access information from the indexed .CHM file, select Help | Search for Help On.
Type the Keyword to search for, select the desired entry from the .CHM file, and
press OK.

Accessing MSVC 5.0 (.IVT) Help Files

MSVC 5.0's Help format uses .IVT files known as InfoViewer Titles (formerly .MVB
files). These are read by the online MSVC system known as InfoViewer. InfoViewer
is built in to MSDEV.EXE, and is available stand-alone on the MSDN Library-Visual
Studio 97 CD, as IV5.EXE. If you have not installed the entire MSDN Library on
your drive, then you will need the MSDN CD in your CD drive when accessing help.

Complete the following steps in CodeWright:

1. In the Customize | Library dialog, under CodeWright Libraries, you will find
InfoViewer Titles. Check the box, and click OK.

2. Go to Help | Configure Index File.

6- Editing & Printing 115

3. Click the IVT Setup button, which allows you to setup InfoViewer as your
default help engine. If the button is disabled, then you need to de-select your
MVB viewer (click MVB Setup, uncheck Use as default when keyword not
found, and click OK). CodeWright can't use both .MVB and .IVT help files
concurrently.

4. On the InfoViewer Title Setup dialog, enter the name of the program used to
view the .IVT files (msdev.exe, or iv5.exe).

5. Check Use as default when keyword not found.
6. Select the search method you would like to employ (index, or full-text search).
7. Click OK, and finally click Close.

Now when you bring up the Find Help dialog via Help | Search for Help On, you'll
see Use Installed InfoViewer Titles in the dialog listbox. Click OK, and CodeWright
will switch to InfoViewer and bring up the Search dialog with the appropriate
keyword. InfoViewer needs to be running to receive messages from CodeWright.
CodeWright will launch the InfoViewer program if it is not running,.

Accessing MSVC 4.0 (.MVB) Help Files

To set CodeWright up to use MSVC 4.0 help files, complete the following;:

1. Go to Help | Configure Index File and click MBV Setup.

2. In this dialog:
B Uncheck the Use Default Help box.
B Uncheck the Use DDE box.
B Remove the filename for the default .MVB file from the Topic field.
H Enter the following macro in the Topic field: $(MVBFILE).

3. Return to the Help | Configure Index File dialog.

4. Press the Add button. You will see that CodeWright now allows you to index
multiple . HLP and .MVB files. Add any necessary .MVB files.

Once the MVB help integration setup is complete, position the cursor on a keyword

and press , or enter the keyword in the Search for Help On dialog, to access all
the help (HLP and .MVB) files listed in the index. A dialog box showing the help
files found will be presented from which to choose the help file to be viewed.

The next section talks about some of CodeWright's more unique print features.

116 6- Editing & Printing

Printing

CodeWright's print dialog has options that make printing more flexible and efficient.
Documents can be printed in color (if a color printer is available), line numbers can
be added, long lines can be wrapped or not wrapped (whatever the choice may be),
and sets of configurations can be created and stored with individual print
configuration names. A quick description of some of the features available in
CodeWright's print dialog is available below.

Print Dialog
I |

Printer: (default) EPSON Stylus COLOR 600 to LPT1:

Page Setup | Options | Documents | Configurations |
~PrintRangeg—
@ Al Pages

€ From: IW_EI To: IW_ﬁ
-

Selection Only

~ Number of Copies

8 T o

Here you can specify the range of information to be printed

Also, you may request multiple copies to be printed and specify if they are to be
collated into sets.

Saye settings | Fort.. | Setwp.. |[Preview..| Pint | Cancel | Hebp |

Print Configurations

CodeWright has the ability to save named print configurations. The Configuration
tab of the Print dialog has a listbox that contains existing configuration names.
Create a configuration by choosing some options to be stored, typing a New
Configuration name, and then clicking Create.

Selected Print Configurations can be deleted, updated, or loaded. Both the Load and
Update operations modify the 'current configuration'.

Paper Selection Override

On the Page Setup tab of the Print dialog, there are three checkboxes available that
allow you to override the default paper size, source tray and orientation settings for
your printer. If not supplied, the default settings will be used.

6- Editing & Printing 117

Color Printing

The Options tab of CodeWright's Print dialog has options for printing in color. The
colors printed will be those that are seen on the screen. It is also possible to
distinguish colors using font styles (bold, italics, underlined). Font styles and colors
can be used separately or together when printing.

Do not confuse font-style printing with the printed font. Documents printed in
CodeWright will always display the fonts that are set up in the Print dialog, not the
fonts that are displayed on the screen. The font styles are only for bolding, italicizing,
or underlining text being printed. Font styles can be specified in the Font Style
group of the Customize | View Setups | Colors dialog.

Print Preview

CodeWright has a Preview button in its Print dialog that allows you to see what the
document will look like before printing. The Print Preview has buttons for zooming

e and for moving between pages in the document M .

Multi-Copy Printing

CodeWright's multi-copy printing feature can use the multi-copy capabilities of a
printer, if present, in non-collated mode. The configuration options are on the Scope
tab of the Print dialog.

Printing Line Numbers

The numbering option on the Options tab of the Print dialog has a line-numbering
checkbox. Unmark the checkbox to turn off the number increment.

Wrapping Long Lines in Printed Documents

Two checkboxes pertain to line wrapping on the Options tab of the Print dialog:
Wrap Long Lines and Mark Wrapped Lines (dependent on Wrap Long Lines). The
first enables wrapping while the second controls the printing of a wrapping
indicator on each line continuation.

Print Headers and Footers

The header and footer groups on the Print|Page Setup dialog permit header and
footer text to be defined for each printed page. Next to the Header and Footer edit
boxes are buttons with right-pointing triangles. Press a button to display a menu
showing macros available for headers or footers, respectively. Selected macros are
inserted at the cursor position within the header or footer edit box automatically.

118 6- Editing & Printing

Available print macros refer, in a generalized way, to the page number (%p), current
date (%d), current time (%t), and name of the file you are printing (%f). Place these

keywords at the location within the header or footer string where you want the

corresponding information to appear.

Formatting Headers and Footers
You may define up to three fields within each header and footer: left-justified,

centered and right-justified. These fields are defined by the placement of

semicolons. The first portion or field is left-justified. The field following the first
semicolon is centered, and the portion following the second semicolon is right-

justified. See the format diagram below:

<left-justified portion>;<centered portion>;<right-justified portion>

Any field in this format may be empty.

Example:

If you wanted to left-justify the filename but right-justify the date, your
format would look like this:

Based on a filename C:\CW32\FOO.C printed on 1\1\1999, the printed
results of the above header/footer macros would look like:

C:\CW32\F00.C 1\1\1999

To center a page number, your format would look like this:

ae
av]

Macros to be used in headers and footers are listed in the following table:

Macro Expansion Value
%d or %D | date
%tor %T | time
%f or %F filename
%v or %V | volume
%t or %R | root

6- Editing & Printing

Macro Expansion Value
%e or %E | extension
%b or %B | basename
Jop page n of m
%P page number
%x or %X | project path
%y or %Y | project root

120

6- Editing & Printing

Chapter | 7

7- Projects, Project
Spaces, and Workspaces

This chapter describes how to use the CodeWright project, project space, and
workspace facility. The complex relationships between files and groups of files that
are routine in program development demand the type of organization that can be
achieved with CodeWright projects.

Definitions

Projects, project spaces, and workspaces are defined as follows:

What is a Project?

A CodeWright project is a single file containing a list of filenames and settings that
are intended to make up the project. The contents of a CodeWright project are at the
discretion of the person making it. The configuration file containing the project files
and settings is stored in the directory in which the project was created, and is given
the name of the project with a .PJT extension.

Language, compiler, version control, clipboard and scrap, and other options can all
be stored in projects. Storing settings with CodeWright projects allows for unlimited
feature variation when going from project to project. With projects, the user can
create mini-environments for sets of files that, for example, use different compiler
options, have different promotion groups for version control, or use different
languages. Closing one project and opening another automatically sets the options
to that of the open project.

Overall, CodeWright projects allow the user to organize a group of files as a unit,

giving quick access to the configurations necessary for using and working with those
files more efficiently.

7- Projects, Project Spaces, and Workspaces 121

What is a Project Space?

Project spaces store and display sets of projects. Before a project can be made, a
project space has to be set up. The New, Open, and Close items on the
Project|Project Space submenu are for creating, opening and closing project spaces.
The Project Space submenu also has the Add New, Add Existing, and Remove
Project(s) menu items for adding new or existing, or for removing projects from the
current project space. The File View tab of the Project Window displays a hierarchy
of project spaces, the projects they contain, and each project’'s member files and their
version control status.

What is a Workspace?

A workspace can be thought of as a separate instance of CodeWright. It is a "mini-
project” within a project. When you change workspaces, you have the ability to pick
up where you left off with a group of files. It doesn't matter if you worked on that
group of files a half-hour before or three months ago. It is as if an instance of
CodeWright were frozen in time containing these files.

A workspace differs from a project in that it does not store the system-wide options
normally stored in a configuration file. In a sense, the workspace is like a
CodeWright state file that is swapped on the fly.

v For additional discussion of workspaces, refer to the topic Creating, Selecting and
Saving Workspaces, in this chapter.

Creating a Project Space

Before projects can be created, it is necessary to create a project space that will
contain the projects. Multiple project spaces can also be created, but only one can be
open at a time. To create a project space, do the following:

1. Click Project|Project Space |New.

2. Click Browse to make sure that the project space is being created in an
appropriate directory.

3. Typein a name for the project space in the Filename box. Keep in mind the
following:

B The Close existing documents/windows option causes all open windows
to be closed when the project is created.

B The Look in same directory for external workspace option automatically
inserts the name of any similarly-titled Visual Studio Workspace (.DSW) file
that may reside in the same directory in which the project space is being
created in.

v A PSP (CodeWright project space) file type extension is automatically
appended to the inserted name.

122 7- Projects, Project Spaces, and Workspaces

v The contents of the corresponding .DSW file will be read to create the
project space.

v The option supports Visual Studio 5.0 and 6.0 only. Turn off the option
if neither of those versions of Visual Studio is being used, or if it is
undesirable to have .DSW files converted to CodeWright project
spaces.

v For more information on what the Look in same directory for external

workspace option does, read the topic Reading External Makefiles and
Workspaces, in this chapter.

B CodeWright assumes the filename extension .PSP for project space

configuration files if one is not supplied. You may specify another
extension, if desired.

4. Click OK. The project space is created, and the Project|Properties dialog
appears, with the Members tab on top. The new project space is displayed in
the list box on the left, as shown in the following dialog.

Project| Properties | Members

[@ <Defaul Settings> Ditectories | Members | Tools | Enors | Fiters |
B cwstart 1 Pe‘ Project: C:\cwiight\cw3\CWS TART\cwstart pit
=] C 9 Files] i 5
@ [Fies EFEXEm

ChomightiowaZ\ WS TART vomstarth =
C\cmight\cw32\CWS TART bcustart ¢
C\omight\cw32\CWS TART il
Cowight\cow32\CWS TART collspse.
C\cwight\cow32\CWS TART entab.c.

Chcwright\ow32\CWS TART\cpp.c
Cihewrightiow32\CWS TARTAcursor.c
Ci\cwright\ow32\CWS TART \execmac. ¢
Cicwright\ow32\CWS TART vrepeat.c
Chewright\ow32\CWS TART Wags.c
Ci\cwright\ow32\CWS TART Ylanguage.c
Cicwright\ow32\CWS TART \compile.c
™\ eaarink

A\ rsairioht cw A4 MA/S TAR T Abahest ;I
I~ Hide fles akieady in project 00f 39 selected
Extemal Makefile:
’7E‘\cwrighl\cw:iz\WISTAHT\cwslal o (V4] ‘
VCS Project -
cwwizard Bl
I~ Add project files to VCS Project

Cancel Help

%

Projects are added to project spaces, and then files to projects, in the Project|
Properties| Members dialog. The information for creating and adding files to
projects is contained in the section on Creating a Project and the Members tab of Project
Properties. Before covering that topic, however, it is necessary to have some
understanding of the Project Properties List and the process for setting project
configurations. Those topics will be covered next.

7- Projects, Project Spaces, and Workspaces 123

The Project Properties List and Project
Settings

CodeWright's Project| Properties dialog is where many necessary CodeWright
configuration settings are made. One item in the dialog, the Project Properties List, is
important to all tabs of the dialog. The next few paragraphs talk about the Project
Properties List, and how the items in the box affect the rest of the dialog.

Project Properties List

The Project Properties List is available from all tabs of the Project|Properties dialog.
It lists the current project space and any projects that the space contains. It also lists a
special item called <Default Settings> that is used for setting global configurations
within the dialog. Configuration settings can be manipulated for any item selected in
the list box, but not all settings are available for all items. This is reflected by the fact
that the Project|Properties dialog changes depending on the item selected.

Project Properties List

@ <Default Settings>
myprojspe (2 Projects)
- % cob (4 Files)
-3 cua (4 Files)

Default Settings

The <Default Settings> item in the Project Properties List of the Project Properties
dialog is available at all times, regardless of whether or not there is a project or
project space open. Settings made in the Project Properties dialog while the
<Default Settings> item is selected will apply to all projects until those settings
have been changed for the projects individually. Settings made while a project is
selected are called "project-specific settings" and are stored with that project only.

124 7- Projects, Project Spaces, and Workspaces

Certain items and tabs in the Project|Properties dialog are only available when the
<Default Settings> item is selected; others are only available when projects or
project spaces are selected. The Members tab of the Project|Properties dialog, for
example, is used for adding projects to spaces and/or files to projects. It is therefore
not available when the <Default Settings> item is selected, since the <Default
Settings> item does not store projects or files. The Members tab is the only tab that
is not used for configuration settings, however. It is therefore the only tab that is
available at the project-space level, since project spaces do not store configuration
settings.

The other tabs in the dialog are available for the <Default Settings> item, as well as
for selected projects because they are used for making configuration changes that
can be either global (i.e. <Default Settings>) or specific to individual projects.

Working Directory

One important item to consider when setting project defaults is the project's
working directory. It is set in the Project| Properties | Directories dialog. The
working directory is the directory from which all tool commands (configured in the
Project|Properties| Tools dialog) are run.

The default-working directory is set to %x, a filename component macro that
expands to the directory containing the project's configuration file. You can select
Working Directory in the Directories list and press Browse to change the working
directory on the Project Working Directory dialog. (More information on the Tools
tab and filename component macros can be found under the topic Tools Tab of Project
Properties, in this chapter.)

Once the project's desired default settings have been established, appropriate
modifications can be made on a per-project basis. The information for setting project
configurations, and the tabs of the Project|Properties dialog, will be covered
throughout the remainder of this chapter.

Creating a Project and the Members
Tab of Project Properties

Once a project space has been created, you can add new or existing projects to it.
This can be done from the Project|Project Space menu, or the Project|Properties

| Members dialog. Project| Properties | Members should appear immediately after a
new project space has been created. Otherwise the dialog can be accessed via the
Project menu.

7- Projects, Project Spaces, and Workspaces 125

Creating a New Project

To create a CodeWright project in Project| Properties| Members, complete the
following steps:

1. Highlight the current project space in the Project Properties List on the left.
2. Click & to access the Add New Project to Project Space dialog. (The same
dialog can be accessed using Add New Project on the Project|Project Space

submenu.) In the Add New Project to Project Space dialog, click Browse to
make sure that the directory the project is being created in is appropriate.

Add New Project

Add New Project to Project Space [x|
Current Directory:
CACW32
Filename:

f
v Look in same directory for extermnal makefile
Makefile:

Type:
I &uto sync makefile

ﬂrowse.,.l oK I Cancell Help I
4

3. Give the project a name. Keep in mind the following:

B The Look in same directory for external makefile option will automatically
insert the name of any similarly titled makefile that resides in the same
directory. Turn off the option if you don’t want makefile names inserted in
the Filename box. For more information on what this option does, read the
topic Reading External Makefiles and Workspaces.

B The Auto sync makefile option tells CodeWright to synchronize any
selected external makefile with the project being created, so that files that
are added to the makefile are automatically added to the CodeWright
project.

B CodeWright automatically uses a .PJT extension for project files.

4. Click OK. CodeWright creates a new project configuration file in the chosen
directory. The new project is listed in the Project Properties List, under the
current project space.

126 7- Projects, Project Spaces, and Workspaces

Adding Files to a Project

Files can be added once the project has been created. Files are added in the
Project|Properties| Members dialog. To add files do the following:

1. Highlight a project to which the files will be added in the Project Properties List.
2. Add the files using one of the following methods:

W Click —él to add a new file to the project.

W Click . Add individual files by typing in their names, or add multiple
files using file filters (e.g. *.C). Use the [...] button to browse for different
directories.

Note: Semicolon delimited series of file specifications can be specified
when adding files. These file specifications would normally
include DOS wild-card characters. Paths are optional. (e.g.
.C.H;* .CPP,CA\TEST*.C;C\TEST* .H).

The Include Subdirectories checkbox causes matching files in
subdirectories to also be included.

B Use @ to browse for files. Add individual files by double clicking or by
typing in the names. Add multiple files by or -clicking.

B Use the External Makefile option to read files from an existing makefile
into the project being created (see the topic on Reading External Makefiles and
Workspaces).

B Use the VCS Project option to 'read' a version-control project file (see Using
Version Control in CodeWright, in the chapter Version Control).

3. Click OK. Any matched files should be immediately added to the project.

Files that are included in the project are listed in the Files list box in the center of the
dialog. To delete files from the project, select them in the box and press the Delete
button.

Adding Existing Projects to a Space

Thus far we have discussed adding new projects to a project space, but we have not
covered the process for adding projects that already exist. That process will be
described here. To add existing projects to the current project space, access the
Project|Properties| Members dialog.

7- Projects, Project Spaces, and Workspaces 127

Project Properties Members

@ <Defaul Settings> Diectories | Members | Tools | Enors | Fiters |
8 owstart (1 Pe’ Project Comright\cw32\CWSTART \cwstart R
R cvstart (39 Files) T £
el [Fes: e EaE

C:\ewiight\cw3ZACWS TART \cwstart ¢
C:\owiight\cow32\CWS TART At

C:\cwright\cw32\CWS TARTAcollapse.c
C:\cwiight\cw3ZA\CWS TART \entab.c

Ci\ewiight\cw32\CWS TARTAcpp.c
C:\cwiight\cw3Z\CWS TART \cursor.c
C:\cwiight\cw32\CWS TART \execmac.c
C:\cwiight\cw32\CWS TART wrepeat.c
C-\owright\ow32\CWS TART Mtags.c
C:\cwiight\cw32\CWS TART anguage.c
C:A\cwright\ow32\CWS TART\compile.c =
A rurioht i IAMWS TART \tahsat

I Hide files alteady in project 00f 39 selected

C:\ewnight\ew32\CWSTART \cwstarth j

Extemnal Makefile:

’ C\cwiight\cw32\CWS TART\cwstart V] ‘
VS Project -
| cowizard i (V5]
| I Add project files to VCS Project
Cancel Help

4

Complete the following steps:

1. Highlight the current project space in the Project Properties List.
2. Add projects using one of the following methods:

+

B Click El to access the Select One or More Projects to Add to Project Space
dialog (also accessed using the Add Project... item on the Project|Project
Space menu). Browse for individual project files or use extended selection
listbox rules (i.e. SHIFT/CTRL keys with mouse clicks) to add multiple
projects from the same directory at a time.

B From the Read External Workspace dialog (accessed in the Project
| Properties | Members dialog) select an external Visual Studio workspace

that CodeWright will use to Read QI projects from. The projects will be
read from the Visual Studio workspace into the current CodeWright project

space. See the topic Reading External Makefiles and Workspaces for more
information.

3. Click OK. Appropriate projects should be immediately added to the project

space. The projects are shown below the current project space in the Project
Properties List.

128 7- Projects, Project Spaces, and Workspaces

Auto Detect File Type to Load or Create Projects and Project
Spaces

The option Auto-detect file type in CodeWright's Customize |Environment

| General dialog allows CodeWright projects and project spaces to be opened in any
way that any file can be opened in CodeWright (e.g. File| Open, drag and drop,
opening from Project Window, opening from FTP dialog, etc). When the option is
marked, the following will occur when opening designated files with any allowable
file-open method:

W Files with .PSP file type extensions (CodeWright project space) will load as
CodeWright project spaces.

M Files with .DSW file type extensions (Visual Studio workspace) will create
CodeWright project spaces with autosync enabled (see Synchronize Makefile/
Workspace with Project/Project Space).

W Files with .PJT file type extensions (CodeWright project) will load as
CodeWright projects.

W Files with .DSP file type extensions (Visual Studio project) will create
CodeWright projects with autosync enabled (see Synchronize Makefile/Workspace
with Project/Project Space).

v Any supported makefile will create a CodeWright project. See the drop
down list under Makefile Type in the External Makefile dialog for a list of
supported makefiles.

v Do not mark Auto-detect file type if you want CodeWright to load these
files for editing only.

B CodeWright will always override Auto-detect file type if a project file is opened
from the Output Window's Build or Search tabs. Project files will always be
opened as text files from these windows.

If the option Auto-detect file type is not marked, the files listed above will open as
normal edit buffers in CodeWright.

Reading External Makefiles and Visual Studio Workspaces

CodeWright can extract the names of projects or files from either Microsoft Visual
Studio workspaces or specified makefiles, adding them to the list of project space or
project members, respectively. This little bit of automation helps keep the
CodeWright project spaces and projects synchronized with the IDE. CodeWright
does not use the workspaces and makefiles directly, but adds the extracted filenames
to CodeWright project spaces (.PSP files) and projects (.PJT files).

7- Projects, Project Spaces, and Workspaces 129

To have CodeWright automatically use this capability, mark the Look in directory
for external makefile/workspace option in the Create a New Project Space dialog,
or in the Add New Project to Project Space dialog. CodeWright automatically
searches the directory in which the project/project space is being created for any
makefiles or workspace files whose names match the project/project space name
specified. If the files are found, CodeWright automatically inserts the name of the file
into the Create a New Project Space dialog, or the Add New Project to Project
Space dialog. The projects or files that are part of the workspace or makefile are
subsequently read into the CodeWright project or project space.

To have CodeWright manually read files or projects from selected makefiles or
workspaces into CodeWright projects or project spaces, do the following:

1. Toread a workspace, select the current project space in CodeWright's Project
Properties List. To read a makefile, select a project from the same list box.

2. Select El to bring up either the Read User Makefile or Read External
Workspace dialog.

Note: By default, CodeWright knows how to read Visual Studio 5.0 and 6.0
workspaces and project files (DSW and .DSP), and Microsoft Visual
C++, Borland, and CodeWright makefiles. These are listed in the
drop down list box under the Makefile or Workspace Type combos.

3. Select the type of parser from the Makefile/Workspace type combo drop-downs
to use for parsing the filenames from the respective file. Keep in mind the
following:

B A parser is composed of a regular expression pattern used to search for
filenames and other pertinent strings in the makefile.

B If none of the predefined workspace or makefile types match the makefile
being used, a custom parser can be defined that will "'understand" the
workspace/makefile type.

B Existing parsers can be used as references for building custom parsers. (For
detailed steps on making parsers, see the next topic on Steps for Setting up
New Makefile/Workspace Parsers.)

4. Press OK.

5. In the Project|Properties | Members dialog, press QI The project or project
space will then be populated with files or projects that correspond to files or
projects contained in the associated makefile or workspace.

130 7- Projects, Project Spaces, and Workspaces

Steps for Setting up New Makefile/Workspace Parsers
Use the following steps to set up a new makefile/workspace parser:

1. In the Project Properties List, highlight a project or a project space.

2. Click EI in the External Workspace/Makefile section.

3. Browse for the appropriate makefile or workspace file using the Browse button
next to the Workspace/Makefile Name edit box in the Read External
Workspace/Makefile dialog.

4. In the Makefile/Workspace Type edit box, give the parser a descriptive name.
5. Enter an applicable regular expression for the Regular Expression Parser.

6. If you want to synchronize the makefile or workspace with the CodeWright
project or project space (i.e. update the CodeWright project/project space with a
new file/project when a new file or project is added to the makefile or
workspace), mark Auto Sync Workspace/Makefile (described next).

7. Click OK.
8. Click Read 38|

9. Click OK. Files or projects in the makefile or workspace are added to the project
or project space.

Creating a new makefile or workspace parser requires some knowledge of regular
expressions. See Regular Expressions in the chapter Search and Replace and Navigational
Tools.

Synchronize Makefile/Workspace with Project/Project Space

CodeWright's makefile/ workspace reader provides an auto-synchronize feature that
will synchronize the projects and project spaces with associated external makefiles
and workspaces. The option is called Auto Sync, and is available in the Create a
New Project Space, Add New Project to Project Space, Read External Workspace
and Read User Makefile dialogs. When enabled, Auto Sync Makefile/Workspace will
automatically add new files and projects to CodeWright projects and project spaces
when corresponding makefiles or workspaces have been updated with those files.
The makefile or workspace can be any of the predefined types in the Makefile/
Workspace Type drop down lists.

When Auto Sync is enabled for either makefiles or workspaces, all the items in the

Project|Properties| Members dialog are disabled except for g . The ability to
manually add files or projects is not allowed because the files are taken from the
makefile or workspace. Any manually added or deleted files or projects are
eliminated from the project when the sync occurs.

Note: Version Control Management items are not affected.

7- Projects, Project Spaces, and Workspaces 131

Characteristics of the File View Tab

The Project Window’s File View tab displays projects and project spaces. By default,
the Project Window is displayed on the left-hand side of the CodeWright screen.

Projects, project spaces, and files will only show in the File View tab of the Project
Window when a project space containing those projects and files has been opened in
CodeWright. Projects are displayed under the project space, and project member-
files are then grouped under each individual project by filters that are established in
the Project| Properties | Filters dialog. Each filter is displayed as a folder containing
files of the appropriate extensions. (Refer to the topic The Filters Tab of Project
Properties, in this chapter, for more information on project filters).

To open a file for editing, double-click on the file in the File View tab.

Project Window: File View

Project [~ | x]
C:\..\MACRDS\MySpace.psp

I MySpace (3 Projects) ﬂ

-3 cob (5Files)

| E143 Source Files

=[] cob.c

-[] cobem.c

i -[_‘] Header Files

|1]f_| Resources

=

D cob.def

53, MyProil (5 Files)

E-§ MyProj2 (7 Files)
*D Source Files
-] Header Files
i Resources
(1459 Other Files

[editprev.cwb v
] o
e lgJs]e e o |

When files are under version control, file-icons depicting different states of the file
are shown in the Project Window:

| When the files are checked-in (or read-only) the icons that represent the
files are grayed out.

N
[| E When the files are checked out, CodeWright conveniently places a red
checkmark to the upper right of the file icons.

132 7- Projects, Project Spaces, and Workspaces

| = If another user has a lock on a file that is part of the project being worked

on, CodeWright will display the file with a gray checkmark in the project
window.

= Some Version Control projects are set to delete work files when they are
checked in. CodeWright displays files not found at the specified location
(usually archived) with an exclamation point.

d
= When the current edit buffer differs from the latest revision in version
control, CodeWright gives the corresponding file icon a slightly different color.

P . . .
Note: Press the Refresh button from time to time when using the
Project Window to see the most current status of the files.

The primary purpose of the Project Window is to open files and facilitate version
control operations. Right-click on a file, or on a selected group of files, in the Project
Window to bring up a menu listing various operations that can be performed on the
file(s). Additional right-click popup menus are available when right-clicking on a
project or project space.

Directories Tab of Project Properties

The Directories tab of the Project|Properties dialog is used to display and set the
project's working directory as well as other directories for various system files used
in CodeWright. Complete the following steps to access/edit the appropriate version
of the Directories tab:

1.
2.

Access the Project|Properties dialog.
In the Project Properties List:

W Select a project if the directories being viewed or modified are intended to
be specific to the selected project only.

B Select <Default Settings> if the directories being viewed or modified are
intended to be global.

Click on the Directories tab. Most of the directories and filenames listed in this
dialog can be made project-specific, but only if the System Options checkbox is
marked. Once System Options is marked, the names of most of the listed files
will be available for editing. They can then be made project-specific by giving
them unique names for the selected project.

7- Projects, Project Spaces, and Workspaces 133

Project|Properties | Directories

@ <Default Settings> Directories | Members | Tools | Erors | Filters |
@ myprojspe (2 Projects) Project

f=] 000 (4 Fle) Fiename: C:ACW32ACOB\cob.pit

@) cva [4Fies) Iniialzation (i} CACW32\cuvight i

pst

‘Working directory %

Browser Database C:ACW32\COB\cob.ptg
TagDatabase (tag) C:\Cw32\COB'\cob.tag
Text Link DB (Idb) C:ACW32\cwright Idb
Mark Database (.mrk) C:\Cw32\cwright.mrk.
Estension file (ext) C:ACW32\cwright.ini
Button file (-btn) C:ACW32\cwright btn
Macro file mac) C: ight mac

Symbol file
Edit search path

- Settings for Symbol file

JC:ACW32\COB\cob.sbl

¥ Auto-update symbol database Browse...

¥ Show definitions in Symbols tab

0K Cancel Help
[ok | |

A brief description of each of the directory and file listings in Project|
Properties | Directories follows:

The Working Directory is the directory from which commands set on the Tools
tab of the Project| Properties dialog will be run. By default, the working
directory is set to %X, a filename component macro that expands to the
directory in which the project file resides.

The Browser Database indicates the name and location of the Microsoft
Browser Database (.BSC) or the compiled tags database (.PTG). More
information about tags can be found in the chapter on Search and Replace and
Navigational Tools.

The Tag Database indicates the name and location of the file that contains tags
information. More information about tags can be found in the chapter on Search
and Replace and Navigational Tools.

The Text Link DB indicates the name and location of the file that stores Button
Link information. More information about Button Links can be found in the
chapter on Search and Replace and Navigational Tools.

The Mark Database indicates the name and location of the file that stores
bookmark information. More information about bookmarks can be found in the
chapter on Search and Replace and Navigational Tools.

The Extension File indicates the name and location of the file that stores
extension-specific information. In the Settings area, specify a User Named File,
the Configuration file, or the Project File.

134 7- Projects, Project Spaces, and Workspaces

B The Button File indicates the name and location of the file that stores toolbar
resources and default button descriptions. Refer to the online topic Dockable
Toolbars and Windows in CodeWright's Frequently Asked Questions.

B The Macro File indicates the name and location of the file that stores API and
keystroke macros. More information about API macros can be found in the
chapter on Extend CodeWright.

B The Symbol File indicates the name and location of the file that stores
information about symbols. If you create a project within a project space, the
default symbol file name is the name of the project with a .SBL extension (i.e.
<project_name>.SBL). If an existing project’s symbol file is CWRIGHT.SBL (the
non-project default name), you will be prompted to change the symbol file
name. It is advantageous to have project-specific symbol files in order to limit
the size of the files, thereby optimizing CodeWright's performance.

Selecting the Symbol File option in the Directories tab makes two options
available: Auto-Update Symbols database and Show Definitions in Symbols
Tab. These options control whether or not symbols information is automatically
computed when projects are made current. Unmarking these options can speed
up the process of opening projects. More information on Symbols can be found
in the chapter Search and Replace and Navigational Tools.

B The Edit Search Path specifies the order of directories to be searched when
opening files without specifying the directory in which the file resides. The Edit
Search Path is primarily useful when using CodeWright's status line prompt for
opening files, instead of common dialogs. To define more than one directory in
the Edit Search Path, separate the directories with semicolons. Add an asterisk
to the end of a component of the EditPath to specify an entire directory sub-tree.

Example: The EditPath CAINCLUDE\MSVC;C\CW* will cause CodeWright
to first look in CAINCLUDEWSVC and then in C:\CW and then in
all subdirectories of C:\CW.

The traversal of the sub-tree is done depth-first, meaning that a particular sub-
tree is traversed all the way down to its leaves before moving on to the next sub-
tree.

Note: The backslash prior to the asterisk is optional; the two forms are
entirely equivalent.

Storing Configuration Options with a Project

CodeWright projects can store configuration settings individually, making them a
convenient way to have multiple sets of configurations in one editor. Some settings
are stored automatically, when changes are made to the Project|Properties dialog
while a project is selected. Others will only be stored with the project if certain
options are marked in various CodeWright dialogs. The settings that may be stored
with projects are listed next:

7- Projects, Project Spaces, and Workspaces 135

B System Options: Mark System Options for selected projects in
Project|Properties | Directories.

B Auto-save options: Mark Store Auto-save Options in the project file in
Customize | Environment | Backup while the desired project is open.

B Language options: Select the Project File radio button when the Extension File
option is chosen from the list in Project | Properties| Directories, for selected
projects.

B Filename Filters: Mark Save Filename Filters in project file in File|Filters while
the desired project is open.

W Clipboard/Scrap options: Mark Store Clipboard/Scrap in project file in
Customize | Environment| Clipboard while the desired project is open.

B Compiler and Command Line Version Control settings: Make the desired
configurations in Project| Properties | Tools while the desired project is selected.

In addition to indicating that certain system options be stored with the project, the
System Options checkbox in Project| Properties | Directories allows the listed
configuration file names to be edited. Changing the names of those files on a per-
project basis allows them to be made project-specific so that the settings they store
will also be project specific. To set the System Options checkbox on the appropriate
version of the Directories tab, complete the following steps:

1. Access the Project|Properties dialog.
2. In the Project Properties List:

W Select a project if the options being viewed or modified are intended to be
specific to the selected project only, OR

B Choose <Default Settings> if the options being viewed or modified are
intended to be global.

3. Click the Directories tab.
4. Check the Systems Options checkbox, and press OK.

Reading Configuration Settings from Other
Files

In addition to storing configuration settings with projects, it may sometimes be
desirable to read specified configuration settings from designated configuration files
into a project or into the global configuration settings. It is possible to have
CodeWright read configuration settings from a configuration file using an option on
the Customize menu called Read Configuration Data The configuration
information gathered will be placed in CodeWright's main configuration file or in a
CodeWright project file, depending on the data being read and depending on
CodeWright's current state (i.e. whether a project is open or not).

136 7- Projects, Project Spaces, and Workspaces

The series of checkboxes in the Read Configuration Data dialog limit what settings
are read from the file. When marked, the Update Configuration Files checkbox
immediately updates the project and/or configuration files with the specified
information.

Tools Tab of Project Properties

The Tools tab of the Project|Properties dialog is used for setting up various tools,
such as command line compilers and version control utilities, needed to perform
various jobs on files being edited in CodeWright. These tools can be made project-
specific or global.

To access/edit the appropriate version of the Tools tab, complete the following:
1. Access the Project|Properties dialog.
2. In the Project Properties List:

B Select a project if the tools being viewed or modified are intended to be
specific to the selected project only.

B Choose <Default Settings> if the tools being viewed or modified are
intended to be global.

3. Click on the Tools tab.

Tool Categories

The items in the Tools tab change depending on the tool category. Different tool
categories can be selected from the drop-down list under the Category combo box.
Project tools include command line entries for compile utilities, make or build
utilities, executables that may be run on a regular basis, and command line version
control utilities. CodeWright doesn't come with the utilities (e.g. compilers and
version control); these must be purchased separately. CodeWright simply provides a
way to use the utilities in a more practical and efficient way.

The tools in the various categories correspond to menu items and buttons in
CodeWright that are used to run the utilities. When one of the menu items or
buttons is clicked, CodeWright runs the tool by shelling to DOS and running the
tool’'s command. Any output generated is captured for display in designated tabs of
CodeWright's Output Window. The specific tool categories are:

W Build

H Compile
B Custom
m VCS

7- Projects, Project Spaces, and Workspaces 137

The following sections describe the tool categories in Project| Properties | Tools.

Build Tools

The Build category of tools in Project| Properties | Tools consists of the following:
M Build

M Build(Debug)

M Rebuild

W Rebuild(Debug)

W Debug

W Execute

M Build Tags

Project Properties Tools - Build Category

[@ <Defaul Settings> Directories | Members | Tooki | Enors | Fiters |
myprojspe (2 Projects)
RS ccb (4 Fiies) Categon: [Buid |
@ cua (4 Files) et

Command »[9]...
${FTEE) nmake =
kil 2
- Command Options:

O -

] Maximized window

V] Redirect output

g No command shell ;]

Z

These tools (with the exception of Build Tags) should be set with any make and
execute utilities necessary for building or running the files being edited in
CodeWright. Filename component and symbolic macros can be used as placeholders
that will insert or transform filenames and filename components (directories,
filenames, etc) that need to be used with the utilities. This eliminates the need to
manually insert filenames every time a new file is opened in CodeWright for editing
or compiling. More information on filename component macros is provided in the
section on Filename Component Macros.

The Build Tags tool in the Build category does not need to be configured like the

other tools. It comes pre-set with the appropriate command needed to run the Tags
utility provided with CodeWright.

138 7- Projects, Project Spaces, and Workspaces

Compile Tools

The Compile category of tools in Project| Properties | Tools consists of the following:
H Compile
B Debug Compile

Project Properties Tools — Compile Category

Project Properties | |
3 <Default Settings> Directories | Members | Tools | Erors | Filters |
myprojspc (2 Projects)
[cob (4 Files) Category: |ty

L3 cua [4Files) i Typer [|
java
mac
)33

Compile: YN
Debug Compile: l— » Iﬂ |

Besponse File Contents:

I
-
|

~ Command Options:

Cancel Help B

The Compile tools should be set with any compile utilities necessary for compiling
the files being edited in CodeWright. Filename component and symbolic macros can
be used as placeholders that will insert or transform filenames and filename
components (directories, filenames, etc) that need to be used with the utilities. This
eliminates the need to manually insert filenames every time a new file is opened in
CodeWright for editing or compiling. More information on filename component
and symbolic macros can be found in the sections on Filename Component Macros and
Symbolic Macros.

The Compile tools are the most commonly used tools in the Project|

Properties | Tools dialog. Therefore, the instructions for setting them up are given
their own chapter, called Set up a Compiler. Many of the concepts described therein
apply to the other tool-categories as well. Refer to it for more detailed information on
setting up Compile and other project tools.

Response File Contents

The Response File Contents edit box in the Compile category of tools is used
for commands that may be too long or that may be better used in a batch file. It
only comes into play if the %Q macro is being used on one or both of the
compile command lines. See the topic Response File for more information.

7- Projects, Project Spaces, and Workspaces 139

Custom Tools

The Custom category of tools is provided for running any DOS program from
within CodeWright. Adding a custom tool in Project| Properties | Tools will add it to
a list at the bottom of CodeWright's Tools menu. Clicking on a tool's name in the
menu will then run the tool’s associated program. Two custom tools are already set
in CodeWright: Windows's Paintbrush program, and the API Database Editor, a tool
used for editing CodeWright's API Assistant databases.

Project Properties Tools — Custom Category

3 <Default Settings> Directories | Members I Tools I Errors | Filters |
myprojspc (2 Projects)
R cob (¢ Files) LCategory: |[BIRE
Le 4 Fil
@ cua (4Fies) IDgscription BX]| 1 $

Paint

Command: » [9]...

cwtedit.exe s

K} »
Command Options:

[m] -
(] Maximized window
[Redirect output

I No command shell =l
Cancel Help

[

To make a new custom tool:
1. Select Project|Properties | Tools.

2. Choose Custom from the list of categories in the list under the Categories
combo box.

Click on Add.

Give the custom tool a name.

Click OK.

Highlight the new custom tool in the listbox.

N o Uk »

In the Command: edit box, type the appropriate command for running the
intended program. (To make a tool that runs a CodeWright API, type the APl in
the Command box, and precede it with a !.)

8. Choose any necessary command options. For descriptions on the command
options, see the topic Command Options on the Tools Tab, in this chapter.

140 7- Projects, Project Spaces, and Workspaces

VCS Tools

The VCS category of tools in the Project|Properties | Tools dialog consists of a
number of tools associated with various version control operations; these operations
are available on different menus, buttons and dialogs in CodeWright. Set the tools
with the commands that will run any command-line version control utilities used to
perform version control operations (e.g. GETEXE or PUTEXE).

Project Properties Tools — VCS Category

@ <Defaul Settings> Directories | Members | Tools | Enors | Fiters |
myprojspe (2 Projects)
PR cob (4 Fies) Category: [VECHNEGG—— - |
) cua (4 Files) Description:
Extemal VCS Check In
External VCS Check In with lock
Extemal VCS Check Out
Extemal VCS Check Out with lock
External VCS Difference
External VCS Label
Extemal VCS Lock |
Command: »[9]...
ves - @ %0" "%b%e" z
K} » |
r~ Command Options:
(m] -
] Maximized window
(] Redirect output
[No command shell =l
Cancel I Help

4

You will notice that the VCS tools come pre-configured with commands for some of
the more popular version control systems. The pre-configured commands change
depending on the provider-name chosen in the Command Line Provider list box in
the Tools | Version Control | Setup dialog.

You can use filename component and symbolic macros as placeholders to insert or
transform filenames and filename components (directories, filenames, etc) used with
the version control utilities. This eliminates the need to manually insert filenames
every time a new file is opened in CodeWright for editing or compiling. More
information on filename component and symbolic macros can be found in the
sections on Filename Component Macros and Symbolic Macros.

You should only be concerned with the VCS tools if you use command line (DOS)
version control utilities, such as PVCS GETEXE or MS VSS SS.EXE, to carry out your
version control operations. You should also be aware that the VCS category of tools
is not the only method for using version control in CodeWright. Version control
operations can also be performed via SCC API integration. More information about
using either of the Version Control integration methods can be found in the chapter
on Version Control.

7- Projects, Project Spaces, and Workspaces 141

Setting up Project Tools

Setting up most of the project tools is a fairly straightforward process. In their
simplest form, the steps for configuring project tools are as follows:

1. Choose the appropriate tool-category (i.e. Build, Compile, Custom, etc).
2. Highlight or choose the tool to be configured.

3. Enter the appropriate command in the Command: edit box at the bottom of the
dialog. (To make a tool that runs a CodeWright AP], type the APl in the
Command box, and precede it with a !.)

Note: The preceding steps are based on the assumption that the utility
being launched will run successfully from any directory in the
operating system. This means that the proper environment variables
and PATH statements must be set according to the instructions
provided with the utility in question. Otherwise, the full path and
filename of any utilities being used must be inserted with the
command when performing step number 3.

For more detailed information about setting and configuring project tools, see the
chapter Set up a Compiler. Although the chapter specifically talks about setting up
tools in the Compile category, the concepts generally apply to all categories of
project tools.

You may notice that many of the project tools in the Tools tab are already
configured. These pre-set commands may not apply to the utilities actually being
used. In such cases, the tools will need to be reconfigured.

Example: Highlighting the Build tool for the first time shows the following
command in the Command: edit box:

S{FTEE} nmake CFG="%x - Win32 Release"

Nmake is Microsoft's make utility, which may not be the utility of
choice for the files being edited. If so, it will be necessary to change
the command appropriately, to apply the obligatory utilities for the
files being edited.

The ${FTEE} macro expands the full path and filename of FTEE.EXE,
a utility that pipes output to CodeWright's output window. A
detailed description of FTEE can be found in the chapter on Set up a
Compiler.

142 7- Projects, Project Spaces, and Workspaces

Command Options on the Tools Tab

Each category of tools in the Project|Properties| Tools dialog has a number of
options that affect what happens when any of the various tools are run.

Example: To control how CodeWright redirects the output generated by any
of the utilities associated with the tool being used, one would mark
or unmark the Redirect Output option in the list of command
options displayed underneath the Command edit box.

The command options should be set individually for each tool being used, regardless
of the tool’s category. Descriptions of the command options follow:

Redirect Output appends the following items to the end of the command that
runs the tool's program:

v A DOS redirection operator.
v/ The name of the Error File listed on the Errors tab.

With this option marked, any output that normally displays in a DOS
window will be redirected into the error file. CodeWright then uses an
FTEE program to display that information in the Build tab of the Output
Window. (More information about FTEE can be found in the in the chapter
on Set up a Compiler.)

No Command Shell causes the command not to be run in a command shell
(COMMAND.COM or CMD.EXE). If you select this option, redirection and
other services will not be available. If you are executing a Windows program,
there is no need for a command shell.

Save Current File causes the current file to be saved before the corresponding
tool runs.

Save All Files causes all files opened in CodeWright to be saved before the
corresponding tool runs.

Background determines if the program is executed in the foreground or the
background. If you elect to execute the program in the background, a message
will appear in CodeWright's status bar, and a beep sounds to indicate that the
program has been completed.

Use VDOS causes output from the compile or build to be sent to the VDOS
window. This is convenient for cutting and pasting from the output, and for re-
executing commands, but you may not be able to see a prompt if the program
prompts for a response.

Prompt for Arguments causes a prompt to come up before the tool executes,
allowing the user to insert extra parameters to be used by the associated
program.

7- Projects, Project Spaces, and Workspaces 143

Filename Component Macros

When compiling or building projects, it is usually necessary to have a source or
make-file for the target of the build or compile. When setting up target files for
project tools, it isn't convenient to use literal filenames, since filenames will vary as
files are opened and closed. For this reason CodeWright provides a number of
Filename Component Macros to be used on the various project-tool command lines,
which will expand the names, or portions of names of current files or projects in
CodeWright.

Each category of tools has one or more macro assistants that can be used to quickly
insert appropriate filename component macros at the cursor-position of any one of
the tools' command lines. The macro assistant provides a popup menu listing
available macros. To access the popup menu, click the black right-arrow on the gray
portion of the Command edit box.

L

A sample Macro Assistant popup menu is provided:

Macro Assistant

Volume
Path

Root
Directory
Extension
Basename

<

o\‘NNN_‘o:\“o\‘

oo a ™

Project path
Project root

3 o
&

o
o

Percent Sign
Macro expansion ${name}

Alist of these macros and the filename specs they represent are listed in the
following table. An example of how each macro looks when expanded is also
provided. The examples are based on a file named FOO.C residing in the directory
"CA\TEST" with the CodeWright project "FOOPROJ.PJT" open (also residing in
CATEST). A version control project "VCSproj" is open as well, with its project file also
in CATEST.

144 7- Projects, Project Spaces, and Workspaces

Filename Component Macros

Components

Description

% %o

Percent sign Since component macros begin with a
percent sign, you must use two percent signs to represent
a literal % in your command.

%b

Basename The complete workfile name, less the
extension. (e.g. CATEST\FOO)

%od

Directory The directory component of the workfile. This
component has no filename and no drive component. It
also has no trailing backslash. (e.g. \T'EST)

%e

Extension The extension of the workfile. This component
begins with a dot (.) unless the extension is null. (e.g. .C)

%n

Project Name The name of the version control project, if
one has been defined and selected. If a project file is in
use, this will expand to the path of the project file.
Otherwise, this macro expands to a null string. (e.g.
CATEST\VCSPROYJ)

%p

Path The path component of the workfile. This
component has no filename and no drive component. It
has a trailing backslash. (e.g. \TEST\)

9ot

Root The filename of the workfile, less the extension. (e.g.
FOO)

%V

Volume The drive component of the workfile, consisting
of a letter and a colon. (e.g. C:)

%X

Project Path The path component of the project file
currently in use (usually indicates the project directory).
(e.g. C\TEST)

%oy

Project Root The base filename of the project file currently
in use. (e.g. FOOPROQ])

%Q

Response File A temporary response file containing text
that will be used with or for the command being
configured. This macro is case sensitive. You must use an
upper case Q. See the default check-in command for an
example of its use.

7- Projects, Project Spaces, and Workspaces

145

Response File

The %Q macro and the Response File Contents edit box (on the Project| Properties |
Tools dialog) work together to automate response files and avoid command line
length limits. The Response File Contents edit box only comes into play if you have
used the %Q macro on one or both of your compile command lines.

Note: This macro is case sensitive. An uppercase Q must be used.

When the %Q macro is used in a compile command, the name of a temporary file is
substituted at that position in the command line. Before execution of the command,
the contents of the Response File Contents edit box are written to that temporary
file.

Example: cl /c @%Q

An alternate syntax for the %Q macro allows this macro to be the only thing on the
command line. If the character following the %Q is a dot, the three characters
following the dot are used as the temporary filename’s extension.

Example: %0Q.BAT

This syntax will cause the temporary file to be a batch file that can be executed alone.
Most of the filename component macros can be used in other tabs of the Project|
Properties dialog as well.

Example: %x is used to specify the project's working directory in
Project|Properties | Directories.

%D is used to specify the base name of the Error File listed in
Project|Properties | Directories.

Symbolic Macros

Symbolic macros are another form of macro that can be used with many of the
commands in the Project|Properties | Tools dialog. CodeWright's Symbolic macros
are meant to make the process of constructing command lines more flexible and
convenient. A symbolic macro that is commonly used with some of the default
commands is ${FTEE}, which expands the full path and filename of FTEE.EXE, a
utility that pipes output to CodeWright's Output Window (described in the chapter
on Set up a Compiler). A list of Symbolic Macros and their descriptions appear next:

146 7- Projects, Project Spaces, and Workspaces

Symbolic Macros

Macro Description

S (BROWSEFILE) Browser file as defined in the Directories tab of the
Project | Properties dialog.

$ (FTEE) Starbase’s command for splitting output so that it goes to
a file and to the screen. This command varies according
to platform.

$ (HOME) CodeWright's home directory.

$ (KEYWORD) The word at the cursor when a context-sensitive help
function is invoked. This is used in the Default Help file
settings. (Help menu, Configure Index... item)

$ (TAGFILE) Tag file name as defined in Project |Properties.
$ (USER) User ID defined in Tools | Version Control | Setup.
$ (VCSLABEL) Revision label as defined in Tools | Version Control |
Maintenance.
$ (WTAGS) Starbase’s command for generating a tags database. This

command varies according to platform.

Note: Braces {} may be used instead of parentheses ().

Additional symbolic names can be defined with the SetStringMacro function (help
for the SetStringMacro function and other CodeWright APIs can be found in
CodeWright's online help). Any names not defined are taken as environment
variables.

Errors tab of Project Properties

The Errors tab of the Project|Properties dialog is used for specifying the name of the
file used to capture output produced from a Build or Compile. It is also where
appropriate error parsers are specified for accessing the errors displayed in
CodeWright's Build window (a tab on the Output Window).

CodeWright uses two methods for capturing and displaying output from a compile.
These methods, called FTEE and VDOS, are described in the next chapter on Set up a
Compiler. Once the output has been captured, CodeWright uses Error Parsers to
access the files that contain the errors in that output.

7- Projects, Project Spaces, and Workspaces 147

An error parser is a function that takes error messages from a compiler, assembler, or
linker and extracts the name, line number and error message for the file in which the
error occurs. CodeWright uses that extracted information for error navigation. The
error parsers allow you to double-click on an error or warning in the Output
Window in order to bring up the source file(s) containing the error(s). The cursor will
be positioned at the line where the error or warning occurs.

To access/edit the appropriate version of the Errors tab, complete the following steps:
1. Access the Project|Properties dialog.

2. In the Project Properties List:

W Select a project if the error configurations being viewed or modified are
intended to be specific to the selected project only, OR

B Select <Default Settings> if the error configurations being viewed or
modified are intended to be global.

3. Click on the Errors tab.

Project|Properties | Errors

@ <Defaul Settings> Directories | Members | Tools | Fites |
] myproispe (2 Projects) Filename Macros - c:path\ioot ext
“43 Zv=c % =00t %e=.ent
@ cua(4Fies) %p = path %x=<project di> %b = c:\pathivoot
Evor Filename: [proj.en _>]
Enror Parser 1: [EnorinfoDefault |
Entor Parser 2: |
ErorParser 3 [=

This is where you tell CodeWright how to deal with the output
from your compiler or other utiity.

Y ou may use the % macros at the top to describe the location
of the captured output. This is the file that CodeWright saves
to when you select Redirect output'in the Tools tab.

Then select the proper error parsers for the utilities you are
using.

Cancel Help

There are three combo-boxes in Project| Properties | Errors and one edit box for the
Error File. Complete the boxes as outlined on the next page.

148 7- Projects, Project Spaces, and Workspaces

B In the edit box Error Filename: specify the file needed to capture any output
produced by a compile or build. The Error File is the name of the file that is used
to capture the output of commands that have the Redirect Output command
option checked (see the topic Command Options on the Tools Tab, in this chapter,
for more information).

v Error files are created in the current directory.

v The error file is set to PROJ.ERR by default, but can be changed to any
filename desired.

v Filename component macros can be used for the filename, but it's usually
best to leave it as it is.

The output captured by the error file will be used to display in the Build tab of
CodeWright's Output Window.

B Use the next three combo-boxes to specify any error parsers necessary for
accessing the errors in the Build window. Only one parser is necessary, but up
to three may be used.

Example: The output of a build or rebuild might contain output from
a compiler, linker and assembler. If so, three error parsers
will process the errors more efficiently than one.

Note: Don't be too concerned if an error parser for your compiler isn't
listed. When in doubt, try the Default parser
(DefaultErrorInfo).

B The drop-down lists under the error parser combos contain the names of
various error parsers available to CodeWright. More parsers can be added by
marking the Error Parsers options in Customize| Libraries.

B Choose the appropriate error parser for the compiler being used. Usually the
correct parser contains the compiler's name or the compiler's company name.

W If there are no parsers for a particular compiler, it is possible to make a custom
error parser. Press the Custom Error Parsers... button to access a dialog in
which custom error parsers can be built, as described in the next section on
Custom Error Parsers.

Custom Error Parsers

The error parsers available for CodeWright are listed in the drop-down lists under
each of the three error parser combo boxes in Project| Properties | Errors. More error
parsers can be added to the list by clicking the Error Parsers options in the list of
CodeWright Libraries in the Customize | Libraries dialog. If the appropriate error
parser is not available, it is possible to make one using the Custom Error Parsers
dialog, accessed by clicking the Custom Error Parsers button in the Errors dialog.

7- Projects, Project Spaces, and Workspaces 149

Custom Error Parser

Custom Error Parser []
Parser name:
;] << Delete
Pattern:
|A[[A Athn()+)[M(0-9]+) M) J+(errorlfatal errorlwaminglsyntax erro _}]
Group Specificati
ip Specification = I
Filename: 1 Ei

Line number: [g_ﬁ Cancel
Error message: IA_@

Help I
Z

All error parsers are made up of regular expression patterns. These patterns are
used for searching error output for the filename, line number and error message of
the errors that were produced by the compiler. To make a custom error parser, you
must create a regular expression that will find the output strings that make up the
errors. Use regular expression grouping and alternation patterns to group the
expression pattern in a way that the filename, line number, and error message of the
matching strings are each made into separate entities.

A sample regular expression for making an error parser for the MS J+ + Java
compiler follows. Instructions for making the parser are also provided.

Description Regex Pattern Groups

MicrosoftJ++ Java | 7 (.4):([0-9]+):[\t]*(.+)$ Filename:1

Line Number:2

Message:3

To make a custom error parser using the above example, do the following

1. Go to the Custom Error Parser dialog and copy the name of the above parser
into the Parser Name field.

2. Copy the regex pattern into the Pattern field.
3. Fill in the appropriate group information.

4. Select OK in the dialog. The parser will then be listed as _ErrorInfoParser
Microsoft]++Java in the Project|Properties | Errors dialog.

5. Choose _ErrorInfoParser Microsoft] + +Java from the drop-down lists under
the Error Parser combos.

6. Click OK in the Project|Properties | Errors dialog.

150 7- Projects, Project Spaces, and Workspaces

It is important to remember that syntax elements of strings that make up error
output for any compiler vary depending on the compiler being used. A unique
regular expression must usually be made for the output of each compiler.

Navigating Build and Rebuild Command
Output

The Build and Rebuild commands (on the Project menu) are treated differently
from the Compile and Debug commands when it comes to error output navigation.
In all cases the following occurs with error output in CodeWright:

W Alist of errors displays in the Build tab of the Output Window.
B The error parser is applied to the error output file.

B The parser allows you to double-click on a line , or use the up and down arrow

keys to highlight a line and hit to access an error.

//—
W After double-clicking or pressing , the appropriate piece of source code
displays.

The following differences occur with the output produced by Build and Rebuild as
opposed to the output produced by the Compile and Debug commands:

B A Build or Rebuild command just places the output in the Output Window, as
described above.

B A Compile or Debug Compile command automatically positions the cursor on
the correct line in the source file and places the error message text in
CodeWright's status line when the source is open.

This behavior can be configured to your own taste. A CodeWright API call

determines whether to show a list of errors or whether to jump directly to the first
flagged file after a compile. These options are only available when using FTEE and
the Redirect Output command option to capture and use output. Examples follow.

7- Projects, Project Spaces, and Workspaces 151

Example: To cause the error list to be displayed after each compile, add this
line to the appropriate [Extension] section, or to the [Editor]
section, of your CWRIGHTINI file:

ExecShowCompileErrors=TRUE

There is an analogous call for Build and Rebuild commands. To have
CodeWright to jump to the first error after such a command, add this
line to the [Editor] section of CWRIGHT.INI:

ExecShowBuildErrors=FALSE

Note: For more information on ExecShowCompileErrors and
ExecShowBuildErrors, see CodeWright's online help.

More information on FTEE can be found in the chapter Set up a
Compiler. Information on the command options is available in this
chapter under the topic Command Options on the Tools Tab.

Traversing the Output

You can use Search | Find Next Error to go on to the next error in the Output
Window. Some keymaps have keystroke equivalents to these commands. There is

% .

also a button available on the Build toolbar to go to the next error

Listed below are some keystrokes that belong to the CUA keymap that facilitate
movement in the Output Window.

CUA Keystrokes

Keystroke Action
Bring up output window.
] Al ol gup outp
% Return to current document.

[iﬂ Parse next error.

[Home] Go to first line.

CTRU) [End] Go to last line.

/A

Go to next tab stop.

Go to previous tab stop.
// /i _

152 7- Projects, Project Spaces, and Workspaces

Filters tab of Project Properties

The Filters tab of the Project| Properties dialog is used to specify how files should be
sorted and displayed in the File View tab of the Project Window (the File View tab is
described in the topic on Characteristics of the File View Tab, in this chapter). The
Filters tab controls how project files are "grouped" for display in the Project Window.
The grouping is accomplished using wildcard characters and filename extensions.
To access/edit the appropriate version of the Filters tab, complete the following;:

1. Select Project|Properties.

2. In the Project Properties List:

W Select a project if the filters being viewed or modified are intended to be
specific to the selected project only, OR

B Select <Default Settings> if the filters being viewed or modified are
intended to be global.

3. Click on the Filters tab.

Project| Properties | Filters

(@ <Defaul Settings> Directories | Members | Tools | Eors /|
&) myproisp (2 Projects) -
RN o (¢ i) File Fiers for Project File Toolbar.
L cua (4 Fies) | Desciption: Patem: #[X[2][<$
Source Files *.c.".cpp;”.cxx.” hxx.*.prg;*. pas
Header Files *h*hpp:*inc
Resources 1c:% bnp *ico;* cur dig
Other Fies [0
Ll | 2
Define the set of fl fiters to be displayed i the project window.
Fies are added to each fiter group from top to bottom so be sure
tolist ™ * as the last fiter,

Cancel Help »

/.

The default file filters for project files are Source Files, Header Files, Resources, and
Other Files. Use the Filters dialog to add, remove or rearrange filters in the list.

7- Projects, Project Spaces, and Workspaces 153

To add a new filter:

Give the new filter a Description and a Pattern, for example "All Files" and *.*
Click on Add. The new filter will be added to the top of the list.

Note: Be careful not to put all-encompassing filters, such as *.*, at the top of
the list. The filters sift through the files in the order that they appear
in the Project|Properties | Filters dialog. Any files filtered by the first
filter won't show up under subsequent filters. Therefore, if *.* is
listed as the first filter, none of the other filters will appear to work.

Project Setup Checklist

Now that you have created your project and you are familiar with the various tabs of
the Project|Properties dialog, it is a good idea to review the settings to make sure
they are appropriate for the project. A quick once-over will avoid surprises later.
There are several dialogs to revisit.

1.

The Project| Properties | Directories dialog.

Check the Working Directory. Be sure to define a working directory for your
project. An explicit directory or %x (the path of the project file) are usually the
best choices. Remember that the items on the Directories tab are only available
if a project or the <Default Settings> item is chosen in the Project Properties
List.

The Project| Properties | Tools tab:

Check the Project Command Lines. Make sure the major project-wide command
lines you will be using (other than the command to compile the current file)
have been defined.

Example: Your Make command might be

${FTEE} nmake -f %y.MAK. (where %y indicates the path
and root of your project file)

If you already have a makefile, just name it explicitly instead
of using %y. If you will be using VDOS instead of FTEE to
watch the progress of the command, mark Use VDOS in the
command options, and omit FTEE from the command.

Remember that the items on the Tools tab are only available if a project or the
<Default Settings> item is chosen in the Project Properties List.

154 7- Projects, Project Spaces, and Workspaces

3. The Project|Properties| Tools-Compile category:

Select Compile from the drop-down list of tool categories under the Category
combo box on the Project|Properties | Tools tab.

Compiler Command Lines: The compiler to use is first associated with the file
type extension and then associated with the project. Make sure the right
extension and project are selected. If you don't want the compiler to be
associated with a project, choose <Default Settings> from the Project
Properties List.

Using Project Spaces

Project spaces organize and house sets of projects. Once a project space is defined, its
primary uses include:

W Selecting or changing projects.

B Selecting or changing project spaces.

Refer to the next topics.

Selecting or Changing Projects

You can open or change a project in one of the following ways:

B Choose a project from the Set Current submenu of the Project menu. The Set
Current menu lists all the projects contained by the current project space. The
active project will have a checkmark next to it. You may select from this list to
reload any of the projects listed. Choosing a project in the Set Current menu is
the same as opening the project.

B Choose a project from the list at the bottom of the Project menu.

B Choose Project|Project Space | Open, choose the filter .PJT, and navigate the
directory structure for the project file. When you select the project file, a project
space is opened as well, even if the project was not previously associated with a
project space.

Selecting or Changing Project Spaces

You can select a project space by choosing Open from the Project|Project Space
submenu. Navigate your directory structure as you would when using the
File|Open dialog and select the project space (.PSP) file you wish to load.

Recently-selected project spaces will be listed at the bottom of the Project Space

submenu, numbered from one to nine. You may select from this list to reload any of
the project spaces listed.

7- Projects, Project Spaces, and Workspaces 155

Using Projects

Read on to find out about the following primary uses for a project that has been
defined in a project space:

B Loading Files for Editing.
W Creating, Selecting and Saving Workspaces.
W Searching Project Files.

B Selecting files for version control Checkin or Checkout.

Loading Files for Editing

One of the best things about projects is the convenience it provides when loading
files. Just choose Load Files from the Project menu to choose from a list of the files in
the current project.

W If you find that some files aren't listed, select the Members tab of
Project|Properties to add them (refer to the topic Adding Files to a Project).

B Select Open from the File menu to load files that are not part of the project. The
rules for extended selection list boxes apply to the Load Files dialog.

Alternately, you may wish to use the Project Window to operate on files in a project.
As with the Load Files dialog, you just select the desired files from the list and press
@ to load the files. The Project Window has the advantage of showing which
files are actually on disk (some may currently be archived), and whether they are
read/write (see the topic Characteristics of the File View Tab). In addition, you may
define filters (file specification patterns) to sort the file list into groups (see the topic
The Filters tab of Project Properties).

Creating, Selecting and Saving Workspaces

One of the most powerful aspects of projects is the workspace. At any time while
working on a project, you can select Save Workspace from the Project menu and
create a new workspace. Just give your workspace a name -- a descriptive name this
time, rather than just a file name -- and you are done.

Note: You must select a project from the Set Current submenu on the
project menu before the workspace items on the Project menu will be
available for use.

A workspace name may contain any printable characters (including spaces), but no
apostrophe ('), backslash (\), quote ("), or square brackets ([]).

156 7- Projects, Project Spaces, and Workspaces

Creating a New Workspace

Suppose that you have a number of files open, and want to create a new workspace
that doesn't include any of the files currently open:

1.

Select the project that the workspace should be saved to using the Set Current
submenu on the Project menu, and then select Load Workspace. The Select
Workspace to Load dialog displays.

Select Workspace to Load

Select Workspace to Load [x|
Project Name: C:\CWwW32\COB\cob.pit
‘Workspaces:

<none> i

oK I
Cancel |
Help |

¥ Update Current Workspace

Close Windows/Delete Documents:
= al
" Curent Workspace Components Only
" None

Z

You will see a workspace that is always available called <none>. Select that
workspace to wipe the slate clean.

Set the Close Windows/Delete Documents option to All to close all your buffers
and windows and start afresh, and click OK. Of course, if any of the buffers
contain changes that have not been saved to disk you will be given an
opportunity to do so.

Now that you have your clean slate, open the files that you want to have open in
your workspace. At any point, you can save your workspace under whatever
descriptive name you wish, by clicking Save Workspace on the Project menu.

Remember that workspaces are specific to the projects in which they are created.

Automatic Saving

Selecting Save Workspace from the Project menu is usually only necessary when
creating a new workspace. CodeWright automatically updates the active workspace
whenever you:

B Close or change projects.

B Exit CodeWright.

(Optionally) when you change workspaces.

7- Projects, Project Spaces, and Workspaces 157

Loading an Existing Workspace

Once you have created more than one workspace, you will find it easy to switch
between them. Select Project | Load Workspace. You will notice a couple of options
are available, as described below.

Update Current Workspace
When the Update Current Workspace box is checked, the workspace you are
leaving is automatically updated before the new workspace is loaded.

Close Windows/Delete Buffers

Choose one of the following options when closing a workspace, with respect to
the next workspace. Keep in mind that the saving of windows and buffers in
the workspace you are leaving is unaffected by your selection.

B Choose None to close all windows and buffers after leaving one workspace
and before the next is loaded. In this event, no buffers or windows are
carried over from one workspace to the next.

B Choose Current Workspace Components Only to close only the files that
are members of the workspace. This means that any files you opened
during the session, such as a special header file, will carry over to the next
workspace.

B Choose All to have all files carry over into the next workspace. If you do
this, we recommend that you either delete the carry-over buffers before
saving the workspace, or save the workspace under a new name.
Otherwise, workspaces will become less distinct, and therefore less useful,
entities.

Searching Project Space and Project Files

You can search the entire group of files that are members of the current project space
or project, or you can select a subset of the member projects or files on which to
perform a search. This feature is available in the Search and Replace Multiple
Sources dialog and is described in detail in the Chapter on Search and Replace and
Navigational Tools.

Selecting files for Check-in or Check-out

CodeWright's version control interface (Checkin, Checkout and related commands)
can operate independently of, or in conjunction with Projects. The Tools| Version
Control | Maintenance dialog allows you to select from files in the project or the
current directory.

158 7- Projects, Project Spaces, and Workspaces

Project Files

A project file (.PJT) is essentially a configuration file and state file all in one.
Workspaces are stored as additional "state files" within the project file. Once you
understand the format of a CodeWright configuration file, you understand a
CodeWright project file. These files look just like standard Windows .INI files with
headings enclosed in square brackets, and statements on lines following these
headings. Statements take the form of <keyword>=<uvalue>.

The primary difference between a CodeWright configuration or project file and a
Windows .INI file is that keywords may not be repeated within a section of a
Windows .INI file. In a CodeWright configuration or project file, keywords may be
repeated. This is possible because CodeWright processes these files directly, without
going though Windows. For more information on the format of configuration and
related files, refer to the topic Configuration and State in the chapter on Configuration
Files & Command Line Parameters of this manual.

Configuration and State Hierarchy

When you have no projects in use, CodeWright stores its configuration information
in its configuration file (CWRIGHTINI). Between sessions, CodeWright stores the
more transient information about the files you are working on in its state file. When
you are using a project, however, some configuration information is kept in the
project file, and almost all of the state information is stored there also. The state file
then serves largely to identify which project file you were using last.

You determine the amount of configuration information kept in the project file by
selecting either the <Default Settings> item or a project from the Project Properties
List, and then setting options in the various tabs of the Project|Properties dialog.
Various CodeWright dialogs also have options for specifying that dialog settings be
stored with the project. Additionally, the Directories tab in the Project| Properties
dialog has an option to Store System Options in project file. See the topic Storing
Configuration Settings with a Project.

Choosing to set configurations as either <Default Settings> or project specific
settings gives you the option of storing as much or as little information with projects
as you like, and allows each project to have its own, unique configurations. These
configurations change as projects change. Also, storing more information in the
project file means storing less information in the Configuration file, thereby
minimizing the time it takes to load CodeWright.

If you are using one or more workspaces within your project, document and
window state information is stored with the active workspace section of the project
file when you exit, rather than in the state section of the project. For more
information about CodeWright's main configuration files, see the chapter on
Configuration Files & Command Line Parameters.

7- Projects, Project Spaces, and Workspaces 159

160 7- Projects, Project Spaces, and Workspaces

Chapter | 8

8- Set up a Compiler

CodeWright allows you to execute your compiles, assemblies, builds, etc. from
within the editor. With proper configuration, the results of the operation will be
placed in the Build tab on the Output Window. Double-click on the errors and
warnings listed in the Output Window to bring up the source file with the cursor
positioned at the line in which the error occurs.

All compiler configurations are done through the Project|Properties dialog. You do
not have to use CodeWright projects in order to set up any compilers. However, if
you do plan on creating and using projects, it is best to set up some default
configurations (including compiler configurations) prior to creating the projects so
that CodeWright will use them as defaults when additional projects are created. See
the previous chapter on Projects, Project Spaces, and Workspaces for more information
on CodeWright projects and setting project defaults.

Categories of Command Line Tools

As we have learned, CodeWright offers access to four kinds of command line tools in
the Project|Properties | Tools dialog.

B The Compile command tools are tied to the filename extension as well as the
project and act on the current open buffer. These commands are discussed in
the next section.

B The Build and Rebuild command tools are not tied to the filename extension
and an open buffer is not required. They send their output to an error file.
After they run, CodeWright analyzes the error file to determine the location of
errors that your compiler or linker has found.

B The Custom tools are run in whatever way you specify, and error parsers are
not involved.

B The VCS tools are also run in any way specified, without involving error
parsers.

Compiler commands include Compile and Compile Debug. The command lines are
set up on the Project|Properties | Tools dialog under the Compile category of tools.
To choose the Compile category, select it from the drop-down list under the
Category combo.

8- Set up a Compiler 161

Compiler Definition

Compiler commands are defined for the selected file type. Please ensure that you
have the desired file type(s) selected from the list of file types before modifying

settings

Project Properties Tools - Compile

Project Properties [<]

(@ <Defaut Settings> Directories | Members | Tooks | Enors | Fiters |
myprojspc (2 Projects)

R cob (4 Files) Category: |[u)

LG cua (4 Files) Fie Tope: [7

java
mac
as

l 3

Compiler Name: | =l ‘_‘”Iﬁ]
Compile: | _>|1]
Debug Compile: I » N
Response File Contents:
=
I/

Command Options:

Le LD

=
a
o

Cancel H |,

The default compiler for the extension you selected is displayed in the Compiler
name box:

B If the box is empty, or the wrong compiler is displayed, select the down arrow to
the right of the box to display the list of other compiler names.

W If the compiler you seek is not listed, press the New button, type in a descriptive
string for it, and enter an appropriate command.

W If the list is cluttered with compilers that you will never use, you can delete

those you don’t want (highlight the compiler and press M).

The Compiler name field provides a way to save all of the information in this dialog
under a name that can be used for later retrieval. If you fill out this dialog and set a
compiler name, you can go back later to this same dialog, find the name in the
Compiler name field, and instantly recall the settings you made.

162 8- Set up a Compiler

Response File Contents

The Response File Contents edit box in the Compile category of tools is used for
commands that may be too long or that may be better used in a batch file. It only
comes into play if the %Q macro is being used on one or both of the compile
command lines. See the topic Response File in the chapter Projects, Project Spaces and
Workspaces for more information.

Compiler Command Line

A good starting point for the compiler fields on the Tools tab is to enter whatever
would be typed at a DOS prompt for launching a compile.

Example: If you use Microsoft’s Visual C++, a good general-purpose
Compile command might be:
S{FTEE} cl -DSTRICT -c -W3 -G3 -D _X86 =1 -DWIN32

sr%e

The ${FTEE} is a command macro which calls the CodeWright
FTEE.EXE program to capture the output of the compile. Refer to the
topic FTEE, later in this chapter.

The %r and %e are Filename Component Macros that expand to the
current file and extension. Refer to the listing of Filename Component
Macros in the previous chapter on Projects, Project Spaces, and
Workspaces.

The remainder of the above example is specific to each compiler.

Build Command Line

A good starting point for the Build field on the Tools tab is to enter whatever would
be typed at a DOS prompt for the intended purpose. Filename component macros
can be used as placeholders for specific file paths or path components, project names
or directories. (Refer to the table under the topic Filename Component Macros in the
previous chapter on Projects, Project Spaces, and Workspaces for a list of the macros.)

Example: If you use Microsoft’s Visual C++, a good general-purpose Make
command might be:

S{FTEE} nmake -f %$y.MAK

If the current project is MYPROJ,CodeWright will transform this line
to

C:\CW32\FTEE.EXE nmake -f myproj.MAK

8- Set up a Compiler 163

Other Tool Categories

The items listed in each respective category of the Project|Properties | Tools dialog
(Build, Rebuild, Compile and so on) are all command lines. The same concepts
apply when setting up these fields, as those used for setting up the Compile and
Debug command lines.

Special Considerations

If you organize your files in a unique directory structure, there are some special
considerations for the compiler to find the files needed.

As discussed in the topic Working Directory in the chapter Projects, Project Spaces, and
Workspaces, CodeWright will shell out to DOS in the directory you have specified in
Project|Properties | Directories to execute your commands. If you have designed a
directory structure where your files are not all in the same directory, problems can

arise.

Example: You might have a root application directory containing .exe's, a
subdirectory containing object code, another subdirectory
containing headers and include files, and another subdirectory
containing your source files. Making the Compiler aware of where
the necessary files for compiling are becomes tricky.

One solution would be to use a Make ‘Description’ file instead of the
standard Compile line. To compile a specified target you might use
the following command:

nmake -f MYPROJ.MAK %r.OBJ

This is basically a Compile, with the details supplied by the
Description file rather than the command line or the environment.

Modifying the Command Line
Environment

When setting up compilers in CodeWright it is usually necessary to set up custom
environments, so that the operating system knows how to run the external
command or utility. For example, it may be necessary to set the utility's directory
using the PATH environment variable. These custom environments may include (or
cause) the need for additional environment space. There are several ways in which
to expand environment space:

B From the DOS command line, enter the following as the first thing on the line,
prior to the compile or make command:

COMMAND.COM/E:4096/C

164 8- Set up a Compiler

In the Windows 95/98/2000/ME environments, create more environment space
by modifying the CONFIG.SYS file and adding:

SHELL=command.com /p /e:4096

In Windows NT 4.0, the environment can be manipulated on the System
Properties dialog of the Windows NT Control Panel.

Using batch files instead of a compile or make commands is another solution.

You might consider creating a batch file that sets up an environment common to
all of your command lines. Prefix all of your normal command lines with this
batch file, passing the program you want to run as parameters.

Example: @ECHO OFF

REM Set up variables here...
SET WIN32=1
REM Now call the real program...

61 99 02 o4 oE og o7 oq o
%1 %2 %3 %4 %5 %6 %7 %8 %9

Set up your build command line as: ${FTEE} BATCHFILE NMAKE

Another option is to set up a batch file that is unique to each command being
run. For example, you might use ${FTEE} DOBUILD in the command line,
and in the DOBUILD batch file:

Example: @ECHO OFF

REM Set up variables here...

SET WIN32=1

REM Now call the real program...
NMAKE

Displaying Output in CodeWright
(FTEE and VDOS)

Most of the utilities that CodeWright's project tools will run will generate some sort
of output. In most cases it will be necessary to use the output from within
CodeWright (e.g. to access the errors generated by a compiler). There are two
methods available for capturing and displaying output within CodeWright: FTEE
and VDOS.

8- Set up a Compiler 165

FTEE

If you want the output of your command to display in the DOS window while it is
being redirected to the error output file, you can use our FTEE command:

Example: ${FTEE} nmake -f %y.MAK

The ${FTEE} command macro calls the appropriate version of FTEE, a program that
is located in the CodeWright directory. In the above example, the output of nmake
will be split so that it goes to both the output file and the screen.

The FTEE utility (or FTEE32 for Windows NT 4.0), is supplied along with
CodeWright. Just place the ${FTEE} command macro, or the full path to FTEE.EXE,
at the beginning of the command line. Since FTEE32 executes a command by
creating a separate process for the command and capturing its output, it will only
work for executable commands.

FTEE is similar to the several TEE programs found in the public domain and on
many UNIX systems. Like a plumbing or electrical "Tee" connector, these programs
allow output to be directed to two places at once. The difference between FTEE and
these TEE program:s is that FTEE allows the command to execute normally
whenever you do not redirect output to a file. Other TEE programs typically quit
with an error message under these circumstances.

Before using FTEE, make sure that your application does not do any redirection on
its own. Nothing useful can result from both your program and FTEE trying to
redirect the same output.

Note: If you are calling a Windows executable, such as Borland's BCW, do
not try to redirect output with FTEE. The program will be treated as
a DOS application if you do.

Use VDOS

VDOS is a command shell that runs in a DOS window. Its output is automatically
captured. When Use VDOS is checked for any of the tools in Project|Properties |
Tools, VDOS will intercept output from Compile, Build, Rebuild and other project
commands, and putitin the Build tab of the Output Window. Because it runs in the
background, you can continue editing while your compile is executing.

166 8- Set up a Compiler

Project|Properties | Tools

3 <Default Settings> Directories | Members | ls; | Enors | Filters. |
myprojspe (2 Projects)
RS cob (4 Files) Category: [Build |
@) cua (4Fies) Desciiption:
Buid(Debug)
Rebuild
Rebuild(Debug)
Debug
Execute
Build Tags
Command: » [9]...
${FTEE) nmake =]
L =
- Command Options:
O -
] Maximized window
V] Redirect output
V] No command shell ;I
Cancel tep
[EeT] |,

Remove references to other redirectors from your command lines when you use
VDOS. Programs such as FTEE are not compatible with VDOS. Checking the No
Command Shell box in Project| Properties | Tools for any of the project tools will
disable the use of VDOS or FTEE for that command. For troubleshooting
information, refer to the topic VDOS Shell Window (indexed under VDOS) in the
online help.

Version Control Commands

We have learned from the previous and current chapters on projects and setting up
compilers that in order to use various utilities in CodeWright, they need to be
configured in the Project|Properties | Tools dialog. One of the tool categories in the
dialog is for version control commands. The version control tools are one of the
methods used for integrating version control in CodeWright. In all, there are two
ways to use version control systems with CodeWright, but only one method can be
used at a time. The methods are:

B To set up the tools with the appropriate command line version control utilities in
Project|Properties | Tools under the VCS category.

B To use the SCC API (Source Code Control Application Programming Interface).
No matter which version control integration method is used, it is important to
remember that CodeWright does not come with its own version control, but is

configured to use external version control programs. To understand how to use
version control in CodeWright, read the following chapter on Version Control.

8- Set up a Compiler 167

168 8- Set up a Compiler

Chapter | 9

9- Version Control

CodeWright does not come with its own version control system but it can be
configured to integrate with an existing version control system. Once version
control integration has been set up, there are a number of features in CodeWright
that make performing version control operations easier.

This chapter is composed of three main topics. Using Version Control in CodeWright
deals with the user interface for version control (i.e. menu items, windows, and
popup menus, etc). The next two topics, Using a Command Line Version Control
Provider and CodeWright SCC Integration with Version Control Systems, describe two
alternative methods for CodeWright-version control integration.

Using Version Control in CodeWright

The items discussed in this section deal specifically with CodeWright's user-interface
for version control (i.e. menu items, windows, and popup menus, etc). The
information is based on the assumption that an existing version control system has
been successfully integrated with CodeWright using one of the two methods
described in the two ensuing topics on CodeWright-version control integration.
Which integration method to use depends on the type of version control system
available.

Version Control Menu

Most version control operations in CodeWright can be carried out from the
Tools | Version Control submenu. From this menu, the following capabilities are
available:

B Perform standard put, get, get-with-lock, lock, and unlock commands.

B See the properties and histories of any files under version control using the
Properties and History items.

9- Version Control 169

B Add or remove files from the version control project by clicking on Add or
Remove.

B Access the Version Control Manager for the version control provider using the
Manager item.

Source Code Revision Control - Maintenance

While most of the items on the Version Control submenu are self-explanatory, an
item that requires deeper explanation is “Maintenance...” which accesses the Source
Code Revision Control Maintenance dialog. The Source Code Revision Control
Maintenance dialog is a multi-purpose dialog that works for either the command
line integration or the SCC Provider integration.

v This dialog is also available on the right-mouse-click popup menu in
CodeWright's Project Window (displayed by default on the left-hand side of the
CodeWright window). If the Project Window doesn’t appear in CodeWright,
click the Project menu item in the Window pull-down menu.

Source Code Revision Control Maintenance

Source Code Revision Control - Maintenance [x]
Eiles:
I Current Directory:
IC’\cwrigh(\chiZ << Change
{1 Current Project Revision Label
(] Working directory I Borly

- Check In Options

¥ Apply revision comment to all Check In

™ Keep file checked out

- Check Out Option:

& Check out with lock for editing Check Qut

€ Check out view only

Lock I Unlock I Response/Comment:

History I Properties I
Add I Remove I

w_|

4

The Maintenance dialog is useful for:

B Applying labels to revisions.

M Locking and unlocking revisions without checking them in or out.
B Reviewing the revision history and properties of an archive.
|

Performing other version control tasks.

170 9- Version Control

Some of these services, such as history and properties, are very specific to the
version control system or SCC provider you are using.

Note: Any file opened in CodeWright that you wish to perform version
control operations on must already be part of a version control
project. In the case of the SCC interface, it must be a part of the
version control project that you have opened under Tools | Version
Control | Setup. The file does not have to be part of a CodeWright
project, although there are advantages to using CodeWright projects
in conjunction with existing version control projects.

Version Control and CodeWright Projects

Refer to this section to:
B Associate Version Control projects with CodeWright projects.
B Add version control project filenames to your CodeWright project.

W Add CodeWright project files to an SCC Provider Project.

Associate Version Control Projects with CodeWright Projects

It is possible to associate version control projects with CodeWright projects when
using SCC API version control integration (see the topic CodeWright SCC Integration
with Version Control Systems). Doing so offers the following advantages:

B When a CodeWright project is opened, the associated version control project is
also automatically opened, thus making version control facilities readily
available to be used from within CodeWright. Checkin and Checkout (among
other version control commands) are immediately available, allowing for quick
preparation of files for editing.

B Closing the CodeWright project automatically closes the associated version
control project.

B Filesin the associated version control project can be “read” into the CodeWright
project, providing a more convenient way to add appropriate files to the
CodeWright project.

A version control project can be associated with a CodeWright project from one of
two different dialogs: the Tools | Version Control | Setup dialog or the
Project|Properties | Members dialog. To associate the two projects in the

Tools | Version Control | Setup dialog, do the following:

1. Create a new project space with at least one member project (or open an
existing one). For information about how to do this, see the chapter on Projects,
Project Spaces, and Workspaces.

2. Set a current CodeWright project using the Set Current menu item on the
Project menu.

9- Version Control 171

3. Go to Tools| Version Control|Setup.
4. Choose the SCC Provider radio button.

5. Assuming that the version control provider has already been initialized, click
Open Project.

6. Choose the version control project that you want to associate with the current
CodeWright project.

7. Verify that the working directory listed is that of the version control project’s,
not the CodeWright project’s (or any other) directory. If the directory is not the
one that was specified for the version control project, make it so by browsing for,
or typing in, the correct directory name.

8. (lick OK, and then OK again.

To associate the two projects in the Project|Properties| Members dialog, do the
following:

1. Assuming that a project space has been created with at least one member
project, go to the Project| Properties | Members dialog.

2. Highlight the CodeWright project that you want to associate with the version
control project.

3. Inthe VCS Project group, click the Setup button (the group will not be available
if a version control provider has not been installed and initialized).

4. Choose the version control project that you want to associate.

5. Verify that the working directory listed is that of the version control project’s,
not the CodeWright project’s (or any other) directory. If the directory is not the
one that was specified for the version control project, make it so by browsing for,
or typing in, the correct directory name.

6. Click OK and OK again.

Add Version Control Project Files to a CodeWright Project

Filenames that make up version control projects can easily be added to CodeWright
projects when using the SCC service provider version control integration.

To add version control files to a CodeWright project, use the VCS Project Read QI
feature. This feature will read or scan a version control project or configuration file
for files, in order to incorporate those files into a CodeWright project. The version
control “Read” feature can be found in the Project | Properties| Members dialog.

172 9- Version Control

Project|Properties | Members

(@ <Default Setings> Directories | Members | Took | Erors | Fiters |
tatt (1 Project) Project: Ci\ewiight\ow32\CWS TART\ewstart pit
i it (33 Files) —
= IFiIes: 2 .Il;+ ol (’x .I

Chewright\ow32\CwWSTART \cwstart ¢
C:\cwright\cw32\CwWSTAR T \wtil.c
C:hewright\ew32\CWSTART \collapse.c
C:\ewright\ew32\CWSTART \entab.c
C:\ewright\ow32\CWSTAR T \cpp.c
C:howright\ow32\CwSTART \cursor.c
C:\ewright\ew32\CWSTART \execmac.c
C:\ewnight\ow32\CWSTART \repeat.c
C:\ewright\ew32\CWSTART \tags.c
C:\ewiight\ewI2ACWS TART Vanguage.c
C:\ewight\ew32\CWSTART \compile.¢

C:Acwright\cw32\CWSTAR T \cwstarth j

S enrinbt e I WG TART hahset o =
I~ Hide files already in project 0 of 39 selected
1~ External Makefile:
C:Acwright\cw32\CWSTART \cwstart Bl
VCS Project:
cwwizard o %]
[~ Add project files to VCS Project
Cancel I Help

Address the following items that have to do with CodeWright's version control
“Read” feature:

B VCS Project: - Lists the name of the current version control project.

H Setup button a — Allows you to associate an SCC Project, or change the
association. Complete the dialog that displays.

B The Read button QI — Allows you to populate the project files listbox.

Having CodeWright automatically read the filenames of a version control project
into a CodeWright project saves the time needed to manually add files, one by one,
to a CodeWright project.

Add CodeWright Project Files to an SCC Provider Project

The Project| Properties | Members dialog also has a feature for adding filenames
from a CodeWright project file to an SCC Provider Project:

1. Make an SCC Project association using the Setup button (as described in the
preceding topic Associate Version Control Projects with CodeWright Projects).

2. Verify that a checkbox at the bottom of the tab becomes enabled, which will Add
Project Files to VCS Project.

3. Click OK to close the Project|Properties dialog; each CodeWright project file
will be added to the SCC Provider Project. A prompt will most likely come up

asking for optional comments for the files to be newly checked in to version
control.

9- Version Control 173

CodeWright projects make version control more visual in CodeWright. When files
are a part of a CodeWright project they will be displayed in CodeWright's Project
Window in the File View tab. The icons that represent files are displayed differently
depending on their status:

| When the files are checked-in (or read-only) the icons that represent the
files will be gray with horizontal lines in them.

d
[] Ei When the files are checked out CodeWright conveniently places a red
checkmark to the upper right of the file icons.

[| = If another user has a lock on a file that is part of the project being worked

on, CodeWright represents the file with a gray checkmark in the project
window.

| Bil Some Version Control projects are set to delete work files when they are
checked in. CodeWright represents files not found at the specified location
(usually archived) with an exclamation point.

N
[| Bi If the file currently being edited (as it is stored on disk) differs from the
latest revision in version control, CodeWright will display the file’s
representative icon in a pale yellow color, indicating that it is an old version.

Note: When using the Project Window to carry out version control
operations, or view version control status, it is a good idea to press

I
the Refresh button from time to time, to see the most current
status of the files.

Current Project Tree List

CodeWright projects make the Current Project tree list in the Source Code Revision
Control- Maintenance dialog available. The Current Project tree list displays the
files in the current CodeWright project and allows the dialog’s version control
operations to be performed on one or more of those files. It eliminates the confusion
of having to sort through unnecessary and unrelated files that may not be part of the
project.

174 9- Version Control

Project Tree List

Source Code Revision Control - Maintenance [x]
Files:
Current Directory:
BI& Curent Project | 2] [Cewightiowdz << Change
X fm _1 Bevision Label
= IX.fm I—
Apply
- StyleGde.fm —I
- stylepref.fm - Check In Option:
+-TOC.fm IV Apply revision comment to all Check In
- twadming.book I~ Keep file checked out
- twadming book Ick
i twadming. book. pdf ~ Check Out Option:
+-twadminglX.fm & Check out with lock for editing Check Out
L HwadninaTOC _»jlj €~ Chock out view ony
Lock | Unock | Response/Comment
History Propetties
Add | Remove

A

VCS and the User-Defined Popup Menu

CodeWright features a variety of customizable popup menus. You may already be
familiar with one of these: the menu that appears when you click the right mouse
button. The right-mouse-click popup menu is context-sensitive. That is, it changes
depending on where the pointer is when the mouse is being clicked. The popup
menu discussed in the following paragraphs comes up when the right-mouse button
is clicked while the pointer is in the current document with nothing highlighted.

Modifying the Standard Popup: A Simple Example

The right mouse popup menu can be changed using CodeWright's popup menu
editor. The popup menu editor modifies menu description files that contain
functions that form CodeWright popup menus. CodeWright's main menu
description file is called CWRIGHTMNU. The Edit this menu option available on
most standard popup menus will access the popup menu editor. More information
about the popup menu editor is available in the chapter on Custom Interface.

The main popup menu already contains two commonly used VCS commands:
checkin and checkout. The checkout command in the menu uses the Check Out w/
Lock command, as defined in the Version Control Setup dialog. Here is how to add
an item in the popup menu to perform a non-locking checkout.

1. Right click in an un-highlighted, non-HTML document to access the popup
menu, then click Edit this menu.

2. Using the existing Check out line as a frame of reference, make a new menu
item by first highlighting the Check out line and then clicking Insert| Menu
Item.

3. In the Menu Item dialog, type Check out--no lock in the Menu Item Text field.

9- Version Control 175

4. In the Execute Function field type
MenuCommand IDM_TOOLS_VCS_GET.

5. You can choose to have your new menu item inserted before the Checkout line
by checking Insert Before.

6. Click OK, and then save the changes in the popup menu editor by clicking
File|Save.

7. Click OK to close the dialog.

The right-mouse button popup menu should now contain three VCS commands.

Note: The above example works with command line or SCC VCS
integration.

Making Your Own Version Control Popup Menu

A custom popup menu can be made in CodeWright with the popup menu editor.
Use CodeWright's default menu description file to store the new menu, or make a
new one.

Example: To create a popup menu entitled “PVCS”, click File| New Menu in
the popup menu editor, then type the name PVCS in the New
Menu dialog. This will add a [PVCS] section to CodeWright's menu
file, CWRIGHTMNU.

The command to show a menu defined in CWRIGHTMNU is DigMenuPopup. Its
syntax is described in CodeWright’s online help. This command may be assigned to
a keystroke, a button, another menu item, or a mouse click.

Example: If you use the Key Bindings dialog to assign <shift-
mouse right click>to DlgMenuPopup="[Pvcs]”, you can
call up your custom command menu by holding down the
key and clicking the right mouse button.

Using Multiple Configuration/Project Files
(DOS VCS Utilities Only)

PVCS and many other version control systems use configuration/project files that
maintain workfile and archive locations and other version control configuration
information. When using DOS version control utilities, it is sometimes desirable to
use more than one version control configuration/project file at a time. It may also be
necessary to select the configuration/project file at the time a file is checked in or out.
For example, one of your work files may be used in multiple projects.

176 9- Version Control

The following examples give an idea of how multiple version control configuration/
project files can be used.

Examples: Suppose you need access to two separate checkin commands
without changing projects. You can set up each command with its
own keystroke, button, or menu item.

1.

The first thing to do is to create a section in your CWRIGHTINI
file for each checkin command. Here is a sample pair:

[VCSCheckInl]
CheckInSetCmd='put -cvcsl.cfg -M$%$Q S%Sr%e’
CheckInBuffer
[VCSCheckIn2]
CheckInSetCmd=’put -cvcs2.cfg -M%Q S%r%e’
CheckInBuffer

The CodeWright command ConfigFileRead can be used to
execute the CodeWright commands contained in these sections.

To bind the first checkin command to a button or menu item,
use this function:

ConfigFileRead='"',VCSCheckInl
For the second checkin command, use

ConfigFileRead='"',VCSCheckIn2

If you're binding to a keystroke, use double quotes instead of
the single quotes shown above.

The same method works for checkout commands. Sample
CWRIGHTINI file entries for checkout commands, with and
without locks are displayed next:

[VCSCheckOutl]
CheckOutSetCmd=0,’'get -cvcsl.cfg %r%e’
CheckOutBuffer=0

[VCSCheckOutLockl]

CheckOutSetCmd=1,"get -cvcsl.cfg -1 S%r

ae

e’

CheckOutBuffer=1

[VCSCheckOut2]

CheckOutSetCmd=0,"’'get -cvcs2.cfg %r%e’
CheckOutBuffer=0

[VCSCheckOutLock2]

CheckOutSetCmd=1,’get -cvcs2.cfg -1 %r%e’
CheckOutBuffer=1

9- Version Control 177

Version Control Integration
Configuration

CodeWright can work with version control software either through command line
integration or the SCC Application Programming Interface (API). The command line
integration works specifically with DOS command line utilities that perform version
control operations (i.e. PVCS GET.EXE and PUT.EXE, or MS SS.EXE). The SCC
Application Programming Integration is for integrating GUI version control systems
with CodeWright's GUI.

The version control capabilities that CodeWright provides will vary depending on
which integration method is used and which Version Control Provider is used. The
integration method is specified by selecting either the Command Line Provider, or
the SCC Service Provider option in CodeWright's Tools | Version Control | Setup
dialog. Descriptions of the two integration methods follow. It is only necessary to
use one integration method in order to access version control from within
CodeWright. Choose the method that applies to the type of version control system
you have (SCC for GUI, or Command Line for DOS).

Using a Command Line Version Control
Provider

CodeWright is capable of supporting any version control system that can be run
from a DOS command line. It comes with predefined commands for several version
control systems, including Merant’s PVCS, and various versions of the RCS utility,
ported from UNIX.

CodeWright integrates with command line version control utilities by shelling to
DOS to run the utility and then returning to CodeWright once the deed is done.
There are ways to cause the operation to be performed on the file that is currently
open in CodeWright. It is also possible to have the operation performed on multiple
files at once.

In order to use CodeWright's command-line Version Control Interface, the Source
Code Control System must be properly installed according to the instructions
provided by the Version Control Vendor.

v The following information is based on the assumption that command-line
version control operations can be successfully performed from any directory in
DOS according to the instructions provided by the Version Control Vendor.

To set up the version control command lines, complete the following steps:
1. Select the CodeWright Tools menu.

2. Find the Version Control submenu.

178 9- Version Control

3. Select the Setup item.
4. Make sure that the Command Line Provider radio button is selected.

5. Choose a command set from the list. You are now ready to use the commands
on the Tools| Version Control menu.

Adding a New Command Line Provider to Version Control
Setup Dialog

If you do not see your provider listed in the Command Line Provider section of the
Version Control | Setup dialog, you will need to create your own command lines. If
you know that one of the command sets listed is similar to yours, you may want to
select that one, and use its commands as a starting point for your own. To start from
scratch, select Other from the list and set up your own commands. If you don’t see
Other in the list, you can add it by adding Other to the line that looks like:

_StateHistory=XVCS,RCS,TLIB, PVCS, SourceSafe

in the [Editor] section of CodeWright's configuration file, CWRIGHTINI. The
CWRIGHTINI file can be found in CodeWright’s home directory.

Customizing Version Control Commands

Whether you use existing version control command lines in CodeWright or make
your own, you will need to pay a visit to the Project|Properties dialog if you want to
define or modify them. Complete the following steps:

1. In the Tools| Version Control|Setup dialog, choose the Configure button. The
Project | Properties | Tools dialog will be activated.

Project|Properties | Tools

[@ <Defaul Settings> Directories | Members | (Took/ | Enors | Fiters |
myprojspe (2 Projects)

JRRY cob (4 Files) | Category: [Buid |
L cua (4 Fies) Desciption

Buid(Debug)
Rebuid
Rebuid(Debug)
Debug

Execute
Build Tags

Command:

»[N]...
[${FTEE} nmake B
] o[

Command Options:

[-
] Maximized window

V] Redirect output

¥ No command shell B
Cancel teb |

2. Select the entry VCS in the Category field.

9- Version Control 179

3. Select the entry labeled External VCS Check In in the Description field.

4. View the command sequence displayed in the Command edit control. This is
the command that will be executed whenever you select Check In from any of
the various menus and toolbars that provide the Check In item. The command
includes CodeWright filename component macros.

5. To see exactly how the command will run, select the Test button 11 Note that,
when you have a dummy file such as FOO.C opened in CodeWright, the
macros resolve and the command is displayed for operation on the current
document, FOO.C.

A description of some of the default commands listed in Project|Properties | Tools
for version control are explained below.

Default Command-Line Version Control Commands
Described

The examples contained in this section use PVCS version control commands, but the
concepts apply to any command-line version control provider.

Check-in Command

The Check-in command is the command line needed to check a file into your
version control system or archive. If possible, this command should work
whether or not an archive currently exists for the workfile.

W If the check-in command is empty the following command will be used:
Put %b%e

B Theinitial check-in command defined in your CWRIGHTINI file is as
follows:

Put -t@%Q -m@%Q %b%e

The @ sign precedes the name of a message file that contains the change
description you want to use. This can be any text file up to 64K in size.

%Q is a CodeWright filename component macro that expands out the
name of a temporary response file containing the text from the Comment
String (check-in) or Additional Options (check-out) edit box. This macro is
case sensitive. You must use an upper case Q.

%D is a CodeWright filename component macro that expands out the
complete workfile name, less the extension.

180 9- Version Control

%e is a CodeWright filename component macro that expands out the
extension of the workfile. This component begins with a dot (.) unless the
extension is null.

The additional flags and %Q macro enable you to supply a description of
the changes or of the archive itself, when creating a new archive, to the
check-in command. This is done through prompting, or through the
Comment String edit box in the Check-in dialog. The text is placed in a
temporary response file.

B If you want to supply all parameters to the command, including filenames,
from within the temporary response file the %Q macro creates, use the
form:

Put @%Q

Check-out Command

The Checkout command is the command line to execute when you are checking
out a revision from a version control system or other archive. If your version
control system offers revision locking, this command should not lock the
revision. This is the command to be used when you are browsing or compiling
the file, rather than planning to change it.

B If you don’t define a command for check-out, the following command will
be used:

Get %b%e

W If you wish to be prompted for additional options, or to supply them
through the Additional Options edit box in the Check-out dialog, use a
command like the one below:

Get @%Q %b%e

B Use the Checkout with locking command to check out a revision for the
purpose of changing it. If your version control system does not offer
revision locking, you may either make this command the same as the
Checkout command or leave it blank.

If you don’t define a command for Checkout with locking, the following
command will be used:

Get -1 %b%e

W If you want check-out with locking, and wish to be prompted for additional
options (or to supply them through the Additional Options edit box in the
Check-out dialog) use a command like the one below:

Get-1 @Q %b%e

9- Version Control 181

Lock Command

The lock command is the command that your version control system uses to
lock a revision without checking it out. This is useful when you already have a
modified version of the source file that you want to check in, but you discover
that the file was not locked.

Review each of the External VCS commands on the Project | Properties| Tools dialog.
Note the commands as provided are designed to minimize response required from
the user during command execution. Revise the commands as necessary to
accommodate your company’s source code control operation standards.

Note: Predefined command lines are provided for several version control
vendors. You select between these in the Tools | Version
Control | Setup dialog.

At this point you should be completely set and ready to use DOS version control
utilities in CodeWright. However, if any of the above steps didn’t go as planned, the
following explanations and tips may be of assistance.

Additional Tips
Refer to the following tips regarding command line Version Control integration:

B The version control command runs in a DOS shell. Once the command is
executed, the shell exits and any output that would normally be displayed in
DOS is lost. In order to see the output, mark Use VDOS for each of the Version
Control commands on the Project| Properties | Tools dialog. The output will
then be displayed in the Build tab of CodeWright's Output Window.

Note: By default, the Output Window is docked on the bottom edge of
the CodeWright window. If it isn’t visible, go to CodeWright's
Window menu and check the Output option.

B One of the most commonly reported errors is “Bad Command or Filename.”
Placing your version control provider in your path should eliminate this error.

B The command line provider names displayed in the Version Control Setup
dialog are read from the following line in your CodeWright configuration file,
CWRIGHTINI. This line is typically placed in the [Editor] sectionin
CWRIGHTINI:

StateHistory=XVCS,RCS,TLIB, PVCS, SourceSafe

XVCS is the name of the list internal to CodeWright. This key is required. The
names in the list follow the XVCS keyword on the line. Add to or edit this line
as appropriate.

182 9- Version Control

CodeWright SCC Integration with Version
Control Systems

CodeWright provides a configurable interface for use with your Source Code
Control System. CodeWright does not come with a source code control system of its
own. You must have a working source code control system to successfully use the
interface.

All of CodeWright's SCC Provider support is based on the Microsoft Common Source
Code Control (SCC) Specification. This spec describes a dozen or so entry-points
that cover various version control operations (checkin, checkout, etc). For SCC
Providers to comply, they must provide an SCC Server DLL that contains these
entry-points. When this SCC Server DLL is properly installed and configured, IDEs
such as CodeWright can hook up their dialog boxes to these entry-points and get
more or less the same functionality, independent of SCC Provider.

To find out whether a particular Version Control Provider offers Common Source
Code Control (SCC) Integration, check with the vendor.

Version Control for Use with a Source Code Provider DLL

Make sure you have a properly installed Source Code Control System on your
computer. Then complete the following steps to configure your SCC Provider:

1. Select SCC Service Provider in Tools| Version Control | Setup.

Version Control Setup

Version Control Setup [x]
User Name:

€ Command Line Provider

[~ & SCC Service Provider:

Codewright PVCS Interface
Microsoft Visual SourceSafe
PVCS Version Manager

Project Name: None

Project Path: None

Project Local Path: None

Provider DLL: C:AWINNT\System32\MsScclntegration3.di
V' Auto-update project window icons
[V Show project window icons for files that differ from latest revision
[V Check out fles when edited

0K Cancel Help y

2. Select your version control system from the list in the dialog.

3. Press the Initialize Provider button in the Version Control Setup dialog.

9- Version Control 183

4. Press the Open Project button in the Version Control Setup dialog.

5. Select the version control project you wish to use (the project should already
exist in your version control system).

At this point you should be completely set and ready to perform check-ins, check-
outs, and other version control operations from within CodeWright. If any of the
above steps didn't go as planned, however, read the following paragraphs.

Location of the SCC Provider DLLs

System information for SCC Version Control integration (the name and path of
installed source code control systems accessible to your computer) is placed in the
Registration Database for 32-bit systems.

If the Registry entries have not been made, or have been made incorrectly, it will not
be possible to initialize the Version Control Provider in CodeWright's Tools | Version
Control | Setup dialog. The most common message that comes up when the
initialization fails is System or Project Initialization Failed. If this message occurs, there
are a couple of courses of action:

B Make sure all version control integration modules provided by the version
control vendor are properly installed. Many of the integration modules are not
installed with regular installations of the version control system, and some
integration modules don’t even come on the same CD. The version control
vendor should provide the necessary information for where to get version
control integration modules and how to install them.

B If the necessary version control integration components have been properly
installed, but CodeWright integration initialization still fails, it may be necessary
to check the registration information for the integration modules in the
Registration Database. Examples of some typical registry entries for version
control integration can be found in CodeWright's online help, under the topic
Version Control Configuration. Compare these entries with similar entries in your
Registration Database, and then verify that the paths to the various indicated
DLLs or other modules are correct, and that the DLLs or modules do, indeed,
exist.

Note: The source code control vendor should make the appropriate system
entries for SCC integration during the installation of the version
control system. If the Source Code Control System is installed on a
network server, it is possible that the proper entries will not have
been placed in the Registration Database of client machines.
Sometimes VCS vendors provide network setup options in
anticipation of such situations.

184 9- Version Control

Chapter 10

10- Synchronization

CodeWright's ground breaking effort to "synchronize" with alternate development
environments continues. It now synchronizes with the following environments:

Microsoft's Visual C++

Microsoft's Developer Studio

Microsoft's Visual Studio

Borland’s Delphi Development Environment
Borland’s C++

Borland’s C++ Builder Development Environment

Visual Basic

B Texas Instruments Code Composer Studio

CodeWright's Sync Technology allows the stand-alone editor to be used along with
development environments without concern for extra loading and reloading, or
losing features or edits. Editing can be done in both environments with changes
instantly updated in the alternate environment. In addition, keystrokes are available
that will access menu commands in the alternate environment.

Initial CodeWright Setup

To use synchronization for any of the development environments listed above, the
respective synchronization modules must have been chosen during the initial
CodeWright installation. If the development environments for syncing were not
chosen at that time, it will be necessary to do a custom CodeWright installation in
order to install them.

Once the necessary sync modules have been installed, there are some setup

procedures to follow for each individual development environment. The sections
that follow provide that setup information.

10- Synchronization 185

CodeWright's Synchronization Wizard, and
Loading CWSync.DLL

There are two procedures that can always be performed if problems arise during
synchronization setup. These procedures are provided below, and are valid
regardless of the development environment being used. Additional troubleshooting
steps, specific to the individual development environment, are provided in
respective sync topics in CodeWright's online help. Just search for the keyword
'synchronization' then look up the help topic for your environment.

If problems arise when setting up CodeWright synchronization for any of the
supported environments, do the following;:

Run CodeWright's Synchronization Wizard from the Wizard Choices dialog,
accessed by clicking Configuration Wizards on the Help menu. The Wizard will
copy the files needed for the respective environment, and make the registry
entries necessary for synchronization.

If an item in the list is grayed out, it means that the respective IDE was not
chosen for synchronization during the CodeWright installation. It will be
necessary to custom reinstall CodeWright in order to make those items
available.

Make sure that the Synchronization checkbox is enabled in CodeWright's
Customize | Libraries dialog.

The Synchronization checkmark in the Libraries dialog causes CodeWright to
load the selected library into memory. It also adds a line to the CWRIGHTINI
file so that the DLL will automatically load when CodeWright starts up.

The Synchronization option in the Libraries dialog places the following entry
in CodeWright's configuration file, CWRIGHTINI:

[LibPreLoad]
LibPreLoad=CWSYNC.DLL

Synchronization Setup From Within
the Development Environments

After verifying that the CodeWright synchronization module has been loaded in
Customize | Libraries, it will be necessary to configure the respective development
environments to use that synchronization. The setup procedure for each
environment is slightly different, and will be described individually in the next
sections.

186 10- Synchronization

After setting up synchronization you may want to access menu items in the sync’d
environment using keystrokes, buttons, or menu items in CodeWright. The last
section of this chapter, Accessing Menu Items via Synchronization, talks about setting up
keystrokes (and the like) in CodeWright to access menu items in the various
synchronized development environments. The process for setting them up is similar
for each environment so it is explained in its own section at the end of the chapter.

MSVC++ File Synchronization

The CodeWright synchronization setup with Microsoft Visual C+ + requires a
separate application called VCSync. VCSYNC.EXE provides a user interface to
configure the file synchronization utility and it serves as a loader for
VCSYNCIN.EXE. It runs continuously, trying to detect the presence of MSVC. Once
it does, it invokes VCSYNCIN.EXE, the program that actually does the
synchronization. VCSync provides file synchronization between CodeWright and
32-bit MSVC+ + versions 5.x or 6.x.

VCSync Setup

Perform the following steps to run and setup VCSync:
1. Run VCSync. This can be done in one of two ways.

B Run VCSYNC.EXE using the CodeWright MSVC Sync program item in the
CodeWright program group. For Windows 9x/2000/ME and NT 4.0, the
CodeWright program group is accessed by going to
Start| Programs | CodeWright. Click the program item to invoke VCSync
and run it minimized. As long as it is running, it will periodically check to
see if MSVC+ + has been invoked. When it has, it will start
VCSYNCIN.EXE, a background task. OR

B Run VCSYNC.EXE to invoke MSVC so that only one program invocation is
necessary, rather than two. Just specify the MSVC application name as a
parameter to VCSYNC.EXE using a —u option. The -u option will cause
VCSYNC.EXE to invoke VCSYNCIN.EXE and then exit. The following
steps describe how to do this:

1. In Windows, right-click on the Start button, then click Open.
2. Open the Programs folder.
3. Open the CodeWright folder.

10- Synchronization 187

4. Right-click on the CodeWright MSVC Sync icon and click on
Properties.

5. Click on the Shortcut tab and type something similar to the following
in the Target field:

Example: VCSYNC.EXE -u "C:\Program
Files\DevStudio\SharedIDE \bin\MSDEV.EXE"
(all on one line)

This command runs MSDEV.EXE, installs
VCSYNCIN.EXE, and then closes VCSYNC.EXE.

VCSync initially runs minimized, as an icon in Windows 9x/2000/ME/NT
4.0's Systray. To make configurations in the following dialog, double click
the icon to maximize the application.

VCSync Configuration

VCSync Configuration 0] %]

CodeWright command line:

Browse... I Get Command Line:

vV A ic reload of changed files

Automatically respond "Yes' to MSYC++ prompts
regarding reloading of files.

¥ Load all files in CodeWright
If checked, all files being edited in MSYC++ will be
saved then edited in Code\Wright when the
‘CodeWright' menu item is selected. If uncheck, ﬂ

only the current file will be loaded into Code\wright.

O S About
IV Automatic file synchronization &]
This causes both MSVC++ and Code\Wright to

detect changes to a file in the other's application Cancel
when activated. Be sure that the Code'wright DLL

‘cwsync.dll' has been preloaded in the CodeWright's

Libraries dialog.

2. Perform the following steps to configure VCSync:

H Enter the full path to the CodeWright executable (CW32.EXE) in the
CodeWright command line edit field (if it is not already in your PATH), or
use the Get Command Line button to automatically insert the command
line for you.

B The dialog’s options provide runtime functionality between MSVC++ and
CodeWright. They are set by default. Configure them as desired, according
to the descriptions provided in the topic Sync Configuration Options.

3. After VCSync has been loaded and configured, re-minimize it.

188 10- Synchronization

4. Now go to MSDEV. In MSDEYV, click Tools | Customize... and select Addins and
Macro Files.

5. If the CodeWright Add-in is not already listed:

a. Select Browse. Set Files of Type to Add-ins (DLL). Add
CWADDVC.DLL from the CodeWright home directory.

b. Open CWADDVC.DLL in your CodeWright home directory.
6. Check the selection box for CodeWright MSDev 5.x (6.x) Synchronization and

close the Customize dialog.

Once the above steps are performed, a CodeWright toolbar button appears in MSVC.
The button can be moved, docked, or attached to any visible toolbars.

A First View

Once you have set up VCSync appropriately, start Developer Studio (if it is not
already running). There should be a new button. Click on this button to start
CodeWright with all the same files that were loaded in Developer Studio's text editor.
A switch between the two programs will automatically reload files that were
changed in the other.

When synchronizing CodeWright and MSVC, changes to files are detected at three
different times during normal editing:

B When either MSVC++ or CodeWright is first invoked.

B When either MSVC+ + or CodeWright becomes the active application.

B When either MSVC+ + or CodeWright edits an existing file on disk.

Read the topic Bi-directional Synchronization, later in this chapter, to find out about the
MSDevSync toolbar that sync's backwards, from CodeWright to Developer Studio.

Also see Accessing Menu Items via Synchronization to access Developer Studio menu
items from CodeWright.

Delphi File Synchronization

The DPRSync utility manages file synchronization between Borland’s Delphi and
CodeWright. This utility requires Delphi 4.0 (32-bit) or newer and 32-bit CodeWright
4.0c or later. The utility consists of two files: DPRSYNC.BPL, a Delphi expert, and
CWSYNC.DLL, a CodeWright Add-On DLL.

10- Synchronization 189

W For Delphi 4.0 users, the Delphi expert file is DPRSYNC4.BPL.
W For Delphi 5.0 users, the Delphi expert file is DPRSYNC5.BPL

Note: If the correct options were selected during the CodeWright
installation, the required modules will have been installed in their
necessary locations for use by Delphi-CodeWright synchronization.
If problems arise, see the Troubleshooting topic for Delphi
Synchronization in CodeWright's online help.

DPRSync Setup

Perform the following steps to configure DPRSync:

1.
2.
3.

Start the Borland Delphi IDE.
In the Component | Install Package... dialog, select the Add button.

If it is not already there, add the DPRSYNC4.BPL (DPRSYNCS5.BPL for Delphi 5)
file found in the CodeWright directory. You will see CodeWright - Delphi Sync
Package show up in the list of loaded packages.

After completing the above steps, you will see two new menu items:
B CodeWright! (found on the right side of the menu bar).

H An About CodeWright item on the Help Menu that accesses a
Configuration dialog for the Synchronization program.

From the Delphi Help menu, choose About CodeWright.

Select the Settings button to access the Delphi Integration Configuration
dialog:

Delphi Integration Configuration

190 10- Synchronization

7. Enter the full path to the CodeWright executable (CW32.EXE) in the
CodeWright command line edit field (if it is not already in your PATH), or use
the Get Command Line button to automatically insert the command line for
you.

8. The dialog’s options provide runtime functionality between Delphi and
CodeWright. They are set by default. Configure them as desired, according to
the descriptions provided in the topic Sync Configuration Options.

A First View

Open a sample project in Delphi. Select CodeWright! from the Delphi main menu,

or use the keyboard shortcut B CodeWright should activate. The files that
were open in Delphi should automatically open in CodeWright.

Note: Synchronization happens when going from Delphi to CodeWright
by clicking on the CodeWright! menu item or by executing an

(A7) shortcut. Synchronization going from CodeWright to
Delphi happens when CodeWright loses focus and Delphi gains it.

Known Problems

B Automatic Generation of Event Handlers: One problem may occur immediately
after returning to Delphi from editing a form in CodeWright. If the first
operation you perform is to double click on a control to insert an event handler,
the handler may not get inserted into the correct position within the form’s
source file. A workaround is to place the form into a modified state first. For
example, insert a space, then delete the space.

M Forms inheritance: A problem exists when editing dependent forms in
CodeWright. Once the child has been modified in CodeWright, Delphi will be
unable to reload the parent until Delphi has been restarted.

Borland C++ File Synchronization

The BCWSync utility manages file synchronization between Borland’s C++ and
CodeWright. This utility requires 32 bit Borland C+ + 5.0 and 32-bit CodeWright 5.0c
or later.

The utility consists of four files:
B BCWSYNC.DLL, a Borland Add-On Expert
B BCWSYNC.SPE a Borland Script file

10- Synchronization 191

B CWSYNC.DLL, a CodeWright Add-On DLL
B BCWADDON.DLL,an updated Borland DLL (use only if needed)

Note: If the correct options were selected during the CodeWright
installation, the required modules will have been installed in their
necessary locations for use by Borland C+ +-CodeWright
synchronization. If problems arise, see the Troubleshooting topic for
Borland C++ Synchronization in CodeWright's online help.

BCWSync Setup
Perform the following steps to configure BCWSync:

1. Start the Borland C++ IDE. You will see two new menu items:
B CodeWright! (found on the right side of the menu bar).

B An About CodeWright item on the Help Menu that accesses a
Configuration dialog for the Synchronization program.

2. From the Borland C+ + Help menu, choose About CodeWright!.
3. Select the Settings button to access the BCWSync Configuration dialog.

BCWSync Configuration

BCWSync Configuration

CACWI\CW3I2EXE
v

192 10- Synchronization

4. Enter the full path to the CodeWright executable (CW32.EXE) in the
CodeWright command line edit field (if it is not already in your PATH), or use
the Get Command Line button to automatically insert the command line for
you.

5. The dialog’s options provide runtime functionality between Borland C++ and
CodeWright. They are set by default. Configure them as desired, according to
the descriptions provided in the topic Sync Configuration Options.

A First View

Open a sample project into Borland C++. Select CodeWright from the IDE’s main
menu. CodeWright should activate.

Press and the IDE will start a build if you made the key bindings described
in the section on Accessing Menu Items via Synchronization.

Borland C++ Builder File
Synchronization

The BCBSync utility will manage file synchronization between CodeWright and
Borland’s C+ + Builder. This utility makes it easy to switch back and forth between
the two applications, and makes sure that documents are kept up to date when you
switch. This utility requires C+ + Builder 4.0, or 5.0 and 32-bit CodeWright. The
utility consists of two files: BCBSYNC4.BPL and CWSYNC.DLL.

B For C++ Builder 5.0 users, the name of the expert file is BCBSYNC5.BPL.

Note: If the correct options were selected during the CodeWright
installation, the required modules will have been installed in their
necessary locations for use by C++ Builder-CodeWright
synchronization. If problems arise, see the Troubleshooting topic for
C+ + Builder Synchronization in CodeWright's online help.

BCBSync Setup

Complete the following steps to setup synchronization for Borland’s C++ Builder
4.0 or 5.0:

1. Start the Borland C+ + Builder IDE.you will see two additional menu items in :
B CodeWright! (found on the right side of the menu bar).

B An About CodeWright item on the Help Menu that accesses a
Configuration dialog for the Synchronization program.

2. Go to Builder's Component|Install Package... dialog.

10- Synchronization 193

3. Verify that the CodeWright - C+ + Builder x Sync Package is loaded (where 'x' is
the Builder version). If not, click Add and load BCBSYNCx.BPL from the
CodeWright directory.

4. Click OK.
5. From the Builder Help menu, choose About CodeWright.
6. Select the Settings button to access the C++ Builder Configuration dialog:

C+ + Builder Configuration

C++ Builder Configuration [X

c:Aew32\CW32.EXE

7. Enter the full path to the CodeWright executable (CW32.EXE) in the
CodeWright command line edit field (if it is not already in your PATH), or use
the Get Command Line button to automatically insert the command line for
you.

8. The dialog’s options provide runtime functionality between Borland C+ +
Builder and CodeWright. They are set by default. Configure them as desired,
according to the descriptions provided in the topic Sync Configuration Options.

A First View
Open a sample project into Builder. Select CodeWright from the Builder main
menu, or use the keyboard shortcut + 1. CodeWright should activate.

Press + P. The Builder Project Info will display, if you made the key bindings
described in the section Accessing Menu Items via Synchronization.

194 10- Synchronization

Notes:

B Synchronization happens when going from Builder to CodeWright by
clicking on the CodeWright menu item or by executing an [AT]f!]| shortcut.

B Synchronization going from CodeWright to Builder happens when
CodeWright loses focus and Builder gains it.

W This synchronization can only be reliably achieved if the Builder
BCBSYNC.DLL expert file is loaded as described above and the
CodeWright CWSYNC.DLL file was loaded during CodeWright
installation.

B When synchronizing Builder units, the .CPP file and the .H file are both
opened. Cursor positions are only set on the .CPP file. The .H file's cursor
position will remain in the position CodeWright had it last. When changes
are made to the Builder's Open Tools interface to access the .H file, an
update will be made to sync the cursor position for the unit's .H files.

Visual Basic File Synchronization

The VBSync utility manages file synchronization between CodeWright and Visual
Basic 6.0. This utility makes it easy to switch back and forth between the two
applications, and makes sure that documents are kept up to date when you switch.
This utility requires Visual Basic 6.0 and 32-bit CodeWright. The VBSYNC utility
consists of 4 files:

B VBSYNC.DLL: A Visual Basic 6.0 Add-in, Syncing VB to CW

B CWVBSYNC.DLL: ADLL called by VBSync.DLL

B CWSYNC.DLL: CodeWright Add-On DLL, Syncing from CW to VB
[|

BAS.DLL: Updated version of the CodeWright Add-on for Basic language
support. The DLL now offers language support for the following file types:
.CLS, .DSR, .DOB, .FRM, .CTL, and .PAG.

This program will NOT sync components with the following extensions:
FRX,.DOX,.RES

These extensions will be saved when the CodeWright toolbar button is clicked, but
they will not be opened up into CodeWright. These files are in a proprietary binary
format and are not good candidates for editing in CodeWright as text files.

Note: If the correct options were selected during the CodeWright
installation, the required modules will have been installed in their
necessary locations for use by Visual Basic-CodeWright
synchronization. If problems arise, see the Troubleshooting topic for
Visual Basic Synchronization in CodeWright's online help.

10- Synchronization 195

VBSync Setup

Do the following to setup Visual Basic Synchronization with CodeWright:
1. Start the Visual Basic IDE. You will see three additional menu items:

B A CodeWright - VB Sync toolbar button to SYNC between VB 6.0 and
CodeWright.

B The VBSync command menu item, CodeWright!, in the Add-Ins menu. It
does the same thing that the toolbar button does.

B The VBSync configuration menu item CodeWright Sync... in the Add-Ins
menu.

2. From the Add-Ins menu, choose CodeWright Sync... to access the VB-
CodeWright Synchronization dialog;:

VB-CodeWright Synchronization

CodeWright command line:
|c \ew32\CW32. EXE Get Command Line

v A ic reload of changed files.

Automatically respond *Yes' to Visual Basic prompts regarding
reloading of files.

IV Load all files in CodeWright.
Reset
If checked, all files being edited in Visual Basic will be saved then
edited in Codewright when the 'Codewright’ button is clicked. If
uncheck, only the curent fil will be loaded into Codewright Cancel

P A ic file sy

This causes both Visual Basic and Codewright to detect changes
to a file in the other's application when activated. Be sure that the
Codewright DLL ‘cwsync.dl has been loaded in the Codewright

Tools | Libraries... Dialog.
About

3. Enter the full path to the CodeWright executable (CW32.EXE) in the
CodeWright command line edit field (if it is not already in your PATH), or use
the Get Command Line button to automatically insert the command line for

you.

4. The dialog’s options provide runtime functionality between Visual Basic and
CodeWright. They are set by default. Configure them as desired, according to
the descriptions provided in the topic Sync Configuration Options.

196 10- Synchronization

A First View

Open a sample project into Visual Basic 6.0. Select the CodeWright toolbar button.
CodeWright should activate and any files loaded in Visual Basic will subsequently be
loaded in CodeWright.

B Synchronization happens when going from VB60 to CodeWright by clicking on
the CodeWright - VB Sync toolbar button or the CodeWright! menu item.
Synchronization going from CodeWright to VB60 happens when CodeWright
loses focus and VB60 gains it.

B This synchronization can only be achieved reliably if the VBSYNC.DLL Add-In
and the CodeWright CWSYNC.DLL Add-On files are both loaded as described
above.

Tl Code Composer Studio File
Synchronization

The TICCSync utility manages file synchronization between CodeWright and Texas
Instruments Code Composer Studio. It only works with Code Composer
Studio (TM) from Texas Instruments. The utility makes it easy to switch back
and forth between the two applications, and makes sure that documents are kept up
to date when you switch. It requires TI Code Composer Studio (v1.x) and 32-bit
CodeWright 6.5 or later.

The TICCSYNC utility consists of 3 files:

B CWSYNC.DLL: A CodeWright Add-On DLL that provides the sync from
CodeWright to TI Code Composer Studio.

B TICCSYNC.DLL - A TI Code Composer Studio plug-in that synchronizes TI
Code Composer Studio with CodeWright.

B TICCSYNC.EXE - A stand-alone program that provides automatic loading of
the synchronization utility and a user interface for its configuration.

Note: If the correct options were selected during the CodeWright
installation, the required modules will have been installed in their
necessary locations for use by TI Code Composer Studio-CodeWright
synchronization. If problems arise, see the Troubleshooting topic for TI
Code Composer Synchronization in CodeWright's online help.

10- Synchronization 197

TICCSync Setup

Do the following to setup TI Code Composer Studio synchronization with
CodeWright:

1.

Start the TI Code Composer Studio IDE. You will see two additional menu
items:

B A CodeWright! menu item on the Tools menu in Code Composer Studio.
Select it to launch CodeWright and synchronize files.

B A CodeWright Settings... menu item on the Tools menu in Code Composer
Studio. Select it to launch a sync configuration dialog box.

From the Tools menu, choose CodeWright Settings... to access the TI Code
Composer Studio Sync Configuration dialog:

Code Composer Sync Configuration

CodeWright command line:

|c.\cw32\CW32 EXE Browse... I

v A ic reload of changed files

Automatically respond *Yes' to Tl Code Composer Studio prompts regarding
reloading of files.

¥ Load all files in CodeWright

If checked, all files being edited in TI Code Composer Studio will be saved then
edited in Codewright when the ‘CodeWright' menu item is selected. |f
unchecked, only the current file will be loaded into Code\Wright.

vV A ic file synchronization

This causes both Tl Code Composer Studio and Code'wright to detect changes

to a file in the other's application when activated. Make sure thereis a
heckmark beside the "S: ization" library in C ight's Libraries dialog

box so that Code\Wright's ‘ewsyne.dil' will be loaded.

Besst I 0K I Cancel I About... I

The dialog’s options provide runtime functionality between TI Code Composer
Studio and CodeWright. They are set by default. Configure them as desired,
according to the descriptions provided in the topic Sync Configuration Options.

Activate the TICCSYNC.DLL plug-in (this step may have already been
completed from actions performed in step 2). To do this either:

B Select CodeWright! or CodeWright Settings... from the Code Composer
Tools menu. Once started the TICCSYNC plug-in will remain active until
Code Composer Studio shuts down. OR

BM Run TICCSYNC.EXE from the CodeWright home directory. The program
runs minimized in the operating system's Systray. TICCSYNC.EXE
periodically attempts to detect the presence of Code Composer Studio.
When detected, TICCSYNC.EXE activates the TICCSYNC.DLL plug-in.
TICCSYNC.EXE runs continuously in the Systray until it is turned off.

198 10- Synchronization

A First View

Once you have set TICCSync up appropriately, start Code Composer Studio. Select
CodeWright! from the Tools menu. CodeWright will be activated with all the same
files loaded that were loaded in Code Composer Studio's text editor. When you
switch tasks between the two programs, each will automatically reload any source
files that were changed in the other, with the cursor position maintained. Changes to
files are detected at three different times during normal editing:

B When either Code Composer or CodeWright is first invoked.
B When either Code Composer or CodeWright becomes the active application.
B When either Code Composer or CodeWright edits a file on disk.

Notes:

B Synchronization happens when going from Code Composer to
CodeWright by clicking on the CodeWright! menu item.

B This synchronization can only be achieved reliably if TICCSYNC.DLL
and CodeWright CWSYNC.DLL are both loaded as described above.

Read the following topic Bi-directional Synchronization to find out about the
TICCSync toolbar that sync's backwards, from CodeWright to Code Composer
Studio. Also see Accessing Menu Items via Synchronization to access Code Composer
Studio menu items from CodeWright.

Bi-directional Synchronization

The synchronization modules for Visual Studio 98 and TI Code Composer Studio
each have toolbars that make VCSync and TICCSync bi-directional. This means that,
when the appropriate button is pressed, files in CodeWright will automatically load
in Developer Studio or Code Composer Studio, with the cursor position intact. The
MSDevSync and TICCSync toolbars can be enabled in CodeWright's Customize

| Toolbars dialog. They have buttons for syncing either the current file or all files
open in CodeWright with the other development environment. The toolbars can also
set breakpoints in Visual Studio, one at a time, and it can build and compile the
appropriate files for both Visual Studio and Code Composer Studio.

Sync Configuration Options

The following configuration options are available in CodeWright Sync Configuration
dialogs. Use them according to the descriptions provided.

B The CodeWright Command line edit box is for the location (path) and
command for CW32.EXE. The full, correct directory path and name of the
CodeWright executable are needed if CW32.EXE is not set in the PATH
environment.

10- Synchronization 199

The Get Command Line button retrieves the path to the CodeWright executable
file (CW32.EXE) from the registration database and inserts it in the CodeWright
Command Line edit box.

The Browse button accesses a dialog that allows you to browse for the location
of the CodeWright executable (CW32.EXE). The file selected from this dialog
will be inserted in the CodeWright command line box.

The Automatic reload of changed files check box causes an automatic 'Yes'
response to occur for any prompts regarding file reloading in the sync'd
environment. This will override dialog boxes that warn if files have been
changed or overwritten externally.

The Load all files in CodeWright check box causes all files being edited in the
sync'd environment, along with their line and column numbers, to be sent to
CodeWright for editing. The operation occurs after an automatic File|Save All
has occurred in the sync'd environment. If this box is NOT checked, a File|Save
will only be performed on the current file in the sync'd environment. Then the
file and its line and column numbers, will be sent to CodeWright.

The Automatic file synchronization check box causes both the sync'd
environment and CodeWright to detect changes to a file in the other's
application. If checked, changes to files in one application will be detected, but
the user will NOT be prompted to save them before reloading the file in the
other application. The save and reload will be done automatically. If NOT
checked, changes to a file in one application will be detected, but the user will
be prompted to save the file before reloading it in the other application.

The Reset button resets the original settings to those in effect when you entered
the dialog.

The Cancel button cancels out of the dialog without saving the changed
settings.

The OK or Apply buttons save changes to the registration database.

The About button displays an About dialog containing version information.

Note that the behaviors of the settings in the Configuration dialogs only occur when
the CodeWright! menu item is invoked from the sync'd environment or when
switching between CodeWright and the sync'd environment using any of the
designated key combinations.

200 10- Synchronization

Accessing Menu Items via
Synchronization

Each of the synchronization utilities described in the previous sections have
functions that allow menu commands for the respective synchronized environment
to be called from within CodeWright. This allows tasks that are commonly
performed in the development environment, (e.g. builds and compiles) to be
performed from within CodeWright.

For example, the following function accesses the Open option on the File menu in
Microsoft Developer Studio:

cwsyncvc menustr 'FileOpen'

Functions such as the one above have been configured in different sections of a
CodeWright configuration file called CWSYNC.INI, located in the CodeWright home
directory. As stated, the functions are intended to provide more convenient access to
commonly used menu items in the sync’d environment.

The sections in CWSYNC.INI can be accessed by uncommenting some entries in the

[KmapAssign] section of CodeWright’'s main configuration file CWRIGHTINI (also
located in CodeWright's installation directory). The entries in CWRIGHTINI appear
as follows:

; Uncomment for Visual Studio 97 (MSDev 5.0 or MSDev 6.0) Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign MSVC50, FALSE)

; Uncomment for VBSync MS Visual Basic 6.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign VB60, FALSE)

; Uncomment for CWSync Delphi 5.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign DPR50, FALSE)

; Uncomment for CWSync Delphi 4.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign DPR40, FALSE)

; Uncomment for CWSync Borland C++ Builder 4.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign BCB40, FALSE)

; Uncomment for CWSync Borland C++ Builder 5.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign BCB50, FALSE)

; Uncomment for CWSync Borland C++ 5.0 Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign_ BCW50, FALSE)

; Uncomment for CWSync TI Code Composer Menu commands:

;ConfigFileRead(CWSYNC.INI, KmapAssign TICClx, FALSE)

10- Synchronization 201

Each of the preceding entries corresponds to a separate section in CWSYNC.INI that
lists key assignments for the appropriate synchronized environment. To enable the
appropriate keystrokes, uncomment the entry in CWRIGHTINI that matches the
development environment being used. Remove the semicolon at the beginning of
the line to uncomment an entry.

Example: To set up the keystrokes for Delphi 4.0 menu commands,
uncomment the line that looks like:

;ConfigFileRead(CWSYNC.INI, KmapAssign DPR40,
FALSE)

See the topic Assigning Menu Items to Keystrokes under the Synchronization topic in
CodeWright's online help for a list of key assignments in CWSYNC.INL

202 10- Synchronization

Chapter |11

11- Search and Replace
and Navigational Tools

This chapter covers the many tools CodeWright has for navigating code. It starts by
talking about CodeWright's unsurpassed Search and Replace features, including a
discussion of regular expressions. It goes on to describe Tags and Symbols,
CodeWright's browsing tools, and ends by talking about Bookmarks and Button
Links.

Search and Replace and Regular
Expressions

CodeWright offers a relatively large number of methods for performing search and
replace operations. Each has its own advantages under differing circumstances.
Some work on a single file and others work directly on the files on disk. Some are
meant to be quick and simple while others are designed for power. To help you
review your alternatives, the description of these methods are collected together in
this section.

The topics covered in this chapter regarding search and replace are listed below:
Search and Replace dialog

Incremental Search

Toolbar Search

Quick Search

Multi-source Search and Replace

Search Options dialog

Stop a long search

Regular Expressions

11- Search and Replace and Navigational Tools 203

Search and Replace Dialog

Many of the search features can be accessed from the Search menu. Clicking on the
Replace option on the Search menu accesses the Replace dialog. The Search dialog
has the same options as the Replace dialog, excluding the replacement options.
Refer to the following picture of the (Search and) Replace dialog;:

Replace
Find what:
J (I
Replace with:
! =3
— Direction—— ~ Options
' Forward ™ lgnore case
¢ Back I~ Regular expression
- I™ Magimal match
—Range ™ Whole word
(s
Eromphed Default Options... |
" Single
" Global Multiple sources >> |
[~ Saye settings
0K Cancel | Help |

Search and Replacement Edit Boxes

The Find What and Replace With edit boxes allow you to enter the pattern you want
to match and the replacement string. Both of these edit boxes maintain a history of
previous responses, which you may select by pressing the down arrow to the right
of the edit box.

Save Settings

The Save Settings check box is provided to save you from editing the Search
Options dialog whenever you want to make a change to the search values. Settings
are not immediately written to disk, however. Checking the box makes the current
settings the default for that search session.

204 11- Search and Replace and Navigational Tools

Multiple Sources Search Dialog

The Search and Replace Multiple Sources dialog allows you to define a search or
replace operation that is not confined to a single document. You may elect to search
through all loaded documents, through files that are members of the current project
space or project, or through any arbitrary set of files. To access the Search and
Replace Multiple Sources dialog, click Multiple Sources... on the Search menu.

Search and Replace Multiple Sources

FEind what: [~ Multiple Sources
[= L] € Project space
€ Project files
I Replace with ¢ Docu
[=] »| | © Fies/Foiders [euFies |
ectio Options—————————— | File pattem: (Q)
I” lgnore case << Add Edit...
™ Regular expression Searchlist e
I™ Magimal match
~Range ™ Whole word
C
Brompted Default Options.. I
€ Single
& Global Current Document << I
[Saye settings ™ Subd Invert
[V Setas CWD [Y)
CACW32 Browse... ¥ Edit modified file
™ Usethread
oF | Cancel | Help | [7 List to Output window M

Search and Replacement Edit Boxes

The Find What and Replace With string edit boxes in the Search and Replace
Multiple Sources dialog allow you to enter the pattern you want to match and the
replacement string, just as you would in a single document search. Replace is
disabled until the Replace With option is checked. Both of these edit boxes maintain
a history of previous responses, which you may select by pressing the down arrow
to the right of the edit box.

If you elect only to search a series of files, rather than selecting the Replace action,
you are actually performing a File Grep. This can also be done from the File Grep
dialog (Search| File Grep). A list of matches in the specified files will appear in the
Search tab of the Output Window:

B The Search tab also displays the line numbers and the line containing the
matching text.

B To move to any of the matches listed in the Search tab, double-click on it with
the mouse, or select the matching line from the list and press @

Several features exclusive to the Search and Replace Multiple Sources dialog make
it one of the more convenient navigating tools in CodeWright. Descriptions of some
of these features are provided below.

11- Search and Replace and Navigational Tools 205

Current Directory

The directory defined for the search is displayed at the lower left of the Search and
Replace Multiple Sources dialog, under the checkbox labeled Set as CWD. Items to
consider with regard to the current directory are:

B The Browse Button: If you are not in the desired directory, press the Browse
button to select a new working directory for CodeWright.

B Set As CWD: After changing the directory, you may want that directory to
remain in effect after you finish searching and return to editing. If this is so,
check the Set As CWD box. If you just want the directory in effect for the
current search, ensure that this box is not checked.

Multiple Source Options

CodeWright has the following options in the Multiple Sources group in the Search
and Replace Multiple Sources dialog:

B Project Space: Use this option to search the members of the current project
space. A list box displaying all projects in the project space will appear when the
option is selected. All projects are initially selected for searching. Choose only
those that you wish to search.

B Project: Use this option to search through members of the current project.

B Documents only: Use this option to search the list of currently loaded
documents only.

W Files and folders: Use this option to search an arbitrary group of files in any
series of folders. Enter a name for your search set in the edit box associated with
this radio button, or select from the list of previously created search sets.

File Pattern

You may use the File Pattern edit box in the Search and Replace Multiple Sources
dialog for quick, ad hoc searches that you are not apt to repeat. It lets you specify a
file type or series of file types to search without associating it with a search set name.
While not as powerful as the Search list, it is simpler to use. Enter one or more
wildcard patterns into this box. Separate multiple patterns with a semicolon.

The File Pattern supplements the selected items on the Search list, if any. You may
add it to the Search list by pressing the Add button.

Note: The File Pattern, when specified, does not override the list of files in
the Search list. If both are defined, the files in both the File Pattern
and any selected members of the Search list are searched.

206 11- Search and Replace and Navigational Tools

Search List

The initial contents of the Search list box in the Search and Replace Multiple
Sources dialog depend on which mode of search is selected.

B If Project space is selected, the box lists all files in all selected projects.
W If Project Files is selected, the box lists the files in the current project.

B If Documents is selected, the box lists the documents currently open in
CodeWright.

W If Files /Folders is selected, the box reflects the search set shown in the Files/
Folders combo box.

The Search List is usually a series of wildcard patterns. To edit the list, press the Edit
button to bring up the Edit Files/Folders dialog, described under the topic Edit
Search List.

When you first select your desired mode, you will see that the entire contents of the
listbox are selected. If you wish to further limit the search or replace to a subset of
the list, deselect the files you want to exclude.

Selecting Files from the Search List

Click on a filename or wildcard pattern in the Search and Replace Multiple
Sources dialog’s Search list to select it for the search operation. Use the
following selection options:

W Select or deselect additional files or patterns by holding down the
button and clicking on those members of the list.

W If the list of documents you don't want to search is shorter than the list of
documents you do want to search, select the documents you want to leave
out and then press the Invert button. All of the documents that were
previously selected become unselected, while the unselected documents
become selected.

Search Subdirectories

Check the Subdirectories box in the Search and Replace Multiple Sources dialog if
you want the search to encompass files in subdirectories of the path searched.

Edit Modified Files

If you are performing a replace operation, you may wish to review the changes
made, or at least to know which files were changed. Select the Edit Modified Files
option in the Search and Replace Multiple Sources dialog to do this. Modified files
are loaded in CodeWright for viewing and possible editing. This is very convenient
if you plan to check the modified files into version control.

11- Search and Replace and Navigational Tools 207

Threaded

The Search and Replace Multiple Sources dialog's Use Thread option allows the
search or replace operation to proceed as a separate process, so that other tasks can
be performed as the search continues. If the operation is a search only (File Grep),
the Output Window updates as matches are found. Otherwise, matches are listed
after the operation completes.

Send Listing to Output Window

The Search and Replace Multiple Sources dialog’s List to Output Window option
controls whether and what information is sent to CodeWright's tabbed Output
Window. Its primary purpose is to let you see the results of Search only (File Grep)
operations, but it can also be useful as a summary of replacement operations. Press
the Output button to display the following options in the Search Output Options
dialog:

B List Filenames Only Normally, search output contains the file and line
numbers of matches, and the line of text in which the match was found. For a
list only of filenames in which matches were found, check this box.

B Append to Listing To add to the information in the Output Window rather
than replace what was there from previous searches, check this box.

M List to File You may specify that the information about the matches found be
stored in a file; you may also specify the name of that file. The default name is
CWFGREP.___, which is created in the current directory. You may specify
another name if the default causes a conflict, or if you wish to save the output
from the previous or current operation, rather than allowing it to be
overwritten. You may also redisplay the results of a previous search by
specifying the name of the file in which the results were saved.

Edit Search List

The Edit button in the Search and Replace Multiple Sources dialog brings up the
Edit File/Folders dialog used for editing the Search List more specifically. The
dialog’s options are described next.

Search Pattern
For the Edit File/Folders dialog’s Search pattern edit box:
1. Enter the file specification you wish to add to the current Search Set.

2. Press Add to add the file pattern to the Patterns list. Standard wildcard
characters ? and * are allowed. Your pattern may be anything from * . c to
k:\src\cw????.?2?v. You can enter several patterns at once by separating
them with semicolons. When you do so, each pattern is given a separate line in
the list of patterns for the Search Set.

208 11- Search and Replace and Navigational Tools

Patterns List

The Edit Files/Folders dialog’s File Pattern listbox contains the patterns already
defined for this Search Set. The Search Set is composed of the union of these
patterns, rather than the intersection. Files are only searched once, even if they
match several of the Search Set’s patterns. Therefore, if the Search Set contains the
pattern * . *, other patterns are superfluous unless they contain a path element.
Source patterns that do not contain a path element will apply to the current
directory.

Drive and Directory Lists

The drive listbox and the Directories tree list in the Edit Files/Folders dialog allow
you to select the path you want to apply to the search set. This is only meaningful if
the Include Directory checkbox is checked when the Search Pattern is added to the
Patterns list.

Include Directory

When Include Directory is checked in the Edit Files/Folders dialog, the drive and
directory selected in the adjacent list boxes are automatically added to the pattern
specified in the Search Pattern edit box as you press the Add button.

List Editing Buttons
The List Edit buttons in the Edit Files/Folders dialog work as follows:
B Use Add, or Delete to add or remove members of the Search Patterns list.

B Use Invert to reverse the current selection; those items that were selected
become deselected and vice versa.

B Use Clear to deselect all the patterns on the list so that you can start selecting
from scratch.

Default Button

All of the search dialogs (with the exception of File Grep) have a Default Options...
button. The Default Options... button accesses the Default Search and Replace
Settings dialog, described next.

Default Options

Use the following dialog to set default options for search and replace activities.

11- Search and Replace and Navigational Tools 209

Default Search and Replace Settings

Default Search and Replace Settings [X

— Direction — Options
i ™ lgnore case
e Bacl_(ia;;rd ™ Regular expression
= awimal match
— Replacement [~ whole word
@ Prompted —Matches
[T Modeless dialog ¥ Select string
" Single V' Retain Selection Once |
P]
- global Start
feserye case ¢ Document beginning/end
_ % Current position
gt I~ ‘Wrap at beginning/end
" Curent Word B Deginning/en Cancel |
@) ™ Exclude start position
* Selection/Word ™ Restrict to selection
" History I~ | Multidine only Help I

To access the Default Search and Replace Settings dialog, do one of the following;:

Click Options on the Search menu.

Click Default Options in the Search dialog.

Click Default Options in the Replace dialog.

Click Default Options in the Search and Replace Multiple Sources dialog.

The items in the Default Search and Replace Settings dialog are listed next.

Search Direction

The search Direction section of the Default Search and Replace Settings dialog
allows you to search forward from the cursor position or backward.

Replacement

The Replacement group of options in the Default Search and Replace Settings
dialog is specific to the replacement operation. They are listed next.

210 11- Search and Replace and Navigational Tools

Prompted replacement. When the Prompted radio button is selected, you will
be prompted each time text matching the search pattern is found. You may elect
at that time to make or skip the replacement, or to cancel the search. The search
continues until no more matches are found in the defined scope of the search,
or until you select cancel. Enabling this option consequently makes available the
Modeless dialog option.

v Modeless dialog. This option works with single documents only. It works
in conjunction with a prompted replacement. When CodeWright prompts
with options to Replace Current, Find Next, Replace Global, etc, the
Modeless option eliminates the necessity of canceling the prompt in order
to edit the document. With the Modeless option turned on, the prompt can
be left running at any point that direct editing of the current file becomes
necessary. When one is ready to proceed with the search/replace, the
prompt can be re-accessed without restarting the search.

Single replacement: When you select the Single radio button, the first
occurrence of matching text is replaced without prompting.

Global replacement: Select the Global radio button to cause all occurrences of
matching text within the scope of the search to be replaced without further
prompting.

Preserve Case (applies to Search/Replace): The Preserve Case option sets the
case of the replacement string to match the case of the search string. The text
must follow any of the following patterns:

v All upper case.
v Alllowercase.
v Capitalized (First character upper case with the rest in lower case).

(If the matching text is found to be in mixed case, the matching text will be
replaced with the same case as the string that was entered in the Search/Replace
dialog.)

Prompt

The options in the Prompt section of the Default Search and Replace Settings dialog
control what word appears in the Find What field by default. Definitions of the
options are as follows:

Current word: Uses the word at the cursor as the default search string.

Selection/Word: Uses the contents of the selection as the default search string.
If there is no selection, uses the word at the cursor.

History: Uses the most recent response in the history list.

11- Search and Replace and Navigational Tools 211

Search Options

The Options group of check boxes is also available in the Search, the Replace, the
Default Search and Replace Settings, the Search and Replace Multiple Sources,
and the File Grep dialogs. The options allow you to turn various search attributes on
or off. They include:

Ignore case: When checked, uppercase characters or lower case characters will
be matched. When it is not checked, the case of the characters in the specified
search string is significant.

Regular expression: When checked, the search pattern is viewed as a regular
expression. Some of the characters in regular expressions are given a different
meaning than they would have in an ordinary string search. This allows for
more powerful searches.

Maximal match: A check in this check box indicates that regular expressions
should match the largest possible unit. If this box is not checked, regular
expressions will match the smallest possible unit, which in some cases may be 0
characters. For example, if the regular expression specifies matching 2 or more
A'sin a row (AA+), and the search encounters 5 in a row (AAAAA), what does it
match? If maximal match is on, it matches five. If it is not, the search matches
the first two.

Whole word: When the Whole Word box is checked, the pattern you are
searching will not match strings that are only partial words. That is, the pattern
must be preceded and followed by one of the following:

v Beginning of file or end of file
v/ Beginning of line or end of line

v Spaces or tabs

Matches

The following settings are under the heading Matches in the Default Search and
Replace Settings dialog:

Select string: The Select String check box specifies whether the text that
matches the search will be highlighted in a selection at the end of the search.
The selection may be momentary, or may be retained so that you can operate on
it (copy, cut, or replace).

Retain selection: When the Select String box is checked, the Retain Selection
box indicates whether the selection that encompasses matching text is
momentary or retained so that you may operate on it.

212 11- Search and Replace and Navigational Tools

Start

The following options are listed under the heading Start in the Default Search and
Replace Settings dialog:

B Document Beginning/end: When enabled, the Document Beginning/end
option causes the search to go through the whole document regardless of cursor
position.

B Current Position: When enabled, the Current Position option causes the search
to go from the cursor position to the end of the document. Choosing this option
enables the Wrap at beginning/end and Exclude Start Position options:

v Wrap at beginning/end: A check in the Wrap at beginning/end check box
indicates that you want to search the entire document. When the
document extremity is reached (the beginning or end of the document,
depending upon the direction of search), the search is continued from the
other document extreme. The search concludes at the point at which the
search began.

v Exclude Start Position: The Exclude Start Position option tells CodeWright
that if there is text matching your search at the current cursor position to
ignore it. Presumably, you are not searching for this text, and perhaps have
just finished editing it.

B Restrict to selection: The Restrict to Selection check box allows you to indicate
whether you want the search to be restricted to the selection or marked block of
text. If the box is not checked, the scope of the search is global. This option will
be disabled if no selection is defined. Enabling this option consequently enables
the Multi-line Only option.

v/ Multi-Line Only: This option is a modifier for the Restrict to Selection
option. When enabled, the search will only be restricted to the selection if
the selection spans more than one line. This eliminates incidental
selections of a single word, and most selections resulting from a search.

Example: Multi-Source Search
An example of one of the ways CodeWright's Multiple Source Search dialog can be
used to save valuable time follows.

Suppose you want to look for the string version in two directories, CADOCS*. TXT
and D:\PROJECT*.C. Here’s what to do:

1. Select Search | Multiple Sources to get to the Search and Replace Multiple
Sources dialog.

2. Select the Files/Folders radio button in the upper-right corner of the dialog.

3. In the accompanying combo box, select All Files.

11- Search and Replace and Navigational Tools 213

10.

Click on the Edit button to bring up the Edit Files/Folders dialog. (If you just
want to do a search through files in the current directory, you can skip this step,
and just type in the file spec, with wildcards, into the File pattern box.)

Use the Directories, Drives, and Files lists to select the C: drive and the \DOCS
directory.

Alist of files in that directory will appear in the Files list. You can restrict the
number of items in this list by selecting the appropriate entry in the Filters list.

Highlight the files you want to search, then hit the Add button in the lower
portion of the dialog.

Repeat steps 5-7 for the D:\PROJECT directory. The search list should now
show the files you want to search.

Click on the Invert button to highlight the list, or select just the specific files you
wish to search.

Click on the OK button. The Output Window will appear, and you will see
results of the search as the search pattern is found in the target files.

Note: The List to Output Window box has no effect on search-only
operations. The results will appear regardless. You would check this
box if you were doing a search/replace and wanted to see a report of
what replacements were made.

This may seem like a lot of mouse clicks. But often you will find that the last settings
you used are the ones you want, so most of these steps can often be skipped.

4

Often it becomes necessary to stop a long search. To do this, press -Break.

Fast Find on Standard Right-Click Popup

The standard right-click popup menu has a Find item for performing quick multi-
source searches. The menu item only appears when a right click is performed while
the document cursor is positioned at the beginning, middle, or end of a word. The
search will be performed on that word. To use Fast Find, do the following:

1.
2.
3.

Right-click in the current document on a word to be searched for.

Select the Find <word> in item in the popup menu. A submenu will appear.
From the submenu, select one of the following sets of documents.

B Files/Folders (searches all files in the current directory)

B Documents (searches all documents that are open in CodeWright)

B Project Files (searches all files in the current project, if one is open)

B Project Space (searches all files in the current project space, if one is open)

Use the Search tab on CodeWright's Output Window to see the search results.

214 11- Search and Replace and Navigational Tools

Incremental Searching

Incremental searches can save time and typing. This is because the string is matched
as the word is typed, instead of being matched after the word is typed. Many times
the search function finds the string you are looking for before it is all typed in.
CodeWright's incremental search function is called ISearch. ISearch may already be
bound to a key in your keymap, but if not you can easily add such a binding with the
Keyboard dialog on the Customize menu.

Begin an incremental search by invoking ISearch. This can be done from Tools| API
Command, or by pressing [EHFg J)in the CUA keymap. ISearch prompts you for
the search string, and you begin typing. Keep in mind that ISearch always searches
in a case-sensitive fashion. The case of the characters you type must agree with the

case of the characters in the document, in order to match.

When you type the first character, ISearch moves to the next occurrence of that
character and highlights it. ISearch performs a search after each character you type,
looking for the sequence of characters you have typed thus far. If it doesn't find a
match, it issues a beep, and the character you just typed is removed from the search
string.

If you find you have mistyped, just backspace over the incorrect character or
characters. As you remove characters from the search string, the cursor backs up to
the position that first matched the characters that remain. Delete the entire search
string and you will find yourself at the position where the search began.

You cancel ISearch by pressing fES€]]. At that time, the string you typed into ISearch
is added to the search response history to make searching for that string again more
convenient. You may also use the Quick Search feature to search for the word that
is now at the cursor position.

Quick Search

The Quick Search facility is a function you can use to do an immediate search for the
word at the cursor. In the default configuration, you will find this function assigned

to the ‘»? button on the Standard Toolbar, and assigned to the m key
combination in the CUA keymap. There is also a Quick Search option in the right-
click popup menu that starts a quick search. Other assignments may be made, or
readily changed.

11- Search and Replace and Navigational Tools 215

Toolbar Search

"Toolbar Search" refers to the search capability built into the Standard Toolbar in the

v
form of a drop-down listbox control I :I . The toolbar search
provides the most immediate, convenient way to perform simple searches.

To use the Toolbar Search, click in the Toolbar Search edit box (in the Standard
toolbar) and type in the string you wish to search for. This may be a regular
expression pattern, if you have regular expressions turned on in the Default Search
and Replace Settings dialog. The Toolbar Search box honors all of the settings in the

Default Search and Replace Settings dialog. As soon as you press @, the search
commences.

If CodeWright finds a match, the Toolbar Search will retain the focus. This gives you
the opportunity to search again just by pressing again. Pressing anything else

will cause the Toolbar Search to lose the focus, and you are then able to edit at the
position where the match was found.

The Toolbar Search maintains its own response history, to allow you to recall strings
or patterns you previously typed. These are available when you select the down
arrow to the right of the edit box, causing the history list to drop down.

Regular Expressions

Regular Expressions are powerful notations for matching string patterns.
CodeWright makes UNIX-Style Regular Expressions available for its search feature.
CodeWright also uses Regular Expressions for interactively customizing
CodeWright’s Symbols, embedded language configurations, user defined keywords
parser, makefile reader, and Visual Studio workspace reader.

Note: For more information on Symbols, review the topic on Outline
Symbols later in this chapter. For more information on the makefile
and workspace readers, read the chapter on Projects, Project Spaces,
and Workspaces.

Investing a relatively small amount of time to gain some knowledge of Regular
Expressions will pay back in the long run with the amount time saved when
searching for string patterns.

A Regular Expression can be as simple as a single, literal character, like "a". You could
search for the character "a" from CodeWright's Search dialog, with Regular
Expression marked, and you would be searching using Regular Expressions. Such
simple expressions are usually a sub-expression of more complex regular
expressions. When reading the descriptions that follow, remember that an
"expression" may mean a single character, a group of characters, or a class of
characters.

216 11- Search and Replace and Navigational Tools

Special Characters

Regular Expressions give special meaning to certain characters. Some are operators
and some show grouping. There is also a method of representing non-printing
characters, such as a tab, within Regular Expressions. All other characters just
represent themselves, as they would in an ordinary string search.

The characters to which Regular Expressions give special meaning are called
metacharacters. These characters and their meaning are shown below:

Character

Meaning

Matches any single character, except a
new line

Matches zero or more occurrences of
the expression that precedes it.

Matches one or more occurrences of
the preceding expression.

Matches zero or one occurrence of the
preceding expression.

[and]

Defines the beginning and end of a
character class.

(and)

Defines the beginning and end of a
group of expressions. Groups
expressions into larger units and
dictates precedence. Each group is
also a Reference Group, which may
be pasted into a replacement string.

Alternation. Allows matching the
expression on the left or on the right
of the operator.

Matches the end of a line.

Two meanings: Matches the
beginning of a line. Complement
operator when the first character in a
character class.

11- Search and Replace and Navigational Tools

217

Character Meaning

\ Used for escaping metacharacters and
non-printing characters.

\c The position in the pattern at which
the cursor is placed at the end of a
successful search.

Escape Sequences

There are times that you want to use a metacharacter as itself -- without the special
meaning that Regular Expressions give it. For example, you may wish to match a
dollar sign, rather than look for the end of a line. To match a dollar sign you must
escape or quote it. This is done by preceding the character with a backslash. This is
true of all the metacharacters. To match a dollar sign, for example, you use \$ in your
Regular Expression, rather than just $.

Example: cat$ matches the word cat only when immediately followed by a
newline character; cat\$ matches the word cat only when
immediately followed by the character $.

Below is a list of other escape sequences supported by CodeWright's Regular
Expressions:

Escape Meaning

\n New line (<CR><LF> or <LF>,
depending on how it is defined for
the document)

\t Tab

\b C-H (backspace)

\r Carriage return

\f form feed

\nnn Octal value between 0 and 0377.

\xnn Hexadecimal digit between 0x00 and
OxFF

\m The literal character m.

218 11- Search and Replace and Navigational Tools

Matching a Character

The basic unit of a regular expression is matching a single character. You can match a
single character in one of three ways:

W Literally, by using the character itself or the appropriate escape sequence. (e.g.
‘cat’)

H Ambiguously, by using the dot (.) metacharacter, if matching a character
literally is too limiting. (e.g. "..t")

BW With a Character Class. If a literal character is too narrow a match and the dot is
too broad a match, a character class can be used for anything in between. (e.g.
[A-Za-z])

Character Classes

A character class is a series of characters enclosed in square brackets. It specifies a set
of characters, any one of which may match. For example, the character class:

[AEIOUYaeiouy]
matches any vowel, whether upper or lowercase.

Ranges of characters may also be specified within a character class. This is done by
placing a dash between the character that begins the range and the character that
ends the range. The following character class [0-9]will match any character
between 0 and 9.

How do you match a DASH (-), then? If it is not in the character range you specified,
just place it at the beginning or end of the character class where it is not between two
characters of the class. If you precede the dash with a backslash (\) you can put it
anywhere within the class.

The CARET (™) has a special meaning when it appears as the first character of a
character class. It complements the class. When it appears at any other position
within the character class, it just adds the up-caret to that class. You may use it as a
shorthand method of saying "match any characters except for the following:", rather
than specifying a large character class.

Example: ["$.]0{}*+?"]
matches anything except the eleven characters following the up-

caret.

Escaping Characters in a Class

Metacharacters may be used in character classes without escaping. The only
characters that must be escaped are as follows:

] " \ and sometimes - and ~ depending on the position within the class.

11- Search and Replace and Navigational Tools 219

B Escape the - when you use it in the middle of a class but don't intend it to signify
arange.

B Escape the © when it would otherwise be at the beginning of a class but you do
not intend for it to signify complement.

When in doubt, escape the character. It can't do any harm. The above characters
look like this when escaped:

NN AN A=A

Iteration Qualifiers

Iteration qualifiers are metacharacters that are not regular expressions by
themselves. Instead, they state how many iterations of the proceeding expression
there must be or can be, in order to match. These metacharacters are: *, + and ?.

B The * matches any number of occurrences
B The + matches one or more
B The ? matches zero or one.

Without these qualifiers, a regular expression will match exactly one occurrence in
the text.

Examples

Let us consider some specific examples of how these qualifiers might be used in the
task of matching white space:

"\

The example above will match any number of consecutive tabs, including none. By
itself, it is not very useful to match none of something. As part of a larger regular
expression, it could be quite useful. For our purposes here, the following might be
preferable:

H \t+

This example matches one or more consecutive tabs. The tab is represented as \t, and
the plus sign says "one or more of the previous". To match white space, we need to
match spaces too. We don't know what order the spaces and tabs will come in, and
we don't know how many there will be. These are signs that we need a character
class.

m [\t
The example above uses a character class containing a space and a tab. The + sign

following it means that this Regular Expression will match any combination of
spaces and tabs, so long as there is at least one space or tab.

220 11- Search and Replace and Navigational Tools

If you wanted to match the white space within a function call, where you knew
there might be one space or tab, or there might be none, your expression could look
like this:

m \([\)?

The previous example searches for a left parenthesis followed by zero or one spaces
or tabs. Since the left parenthesis is a metacharacter it is necessary to escape or quote
it with a preceding backslash. The \t we have used before to represent a tab
character. The question mark says "zero or one of the preceding’".

Regular Expressions: Positioning at Beginning/End of Line

You may use the metacharacters ~ and $ to qualify your Regular Expression further.
We have already seen how the ~ may be used to complement a character class, but
it has another quite different use outside of a character class. These metacharacters
specify that, in order to match your Regular Expression, the text must appear at the
beginning or end of a line, respectively. Unlike the iteration qualifiers, however,
these metacharacters can stand alone as Regular Expressions. That s, you can search
for just the end of the line or just the beginning of the line. Examples are provided
next.

Examples:

W~ PUBLIC matches the word "PUBLIC" when it occurs at the beginning of a
line.

B \)$ matches a right parenthesis, a character which must be escaped, when it is
found at the end of a line.

W " \)$ matches a right parenthesis when it is the only thing on the line.

Alternation and Grouping
Alternation and grouping go hand in hand. Alternation often relies on grouping

and is the primary need for grouping.

Alternation uses the metacharacter | to denote that a match has been found if the
text matches either of two Regular Expressions. This operator may be repeated to
indicate that the text may match any one of several expressions.

11- Search and Replace and Navigational Tools 221

Because of the typical order of precedence, the alternation applies to the entire
expression, if not limited by grouping. Grouping occurs when you place
parentheses around one or more expressions that are part of a larger expression.

Example:
B PUBLIC|PRIVATE matches either the word "PUBLIC" or "PRIVATE".

B PUBLIC (void | DWORD) matches the word "PUBLIC", when followed by a
single space, and then followed by either the word "void" or "DWORD".

B " PUBLIC[\t]+(void |int|long| DWORD) matches, at the beginning of a line,
the word "PUBLIC", followed by one or more spaces or tabs, followed by any
one of the following words: "void", "int", "long" or "DWORD".

These examples begin to show the power of regular expressions.

Reference Groups and Replacement Strings

In addition to showing association and precedence, grouping allows the use of
Reference Groups. A reference group is one or more expressions that have been
placed between parentheses and then pasted into a replacement string by
referencing its number.

CodeWright assigns a reference number, from 1 to 9, to the text matching each group
defined. Reference numbers are assigned from left to right. You may paste the
associated text into a replacement string by using this number, preceded by a
backslash.

The following demonstrates how reference groups may be used:

Example: Search string in document:
GotoXY(cat,dog)

Search pattern:

GotoXY\((.*),(.*))

Replacement pattern:
move_cursor(\2,\1)

Replacement result in document:
Move_cursor(dog, cat)

Note that in replacement patterns you do not need to escape metacharacters, such as
the left parenthesis, with a backslash. There are a few escape sequences that are
meaningful in a replacement string, such as those used by reference groups, but
such sequences are not themselves regular expressions. An operation using
reference groups, such as that depicted above, could be used to reverse the
parameter order used by one function when converting to a similar function.

222 11- Search and Replace and Navigational Tools

There is an implicit reference group that you can use in replacement strings to
represent the matching text in its entirety. You reference this group in the
replacement string with an & at the desired location. This means that you must use
\& to specify an ampersand in a replacement string, when regular expressions are
enabled.

Placing the Cursor

When you search for a piece of text, it is usually because you are going to do
something with it or to it. After a successful search operation, CodeWright positions
the cursor at the beginning of the matching text -- at least, that is the default action.
What if you want to edit the other end of the matching text, or perhaps the middle?

When using CodeWright's regular expressions, you have a special escape sequence
available that allows you to indicate where in the matching text the cursor should be
positioned. You should note that this is available only for search operations. It is not
for use in replacement text.

The escape sequence that specifies cursor position is \c. An example of its use
follows:

singletons\[\c.*\]

This example places the cursor at the beginning of whatever text is contained
between the left and right square brackets. The square brackets are metacharacters
and are therefore escaped. This cursor positioning facilitates editing the contents of
the square brackets.

Examples

The following examples are intended to inspire your own use of regular expressions:

Regular Expression Examples

Pattern Description
[A-Za-z_] [A-Za-z0-9_]* Clanguage identifier
=2([0-91+\.2[0-9]*|\.[0-9]+) Floating point (real) number
(L \ET1M) [~ \el+ Beginning of word (simple white space)
[~ \EI+\c ([\t11$) End of word (simple white space)
(["A-2a-z0-9] | ") [A-Za-2z0-9]+ Beginning of word (Non-alphanumeric)
[A-2a-z0-9]+\c (["A-Za-2z0-9]|$) End of word (Non-alphanumeric)

11- Search and Replace and Navigational Tools 223

Regular Expression Examples
Pattern Description
ARESANY/ Single-line comment (C language)
ANFND(L \E]F\F L F\n) * L\ r/ Multi-line comment (C language)

Searching for Spaces, Tabs and other Blank
Characters

One of CodeWright's longstanding Search/Replace features is its ability to find and
replace invisible characters. Parts of the topics below have been generally covered in
the previous discussion on regular expressions, but they will be discussed more
specifically with regards to spaces, tabs, and new lines, here.

Searching for Spaces or Tabs
To find tabs or spaces, complete the following steps:
1. Go to the Search menu and click Search.

2. Inthe Find What field type a space (press the space bar) to insert a space, or \t to
insert a tab.

3. Mark Regular Expression and Save Settings.
4. Click OK.

Searching for New lines

To find new-line characters, complete the following steps:

1. Go to the Search pull-down and click on Search.

2. Type\nin the Find What field.

3. Mark Regular Expression and Save Settings.

4. Click OK.

The procedure for replacing characters with tabs, new lines, and spaces is the same
as the procedure for finding them, only the space, \t, and \n characters are typed into

the Replace With field of the Replace dialog, instead of the Find What field of the
Search dialog.

224 11- Search and Replace and Navigational Tools

Searching for control characters (binary/hex
data)

You can use control characters in both search and replacement patterns. You can
specify any byte (hex) value as part of a pattern.

First, turn on Regular Expressions from the appropriate dialog. Then use the \x
notation to specify hexadecimal values. For example, to search for the form feed
character, you can use this string:

\x0C

(That's backslash x zero c.) Make sure there are two digits following the x. If you want
to search for two consecutive bytes by hexadecimal value, string them together like
this:

\x0C\x0D

Searching for New lines: Issues

Generally, \n'is the suggested method for matching or replacing line ends in
CodeWright , as described in the previous topic on Searching for New lines (the \' must
be doubled when used in code). In some cases, however, it is more desirable to
search for new lines using their respective hexadecimal notations (0D0A, 0A, 0D,
etc). Since hexadecimal 0D and 0A characters make up ends of lines in one form or
another, an exception has to be made when searching for and replacing them, to
avoid disrupting partial line-end sequences. Therefore, when searching for 0D and
0A hex characters, keep the following in mind:

B 0A will match a solo (without a preceeding 0x0D) 0x0A but not the pair.

B 0D will match a solo (without a following 0x0A) 0x0D but not the pair.

H \n will match a solo 0x0A or a 0x0D, 0x0A pair.

B Replacing "x0D" with "\n" would be good for converting a Macintosh file
(opened with auto-detect file type off).

Replacing "\n" with \n" is a good way to convert a UNIX file to a MS-DOS file, or
vice-versa, if the buffer flag for UNIX EOLSs is set appropriately in Customize |
Language | Options, or Document|Manager| Options. More information on setting
and using UNIX EOLSs can be found in the chapter UNIX.

11- Search and Replace and Navigational Tools 225

Selective Display

CodeWright's Text menu has an option for Selective Display. Selective Display is a
feature that "collapses" or "folds" text in the current document so that only desired
text is displayed or hidden. The Selective Display menu item accesses a dialog that
has options for controlling which lines of the document are visible.

Selective Display

' Searchtext Process the document and place

o o it in Selective Display mode. To
Ha el exit this mode, press [Esc].

Show lines that match the search

€ Lines expression.

€ Preprocessor directives

€ Paragraphs

€ Routine definitions

r~ Settings for Search text
I =1
™ Hide matched lines

™ Match at start of line
™ Preserve unmatched lines

™ Ignore case
¥ Regular expression

IV Process with default settings I™ Use single-cick
V' Prompt first

r~ Displaying unprocessed documen(sw " Expand/Collapse

[~ Expand sub-levels

0K I Cancel | Saxesettingsl Help I

A

Selective Display Options:

Selective Display options include the following:

B Search text: Displays or hides text matching a pattern.

B Multi-level: Hides text based on braces or indentation levels.

B Preprocessor directives: Hides text based on C/C+ + language preprocessor
directives.

B Lines: Displays or hides a selected group of lines.

B Paragraphs: Displays only the first line of each paragraph. A paragraph is
defined as text separated from other text by one or more blank lines.

B Routine Definitions: Displays lines containing function definitions for the

language indicated by the file type. In CUA, [SHETfS] also controls
Routines selective display.

Note: Display on the right-mouse popup menu accesses many
Selective Display options.

226 11- Search and Replace and Navigational Tools

Pre-processed View

The Preprocessor directives option in the Selective Display dialog is a special
option for C/C+ + users that find their source files cluttered with #ifdefs. The option
allows source code to be displayed exactly as the compiler will see it, while it is being
edited.

Applications that are written to run on more than one platform, or custom software
written for more than one company often use #ifdefs to avoid redundant
maintenance. If separate versions of a file are maintained for each of several
platforms or customers, each version needs to be changed whenever an
improvement is made to code that is common to all of them. #ifdefs are used to
maintain different versions in a single file. Then, changes to common code only
needs to be made once.

If code becomes confused with many preprocessor directives, whatever time is
saved on redundant maintenance could be lost just trying to figure out confusing
source code. CodeWright allows full benefit from the use of pre-processor
conditionals by letting the code be seen more clearly for what is being worked on.
Thanks to Selective Display Mode, the whole file is still there, but the parts that don't
apply can be hidden.

Adding "defines" to the Preprocessor directives- Defined Constants field allows
specified defines to remain visible in preprocessed view. Multiple “defines” can be
specified by separating them with semi colons. Once the necessary “defines” have
been added, and desired options have been chosen, clicking the dialog’s OK button
will hide specified preprocess code.

Viewing/Hiding Lines

Once a document is in selective mode, lines are preceded with a small button or
icon. When the button contains a plus sign, it indicates that there is hidden text
following that line.

m To view hidden text, double-click on the plus sign or press [SHFT] on that
line. The plus sign then turns to a minus sign, to indicate that the section has
been expanded to show the "invisible" lines.

B o collapse the section again, double-click on the minus sign or press

SHIFT] @ i
[T e again.

B Double-clicking with the right mouse button also expands and collapses hidden
text.

11- Search and Replace and Navigational Tools 227

Selective Mode

{ CodeWright - [C:\cwright\cw32\ADDFX\ADDFX.C] S [=] B3
[File Edit Search Project Test Document Customize Iools Window Help =18 x|

N | csue s mmo] Sl#8e
Identifier: | include <windows.h> =

0id DLL MHB_InsertHame (void) s shift-=

i MHB_Insertlnitials (veid) S SRIFE-
@veoid DLL MHB_DosWindow (veid) S RLT-Z
@void DLL MHB_DosMake (veoid) S RLT-H
@veoid DLL HHB_GoToBookmark1 (veid) S SRIFE-
@void DLL MHB_GoToBookmark2 (void) S shIFt-
Hvoid DLL HMHB_GoToBookmark3 (veid) S SREFE-—

@void DLL MHB_DisplayFileName (void)

oid DLL MHB_CurDir (void)

oid DLL MHB_DisplayFileStats (void) /S CRTLL
@void DLL dir (LPSTR szWildCard)

@void DLL cd (LPSTR szPath)

@void DLL MHB_DirChange (void) S RLT-T
@void DLL HMHB_ShellCHD (veoid) /S RLT-5
@void DLL HMHB_ExecWinApp (LPSTR szApp)

Bvoid DLL CUW (veoid) S ETL-o
Bvoid DLL HHB_WriteBuffer (veoid) S RLT-#

@void DLL MHB_DisplayClock (void)
@void DLL HHB_DropBookMark1 (void)
@void DLL HHB_DropBookMark2 (void) =~

™ Ignore Case ~

=2 @) 2| B | »[\ Buld £ FieFind) Seach A Browse £ Difference A_Shell {_Peil £_AppBasic
[& 2" fins [~ [Line: 54 [Col 1

invisible li CTRL]| [SHIFT ive Di
Press to restore the invisible lines. [SHET][C]| restores Selective Display for

the previously selected lines in the CUA or BRIEF keymaps. restores Selective

Display for the previously selected lines in the vi emulation. CodeWright will save
the current selective display view between sessions if the option Visible Lines is
marked in Customize | Environment | State.

Browse, Tags, Symbols and Objects

Whether working on someone else's code, with a long line of inheritance, or working
on code you wrote last week, you can spend a lot of time navigating it. CodeWright
provides the following text and source code tools for finding and navigating code:

B Browser

B Tags

Hm Outline Symbols

W Objects Window

Each of the above tools has advantages and disadvantages when used for

navigational purposes. The next few paragraphs describe reasons why one might
choose one over another.

Which Navigational Tool Should | Use?

Choose from the navigation methods described in the following topics, Browset, Tags,
and Outline Symbols, or use them all.

228 11- Search and Replace and Navigational Tools

Browser

The CodeWright Browser uses Microsoft .BSC files that are produced when
compiling source code in Microsoft Developer Studio. It also uses compiled tags
databases produced by the TAGSWnn utility shipped with CodeWright. The browser
uses a graphical tree in a special tab of the Output Window to demonstrate
relationships and simplify locating necessary files or other pertinent information. If
you are compiling with Microsoft tools this method gives you the most information
about your code. However, you must be able to compile the code, and the
information is only as up to date as your most recent build.

Tags

CodeWright Tags support provides only limited information about your code —
primarily the location of function definitions. You can access this information in two
ways: you can use the same graphical interface as the browser, or you can use a
hypertext-style lookup of the word at the cursor. This information, too, relies on you
updating the database regularly.

Outline Symbols

CodeWright's Outline/Symbols feature has its own graphical tree interface in the
Outline tab of the Project Window. It also uses the Symbols tab on the Output
Window, and background parsing to let you view the most up to date information
about your project. Furthermore, Symbols support a large number of languages and
can be readily modified to add to or expand the browse capabilities for new or
existing languages supported by CodeWright.

Objects Window

CodeWright's Objects Window is a tab on the Project Window. It displays a
hierarchical view of C/C++ and Java symbols that are associated with the name that
is typed in the Identifier box at the top of the window. It can be used to view and
browse code. Click on a symbol in the Object Window to access the position in the
source file at which its corresponding code is located.

Browser Support
The CodeWright Browser supports two kinds of browser databases:

W Microsoft format .BSC databases These are the databases generated by Microsoft
C/C++ 7.0 and later.

W Starbase Compiled Tags databases These are the databases produced by the
TAGSWnn utility shipped with CodeWright. The nn in the name is replaced by
32. The Tags databases are given the extension .PTG by convention.

11- Search and Replace and Navigational Tools 229

Browse Tab of the Output Window

8le|3] 4| B) o
Constants -
(lobal Functions
Labels
Local Variables J
Parameters
F (1 e\ewd?cob\cobh hd
Buld A FieFind A Seaich) Browse A Difference A Shel A Perl A ClipView A Symbals /
[Fle EACh32\C0B\cob e O =@ s [[unet [col T

The Browser is one of the windows available for viewing in the tabbed Output
Window. It appears when you select Browse from the Project menu or when you
select the Browse tab on the Output Window. The Browser is actually two windows
side by side with its own toolbar at the top. The Tree window appears on the left
and the Inspect window appears on the right.

Press in the Browse window to receive help, press [E¢]] at any time to leave the

window and return to the current edit window.

Selecting a Database

The first step in using the Browser is to select a database. If you have previously
defined a valid .BSC or .PTG file for the current project, that database is loaded
when you select Browse. You define the database for the project in the Directories
tab of the Project|Properties dialog,. If you have not defined a database, or if you
later want to change databases, you may select a database by choosing the File Open
button on the Browser Toolbar.

Traversing the Tree

Once you have loaded the database, a tree structure will be displayed in the Tree
window. You may traverse this tree from the keyboard by using the arrow keys to

move from node to node, and by pressing the key to expand or collapse a
node. Using the mouse, you may double-click on a node to expand or collapse it, or

A
click on the M (expand/collapse) button on the browser toolbar.

As you traverse the tree, you will note that information about the selected node
appears in the Inspect window to the right. This window will list information such
as where the item is defined and where it is referenced, if this information is in the
database. You may move between the tree window and the inspect window by

either pressing the key or clicking in the intended window.

230 11- Search and Replace and Navigational Tools

Label Bitmaps

At the beginning of each line of the tree is a bitmapped label that identifies the
information in that branch. A key to these labels is given below:

Bitmap Description

Root information coming from the database.

D

Information pertaining to a file or module.

Ex

Information pertaining to a class.

Information pertaining to a function.

A preprocessor macro definition.

A type definition.

<l H | &l | &l

Information pertaining to a variable.

The first file in the tree list will often be labeled <unknown>. These are functions
and other objects that are referenced, but whose source was not compiled along with
the project. The most common examples of this are the use of functions in the
Microsoft Foundation Classes, or other libraries.

Browser Toolbar

Here is how the Browser Toolbar appears:

& O <o
D \\9\\& g@‘\@%‘\ (\@(\;\&E:%\%Q
. N\ Q
SR R SO
SR 2] | -] Pl 2 [n] 2
String Search 7 | Filter Togglel
Buttons

Refer to this diagram as you read the following descriptions.

11- Search and Replace and Navigational Tools 231

Jump to Code

After traversing the tree, you will usually want to go to the corresponding
source. There are two Go to buttons on the Browser Toolbar that allow you to
do this. If you wish to go to the source code represented by the selected tree

node (usually a point of definition), you can press the i‘ (go to) button on the
left of the toolbar.

If you have selected a reference, a calling or called function in the Inspect

window, you may wish to press the @I key (Go to from Inspect) to go to that

reference or function. Simply pressing the J6 || key will always take you to
whatever is selected in the Tree window.

String Search

The String Search feature I E of the browser works like a grep or
filter of information in the database. Use it to filter out extraneous information.
It is one of the most useful features of the browser.

To use the String Search feature, enter a string into the combo box on the
browser toolbar. Unlike some other browsers, the string you enter will not be
treated in a case sensitive manner, and a trailing wildcard will be assumed. That
is to say, if you enter "dump", it will match strings like "Dump" and "dumpFile".

Each matching identifier is displayed as a node on the tree. All other nodes
disappear. You can then traverse this "filtered" tree.

Query Button

The first button to the right of the Search String combo box on the browser

{
toolbar is the Query button. You can initiate a query by pressing the ﬂ button,

or by pressing the % key. Depending on the context, one of six query dialogs
will appear. An example dialog is shown below:

232 11- Search and Replace and Navigational Tools

Tags Function Query

Function Query [¥}

Used By I Uses |

¥ Functions [V Variables V¥ Types
[V Classes [V Macros

Defined At |Belcrcnccht| Member Of |

Calls Called By |

Each query dialog has a set of action buttons and filter check boxes. The filter
check boxes apply only to the action buttons that are enclosed in the same
group box. Therefore, in the example above, the check boxes apply only to the
Used By and Uses buttons. The other action buttons operate independently of
the filters.

With all the filters enabled (all the check boxes checked), you may find that you
have too much information to sift through to find what you are after. Itis
probably best to check the minimum number of boxes that fill your needs.

The six Query Dialogs are as follows:

Button Purpose
General General inquiries about the terminals (leaves) on
the tree.
Class OQP class inquiries.
Function Inquiries about functions.

Friend Class (Fclass) | OOP friend class inquiries.

Database Inquiries from the root of the database.

Module Inquiries related to a module.

Quick Search

RET
The Quick Search button él on the Browser Toolbar is for when you are in a
normal edit window and want to look up the word at cursor in the browser
database. This step saving device acts the same as if you had typed the word

into the String Search combo box on the Browser Toolbar and pressed @

11- Search and Replace and Navigational Tools 233

Called By / Calls To

When you have selected a function in the Tree window, you may view either a
list of functions that call it, or a list of functions it calls by pressing one of the

Called By/Calls to buttons & §\. These functions do not work with
CodeWright generated databases; only with .BSC files generated by Visual
Studio or with other supported databases generated by more sophisticated,
third party browser utilities

Search After Go To

The Search After Go To button is a toggle that determines what action is
taken after jumping to the related source code (Go To). When this button is
depressed, the Browser executes a forward search for the item selected in the
Browser window from which it jumped. This is especially useful if you have
modified the source code since the last time the database was generated. The
Browser may still be able to take you directly to the item of interest.

Filter Toggle Buttons

The Filter Toggle buttons allow you to focus in on specific categories of objects
by turning filters on and off. Each of the lettered buttons at the right of the
browser toolbar has an on and off position. When depressed, the button is on,
and object associated with that button will show up in the tree. When the
button is out, it is in its off position. Related objects will not show up in the tree.
You can reverse the condition of any of these buttons by clicking on it with the
mouse or by pressing the corresponding letter on your keyboard (i.e.,

T
bR D-

Below is a list of the buttons and their related objects:

Letter Filter Objects
F Function references and definitions.
T Type references and definitions
M Preprocessor macro references and definitions.
\% Variable references and definitions.
C OOQP Class references and definitions.

After changing the filter toggle settings, you will find that the new settings do
not take effect until you have performed some action, such as opening a branch
of the tree. To see the effect of the filter change on a branch you are already
viewing, collapse and re-expand the branch.

234 11- Search and Replace and Navigational Tools

Tags Support

CodeWright has support for CTags and other Tags-generating programs whose
databases conform to the standard Tags format. The file TAGS.C in CodeWright's
CWSTART subdirectory (in Full CodeWright installations) contains the functions
that support this capability, and also defines the standard Tags file format.

In addition, CodeWright comes with a built-in Tags database generation capability.
This program produces both a standard Tags database and a compiled database. As
mentioned, the resulting compiled database (.PTG file) may be used with
CodeWright's Browser in a similar fashion to a browser database. You can search the
database and traverse its contents via a graphical tree.

A standard Tags database adds browse-like capabilities to an editor that knows how
to read and use the database. If you see the name of a function on the screen and
need to know what that function does, CodeWright's tags functions allow you to
jump directly to the original location in the original buffer.

CodeWright is known to be compatible with the PCTags program from Moderne
Software and GNU Tags. PCTags is available for download from Starbase's FTP site
at ftp:/ftp.premia.com/pub/addons/archive/. GNU Tags is supplied with
CodeWright.

Tags Setup

To get CodeWright to generate and use Tags databases automatically requires the
following steps:

1. Create a project whose members are the files you want to scan for your Tags
database. Refer to the chapter on Projects, Project Spaces, and Workspaces for
information on creating a CodeWright project.

2. Define what files will hold your Tags data -- your standard Tags database and
your compiled database for use with the Browser. There are two entries on the
Directories tab of the Project Properties dialog that store the name and location
of these database files. The entries are listed as Browser Database, and Tag
Database. If you are using CodeWright's compiled tags utility, be sure to enter a
filename in the Browser Database field that employs the .PTG extension rather
than .BSC to avoid having the .BSC file overwritten by the browser database
generator.

3. Select Build Tags from the Project menu.

4. Use the Browser or TagFind function.

11- Search and Replace and Navigational Tools 235

Using the Tags Database

To use the standard Tags (not compiled) database, you need to have the function
TagFind assigned to a key. The TagFind function looks at the word at the cursor and
tries to find a match for it in the database. You can assign this function along with
TagNext and TagPrev to keystrokes, if they are not already assigned. You do this
through the Keyboard dialog on the Customize menu. For more information on the
TagFind AP, refer to CodeWright's online help. For more information on custom
keystrokes, refer to the chapter on Custom Interface.

To use the compiled tags database with the Browser, load the .PTG file by pressing

the Browser File Open button EI and browsing for the file. You will then be able to
traverse a tree of your tags database, search the database, and do queries for
functions and other objects (barring friend classes). You will only be able to query
definitions, however. References (caller/calling trees) are not stored in the Tags
database. For more information about the TagsWnn utility provided with
CodeWright, see appendix A at the end of this manual.

Outline Symbols: Overview

Outline Symbols make up a new type of browser for navigating and investigating
code. They are named Outline Symbols because they use two system windows: one
called the Outline Window (a tab on the Project Window) and the other called the
Symbols Window (a tab on the Output Window). Outline Symbols constantly
update in the background (there is no compiling required) and they have broad
application, that is, they will work with virtually all languages for which CodeWright
provides support (C++, Java, Delphi/Pascal — even .INI files).

What are Symbols?

Symbols are any element of code for which a parser has been written. Parsers are
regular expression patterns used to find and separate designated string patterns
from code. The strings are subsequently displayed in either the Symbols Window,
the Outline Window, or both. Typically, symbols include functions, classes, macros
and the like. New parsers can be added by creating the proper regular expression
parser. Files are scanned using these parsers, and the locations where symbols are
defined are collected and placed in the symbols database.

CodeWright's symbols parsing starts with the member list of the current project.
Other files can then be added as part of the list to be scanned in CodeWright's Edit
Symbol File List dialog. For example, you might want to scan MFC symbols, but
don’t care to include the MFC source files in each project. You just add them to the
Edit Symbol File List dialog. To access the Edit Symbol File List, press the File List
button in the Symbols Window. It’s as easy as adding files to a project.

236 11- Search and Replace and Navigational Tools

Symbols Window

File List Symbol: [COuterClass - D:\example.cpp
bool Checké(); -

LOuterClass: :COuterClass()

n_lBlocker = 8;

\ Buld £ FieFind { Search A Browse £ Difference £ Shell £ Peil £ ClipView), Symbols }

The Symbols Window is normally used in conjunction with the Outline Window, to
which it has a special link. This link allows the Outline Window to pass symbol
names to the Symbol Window for lookup, thereby automating the process of
viewing symbols in the Symbols Window. Together, the Outline and Symbols
Windows provide Browser-like capabilities for a variety of file types without any
need to compile to keep current with code changes. The Symbols Window allows
you to list the location or locations where a symbol is defined.

The Symbol box Sy | [at the top of the Symbol Window

normally reflects the symbol selected in the Outline Window. A history list is
maintained in the drop-down list under the Symbol box, recording the recent
entries in this box. Also, when the cursor is positioned in the edit buffer, CodeWright
will pick up whatever the cursor is sitting on and display it in the Symbol Box. Then
a background search is done through the symbols database to see if there are any
other occurrences of this symbol.

If CodeWright doesn’t display anything in the Symbols Window it is likely that the
symbol is not contained in the database. There are two reasons that a symbol may
not be stored in the database:

B The symbols parser(s) (regular expression) does not match the string.

W Itis not the Definition of the symbol (CodeWright doesn’t display References or
other uses of the symbol).

If the symbol being displayed is only located in one file, the associated code is
displayed in the window. If there is more than one symbol in several locations, a list
of files containing those locations will be displayed in the Symbols Window. The
locations can be selected from the list by double clicking on a filename in order to
open the file in the buffer editing area. The cursor will be positioned at the indicated
location.

11- Search and Replace and Navigational Tools 237

Symbol Scanning

The Symbols Window conducts a detect scan on listed files after a 3 second idle
period for several reasons:

B To determine if any of the time/date stamps on the files in the database have
changed.

B To determine if any newly-created functions need to be added to the database.

B To determine if any newly-added project files need to be added to the database.

Only if it detects these changes, does it go ahead and start updating the database. If
the symbols scan detects a keystroke, it will interrupt its detect scanning and begin
again where it left off on the next scan. The symbols scanning and updating can be
disabled (see Symbols Database below).

Outline Window

CodeWright's Outline Window displays symbols in a graphical tree, with each
loaded file displayed as a root. As files are loaded, or edit windows are changed, the
symbols found in that file are displayed beneath that file’s name in the Outline
Window.

A single mouse-click on the symbol of interest displays information for that symbol
in the Symbols Window. A double- click also moves the edit window to the defining
location. When you single-click on a symbol listed in the Outline Window, as
described above, the view in your current edit window is not modified. This allows
you to browse symbol references without losing your place. If you double-click on a
symbol listed under one of the loaded files, your view in the current edit window
moves to that location, in addition to listing references in the Symbol Window.

238 11- Search and Replace and Navigational Tools

Outline Window

Project [~|]
C:hewright\ew32\cwright ini
& browse.c N
B _init_browse
Browse

& _BrowseSetFie

&l BrowseSetFileEx

] BrowseSetFile

&l BrowseQFilename

&l getDefBrowseName
(&1 cvright ini

&1 Ribbon

&l fmatch

&l pi

] FileDpen

CodeSnips

] Defaultkeymap

&l Editor

] Kmapdssian v

I Sot ™ AutoExpand/Collapse

6z [2]e e 5]

As you load files or change edit windows, the Outline Window lists all open buffers
as folders, and if the Auto Expand/Collapse checkmark is checked (described below),
automatically expands the view of the current buffer to show its matches. Double-
clicking on any of the listed folder icons will always expand the outline view, if there
are symbols to be displayed for the file.

The symbols displayed in the Outline Window are listed in the order in which they
appear in the source file. They can also be displayed in alphabetical order, by
clicking the Sort checkbox, as described below.

There are two checkboxes at the bottom of this Outline Window tab:

B Auto-Expand/Collapse turns off the automatic expansion of the symbols
matches. When this checkbox is checked, changing from one document to
another will close one list of symbols and open another for the newly current
document. When the box is not checked, you control when the symbol lists
open and close.

B Sort alphabetically sorts the list of symbols in the window.

11- Search and Replace and Navigational Tools 239

Outline Scanning

The Outline Window has a threaded background scanning process that runs after
one second of idle time. It scans the opened source files to detect new symbols to be
added to the view. The updating only occurs when changes have been made, but
the detect scan is almost always running. Available parsers can be enabled in the
Outline Parser dialog, accessed by clicking the Symbol Patterns button in the
Customize | Language | CodeSense dialog. A check box to indicate if the symbol type
should be displayed precedes each parser name. When you select a parser name, the
settings in the dialog reflect those for that particular parser name. More marked
checkboxes, mean more displayed symbols (assuming the parsers are legitimate),
and more background scanning.

If you have all the parser check boxes for a particular file type marked, you might
experience a delay when opening or closing files because of the scan process. If you
do, try unchecking the auto-expand box in the Outline Window, or disabling some
of the parser types (see configuration section below).

Symbol Parsers

Symbols, as you recall, are any element of the code for which a parser has been
written. Typically, these are Functions, Classes, Macros and the like. You can add
parsers by creating the proper regular expression pattern, and inserting it in the
Outline Parsers dialog. Symbol Parsers are regular expression patterns that parse
code-elements that match an expression. Patterns can be developed using the
CodeWright's Search mechanism. The online help in the Outline Parsers dialog
provides information on each of the items in this dialog, and provides some tips on
creating Regular Expressions. Regular Expressions are also described, under the
topic Regular Expressions in this chapter. Files are scanned using these parsers.

The dialog for configuring parsers is accessed by clicking the Symbols Patterns
button on the Customize | Language | CodeSense tab.
Use the following steps to make a parser:

1. Inthe CodeSense dialog, highlight the file type of the file for which the parser is
being made or viewed.

2. Click the Symbol Patterns button.

3. View the box that lists the parser names or types of symbols recognized by the
current symbol parser. If the box is empty, there is no parser for the selected file
type extension.

Example: If .CPP is selected as the file type, there should be three parser
name entries in the Parser Type list box: Function, Define, and
Class.

4. Click Add. The Add Parser Name dialog comes up.

240 11- Search and Replace and Navigational Tools

5. Give the new parser a name and choose a type (i.e. function, prototype,
procedure, etc.) from the Type drop-down list. The type determines what icon
CodeWright uses in the Outline Window.

6. Click OK.
7. Backin the Outline Parsers dialog, highlight the new parser.

8. Type or paste an appropriate regular expression in the Pattern box. (The string
provides feedback, indicating whether the selected regular expression is OK or
Illegal.)

9. Choose or enter the characters that should be found by the parser in the
Keyword Characters section

10. Use the Keyword Position options to indicate whether characters to the left or
right of the indicated cursor position (\c in the regular expression pattern)
should be displayed in the Outline and Symbols Windows.

11. Click OK.

The new symbols should appear in the Outline Window when files of the
appropriate file type are opened in CodeWright.

Symbols Database

As mentioned, parsers used to match and display symbols are defined in the Outline
Parser dialog accessed by clicking the Symbol Patterns button in the

Customize | Language | CodeSense dialog. They are specific to the selected file type
extension. Any symbols that are parsed are subsequently stored in the symbols
database.

The symbols database (the file that stores gathered symbols) location is defined in
the Project | Properties | Directories dialog. By default this database is located in
the main CodeWright directory. More than one symbols database can be used, by
changing the name/location of the file. To maintain separate symbols databases for
individual projects, put the full project path for each Symbols database in the
Symbol file field of the Directories dialog.

There are two check boxes that apply to the symbols database file defined in the
Project|Properties | Directories dialog. The check boxes are available when the
Symbol File field is selected. The check boxes have the following functions:

B When the option Auto-Update Symbols Database is selected, CodeWright
automatically updates the symbols database with any new functions when that
file is saved.

B When the option Show Definitions in Symbols Tab is selected, automatic
detection and scanning takes place for updating the Outline/Symbols Windows
and the symbols database.

11- Search and Replace and Navigational Tools 241

Popup Symbols Menu

Right-clicking on the Symbols tab of the Output Window, or right clicking on the
filename in the Outline tab of the Project Window gives a popup menu with three
choices:

B Rescan Outline Symbols updates the information in the symbols database for
the file currently selected in the Outline Window.

B Rescan Symbols DB deletes the database and rebuilds it. This is performed as a
background task.

B Compact Symbols DB selection optimizes the symbol database for the current
project by deleting unused records. This is performed as a background task.

Objects Window

The Objects Window is a tab on CodeWright's Project Window. It is used to view and
browse code. It displays a hierarchical view of C/C++ and Java objects/symbols that
are associated with the name that is typed in the window’s Identifier box. The
objects in the hierarchy can consist of C/C++ and Java classes, functions, data,
macros, and types, as they apply to the language being used. Each object-type has its
own image, as displayed in the Filter/Legend dialog (see the topic Filter/Legend
Dialog in this chapter).

Display an Object Hierarchy

The Objects Window gets its information from CodeSense, so the same information
sources that are used for CodeSense must be available for the Objects Window
before it will work (see the topic Objects Window and CodeSense in this chapter). With
that in mind, there are two ways to display an object hierarchy in the Objects
Window: by typing an identifier in the Identifier box, or by using CodeWright's
standard popup menu. Those methods are described in the next topics.

Note: The results of either method reflect the Objects and Access filters
marked in the Filter/Legend Dialog. If all of the boxes on that dialog
are not marked, the caption Filters Applied displays after the search
criteria at the top of the Object Hierarchy.

Type an ldentifier to Display an Object Hierarchy

To display an object hierarchy by typing in an identifier, do the following:

1. Type the name of an object/symbol in the Identifier box at the top of the
window. Use the asterisk (*) wildcard character to match any characters to
the right of the asterisk (e.g., CMain* will match all symbols that begin with
'CMain'). If necessary, click Ignore Case to make the window case
insensitive to the characters in the Identifier box.

242 11- Search and Replace and Navigational Tools

Note: Typing only an asterisk (*) will result in a search for all symbols,
but will be restricted to the project database. If you want to
restrict a large search (e.g. C*) to the project database and open
documents, right-click within the Objects Window and select
Ignore CodeSense Library Databases.

2. Press . A hierarchy will display.

Use CodeWright's Right-Click Popup Menu to Display an Object
Hierarchy

To display an object hierarchy by using CodeWright's right-click popup menu,
do the following:

1. Opena.C,.CPP or .JAVA file.

2. Right-click on, or select and right-click on, a symbol (class name, function
name, struct, etc) in the open file. Depending on whether a selection was
made, you will see the following in the resulting popup menu:

B If a selection was made you willl have the choice to Browse for
<selection> (exact match) or Browse for <selection>* (wildcard
match).

B If no selection was made you will have the option to Browse for
<symbol name> where <symbol name> is the name of the symbol
that the cursor is on.

Click on any of the above options to display an object hierarchy.

Objects Window

| dentifier: I 'I

------ F DrawDlg:DrawDlg [Frar,
------ § DrawState(HDC hdc, HE
------ F DrawStatusTextHDC hD
i ™2 class DrawDlg extends [
- ™13 struct DRVCOMFIGINFC
- ™13 struct DRVCOMFIGINFC
] ®[3 ernum DriverPromptE nur
- 4 dbDriverComplete = [
i G dbDriverCompleteRe
- & dbDriverM oPrompt =
& dbDriverPrompt = 2

& [CALLBACK *DR&wWST:
""" & [CALLBACK *DRIVERPE
------ & [CALLEACK DRVCALLE
------ & _BTE:DropCount, WOF
""" @ _CLASSPATHTYPE:Dr
& _D3DSTATE: [anonymo

& _D3DSTATUS: diEstent

...... &

DEDTHANBFDHM[E}LI
. e e =

¥ Ignore Case

ez |= e e o |

-

11- Search and Replace and Navigational Tools 243

Using the Objects Window

The Objects Window can be used to view and browse C/C+ + and Java objects/
symbols. Click on an object/symbol in the window to access the position in the
source file at which its corresponding code is located.

Hover tips are available for each object/symbol in the hierarchy. The tip appears
when the mouse cursor hovers over an object/symbol's representative icon. It
provides additional information about the object/symbol in question.

Note that the Identifier box in the Objects Window will be case-sensitive if the
option Ignore Case is not marked at the bottom of the window. Mark Ignore Case to
make the window case-insensitive to the string that is typed in the Identifier box.

Objects Window and CodeSense

The Objects Window gets its hierarchy information from CodeSense. Therefore, one
or more of the following must be true before any information will display:

BW One or more C/C++ and/or Java files must be open in CodeWright.
B A project containing C/C++ and/or Java files must be open in CodeWright.

B One or more legitimate CodeSense library databases must be listed and checked
in the CodeSense Global Configuration dialog. If the correct library is not listed
in the dialog, it can be added.

B One or more C/C++ and/or Java files must be listed in the Symbols Window
Edit Symbol File List dialog.

See the topic CodeSense in the chapter Editing and Printing for more information.

Objects Window Popup Menu

If you right click on an object in the Objects Window you will get a popup menu
with the following options:

HW Sort Alphabetically - to sort the objects/symbols alphabetically.

B Sort by Character Set - to sort the objects/symbols by the ASCII values of the
characters in the name and according to the code page currently in use. This
allows the sort to respect locale-specific information (i.e. international
characters).

H Sort by Objects - to sort by objects/symbol type.

Hm Display by Definition - to display objects/symbols by their definition. For
example:

MsgPopupPromptHistory (LPXSTR histName, LPXSTR prompt,
LPXSTR response)

244 11- Search and Replace and Navigational Tools

Display by Symbol name - to display objects/symbols by name. For example
MsgPopupPromptHistory

Show Members in Root - to show both class detail and function detail if class
and function names are the same.

Filter/Legend - to access the Filter/Legend popup menu (described next).
Refresh Display - to display the most current list of applicable objects/symbols.
CodeSense Editing Options - to access Customize | Language | CodeSense.

CodeSense Global Configuration - to access the CodeSense Global
Configuration dialog.

Ignore CodeSense Library Databases - to force the Objects Window to ignore
information in CodeSense Library databases when displaying a hierarchy. This
will speed up the process of displaying hierarchies.

Choose the item Filter/Legend on the Objects popup menu to access the Filter/
Legend popup menu:

Filter/Legend Popup

<<

LK

Prototypes
Functions
Classes
Interfaces
Structs
Unions
Enums
Yariables
Defines

Select All Objects
Clear All Objects

Filter/Legend...

The Filter/Legend popup menu lists a set of object filters. Object filters control which
objects/symbols will display in the Objects Window. Unmark any filter to prevent
objects of that type from displaying.

Filter/Legend Dialog

One of the items on the Filter/Legend popup menu is Filter/Legend. It accesses
the Filter/Legend dialog. The Filter/Legend dialog serves some of the same
purpose as the Filter/Legend popup menu, providing the same list of Objects
filters. The dialog also provides another set of filters labeled Access.

11- Search and Replace and Navigational Tools 245

Filter/Legend

Filter/Legend [|
r~ Object

"2V T f. W Prototypes Select Al |

® I Interfaces § ¥ Eunctions
"4 ¥ Stucts G ™ Variables BEEAL

®2 ¥ Unions # ¥ Defines
*2 [V Enums

Acce:
0K
V' Public V' Non Members -
% IV Protected Cancel I
& W Private Help |

Access filters provide additional control over Objects filters in the following
ways:

W By filtering objects according to public, private, and protected access
attributes.

W By filtering objects that are non-members.

For example, if one wanted to see only public classes in the Objects Window,
they would mark the item Classes in the list of Objects filters, then mark the
item Public in the list of Access filters.

When using Objects and Access filters in the Filter/Legend dialog, keep in mind
the following:

B Marking or unmarking any of the Objects filters in the Filter/Legend dialog
will mark or unmark the same filter on the Filter/Legend submenu.

B Atleast one Access filter must be marked in order for any marked Objects
filters to display in the Objects Window.

H Atleast one Objects filter must be marked for any marked Access filters.
Otherwise the Access filters are meaningless, and objects will not display.

B The caption Filters Applied displays after the search criteria at the top of the
Object Hierarchy if all of the Objects and Access filters are not selected on
the Filter/Legend dialog.

W Use the buttons Select All or Clear All to select or clear selections for all
filters.
Symbols vs. Objects vs. Tags

CodeWright offers four browsing features, Symbols, the Object Window, Tags and
Browse, all of which have been discussed up to this point. Each browsing method
offers its own advantages, some of which are listed next.

246 11- Search and Replace and Navigational Tools

Pros and Cons of Tags, Browsers, and Symbols

The following items describe some pros and cons of the different browsing tools
available in CodeWright:

B CodeWright's Browser can use Microsoft .BSC files that are produced when
code is compiled in Microsoft's development environments.

B CodeWright's compiled Tags databases (PTG files) provide more limited code-
information, but can be built from within CodeWright.

B Both the .BSC and .PTG files are displayed in the Browse tab of the Output
Window. The files are displayed in a graphical tree format with mouse-click
access.

W Compiled Microsoft Browser .BSC files contain more information about code,
such as where symbols are Referenced, Called, etc.

B Tags and Symbols do not contain extended information about where symbols
are referenced or called. They only display where the symbols are defined.

H Symbols do not have to be compiled. They are created in real-time, instantly
displaying symbols as changes are made to edit-buffers.

B The Objects Window contains more extensive C+ + information as provided by
the CodeSense library databases that are listed in Customize | CodeSense
Global Configuration.

B Symbols are displayed in graphical tree -format with mouse-click access to their
respective file locations.

B Symbols are interactively customizable, offering the ability to display more than
just the pre-defined elements in the Outline and Symbols Windows.

B Symbols are available for a wide variety of programming languages, and again,
they are customizable so that more can be added for new languages if necessary.

Bookmarks

CodeWright's bookmarks are handy for navigating code. Like any bookmark, they
reserve current positions in documents so that it is easy to return to those positions
when necessary. The following paragraphs talk about using CodeWright's
Bookmarks feature.

Global and Local Bookmarks

Bookmarks are used to facilitate movement from one position to another, within and
between documents. There are both local and global bookmarks. Local bookmarks
are known only within the document in which they were defined. Global
bookmarks, on the other hand, are recognized from any document. Global and local
bookmarks can be given names, as well as numbers, to help remember what the
purpose of the bookmark was.

11- Search and Replace and Navigational Tools 247

Graphical Bookmark Images

If Show visible bookmarks is turned on in Customize| Environment|Bookmarks
(described below), graphical images representing bookmarks are placed in the left
margin of the document in which the bookmarks were placed. There are two

separate bitmaps: one for global bookmarks 1 and one for local bookmarks “1 .

Setting and Removing Bookmarks
Bookmarks can be set and removed in a number of ways:

B The Document menu has a Mark option that sets a global mark at the cursor
position. The graphical mark is placed in the left margin of the document.

B The various keymaps available in CodeWright each have respective keystrokes
for setting bookmarks. For example, in CUA, the keystroke for setting a global
mark is Ctrl-[0-9].

B Right-clicking the mouse at the far left margin of a document causes a popup
menu to appear, with the following options, two of which are used for setting
marks:

v Set a Global Mark: Sets a global bookmark.
v SetaLocal Mark: Sets a local bookmark.

v Go to Bookmark Dialog: Accesses the Customize| Environment |
Bookmarks dialog, described next.

Bookmarks Dialog

Clicking the Bookmarks tab of the Customize | Environment dialog accesses the
Bookmarks dialog. The Bookmarks dialog allows you to set the visibility and
naming attributes for local and global bookmarks. You can also view and delete
bookmarks from the database in this dialog.

The desired attributes for both local and global bookmarks are selected in the
Bookmarks dialog:

B When bookmarks are visible (i.e. Show visible bookmarks options are turned
on), a marker appears in the left margin of each line that has a bookmark. (As
described in the section Graphical Bookmark Images.)

B When prompting is selected, a prompt for an optional bookmark name appears
when a bookmark is dropped. This option only applies for bookmarks that are
dropped using the applicable key combination for the current keymap.

248 11- Search and Replace and Navigational Tools

B The options in the Mark Name Database section request that named marks be
maintained in a database for future sessions and control how those saved names
will be used in the future.

B The Save Current Position and Restore Current Position options save and
restore the 'current position' of documents when those documents are closed.
These positions are maintained in the bookmark database. The 'current
position' entries in the database are never deleted unless Delete entries older
than threshold is checked, in which case the current age specification applies.

Bookmarks Window

The Bookmark Window is a tab on the Project Window. It gives a view of local and
global bookmarks defined in your documents. Clicking on a bookmark in the
window moves you to the bookmark's document and location. The contents of the
bookmarks database, and other bookmark options are found on the Bookmarks tab
of the Customize | Environment dialog.

Bookmark Window

Project -]
EA\ew32\CWSTART \browse.c

{3 Global Bookmarks
Q1 GlobaMark
3 browse.c
1 LocalMark
[| cwiight ini
© 1 GlobaMark
3 funct.bak
£3 main.htm
£2 personal htm
3 pict htm
{2 POST tel
(9 README.TXT
{2 testtat
3 update.txt

[« |]

[~ Auto-Expand/Collapse
6z] Jo |2 5 |

Bookmarks Window: Global Bookmarks

Global bookmarks are listed Bookmarks Window under the Global Bookmarks
heading, regardless of the document they are located in. The entry for the global
bookmark shows:

B The bookmark number,
B The bookmark name, if one was given,

B The name of the document in which the bookmark is found.

11- Search and Replace and Navigational Tools 249

Bookmarks Window: Local Bookmarks

Local bookmarks are listed in the Bookmarks Window under the name of the
document in which they are found. The entry shows:

B The bookmark number,

B The bookmark name, if one was given.

Double-click on the document heading to make it the active edit buffer.

Bookmarks Window: "Other Documents" Node

The Other Documents (not loaded) heading at the bottom of the Bookmark Window
lists files that are not loaded but have entries in the bookmark database. Each file
under the Other Document heading lists individual named marks associated with
the file and the datestamp of the mark. Double clicking on one of the files loads it.
The file will be grayed if it does not exist (and the double-click action described will
not occur).

Auto-Expand/Collapse

When the Auto-Expand/Collapse checkbox at the bottom of the Bookmark Window
is checked, changing from one document to another will automatically close one list
of bookmarks and open another for the newly current document. This saves a step
when you want to view a list of bookmarks. When the box is not checked, you
control when the bookmark lists open and close.

Button Links

Button Links are special action buttons that CodeWright lets you embed in your text
files. You may use them to view bitmapped images, bring up related documents or
spreadsheets, run macros or just to make notes. To any other editor, it is still just a
straight text file, and because the buttons are placed in comments, source code files
compile as they normally would. Button Links are a navigational tool in that they
maintain the current position of the file while the link goes to a different position or
file.

How it Works

You select the type of link and the text that will appear in the button. CodeWright
uses this information to create an index entry for that text, and places it into the text
file with a special 3-character prefix and suffix. Comment prefixes and suffixes are
used as you indicate. The index entry refers to an entry in a database that indicates
what the button link does.

250 11- Search and Replace and Navigational Tools

What you See

When you have turned on the View Links option in Customize | View Setups, you
will see a 3D-style button containing the text you specified, and a notation indicating
what type of link it represents. Click on the button and the associated action is
performed.

Defining Buttons

Button Links are defined in the Insert Link dialog, which is accessed by clicking
Insert Link on the Edit menu. Enter your button’s text (which must be unique),
select the link type, and enter the appropriate text to be associated with the button.
The nature of the associated text depends on which link type you select.

Using buttons you can perform six different categories of actions:

Templates -- Templates allow you to insert text, prompt, move the cursor, or
execute a series of actions. For templates, the associated text is the contents of a
template to execute, such as those supplied to the ExtExpandTemplate function.
(For more information about CodeWright templates, see the chapter on Editing
& Printing.)

Macros -- Macros allow you to execute any API command that is available
interactively. The text associated with a Macro link is the function call. It is
limited to a single function.

Document — The document link allows you to run the program associated with
a file type, to view or modify that document. The document might be a
bitmapped diagram or a word processor file. In this case, the text associated
with the button is just the filename of the document.

Application — The application link lets you define any arbitrary command line
to be executed when the button is pressed.

URL Button Links jump to a specified Web Address (URL) by issuing a shell
command. The Web Page comes up in your default browser. This type of link
could also be used for other shell commands.

Popup Note links come in two flavors: standard notes and “to do” notes. These
two types of notes are essentially the same. Providing two link types for notes,
however, gives the buttons a different appearance and allows you to sort “to do”
notes separately from other notes, when viewing the list of defined links.

11- Search and Replace and Navigational Tools 251

252 11- Search and Replace and Navigational Tools

Chapter |12

12- Checking and
Reformatting Files

When you are finished editing a difference, it may be necessary to check and
reformat the file. You might also wish to compare and/or merge the finished file
previous versions. For these purposes, this chapter covers the following formatting
and file-checking tools:

W Differencing
B Merging

B Format Source
B Spell Check

Differencing

CodeWright has a fairly sophisticated differencing feature that can be used directly
from within the editor; it is not an external application. CodeWright's differencing
feature offers several advantages over other differencing utilities:

v The editing features on the Side-by-Side Difference Window offer convenient
and easy ways to selectively merge and edit two similar documents.

v The Difference Controls allow for easy navigation between differences.

v Differences can be recomputed after changes are made, and the documents
being differenced can be immediately accessed at any point that direct editing is
necessary.

If one's editing requirements include frequent comparisons of files, CodeWright's
differencing feature offers an ideal solution.

CodeWright's differencing can be done either side-by-side or interleaved. The
following sections describe these two differencing methods.

12- Checking and Reformatting Files 253

Interleaved Differencing

CodeWright's Interleaved comparison merges two documents and places them into
a new, separate document that can be edited and saved apart from the original

documents.

Difference Analysis Dialog for Interleaved Differencing

All differencing in CodeWright can be initiated from the File|Difference dialog. To
do an interleaved difference, choose the Interleaved option.

Difference Analysis (Interleaved)

Difference Analysis [x|
 Reference File ~Settings———————
|CACW3\CUANcuac =] | | @ linterleaved

@ File € Document Browse... I Original File I

r Target File W Intradine
[CACW32\CUANcua.c | I~ words
I Compressed
€ File Document Browse... Cuuen!roumenlI I et
Default name: rlgnoe———
’7 ' CurentDocument ¢ History Entries ‘ I~ All whitespace
™ Leading whitespace
0K I Cancel | Help | I Case
4
Note: When the Interleaved option is marked, the Show Sections, Copy

Sections, Intraline, and Words options in the dialog will become
disabled (those options are specifically related to Side-by-Side
Differencing).

Do the following in preparation for using interleaved differencing:

1. Set the desired differencing options. The Compressed, Ignore White space,
and Ignore case options are available, and provide the following functionality:

B Compressed: displays only the parts of the files that are different.

B Ignore- All Whitespace: causes all differences in white space to be ignored.

B Ignore- Leading Whitespace: ignores differences in white space at the
beginning of all lines.

B Ignore- Case: disregards any differences in case between the documents.

2. Mark the Restore on Startup option to tell CodeWright to perform the current
difference operation the next time CodeWright is started. This option saves a
step for on-going differencing projects that may take more than one day.

254

12- Checking and Reformatting Files

Select from the File and Document radio buttons to determine what files will be
displayed when the Browse button is pressed. (The Browse button is used to
browse for files to be compared.)

W If the File radio button is on, the files displayed will be files that reside
anywhere on your system.

B If the Document radio button is on, the files displayed will be those that are
loaded in CodeWright.

Choose the files to be compared. Two files are needed when doing a difference,
a Reference and a Target file.

B The Reference file is normally used as the basis of comparison. It is usually
the older of the two files. If comparing the current file with the same file on
disk, just press the Original File button and its name will be inserted into
the Reference field.

B The Target file is the file to which the Reference file is compared. It is
usually the newer of the two files being compared. If comparing the
current document with the reference, just press the Current Document
button, and the appropriate filename will be inserted in the Target field.

The Default Names section of the File | Difference dialog offers two features
that help reduce the number of steps needed to browse for the files that will be
differenced. Choose from the following;:

B When the Current Document radio button is selected, the files displayed in
the Reference and Target fields will default to the document that is
currently loaded in CodeWright.

B When History Entries is chosen, the files in the Reference and Target fields
will default to the last files chosen when last in the File|Difference dialog.

Press OK to initiate the differencing. The differences will be displayed in a
separate, interleaved document in CodeWright. The interleaved document is
described next.

Interleaved Document

The title displayed in the interleaved document will be a combination of the names
of the Target and Reference files.

Example: If two files, FOO1.C and FOO2.C, are being compared using the
Interleaved option, the title of the resulting interleaved window
would look something like: FOO1.C->FOOQO2.C

12- Checking and Reformatting Files 255

The resulting interleaved document contains lines from both documents:

B Thelines that are the same in both documents will have normal coloring in the
interleaved document.

B Lines that have been added to the Target file will be preceded by plus signs (+).
Lines that have been deleted will be preceded by minus signs (-). The added
and deleted lines will also be displayed in different colors from each other and
the rest of the text.

B An exclamation point (!) will precede those lines that differ in white space only,
if options to ignore white space have been chosen.
Side-by-Side Differencing

The Side-by-Side difference is shown in a separate tab of CodeWright's Output
Window (labeled Difference). Limited editing is allowed in the Side-by-Side
Difference Window, with utilities provided for navigating the differences shown.

Difference Analysis Dialog for Side-by-Side Differencing

To compare two files using CodeWright's Side-by-Side differencing, go to the
File|Difference dialog and mark the Side-by-Side radio button.

Difference Analysis (Side-by-Side)

Difference Analysis | |
r~ Reference File - Setting:
|CACW32\CUANcua. |
@ File € Document Browse... I Original Eile |: T
™ Copy sections
r Target File 2 Intra-line
[CACwa2\CUANcua | I~ Words

™ Compressed

 File Document Browse.. | CurrentDocument | B G nea
Default name: rlgnore———
’7 ' Current Document € History Entries ‘ ™ Al whitespace

™ Leading whitespace

0K I Cancel Help | ™ Case

Z

256 12- Checking and Reformatting Files

To perform Side-by-Side differencing, complete the following steps:

1.

When Side-by-Side is marked, four options will be made available that were not
available for the Interleaved difference: Show Sections, Copy Sections,
Intraline, and Words. These options are specifically related to the Side-by-Side
differencing. Mark desired options according to the descriptions provided:

B Mark Show Sections to have differing sections of the two files being
compared completely highlight. If it is not marked, only left margins of the
portions that are different are highlighted.

B Mark Copy Sections to control how lines can be edited on either side of the
Difference Window. If it is marked, whole sections can be deleted or copied
from one side to the other. If it isn't marked, only one line at a time can be
copied.

HW Mark Intraline to show the parts of the lines that are different, rather than
just flagging the whole line as being different.

B Mark Words to keep the Intraline option from displaying every single
character that differs in either document. It limits the display to show only
the whole words that differ.

Complete the Compressed, Ignore and Restore on Startup options in the same
way as for an Interleaved difference operation (refer to the previous topic
Interleaved Differencing).

Choose the files to be compared for a Side-by-Side difference using the same
process used for interleaved differencing. The Browse buttons are controlled by
the File and Document radio buttons, and the default Reference and Target
filenames are controlled by Current Document and History Entries radio
buttons in the Default Names section of the dialog.

When you have set the File|Difference dialog with the desired files and
settings, click OK to display the files, side by side, in the Difference tab of
CodeWright's Output Window.

Side-By-Side Difference Window

The Side-by-Side Difference Window shares common vertical and horizontal
scrollbars to facilitate synchronized scrolling between the two documents. Note the
following characteristics of the Side-by-Side comparison:

12- Checking and Reformatting Files 257

B The Side-by-Side Difference Window uses colors in the left margin to mark the
points where the two files differ (If the Show Sections option has been marked,
the differing text-sections will also be highlighted).

v With the standard color scheme, inserted lines will be marked with red,
modified lines are marked with blue, and deleted lines are marked with
black in the left margin.

v/ When intraline differencing is turned on, you will also see the differences
within the line marked as blue or modified.

v Lines that are common to both documents receive normal text colors.
B You will see these three patterns of text in the two windows:

v Normal text in both windows.

v Textin one window, blank line in the other.

v/ Marked text in both windows.

View Mode

When you are presented with the Side-by-side Difference Window, it is initially
in "view only" mode. This mode allows you to see the differences but not to
change the contents of either document. You may go to a location in either
document and edit the file in the normal editing window, but this will not be
reflected in the differencing window. The window can be changed to "editing"
mode by clicking on the center-most button Ed
Window's toolbar button.

in the Side-by-Side Difference

View Mode Toolbar
? [Rf)c| B2 1|« »|p]

There are several buttons on the "view mode" toolbar that are worth describing.
The buttons are described below (in order, from left to right).

258 12- Checking and Reformatting Files

B The Question Mark il accesses Help for the Difference Window.

[0
B The Recompute Differences button —‘ZDl prompts to save the files contained
in the Difference Window, saves them if desired, then recomputes the
differences between the two files with the latest changes.

B The Go To File... button @ loads the file from the window in which the
cursor sits into a CodeWright buffer. The cursor is positioned at the
corresponding location, preparing the file for direct editing.

B The Change to Edit Mode...button changes the Side-by-Side
Difference Window to editing mode. The side-by-side edit mode is
described in the next section.

LIRINAL]

B The Difference Control (triangular arrow) buttons are described in

the topic entitled Difference Controls.

Edit Mode

Side-by-Side differencing allows limited editing to be done directly in the
Difference Window. The editing features available in the Side-by-Side
Difference Window are convenient for quickly moving lines and sections of text
within and between the two Difference Windows. In order to maintain the
integrity of the Side-by-Side difference, direct editing (i.e. typing) in the
Difference Window is not allowed. The Difference Window initially displays in

the view mode, as described above. The Change to Edit Mode button on the
Difference Window's toolbar toggles the Difference Window to edit mode, and
back.

Edit Mode Toolbar

? || & W O <= |we]uin] = | .|

The edit mode buttons are described below (in order, from left to right).

12- Checking and Reformatting Files 259

260

The Question Mark button il brings up Help for the Side-by-Side
Difference Window.

1
The Copy Changes to Document button E‘ copies the edits in the current
Difference Window to the corresponding document.

The Save Changes button EI saves the changes made to the current
compared document.

LIRINAL]

The Difference Control (triangular arrow) buttons are described in

the topic entitled Difference Controls.

The Change to View Mode button EI changes the window to view mode,
as described in the topic View Mode, in this chapter.

The Copy selected lines to left button E‘ copies inserted lines or sections
from the right pane of the Difference Window to "deleted" (empty) or
modified lines on the left. If no lines are selected, the current line is copied.
If the Copy Sections option was selected when the difference operation
was invoked, the current section is copied. After the copy, the selected lines
are part of the text common to both files. If the lines are already part of the
text common to both, the operation fails.

The Copy selected lines to right button il copies inserted lines or sections
from the left pane of the Difference Window to "deleted" (empty) or
modified lines on the right. If no lines are selected, the current line is
copied. If the Copy Sections option was selected when the difference
operation was invoked, the current section is copied. After the copy, the
selected lines are part of the text common to both files. If the lines are
already part of the text common to both, the operation fails.

The Delete Selected Lines button E‘ deletes the selected lines in a
window. The deleted lines are not removed, but rather are marked
“deleted” and left empty. You may wish to do this in preparation to moving
lines in the adjacent window. Add as many deleted lines as you like. They
will not show up in the saved file.

The New Deleted Line button ._I'l inserts newly "deleted" blank lines in
both windows. You may wish to do this in preparation to shifting lines up
or down. Once again, add as many deleted lines as necessary. They will not
show up in the saved file.

12- Checking and Reformatting Files

|
B The Move Selected Lines Up button —I moves the selected line up one
line. If no lines are selected, the current line is moved. To use this button,
there must be a deleted line above, or the line shifted must be a deleted
line.

B The Move Selected Lines Down button |4| moves the selected line down
one line. If no lines are selected, the current line is moved. To use this
button, there must be a deleted line below, or the line shifted must be a
deleted line.

Difference Controls
The Difference Controls are displayed on the top of the Side-by-Side
Difference Window as 4 triangular black arrows that point to the left and right

A They are used to view the various areas of difference between the two
documents.
W Press the far right arrow ﬂ to jump to the last difference in the two files.

W Press the far-left arrow ﬂ to jump to the first difference.

W Theleft il and right _>I arrows in between go to the immediate next and
previous differences, if there are any.

Toggling between the Two Panes of the Difference Window
There are three key-sequences for moving back and forth between the two
panes of the Side-by-Side Difference Windows:

] [TV, moves to right window (next).
[[SHETfP 1, moves to left window (previous).

[[SHFT)f 1, moves to other window (next & wrap).

Key-sequences for the Difference Window can be customized using the function
CWDiffKmapAssign in the [KmapAssign] section of CWRIGHTINL

Using Difference Utilities

CodeWright has several difference APIs that allow the user to access the difference
features without using the mouse to go to the File| Difference dialog. A list of these
functions can be found by doing a search for the keyword Differencing in
CodeWright's Help | Search For Help On... dialog. These functions are available for
use from CodeWright's Tools | API Command key, for binding to custom keystrokes,
buttons or menu items, or to use in custom CodeWright DLLs or macros.

12- Checking and Reformatting Files 261

Merging

The Merge Files dialog allows you to specify three files for comparison, and the
name of the file that is to contain the merged changes. By merging files you can
determine if there are conflicts between changes made to two or more versions of a
file.

Using the Merge Files Dialog
To use the Merge Files dialog:
1. Select the File menu.

2. Choose Merge. The Merge Files dialog displays.

Merge Files

Merge Files [X |
— Base File
¥ Synchronize Histories
| |
& File ¢ Document Browse... | Original File I
— Revision 1
& File ¢ Document Browse... | CurrentDocumentl
— Revision 2
| |
& File Document Browse... I CurrentDocumentl
r~ Output File
[~ Overwite File
= Browse...
[V EditFile _I
0K Cancel Help
| b |

3. Complete the following fields:

B Base File: The first filename you must enter is the name of the Base File.
This is the file from which the two revisions were derived. (Usually this is
the oldest of the three files.)

262 12- Checking and Reformatting Files

B Revision 1 and Revision 2: These files are both revisions of the Base File. It
does not matter which revision you specify as Revision 1 and which you
specify as Revision 2; the outcome of the merge is not materially affected.
You may, however, wish to establish a convention for your own use that
Revision 1 is "mine" and Revision 2 is "theirs", or that Revision 1 is older
than Revision 2.

Note: For the Base File, Revision 1 and Revision 2 fields:

v You may type in the name of the file, or select the Browse button
to locate the desired file on disk or select from the document list.

v/ You may place the name of the file, from which the current
document was read, into this field by pressing the Original File
button (for the Base File) or the Current Document button (for the
Revision files).

v The File and Document radio buttons allow you to specify
whether CodeWright should look for this file on disk, or whether
it has already been loaded into a document.

B Output File: In this box, specify the name of the file to contain the output
from the Merge. You may type in the name of the file or select the Browse
button to locate a file on disk. This merge file is always written to disk,
rather than just being placed into a document as the Differencing function
does. (Refer to the topic Differencing, in this chapter.)

B Overwrite File: Check this box to tell CodeWright to overwrite a like-
named file when creating the output file.

If you do not check the Overwrite File option, and a like-named file exists,
CodeWright will prompt you for permission to overwrite the file. If you
don't give this permission, CodeWright aborts the merge.

W Edit File: Check this box to load the output file for viewing and editing at
the end of the operation.

B Synchronize Histories: Select this option to have CodeWright try to
anticipate selections from the history lists. When you select the Base file
from the history list, it automatically selects the Revision 1 and Revision 2
files that you used with that Base file last time.

Merge Output

The Merge function will alert you if it found any conflicts in the two sets of changes
itis merging. If no conflicts were reported, editing the file is probably not necessary.
Chances are, you will want to look it over in any case. When you do have conflicts,
you will need to know how to find them in order to resolve them.

12- Checking and Reformatting Files 263

Merge uses a series of ten dashes to separate the conflict area from the rest of the file.
This enables you to search for conflicts in your file using the regular expression " ™ --
-------- ". This pattern will match ten dashes at the beginning of a line. Each line
containing a message from the Merge function will begin in this manner. You will
need to delete these lines after resolving the conflict.

The Merge function provides the following information:

B The first message from Merge identifies the conflict by number, names the Base
File, and indicates that the Base File was read from disk (file).

B The next message introduces the section of the Revision 1 file that conflicts with
Revision 2. It also gives the filename and indicates the origin of the file (File or
Document).

B Theline or lines between this message and the next message from Merge are
taken from the Revision 1 file.

B After the lines from Revision 1 there is a message from the Merge function
introducing the corresponding section from Revision 2. Again Merge indicates
the filename and origin.

B Between this message and the "End Conflict" message are lines that need to be
compared with those from the Revision 1 file to see how the conflict should be
resolved.

On occasion, you may find that the section of conflicting line from one revision or
the other contains zero lines. This is an indication that the lines were deleted in one
revision and changed in the other. (An empty conflict section will represent the
revision from which the lines were deleted.)

Once you have resolved the conflict and deleted the message lines you are ready to
search for any further conflicts.

Removing Changes with Merge

Merge can also be useful when your development has been a linear progression,
rather than simultaneous revisions (branching).

Example: A bugmay have been introduced from changes made at some point
in the past. Merge allows those changes to be removed without
abandoning the changes made since.

Usually, the Base File is the oldest of the files used in a Merge comparison, but it
need not be. When removing changes, the Base File is a middle revision that looks
backward at changes to be removed and looks forward at changes to be retained:

1. When selecting the Base File, select the first revision following the changes you
want to remove.

264 12- Checking and Reformatting Files

2. Next select the most recent revision of your file as Revision 1.

3. For Revision 2, choose the revision just before the change you want to remove
was introduced.

This may at once appear to be magic, but it is not. Compared to the Base File, the
Merge function will see one set of changes that removes the bug, and another that
adds other changes. Since the Base File and the Revision 1 file both contain the bug,
the file without the bug (Revision 2) will look like a change made to a single revision.
As such, the bug fix will quite likely be automatically incorporated into the resulting
file.

Format Source

For your C, C++ and Java source files, CodeWright provides functionality called
Format Source. This allows you to select a block of code, and reformat it based on a
pre-defined set of criteria (this is also known as beautifying the code).

Setting up Your Formatting Criteria

Before you can use the formatting capabilities within CodeWright, you must
establish certain criteria for CodeWright to use. This is done on the Format tab of the
Language dialog.

To access this dialog:

1. Select the Customize menu.

2. Choose Language.

3. Highlight .C, .CPP or .JAVA in the File type box. The criteria you set will only
apply to the file type you have chosen here.

4. Click on the Format tab. The following dialog displays:

12- Checking and Reformatting Files 265

Customize | Language | Format

File type:

.cpp

.CHK
h
-hpp
-htm
.html
ini —
java

.mac v

Mapped to:
<None>

New Type...

Nen e, |
Delete Type |
MepTypeto. |

Map Type to...

Templates I Coloring I CodeSense | Format I Comments | _11_']

r Indentation "~ Enable block alignment
Broken expression: |1 ﬁ ¢ Unindented black
€ Line saver
Brok ter list: |1 — N
e ﬁ € |ndented block

Other broken lines: |1 @ I Cuddeel
Cuddle else

Switch labels: ID E I~ Align function

—Modify Space

‘You may use this dialog to
[~ After keyword: IIII E tell Codewright how to
format your source code.

I~ Around expression: ||j| — Select a region in the current
&5 }Ei edit buffer, then choose

o ||- A Format Source from the Text
™ After function 2 E menu. Your source code will

;g I— a be arranged according to
™ Around parameter list. [0 d the settings prescribed here.

0K Cancel Help
ok |

Complete fields in the following groups:

B Indentation: The settings in this group modify how many tab stops to
indent each item:

v

266

Broken expression — When an expression spans more than one line,
indicate how much additional indentation to give to the continuation
line or lines.

Broken parameter list — When a parameter list spans more than one
line, indicate how much additional indentation to give to the
continuation line or lines.

Other broken lines — When a statement other than an expression or
parameter list spans more than one line, indicate how much additional
indentation to give to the continuation line or lines.

Switch labels — Indicate how much additional indentation to give case
items (labels) within a switch statement.

12- Checking and Reformatting Files

B Modify Space: These choices, when enabled, indicate how many spaces
you want surrounding certain items:

v After Keyword — Indicate how many spaces you want to follow a
keyword (reserved word or standard function). These keywords are
those recognized by CodeWright for Language ChromaCoding.

v Around Expression - Indicate how many spaces you want
surrounding an expression.

v After Function — Indicate how many spaces you wish to have
following the end of a function name, preceding the opening
parenthesis.

v Around Parameter List -Indicate how many spaces you want
surrounding a function call's parameter list.

B Enable block alignment: Tell CodeWright whether or not you want it to re-
align code blocks during reformatting. If enabled, you can select which
type of alignment to use. If disabled, CodeWright leaves block indentation
alone. (Refer to the online help topic Align Tab for a schematic of the
alignment options and popup help descriptions for each.)

v/ Cuddle Else - Tell CodeWright whether or not to put the "else" portion
of an "If..else" construct on a line by itself or to "cuddle" it up next to the
closing brace it follows.

v Align Function - Often, the braces that begin and end a function
definition do not conform to the same alignment rules as the braces
within a function. When that is the case, leave this checkbox
unchecked, and CodeWright will not alter their location. To cause
them to conform to the alignment type selected in this group
(Unindented block, Line saver or Indented Block), just check this box.

Using the Format Feature

Once you have set the criteria for the type of file you are using (C, C++ or Java), you
are ready to reformat. Complete the following steps:

1. Open the file to be formatted.

2. Select the block of code to format. If you wish to format the entire file, choose
Select All from the Edit menu.

3. Once the desired section is highlighted, select the Format Source option from
the Text menu. The formatting should now occur automatically, based on the
settings in the Customize | Language | Format dialog.

12- Checking and Reformatting Files 267

Spell Check

CodeWright uses Wintertree Software's Sentry Spelling Checker Engine for its spell-
checking operations. The spell-checker is language-specific and supports languages,
such as C, C++, Java, Pascal, Basic, and x86 assembly language out-of-the-box.
Additional language support can be added with intermediate programming skills in
the implementation language of choice and a thorough understanding of
CodeWright API extension mechanism. The spell-checker's language variability is
limited, by default, to recognizing comment and string components when spell
checking is requested to be restricted to those components.

In addition to being language-specific, CodeWright spell checking includes multiple
dictionaries, and options for suggesting alternate spellings, replicating capitalization,
suggesting split words when accidentally omitting spaces, and suggesting alternate
words based on the current word's phonetics. The purpose of this section is to
describe CodeWright's spell-checking dialog. For more information on extending the
spell checker’s capabilities, see CodeWright's online help.

Check Spelling

Click the Spell Check... option on the Tools pull-down menu to access the Spell
Check dialog. Extensive online help is available for specific Spell Check options;
search for the online topic Spell Check. The dialog has four tabs, which are described
below:

General Tab of Check Spelling

The General tab allows you to set the basic rules for your Spell Check operation.

Tools|Check Spelling | General

l ‘Word Format | Advanced I Documents I

r Basic Options

—Scope

€ Current Word Only

% Entire Document
I™ Restrict to Selection
™ Restrict to Strings
™ Restrict to Comments

[V Suggest Alternate Spellings
¥ Replicate Capitalization
™ Suggest Split Words
™ Phonetic Suggestions

I~ Allow Auto-correction

[~ Case Insensitive

[~ Detect Repeated Words

Edit Dictionaries...

Begin I Resume I

Cancel

Help

268

12- Checking and Reformatting Files

B The Scope section of the General tab offers the option of checking the Current
Word only, or the Whole Document. If the choice is to check the Whole
Document, there are additional options for restricting the scope to a Selection
only, Strings only, or Comments only.

B The Suggest Alternate Spellings option determines whether similarly spelled
words should be listed if the word being checked is not found in the dictionary.
When this option is enabled, the Replicate Capitalization, Suggest Split Words,
and Phonetic Suggestions options become available.

B The Allow Auto-correction option enables/disables the auto-correction feature.

(If turned off, an auto-correct entry in the dictionary will be treated as if it is a
conditional replacement.)

B The Case Insensitive option retains the case of the word being replaced.

B The Detect Repeated Words option allows for detecting accidentally repeated
words such as 'the the' and suggesting 'the' as a replacement. The detection will
occur only if there are no characters other than space and tab between the
words.

Word Format Tab of Check Spelling

The Word Format tab lets you control what characters are accepted when words are
being retrieved for checking. The options chosen here, along with options chosen in
the Scope section of the General tab, govern how the spell checker retrieves a word
for checking. They do not affect the decision the spell checker makes to ignore a
word (i.e. to consider a word correctly spelled). Characters that qualify for inclusion
are collected based on these options. The character collection continues until a non-
qualifying character is encountered.

Tools | Check Spelling |Word Format

Advanced I Documents I

General |

r~Allowable Word Characters

¥ Possessive Forms ('s and §')
I~ Embedded Apostrophe

™ Traiing Apostrophe

[V Embedded Hyphen

™ Embedded Period

™ Underscore

™ Leading Digit

™ Non-leading Digit

I~ European Character Set

Edit Dictionaries... Begin | Resume I Cancel Help

12- Checking and Reformatting Files 269

The options are:

B Possessive Forms ('s and s') - When enabled, the indicated sequences ('s and s')
are included as parts of words to be checked, but only if they occur at the end of
the word and are preceded by a letter. Use this option if you only want
apostrophes to be considered parts of words when they are immediately post-
or preceded by 's'.

B Embedded Apostrophe - When enabled, apostrophes are included as parts of
words to be checked, but only when the apostrophes occur between two letters.

B Trailing Apostrophe - When enabled, apostrophes are included as parts of
words to be checked, but only when the apostrophes occur at the end of words.
This option differs from Possessive Forms in that it considers apostrophes
viable word-characters even if the character that precedes them is NOT an 's'.

B Embedded Hyphen - When enabled, hyphens are included as parts of words to
be checked, but only when the hyphens occur between two letters.

B Embedded Period - When enabled, embedded periods are included as parts of
words to be checked, but only when the periods occur between two letters.

B Underscore - When enabled, underscores are included as parts of the word to
be checked. They are therefore included in the set of characters that the spell
checker considers when discerning what words need to be checked.

B Leading Digit - When enabled, words that begin with a digit are included as
parts of words to be checked.

B Non-leading Digit - When enabled, words with embedded digits (i.e. digits that
appear anywhere other than in the word's first position) are included as parts of
words to be checked.

B European Character Set - When enabled, alphabetic characters above 0x7f
(European character sets) are included as letters for the spell checker to check,
additionally 0x92 may serve as an apostrophe.

There is also an API that allows the specification of additional characters that should
be considered alphabetic and therefore allowed in words. The APIis

void SpellWordChars (LPSTR charSet);

For more information on CodeWright APIs, consult CodeWright's online help.

270 12- Checking and Reformatting Files

Advanced Tab of Check Spelling

The Advanced tab has options that specify that words containing certain character
sequences should be considered correctly spelled. Note that some of the options in
the Advanced dialog will only work if corresponding options on the Word Format
tab are also enabled. The options on the Word Format tab tell the spell checker to
include certain characters when deciding what characters are parts of words. If the
spell checker does not know that those characters are words, it won't use the options
on the Advanced tab to spell check them. For example, marking With Digits tells
the spell checker to check the spelling of words containing digits. However, it will
only work if digits are first known to be parts of words. Therefore, when With
Digits is marked, either or both Leading Digit and/or Non-leading Digit must also
be marked on the Word Format tab.

Tools | Check Spelling | Advanced

Check Spelling [%}
General | Word Format | Documents |
rlgnore Words—————————— [~ Language Options
[~ With Digits [~ Allow Word Hyphenation
[~ With all Letters Capitalized [~ Allow Word Contraction
I~ With Mixed Case Letters I~ Allow Word Concatenation
I~ With Initial Capital Letter [~ Stip Possessives

Edit Dictionaries... I Begin I Resume I Cancel Help

The options in the Ignore Words section are:

B words With Digits

B words With All Letters Capitalized

B words with unusual capitalization, or With Mixed Case Letters (e.g. BlueSky)
B words with Initial Capital Letters (first letter capitalized)

The Language Options section controls how the spell-checker processes words
when searching for them in the dictionaries. The options are:

H Allow Hyphenation - When enabled, the spell checker will check the spelling of
all parts of words containing hyphens. If all the parts are correct, the whole
word is considered correctly spelled, and is therefore ignored by the spell
checker. This option will only work if Embedded Hyphen is also marked on the
Word Format tab.

12- Checking and Reformatting Files 271

H Allow Contraction - When enabled, the spell checker will spell all parts of
words containing apostrophes. If all the parts are correct, the whole word is
considered correctly spelled, and is therefore ignored by the spell checker. This
option will only work if Embedded Apostrophe is also marked on the Word
Format tab.

H Allow Concatenation - When enabled, the spell checker will look for
component words within a word. For example, braveheart would be
considered correctly spelled because it consists of two correctly spelled words.
This is most useful with languages such as German that allow ad hoc
concatenation of words to form new words.

B Strip Possessives - When enabled, the spell checker will remove 's and s' from
the ends of words before checking them. This is most useful with English and
should be used in conjunction with the necessary word format options.

Possessives are stripped from words with forms similar to the following;:

Example: Bordeaux' = Bordeaux
Lions' = Lion
Children's = Children

Strip Possessives will only work if the following option or combination of options is
enabled on the Word Format tab:

v/ Possessive Forms, or

v Both Embedded Apostrophe and Trailing Apostrophe, or

v Possessive Forms, Embedded Apostrophe, and Trailing Apostrophe.

Documents Tab of Check Spelling

The Documents tab of the Check Spelling dialog displays a list of the files currently
open in CodeWright. Files can be selected from the list for spell checking. All
documents can be selected by clicking Invert. Selections can be cleared using the
Clear button. An asterisk (*) preceding the file name indicates that language-
dependent comment/string checking is available.

272 12- Checking and Reformatting Files

Tools|Check Spelling| Documents

1 of 2 selected

General | ‘Word Format | Advanced |

* CACWI2\CUANCua.c
I [B\cob.h

Clear I
Invert I

* indicates comment/string checking is available.

Edit Dictionaries... I Begin I Resume I Cancel Help

Dictionaries Dialog

Clicking the Edit Dictionaries button in the Check Spelling Dialog accesses the
Dictionaries Dialog. The Dictionaries dialog is used for adding and editing
dictionaries that will be used by the spell-checker. The Dictionaries dialog imparts
the ability to do the following:

M Designate which dictionary to use for certain documents.

W Transfer words between the currently selected dictionary and a text file using
the Import and Export buttons.

B Create new spell-checker dictionaries on the fly in the New Dictionary dialog
(accessed by clicking the New File button in the Dictionaries dialog).

Dictionaries

The Sentry Spelling Checker engine uses both text and compressed dictionaries.
Some dictionaries are contained in the Spellchk subdirectory of the CodeWright
home directory. The text dictionaries are faster to access but they use disk space less
efficiently for the amount of words they hold. For the standard language
dictionaries, the text dictionary contains hundreds of short and commonly used
words. The compressed dictionaries contain 100,000 or more other words. Text
dictionary entries should be in alphabetical order and are editable using any text
editor.

12- Checking and Reformatting Files 273

These are the dictionaries that are currently available for CodeWright's spell checker:

ACCENTTLX is a dictionary for English words containing accented characters.

CORRECTTLX is an optional dictionary containing several hundred common
misspellings and their auto-correct replacements.

HTML.TLX is an optional dictionary that gives HTML keywords.

SSCEAM.TLX and SSCEAM2.CLX are text and compressed dictionaries,
respectively, for American English.

SSCEBR.TLX and SSCEBR2.CLX are text and compressed dictionaries,
respectively, for British English.

SSCEFLTLX and SSCEFI2.CLX are text and compressed dictionaries,
respectively, for the Finnish language.

SSCEFR.TLX and SSCEFR2.CLX are text and compressed dictionaries,
respectively, for the French language.

SSCEGE.TLX and SSCEGE2.CLX are text and compressed dictionaries,
respectively, for the German language.

SSCEITTLX and SSCEIT2.CLX are text and compressed dictionaries,
respectively, for the Italian language.

SSCESPTLX and SSCESP2.CLX are text and compressed dictionaries,
respectively, for the Spanish language.

SSCESW.TLX and SSCESW2.CLX are text and compressed dictionaries,
respectively, for the Swedish language.

USERDIC.TLX is a sample user dictionary.

For more information on CodeWright dictionaries and their use, refer to subtopics
under the index heading Spell Check in the online help.

274 12- Checking and Reformatting Files

Chapter 13

13- Custom Interface

This chapter discusses:

Dockable toolbars and windows.

Customizing and manipulating CodeWright's toolbars, buttons and menus.
Choosing and using keymap command sets.

Using and customizing mouse commands.

Reassigning keystrokes and mouse actions.

Recording keystroke macros.

Dockable Toolbars and Windows

CodeWright has a number of standard toolbars, and allows more to be defined. All
toolbars can be modified through a simple drag and drop interface and used in a
variety of ways. For example, toolbars can be docked or free-floating, always visible
or auto-hidden. The Customize | Toolbars dialog is where toolbars can be turned on,
created or modified, or otherwise manipulated.

Toolbars

Several default toolbars are available in CodeWright's Customize | Toolbars dialog.
Marking the Visible option for any highlighted toolbar on the Toolbars tab turns the
toolbar on. Other toolbar options on the Toolbars tab are:

Hide when application is inactive: The toolbar is only visible when CodeWright
is the active application. This is usually desirable for free- floating toolbars.

Always on top: Specifies that, when free floating, the selected toolbar or
window will not allow itself to be covered up by other applications or windows.

Allow Docking: When unmarked, the selected toolbar or window is prevented
from docking. If you have decided to use a toolbar or window exclusively in
free-floating mode, this will prevent accidental docking.

A brief description of the toolbars in the Toolbars dialog is provided next.

13- Custom Interface 275

B Standard Toolbar: The Standard Toolbar is turned on in CodeWright by default
and docked at the top of the CodeWright screen, under the main menu. A
description of the Standard Toolbar is provided in the Overview chapter towards
the beginning of the manual, under the section entitled A First Look.

B Build Toolbar: The Build Toolbar has buttons that can be used to run some of
the commands, like Compile and Build, that have been set up in Project|
Properties | Tools.

B Edit Toolbar: The Edit Toolbar has buttons that perform common editing tasks.
When it is turned on, it is positioned vertically with two buttons from left to
right and eight buttons down.

B Tools Toolbar: The Tools Toolbar has several buttons that perform various tasks,
like File Find, Differencing, Merging, etc.

B VCS Toolbar: The VCS Toolbar has buttons for performing various operations
with your defined version control program.

B HTML Toolbar: The HTML Toolbar is only available when HTML WYSIWYG
Editor/Viewer is marked in Customize | Libraries. It has buttons that perform
operations specifically designed for HTML files.

B AppBasic Toolbar: The AppBasic Toolbar has buttons that perform operations
that specifically apply to CodeWright's AppBasic macro language, described in
the chapter Extend CodeWright.

B Project Toolbar/Window: The Project Toolbar is actually a window that is
turned on and docked, by default, on the left-hand side of the CodeWright
screen. It has six tabs, File View, Outline, Objects, Bookmarks, File Open, and
CodeFolio, which are described in various sections of this manual.

H Output Toolbar/Window: The Output Toolbar is actually a window that is
turned on by default. It initially has seven tabs and is docked on the bottom
edge of the CodeWright screen. Three more tabs can optionally be added by
loading Add-Ons for the AppBasic and Perl macro languages, and for the
Clipboard/Scrap Viewer. Add-Ons are loaded using the Customize | Libraries
dialog. The tabs of the Output Window are described in various chapters in this
manual.

B MSDevSync: The MSDevSync Toolbar has buttons that aid the MSVC+ + 6.0
synchronization program. The buttons will execute the MSDev compile, build,
and toggle breakpoint commands, and synchronize the files open in
CodeWright with the MSDev IDE. More information on the toolbar can be
found in CodeWright's online help. CodeWright's Sync technology is described
in the chapter on Synchronization.

276 13- Custom Interface

B TICCSync: The TICCSync Toolbar has buttons that aid the Texas Instruments
Code Composer Studio synchronization program. The buttons will execute the
Code Composer compile and build commands, and they will synchronize the
files open in CodeWright with the Code Composer IDE. More information on
toolbar can be found in CodeWright’s online help. CodeWright's Sync
technology is described in the chapter on Synchronization.

Auto-hide Toolbars

CodeWright toolbars can be optionally set to auto-hide when they are docked. When
auto-hide is turned on, toolbars appear only when the mouse hovers over the area at
which they are hidden. CodeWright's toolbar-auto-hide option is turned on in
Customize | Toolbars | General. To set auto-hide, mark the option in the dialog that
corresponds to the edge (top, bottom, left, right) of the CodeWright screen that
contains the toolbar to be hidden. Any toolbars that are docked on an auto-hide-
enabled edge will auto-hide.

When a toolbar is hidden, a border with a small black arrow appears where the
toolbar should be. Running the mouse over any part of the border causes the mouse
cursor to change to an image of a hand. If the mouse cursor is allowed to maintain
that shape for a brief moment, the toolbar will appear. The size of the hidden
toolbar’s border can be increased or decreased by changing the number for Auto-
hide window size in Customize | Toolbars | General. Mark Display Docked Toolbar
Titles to have the names of auto-hidden toolbars display in the hidden toolbar’s
border.

What Does Dockable Mean?

A dockable window or toolbar can either be attached to one of the edges of
CodeWright's client area, or it can be “free-floating”. When the window or toolbar is
docked, it reduces the client area, and does not overlay other objects. When free-
floating, the window or toolbar may be placed anywhere on the screen and may be
resized to almost any shape, but can partially obscure other objects.

Toolbar Docking Precedence

The General tab of the Toolbars Customization dialog (Customize | Toolbars)
displays a conceptual image of the four CodeWright window-edges that allow
toolbar-docking. The overlapping edges in the image indicate toolbar-docking
precedence. Toolbars that are docked on edges with precedence will ‘push over', or
overlap toolbars that are docked on edges without precedence. Toolbar docking
precedence allows toolbars to take full advantage of the horizontal or vertical
expanse of a preferred edge.

13- Custom Interface 277

Enabling and Disabling Toolbars

Once any dockable toolbars or windows are enabled (visible), a shortcut is available
for setting the visibility status of such toolbars or windows:

1. Click with the right mouse button on any non-button part of the toolbar or
window’s frame.

A list of currently defined toolbars and dockable windows will pop up. The
items preceded by checkmarks are the ones that are currently visible.

2. To change the status of any of toolbar or dockable window, select it from the list.

If no toolbars or dockable windows are currently visible, do the following:
1. Select the Customize menu.
2. Choose Toolbars.
3. Select the desired toolbar from the list.
4. Check the Visible checkbox and press OK. The toolbar will become visible.

Docking and Moving Toolbars and Windows

You can dock or undock a toolbar or dockable window by double-clicking on any
non-button portion of its frame.

W If it was docked, it will become free-floating.
W If it was free-floating, it will become docked.
The exception is when the toolbar or window has never been docked before, and has

no default docking location. In this case it won’t know where to dock, and you will
need to dock it manually.

Docking a Toolbar or Window Manually
You can manually dock and undock these objects by dragging them with the mouse:

B Drag a free-floating window by a part of its frame or part of its interior that is
not used by any toolbar items (like buttons or the title bar) to dock it. It will
automatically dock when placed over the edge of the client area.

B Drag a free-floating window by its title bar to keep it from docking,.

When you drag a free-floating toolbar or window to the edge of CodeWright's client
area, you will notice a change in the mouse cursor. A small square with a plus sign in
it will appear at the base of the arrow. This is to tell you that if you drop the object, it
will dock. The outline of the object you are dragging will indicate what orientation it
will take when dropped.

278 13- Custom Interface

Undocking a Toolbar or Window

To undock a toolbar or window:

1. Point the mouse at any non-button portion of the frame.

2. Press the left mouse button.

3. Drag the mouse. You will see an outline of the toolbar or window appear.
4

Continue to drag the object away from the edge of the CodeWright client area,
and then drop it wherever you want it.
-OR-

1. Click on the toolbar frame with the left mouse button.

2. Press the key.

3. Let go of the mouse button.

4. Letgo of the key. The toolbar will be undocked.

5. You can then resize and reposition the free-floating toolbar or window at will.

Customizing Toolbars and Buttons

CodeWright has a number of standard toolbars that can be modified through a
simple drag and drop interface. You can also:

B Create your own toolbar with your selection of buttons.

B Modify the functions bound to each button (that will be executed when the
button is pressed).

B Customize the buttons with your own bitmaps.

Adding New Toolbars

To add a new toolbar, complete the following steps:

1. Select Customize | Toolbars. The Toolbar Customization dialog displays.

2. Click on the Toolbars tab.

3. Press the New button. The New Toolbar dialog displays.

4. Enter the name of your new toolbar and press OK.

CodeWright then creates a new toolbar for you. At this point the toolbar is empty.
You will need to move it, dock it, etc. You will also need to add buttons to it. The

latter is covered in the next topic, Adding and Changing Toolbar Buttons. The toolbar
information is stored in the CWRIGHTINI file.

13- Custom Interface 279

Adding and Changing Toolbar Buttons

To add or change a toolbar button:

1. Go to Customize | Toolbars, or right click on any visible toolbar button, to access
the Toolbar Customization dialog.

2. Click on the Toolbars tab.

3. Select the toolbar you wish to modify; the toolbar will be displayed in a separate
window.

4. Click on the Select buttons tab. On the Select buttons tab of the Toolbar
Customization dialog, CodeWright enters a special mode where the toolbars are

temporarily inoperative.

Toolbar Customization: Select Buttons

Toolbar Customization [X |

Toolbars | General | Select buttons | Bindings I

Category: Button:
Custom Button

coument DFEHS Y @
Compile/Debug/E xecute
APl Function Editing Lol N . IR kvg
Block Selection Editing I= N EE 0 @
HTML = =Eli==88
Version Control] 1A ()RS
AppBasic & 5._ @ 62 %@9
Utiity B"DQT Q’r Fe =
User Defined Tools

Generic %

Gererc nDa0=d@
TICCSync

MSDevSync

’ Drag button from "Button:" list and drop on desired toolbar using left mouse button.

Help |

5. From this dialog you can:

Drag and drop buttons from the dialog to any toolbar.

Drag buttons from one toolbar to another.

Rearrange buttons within a toolbar, dragging them into the desired

position.

Remove a button simply by dragging it off the toolbar.

There are several categories of buttons in the dialog, listed in the Category window.
The category User-Defined Tools includes buttons with no pre-defined function
bindings, to which you can quickly bind your function.

280

13- Custom Interface

Binding a Function to a Button

To bind a function to a toolbar button:

1. Go to Customize | Toolbars, or right click on any visible toolbar button, to access

the Toolbar Customization dialog.

2. Click on the Bindings tab.

Toolbar Customization: Bindings Screen

Toolbar Customization

Toolbars I General | Select buttons

r~ Selected button
Toolbar: ID: 201

MSDevSync
TP Sine =

Modify the characteristics of the selected button below.

Locate a button using the above lists or select one from any visible toolbar.

Button text: |

Eunction binding: |MenuCommand IDM_BUFFER_CREATE

Tool Tip: |Eleale a new empty document.

3. Select a toolbar from the list box.

4. Cycle through the buttons on that toolbar until you get to the one you want to

change.

5. Make necessary entries in the following edit boxes for each button:

B The Button text field only applies to buttons that contain text, not bitmaps.

B The Function binding field contains the function call to be executed when
the button is pressed. This function must be available to CodeWright and

follow the rules of LibFunctionExec.

B The Tool Tip field contains the message that pops up when the mouse

cursor pauses over the button.

13- Custom Interface

281

Notes:

The button information, such as the toolbar it belongs to, its position on the
toolbar, the source of the bitmap image and the function bindings, is stored in a
file called CWRIGHT.BTN in the main CodeWright directory. CodeWright takes
care of updating this file, much like an .INI file, as buttons are customized.

All bitmaps that are available in the dialog for the buttons come from the

CWDLL32.DLL. If you have your own bitmaps you would like to add, you will
need to load your DLL containing the images.

Combo Box History Lists

Many of CodeWright's prompts have combo box history lists that store previous
responses made at the prompt. Most notably, the Command Key prompt, the Search
and Replace prompts, and the prompt at which you enter the name of a file to edit,
have prompt histories. The lists can be accessed by either bringing down the drop-
down list under the combo, or by pressing the up arrow or the down arrow.

B Press the up arrow to reuse the most recently entered response.
Press the down arrow to reuse the oldest response.
Press the up arrow repeatedly to view earlier responses.

Press the down arrow repeatedly to view more recent responses.

Press to accept the response displayed.

As each historical response is displayed, you will note that it is highlighted. If you

issue an editing command, such as [Home], [Ins] or [End], the highlighting

disappears and you are permitted to continue editing the response. press m to
accept the edited response at anytime. If, when the response is still highlighted, you
type characters, the typing replaces the highlighted text. This allows you to easily
type in a new response, if the one you are looking for isn't in the history.

Editing Combo box History Lists

CodeWright has a History tab in the Customize | Environment dialog that allows
you to view and remove members of the prompt histories. It also lets you adjust the
size of the lists.

Many prompt histories are saved between CodeWright sessions by default. The
information is saved in the State file. For more information about CodeWright State
files, refer to the Configuration Files & Command Line Parameters chapter of this
manual.

282 13- Custom Interface

Customizing Menus

This section describes how to edit standard menus, submenus, menu items and

popup menus.

Menu Editor

You can change, delete and add menus and menu items through the Menu Editor on
the Customize| Environment|Menu dialog.

Menu Editor

File Sort Mode Font

General I Keymap | State

Menus:

Clipboard Bookmarks

|
Backup | {Menu l History

Menu Items:

tOpen.
&Close

tSave

Save tAs

Sakve All

<separator>

&Find.

Dtifference.

tMerge.

Send Mail

<separator>

Retload

Filtkers.

Change &Directory =l

I Down I Delete

Change Menu Attributes...

Add ltem... I Add Popup...

Change Item Attributes...

Add Separator I Add List

Conce

The dialog lists Menus and Menu Items, as described in the following topics.

Menus

Menus are the top-most selections on the Menu bar. They contain items and

submenus. You begin your modification of the menu by selecting a menu from the

list on the left.

B Up/Down: These buttons allow you to change the position of the menu relative
to other menus. Up and down refer to the position in the list box. Up moves
the selected menu to the left on the menu bar, while Down moves the menu to

the right.

B AddMenu: The Add Menu button/dialog lets you add a menu to CodeWright's
menu bar. You must provide a name for the menu, a helpful message to display
when the menu is selected, and, optionally, one or more functions to initialize
the menu. The initialization functions are responsible for disabling or check
marking menu items as necessary.

13- Custom Interface

283

Change Menu Attributes: The Change Menu Attributes button/dialog is like
the Add Menu dialog, except that the attributes for the selected menu are
displayed for editing. You cannot change the ID of a menu.

Delete: The Delete button deletes the selected menu. You could delete all
menus, if you wish. You would then find that you are unable to add them back
interactively, once you leave this dialog. (You couldn't get the dialog back.) If
the worst happens, you can restore the original menu by editing CodeWright's
configuration file, CWRIGHTINI. Locate the [Menu] section of the file and
rename the section, or delete all lines under that section heading.

Menu Iltems and Submenus

Menu items and Submenus are the entries listed on a menu. After selecting a menu,
the items on that menu will appear in the list box on the right. Any submenus on the
menu will also be listed in order, preceded by a + sign. You may then select a menu
item or submenu from the list on which to operate.

Up/Down: These buttons allow you to change the position of the item or
submenu on the menu. You may also move separator lines with these buttons.

Add Item: The Add Item button/dialog lets you add an item to one of
CodeWright's menus. You must provide a name for the item (Menu item text), a
helpful message to display when the menu is selected (Help string), and a
function to execute when that item is selected (Handler function). If there is a
short-cut keystroke that performs the same function, you may enter that
keystroke for display on the menu (Key string).

Add Popup: This button brings up a dialog similar to the Add Menu dialog.
Enter a name for the submenu, a help message, and any functions to initialize
the submenu.

Change Item Attributes: The operation of this button depends on whether you
have selected a submenu or a normal menu item. If you have selected a normal
menu item, the Change Item Attributes dialog is like the Add Item dialog,
except that the attributes for the selected item are displayed for editing. If you
have selected a submenu, the dialog is like the Add Popup dialog.

Delete: The Delete button deletes the selected item. You could delete all items
in a menu, if you wish. You can also delete separators with this button.

Add Separator: The Add Separator button allows you to add a separator line at
the selected position within the menu.

Add List: There are five lists which may be added to the bottom of a menu:
recent files, scrap buffers, edit buffers, recent projects, and windows. If you are
using One-document-per-window mode, the list of edit buffers is not available.

Each of these lists may only appear on one menu. Therefore, you must first
delete a list from a menu before you can add it to another. This button is
disabled if there are no unassigned lists.

284 13- Custom Interface

Operating on Submenus

To view or modify a submenu, you must double click with the mouse on the
submenu (marked with a plus) in the list on the right. The submenu then
moves to the list on the left and is marked with a minus sign. You may then
operate on it as you would a menu, adding items, moving and deleting items, as
you desire.

Whenever you are through operating on a submenu, you may move it back to
the list on the right by double clicking on the name again. The minus sign will
change back to a plus when the submenu arrives in the list on the right.

This system allows you to have any level of nesting of submenus that you like.
Just keep adding them on the right and moving them over to the left.

Changing the Functionality of a Menu Item

To change the function associated with a particular menu item, complete the
following steps:

1
2
3.
4

Select the Customize | Environment dialog,.
Click on the Menu tab.
Click on a menu, and corresponding menu item to change.

Press the Change Item Attributes button.

Change Menu ltem Attributes
Change Menu ltem Attibutes A |

Menu ltem Text: 1D: [hex)
&New... {1005
Help String: Key String:

Il:reate a new file to edit. I

Handler Function: |~ Non-standard handler
IfiIeCommand

| oK I Cancel | Help |

This dialog shows you information about the selected menu item such as its ID in
Hex, the function bound to it, etc. Before you start customizing, you will find that
the existing menu items are bound to functions that begin with a lowercase letter.
These functions are not accessible directly by you. They require special menu
handlers and can only be called from a DLL.

13- Custom Interface 285

To successfully change the functionality of a menu item, you must:

Bind the menu item to a function that begins with an uppercase letter. Any of
the CodeWright API functions should work, or your own functions (or macros),
provided they have met the criteria to be recognized by CodeWright (See the
topic Exporting Functions in the chapter Extend CodeWright).

Check the small checkbox labeled Non-standard handler when binding
functions that do not have a menu handler. You must check this box, or
CodeWright won’t handle your customization, and your menu items won't
work.

Adding a Menu ltem

To add a new menu item, complete the following steps:

1.

2
3.
4

Select the Customize | Environment dialog.

Click on the Menu tab.

Select the menu to which the item should be added.

Press the Add Item button. The New Menu Item Attributes dialog displays.
This dialog is the same as the Change Item Attributes dialog.

New Menu Item Attributes

New Menu Item Attributes I

Menu ltem Text: 1D: [hex)
| {1013
Help String: Key String:

Handler Function: I~ Non-standard handler

0K Cancel | Help I

In the Menu Item Text field, enter the desired text for the menu item.
In the Help String field, enter text for the menu item’s tool tip.
In the Key String field, enter a keyboard shortcut for this menu item.

Note: Entering a key string in the Add Menu Item Attributes dialog does
not make the key string work. It must first be defined in the
Customize | Keyboard dialog. To learn more about customizing
keystrokes, see the topic Reassigning Keys and Mouse Actions.

286 13- Custom Interface

10.

In the Handler Function field, enter the function binding, beginning with an
uppercase letter.

Check the box labeled Non-standard handler.
Press OK. CodeWright assigns the menu ID in hex to the new item.

Note: If you prefer to use keystrokes instead of menus, any menu item can
be bound to a keystroke. Refer to the topic Reassigning Keys and
Mouse Actions, in this chapter.

Customizing External Operations within
CodeWright

As described in the chapter on Projects, Project Spaces, and Workspaces, CodeWright
provides the ability to use external operations from within the editor. Any program
can be added as menu items to the bottom of the Tools menu. The added items will
be numbered. This is a quick and handy way to add links to your favorite
applications, or execute custom compiles or other external operations.

To add a custom item to the Tools Menu:

1.
2.
3.

Select the Project|Properties dialog.
Click on the Tools tab.
Choose the Custom option from the drop down under the Category combo box.

The dialog is displayed next.

Project Properties Tools - Custom Category

Project Properties [<]
3 <Default Settings> Directories | Members | Tools | Errors | Filters I
myprojspc (2 Projects)

Y cob (4 Fies) Category: =

i3 cua (4 Files)

I Description:

Paint

Command: » |9 | o
cwtedit exe =
L »

r~ Command Options:

O -
(] Maximized window

[Redirect output

W] No command shell ﬂ

oK Cancel Help
[ok |

13- Custom Interface 287

4. In the Command: edit box, enter the command or executable file that the menu
item should launch. Press the right arrow for a list of pre-defined macros; press
the Browse (...) button to search for executable files. Remember that
CodeWright will shell to DOS in the directory specified on
Project|Properties | Directories | Working Directory when executing your
command line, so you may need to provide the complete path.

User-Definable Popup Menus

Positioning the mouse in certain areas within CodeWright and right clicking will
bring up a popup menu. You can change the way the popup menus work or add
your own sections to them using CodeWright's Popup Menu Editor. The following
paragraphs describe CodeWright's Popup Menu Editor and provide steps for
creating and editing popup menus.

Clicking the Edit this menu... item on most CodeWright popup menus accesses the
Popup Menu Editor. The function DIgEditPopupMenu, used from CodeWright's
API Command dialog, a keystroke, a button, or a menu item, will also access the
editor.

Editing or Creating a Popup Menu

Do the following to edit or create a popup menu in CodeWright:

1. Either access Edit this menu from any CodeWright popup menu, or type:
DlgEditPopupMenu
from the Tools| API Command dialog.

2. The Popup Menu Editor should appear with CodeWright’s default menu
definition file CWRIGHTMNU open.

288 13- Custom Interface

Popup Menu Editor

i Popup Menu Editor - C:\cwright\cw32\cwright. mnu[output_fgrep]
File Edit Insett Move
Menu Item List:
Iltem IExec Function IGray Function ICheck Function
Copy MenuCommand IDM_... [MarkQSelType() ==5...
Append MenuCommand IDM_... [MarkQSelType(] ==5...
<{separator>
Open all files ErmorDpendliFiles -1
Clear Window ErofwindowClear
Horiz. Scrollbar OutputwindowFlags=-... OutputwindowFlags=
<separator>
File Grep... DlgFGrep
Search Multiple Sourc... DlgSearchEx NULL, F...
Output settings... DlgSearchOutput NUL...
<separator>
Edit this menu... DigEditPopupMenu $
T 2
Move Up | Move Down I 0K I Cancel | Help |
Y/

3. In the Popup Menu Editor click File| New to create a new menu, or click
File|Open Menu File to open an existing menu. If a new menu is being created,
a new, empty menu will be opened in the editor. If an existing menu is opened,
the existing menu will appear in the editor.

Note: When opening an existing popup menu for editing, the Open Menu
or Menu File dialog appears. The name of the menu description file
has to be specified in the File box, and the name of the menu (for
example [Utilities]) has to be specified in the Menu box.

Do the following to add or modify a menu item in the popup menu:

1. In the Popup Menu Editor, click Insert| Menu Item to add a menu item. Click
Edit|Modify to modify a selected menu item. In both cases, the Menu Item
dialog appears.

13- Custom Interface 289

Menu ltem
Menulem [

Menu ltem Text:

Execute Function:

Gray Function:

LCheck Function:

Comment:

= Insert Before

0K | Cancel |

2. Fillin the necessary fields in the Menu Item dialog. The uses for the fields are as
follows:

HW Menu Item Text: This is the text that is seen on the popup menu. Any
character in the text that is preceded by the ampersand (&) acts as a key
accelerator for the item. Press the key for that character while the menu is
visible to access the item.

B Execute Function: This is the function that will be used for normal menu
items. The functions are called when the menu item is clicked. Most
exported CodeWright functions can be used.

Example: The following item can be added to any popup menu for
opening files:

&Open FileBufEditFile

&Open File is the menu item string, and BufEditFile is the
execute function.

B Gray Function: Indicates availability of the menu item’s function. When
the menu item is gray, the function is not available.

Example: The Terminate item on the Perl popup menu is gray when a
Perl macro is not running. When enabled, it is used to forcibly
terminate a running Perl macro. The following function is
entered in the Gray Functions field:

290 13- Custom Interface

! PerlCtrl -1

v If the function returns 0 (false), the Terminate menu item
will be gray.

v If the function returns 1 (true), the Terminate menu item
is enabled.

v The exclamation point (!) before the _PerlCtrl-1 function
indicates that the complement of the function's return
value should be used when the function is called.

B Check Function: These correspond to enabled menu items. A checkmark
to the left of the menu item indicates that the item is enabled.

Example: The Debug Mode item on the Perl popup menu toggles the
Perl interpreter’s Debug mode. The item is not checked if
Debug Mode is turned off. The following function is entered
in the Check Functions field:

PerlFlags 2 -1

v If the function returns 0 (false), the Debug Mode menu
item will be unchecked.

v If the function returns > 0 (true), the Debug Mode menu
item will be checked.

B Comment: Comments can be inserted for each menu item added. They are
not displayed on the menu. They can be used as reminders or notes for the
menu item.

Popup Menu Semantics

Changes made in the Popup Menu Editor are applied to specified menu description
files. If no menu file is specified, CodeWright's default menu file CWRIGHTMNU is
used. CWRIGHTMNU is stored in the CodeWright installation directory. It contains
sections as a normal .INI file does, except that the contents are menu descriptors.
Each section begins with a Section Heading, a word or label enclosed in square
brackets. The lines that follow the section heading (Item Definition Lines) describe
the menu items that will appear on the popup menu, and what happens when you
select each item from the menu. As with .INI files, lines beginning with a semicolon
and blank lines are ignored.

Before creating or modifying popup menus in CodeWright, there are some things to
know about the semantics of the information contained in popup menu description
files. Refer to the following paragraphs for information about popup menu
semantics. Note that all of the items that follow are valid when used from within the
Popup Menu Editor.

13- Custom Interface 291

Creating a Menu ltem

Keep in mind the following when creating a new menu item in the Popup
Menu Editor's Menu Item dialog:

B Beginning Check Functions or Gray Functions with an exclamation mark
(1), complements the value returned by the function being used. This can be
useful when it becomes necessary to access the opposite of the function’s
return value.

W If a semicolon is required in any of the function strings it must be escaped
by preceding it with a backslash. The two character sequence '\;' will be
replaced by a semicolon prior to execution of the function string.

Terminating Menu Sections

If you look at the CWRIGHTMNU file, you will notice that individual popup
menus are contained in menu sections (designated by headings that are
contained in square brackets ' [] '), each of which ends with a special line
containing

[H4#]

The [###] allows the menu editor to delete a menu description and write a
new one without also deleting comments that may precede the menu
description that immediately follows the one being modified. Because this
special line looks like a section name it terminates the process that's looking for
the end of a section.

Conditionals

A conditional mechanism similar to the C/C+ + #if/#else/#endif is possible
when creating new popup menu items. There is a Conditional item on the
Popup Menu Editor's Insert menu that allows conditional items to be created.
The general form for popup menu conditionals is:

#if testFunction

menu description lines
#elseif testFunction
menu description lines
#else

menu description lines
#endif

The <test function> element is a function, similar to a Check function or a Gray
function, whose return value is used to determine whether or not to include the
following <menu description lines> in the popup. The conditionals may be
nested to an arbitrary depth.

292 13- Custom Interface

As a shorthand notation, if the <test function> begins with a left parenthesis,
the entire <test function> string is passed to MacroEvaluate. (This shortcut
applies to all entries requiring a function spec: Exec functions, Gray functions
and Check functions.)

Example:

#if ClipboardQHasText
Paste From Clipboard
#endif

'Include' mechanism

Sometimes different popup menus have common elements and it is useful to be
able to define those elements once and use that description many times. This is
possible using a special menu item in one of three forms:

@file
@file [menuName]
@ [menuName]

The first form specifies a file to be included in its entirety. The second form
indicates a specific menu description contained in the specified file. The third
form specifies only the name of a menu; it assumes that the menu is in the file
containing the menu description line.

Dynamic Menu Generation

It is possible to specify, directly in a menu description, the name of a function to call
to generate a menu description string (the string that is seen on the menu). The
returned string, which should be an allocated string, is then used as if it had been
placed in the menu description at that point. The syntax for specifying this action is:

*functionName

The entire line beyond the introductory asterisk is taken to be a function name and
its arguments. As with other menu functions, if the generation function begins with
a left parenthesis the entire line is passed to MacroEvaluate. Note that this item may
be used on menus that have other, explicitly defined, entries or it may be the only
item in the menu definition.

13- Custom Interface 293

Supporting Popup Menu Functions

There are two functions that support the operation of popup menus. They are as
follows:

H DIgMenuPopup -- Use this function to assign a popup menu to a key or mouse
click. The function is formatted as:

DlgMenuPopup <menu>
B DlgMenuExec -- Use this function to execute other sections within the
CWRIGHTMNU file. The function is formatted as:
DlgMenuExec <section>

Where:

<menu> - If the name starts with ‘[’, it is assumed to be a section in the MNU
file, otherwise it is the name of the file to use (no sections in file).

<section> - A normal CodeWright section to execute out of the MNU file. Use
ConfigFileRead() to read out of other files.

Refer to the following example:

Example: The [Utilities] section of CWRIGHTMNU can be bound to SHFT]-
right-mouse click through the following key binding command:

KmapAssign='<Shift-Mouse right click>’
‘DlgMenuPopup [utilities]’

(See the topic in this chapter Customizing with Keybindings for
keybinding information.)

Using Keymaps

The CodeWright editor is several editors in one. In its "standard" mode, the
CodeWright keymap uses the Common User Access (CUA) key-command set. If you
have ever used a Windows editor before, such as NotePad or SysEdit, you will find
that you can guess many of the basic key commands. This command set offers a
number of short-cut keystrokes to bypass menus and perform various other tasks.

CodeWright offers alternate keymap command sets as well. These command sets
may be more to the liking of users whose roots are embedded in DOS, UNIX and
other non-Windows platforms. These command sets have been supplemented with
a number of CUA commands.

294 13- Custom Interface

In all, CodeWright ships with four keymaps. The command sets are usually chosen
at the time of installation, but they can also be switched on the fly in the

Customize | Environment | Keymap dialog. Command sets may be selected from the
following choices.

B CUA command set

BM BRIEF command set (emulates the BRIEF editor, from Underware)

B vicommand set (emulates the vi editor found on UNIX systems)

B Epsilon command set (emulates the Emacs-derived Epsilon editor from Lugaru)

You can modify the functions that are executed when a keystroke is pressed using
the Customize | Keyboard dialog (see Binding Keystrokes to Functions or Macros).

Further discussion of the CUA and BRIEF command sets follow.

CUA Key Commands

The CUA keymap has many more assignments in it than are covered by the
Common User Access standard. In devising these additional keystrokes, we have
relied heavily on mnemonics, that is, keys that easily form an association in your
memory with the action they perform. This makes the commands easier to learn
and remember.

If you are familiar with CUA commands, you may doubt that CUA commands would
be easy to associate, and some commands are not. (It's hard to associate anything

with [ATfF7]), you just have to memorize it.) You will find, however, that most
commands of this variety have a more memorable equivalent.

: ; i CTRL] [SHIFT] S
Example: To search again you have your choice of Jf3] or [T 1. To

find, press [STRfE]

BRIEF Key Commands

BRIEF emulates the BRIEF editor that is popular in the DOS environment. BRIEF
key commands are not CUA compliant. This means that they conflict with the way
Windows commands normally work.

13- Custom Interface 295

Example: The BRIEF commands make extensive use of key
combinations. CUA rules reserve most of these for standard

commands, such as accessing menus. For instance, [AT]fF]] is

usually reserved for bringing down the File menu. In BRIEEF, this is
used for displaying the output file's name on the status line.

For this reason, when using the BRIEF command set, you must press
and release the key to access the menu. To access the File menu,
for example, you press and release the key and then press [F]

. ALT |
Similarly, to access other menus, you press and release fAT§and then

press the underlined letter in the menu's name.

Mouse Commands

You can probably guess most of the things that you can do with a mouse in
CodeWright: click on menus, select text and so on. There may be a few things that
you wouldn't guess you could do with a mouse, and other things that you might
suspect you could do but do not know how to do. Itis those things that are covered
in this section.

Mouse Scrolling Speed

If you begin selections with the mouse and then move the mouse outside the visible
window, the window will begin scrolling. Depending on how far out of the window
the mouse is, CodeWright will vary that scroll rate, specifically, the farther out the
mouse is, the faster the scrolling.

In some cases, the space available to move the mouse beyond the window edge is
limited, e.g. full screen mode. CodeWright provides some methods for gaining

control over scrolling speed in these cases. Control is gained via the , @, and
keys, under the following conditions:

W If none of the keys are pressed, scrolling speed is the default.

W If one of the keys is pressed, scrolling speed is twice as fast.

W If two keys are pressed, scrolling speed is four times as fast.

W If three keys are pressed, scrolling speed is 8 times as fast.

Inclusive or Exclusive Selection

In the standard keymaps CUA, BRIEF and vi, you can select text by clicking with the
left mouse button and dragging the mouse across the area you want to select. When
the character at the cursor is included in the block, the block is considered inclusive.
Default settings are as follows:

296 13- Custom Interface

B In the vi keymap, inclusive block selection is the default.

B In the CUA and BRIEF keymaps, exclusive block selection is the default (the
character at the cursor is not included in the block).

Closed Selections

You may elect to have selections that you make with the mouse be either closed or
open when you release the mouse button. A closed selection means you will not
change the selection size or shape when you move the cursor. Your keymap dictates
the initial setting for this option; you can change the initial setting with the Leave
Mouse Selections Open option on the Customize | Environment |Keymap dialog.
Selections made with key commands are usually open; one end of the selection is
defined by the cursor position, and the selection moves with the cursor. Your
keymap may have a command to toggle a mouse or other selection open or closed.

Examples:

In the BRIEF-compatible keymap, toggle the selection open or closed
using the [ETRYfA] command.
In the CUA keymap, toggle the selection open or closed using the
CTRUJ- || command.
To expand a closed selection, move the cursor to the new endpoint desired, and use
the applicable key command to toggle the selection open.

Note: The distinction between closed and open selections is not
meaningful in the CUA keymap unless you have turned on
persistent selections. Otherwise, CUA removes the selection,
whether closed or open, whenever you execute a cursor motion
command.

Column Marking

To make a column selection with the mouse, just click and drag with the right mouse
button instead of the left. Column blocks are always inclusive, regardless of which
keymap you are using.

Line Selections

There is an adjustable margin between the left edge of the buffer and the window
border. You can use this area for making line selections:

B Click with the mouse in this space to select the line to the right.

B Click and drag the mouse to select a series of lines -- even if the mouse happens
to stray from the margin.

13- Custom Interface 297

Word Selections

As with many Windows editors, double-clicking on a word makes a selection
encompassing that word. If you continue to hold down the button on the second
click and drag it around, you can select in units of words. You may be familiar with
this method of selection from one of several word processors.

Status Line Actions

There are a number of functions or popup menus that can be accessed just by
clicking with the right mouse button on hotspots on the status line. These actions
are listed below:

Action Description

Insert/Overtype | Toggle between insert and overtype mode by right clicking

Toggle on the Ins or Ovr designation on the status line.

Read-only / Toggle between Read-only and Read-write status by right

Read-write clicking in the box to the left of the line number. The box

Toggle may be blank or have a “RO” designation in it. This
toggles both file and buffer status.

Go to line Bring up the Go to Line dialog by right clicking in the Line
number box.

Next Message Have CodeWright process the next Build error message by
right-clicking in the message box at the left of the status

line.

@ Bring up a customization popup menu with options for
accessing various dialogs used for customizing
CodeWright.

=~ Bring up a Word Wrap Options menu to quickly toggle
wrap mode and customize wrap options.

@ Bring up a CodeSense customization menu to quickly turn

on and customize CodeWright's CodeSense and Outline
Symbols features, as described in the chapters on Editing &
Printing and Search and Replace and Navigational Tools.

A related command is the right mouse click on the Toolbar Search combo box,
located on the Standard Toolbar instead of the status line. Right-click here to bring
up the Search Options dialog, allowing you to check or change the settings in
preparation for using the Toolbar Search or other search mechanism.

298 13- Custom Interface

Text Drag and Drop

After you have selected a block, you can move or copy the block by dragging the
block to its new location. Text can even be moved between open windows.

Use the following drag and drop operations:

To move the block:
1. Place the mouse cursor in the selection's highlighted area.

2. Press the left mouse button. The cursor will change shape to indicate that a
drag and drop operation has commenced.

3. Continue to press the mouse button, moving the mouse cursor to the
intended destination.

4. The text cursor follows the mouse cursor, indicating where the destination
will be. Place the caret at the intended destination and release the mouse
button to move the selected text.

To move text between windows, complete the steps above but press SHFT| as

you drag. Be sure to click and hold the mouse button before pressing the
key. Then drag and release the text.

To perform a copy operation, complete the steps above, but press the key
when you initiate the operation.

To cancel a drag and drop operation after it has been commenced, move the
mouse cursor back over the selection and release the mouse button. A selection
cannot be copied or moved onto itself. The operation is then cancelled and the
selection removed.

To disable text drag and drop, deselect the Drag and drop text with mouse
option on the Customize | Environment| General dialog.

Mouse Copy and Move

In addition to Text Drag and Drop, CodeWright supports another method of copying
and moving text with the mouse:

1.
2.
3.

Select the text you want to copy or move.
Point the mouse at the place you want it to go.

Issue the proper mouse command. The command for moving the selected text

is 6 The copy command is @6

13- Custom Interface 299

Sometimes, when you are moving or copying text, the source and destination of the
text are too far apart to be viewed in the same window at the same time. You can
still use the mouse move and copy commands, by opening up another window, or
scrolling between source and destination:

B You might have several sections of text that you want to copy or move, all from
the same source location to a single destination. In this case, viewing the source
in one window and the destination in another is the best approach.

B If you have just one copy or move operation in mind, you can select the desired
text and then scroll to the destination. The selection will scroll off the screen,
but so long as you are using closed selections for mouse operations, it won't
change. Refer to the topic Closed Selections in this chapter.

Creating Windows with a Mouse

It is very easy to create windows of an arbitrary size and position when you are
working with a mouse. This is the quickest way to open up a second window onto
your current buffer, so that you can view two different sections of the buffer at the
same time.

To create a window:
1. Point to any part of CodeWright's Client Area that is not currently occupied.

2. Click with the left button and drag the mouse cursor to any other part of the
Client Area.

Whatever buffer was current prior to creating the window is also made visible in the
new window. This means you will have at least two windows in which to view the
current buffer. This use of the left mouse button can be turned off in

Customize | Environment| General. Just deselect the option Create Windows Using
Mouse.

Drag-and-Drop File Loading

The Drag and Drop feature allows you to load files into CodeWright from Windows
Explorer . Select one or more files listed in the File Manager and drag them with the
mouse to a minimized application. When the mouse button is released, the
application is restored, and the file or files are loaded or processed.

Drag and drop file loading can also be used to load or create projects and project
spaces. The feature works when files with .PSE, .PJT, .DSW, or .DSP filetype
extensions, or any supported makefile, are dropped from Windows Explorer onto
CodeWright. Auto-detect file type must be marked in Customize| Environment

| General.

300 13- Custom Interface

If you already have files loaded in CodeWright, the files you drag and drop onto
CodeWright will be added to those already being edited:

BW A window is created for each of the files dropped onto CodeWright if you have
checked the box One document per window on the
Customize | Environment | General dialog.

B If windows are not created, the window that was current will contain the first
file of those dropped.

W Files with .PSPE .PJT, .DSW, or .DSP filetype extensions, or any supported
makefile will load or create CodeWright project spaces or projects. Drag and
drop project files must be marked in Customize | Environment | General.

Expand / Collapse Selective Display

When you are using selective display mode, you can use a mouse for expanding and
collapsing sections of text as you might the sections of an outline. Refer to the topic
Selective Display in the chapter on Search and Replace and Navigational Tools for more
information about this use of the mouse.

Reassigning Keys and Mouse
Actions

Refer to the following discussion of macros and keybindings.

Keymap-Specific Assignments

Now that you learned about CodeWright's keymaps and mouse commands, you are
ready to make assignments specific to your keymap. Your main tool for doing this
will be CodeWright's Assign Keys dialog. Keys can be modified using CodeWright
API functions, keystroke macros, AppBasic, Perl, or API Macros, or your own
functions from custom DLLs. Remember that custom functions need to be exported
with a LibExport call in the DLLs _init function in order for the key assignment to
work. Otherwise, a “function not found” message will appear in CodeWright's status
bar when the keystroke is pressed. Refer to the chapter on Extend CodeWright for
more information on custom DLLs or Add-Ons.

Customizing with Keybindings

As mentioned in the section on Using Keymaps, CodeWright ships with four unique
keymaps. These are CUA, the Windows interface; BRIEE for those used to the old
DOS BRIEF editor; EPSILON, and vi for those who come from a UNIX background.
The functions that will be executed when you press a key will depend upon which of
these keymaps you are in. We have additional keymaps available in our Technical
Support Add-Ons collection or you can create your own.

13- Custom Interface 301

If you are not happy with the way a certain operation is performed within a
keymap, you may want to try that operation in another keymap. (Select
Customize | Environment | Keymap and change the keymap selection for testing
purposes.) If you find that another keymap has a function that works more
appropriately, you can replace the original keymap’s function with the found one.
The change is made in the Customize | Keyboard dialog. See Binding Keystrokes to
Functions or Macros, later in this chapter.

Keystroke Recording/Playback

Keystroke macros consist of a series of keystrokes that can be run sequentially as a
unit. The following sections describe how to make keystroke macros in CodeWright.
Note that keystroke macros are limited to actual keystrokes (mouse clicks won't be
accepted) and keystrokes entered into Windows dialog boxes cannot be recorded.

Recording a Keystroke Macro

You can record a keystroke macro in any of the following ways:

W Press[F7]] (or in BRIEF) to begin and end a recording.
B Select Edit|Record to begin and end a recording.

B Type the ASCII representations for a series of keystrokes directly into the
Keystroke Macros dialog (accessed by choosing Edit| Keystroke Macros).

Saving a Macro
The Keystroke Macros dialog is used to create, edit, save, and delete named

keystroke macros.

Keystroke Macros Editor

Keystroke Macros [¥}
Edit: Name: | n Aun

Save
Delete I
New |

Get current I

Set current

302 13- Custom Interface

To make a named keystroke macro, complete the following steps:

1. Record a series of keystrokes using the methods described In the Recording a
Keystroke Macro topic above.

2. Load the recorded macro into the Keystroke Macros Editor by clicking New
and then Get Current. The keystroke macro that was just-recorded will be
displayed in the editor.

3. Type a name into the Name combo-box.

4. Click Save.

Once the keystroke macro has been saved with a name, it can be used from
CodeWright's Tools| API Command dialog, or bound to a keystroke, button, or
menu-item simply by typing the name of the macro in the appropriate place. Named
keystroke macros can also be used in CodeWright's AppBasic macros, Perl macros,

and API macros. For more information on macros, see the chapter on Extend
CodeWright.

Binding Keystrokes to Functions or Macros
To bind a keystroke to a function or macro, complete the following steps:

1. Go to the Customize |Keyboard dialog.

Customize | Keyboard

Assign Keys E3 |

i Cursor/Numeric I Mouse I brief-compatible keymap

r|re|rs|ra| [rs|rs|rz]re| |ra]ro]rii]rz]

2 B O P i O e A T O O S
e [CWIERDT YD O [F [T]7

[
Sl G 2 N G N I A N 2
o G G S S N 0 N K R
Alt
Clear | Key sequence:l j < Bindingl
=

Next I Functions Lll - << Binding I
Record | Filter: L" 3

Update keymap | Save tafile I Quit I Help |

13- Custom Interface 303

2. Enter a Key Sequence value to bind to the named function or macro. The
easiest way to do this is to select the Main Keyboard tab, and mouse-click the
key representations in the proper sequence.

3. Verify that the key sequence isn’t already assigned by pressing Binding next to
the Key Sequence box.

4. Locate the macro (or function) to bind from the drop-down list in the Functions
box. To narrow your search, you can:

B Choose or enter a filter in the Filter box. For example, to see only functions
that begin with CUA_ in the drop-down, type CUA_.

B To have only the functions in a selected category display in the drop-down
. . M : .
list, press the right arrow next to the Functions box, and choose either
Functions or one of the macro categories.

5. Verify that the function or macro doesn’t already have a key binding by pressing
the Binding button to the right of the Functions box.

6. Once the appropriate key sequence and function/macro are displayed:

B Press Update Keymap to save the keybinding for the current session only,
OR

B Press Save to file to save the keybinding for continued use.

304 13- Custom Interface

Chapter 14

14- File Loading, Backup
and FTP

This chapter discusses options and strategies for file loading and validation, and for
file backup and auto-save. It includes a brief run-down of CodeWright's FTP utility,
which can be used for transferring files to and from remote systems from within the
editor.

File Loading, Reloading and
Validation

CodeWright has options for preloading and auto-validating local and non-local files.
Read on to find out what these terms mean, and how to use the features that enable
them.

B Afileis preloaded in CodeWright if it is fully loaded into virtual memory,
without relying on pointers to the actual file on disk. This method for loading
files is optional and must be turned on manually. It takes longer, and uses more
temporary disk storage, but does not rely on the presence of the original file. If a
network connection is lost or if the file is somehow deleted, you will still be able
to continue.

W Afileis validated in CodeWright when periodic checks are made to see if the file
being edited has been altered by another process. Auto-validation can be a
process on some remote media, in which case, it may be more efficient to turn it
off.

To set file loading and validation options:

1. Access the Customize | Environment| General dialog.

14- File Loading, Backup and FTP 305

Customize | Environment|General

File Sort Mode | Font I Clipboard | Bookmarks

| Keymap |

r~File & File System

State

I Backup | Menu | History

I~ Win 3.x Open/Save As dialogs

¥ Retain directory changes

IV Create directories as needed

I No filename validation

I™ Save files on loss of focus

IV Show file list on File menu

™ Use List for filename completion

™ Use file rewnite save method

™ Allow case sensitive filenames
~File Loading/Reloading

V' Auto-detect file type

I~ Auto-sense file EOL

™ Suppress reload prompt

™ Preload file on open

™ Preload nonlocal files

¥ Auto-validate preloaded files

V' Auto-validate non-ocal files

General
V' Auto-update INI file
V' Use command line prompt
V' Allow alt-key combinations
V' Typing replaces selection
I~ Allow undo past save

I~ Compress undo motion
= Window:

I~ One document per window
I Fast screen painting
I™ Tile using single row/column
™ Limit window splitting to 2-way
[V Create window using mouse
i~Mouse & Cursor
™ Use |-beam text cursor
I Hide cursor while typing
V' Mouse activation moves cursor position
[V Leave mouse selections open

[V Drag and drop test with mouse

Cancel I

Help |

2. The following options in the File Loading/Reloading group can be enabled as
precautionary measures to maintain the integrity of files loaded in CodeWright:

Auto-sense file type EOL: When this box is checked, CodeWright will look
for line terminations when it first loads a file. It can detect DOS (cr/If),
UNIX (If), and Macintosh (cr) line terminations. If the file has UNIX-style

l key is made to insert only a line feed (If).
Macintosh translations for both input and output are done at a low level

It is advisable to use the Auto-sense file type EOL option when
editing UNIX files in CodeWright.

Suppress reload prompt: If another process alters a file that you have
loaded into CodeWright, it will prompt you, asking if you wish to reload
the file. If you wish to always reload the file without being prompted,

Preload file on open: When checked, this box indicates that all edit files
should be completely loaded into virtual memory. The alternative just
loads as much as necessary for editing, and retains pointers into the
original file. Preloading takes longer, and uses more temporary disk
storage, but then you no longer rely on the original file. If you lose your
network connection or if the file is somehow deleted, you will still be able

||
line terminations, the [
and seem like DOS files to the user.
Note:

| |
check this box.

| |
to continue.

306

14- File Loading, Backup and FTP

B Preload non-local files: When checked, this box indicates that you want to
load files on non-permanent media completely into virtual memory. Non-
permanent media includes floppy disks and network drives.

B Auto-validate preloaded files: When checked, CodeWright verifies at
critical junctures that the preloaded file you are working on has not been
altered by another process.

B Auto-validate non-local files: When checked, CodeWright ensures at
critical junctures that the file you are working on has not been altered by
another process, if that file is on non-permanent media. Non-permanent
media includes floppy disks, and network drives. Auto validating can be a
slow process on some remote media. In this case, you may wish to turn off
validation.

3. The following options in the File and File System group can be enabled for
quick access to files being loaded in CodeWright and as precautionary measures
to maintain the integrity of files being edited:

B Show file list on File menu: When this box is checked, CodeWright
maintains a list of up to 9 recently viewed files at the end of the File menu.
The most recently loaded file appears at the top of the list. To reload one of
these files may, select the filename from the list.

B Save file on loss of focus: You may wish to have files saved whenever you
switch away from CodeWright to another application. If so, check this box.
This adds an extra level of security when you are testing programs that
might deprive you of the opportunity to save later.

B Use file rewrite save method: When this option is off, CodeWright uses the
traditional method of saving a file. This involves renaming files (write to a
temporary filename, rename the old file to the backup file, and then
rename the temporary file). Renaming can cause problems on some
systems, where special file attributes or links exist. When this option is on,
CodeWright avoids these problems by working on the original file, and
making a copy of it when it creates the backup file.

The File Rewrite Save Method is also recommended for saving large files;
refer to the Chapter on Large Files for more information.

File Backups and Auto-save

This section discusses how to set up file backup and auto-save options in
CodeWright. The options can be set globally, for all files being edited, per file type
(e.g. .CPE .C, .TXT), or per individual file.

14- File Loading, Backup and FTP 307

Global Backup and Auto-Save Settings

The global backup and auto-save settings can be made on the Backup tab of the
Customize | Environment dialog. To access this tab:

1. Select the Customize | Environment|Backup.

Customize | Environment| Backup

File Sort Mode I Font | Clipboard | Bookmarks

General I Keymap | State | | Menu I History

Global Backup Spec:
[%b.bak |

I~ Auto-save enable

es without prompting

Auto-save trigger

Options in project file

Eorce time [minutes
[0 =]
Auta-save limit (KE]

|

|256

The global backup specification applies to all documents that do not have their own specific -~
backup specification.

The Auto-save properties gives you control over all aspects of the auto-save feature. This

feature periodically saves changes to disk to help avoid the substantial loss of data that might
otherwise result from a power outage or other minor catastrophe.

Cancel | Help |

2. Address the following fields:

B Global Backup Spec: The global backup specification dictates how the
name of a backup file is derived from the original filename. This is the most
common method of specifying the name of the backup file, though backup
specifications may be set for each document. The backup specification can
indicate the directory in which backups are made, the extension used, and/
or formatting strings that transform the filenames into other names.

The default backup specification, %b.bak dictates that the backup file be
made in the same directory as the original file, but bearing the extension

.BAK. Press the arrow ﬂ at the end of the Global Backup Spec field for a
drop-down list of additional specification options; click on an item in the
list to automatically insert it in this field. The backup specification is only
used when backups are enabled. Refer to the topic Formatting the Backup
Specification, in this chapter, for more information.

308 14- File Loading, Backup and FTP

B Auto-save Enable: Check this box to access options related to the auto-save
feature. This feature periodically saves changes to disk to avoid the
substantial loss of data that could otherwise result from a power outage or
other minor catastrophe. Normally these saves are performed using a
filename other than the original. This allows you to determine when you
are ready to overwrite the original file. You can have the auto-save feature
make saves based on elapsed time, or based on keyboard inactivity, or both.

B Overwrite auto-save files without prompting: If Auto-save detects a file of
the same name as it wants to use, it checks to see if it is a file that it created
during the current session. If it is not, CodeWright prompts you before
overwriting. The file may not be an auto-save file at all, or it may be an
auto-save file from a session that terminated abnormally. In these cases,
you may wish to retain the file. On the downside, if you are not present to
respond to the prompt, the file will not be auto-saved. This checkbox
allows you to specify that the file be overwritten regardless of its origin
without prompting.

B Store Auto-save Options in Project File: Check this box to store auto-save
settings with the project that is currently open. If the box is checked but no
project is open, the selected options are stored as default settings for use
with future projects.

B The Destination section offers four options for controlling the directory
and file-extension to be used for auto-saved files. Descriptions of the
options are as follows:

v Use file's directory, save file.x as 'file.x_~': Auto-saved files are saved
to the same directory as the file being edited. A tilde is used as the third
character of the extension. If the file being edited has only one
character in its extension, an underscore is used as the second
character of the auto-save filename.

v Use directory specified below, save file.x as 'file.x_~": Auto-saved files
are saved to the directory specified in the Auto-save Directory field. A
tilde is used as the third character of the extension. If the file being
edited has only one character in its extension, an underscore is used as
the second character of the auto-save filename.

v Use transformation or filename specified below: Auto-saved files are
saved with the directory and filename or equivalent transformation
pattern specified in the Auto-save file specification field. (The field is
only enabled when this box is checked.)

v Write to original file (i.e. File| Save): Auto-saved files are saved to the
file currently being edited.

14- File Loading, Backup and FTP 309

B Auto-save Directory: Enter here the name of the directory, if you want auto-

save files created in a central location. If you don't name a directory for auto-
save files, they will be created in the same directory as the original file.

The filename used will be the same as that used on the original file, except that
the third character of the extension will be a tilde (~). If the extension is less
than two characters, it will be filled with underscores (_). (See the topic
Transformation Patterns.)

Examples:
v The file FOO.C would be auto-saved under the name FOO.C_~.

v Afile whose name already has three characters, such as FOO.PAS, is auto-
saved under the name FOO.PA~. In this case the S was replaced with a
tilde.

v A file with no extension, such as README, would be saved with the
extension .~ (e.g. README.__ ~).

The Auto Save limit listbox is used to limit the size of files that are auto saved.
Files that exceed the specified size will not be auto-saved.

Force time: This entry sets the absolute time interval that is allowed to pass
without saving to disk. This type of auto-save is performed without regard to
keyboard or other activity. Enter the number of minutes you want to allow
before auto-save interrupts editing to save the file. A value of zero has the effect
of turning this kind of auto-save off.

Idle time: This entry sets the interval of inactivity that will trigger an auto save.
Inactivity means no key has been pressed and no button has been pushed.
Enter here the number of seconds of inactivity you want to allow. A value of
zero has the effect of turning this kind of auto-save off.

Backup Settings for Specific File Types

To make a backup specification for a specific file type (that overrides any global
specification), access the Options tab on the Language dialog;:

1.

Select Customize | Language| Options.

310 14- File Loading, Backup and FTP

Customize | Language | Options

Language X
File type: Options | Tabs/Indenting I Templates | Coloring | CodeSense’ A
c
.cpp 2l Document Options EOF/EOL
b I Beadonl I Uniy EOL
~EDD [~ Overtype s
:hml V' Record undo info I Input
Ani V' Make backups
java Rup: [~ Dutput
.mac
pas

Backup spec: |

Mapped to: Word delimiters: | "A-Za20-9_ _I
<None>

‘Word Wrap Virtual Lines

New Type... | I™ Line wrapping Left [1 @ Enable: v
Delets Type I I™ wiap confinuously Right [72 {2 | Limit E=

Map Type to... I

Cancel I Help I

2. In the File type box, highlight the extension of the desired file type.

3. In the Backup spec field, enter a string that dictates how the name of a backup
file should be derived from the original filename. The default backup
specification, %b.bak dictates that the backup file be made in the same directory
as the original file, but bearing the extension .BAK. The backup specification is
only used when backups are enabled (the Make backups box is checked).

Refer to the topic Formatting the Backup Specification.

Backup Settings for Individual Files

To make a backup specification for an individual file (that overrides any global or file
type specifications), access the General tab of the Document|Manager dialog.

1. Select the Document|Manager|General dialog.

14- File Loading, Backup and FTP 311

Document|Manager | General

D ocument/Window Manager [¥]
II_.isl: R=read only, M=madified)(l El[I] El _| 4|4 g][]'
memo. xml [E:\Workshop\downloads\samples\inter
Bl help.sml /] ds\samples\inte

H i
I™ Sorted Documents: 1 of 2 selected Windows: 1 of 2 selected
General | Options | Tabs/Indenting | Display | Window |

: g amplesh -~ Current Position
fle Size: : Line: [23
File date: B/20/00 4:43:44 PM I Readonpfie |Cot T [ox |
Document name: | . I
ancel
Output name: | |

[V Make backups Spec: |

2. In the Document List box, select the document whose settings you wish to edit.
3. Check the box Make backups.

4. In the Spec field, enter a string that dictates how the name of a backup file
should be derived from the original filename. The default backup specification,
%b.bak dictates that the backup file be made in the same directory as the original
file, but bearing the extension .BAK. (Refer to the following topic, Formatting the
Backup Specification.)

Formatting the Backup Specification

CodeWright allows you to specify where and under what name you wish to store
backup files. It even allows you to define how to derive the root or extension of the
backup filename from the file being backed up.

Backup locations and the filenames used are controlled with formatting strings.
Formatting strings contain format controls and transformation patterns that tell
CodeWright how to deal with file names that are as yet unknown. Format controls
begin with a single percent sign (%). Any other text is treated literally.

Important: It is possible to specify a format that will result in an illegal filename.
CodeWright does not attempt to ensure that the resulting filename
islegal. When you attempt to backup the file, an error will occur,
just as if you had specified an illegal filename for saving a file.

312 14- File Loading, Backup and FTP

To turn backups off, leave formatting strings empty at the global and local levels.

v The global string is located on the Customize | Environment|Backup dialog; the
local strings are located on the Customize | Language | Options and
Document|Manager | General dialogs.

Format Controls

The format controls available for use in backup formatting strings are listed in the
table below. Note that optional portions of these format controls are enclosed in
italicized square brackets. Examples are based on the output file C:\SRC\FOO.BAR:

Backup String Format Controls

Control Represents Description

%ob basename The entire name of the output file (fully
qualified), less the extension.
(e.g., C:\SRC\FOO)

%d directory Includes the path, less the drive (volume)
specifier and filename. Ends with a backslash
only if describing the root directory. (e.g., \SRC)

%l{...}]e extension Includes the dot that separates basename from
extension, unless the name of the output file has
no extension. May optionally contain a
transformation pattern, described below. (e.g.,
.BAR if no transformation pattern supplied)

%t filename The root name and extension.

%p path Does not include the drive (volume) or
filename. Ends with backslash. (e.g., \SRC))

%[{..}]Ir root Does not include extension, drive (volume) or
path. May contain an optional transformation
pattern, as described below. (e.g., FOO if no
transformation pattern supplied)

%ov volume The drive letter and the colon. (e.g., C:)

% % percent A single percent sign is represented by two
consecutive percent signs (%%).

Example: The formatting string, which represents the initial default, is

$b.bak. You would set this default using a function call like:

BufSetGlobalBackupSpec="%b.bak"

14- File Loading, Backup and FTP 313

Transformation Patterns

The root and extension format controls, described above, may contain
transformation patterns. These patterns describe modifications within the root
filename and extension. You enclose the pattern within curly braces and place it
between the percent sign and the control character, r or e respectively.

You supply the pattern in two parts: the override pattern and the fill pattern:

B The override pattern specifies characters, each of which replaces characters at
the same position within the original root or extension string. The override
pattern also may limit the length of the resulting string.

W The fill pattern specifies characters to fill empty positions within the root or
extension string.

A single vertical bar (|) separates the override pattern from the fill pattern. If you
are supplying only the override pattern, you may omit the vertical bar. Supplying
only the fill pattern is pointless, since the resulting string will be empty.

The rules are the same for using transformation patterns, whether you are using
them on the root of a filename or its extension. There is one noteworthy difference
in their result, however. After the transformation is performed on an extension, the
resulting extension is examined. If the extension is not null, a dot is added to the
beginning of the extension. This is true whether or not the original extension was
null.

Override Pattern

There is a character in the override pattern for each character in the resulting
string. The character at each position may be either a valid filename character,
or a question mark (?).

W If a filename character is specified, the specified character replaces the
character in the original string.

W If a question mark appears at a given position in the string, the character in
the original string is used.

B If no character appears in the override pattern for a given position (i.e., the
root is shorter than 8 characters or the extension is shorter than 3), the
resulting string is truncated at that position, even if you have supplied a fill
pattern.

Fill Pattern

The fill pattern may contain only valid filename characters. The character at a
given position in the pattern is used in the resulting string if that position in the
original string is empty (i.e., the original string is shorter than the fill pattern)
and a question mark is specified by the override pattern.

314 14- File Loading, Backup and FTP

The following examples demonstrate the effects of various override and fill

patterns:
Transformation Pattern
Pattern Original Name Backup
Name
sre{2e~|__ }e FOO.CPP FOO.CP~
FOO.C FOO.C_~
sre{22~}e FOO.CPP FOO.CP~
FOO.C FOO.C
srs{~22?}e FOO.CPP FOO.~PP
FOO.C FOO.~
sr3{~}e FOO.CPP FOO.~
FOO.C FOO.~
sr3{2}e FOO.CPP FOO.C
FOO.C FOO.C
${2222222~ |~ }rse FOO FOO~~~~~
FOO.C FOO~~~~~ C
TESTFILE.C TESTFIL~.C
${?222?2}r%{?2?|bak}e FOO FOO.BAK
FOO.C FOO.CAK
TESTFILE.C TESTECAK

Making Files Read-only

Files can be assigned a read-only (non-editable) status at several locations within
CodeWright, much like backup specifications. The hierarchy of these locations is
indicated below, and details of each location follow.

- Customize | Language | Options dialog —Allows you to make all files of a specified
type read-only (e.g. You could make all .INI files read-only).

->Document|Manager | General—Allows you to specify that an individual
file will be read-only, overriding the setting for its file type.

—File| Open - Directs CodeWright to open this file as read-only,
overriding all prior settings.

14- File Loading, Backup and FTP 315

File Types

To make files of a certain type read-only, access the Options tab of the Language
dialog:

1. Select Customize | Language| Options.

Customize | Language | Options

Language []
File type: Options | Tabs/Indenting | Templates | Coloring | CodeSense; _4|L]
Document Options EOFEOL——
I~ Read-only I~ Unig EOL
I Overtype CulZ EOF
V' Record undo info I~ Input
V¥ Make backups ™ Dutput
Backup spec: I
Mapped to: Word delimiters: | "A-Za-20-9_ _]
<None>
‘Word Wrap Virtual Lines
New Type... I I Line wrapping Left: I1 tﬁl Enable: v
Doleto Type I I™ e continucusly. Right: [72 2| | Limic [25 2
Map Type to... I

Cancel | Help |

2. In the File type box, click and highlight the extension for the desired file type.

3. Inthe Document Options group, check the box Read-only. Files of the specified
type may not be edited, unless this setting is overridden on the
Document|Manager | General dialog, or the File| Open dialog.

Individual Files

To make an individual file read-only, complete the following steps.

1. Select Document|Manager | General.

316 14- File Loading, Backup and FTP

Document|Manager | General

[List R=read only, M=modified x| BlmiE_ |+«

memo.xml

help.xml

™ Sorted

Documents: 1 of 2 selected

[

Windows:

General | Options | Tabs/indenting | Display | Window |

Filename:
File Size: 920
File date: 6/20/00 4:43:44 PM

Memary: 920

| E:\Workshop\downloads\sampleshinter

7 Current Position
Line: |23
Col: |1

I~ Bead-only file

tel

1 of 2 selected

Document name: |

Output name: |

¥ Make backups Spec: |

Click on a document in the Document List field to edit its settings.

Check the box Read-only file to prevent editing of this file, regardless of what

has been previously specified for files of this type.

Individual File upon Opening

To make a file read-only upon opening it, regardless of prior settings for the
individual file or the file type, complete the following steps:

1. Select File|Open.
File|Open
Lookin | System | ¥
S addin = _ISDel.ene P cboutdoc.ofo 14
|22 Backup [%] _Setup.di [AboutDoc.bmp B
|23 Controls] _syst.cab B abidoc2 afg]
|- Images] _syst.hd B3 abtdoc3 afg £
[Objects 8] _userl.cab B biauick afg [
(8] _inst32iex_ 8] _usert hdr B abtwebl afg £
0 - =
File name: || Open |
Files of type: [l Files(~7) | Cancel
Open &s: [Auto-detect file type | Help
' Set as WD ™ New Window
I~ Auto-sense file EOL I~ Open as feadony y
2. Browse to find the file you wish to open and click on the filename.
3. Check the box Open as read-only.

14- File Loading, Backup and FTP

317

FTP: File Transfer in CodeWright

CodeWright offers FTP support (when enabled) under the File pull-down menu.
The feature supports file structures for UNIX, Tandem Guardian, and VMS hosts. It
can be used for loading files from any of these systems into CodeWright. The files
can subsequently be transferred back when the editing is done.

To enable CodeWright's FTP support: complete the following steps:

1. Select the Customize | Libraries dialog.

2. Check the FTP File Transfer box in the list of CodeWright Libraries.
3. Click OK.

An FTP submenu is now available on the File menu. The submenu consists of:

B Login - Used to login to an FTP host. The host must be supplied as well as the
user name and password needed to access it. If the User and Password fields are
left blank, one of two things may occur:

v An”anonymous” user name and blank password will be used.

v The user name and password corresponding to the host of a previously
successful FTP login session will automatically insert in the User and
Password fields.

Manager — Used to manage files on remote systems and to perform FTP
operations.

Put - Used for standard Put operations.
Get - Used for standard Get operations.

Get Files — Used for getting one or more files.

Options - Brings up the FTP Options dialog. Use the Options dialog for:
v Setting the local and remote directories.

v Looking at files in remote directories.

v Setting permanent root directories.
4

Choosing whether local files to be Put' are the documents open in
CodeWright, the files that make up a current CodeWright project, or any
files stored on the local machine.

v Omitting the prompt before you ‘Get’/Put’ the current document.
v Requesting an audible ‘beep” when file transfer is complete.
v Setting whether the files to be Put' should be in ASCII or Binary.

B Disconnect - Disconnects the current connection.

318 14- File Loading, Backup and FTP

Chapter 15

15- Large Files

CodeWright can accommodate files as large as 2 Gigabytes. Any file over 1 MB is
considered a large file. There are several ways to configure CodeWright to make it
more stable and efficient when working with large files. Among these are:

Manipulating swap blocks.
Turning off backup files.
Turning off scroll bars.
Preloading files.

Turning off ChromaCoding.

Using the File Rewrite Save Method for saving files.

Swap Blocks

CodeWright uses swap blocks to manage the memory allocated for an open, active
file. CodeWright is fairly conservative about the amount of memory it initially
allocates (100 8K blocks). When all of the swap blocks initially allocated are used up,
CodeWright starts swapping to disk. If you regularly work with large files, and you
have plenty of memory available, you should consider increasing the number of
swap blocks used by CodeWright.

Example: The default for swap blocks is 100 8K-swap blocks. You may want
to try increasing this (the maximum is 1000).

How to Change the Number of Swap Blocks

Set the number of swap blocks in your configuration file (CWRIGHTINI) located in
the CodeWright home directory. Find the [Editor] section of this file and insert a line
under that heading similar to the one shown below, then restart CodeWright for the
changes to take effect:

[Editor]

SysSwapBlocks=200

15- Large Files 319

Block Size

The size of the swap block (discussed above) can be increased using the function:

-BlockSize=

When the size of the block is increased, fewer blocks are needed, expanding
CodeWright's capacity for handling longer lines and larger files. The default block
size is 0x2000 (8192) but the range can be from 0x1000 to 0xf000 (4096 to 61440
decimal).

The default block size (0x2000) allows a single 500-Mb file to be opened and
edited in CodeWright.

Increasing the block size to 0x8000 will allow a single 2G file to be opened and
edited, or two 1G files.

Increasing the block size more will allow additional large files to be loaded, but
2G will still be the individual limit.

As block sizes increase, the speed of loading large files may be diminished, but
overall speed should increase.

The -BlockSize= parameter should be used from CodeWright's shortcut command
line, a DOS command line, or any of the Sync program command lines.

To modify the command line for the CodeWright shortcut:
1. Right-click on the shortcut and choose Properties.
2. Click on the Shortcut tab.
3. In the Target edit box, add -BlockSize=0x8000 after the CW32.EXE.
Example: C:\CW32\CW32.EXE -BlockSize=0x8000

Do the following to run the "-BlockSize=" from any of the synchronization
configuration dialogs:

1. Run the Synchronization Configuration dialog for a synchronized
environment. The synchronization configuration settings are accessed
in VCSync.exe for MSVC, and under the About CodeWright Help
menu item in the synchronized environment associated with other
sync programs. See the chapter Synchronization.

2. After the full path name for CodeWright, e.g., "C\CW\CW32.EXE", add
the -BlockSize= parameter.

Example: C:\CW32\CW32.EXE -BlockSize=0X8000

The 0x8000 setting can be any setting within the limits described
above.

320 15- Large Files

Consider Your Resources

You should consider how much memory is available on your system and how big
your block size is before changing the number of swap blocks. You will know that
you have made the number too high if you begin to see degradation in the
performance of Windows itself. Short of that, if CodeWright is the only application
you are using, you can be pretty generous with swap blocks.

Backup Files

You may not wish to have CodeWright make backup copies when working with very
large files. In most cases this can be both a waste of time and disk space.

To turn off backups for a specific file type, complete the following steps:

1. Choose the Customize|Language| Options dialog

Customize | Language | Options

Language [x]
File type: Dptions | Tabs/Indenting | Templates | Coloring | CodeSense! <[]
Document Options EOF/EOL
™ Read-only I~ Unig EOL
™ Overtype Ctl-Z EOF
V¥ Record undo info I~ Input
¥ Make backups I~ Qutput
Backup spec: I
Mapped to: Word delimiters: |"AZa20-9_ [

<None>

‘Word Wrap Virtual Lines
New Type.. I™ Line wrapping Left [2| | Enable:
Delete Type I Wirap continuously Right F}ﬁi Limit: [25 | %l

Map Typeto...

Cancel I Help

2. In the File type: box, select the file type(s) for which to turn off backups.
3. Unmark the box labeled Make backups in the Document Options group.

Scroll Bars

To edit large files as soon as you load them, turn off scroll bars. It is too late to turn off
scroll bars after you have loaded the file, so you will want to make No Scrollbars the
default. To do this:

1. Select Customize | View Setups|General.

15- Large Files 321

Customize | View Setups|General

General I Visibles I Colors I Font I

r~ Window Attributes
I™ Line Numbers
I™ Zero-pad Numbers
I™ Horizontal Scrollbar
™ Vettical Scrollbar
I~ Short Title
™ Ruler
W View Links
™ Highlight Current Line
I Qutline Current Line
™ Create Magimized
™ Wrap Display Mode
I~ | Words

View Setup: [pefault

[~ General
Line number width

-

Horiz. Seroll Increment
-

-

Left Margin Space

lm— 2! € Percent

& Pixels
Right Margin Mark
o &
¥ ‘Wiap Column
80 2

Window tab.

Change settings for the selected View Setup.
Change settings for individual windows in the Window | Manager dialog in the

Save As...

Delete

Heset

Defaults

Test

Apply...

o

Bk R LLJ

Cancel

4

Help

2. In the Window Attributes group, make sure that the Vertical Scrollbar and
Horizontal Scrollbar boxes are unchecked.

3. Click OK.

Pre-loading Files

When CodeWright pre-loads files, it loads the file completely into virtual memory,
which can slow things down if the file being loaded is fairly large. There are two
options that enable CodeWright's feature for pre-loading files. Make sure the options
are not marked if you want CodeWright to handle large files more efficiently. To
disable the preloading options:

1. Select the Customize | Environment| General dialog.

322

15- Large Files

Customize | Environment| General

File Sort Mode | Font | Clipboard | Bookmarks
| Keymap I State I Backup | Menu | History
—File & File System General

[~ Win 3.x Open/Save As dialogs

¥ Retain directory changes

¥ Create directories as needed

™ No filename validation

I~ Save files on loss of focus

IV Show file list on File menu

™ Use List for filename completion

™ Use file rewnite save method

[T Allow case sensitive filenames
~File Loading/Reloading

[V Auto-detect file type

™ Auto-sense file EOL

[~ Suppress reload prompt

[~ Preload file on open

™ Preload non-local files

V' Autowvalidate preloaded files

V' Auto-validate non-local files

[V Auto-update NI file

[V Use command line prompt
[V Allow altkey combinations
[V Typing replaces selection

[~ Allow undo past save

[~ Compress undo motion
i~ Window:

[~ One document per window

™ Fast screen painting

[T Tile using single row/column

[Limit window spliting to 2-way

[V Create window using mouse
i~ Mouse & Cursor

™ Use I-beam text cursor

™ Hide cursor while typing

[V Leave mouse selections open
[V Drag and drop text with mouse

[V Mouse activation moves cursor position

Cancel I

Help I

2. In the File Loading/Reloading section, make sure the options Preload file on
open and Preload non-local files on open are unchecked.

When the options are turned off, instead of loading the whole file into memory,
CodeWright only loads as much of the file as necessary for editing and maintains
pointers to the original file. See the chapter on File Loading, Backup and FTP for more

information.

Turn off ChromaCoding

If speed is of the utmost importance when loading large files, you could optionally
turn off CodeWright's ChromaCoding, the feature that colors programming

language syntax structures.

To turn off ChromaCoding;:

1. Select the Customize | Language dialog.

2. Select the file type being edited in the list of File Types on the left.

3. Click on the Coloring tab.

156- Large Files

323

Customize | Language | Coloring

Eile type: Options l Tabs/Indenting | Templates | iC | CodeSense’ _4]_D|
ChromaCoding
& Leger
¥ Language Dependent -
[c 3] _setings._|
[~ Changed Lines DLL
™ Reset onWiite Keywords... | Coloring... I
?'m ﬂ Embedded Languages and Script:
Mapped to: ’7 1 defined Configure... I ‘
<None>
View Setup
New Type... .
Default 'I LI
Delete Type I I~ On document switch
Map Typeto...
Cance _tee |

4. Uncheck the following features in the ChromaCoding section:

B Changed Lines, which causes CodeWright to color lines that have been
changed.

B Language Dependent, which causes CodeWright to color files according to
the syntax of a particular programming language.

Saving Large Files

CodeWright's default file saving method is not the preferred method for saving large
files. For large files, use the File Rewrite Save Method. Both saving methods are
described in this section.

Default File Saving Method

The default method CodeWright uses to open and save files works in the following
way:

Given a file, FOO.C
B Open FOO.Cinto CodeWright.
W CodeWright creates FOO.000 as a temporary file.

B (the.000 extension will be .001 if .000 already exists, .002 if .000 and .001
already exists, and so on.)

B If CodeWright is set to make backups, FOO.C is renamed to FOO.BAK. If
the option to make backups is not turned on, FOO.C is deleted.

B When the file is saved, FOO.000 is renamed to FOO.C.

324 156- Large Files

File Rewrite Save Method (for Files over 1TMB)

The File Rewrite Save Method is simpler than the default saving method. It works
in the following way:

Example: Given a file, FOO.C
B OpenFOO.Cinto CodeWright.

B If backups are turned on, FOO.C is copied to FOO.BAK. If not,
nothing happens.

B When the file is saved, the changes are written back to the
original file.

The File Rewrite Save Method offers the following advantages when saving large
files:

B Space normally needed for the temporary file (foo.000) is no longer
required. This minimizes the amount of memory needed when opening
the file.

B Since the File Rewrite Save Method only writes out the changes made to
the file (as opposed to rewriting the whole file), the portions of the file that
haven't been modified won't be rewritten, reducing the time needed to
save the file.

To turn on the File Rewrite Save Method:

1. Select the Customize | Environment| General dialog.

2. Inthe File and File System section, put a checkmark in the Use file rewrite save
method option.

15- Large Files 325

326 15- Large Files

Chapter |16

16- Extend CodeWright

CodeWright is a fairly complete product. There is not much that it lacks.
Nevertheless, there always seems to be one job for which necessary tools just can't be
found. If this is the case, CodeWright has some tools for extending the CodeWright
program.

CodeWright's extensibility tools consist of three macro languages (Perl, AppBasic,
and API Macros), and DLL-source code (CodeWright DLLs, or Add-Ons, can be
loaded interactively from the Customize | Libraries dialog). The tools are provided in
the event that CodeWright doesn't already have the necessary functions for
handling the task at hand. They can be used together (i.e. a macro that uses a
function from a DLL or another macro, or vice versa), or on their own.

v The advantage of using macros is that they can be used on the fly, without the
added complexity of compiling.

v The advantage of using DLL Add-Ons is that they are more flexible, and can be
written in any programming language that is capable of creating DLLs.

This chapter first describes some of the more technical aspects of using the
CodeWright API from CodeWright's Command Key. It then discusses the advantages
of using Macro languages or DLLs to extend CodeWright. Finally, it goes into detail
about CodeWright's three macro languages (Perl, AppBasic, and, API Macros) and
describes some of the CodeWright architecture as it pertains to the construction or
modification of CodeWright DLLs. The preliminary components of a CodeWright
DLL are also described along with some tips for compiling the DLLs.

The assumption going into this chapter is that the user has some familiarity with
CodeWright. In particular, it is assumed that there is some familiarity with the
CodeWright API, and the methods used to assign API functions to keystrokes,
buttons, and/or menu items.

16- Extend CodeWright 327

CodeWright API

CodeWright has a multitude of API functions that can be used interactively from
within the interface (i.e. from Tools| API Command, or attached to menu items,
buttons, or keystrokes). APIs can also be used in custom macros and DLLs designed
for extending CodeWright. Various chapters in this manual have discussed the
process of using APIs from within the CodeWright interface.

The remainder of this chapter discusses the use of CodeWright APIs from the
Command Key (Tools | API Command) more extensively, and it elaborately describes
the use of the APIs in macros and DLLs. Help and examples for most CodeWright
APIs can be accessed in CodeWright's online help.

Using the APl from the Command Key

CodeWright's Command Key was described earlier in this manual, in the chapter on
Command Key, Libraries, & Environment. This section will describe some of the more
technical aspects of using the Command Key. Remember that the Command Key is
F9 if you are using the CUA or vi keymap command set, and F10 if you are using the
BRIEF-compatible keymap command set. In keymaps where there is no Key
Command assignment, selecting Tools | API Command will always access the
prompt.

To use the CodeWright API, you need to at least know the name of a function you
want to execute. CodeWright's online help is the place to learn more about the
CodeWright API and specific functions.

If you are trying to avoid learning any more about CodeWright's API than you have
to, make sure you have checked various dialogs and menu entries to see if what you
are trying to do can be done through a menu.

Displaying Return Values With the Command Key

Many CodeWright APIs that have return values are much more useful if the return
value can be accessed or viewed. To get the Command Key prompt to display the
return value of a function, begin the command with a question mark.

Here is an example of how such a command might look, just before sending the
command off for processing:

?BufQModifiedCount
When the return type is a numeric value, CodeWright displays that number on the

status line in both decimal and hexadecimal notation. If the return type is a pointer
to a string, CodeWright displays the contents of that string.

328 16- Extend CodeWright

Run Multiple Commands

It is possible to use the Command Key to execute multiple functions and expressions
at once. The functions and expressions can be nested or separated by commas. They
must be preceded by an asterisk (*) and surrounded by parentheses.

Example: When run from the Command Key, the following nested functions
will find and attach the buffer 'test' to the current window, if ‘test’
exists.

* (WinAttachBuf (WinQCurrentWindow (),
BufFindBuffer ("test")))

The asterisk causes functions and expressions that are inside the parentheses to be
passed to the CodeWright API MacroExecMultiple.

If the asterisk is also preceded by a question mark (?), the results of the expression
will be displayed on CodeWright's status bar.

Examples of Command Key Usage

All three of the examples below do the same thing. They put CodeWright in the Hex
Editing mode, with the cursor located in the "binary" portion of the display.

B BufSetHexBinary

BufSetHexBinary ()

bufsethexbinary
The examples below advance the cursor position by two characters.
B MovNextChar(2)

Movnextchar 2

The commands below will open a document for C:\PROJECTA\DEBUG.C.

B BufEditFile("c:\projectaldebug.c")
bufEditFile "c:\projecta\debug.c"
BufEditfile=c:\projectaldebug.c

The following example assigns the function BufSetHexAscii to the keystroke

BL Cap
// i

B kmapAssign("<ctrl-a>", "BufSetHexAscii")

The example below begins an inclusive selection, using one of the labels listed in
CodeWright's online help.

M MarkBeginSel(SELECTION INCLUSIVE)

16- Extend CodeWright 329

Command Key Expression Evaluation

The Command Key can also do expression evaluation, which can be useful for
programming, debugging, or simply as a calculator. With expression evaluating, a
numeric expression that uses C language operators and grouping can be evaluated,
or calculated, from within the Command Key prompt and the Command Key will in
turn display the results. To use the Command Key for expression evaluating, signify
that the expression is one for evaluation by preceding the expression with two
question marks. CodeWright identifiers can be used in these expressions. Here are
examples of expressions to be evaluated:

??SELECTION INCLUSIVE
??20xcf54-3*4
??MARK_GLOBAL+1

The following operators are supported in expressions, grouped by precedence, and
listed in order of decreasing precedence:

Operator Operation
() Grouping
- Unary Minus
~ Bitwise Complement
! Logical NOT
/ Division
* Multiplication
% Modulus
- Subtraction
+ Addition
<< Bitwise Shift Left
>> Bitwise Shift Right
> Greater Than
< Less Than
<= Less Than or Equal
>= Greater Than or Equal

330 16- Extend CodeWright

Operator Operation

== Equivalence

= Non-Equivalence

Bitwise AND
~ Bitwise Exclusive OR
| Bitwise OR
&& Logical AND
I Logical OR

For many users, using CodeWright's API functions from the API Command Key is
the first step toward truly customizing and extending CodeWright. Once users see
how quickly they become comfortable with CodeWright's API, they want more.
Soon they start using them in CodeWright macros and custom DLLs and
subsequently delving into the supplied DLL source code for more. Read on to find
out how to get the most out of the CodeWright API by using them in CodeWright's
macro languages and DLLs.

Macros, Macro Languages and DLL's

The most powerful way to customize CodeWright is through the use of its three
macro languages, and by creating and customizing its DLLs. The following sections
discuss and compare these methods for expanding the CodeWright program.

Macros and Macro Languages

A macro might be defined as something simple that represents something bigger or
more complex. Under this definition, macros include everything from keystroke
recordings that are assigned to keys, and the % macros CodeWright uses in
command lines, up to more sophisticated things written in programming languages.

A Macro Language provides a method for creating macro source code, which may
contain control structures and variables. Macros are normally interpreted at
runtime. CodeWright has three macro languages for extending its program. The
table below describes some pros and cons for the languages. The languages
themselves are discussed in the sections Perl, AppBasic, and API (C-like) Macros. Read
on to determine which language is best for you.

16- Extend CodeWright 331

Macro Strengths and Weaknesses
Language

Per] Macros Perl, along with JavaScript, is perhaps the most popular
language for writing extensions to web pages. The
syntax is similar to C or AWK, but it has many built-in
features for the Internet.

Perl is least suitable for writing simple functions for
assignment to keys because of the time it takes for the
interpreter to initially load. It does, however, allow Perl
programmers to program in a familiar language, using
familiar extensions and libraries. CodeWright's version
of Perl is based on the Gnu-released Perl interpreter.

AppBasic Macros | AppBasicis CodeWright's macro language that is similar
to Microsoft's Visual Basic for Applications. It has its
own editor, debugger, and basic functions. You'll find it
on a tab of the Output Window.

Using this macro language, you can access functions in
the following locations:

B The Microsoft Windows API.

W All of the CodeWright API functions, except those
designated as non-interactive.

B Functions in most any external DLL.

For those who are familiar with Basic in any of its
various forms, this is an attractive option for both simple
and complex macros.

API (C-like) CodeWright's API Macro language is the simplest of the
Macros available macro languages. Using C-like structure and
syntax, it allows you to quickly create functions suitable
for assigning to keys and other simple uses. When
writing an API Macro, you can use any function that is
available from the API command line.

You can write API Macros in the Tools | API Macros
dialog, or you can write them in one of CodeWright's
standard edit windows.

332 16- Extend CodeWright

DLL Extensions

You can write extensions for CodeWright using any compiler that can produce DLLs.
We refer to this capability as DLL Extensibility. Most sophisticated extensions are
written using DLL Extensibility. This method of extending CodeWright has the
following benefits:

B Familiar compiling, and debugging tools,
B Unbeatable speed, and
B Access to functions in other DLLs and libraries.

For details on DLL Extensibility, refer to the topic Making DLL Add-Ons, in this
chapter.

DLL Extensibility, however, may not be as convenient as other methods of extending
CodeWright:

W Itis not as convenient for simple jobs, or single use programs.

W It provideslittle protection against user error, which could cause a system crash.
B It needsits own, separate compiler, which doesn’t come with CodeWright.

Keep these in mind as you consider extending CodeWright using Dlls or one of the
supplied macro languages (Perl, AppBasic, and API).

Where is it Defined?

Once an extension has been created (whether the extension is a macro or a DLL),
there is an opportunity for confusion as to exactly where the function being executed
is coming from. It could be a CodeWright built-in function, a CodeWright DLL
function, an AppBasic macro, a Perl sub, a keystroke macro or an API macro. The
command LibFunctionExistsWhere() helps resolve the ambiguity.

The LibFunctionExistsWhere command returns an allocated string identifying the
location of the function name that is supplied as its argument (0 is returned if it
doesn't claim the function). Listed below are a few sample responses:

Function Response
BufQCurrentLine Built-Ins:BufQCurrentLine
DIgPrint cwdialog:DIgPrint
MyPerlFunc cwPerli:myPerl!MyPerlFunc
_jav_init _jav_init->cwstart:_java_init

16- Extend CodeWright 333

The last example shows the response where a replacement function exists. The Perl
example shows that both the Perl script filename and the sub name are given. For
non-LibExported functions, i.e. those connected by responding to
EVENT_LIB_EXISTS_FAILED and EVENT_LIB_EXEC_FAILED, the 'where' string
is supplied by the responder to a new event EVENT_LIB_EXISTS_WHERE.

Perl

This section describes CodeWright's Perl macro language.

There are two useful ways of looking at a Perl script. One is to look at Perl as an
entity that may be executed in its entirety to perform the task specified by the
operations of the script. Another way of looking at the script is as a collection of
macros, each subroutine being a macro in its own right. Using Perl with
CodeWright, you can make use of CodeWright custom facilities that reinforce these
views as needed. They are described under the topic Loading and Running Scripts.

If you have not already installed a command line version of Perl, we have included a
copy of the ActiveWare 3.15 build of Perl 5.0 for Win32, PW32I315.EXE in the
PerlW32 directory on the CW CD.

Getting Started with Perl

There are two loadable DLLs necessary to use Perl with CodeWright: the Perl
interpreter and the Perl language support DLL. To enable these modules, go to
Customize | Libraries and select two checkboxes: Perl Extension Language
Interpreter and Perl Language.

Note: Updating your version of Perl should not pose any problems, nor
have any effect on the CodeWright Perl interpreter. The CodeWright
Perl interpreter has been modified for use with CodeWright, and is
completely independent of any other Perl interpreter that may be
installed on your system.

If the Output Window is not already showing, select it from the Window menu. You
should then see a Perl tab on the Output Window.

v Even if you have Perl already installed on your system, you must check the Perl
Extension Language checkbox to enable the Output Window's Perl tab.

The CWPDLL is a Perl extension module that provides access to CodeWright API
functions from within Perl scripts. In general, you can use any of the CodeWright
API functions listed in the online help, except for those whose data types are
incompatible with Perl. For a list of available CodeWright API functions, see the
contents of the CWPPM file.

334 16- Extend CodeWright

Creating and Editing Perl Scripts

Perl scripts can be created and edited in standard CodeWright edit windows. There
are some sample Perl script source files in CodeWright's MACROS subdirectory.
Load a few of these and have a look.

Perl scripts are usually packaged in text files bearing a .PL extension. A Perl script
consists of a 'main' section, and zero or more subroutine definitions. The main
section is defined as any code not contained within subroutine definitions.

Example: The following Perl macro contains everything in its main section:

use CWP;

Sfilename = CWP::BufQFilename;

Sfilespec = "%p%r%e";

Snewname CWP: :TransformFilename ($filename,

$filespec);
$newname =~ tr/\\/\//;

Snewname =~ tr/A-Z/a-z/;

CWP: :LibFunctionExec "SetStringMacro (UNIXFILE,
Snewname, 0)";

Supplied Perl Macros

CodeWright comes with a number of sample Perl macros that can be used as starting
points for creating custom macros. The macros are contained in files with .PL
extensions. They are located in the MACROS subdirectory of the CodeWright
installation directory.

Perl Window

The Perl tab on the Output Window acts as a virtual console for the Perl interpreter.
That is, it replaces the stdin, stdout, and stderr devices. You can scroll through the
output of Perl Scripts in this window. There is a limit on how many lines of output
will be retained in this window. The default is 100 lines. You will find this setting in
the Tools | Perl Macros| Properties dialog.

To help distinguish stdin, stdout, and stderr elements of the Output Window,
CWPerl uses three different colors.

B stdoutis displayed using the output color.

W stdin is displayed using the color defined for line numbers.

W stderris displayed using the color designated for comments.

You can find the settings for these colors on the Customize | View Setups | Colors
dialog, for the view setup labeled Output Window.

16- Extend CodeWright 335

Popup Menu and Options

When you right-click on the Perl tab, or any portion of the Perl Window portion of
the Output Window, a menu pops up that has a number of additional options. If
you don't find what you are looking for on the Tools menu, check out this menu.
The Properties item on the popup menu brings up a dialog that lets you control how
Perl interacts with CodeWright. This is where you specify options you would
otherwise provide to Perl on its command line, when invoking it from the shell
prompt.

There are a variety of choices from which to select Perl's input source and output
destination including the Perl Window, the current buffer, the clipboard, the current
scrap buffer, and the current selection.

Different combinations of source and destination can produce interesting effects.

Example: If Current Document is selected for both source and destination, a
Perl script will see the entire content of the current document as its
stdin and the buffer will be replaced with Perl's stdout.

You can accomplish a similar operation on the contents of a selection choosing
Selection for both source and destination.

Input source and output destination can also be set from within a Perl Script. See the
file UPCASE.PL in the MACROS subdirectory of the CodeWright installation
directory for an example of how this is done.

Online Help

The Perl Manual by Larry Wall is supplied in online form, in the help file PERL.HLP.
The topics in this file are part of CodeWright's standard help system. This means
that you can get Perl function help by placing the cursor on the name of the function

and pressing [STRU{FL]. You can also press [f.]] with the cursor in the Perl Window to
get other Perl help.

Loading and Running Scripts

There are two different ways to run a Perl script in the Perl tab of the Output
Window. You can load the script directly on an as-needed basis, or you can load a
Per] macro and run it any time you wish.

336 16- Extend CodeWright

Running a Script Directly

To run a Per] script directly, type the following command from the CodeWright API
Command Line (Command Key/ Tools | API Command):

PerlExec <script file> <any parameters>

Where <script file> is the fully qualified path and file name of the
script file, and <any parameters> consist of any parameters required by
the script file.

This will load the script, execute it, and unload it automatically.

Loading a Perl macro

Loading a Perl macro is much the same as running a Perl script directly, with the
added advantage of being able to invoke the subroutines of the script individually
by simply typing them at the command line.

There are three ways to load a macro:

B Go to the Tools menu and select Perl Macros... and then select Load macros.

v Select Perl macros supplied by Starbase by checking the appropriate box in
the top of the dialog in the area called CodeWright macros.

v Any Perl macros stored in the CW32\MACROS directory will show up in
the CodeWright macros list.

v Add user-defined macros from here by pressing the Add button.

B Another way to load Perl macros is by right- clicking the Perl tab in the Output
Window and selecting Interpreters. This brings up the CodeWright Perl
interpreters dialog. Load the macro by pressing the Load... key. All subroutines
for the loaded macro (including <main>) are automatically displayed when you
select a macro from the list. You may select an individual subroutine from the
list to run.

Use the CodeWright API command:
PerlLoad <filename>
Once the macro is loaded, you can invoke it by going to the CodeWright API

Command Line and entering the name of the subroutine. As previously mentioned,
you may also run the subroutine as follows:

1. Right click the Perl tab and select Interpreters.
2. Select the macro from the list.

3. Select the desired subroutine and press Run.
4

Enter parameters at the resulting prompt, or hit return to run without them.

16- Extend CodeWright 337

Executing a Script
You can load and execute a Perl script from CodeWright's API Command Line
by using the command:

PerlExec filename.pl
If you only want to execute a specific subroutine in a script use:
PerlExecSub filename.pl subname

In both of these cases, you may include additional 'command line' parameters.
All text following the syntactical elements shown in the two commands is
broken down into ‘parameters' using CodeWright's normal command line
parsing rules, with respect to spaces, quotes, escapes, etc.

If you just want to execute a simple Perl script that can be typed in one line use:

PerlExecStr 'Perl-string'

Interpreters

Perl for CodeWright is capable of hosting multiple simultaneous interpreters.
The three commands create an interpreter, parse the input, execute the script
and then dispose of the interpreter. You may alternately load one or more
interpreters by using the command:

PerllLoad filename.pl

This command also may be supplied command line arguments although they
will only be utilized to the extent that they affect loading the interpreter. This
command may be run several times to load different scripts. From time to time,
a loaded interpreter may be utilized by the command:

PerlRun filename.pl

If this command is issued as shown, the 'main' of the script will be executed.
Alternately, you can give a subroutine name thusly:

PerlRun filename.pl subname

As with previous commands, parameters may be supplied following either
form, however, the first form will need an extra empty string (") to represent
the 'main’ function.

338 16- Extend CodeWright

Accessing CodeWright Functions from Perl Scripts

Over 800 CodeWright functions can be directly accessed from within Perl scripts in
CodeWright. To do so, the following line must be placed at the top of the script:

use CWP;

This tells Perl to load CWPPM, which contains descriptions of functions contained in
the compiled Perl extension module CWPDLL. The CWPDLL consists of small C
functions that call the CodeWright functions after first preparing the parameters and
then make the return value, if any, available to Perl.

You'll need to use the CWP:: prefix on CodeWright functions to reference them,
unless you take further steps (described later). This prefix tells Perl that the
following function name is present in the CWP module. As an example, to find out
where the cursor is on in the current document, you could use CodeWright's
BufQCurrentLine API in the following manner:

Sline = CWP::BufQCurrentLine () ;
Constants that are held in CodeWright's lookup table can be accessed using a special
function. For example, to see if there is a column selection present you could use:

if (CWP::MarkQSelType () ==
CWP::CWConst ("SELECTION COLUMN"))

{
}

A special function is also provided to execute any built-in or any function made
available through LibExport. This function is similar to the CodeWright API function
LibFunctionExec. An example follows:

CWP: :CWExec ("ConfigFileRead", " [Editor]", 0);
This is equivalent to:
CWP: :LibFunctionExec ("ConfigFileRead [Editor] 0");

The primary difference is that in the latter example, the string will be parsed to
separate it into parameters to be passed to the function. In the former, the
parameters are explicitly segregated.

Importing Names into Perl’s Namespace

If you have CodeWright functions that you access frequently and their names don't
conflict with standard names, you can save some typing by telling Perl that you want
certain names imported into Perl's namespace.

16- Extend CodeWright 339

To import names into Perl's namespace, modify the use command as follows:

use CWP ("LibFunctionExec", "CWConst",
"BufQCurrentLine") ;

or, equivalently:
use CWP gw (LibFunctionExec CWConst BufQCurrentLine) ;

The latter 'quoted word' shorthand obviates the need to type so many quotes. After
doing this, the named function may be invoked without the CWP:: qualifier.

Sline = BufQCurrentLine();

Unloading a Perl macro
When you no longer need an interpreter it can be deleted with

PerlUnload filename.pl

Using Perl's Debug Mode

There is a debugger supplied for Perl scripts. The debugger is itself a Perl script
(PERL5DB.PL). When invoking Perl from a prompt, this script is automatically
loaded if you use the -d flag. In CodeWright, you accomplish the same thing by
checking the Debug Mode checkbox in the Perl Properties dialog (right-click the Perl
tab).

When running a script in debug mode, there are three important requirements:

H Youshould only use debug mode when invoking scripts with PerlExec on the
API command line.

B The script must not already have been loaded by CodeWright prior to using the
PerlExec command (meaning the script cannot be loaded from the Interpreters
box or by the Tools | Perl macros...| Load macros... pop-up dialog). If it is loaded,
unload it before attempting debug mode.

B Ensure that you have completed executing the script in debug mode before
attempting to run the script again.

Accessing Perl functions

You can also execute the subs of loaded Perl interpreters merely by typing their
names on the CodeWright API Command Line. CodeWright has a mechanism to
allow Add-Ons to respond to indicate their recognition of otherwise unknown (to
CodeWright) function names. The AppBasic interpreter and the Perl interpreter
alike respond to these queries.

340 16- Extend CodeWright

This means that if you have a Perl script loaded that contains a sub called
MyPerlFunc, you can execute that function simply by typing MyPerlFunc at the
CodeWright API Command Line. Perl will check all the loaded Perl scripts to see if at
least one of them has the named subroutine.

Avoiding Ambiguity

The same subroutine name may appear in several Perl scripts. CodeWright therefore
provides a mechanism to specify which Perl script you're referencing.

Example: Suppose that both SCRIPT1.PL and SCRIPT2.PL have a sub
MyPerlFunc. You don’t know which subroutine will be executed if
you simply invoke MyPerlFunc.

v One way to avoid this problem is to right-click the Perl tab and bring up the
Interpreters dialog. Select the script you intend to call, and click its subroutine
in the subroutine list.

v Another way to specify that you wish MyPerlFunc in SCRIPT2.PL to be
executed, is to invoke it as follows:

script2.pl!MyPerlFunc
(Note that the extension .PL used in this example is optional.)
Without this specific invocation, the loading order usually determines which

function will be executed if both an AppBasic script and a Perl script contain a given
function name.

v Generally, the first macro loaded will be the one to execute.

Special API Functions for Perl

In addition to the 800 or more functions available from the CodeWright API, there
are three additional functions available when the Perl Extension Language (CWP) is
loaded.

B DWORD CWConst(LPSTR cw_expr);

This function provides access to CodeWright constants (predefined values), and
any "constants" you have defined with EvalAddStr, in Perl scripts. For example,
you may want to begin a line selection. To do this you would use the constant
SELECTION_LINE in a call to MarkBeginSel.

A more specific example follows:
B CWP:MarkBeginSel(CWP::CWConst("SELECTION_LINE"));

The argument string to CWConst can take any form that is acceptable to the
CodeWright function EvalExpression.

16- Extend CodeWright 341

B DWORD CWExec(LPSTR cw_funcname, ...);

This function provides an alternate form of executing a CodeWright function
that has been made available via LibExport(), i.e. all functions provided by
DLLs, both standard and Add-On. The advantage to using this form, rather
than LibFunctionExec(), is that you needn't compile the arguments that you
wish to pass into a string as is required by LibFunctionExec(). You could, for
example, issue either of the following commands with the same effect:

CWP: :LibFunctionExec ("BufQOffsetEx", $line . " "
Scolumn) ; OR

CWP: :CWExec ("BufQOffsetEx", $line, S$Scolumn);
HW int CWPerlIO(int mode);

This function is used to query or set the current Per] I/O mode. You may recall
from the Perl Properties entry of the Perl popup menu that you can set Perl's
input source and output destination using the radio buttons. This function
serves the same purpose.

The mode argument has two components:
v Input source: occupies the least significant 8 bits of the mode value.
v Output destination: occupies the next most significant 8 bits.

The semantics of the components are as follows:

// Perl I/O source/destinations

#define PERL_IN_CON 0x0000 // input from 'console'
#define PERL_IN BUF0x0001 // input from current buffer
#define PERL_IN_SELO0x0002 // input from selection
#define PERL_IN CLIP0x0003 // input from clipboard
#define PERL_IN_SCRAP0x0004 // input from scrap buffer
#define PERL_OUT CONOx0000 // output to 'console'
#define PERL_OUT_BUF0x0001 // output to current buffer
#define PERL_OUT_SEL0x0002 // output to selection
#define PERL_OUT_CLIPOx0003 // output to clipboard

#define PERL_OUT SCRAPOx0004 // output to scrap buffer

To determine the current I/O mode, simply call CWPerlIO with a mode value of -1.
In all cases, the return value is the prevailing 'mode' immediately prior to the call.
This function is useful to make a Perl script that responds differently depending on
certain prevailing conditions.

v The call to CWPerlIO should be made before any output operations are
performed, since changing the output destination causes all previous output to
be discarded.

342 16- Extend CodeWright

Files used by Perl for CodeWright

These files are found in the CodeWright home directory after installation:

Filename

Purpose

CWPERL.DLL Provides language support for Perl source scripts (*.PL).

CWPERLI.DLL Adds the Perl tab in the Output Window.

CWPERLLMNU | Menu file that holds the menus for the right mouse click in

Perl tab of the Output Window.

These files are found in the CodeWright PerlLib subdirectory after installation:

Filename Purpose
CWPDLL Allows access to CodeWright API’s in the Perl script.
CWPPM Exporter for CodeWright APT’s.
CARPPM Error routines.
CONFIG.PM Win32 Perl configuration.
CWEXS Source Perl script used to rebuild CWPDLL.
DYNALOADER.PM Dynamically loads C libraries into Perl code.
EXPORTER.PM Default import method for modules.
PERL5DB.PL Perl 5.0 Debugger.
TYPEMAP CodeWright variable types (for use with CWEXS).
XSUBPPPL Converts Perl XS code into C code (for use with

CWEXS).

TERM\CAPPM Perl termcap interface.
TERM\COMPLETE.PM | Perl word completion module.
TERM\READLINE.PM | Perl interface to various C<readline> packages.

16- Extend CodeWright

343

Other Perl Resources

Much useful information can be derived from your nearest CPAN (Comprehensive
Perl Archive Network) web site, or some of the Perl books by O'Reilly Press, namely
Programming Perl, and Learning Perl for Win32 Systems. Some useful URLs would
include http://www.perl.org for general Perl information and http://
www.activestate.com for Perl for Win32 systems.

If you want certain .PL files to be accessibel to CodeWright (e.g. a math library), put
them in the per1ib subdirectory of the CodeWright home directory, or specify a
path to them on the Tools | Perl Macros | Properties dialog. For the latter, make sure
the path you specify does not contain . PLL files needed by CodeWright's Perl
Interpreter.

AppBasic

This section explains how to use the AppBasic Macro Language in CodeWright to
create your own macro functions.

CodeWright's AppBasic Macro Language is an interpreted language that is similar in
definition and structure to Microsoft's Visual Basic. Through it, you have access to
the Windows API, CodeWright's API, and functions in independent DLLs. Example
files are supplied in CodeWright's MACROS subdirectory to aid you in getting
started. When you press on the FileOpen button on the AppBasic toolbar for the
first time, you will see a list of these sample AppBasic Macros. Several of these
macros are covered in this section as well.

The advantage of an interpreted language is that no compiling is required. You can
write your macros and use them immediately. By using the AppBasic Window, a
tab on CodeWright's Output Window, you can add break points and debug your
macro as well.

Output Window with AppBasic Tab Selected

ot B
B|e|u||@3] 8] | | s 8|50 Eles] 2

(Object: I[Genelal] ZI Proc: I[declalaliuns] ZI

[;]

=
ﬂ_»l\ Search /(Browse /< Difference A Shel A Peil £ ClipView /< Syrnbols>\ AppBasic /

344 16- Extend CodeWright

Getting Started

To enable the AppBasic Macro Language, go to the Customize | Libraries dialog. You
will see a list of optional packages or modules you can use with CodeWright. Select
the checkbox for AppBasic Macro Language. There is also a Basic module listed that
provides template expansion and language coloring support for the Basic
programming language in general. We suggest you enable this option as well.

After loading the AppBasic package, you should be able to see an AppBasic tab on
the Output Window when it is visible. You can make the Output Window visible by

selecting it from the Window menu.

AppBasic Environment

strmatch -> Empty

[1[@Private Sub Search_Replace_Buffer()
Dim Retval As Long
Dim flags As Long
Dim pattern As Variant

]
Obiject: |Sealch j Proc: |Heplace_Buﬂel j

2

-

Dim strmatch As Variant
Dim matchLength As Long |

Two Editors

You can select one of two editors to use to edit your AppBasic source code. You can
use CodeWright as your editor, or the Rich Text Editor.

W If you use CodeWright, you get the benefits of standard keystrokes and
advanced features. If you use the Rich Text Editor, you get a very close
emulation of the Visual Basic editor, including automatic case correction.

B You can select which editor appears in the AppBasic Window by enabling or
disabling the Rich Text Editor. You will find this setting on the Tools| AppBasic
Macros | View menu.

16- Extend CodeWright 345

Special Keybindings

The following keybindings are in effect in the Rich Text Editor and cannot be
changed. When using the CodeWright Editor in AppBasic these keybindings are
only valid when you have a .CWB file current. Otherwise, they revert to your

original keybinding for your default keymap.

Keystroke

Operation

CTRL|
]+ A

View Macro

o) + E

View Immediate Tab Window

View Watch Tab Wind
) + W iew Watch Tab Window
+T View Stack Tab Window
/A
+L View Loaded Tab Window
/A

Debug R
ebug Run

Debug St
[SHIFT]] + [F5 ebug Stop
% Debug Pause

Debug Step Int
ebug Step Into
+] Debug Step Over
+ 3] Debug Step Out

Debug Step T
ebug Step To
+ + Debug Clear All Breakpoints
+ Debug Add Watch
| Debug Quick Watch

Debug Toggle Breakpoint

o) + N

File New

346

16- Extend CodeWright

Keystroke Operation

File O
™) + 0 ile Open

CTRU _ File Close
+

CTRU File Save
+$

File Print
+P

Two Toolbars

AppBasic has two nearly identical toolbars that you can use with it. One toolbar, the
one you see depicted in the preceding AppBasic Environment graphic, has a fixed
location at the top of the AppBasic Window. We will refer to this toolbar as the
AppBasic Window Toolbar.

The other toolbar is one of CodeWright's Dockable Toolbars. You can position it
anywhere on your screen, or dock it against any edge of the CodeWright Client Area.
We refer to this as the AppBasic Dockable Toolbar, to avoid confusion. You can
enable this toolbar via the Toolbars dialog on the Customize menu.

Popup Menu

When you right-click in the AppBasic Window, a menu pops up that has a number
of additional options. If you don't find what you are looking for on the Toolbar, or
the Tools menu, check out this menu.

Online Help

Online help is available for the AppBasic Window, the AppBasic Language, and its
built-in functions:

W For help on using the AppBasic Window, or language syntax, press the Help
button on the AppBasic Window Toolbar.

W For help on functions or subroutines, press the key anytime the cursor is in
the AppBasic Window. CodeWright will attempt to bring up help for the word
at the cursor. If there is no word at the cursor, you can still browse a list of
available functions and subroutines.

UserDialog Editor

AppBasic comes with its own dialog editor. A UserDialog is a dialog defined in a
macro program. It is described withinaBegin Dialog...End Dialog block. To
create or edit a UserDialog graphically, place the cursor in a UserDialog block and
press the Edit UserDialog button.

16- Extend CodeWright 347

Object Browser

The Object Browser shows information about all the available special data types,
particularly for OLE Automation. Select the label that you wish to look up, and click
the Browse Object button.

If no label is selected, or the label is not found in the known libraries, the edit box at
the top of the dialog will be empty. You may still browse the existing data types and
methods.

Creating a Macro

To create an AppBasic macro, complete the following steps:

1.
2.

Select the AppBasic tab on the Output Window.

Right-click in the window and select Properties. In the Module Properties
dialog, you can provide the names of the AppBasic functions you want to call
from LibFunctionExec, the CodeWright API Command, or bind to a
CodeWright button.

AppBasic refers to the functions as Handlers. A Handler exports the function
for use by defining its return value, along with parameters and types. For those
who are familiar with writing DLL extensions for CodeWright, Handlers serve
the same purpose as calling LibExport. Once made available to CodeWright in
this way, Handlers can be assigned to keys, run from menus and the like.

You can define and create Functions or Subs in the Module Properties dialog
before or after creating a Handler. The handler must be added at some point,
however, for the function to be called from CodeWright.

When you have finished adding your functions, select OK. Then, on the
Modules Properties dialog, select Add. The Add Handler dialog displays.

Add Handler Dialog

Module Properties
Fiet Add Handler
<t e o |
Ha | Cancel =
Betun Type
Void -
Paramater List:
Name Type
] 7
— =
|
= i
— " 17T 0 —"I
=

«| »]* Buid 4 FileFind A Search A Browse A Difference 4 Shell 4 Clipview » AppBasic A Perl [/ |

348 16- Extend CodeWright

Creating a Handler
To create a Handler:
B In the Add Handlers dialog, name your function and declare its type.

Note: Functions and Subroutines must start with a letter and can then
be followed by an underscore or letter.

B Typein any parameters you wish.

Note: At this time, parameters cannot be added later, to do this you
must delete the function and add it again.

Example:
From the Add Handlers dialog:
1. Enter DoThis as the name of the subroutine
2. Use a void return type and empty parameter list.
3. Press OK to return to the Module Properties dialog.
4. Press OK again.
5. When you are back in the AppBasic Tab, use the Proc list to select

DoThis.

The DoThis subroutine will be inserted as follows:
Private Sub DoThis ()
End Sub

6. Now add the following line inside the DoThis Sub.

MsgNotify "This is a test"

MsgNotify is a CodeWright API function that notifies the user

with a message.

The DoThis subroutine will now look as follows:

Private Sub DoThis ()
MsgNotify "This is a test"
End Sub

7. You should now save the macro to a file. By convention, the .CWB
extension is used for AppBasic macros.

16- Extend CodeWright 349

8. Now run the macro. You may do this in any one of the following
ways:

B Press the Start/Resume button on the AppBasic Window
toolbar —’I

B Press the Run Current Macro button on the AppBasic

Dockable toolbar * * .

B Press the right mouse click when over the AppBasic Output
Window and select Run.

9. After running the macro, go to the CodeWright menu Tools| API
Command and type:

DoThis

10. Click OK. A message box should appear with the words “This is a
test” in it.

Note: It is not always expedient to load a macro by
"starting" it in the AppBasic window. When the
macro is no longer in need of editing, it can be loaded
using the Load AppBasic Extension Macros dialog,
accessed by clicking Load Macros on the AppBasic
Macros submenu of the Tools menu.

Object and Proc Drop-down Lists

The Object list shows all the objects for the current module. The object named
(general) groups together all of the procedures that are not part of any specific object.

The Proc list shows all the procedures for the current object. Selecting a procedure
that is not bold inserts the proper procedure definition for that procedure.

The Object and Proc Drop-downs located below the toolbar

(Object: IlGenelall ZI Proc: I[declalations] ZI

Handlers you added in the Properties dialog will appear in the Object and Proc list.

Example: You create a function named Srch_Backwards(), then the Object
list contains Srch and the Proc list contains Backwards.

Example: The underscore divides the function name between the Object and
Proc lists.

350 16- Extend CodeWright

Private Sub Main

Any initialization can be done in a special subroutine named Private Sub Main(). An
example is provided next.

Example:

Private Sub Main ()
Dim firstTime As Boolean
Dim i As Integer

firstTime = True

If (firstTime = True) Then

'no LibExports () needed here, use Modules Property
'Dialog And add handler as a replacement.
firstTime = False

Set SaveEvent = EventRegister(EVENTisAVEiBUFFER, EVENT NORMAL,
"Buffer Saved")

End If

End Sub

Tips on Creating Macros
Consider the following tips:

H You may only edit macros that are not currently loaded for execution. To unload
a macro, right-click on the AppBasic tab of the Output Window to bring up the
Show Loaded Modules dialog. Removing the check from the checkbox in front
of the filename will unload the macro. Calling cwbUnloadFile (filename)
through the API Command prompt will also unload it. If you try to edit a macro
that is currently loaded an error message will appear, asking you to unload the
module.

B When your cursor leaves a line of source code, it is automatically processed.
You may note that capitalization has consequently changed, if you are using the
Rich Text Editor.

B Adotin the left margin of the line indicates a break point. Break points may be
toggled on/off, using the button on the AppBasic toolbar.

16- Extend CodeWright 351

Creating a Modal User Dialog
To create a modal user dialog:
1. Place the cursor in the subroutine or function in which to place the dialog.
2. Then either:
W Select the AppBasic toolbar button Edit UserDialog, OR
W Select the CodeWright AppBasic toolbar button Insert/Edit User Dialog.

The UserDialog Editor displays:

UserDiaog Editor
i UserDialog Editor | _ (O] x|

|Begin Dialog UserDialog 400,203 * %GRID:10.7.1.1

Lyl
4

gl

2]

EB
Cadf

o

IL || |E| <

3. Select the Edit Properties toolbar button (or right mouse click on the dialog that
you are creating). The Edit UserDialog Properties screen displays.

352 16- Extend CodeWright

10.

Edit UserDialog Properties
Left [0 [V Centered « I
lopID
> I

Width |400

Height [203 &I
Caption | V' Quoted
Dialog Function |

Comment |

Name your dialog in the Caption box.

Enter the name of the function that will be used to process the dialog in the
Dialog Function box.

Note: This is a very important step in the process. A question about
creating the skeleton will not show up upon exiting the screen if
you have not filled in the Dialog Function box.

Hit the Close button to re-display the dialog in the UserDialog Editor.

Using the OK and Can tools on the vertical toolbar, add an OK and/or a Cancel
button to the dialog.

Note: A Cancel button is needed to activate the “X” system menu in
the top right hand corner of the dialog.

Perform additional editing as desired.

Save and exit the User Dialog Editor, by clicking on the Save and Exit button. A
dialog will appear that asks: Create the skeleton dialog function?

Answer YES to this question. Your code should now look similar to the
following:

Private Sub DoThis ()
MsgNotify "This is a test"
Begin Dialog UserDialog 400, 91,"DoThis Test
dialog", .DoThisTest
Text 30,28,330,28,"This is a test
dialog.", .Textl
OKButton 40,63,90,21
CancelButton 160,63,90,21
End Dialog
Dim dlg As UserDialog
Dialog dlg

End Sub

16- Extend CodeWright 353

Rem See DialogFunc help topic for more information.
Private Function DoThisTest (Dlgltem$, Action$%, SuppValue$)
As Boolean
Select Case Action$%
Case 1 ' Dialog box initialization
Case 2 ' Value changing or button pressed
Rem DoThisTest = True ' Prevent button press from
closing dialog
Case 3 ' TextBox or ComboBox text changed
Case 4 ' Focus changed
Case 5 ' Idle
Rem DoThisTest = True ' Continue getting idle actions
End Select
End Function

11. Change the following line of code from:
Dialog dlg
To:

bButtonPushed

Dialog(dlg)

The final sample is listed below:

Private Sub DoThis ()
MsgNotify "This is a test"
Begin Dialog UserDialog 400,91, "DoThis Test
dialog", .DoThisTest
Text 30,28,330,28,"This is a test
dialog.", .Textl
OKButton 40,63,90,21
CancelButton 160,63,90,21
End Dialog
Dim dlg As UserDialog
bButtonPushed = Dialog(dlg)
End Sub

Rem See DialogFunc help topic for more information.

Private Function DoThisTest (DlgIltem$, Action$%, SuppValue$%) As
Boolean

Select Case Action$%

Case 1 ' Dialog box initialization

Case 2 ' Value changing or button pressed

Rem DoThisTest = True ' Prevent button press from
closing dialog

Case 3 ' TextBox or ComboBox text changed

Case 4 ' Focus changed

Case 5 ' Idle

Rem DoThisTest = True ' Continue getting idle actions
End Select
End Function

354 16- Extend CodeWright

Running the Macro

Run the macro to see if you have any syntax errors. After editing any syntax errors,
go to the Tools| API Command and execute DoThis. You will see a message box and
then a dialog box show up.

The code within this subroutine will be run when the module is put into Run mode.
Once a module is debugged, it can be loaded without being in AppBasic. The
CodeWright API command cwbLoadFile “FileName” will load the module and put
it in run mode without being shown in AppBasic. You can bind the command
cwbLoadFile “FileName” to a key, or add it to the [Editor] section of your
CWRIGHTINI configuration file, to load it during start up.

Creating an EventHandler in AppBasic

Events provide a method of interrupting program flow to allow a function or
functions to have a timely effect. A number of events have been built into AppBasic
using CodeWright's event handlers in order to add flexibility. One reason for this
flexibility is that the number and names of the functions the event executes need not
be known to the function that triggers the event.

The functions that are executed when a specified event occurs are called Event
Handlers. Since most events originate with CodeWright's API functions, writing
your own event handler gives you access to CodeWright's core. You can change the
way critical functions work without rewriting CodeWright.

You can use events by following the three steps listed below:
1. Select the event that represents the action in which you wish to intervene.

An event handler list can be found in the CodeWright API Library help file
under the topic Using Events. The sample event handler program ties itself to
the event that occurs when a character is entered into a CodeWright buffer.

2. Write an appropriate event handler function for that event. (The EventHandler
definition must be “Global” or the event handler will become unregistered.)

3. Register the function for execution at the event with EventRegister.
Set X=EventRegister (EVENT CHAR INSERTED, EVENT NORMAL, "EventTestHandler")

Note: De-registration of the event is handled automatically when the
macro file is unloaded in CodeWright. To stop an event handler
before terminating the program (module) set the returned
EventHandler Object to “Nothing”.

Additional information on events can be found in the CodeWright API Library help
file under the section Programming and the topics Events and Using Events.

Refer to the sample file EHTEST . CWB that follows.

16- Extend CodeWright 355

Sample EHTEST.CWB

A A
' * EhTest.cwb

' * Sample Event handler EVENT CHAR INSERTED, Message box

' * pops up and displays the character that was pressed.

' * Usage: occurs automatically when the macro is loaded

' * because the event is registered in Private Sub Main().
ThAdhhAdAbAdb bbb A Ab A A A A A AR A A A A AR A A A A A A A A A A A A AR A A A A A XA A A A XA

' Note!!!l! EventHandler must be Global or event handler will
' become unregistered.
Dim X As EventHandler
' This function needs to be executed for the handler to take
' affect. You can put the EventRegister in a main()
' subroutine if you want it to be available every time the
' macro is executed.
Private Sub Main ()
Set X=EventRegister (EVENT CHAR INSERTED,EVENT NORMAL,
"EventTestHandler")
End Sub
Private Function EventTestHandler (ID As Long, Datap As Long) As Integer
MsgBox StringFromPointer (Datap)
EventTestHandler = 0
End Function

Debugging Your AppBasic Macro

When you are ready to begin debugging an AppBasic macro, the following steps will
help you get started:

B Open the macro file for modification, if you have not already done so (load it
into the AppBasic Window).

B Seta Break point, perhaps at the first line of the Sub or Function you are

debugging, by pressing or clicking the Toggle Breakpoint button. (A dot
should appear in the margin to the left of the line.)

B Enter Run mode by clicking on the Run, Step Over or Step Into button. The
Immediate, Watch, Stack and Loaded tabs will then appear above the Edit

Window. You can also press to enter this mode if you are using the RTF

editor, instead of the default CodeWright edit window. (Tools | AppBasic
Macros | View | Rich Text Editor)

W Call the Sub or Function so that you reach the Breakpoint you have set. You can
do this by selecting API Command from the Tools menu and entering the name
of the Sub or Function.

356 16- Extend CodeWright

Break Points
Toggle a break point on the current line.

Note: When you are debugging the macro and have hit a break point,
notifications will be disabled in the other tabs in the Output Window.
For example, if you have hit a break point in the macro and then you
do a multiple search, double-clicking in the Search Window will be
disabled until you have stopped the macro.

Evaluate Expression and Add Watch

You may evaluate an expression, assign a value to a variable, or call a subroutine by
typing commands in the Immediate Window when AppBasic is running a macro.

Command Results (when you press)
?<expr> Shows the value of "expr".
<var> = <expr> Changes the value of "var".

Set <var> = <expr> | Changes the reference of "var".

<subname> <args> Calls a subroutine or built-in instruction.

Trace Toggles trace mode. Trace mode prints each statement
in the Immediate Window when a macro/module is
running.

The Watch Window displays the variables, functions and expressions that are
calculated. Each time execution pauses, the value of each line in the Watch Window
is updated.

In addition, the following actions are available to you:
B The expression to the left of the "->" may be edited.

W Press to update all of the values displayed, to reflect any changes you
have made.

W Press [CRfV]| to delete the line.

Object Browser

The Object Browser shows information about all the special data types that are
available.

16- Extend CodeWright 357

OLE Automation Members
Back I JAttrSelColor _color Paste |

Library Sub: AttrSelColor

f (& Libraries) R

el DispetchD: AOO0008 gy |
| (Codewright Core 4P1) =l ‘

Methods/Properties J Help Sting

AddCheckPoint g —

ArgCount

Parameters:
ByVal color &5 Long

AttrSetColor L]

You can get to the Object Browser by pressing any of the following;:
B The Browse Object button on the AppBasic Window toolbar.
B The Display Object Browser button on the AppBasic Dockable toolbar.

B Theright mouse button, when over the AppBasic Window. Select Object
Browser from the popup menu.

Load Macros Dialog

When you choose the Tools | AppBasic Macros | Load Macros menu item, you will be
presented with the following dialog, which allows sample macros or user defined
macros to be loaded.

358 16- Extend CodeWright

Load AppBasic Extension Macros

Load AppBasic Extension Macros [x]
C ight Macros

(W] appbasic not currently loaded> JIS
[autoeol <not currently loaded>
] baskeywd <not currently loaded>
[] colsum <not currently loaded>
(] diffdir <not currently loaded>
] dispname <not currently loaded>
[editnext <not curtently loaded> |

r~User Defined Macro:

Add. Delete I
Cancel I Help

A

AppBasic Sample Macros
AppBasic macros are files that end with .CWB extensions.
Example: BASKEYWD.CWB

A number of sample macros are supplied in the \MACROS subdirectory of the
CodeWright installation directory. Most of these macros are not intended to perform
necessarily useful tasks, but rather are intended to show how features of
CodeWright are accessed through AppBasic. The comments in the macros describe
their functionality.

AppBasic-related APl Commands

The following useful API commands are available from the CodeWright API
Command prompt (Tools | API Command):

B cwbLoadFile(<moduleName>)

Once an AppBasic module contains no syntax errors, it can be loaded for
execution. It can then be run without the use of the AppBasic window.

B cwbLoadFile “FileName”

Will load the module and make its exported functions (handlers) available for
running. You can also bind keys and buttons to the handlers in the loaded
Macro file.

B cwbUnloadFile (<moduleName>)

An AppBasic module cannot be modified while it is loaded for execution. If you
have loaded the file using cwbLoadFile() from your CWRIGHTINI file or from a
button and you want to now edit the file in AppBasic you will need to unload
the file using cwbUnloadFile().

16- Extend CodeWright 359

AppBasic Window Configuration

Most users will find the standard configuration of the AppBasic Window
satisfactory. If desired, however, you can turn off the AppBasic Window Toolbar and
the AppBasic Object and Proc drop down lists that appear at the top of the AppBasic
Window.

To change the appearance of the AppBasic Window, go to the Tools | AppBasic
Macros | View Menu. Here you can enable or disable the AppBasic Window
Toolbar, the AppBasic Object and Proc drop down list, or change from a CodeWright
Edit window to the WinWrap Rich Text Editor.

v Toolbar
v Procedure Display
Rich Text Editor

This configuration can also be set by right-clicking over the AppBasic Window, and
then selecting View from the popup menu.

If you wish to change the configuration of the window programmatically, the
following CodeWright API commands will assist you. These commands may be
issued via the API Command dialog (Command Key) on the Tools menu. If you
find them useful, you may make your settings more permanent by modifying similar
commands in the CWRIGHTINI configuration file.

B cwbShowToolbar(int nShow)
This function will Hide/Show the Standard AppBasic Toolbar.
Example:

cwbShowToolbar (0)
cwbShowToolbar (1)

The first example will cause the toolbar to be hidden. The second example
will show the toolbar. Any positive integer value for the parameter will
display the toolbar.

B cwbShowProcDisplay(int nShow)
This function will Hide/Show the Object and Proc dropdown Lists.
Example:
cwbShowProcDisplay (0)

cwbShowProcDisplay (1)

The first example will cause the Object and Proc dropdown Lists to be hidden.
The second example displays them. Any positive integer value for the
parameter will display the Object and Proc dropdown Lists.

360 16- Extend CodeWright

cwbCreateCWWindow(int bCWWindow)

This function is used to change the Editor in AppBasic. There are two choices:

one is to make it a CodeWright Editor and the other is a Rich Text Editor.
Example: To change to a CodeWright Editor call:
cwbCreateCWWindow(1) or cwbCreateCWWindow(TRUE)
Example: To change to Rich Text Editor call:

cwbCreateCWWindow(0) or cwbCreateCWWindow(FALSE)

Example Configuration File Settings

The AppBasic window's configuration is stored in the CWRIGHTINI file, in the
[AppBasic Setup] section as shown below:

[AppBasic Setup]
cwbShowProcDisplay=2
cwbShowToolbar=1

Exported Functions in CWBASIC.DLL

Refer to the following functions:

cwbAddHandler(LPSTR lpszHandlerDef, LPSTR lpszModule)

Adds a callable Sub/Function to AppBasic module - equivalent to LibExport

lpdzHandlerDef - Sub/Function Prototype ex: Private Sub

CallMe (FName As String)

lpszmodule - cwb file containing this Sub/Function
(Full Path) ex: c:\cw32\colsum.cwb.

cwbToggleBreakPoint(void)

Toggles a break point in currently edited module at the current line.
cwbEditFile(LPSTR lpszFile)

Loads a .CWB file into the AppBasic editor.

cwbLoadFile(LPSTR lpszFile)

Loads and runs AppBasic file.

cwbUnloadFile (LPSTR lpszFile)

Unloads File from Engine (Stop Run)

16- Extend CodeWright

361

B cwbExecuteCommand(long cmd)

Executes an AppBasic Operational Command.

Commands

cmdFileNew = 0

CmdFileOpen = 1

cmdFileSave = 2

cmdFileSaveAs = 3

CmdFilePrint = 4

cmdFilePrintSetup = 5

cmdMacroRun = 6

CmdMacroPause = 7

cmdMacroEnd = 8

cmdDebugStepInto = 9

CmdDebugStepOver = 10

cmdDebugStepTo = 11

cmdDebugBreak = 12

CmdDebugQuickWatch = 13

cmdDebugAddWatch = 14

cmdDebugBrowse = 15

CmdDebugSetNext = 16

cmdDebugShowNext = 17

cmdHelpApp = 18

CmdHelpLanguage = 19

cmdHelpTopic = 20

cmdHelpAbout = 21

CmdEditUndo = 22

cmdEditCut = 23

cmdEditCopy = 24

CmdEditPaste = 25

cmdEditFind = 26

cmdEditReplace = 27

CmdEditAgain = 28

cmdEditFont = 29

cmdEditDelete = 30

CmdEditSelectAll = 31

cmdEditUserDialog = 32

cmdFileClose = 33

CmdFileSaveAll = 34

cmdDebugStepOut = 35

cmdSheetOpenUses = 36

CmdSheetCloseAll = 37

cmdSheet] = 38

cmdSheet2 = 39

CmdSheet3 = 40

cmdSheet4 = 41

cmdSheet5 = 42

CmdSheet6 = 43

cmdSheet7 = 44

cmdSheet8 = 45

CmdSheet9 = 46

cmdEditProperties = 50

CmdFileNewObjectModule
=48

CmdFileNewClassModule = 49

cmdFileNewCodeModule =
47

B cwbShowToolbar(int nShow)
Hide/Show Standard AppBasic Toolbar.

B cwbShowProcDisplay(int nShow)

Hide/Show Object and Proc Dropdown Lists.

362

16- Extend CodeWright

API (C-like) Macros

This section covers CodeWright's API macros.

CodeWright API Commands are function calls that can be made interactively. This
means that they may be assigned to keys, menu items, buttons, popup context
menus, and issued from the API command line. CodeWright API Macros build upon
this capability to provide a quick and simple way to write extensions for
CodeWright.

If you have previously used, or read about using API Commands interactively, a few
differences should be noted if they are being used from API macros:
B You can nest API Commands as parameters to other API Commands in macros.

B All functions must be followed by opening and closing parentheses around the
parameter list, if any.

B Commas must separate parameters.

APl Macros Defined

API Macros are one or more sequential, iterative, or conditional statements that are
given a name. These statements often contain CodeWright API function calls. They
are stored in a file, CWRIGHTMAC, and may be recalled by name for execution
within CodeWright.

A number of API macros are supplied with CodeWright. The supplied macros can be
viewed in one of the following ways:

B Select the appropriate macro from the drop down list under the Name edit box
in Tools | API Macros. The macro is then displayed in the dialog for viewing or
editing purposes.

H Open the file CWRIGHTMAC into CodeWright, then locate a desired macro for
viewing or editing.

A ChromaCoding lexer called API Macro has been developed to make working with

the language easier. Without any special changes you should be able to:

B Load the CWRIGHTMAC file into CodeWright.

W Seeit correctly ChromaCoded.

B Compile it with the menu or button.

B Parse errors from the Build tab of the Output Window.

For more information on Lexers, refer to the topic ChromaCoding Lexers in the chapter
View Setups and Language Support.

16- Extend CodeWright 363

Getting Started with APl Macros

The Tools | API Macros dialog lets you create, edit and test API Macros.

API Macros
APl Macros [|
RENEACopyisibleLines|
Edit LA (Copyt/isibleLin
o
* CopyVisibleLines

* Copy all visible lines in a document to the clipbc
*f
void CopyVisibleLines(void)

if (BufQSysFlags() & BUFFER_COMPACT) =

Msgwaming("Couldn't copy, not in Sel
return;

MsgMessage("Copying visible lines...");

Do |
New
_Gpiors.. |
MarkSavePos(); |
_ b |
4

MovToDffset(0); Close

// find the first visible line M
4| | » Help

NI <| >| Hl <No errors found>

Creating a Macro

To create an API macro in the API Macros dialog:

1. Give the macro a name in the Name edit box.

2. Typein the API commands you wish to execute into the Edit box.

3. Press the Save button. Press the Run button to send away the dialog. Any
unsaved edits are automatically saved by default.

Editing a Macro

To edit a macro previously created, select its name from the Name listbox. The text of
the macro will appear in the Edit box and you can proceed to make your changes.
Press either Run or Save to save your changes to disk. Run will also run the macro.

Each time a macro is saved it is checked for errors. If there are errors, use the four
buttons at the lower left of the dialog to parse the position and text for each error.

Special Editing Keystrokes

In addition to the buttons, the next error can be parsed by using V). To

/A /Y

insert a <Tab>character use TAB]| As in a CodeWright window, hit [F]] to bring
up help for the function under the cursor.

364 16- Extend CodeWright

Editing APl Macros in a CodeWright Window

You can create and edit API Macros in a standard CodeWright edit window. This
gives you access to CodeWright's advanced editing capabilities. Complete the
following steps:

1. Open the file CWRIGHTMAC into CodeWright.

2. Create a new macro using the following syntax:
[API Macro:<macro_name>]
-Or-

1. Find the location of the macro to edit by searching for [API
Macro:<macro_name>] . The macro is contained in the lines following its
name <macro_name>, but before the next bracketed section, if any.

2. Make any necessary edits.

3. Save before running the macro, since macros are always read from the file.

Running a Macro

The obvious way to run a macro is from the menu or dialog. Macros can also be
executed from within CodeWright in as many ways as API functions can be. Just use
the macro’s name, and optionally its parameters, like CodeWright API functions.

Language Definition
For more information on the API Macro language, see the following discussions on:
Comments

Identifier Naming Rules

Data Types for Variables

Declaring Variables and Arrays
Literal Values

Array Initializers

Automatic Type Conversion
Expressions

Statements and Statement Blocks
Program Flow of Control Structures
CodeWright Event Handling

Difference between API Macros and C

String Functions

16- Extend CodeWright 365

Comments
Comments can be used almost anywhere, including within statements.

B Cstyle multi-line comments may be used in API Macros. The comment starts
with the forward slash and asterisk, //*’, and ends with the asterisk and forward
slash, **/". This kind of comment can cover a partial line, or many lines. Nested
comments are not supported.

B C++ style comments may be used in API Macros. When two forward slashes, '/
/', appear on a line, the remainder of the line is ignored.

Identifier Naming Rules

Identifiers include macro and variable names. The first character must be an
alphabetical or underscore (_) character. The remaining characters can be
alphanumeric or the underscore character.

Data Types for Variables
There are two types of variables available, ‘int’ and “string’:

H ‘int’ type variables are long signed integer numbers. You can use the “int’ type
for accessing most of the parameter and return types of CodeWright's API
commands. These include ‘char’, “int’, long’, “UINT’, "'WORD’, ' DWORD’,
‘BOOL, "HBUFFER’, HWINDOW, etc.

W ’string’ type variables are NULL terminated character arrays. They are
automatically allocated and freed as needed. Use the ‘string’ type when
accessing parameter and return types of LPSTR and LPMSTR. Strings must
start and end with the quote character (").

Arrays of either type (int or string) are also supported. An array is a variable capable
of storing one or more values. All of the values in the array must be of the same type.
The values stored in the array are called ‘array elements’.

Declaring Variables and Arrays

Variables must be declared before they can be used. They can be assigned a value in
the same statement they are declared in. Here are some example declarations;

int 1i;

int § = 1;

string s;

string a = "abc";

Two of these examples include initialization. Macro variables are never un-
initialized. If they haven't had a value assigned to them, their value will be zero or
NULL.

366 16- Extend CodeWright

Arrays can be declared using one of the following forms:

<arr name> is the name of the array and must conform to identifier naming
rules.

<arr_size> isoptional If given, <arr size> mustbe a constant
expression that evaluates to a nonnegative integer value.

If <arr size> is givenand the declaration does not include an assignment, all
array elements are initially set to 0 (NULL for string arrays).

If <arr size> isnot given, the size is initially zero. Omitting <arr size> is
allowed because array size is dynamic and will change as elements are assigned
to the array.

static
Use the 'static’' keyword directly before the 'int' or 'string' type keyword. Static
variables maintain their values between macro calls.

If you wish the initialized value of the variable to be non-zero, be sure to follow
it with an assignment expression. This expression cannot contain any macro or
function calls.

global

Use the 'global' keyword directly before the 'int' or 'string' type keyword. Like
static variables, global variables maintain their values between macro calls.
They have the additional benefit of being available in more than one macro.

Each macro that uses a global type variable must declare it. For each
declaration, use the same assignment value for initialization. Otherwise the
starting value may be undetermined, since it would depend on which macro is
compiled (used) first.

Parameters and Return Types
Declare parameter variables and return types at the beginning of a macro. Use
the following format for the macro declaration:

<ret type> <macro name>(<type> <paraml name>,
<type><param2 name>, ...)
{
<statement>;
// more lines here
return <expression>;

16- Extend CodeWright 367

The following formatting guidelines apply when defining parameter variables
and return types:

B For backward compatibility the parameters line and the outside braces
enclosing the macro are optional.

B The<ret type> partof the parameters line is required. If the macro
returns no value, use the special type 'void'. Otherwise use either 'int or
'string' here.

B The <macro_name> partis optional since it serves no functional purpose.
However to maintain good C style form, use the same name here as the
macro name shown in the dialog's combo box.

B The left and right parentheses frequently contain one or more comma-
separated formal parameters. Each formal parameter variable begins with
either 'int' or 'string', and ends with the identifier naming it. If no
parameters are used, use the special 'void' type alone between the left and
right parentheses.

B Arrays defined for parameter and return types must be automatically sized
(use no number within the brackets for the array size).

W If the return type is not 'void":
v Use the return statement at the end of the macro.

v Include an expression in the return statement to use for the return
value.

Literal Values

Literal values can include numbers, characters and strings.

Number Literal Formats

Decimal, hexadecimal and octal number formats are supported. Hexadecimal
numbers must start with '0x'. Octal numbers must start with '0'. All other
numbers are considered decimal.

Character Literals
Character literals are just an alternate method of specifying a literal number.
Delimit character literals at the beginning and end with a single quote ().

Character literals usually contain one character but will have two or three if the

first one is the backslash (\) escape character. Use the backslash before a single
quote if you wish the single quote to represent the character literal value.

368 16- Extend CodeWright

String Literals

String literals are sequences of characters that are delimited at the beginning
and end by the double quote (") character. To include the quote in the string,

precede it with the backslash (\) escape character. String literals can continue
onto following lines if the last character in the line is a backslash.

Escape Sequences
The following are escape sequences for both string and char literals:

Literal Escape Sequence Value

\0 NULL 0x00
\a Alert (bell) 0x07
\b Backspace 0x08
\f Form Feed 0x0c

New Line 0x0a
\r Carriage Return 0x0d
\t Horizontal Tab 0x09
\v Vertical Tab 0x0b
\xhh Hexidecimal Value (00-ff)
\ Backslash

Note: If you want to use the backslash in function calls that expect a single
backslash in the string, be sure to double it in the literal string.

Array Initializers

Array initializers for API Macros take the form:

{<element 0>,<element 1,..<element n}

For arrays that have many elements, the '..." represents the repetition of the
pattern ‘<element 1>, <element 2>’ up to <element n>.The ellipsis
cannot be used explicitly.

There may be zero or more elements in an array initializer.

Any valid expression can be used as an element in an array initializer. However,
character, number or string literals are commonly used.

Array element types need not match the array variable that the array initializer
is used with. Types are converted as needed.

16- Extend CodeWright 369

Array literals are valid operands and can be used in expressions with other
operands.

Example: The following is an example of combining an array declaration with
an array initializer:

int iArr[10] = {1,2,3}

In special cases like the previous example, where the array initializer has fewer
elements than the declaration size, the remaining elements are initialized to 0 (NULL
for string arrays). Otherwise, when an array type is assigned to an array variable, the
array variable takes the size of the array being assigned to it.

Automatic Type Conversion

Values are automatically converted to another type when used where that type is
expected.

Type Conversion Rules

Expected Given type Rule
type

int string If the ‘string’ begins with decimal,
octal or hexadecimal characters, they
are converted for the number. If not,
the value will be one if the string
contains at least one character and
zero if it is empty or NULL.

string int Convert value to decimal characters.

int array string array Convert string elements to int
elements.

int array int Make an array of size one with the int

atindex zero.

int array string Make an array with the same length as
the string using each character from
the string for array elements.

string array int array Convert int elements to string
elements.
string array string Make an array of size one with the

string at index zero.

370 16- Extend CodeWright

Type Conversion Rules

Expected Given type Rule
type
string array int Make an array of size one with the int

converted to a string at index zero.

int int array Sum all elements.

int string array Convert to int array then sum all
elements.

string string array Working from first to last, append each

element onto the string made from the
preceding elements.

string int array Make a string with the same length as
the array using a character from each
array element.

The last two conversion rules have a special option that allows the appended string
elements to be separated by a given string.

Use the API macro built-in function joinStr to specify and/or query this string.
Examples:

B Use a single space between each joined (appended) string element.

joinStr (" ");

H Query the current string used to join elements.

retStr = joinStr();

Expressions

Expressions are made up of operands and operators. Operands can be variables
(including arrays), array initializers, literals, and function or macro calls. Support is
provided for all C operators. Numeric, logical and string expressions are also
allowed as operands within larger expressions. Expressions can be used as function
call parameters.

Accessing Array Elements within Expressions
Use this format to access an individual element within an array:

<arr name>[<index expression>]

16- Extend CodeWright 371

B <arr name> must be the name of an array or string variable.

B <index expression> isan expression used to specify the index of the
element.

B The first element of an array has the index of zero.

W When <arr name> is of type string, the element accessed will be the
character at the given index. Accessed string elements are converted to type
int.

Example: The following shows how array elements can be accessed:

// define 2 int arrays, one of size 0 and one
// size 10

int iArrl[], 1Arr2[10];

// assign iArr2 to iArrl. iArrl now has 10

// elements (all zero values)

iArrl = iArr2;

// assign 2 to the first element of iArrl
iArrl[0] = 2;

// assign 1 to the second element (index 1) of

// 1Arr2

iArr2[iArrl[O] - 1] = iArrl[""] - 1;
// assign 1 to the third element of iArr2
iArr2[{ 2, 1, -1}y] = {1, 0 };

// Note the last example involves array type
// conversions. See the topic Automatic
// Type Conversion.

Assignments and Operators
Assignments take the form:

<variable> <assign op> <expression>

Assignments are allowed to begin at three places in a statement: at the
beginning of the statement, directly following a left parenthesis or directly
following a comma. Multiple assignments are allowed in the same expression.

Example: a = b = ¢ = 0;

The assignment operators available are:

Assignment Operators

Operator Description

= Simple assignment

+= Add and assign

372 16- Extend CodeWright

Assignment Operators

Operator Description
-= Subtract and assign
*= Multiply and assign
/= Divide and assign
% = Modulo and assign
<<= Shift bits left and assign
>>= Shift bits right and assign

The numerical operators available are:

Numerical Operators

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo (remainder)
<< Shift bits left
>> Shift bits right
& Bitwise AND
| Bitwise OR

Bitwise Exclusive OR

Bitwise Complement

16- Extend CodeWright

373

Logical expressions evaluate to a one or zero, TRUE or FALSE, respectively.
Logical operators available are:

Logical Operators

Operator Description
== Equivalence
1= Non-equivalence
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
&& AND
I OR
! Negation

Special Operator Rules for Strings
Some operators have special meaning when their operands are strings.

Use “+’ to Concatenate; use "+ =" to concatenate and assign.

String concatenation is the joining of two strings where the string following the
operator is appended to the string before the operator. If the left operand is of
type ‘string’, string concatenation is done; otherwise numerical addition is
done. The right operand is converted as needed for either form. This capability
makes it easy to compose output strings containing the descriptions and values
of variables.

The following are logical comparison operations:

== TRUE if string1 and string2 match

!= TRUE if string]l and string2 don't match

> TRUE if string] is alphabetically after string?2

< TRUE if stringl is alphabetically before string2

>= TRUE if stringl is alphabetically after string2 or matches
<= TRUE if string] is alphabetically before string2 or matches

374 16- Extend CodeWright

String comparison operations require that both operands be strings. Otherwise
the numerical comparison is done. The single string operand is converted to
type 'int' if needed. By default, string comparisons are case insensitive (ignore
case is on).

B To change case sensitivity for the current invocation of a macro, put this call
in your macro:

MacroIgcase (FALSE) ;
B To query the current state use:

MacroIgcase (-1)orMacroIgcase()
Special Operator Rules for Arrays
The following operator rules apply to API Macro arrays.
For the + and + = operators these steps are used:
1. Convert the right operand to the type of the left.

2. Create a larger array by appending right operand elements to left operand.

For the logical comparison operators (>,<,>=,<=,!=,==) these steps are used:

1. Convert the operand with the more complex type to the one with simpler
type. (An array is more complex than an int or string, a string is more
complex than an int.)

2. Then if both operands are arrays:

a. Compare each element with the same index, from first to last, until the
elements do not match or no elements remain in one or both arrays.

b. If all elements match but one array has more elements, it is taken as
having the greater value.
Determine the Size of an Array or String within a Macro

Use the API Macro built-in function dim(<arr_name>) to find the length of an
array or string.

16- Extend CodeWright 375

Other Operators
Refer to the following descriptions of other available operators.

Other API Macro Operators

Operator Description

, Comma operator. This operator is used to:

B Separate parameters in the calls to other macros or
functions (most commonly).

B Separate sub-expressions within a larger
expression. This use is often seen in the ‘for’
statement, where it allows multiple sub-expressions
in any of the three semicolon-separated sections
that control the ‘for” statement. The value taken for
a sequence of comma-delimited sub-expressions is
that of the right-most sub-expression.

?: Conditional operator. This operator takes the form:

<test expr> ? <true expr> : <false expr>

If <test expr> evaluates as non-zero, the

<true expr> isexecuted and its value is taken.
Otherwise the <false expr>isexecuted and its value
is taken. Although this operator can be used without
restriction within expressions, it is commonly used as
the right part of assignment statements.

bvValue = bTest ? bVall : bVal2;

376 16- Extend CodeWright

Other API Macro Operators

Operator Description
++ Pre-increment or post-increment operator. This operator
can only be used directly preceding or trailing an 'int'
type variable:

B When used before the variable, the variable's value
is increased by one before it is used within an
expression, if any.

B When used after the variable, the variable's value is
taken first for use in an expression, then the
variable's value has one added to it.

- Pre-decrement or post-decrement operator. This
operator can only be used directly preceding or trailing
an 'int' type variable:

B When used before the variable, the variable's value
is decreased by one before it is used within an
expression, if any.

B When used after the variable, the variable's value is
taken first for use in an expression, then the
variable's value has one subtracted from it.

Operator Precedence Rules
Operators with the highest precedence are evaluated first. These operators are
binary (requiring left and right operands) unless otherwise indicated.

Associativity indicates the order of evaluation when two operators have the
same precedence. For example, most operators evaluate starting at the left in an
expression, processing right.

Operators (from high to low precedence) | Associativity
011 none
+- ~ ! ++ -- (all unary) RtoL
*/ % LtoR
<< >> LtoR
+ - LtoR
< > <= >= LtoR

16- Extend CodeWright 377

Operators (from high to low precedence) | Associativity
== I= LtoR
& LtoR
~ LtoR
| LtoR
&& LtoR
|| LtoR
? : (trinary operator) LtoR
= *= /= %= += -= <<= >>= &= |= RtoL
, (comma operator) LtoR

Parentheses in Expressions
Left and right parentheses, '('and ')', may be used to group expression parts to
set evaluation precedence.

Short Circuiting
The '&&' and the '| |' operators have special evaluation rules. The idea of short-
circuiting is that often only the left operand needs to be executed and evaluated.

W For the '&&' operator, if the left operand evaluates as zero, the value of the
operation must be zero (FALSE) so the right operand can be ignored.

M For the'| | operator, if the left operand evaluates as non-zero, the value of
the operation must be one (TRUE), so the right operand can be ignored.

Function calls
Function calls, including those to CodeWright API functions and macros, take
the form:

<macro_name> (<parameterl>,<parameter2>,...<parameterN>)
The following rules apply:

B Spaces and tabs are allowed after the macro name and between parameters.
B Commas must separate parameters.

H You may supply fewer parameters than a function is defined to use. The
remaining parameters will be supplied for you as zeros or NULLs.

See the discussion on Expressions, in this chapter, for what can be used as
parameters. Macro recursion is supported.

378 16- Extend CodeWright

Exiting and Macro Return Values
Use the return statement to exit a macro before the last line and if the macro has
a return type, return a value. End the return statement with a semicolon.

For backward compatibility, if there is no specified macro return type, the return
value is optional. For what is allowed, see the discussion on Expressions in this
chapter.

If the expression does not evaluate to the type expected by the macro's defined
return type, the value is automatically converted. See the preceding discussion
on Automatic Type Conversion, in this chapter.

Statements and Statement Blocks

Statements are expressions including optional preceding assignments, ended by a
semicolon. Statements can span multiple lines if needed. More than one statement
can share a line, but it is better form to have them on separate lines. A statement
needn't contain anything more than just a semicolon.

Statement blocks are a series of statements. They are normally used in conjunction
with control structures. Use curly braces '{' and '}, to begin and end statement
blocks, respectively. A statement block can be used anywhere a single statement can
be used.

Program Flow of Control Structures

The available program flow control structures are of conditional and iterative types.
Both conditional and iterative statements can be used anywhere statements might
be used.

Conditional statements
Examples of conditional statements include:
W ‘if’ statement

if (<expression>)
<statement>;

W ‘if-else’ statement

if (<expression>)
<statement>;
else
<statement>;

16- Extend CodeWright 379

Testing for several conditions can be done by using the ‘if-else’ statement in
place of the statement following the 'else’. The following does this and also uses
a statement block:

W ‘if-else’ statement

if (<expression one>)

<statement>;
<statement>;

}

else if (<expression two>)
<statement>;

else 1f (<expression three>)
<statement>;

else
<statement>;

B ’switch’ statement
switch (<test expression>)
{
case <constant expressionl>:
<statement>;
<statement>;
break;
case <constant expression2>:
break;

default:
<statement>;
break;

}

The 'switch' statement executes specific statements based on the value of a test
expression. Specify which statements to execute for given values via the 'case’
lines. There can be many 'case' lines, but each must have a unique value from
the constant expression.

These constant expressions must be able to be evaluated at compile time. They
must not contain function or macro calls. They must not contain variables or
string literals.

The 'break’ statement line following each 'case' section is optional. Without a
‘break’, execution continues into the following 'case' or 'default' section. The
optional 'default' section is executed if none of the cases are matched by the test
expression. The braces are required.

380 16- Extend CodeWright

Iterative statements
Refer to the following types of iterative statements:

HW ‘while’ statement
while (<expression>)
<statement>;
The 'while' statement allows you to execute a statement repeatedly.
The <expression> is evaluated before each iteration:
v If non-zero, the contained statement is executed.

v If zero, execution proceeds with the statement following the 'while'
statement.

W ‘do-while’ statement

do

<statement>;
} while (<expression>);

The 'do-while' statement also allows you to execute a statement repeatedly.
The <expression> is evaluated after each iteration. The 'do-while'
statement will execute its contained <statement> atleast once. The braces
are required.

W ‘for’ statement

for (<init expression>; <test expression>;
incr expression>)
<statement>;

The 'for' statement contains three parts within the parenthesis:

v The first part, <init expression>, only executes once, but before
any other part of the for statement.

v Thesecond part, <test expression>, is executed before each
iteration of the loop. If its value is non-zero, the contained
<statement>is executed. If <test expression> ismissing, the
contained <statement> always executes.

v The third part, the <incr expression>,is executed after each loop
iteration.

Each of the three parts is optional. If you leave out the <test
expression>, itis common to end the loop from within the contained
statement section using the 'break’ statement.

16- Extend CodeWright 381

W ‘break’ statement
break;

The 'break' statement causes execution to resume immediately following
the innermost containing 'switch', 'while', 'do-while' or 'for' statement.

H ‘continue’ statement
continue;

The 'continue' statement causes execution to not finish the current iteration
of the innermost-containing loop; instead, the next iteration is begun. In
the 'while' and 'do-while' statements, the next evaluated is the <test
expression>. Inthe 'for' statement, the <incr expression>is
evaluated next.

Run-time Error Handling

API macros protect against several kinds of run-time errors:

Ctrl-break stop

If you've written a locked loop in your macro, use the [Break] keystroke to
terminate it.

Divide by zero error
If the macro attempts a divide or modulo by zero, you will get this error.

Runaway recursion protection

Recursion macro code can sometimes have the problem of not ending the
recursion correctly. This can lead to an ever-expanding stack. Each time an API
macro is called from another, the level of call is checked to see if it is greater than
the allowed maximum (default is 50). This maximum level can be adjusted with
the function MacroMaxRecursion.

lllegal Array Access

An attempted access of an illegal array index will generate a runtime error. An
illegal index is one that is negative or greater than or equal to the size of the
array.

CodeWright Event Handling

Three special macros have been added to CWRIGHT.MAC to facilitate event
handling by API macros:

B _Init API_Macro -- This macro is automatically called when CodeWright starts
up. To register events you want to handle, put calls to EventRegister here. You
can also put other code here you want run at startup.

382 16- Extend CodeWright

_API_Macro_int_handler -- This macro is an example handler for when the
event data is known not to be type ‘LPSTR’. Use this macro for most events.

_API_Macro_string_handler -- This macro is an example handler for when the
event data is known to be the type ‘LPSTR'.

On events where the data is a pointer of type other than ‘LPSTR’, you can still trap
the event but will not be able to access the data.

Differences between APl Macros and C

In C, but not in API macros:

Types ‘char’, ‘short’, ‘float’, ‘double’, ‘unsigned’
Pointers

Typedefs, enums, structs and unions

Variable scope limited to statement blocks
Preprocessor capability

“...” parameter type (printf)

‘goto’ statement and labels

Link phase and libraries

Arrays can have multiple dimensions

Arrays can have a defined size for a parameter variable

Pointers can be used to access array elements

In API macros, but not in C:

Variables needn’t be declared at function top (like C++)
Lesser number of parameters in calls allowed (like C++)
String type and special operator capability

Automatic memory management (for ‘string’ type)
Compile on demand (first time run)

Run-time error handling

Global variables are declared within macros

Automatic type conversion from arrays to expected types

16- Extend CodeWright 383

Automatic memory management for arrays
Array types can be assigned to arrays (the resulting array sized to match)

Array initializers can be used in expressions (not just for assignment in an array
declaration)

String functions

Since library functions are not available in API Macros, a number of string functions
are made available through the CodeWright API for building and comparing strings.

LPMSTR StringApnd(LPSTR strl, LPSTR str2);

Append str2 onto strl. Neither string is freed.

LPMSTR StringNApnd(LPSTR strl, LPSTR str2, int len2);
Append len2 bytes of str2 onto strl. Neither string is freed.
int StringLength(LPSTR str);

Return the length of str.

int StringCompare(LPSTR strl, LPSTR str2);

Returns < 0 if str1 is alphabetically before str2. Returns > 0 if strl is
alphabetically after str2. Returns 0 if strl matches str2.

int StringlCompare(LPSTR strl, LPSTR str2);

Like StringCompare but ignores case.

int StringNCompare(LPSTR strl, LPSTR str2, int len2);

Like StringCompare but only compares len2 bytes.

int StringNICompare(LPSTR strl, LPSTR str2, int len2);

Like StringCompare but ignores case and only compares len2 bytes.
UINT StringChar(LPXSTR str, int idx);

Gets a character at idx from the string.

LPMSTR StrAscii(int ch);

Converts a character into a single character length string.

LPMSTR StrItoA(long value, int radix);

Converts a number into a string. Use a radix of 10 for decimal string.
LPMSTR StrLtrim(LPSTR string, LPSTR cset);

Trims characters in cset off the left of string.

384 16- Extend CodeWright

B LPMSTR StrTrim(LPSTR string, LPSTR cset);
Trims characters in cset off the right of string.
B LPMSTR StrSubStr(LPSTR string, int start, int end);
Return a substring out of string.
B LPMSTR StrFormatDate(long t, LPSTR fmtStr);
Formats a time/date value into a string.
B LPMSTR TransformFilename(LPSTR filename, LPSTR spec);

Transforms the supplied filename as indicated by the accompanying format
controls and transformation patterns.

B BOOL StrFileMatch(LPSTR fpattern, LPSTR fname, BOOL igcase);

Determine if a filename is matched by a pattern.

Making and Modifying CodeWright
DLLs

Loading DLLs, or Add-Ons, interactively from CodeWright's Customize |Libraries
dialog can add functionality to CodeWright. CodeWright provides resources to
create new DLLs and resources to modify existing fundamental DLLs. These
resources and reasons for using them are described next.

Consider modifying or creating a CodeWright DLL only if the following is true:

W CodeWright can not perform a particular function.

B There is no existing Add-On or macro that will add that function.

B Creating a macro is out of the question.

Source code for most CodeWright DLLs is provided with a FULL installation of
CodeWright. A full CodeWright installation also installs a SAMPLE subdirectory in

the CodeWright directory that contains source code for an essentially empty DLL,
which can easily be modified to add any function desired.

This section has three major provisions for changing or adding capabilities to
CodeWright through DLLs:
W It provides direction to the source code to be changed or added to.

W It provides some assistance for making the changes or additions.

W It provides tips on how to compile and make use of the changes or additions
that have been made.

16- Extend CodeWright 385

The first step to changing CodeWright is to understand its anatomy. The primary
executable, CW32.EXE contains the CodeWright Application Programming Interface
(API). These are the functions and capabilities that are basic to CodeWright's
operation. Although you cannot rewrite the functions in the API, you can replace
them, in a limited fashion. We will discuss function replacement later. The point is,

the source code for main executable is not supplied.

External to the primary executable are several Dynamically Linked Libraries (DLLs)
which provide services in several areas:

W Core services.

B Supplemental language support.

B Keyboard command sets.

B Auxiliary services.

The following illustration depicts the organization of CodeWright's software system.
The auxiliary and language supplements are not complete. CodeWright offers more
in these areas than would fit on a page. However, the picture gives an accurate idea

of CodeWright's
architecture.

CW.EXE
(Loader)

I

CW.DLL
(API)

CWCTLS.DLL
(Resources)

Keyboard
Command
Sets

CWDIALOG

CWLDRAW

COMMDLG
COMDLGSZ

386

S CWDDE
‘ CWSPELL ‘ ‘CWHELPER ‘
‘ C ‘ CWDIFF
‘ CWBROWSE
BAS

CWREDIT

CWTAGS | | CWBSC7

16- Extend CodeWright

Core Services

The core services are those that CodeWright always expects to have available. Some
of these services are so essential that CodeWright is unable to properly initialize
without them. For example, you could use CodeWright if no keyboard command
sets were available -- you could even build or find a keyboard command set. If the
core services were missing, however, the keyboard commands would be of no use.

CWSTART DLL

The main DLL that starts CodeWright is named CWSTARTDLL. It performs
numerous initialization tasks, such as loading other DLLs and reading the
configuration file. The source code to CWSTARTDLL is provided. Many of the
extension functions are defined in this DLL. To utilize them in your own source code
you will need to include the header file CWSTARTH, which is in CodeWright's
CWSTART subdirectory.

The file descriptions below will help you locate the functions provided in the various
source files for CWSTART.

Language Features

File Description

LANGUAGE.C | The file that contains the engine for language specific
features, such as ChromaCoding, Template Expansion, and
Language Indenting. It relies on a series of functions being
defined elsewhere that incorporate the corresponding
filename extension into the function name (e.g., _c_indent(),
_pas_indent()).

ASM.C This file contains the functions that support language
specific features for assembly language source files (ASM
files).

CC This file contains the functions that support language

specific features for C language source files (.C files).

CPRC This file contains the functions that support language
specific features for C++ language source files (.CPP files).

PAS.C This file contains the functions that support language
specific features for Pascal language source files (.PAS files).

16- Extend CodeWright 387

Language Features

File Description
HTML.C This file contains the functions that support language
specific features for HTML source files (HTML files).
CWJAVA.C This file contains the functions that support language
specific features for Java language source files (.JAVA files).
Utilities
File Description

AUTOSAVE.C Contains the functions in support of the Auto-save feature.

COMPILE.C Contains the functions for the Compile, Make, and
Rebuild selections on the Project menu.

CONFIG.C Contains the functions that read, write and process the
configuration file.

CWSTART.C The functions in this file initialize the CWSTART DLL.

DLGMENU.C Contains the supporting functions for the Popup Menu
defined by CWRIGHTMNU.

FILTER.C Contains the functions that support the Filter selection on
the Project Properties dialog.

OUTPUTC Contains the supporting functions for the tabbed Output
Window.

STATE.C Contains the functions that read, write and process the
state file.

UTIL.C Contains functions used by one or more of the keymaps
and other shared functions, such as NextWord /PrevWord.

VCs.C Contains the functions supporting the Version Control
submenu.

WWRAPRC Contains the function in support of Word Wrap and
related features.

DLGUTIL.C Contains functions for enhancing CodeWright dialogs.

NAMEMARK.C | Contains functions for naming CodeWright's bookmarks.

388

16- Extend CodeWright

Utilities

File Description
OUTLINE.C Contains functions for CodeWright’s Outline Symbols
feature.
PROJECT.C Contains certain functions relating to CodeWright
projects.
Error Parsing
File Description

ERRORFIX.C This file contains the engine that drives the various error
parsers for different compilers and languages.

ERRINFO.C This file contains the actual error parsers for the various
compilers.

Macros
File Description

BRACE.C The source code file for the CodeWright brace matching
features, including the functions Brace, BraceMatch and
BraceMatchNext.

CURSOR.C This file contains functions to make and support mouse
assignments and operations.

ENTAB.C The functions that support entabbing and detabbing the
current buffer are contained in this file.

PREPROC.C Contains the functions in support of the Preprocess
function.

PROMPT.C This source file contains the prompting functions and
supporting functions that use the prompt history facility.

REPEAT.C Contains the source code for the function Repeat, which
repeats a command a specified number of times.

SLIDE.C Contains the functions for moving a block of text in or out.

TABSET.C Contains the functions supporting setting tabs, including

extension specific settings.

16- Extend CodeWright

389

Macros

File Description

TAGS.C The source file for the functions that support the CTags
features.

EXECMAC.C Contains source code for CodeWright's API Macros.

CWDIALOG DLL

Many of CodeWright's dialog functions are contained in a DLL that is loaded during
initialization. The name of this file is CWDIALOG.DLL. This library contains the
dialog functions that support the menuing and other interactive operations. The
source code for the CWDIALOG DLL is supplied with CodeWright.

There are a number of functions in this DLL that allow you to access the dialogs on
the menu directly. It is sometimes useful to assign these functions directly to keys, or
to call them from your own source code. These functions are the functions
beginning with Dlg... and Print. To use these functions, just include the file
CWDIALOG.H into your C source code. You will find this file in CodeWright's
CWDIALOG subdirectory.

CWHELP DLL

The CWHELPDLL contains the functions that access the various Help libraries used
by CodeWright. These include the contextual help for the editor, the CodeWright
API function help, and the Microsoft Windows API (SDK) help, if you have it. The
name of the DLL is CWHELPDLL.

If you want to call the function cwhelp from your C source code, you will need to

include the file CWHELPH in your file. This header file is located in CodeWright's
CWHELP subdirectory.

Keyboard Command Sets

CodeWright is supplied with four keyboard command sets, also called keymaps.
They are: CUA (Common User Access), BRIEF emulation, Epsilon emulation, and vi
emulation. Each is contained in a separate DLL. The C source code files and
makefiles are included for each of these DLLs. Unless you have elected not to install
portions of the source code, each set of source code has been installed in its own
subdirectory. (For more information on CodeWright’s keymaps, refer to the topic
Using Keymaps in the chapter Custom Interface.)

390 16- Extend CodeWright

Supplemental Language Support

In addition to the support for C/C+ +, Pascal, HTML, and assembly language built
into the CWSTART DLL, support is provided for other languages in separate DLLs.
The source code for these DLLs is provided. Here is a description of the language
support DLLs provided:

DLL Description
PRG.DLL This DLL contains the functions that support language
specific features for dBASE and Clipper language source
files (.PRG files).
SC.DLL This DLL contains the functions that support language

specific features for Paradox PAL source files (.SC files).

COB.DLL This DLL contains the functions that support language
specific features for COBOL source files (.COB files).

BAS.DLL This DLL contains the functions that support language
specific features for Visual Basic for Windows (.BAS files).

These DLLs are not automatically loaded, as is CWSTARTDLL. You will need to use
the Libraries dialog on the Tools | Customize menu. It adds a statement to your
CodeWright configuration file (CWRIGHTINI).

Here are example load statements for these DLLs:

[LibPreload]
LibPreload=PRG.DLL
LibPreload=SC.DLL
LibPreload=COB.DLL
LibPreload=BAS.DLL

The statements above load the DLLs and make the functions in them immediately
available for use. This does have the effect of slowing the initial loading of
CodeWright. An alternative is to use LibAutoLoad rather than LibPreload. This will
cause the DLLs to be loaded only on demand. It does, however, require listing all of
the function in the DLL in the statement. See the description of this function for
details.

16- Extend CodeWright 391

Auxiliary Services

The Auxiliary Services or DLLs provide support for supplemental features. These
features or groups of features are generally provided in separate DLLs. The source
code for each DLL, if provided, is in a subdirectory within CodeWright's home
directory. Each subdirectory is given a name that is the same as the root name of the
DLL.

These Features or DLLs are Add-On packages that may not be required by every
user. Like the additional language support DLLs, they may require a little setup to
use. They are generally not loaded automatically.

DLL Description

CWLDRAW.DLL This DLL allows remapping the keyboard so that you can
draw lines and boxes in your file, using the IBM OEM
character set. You must be using OEMfixed, 85140em,
terminal, or similar font. If not, these lines will be
displayed as international characters. It is not loaded
automatically.

CWDDE.DLL This DLL contains the functions that turn CodeWright
into a DDE server. Other applications can then operate
CodeWright remotely to perform syntax checking, Lint,
and Tags database updating. The DLL is not loaded
automatically.

CWBROWSE.DLL | This DLL contains the main support for CodeWright's
Browser. This DLL is loaded automatically, when
needed.

CWTAGS.DLL This DLL supports the use of Starbase compiled Tags
databases with the Browser. It is loaded as needed.

CWBSC7.DLL This DLL supports the use of Microsoft Browser
databases (C/C++ V7.0+) with the Browser. It is loaded
as needed.

CWWEB.DLL This DLL supports loading files edited in CodeWright
into various Web browsers. It is not loaded automatically.

Sample DLL

As mentioned, the source code for an essentially empty sample DLL is included with
a full CodeWright installation. You will find it in the SAMPLE subdirectory in the
CodeWright home directory. You can put some flesh on this skeleton, or you may
use it as an example of what elements go in to a CodeWright DLL.

392 16- Extend CodeWright

The source code for SAMPLE.DLL is a skeleton of comments and a function stub or
two. The comments show you where to insert additions or changes that you want to
make to CodeWright. These insertions might include:

Loading other DLLs, possibly written in a programming language other than C.
Adding event handlers.

Adding key commands.

|
|
W Setting defaults, much as you would in the configuration file.
|
B Writing and installing replacement functions.

A

makefile is also included for this DLL.

Dissecting a CodeWright DLL

Your compiler imposes certain requirements in order to correctly produce a
Microsoft Windows-compatible DLL. In addition to those requirements, there are a
few essentials required by CodeWright. This section will help you understand what
CodeWright requires and why. Let's take apart a CodeWright DLL and see what is
typically there.

The _init Function

Whenever CodeWright loads a library, it executes that DLLs _init function, if the
library has one. This is the function you use for initializing the DLL and letting
CodeWright know what functions the library has to contribute. Generally, this
function consists of a series of LibExport function calls, which export the functions
defined in that DLL for use by other entities in CodeWright.

Exporting Functions

The functions in a DLL, and the parameters for each, must be registered with
CodeWright before you can make full use of them. If you don't register them with
CodeWright, you will not be able to assign them to a key or call them from the API
Command Key. You register or export the functions with the LibExport function.
This is in addition to any export declarations required by the programming

language.

16- Extend CodeWright 393

This requirement is a result of the use of Pascal calling conventions. When using
Pascal calling conventions, the program stack would become unbalanced if any
function parameters were omitted. Yet, the function LibFunctionExec, which
services the API Command Key and the key assignments, has no way of knowing
the type and number of parameters required unless you tell it. The LibExport
function does this.

Note: If you change the number or type of parameters in a DLL function,
you must remember to change the corresponding LibExport call that
registers that function.

Making Changes and Additions

When you have determined that you are going to modify CodeWright's source code,
you have two approaches available to you. You can change existing functions or add
new functions to the system.

Changing Existing Functions

Changing an existing function is often the best way to go, if your change is small and
you want the change to be reflected whenever a certain function is called. This
usually avoids the need to create or change a LibExport call.

For example, you might want to change the function that moves the cursor ahead in
increments of a word. You can be relatively certain that this function is going to be
called as the result of some key command.

If you were less certain about what other routines might be using the function, you
would need to consider the effects of your changes on those other routines. If you
are in serious doubt about what routines may be relying upon the function, it is best
not to change it. Instead, create a new function that is called when you want it, and
leave the old function in place for the routines that use it.

Adding Your Own Functions

When adding your own functions, you must be sure that they are declared in the
same manner as other CodeWright functions. You won't be able to assign your
functions to keys, call them from the API Command Key, and other useful things,
unless you properly export your functions to CodeWright. This means using
LibExport.

If you create a new file for your functions, you will have to be sure it uses the

necessary header files (CWSTARTH, CWDIALOG.H, CWHELPH...), and that it is
included in the compile and link.

394 16- Extend CodeWright

There is a macro defined in EXPORTS.H that simplifies defining new functions for
CodeWright, when programming in C. Just define your function as DLL and it is
automatically declared as Pascal calling conventions, exported, and so forth. Here is
an example of its use:

void DLL

KeyNotInUse (void) {
SysBeep () ;

MsgWarning ("Unassigned key");

}

Windows NT 4.0 also requires that all functions be added to the .DEF file in order to
be properly exported. Just edit this text file and add your function name to the end
of the existing list. Also note that NT 4.0, Millennium, and 2000 are case-sensitive in
function names, whereas Windows 9x is not.

Creating New Keymap Command
Sets

Keymaps have additional requirements over and above those of a CodeWright DLL.
This section will walk you through the basic outline of a keymap.

Keymap _init Function

Like the _init function for any other CodeWright DLL, the Keymap's _init function
typically contains a series of LibExport calls that make functions available to
CodeWright. This is necessary for any functions you create to assign to keys within
the keymap.

Normally, the _init function does not install the keymap. If it did, you would not be
able to load the DLL to have access to its functions without loading the keymap.

Keymap Function

The keymap function is the function that creates and installs the new keymap. To be
compatible with the DefaultKeymap function, this function must have the same
name as the root of the DLL in which it resides. For example, the CUA keymap is in
the file CUA.DLL and is installed with the CUA function.

Flag Initialization

One of the first things you will want to do in your keymap function is to set options
the way users of your keymap will expect to find them. For example, the BRIEF
keymap needs to allow assignments to [Alt] keys, and doesn't create a new window
for each new file that is loaded. If the users of your keymap will expect to have
vertical and horizontal scroll bars on their edit windows, now is the time to make
that happen.

16- Extend CodeWright 395

There are several functions that will assist you in setting the options you require.
They are SysSetFlags, SysSetDefault, and SrchSetFlags:

B Use SysSetFlags to set options you might otherwise set from various
CodeWright dialogs.

B Use SysSetDefault to set up window and buffer settings the way you want,
even before any buffers or windows have been created.

B Use SrchSetFlags to set the default search settings.

You are not dictating with these settings how a user must operate. The settings you
create here may be overridden by settings stored in the configuration file or state file.

Basic Assignments

When you create a new keymap, it is empty -- and we mean really empty. The only
keys or mouse actions that will work are those that CodeWright lets Windows

process. This includes menus, [jfesc], F4 || and such. If you want
pressing the A key to produce an A in a buffer, you need to make that key
assignment.

There are functions provided to take the drudgery out of making these assignments.
KmapAssignTypables and KmapAssignRange are your primary assistants. The
difference between these two functions is that the first makes assumptions about
what you want the keys to do, whereas the second allows you to specify the function
that is assigned to the keys.

Keymap-Specific Assignments

Now you are ready to make assignments specific to your keymap. Your main tool in
doing this will be the function KmapAssign. Use the CodeWright API functions, or
create your own supporting functions to assign to keys. Remember that when you
create your own functions, you will need to export them with a LibExport call in the
DLL's _init function in order for the key assignment to work. Otherwise, you will
get a "function not found" message when you press the keystroke.

Menu Accelerators

The last step in creating your own keymap is to put strings indicating any "short cut"
keys or accelerators on the menu. You will rely on the MenuAddKeyString function
to do this.

396 16- Extend CodeWright

Recompiling a DLL

Part of the CodeWright directory structure is a miniature of that used by most C
compilers. There is an INCLUDE subdirectory that contains header files, a LIB
subdirectory to contain .LIB files, and subdirectories to contain the source code for
each of the CodeWright DLLs you can rebuild. The INCLUDE and LIB
subdirectories must be made known to your compiler and linker. You can do this
manually, or through the use of a MAKE utility or Project file, if your compiler
supports these things.

Using and Modifying the Makefiles

There are two types of makefiles supplied for each of the CodeWright DLLs that can
be modified. Only one type is installed for each subdirectory containing DLL source
code. The type installed depends on the choice made between Microsoft or Borland
when installing CodeWright.

As mentioned, once the makefiles are installed, they can be found in the same
directory as the source code for the DLL that is being built. Microsoft makefiles have
the same root name as the DLL they make, with no extension. Borland makefiles use
the same root name as the DLL, but their extension is MAK. If you did not choose a
Full CodeWright installation, you would not have been offered the choice of
Microsoft or Borland source code, and they would not be installed.

The makefiles that CodeWright supplies are specific to one compiler or another
because of the compile and link command lines that they employ. Adapting them to
a compiler other than Borland or Microsoft should be a fairly straightforward task.

The compiler needs to know that you intend to create a 32-bit DLL. Defining the
environment variable CPU is normally sufficient to cause the Microsoft makefile to
generate a 32-bit DLL. Alternatively, you may generate a 32- bit DLL for Borland or
Microsoft by defining a macro named WIN32 at the beginning of the makefile:

WIN32=TRUE

The DLLs themselves are generated in a subdirectory of the source file directory. The
name of the directory varies depending on source type (Borland or Microsoft) being
compiled. Usually it will be something like “Release” or “Rel”. Once the DLL has
been compiled, it is advisable to move it up to the CodeWright executable directory,
although this is not required.

16- Extend CodeWright 397

The Borland compiler often relies on configuration files and command line switches
to locate include files and libraries, rather than environment variables. As a result, it
may be necessary to modify a macro definition in the Borland makefile to indicate
the location of these files, unless you have installed the Borland compiler in the
default directory. If you have installed your Borland compiler in another location,
modify the value assigned to BORPATH toward the beginning of the makefile. For
example, if you installed the compiler in the directory D:\BC, change the assignment
to read as follows:

BORPATH=D:\BC

Adding Files

Groups of related files have been defined as macros toward the beginning of each
makefile. This facilitates operating on the filenames as a group. Also, if you choose
to place the source code for some extensions to CodeWright in a separate file, you
can readily add those filenames to the macro definitions. If the makefile employs a
linker response file, such as CWSTARTLNK, don't forget to add your file to the list in
the response file so that it will get linked in.

Compile and Link Options

The compiler options you use for compiling CodeWright DLLs are largely the same
as you would use for compiling any Microsoft Windows DLL. CodeWright DLLs
must be compiled using Large Memory Model. If you specify your include
directories on the command line, be sure to include the CodeWright CWSTART and
INCLUDE subdirectories in your command. You will find that this has been done
for you in the makefile.

Similar requirements apply to your Link command. Begin with your basic Link
command line for producing a Windows DLL. The libraries in CodeWright's LIB
subdirectory must be linked with the other objects. A standard .DEF file has been
supplied for each DLL.

Link Libraries

The makefiles provided make reference to certain libraries in the linker command.
You may find it useful to know the purpose of each of these libraries in case you
have a different version of the same compiler or would like to construct a similar
command line for a compiler not supported.

Microsoft Link

The command line for invoking the linker is defined in the CWMAKE.INC file that is
included at compile time. CWMAKE.INC is stored in the INCLUDE directory of the
CodeWright installation directory.

398 16- Extend CodeWright

The libraries used in this link command usually include LIBW.LIB, OLDNAMES,
LDLLCEW.LIB and CWRIGHT.LIB:

B The files LIBWLIB and CWRIGHTLIB are import libraries. They don't contain
any object code themselves, but rather tell where the routines may be accessed
at runtime.

B LIBWLIB points to addresses in USER.EXE, GDL.EXE and other executables that
provide the Windows API.

B CWRIGHTLIB points to addresses in the CodeWright kernel that support the
CodeWright APL

You may need to link in other import libraries at times, for example, if you are
making direct calls to routines in CWSTARTDLL, CWMATCH.DLL or a DLL of your
own creation. If you don't have an import library (.LIB) file corresponding to the
DLL you are using, you can create one with the ILIB utility supplied.

LDLLCEW.LIB

The library LDLLCEW.LIB contains object code to use when creating Large
Memory Model Windows DLLs. Depending on your installation of Microsoft C,
you may find that your Large Memory Model library is named LDLLCAW.LIB
instead. Alternately, you may find that you have not installed any large model
library at all. If so, you can run the setup program that came with your compiler
to add to your installation. If you use a library intended for any other memory
model you are guaranteed to have a program that doesn't work right, and will
probably crash Windows.

OLDNAMES.LIB

The library OLDNAMES.LIB is included to avoid unresolved externals. This is
because Microsoft changed the names of some of their library routines. See
your MSC 7.0 README file for details. If you are using an older version of the
Microsoft compiler, you should remove this library from your command line.

Borland Link

Below is a portion of the input script for TLINK that is included at compile time for
Borland C/C+ +:

..\lib\cwright.lib+
import.lib+
cwl.lib

The purpose of these libraries follows closely the libraries described above for
Microsoft. The libraries CWRIGHTLIB and IMPORTLIB are import libraries.
Borland supplies IMPORTLIB to you for the Windows API and CWRIGHT.LIB
comes from Starbase for the CodeWright APL

16- Extend CodeWright 399

You may need to link in other import libraries at times, for example, if you are
making direct calls to routines in CWSTART.DLL, or a DLL of your own creation. If
you don't have an import library (.LIB) file corresponding to the DLL you are using,
you can create one with the ILIB utility supplied.

The third library CWL.LIB contains object code to use when creating Large Memory
Model Windows DLLs. This library was named CWINL.LIB in versions prior to 3.0.
Use only a Large Memory Model library intended for Windows for this purpose.

Using Your Own DLL

There are several reasons that you may have for wanting to use a DLL that you have
developed on your own, rather than modifying one of those supplied. Itis expected
that if you write a new command set for the keys that you will place it in a separate
DLL. You can then use the DefaultKeymap function to facilitate loading the DLL
and calling the keymap subroutine that makes the key assignments.

Your DLL will need all of the same parts described in the preceding section
Dissecting a CodeWright DLL, regardless of what language you use to produce it. Be
sure to compile using a Large Memory Model. You need Far calls and pointers for
things to work properly.

Installing Your DLL

When you are ready to use your DLL, you need only reference it in the proper
section of your configuration file. If your DLL is a keymap and supporting
functions, just change the name assigned to DefaultKeymap to the basename of the
DLL file; if your DLL is named MYKEYS.DLL, change the statement to read
DefaultKeymap=mykeys under the [Defaul tKeymap] section.

If your DLL just contains some additional subroutines you want to have available,
you have a couple of options:

B Always load the functions at startup-time, OR
W Tell CodeWright to load them when needed.

The following examples assume that you have put your DLL in CodeWright's home
directory, or in a directory that your CWLIB environment variable points to.

400 16- Extend CodeWright

Load Functions at Startup

Loading functions at startup may slow down the initial loading of CodeWright, but if
you have a fast CPU and hard disk, you probably won't notice much difference in
daily use. This is set automatically when the library is loaded in CodeWright's
Customize | Libraries dialog. Loading the library in this dialog adds the following
line to the [LibPreLoad] section of CodeWright’s configuration file
(CWRIGHTINI).

LibPreLoad=myDLL

Load DLL as Needed

The second option, loading the DLL only as needed, can cause a short pause when
the function is first called. It must be done manually by placing the following
commands in the configuration file under the [Editor] section.

LibAutoLoad="myDLL funcl func2”
This option requires that you supply the names of the functions in the DLL, which

may be called. For more information on configuration files, refer to the chapter
Configuration Files and Command Line Flags, in this manual.

16- Extend CodeWright 401

402 16- Extend CodeWright

Chapter |17

17- UNIX

At this time, CodeWright only runs on the Intel platform under Windows 95,
Windows 98, Windows 2000, Windows Millennium, and Windows NT 4.0. A version
that runs under the UNIX environment is not offered. CodeWright does, however,
have some options that make it possible to edit UNIX files within the program.
Before the files can be edited however, there must be a way to load them from the
UNIX system into the Windows system. Some options for loading UNIX files are:

W Via NFS (Network File Systems) networking. CodeWright does not provide the
tools for networking UNIX and Windows systems via NFS. They must be
obtained elsewhere.

W Via FTP (File Transfer Protocol). CodeWright provides a built in FTP program for
transferring files via FTP. (For more information on CodeWright's FTP program,
see the chapter on File Loading, Backup and FTP)

Once the file-loading method has been established, there are some things that can be
done, and things to be aware of, when using CodeWright to edit UNIX files. The
following topics cover the following issues:

W Maintaining UNIX End of Line characters.

B Maintaining filename case and file securities between UNIX and Windows
Environments.

End-of-Line (EOL) Characters

The primary difference between files that reside on Windows systems and files that
reside on UNIX systems is the characters that make up the ends of lines. For this
reason, CodeWright has an option that changes the carriage return key so that it
only inserts UNIX end of line characters in documents. The next section describes
how to use this option.

Make UNIX EOL Characters the Default

DOS end of lines are composed of a carriage-return and line-feed, and are the initial
default. UNIX end of lines are line-feed characters only. To enable UNIX end of lines
as the default, complete the following steps:

17- UNIX 403

1. Select the Customize | Language | Options dialog.
2. Highlight all applicable file type extensions.

3. Check the UNIX EOL checkbox.

4. Press OK to save the setting.

Making this selection does not change end-of-line sequences already in the buffer. It
affects only those inserted after the selection is made.

Enable Auto-sense File Type Option

To ensure that the correct end of line characters are being inserted for the file being
edited, CodeWright offers an Auto-sense File Type EOL option that automatically
detects and turns on the correct end of lines when a file is being loaded. When
selected, CodeWright will look for line terminators when it first loads a file. It can
detect DOS (cr/If), UNIX (If), and Macintosh (cr) line terminators. If the file has

UNIX style line terminators, the key is made to insert only a line feed (If).

Macintosh translations for both input and output are done at a low level and seem
like DOS files to the user.

To select Auto-sense File Type EOL:
1. Select the Customize | Environment | General dialog.

2. In the File Loading/Reloading group, check the box Auto-sense File Type EOL.

Change EOL Characters in the Source File

You can easily change existing EOL characters in your source file with a simple
Search/Replace operation. Do this by searching for one type of EOL character and
replacing it with another.

The Hexadecimal Values for End of Line Characters are:

B 0D = Macintosh

H 0A =UNIX

H O0DOA =DOS

404 17- UNIX

Although you can search for a hexadecimal value (\x0A), it is better to use a regular
expression for this operation. See the topic Searching for control characters (binary/hex
data) in the chapter on Search and Replace and Navigational Tools for more information.

Example:
If you wanted to change your DOS EOLs to UNIX EOLs:

1. Check UNIX EOL for the appropriate file type in Customize |
Language|Options.

2. Go to the Search| Replace.
3. Make sure you have the Regular Expression box checked.

4. Search for \n and Replace with \n. The meaning of the \n is a new line
(cr/lf or a 1f).

Because the Macintosh EOL is a (cr) only, it is better to use \r when searching or
replacing it. To change your DOS EOL's to Macintosh EOLs:

1. Go to the Search| Replace.
2. Make sure you have the Regular Expression box checked.

3. Search for \n and Replace with \r.

Macro for Automating UNIX EOL Conversion

CodeWright offers an API macro that will do the UNIX EOL conversion
automatically. API macros are described in the chapter on Extend CodeWright. To use
the macro, do the following;:

1. Click API Macros on the Tools menu.

2. In the API Macros Edit dialog, choose the UNIXEOLs macro from the drop-
down list under the Name edit box.

3. Run the macro using one of the following methods:
B Click Run in the API Macros Edit dialog.

B Click Close, and then click Run API Macro <UNIXEOLs> on the Tools
menu.

4. The macro will search the current document for all EOLs, and replace them
with UNIX EOLs.

17- UNIX 405

Compiling UNIX Programs from
CodeWright

CodeWright executes compile commands by shelling to DOS and executing the
command, as though it was being run at a DOS prompt. The output of the compile/
build is then captured and presented in CodeWright's Output Window.

If you compile UNIX programs, you will need to do this outside of CodeWright, or
find a way to access your UNIX system from within CodeWright.

B One possible solution is to use a Telnet implementation to issue commands
automatically from a file.

Example: Set up a file with necessary commands to do a build. Then use the
Build tool in CodeWright to launch a Telnet session to process the
file. CodeWright will parse the resulting output and step through
the errors.

B Another solution:

Use RSH (remote shell) which allows one computer to run a command on the
other. RSH comes with NT and works just like the UNIX RSH command. Use it
to control a batch UNIX process, like MAKE, from CodeWright via an NFS
mounted disk drive.

Although Starbase cannot assist in setting up access to UNIX systems, we can help
make the necessary customizations to the Build command, given that the Build or
Compile command can already be performed successfully from a DOS prompt.

Preserving Filename Case and File
Securities between UNIX and
Windows Environments

Filename case can be lost when saving files to UNIX systems from CodeWright. To
have UNIX system case-sensitivity in CodeWright, check Allow Case Sensitive
Filenames in Customize |Environment|General.

The loss of filename securities can also be an issue using CodeWright's traditional
file-saving method. To preserve file securities on UNIX files, use CodeWright's File
Rewrite Save Method to save files (also on the General tab).

To select these options, complete the following steps:
1. Select Customize|Environment|General dialog.

2. Mark Use file rewrite save method, and Allow Case Sensitive Filenames.

406 17- UNIX

Chapter |18

18- Configuration Files &
Command Line Parameters

This chapter gives an overview of the main configuration files used by CodeWright.
In most cases it will not be necessary to edit CodeWright configuration files, but in
the event that this becomes necessary, the information in this chapter gives an idea
of what those files do. This chapter also talks about command line options that can
be used from the CodeWright shortcut or other command lines to control the way
CodeWright loads.

Configuration and State

The following sections discuss the location and contents of configuration and state
files within CodeWright.

Location of the Configuration File

CodeWright's configuration data is kept in a separate file. During initial installation,
the configuration file CWRIGHT.INTI is placed in the same directory as your
CodeWright executable file. You may move it to another location, if you like, or you
may have several configuration files in different work areas. You may even specify
another name for the file.

If your CodeWright executables are installed on a network, you will almost certainly
want to place your configuration file somewhere else. By placing your configuration
file in a private or local directory, you ensure that you will not be using or changing
someone else's configuration.

CodeWright looks in several places to determine what configuration file to use.

When it finds a place where you have indicated the location of the configuration file,
or the file itself, it looks no further and proceeds to read the file.

18- Configuration Files & Command Line Parameters 407

Here are the places that CodeWright looks, in the order of searching;:

1
2
3.
4

5.

It looks on the command line to see if you specified the /c parameter.
It looks in your environment for a variable named CWINL
It looks in your working directory for a file named CWRIGHTINL

It looks in the directory containing CW.EXE or CW32.EXE, for the file
CWRIGHTINL

It looks in the Windows directory for the file CWRIGHTINI

The command line parameter, or the environment variable, will have an associated
string value when it is used to point to the configuration file. This string names the
directory in which the configuration file resides. It may also name the file itself.

Example: The string may take this form when specifying a directory:

D:\SOURCE\PROJECT1

It may also take this form when specifying a file:

D:\SOURCE\PROJECTS\CENCOM.CFG

If CodeWright does not find a configuration file at all, it will create one in the
working directory when it needs one. CodeWright has no problem running without
a configuration file, but it does notify you if one could not be found.

Introduction to Configuration and State

To properly understand CodeWright's projects and workspaces, you need to have
some knowledge of how CodeWright maintains its configuration and how it
preserves its state between sessions. This will help you intelligently choose which
information to keep in which file. In addition, you may find it expedient to modify
CodeWright's configuration file directly. This section will give you the information
to do these things.

Configuration File

The configuration file normally contains information about the way you have set up
CodeWright. This information may be put there during installation, through
modifying the settings in dialog boxes, or by directly editing the configuration file.
In the latter case, the configuration file might contain almost any CodeWright
commands. The configuration file is named CWRIGHT.INI.

408 18- Configuration Files & Command Line Parameters

The configuration file is a text file that follows the same general format as other
Windows .INI files. It contains section headings enclosed in square brackets,
followed by configuration statements.

B Headings that appear in a CodeWright configuration file include: [Editor],
[LibPreload], [Colors], [DefaultKeymap], [KmapAssign],
[Printer], [Compiler], [VersionControl], [Definitions] and
[Fmatch].

B The configuration statements contain keywords with string assignments. For
the lines containing keywords, the format is as follows:

<function>=<param 1>[,<param 2>,...<param n>]
The following criteria apply:
v Keywords are actually the names of functions in the CodeWright APL

v The string assigned to the keyword contains the parameters required by
that function.

v The assigned string may contain white space.
v Parameters may be numbers, strings, constant identifiers and operators.

v/ Variables and nested function calls may not be used as parameters.

State File

The State file contains information about the buffers and windows you had open the
last time you exited CodeWright. It also contains the more transient information
about your CodeWright settings, such as your search options and responses to
prompts. It follows the same rules as a configuration file, but it is normally limited to
one section named [State]. This file is named CWRIGHTPST.

Other Files Containing Configuration Data

Project files also contain configuration information. These files are intended to be
swapped on the fly, whereas the configuration file remains constant throughout a
session. Note that the project file overrides any information duplicated in the
configuration file.

As you change settings in the various dialog boxes, you are automatically updating
your configuration. You may select which file the dialogs use to update
configuration information: the configuration file or the project file. You may further
select which categories of information are kept in which file. For more information
on how to store configuration information with your project see Storing Configuration
Options with a Project in the chapter Projects, Project Spaces and Workspaces

18- Configuration Files & Command Line Parameters 409

The main question you need to ask yourself when deciding where to store
configuration settings is "Do I want these settings to travel with the project, or have
them apply to multiple projects?"

B To have settings travel with a project, store them in the project file.

B To apply settings to multiple projects, store them in the configuration file.

Example File

Here is an abbreviated example of a configuration file:

[DefaultKeymap]
DefaultKeymap=BRIEF

[KmapAssign]
KmapAssign=<Ctrl-">, Preprocess

[LibPreload]
LibPreload=PRG.DLL

[Editor]
KeyDelay=1200
KeyRepeat=5
Autosave=20
SysSetFileLocking=30

[Colors]

ColorError=0xe0

ColorWarning=0xd4
SysSetDefault=DEFAULT COLOR TEXT, Ox1f
SysSetDefault=DEFAULT COLOR SELECTION, Ox9e

[Printer]
PrintFooter="-Page %p-"
PrintHeader="%f %d %t"
PrintFlags=145
PrintMarginBottom=0
PrintMarginRight=0
PrintMarginLeft=0
PrintMarginTop=0

[Definitions]
EvalStrAdd=DEBUG, 1

[Compiler]
CompilerAssign='Borland C++','.c'

410 18- Configuration Files & Command Line Parameters

Example Interpretation

Here is an interpretation of the contents of the example configuration file above.
The analysis proceeds section by section:

[Defaultkeymap] Section
The default key command is set to BRIEE This will cause BRIEEDLL to be
loaded and its function BRIEF to be called.

[KmapAssign] Section
In the [KmapAssign] section, a key assignment is added to the default keymap.

The Preprocess function is assigned to the Backquote (") keystroke.

[LibPreload]
One of the supplemental language support DLLs is loaded for use.

[Editor] Section

The [Editor]section of the example configuration file sets the keyboard delay
and repeat rate. Auto-save is set to occur after 20 seconds of keyboard inactivity.
File locking is enabled for 30 file handles.

[Colors] Section

The [Colors]section of the example sets the color of error messages to black on
yellow, and the color of warning messages is set to red on gray. These are global
settings. The next two color settings may be set differently for each edit
window. For this reason, we do not use the functions ColorText and
ColorSelection to set the colors, but rather set what the default color will be.
You use the SysSetDefault functions when setting defaults for things that are
specific to individual buffers or windows. In this case, the color of text is set to
white on blue, and the highlight for the selection is set to yellow on light blue.

[Printer] Section

The [Printer] section and a number of other sections use private,
undocumented functions. The Print menu item within CodeWright controls
the contents of this section. You are not encouraged to modify the [Printer]
section.

[Definitions] Section

This section defines the label DEBUG and gives it a value of one. This label may
be used in numeric expressions processed by CodeWright, including those
given through the Command Key and the Preprocess function (#ifdefs).

18- Configuration Files & Command Line Parameters 411

[Compiler] Section
In this section, the Borland C++ compiler is assigned for use on files that have
the .C file extension.

All of the sections discussed above contain configurations that can normally be
set from within CodeWright. In most cases, it is not necessary to directly edit
CWRIGHTINL

Processing At Startup

When CodeWright is launched, the command line is processed before the
configuration file or the state file. This gives the command line the opportunity to
specify the location of these files. It also means there is some potential for the
configuration file to reverse the effects of a parameter specified on the command
line.

Order of Processing

The following sections of the configuration file are automatically read at startup in
the order given:

H [Menuy]
[DefaultKeymap]
[KmapAssign]
[LibPreload]
[Editor]
[VersionControl]
[Template]
[Colors]

[Ribbon]

After the portions of the configuration file that are automatically read have been
processed, the state file is processed. This gives settings in the state file priority over
similar commands in the configuration file.

The functions under each of the section headings are executed in the order they are
listed. Regardless of the order in which the sections occur, however, the sections are
always executed in the same order. The [Printer], [Compiler],
[Definitions] and other sections are processed as needed.

412 18- Configuration Files & Command Line Parameters

Descriptions of Sections

Each section heading represents a logical grouping of functions, as shown in the
following list:

Heading Functions

Colors Functions to set the colors for text, messages and so on.
This is done with the SysSetDefault function.

Compiler Used primarily by CodeWright for saving associations
between file extensions and compilers.

DefaultKeymap The function that sets the initial key command set,
usually BRIEF or CUA. For example, the statement
DefaultKeymap=BRIEF will cause CodeWright to
load BRIEEDLL and call its keymap function, which it
assumes to be the same as the filename root -- BRIEE

Definitions Defines labels for use in expression evaluation.

Editor System-wide functions, default settings (except for
keymap), and any other functions that are not order-
dependent.

Fmatch Used by CodeWright for saving the parameters used by
the File Find and File Grep features.

KmapAssign Makes key assignments that are additions or
modifications to the default keymap.

LibPreload Loads DLLs that are not automatically loaded.

Menu Defines the menu structure, if other than the default.
The results of using the Menu Editor are placed here.

Printer Used by CodeWright for defining print margins and
headers.

Toolbar Defines modifications to the default toolbar and sidebar
configuration after using Toolbar Configuration dialog.

Template Contains user-defined Language Template definitions.

VersionControl | Fordefining command lines for Checkin, Checkoutand
several other related commands. The section is
duplicated for each version control system defined, so
that you may have separate commands for each.

18- Configuration Files & Command Line Parameters

413

You may place any CodeWright function under any of the section headings, but
grouping functions logically under section headings will help ensure that the
functions are executed in their proper order. For example, you could place the
default keymap in the [Editor] section, but then the modifications and additions
made in the [KmapAssign] section would be lost when the keymap is loaded over
top of them.

User-Defined Sections

You may define other section headings and place other editor commands under
those sections. These commands will not be processed automatically at startup,
however.

Many functions you might want to create for assignment to a keystroke are a simple
sequence of functions to execute consecutively. Return values are not examined, and
no control structures are required. In most cases such tasks can more easily be
accomplished with the creation of a macro. However, they can also be done with
user-defined sections in the CWRIGHTINI. A section can subsequently be assigned
to a keystroke in CodeWright.

Several examples of user-defined sections follow.

Change Search Direction

[ISearchBack]
SrchSetFwd=FALSE
ISearch=
SrchSetFwd=TRUE

This example simplifies the process of performing an incremental search
backward in the buffer. Usually, the search options are set to search forward.
You could bring down the menu, change the options, and then change them
back, after performing your incremental search. The example above changes
the search options to search backward, performs the incremental search and
then sets the search direction to forward.

After you have created this section in your configuration file, you could make a
key assignment like the one below, also in your configuration file:

[KmapAssign]
KmapAssign="<F12>","ConfigFileRead '' 'ISearchBack'"

The previous key assignment causes CodeWright to do a backwards

incremental search when is pressed. You can use similar key assignments to

implement other examples or sections of your own. Most key assignments can
be made more easily using CodeWright's Customize | Keyboards dialog. For
more information about assigning keys through CodeWright's interface, see the
chapter on Custom Interface.

414 18- Configuration Files & Command Line Parameters

Save and Restore Position

The following example can be used in place of the standard save and restore

position commands:

[RotateMarks]
MarkRestorePos=
MarkSavePos=
MarkRotatePos=

[StackMarks]
MarkSavePos=
MarkRotatePos=

M By using [RotateMarks]instead of the restore position command,

restored positions are not lost, but rather moved to the other end of the list.

You can then continuously cycle through your saved positions.

W If youuse [StackMarks] to save your current position, you will restore
positions in the same order you saved them instead of the reverse order in

which you saved them.

Together, these two sections give a functionality similar to that of Microsoft's

PWB.

Scrap Buffers

This next example makes good use of CodeWright's multiple scrap buffers. For
it to be useful, you must first define more than one scrap buffer. To do this, enter

a value of 2 or higher in the Number of Scrap Buffers field on the
Customize | Environment | Clipboard dialog.

Use these sections instead of Cut, Copy and Paste:

[RingCopy]
BlockCopy=
ScrapNext=
MsgMessage="Copied to current scrap"

[RingCut]

BlockCut=

ScrapNext=

MsgMessage="Cut to current scrap"

[RingPaste]

ScrapPrev=

BufInsertScrap=

MsgMessage="Current scrap inserted"

18- Configuration Files & Command Line Parameters

415

When using these three sections in place of Copy, Cut and Paste, you get a last-in,
first-out ring of scrap buffers. Successive Copy or Cut operations (without an
intervening Paste) do not overwrite each other until you run out of scrap buffers.
Successive Paste operations let you paste the contents of each scrap buffer in the
reverse order they were used. The same functionality can more easily be achieved
using the Auto-increment scrap buffer option in the

Customize | Environment| Clipboard dialog.

Relating Checkboxes to Functions

There is a System Options checkbox in the Directories tab of the Project| Properties
dialog, and several more checkboxes in the Read Configuration Data from a File
dialog (to access the latter, click Read Configuration Data on the Customize menu.)
The following list will help you relate those checkboxes to the contents of your
configuration file or project file:

Checkbox Option Related Configuration Function

View Setups Reads the [Colors] section of a configuration
file which contains one or more
_RestoreViewSetup lines. Each
_RestoreViewSetup line defines a view setup.

System Options BookmarkAttr
ConfigSetBtnIniFilename
ConfigSetLinkDBFilename
ConfigSetMacroFilename
ConfigSetMarkDBFilename
ConfigSetSymbolDBFilename
EditSetPath
BufSetGlobalBackupSpec
ExtCommentSearchLimit
ExtDelayedColoring
ExtSetUpdateDelay
NameMarkFlags
NameMarkThreshold
KeyDelay

KeyRepeat

Auto-save Options Autosave
AutosaveDir

416 18- Configuration Files & Command Line Parameters

Checkbox Option Related Configuration Function

Compiler Settings BrowseSetFile
CompilerAddBuild
CompilerAssign
CompilerNewExt
TagSetFile
CompilerAdd

Language Options ExtColors
ExtColorsAssoc
ExtIndentEnable
ExtIndentEnableAssoc

Version Control Setup CheckInSetCmd
CheckOustSetCmd

Filename Filters FilterAdd
FilterDeletelist

Clipboard/Scrap Options | ClipboardEnableSepStr
ClipboardEnableTermStr
ClipboardSetSepStr
ClipboardSetTermStr
ScrapSetCount

State File

Another important CodeWright configuration file is the state file. The state file is
stored by default in the CodeWright home directory and is called CWRIGHTPST.
CWRIGHTPST records CodeWright's condition at the time of exit. Storing state
information is turned on by default, but can be turned off in the Customize |
Environment| State dialog.

Location of the State File

You may specify the location and name of your state file in your CodeWright
configuration file. If you name a location for your state file by accessing a dialog box
through the menu, it will be saved in your configuration file. If your configuration
file does not contain the name of your state file, and saving state information is
turned on, CodeWright will search for the location of the state file in much the same
manner used to locate the configuration file. The differences are as follows:

B The command line parameter for specifying the state file is /S. (See the section
on Command Line Parameters for more information.)

B The environment variable that points to the state file is CWPST.
B Instead of looking for CWRIGHT.INI it will look for CWRIGHT.PST.

18- Configuration Files & Command Line Parameters 417

Once again, if no location is dictated for the state file, and no existing file is found,
the file is created in the working directory. CodeWright can operate just fine without
a state file. In fact, you may turn off the saving of state information, and CodeWright
will ignore any state file and the information it contains.

Similar to the configuration file, the strings that give the location of the state file may
also dictate a name for the file. If the string names only a directory, the name
CWRIGHTPST will be used. The following methods for setting the location of the
state file are all valid:

B Using the environment variable:

set CWPST=D:\STARBASE
B On the command line:

CW /sD:\STARBASE\CWRIGHT.PST
B Inthe CWRIGHTINI file:

StateSetFilename=H: \HOME\ERICJ

Contents of the State File
The following are among the data kept in the state file:

Category Types of Data in State File

Windows Visible attributes

Colors

Coordinates and extents

System flags

Attached buffer, if any

Default Window Properties for the above

Buffers File name

Output file name

Tab settings

Backup file specification

Line and column

Maximum virtual lines

Current mode (hex, compact, normal)
System flags

Default Buffer Properties for all of the above

418 18- Configuration Files & Command Line Parameters

Category Types of Data in State File

Prompt Histories Search and Replace
Command Key
Open file

Miscellaneous Search flags

CodeWright’'s Window frame coordinates and extents

Command Line Parameters

In the previous sections on configuration files some command line parameters were
mentioned that could optionally be used with CodeWright's command line to
specify certain conditions to apply when CodeWright is launched. This section
describes those and other CodeWright command line parameters.

CodeWright supports a number of command line parameters. You may add these
parameters to the command line by editing the file’s shortcut, or through the File
Properties selection in the Program Manager's menu. If you have multiple
CodeWright shortcuts or program items, the command line may be used to have
each operate differently.

To edit the properties of a CodeWright shortcut, do the following;:

1. Right-click on the CodeWright's shortcut (wherever the shortcut appears).

2. Select Properties from the popup menu.

3. Click on the Shortcut tab.
4.

The path and executable file are listed In the Target field. You can add a
command line parameter at the end of this string to tell CodeWright to use
specific settings when being launched.

CodeWright allows three types of command line parameters:

B Names of files to edit.

B Parameters or switches.

B The command file, which contains command line parameters.

The command line is processed before the configuration or state files have been

read. This has the following effects:

B Itallows the command line to specify configuration and state file locations.

W Itallows configuration and state files to override command line specifications.
This is not normally a problem, but possible conflicts are noted in the
descriptions below.

18- Configuration Files & Command Line Parameters 419

Filenames

You may specify any number of files to edit on the command line, limited only by
the command line length. You may use wildcards to specify multiple files. These
files are loaded in addition to, rather than in place of, any named in the state file.

Parameters

Consider whether you wish to allow the configuration file to be read before or after
each parameter that you specify. The configuration file may in some cases cause a
command line parameter to be ineffective if the parameter is processed first.

There are upper case and lower case versions of each of the command line
parameters, wherever applicable.

There are upper case and lower case versions of each of the command line
parameters.

W Parameters specified with a lower case character will be processed before the
configuration file is read.

B Parameters that use an upper case character will be processed after the
configuration file is read.

Some parameters require additional information in the form of an argument. In the
descriptions below, the arguments appear in italics following the parameter. When
supplying an argument to a parameter, CodeWright permits the argument to
immediately follow the parameter, with no intervening white space, or to be
separated from the parameter by white space.

The parameters listed in the table on the next few pages are depicted as preceded by

a minus or dash character (-). While a slash will also work in most instances, these
can be mistaken for filename paths and should be avoided.

420 18- Configuration Files & Command Line Parameters

Sample Command Line Parameters

Type Format Description
Configuration | -C<configLoc> Allows you to specify the
Location CW32 -c directory or file in which
Parameter c:\source\projl configuration information is to

be found. The <configLoc>
argument names that directory
or file.

B If <configLoc>names
only a directory,
CodeWright looks for a file
named CWRIGHTINI in
that directory from which
configuration is read.

B If <configloc>namesa
complete path, including
filename, CodeWright will
attempt to read
configuration information
from that file.

For additional location
information, refer to the topic
Location of the Configuration File,
in this chapter.

Variation of -C- Instructs CodeWright not to
Configuration | cy32 -c- read a configuration file.
Location

Parameter

18- Configuration Files & Command Line Parameters 421

Sample Command Line Parameters

Type Format Description
Go to Line -G <lineNumber> Tells CodeWright to go to the
Number line number indicated by the
CW32 -g215

argument. It should follow the
name of the file to which it
refers, and it may be specified
following each file named on
the command line.

This parameter will be
overridden if you attempt to
position the cursor in a file
loaded as part of the state

restoration.
Heap ~heapalloc Instructs CodeWright to use
Allocation global allocation of memory.
Parameter CW32 -heapalloc This makes it easier to detect

allocation errors. Use this if you
suspect your DLL has this type
of memory error.

v This option is only
available on the 32-bit

version of CodeWright.
Keymap -K <keymap> Names a default keymap to be
Parameter used by CodeWright. If this
CwW32 -k mycua parameter is used, the

[DefaultKeymap] section of
the CodeWright configuration
file (CWRIGHTINI) will not be
read.

The <keymap> argument to this
parameter names a DLL (less
the .DLL extension) containing
the default keymap. The
argument at the same time
names the function (contained
in the DLL) which initializes the
keymap and makes the key
assignments.

422 18- Configuration Files & Command Line Parameters

Sample Command Line Parameters

Type Format Description
Library -L <library> Designates a dynamically linked
Parameter library to be loaded at startup

CW32 -Lmyutils

time. This parameter is useful
for testing user created or
modified DLLs before a more
permanent installation. It can,
however, significantly increase
the amount of time it takes
CodeWright to start up.

The</Ilibrary> argument is the
name of the library to be loaded.
If this argument does not name
a path to the DLL, CodeWright
will look in the current
directory, the Windows
directory and on the PATH, in
an attempt to locate the DLL.

Multi-Instance
Parameter

CWw32 -M

Allows you to run more than
one instance of CodeWright at a
time.

By default, multiple instances
are disallowed. Your operating
system must be Windows 95, 98,
ME, 2000 or Windows NT 4.0 for
this option to work.

No Files
Parameter

CWw32 -N

Indicates that the state file is to
be processed, except that no
files from the previous session
are to be restored.

No Splash
Parameter

-NOSPLASH

Suppresses the display of
CodeWright's opening splash
screen. This can save a small
amount of loading time.

18- Configuration Files & Command Line Parameters

423

Sample Command Line Parameters

Type Format Description
Paragraph -P <section> Tells CodeWright to read the
Parameter CW32 -p "Windows named section of the

driver" configuration file. The section

will be read after all of the
standard portions of the
configuration file have been
read, to give it priority over the
other contents of the
configuration file.

The <section> argument to this
parameter is the name of the
section of the configuration file
to be processed. If you name a
section that is automatically
read at startup, it will be
processed twice. This section
name may contain white space.
If it does, however, it must be
enclosed in either single or
double quotes.

Limit -Processor = d This argument can be useful for
CodeWright (d is a decimal avoiding thread-related
CPUusageon | number bit mask for | problems thatappear only on
multi- the allowed CPUs multi-processor machines. It can
processor used by CodeWright also limit CodeWright's CPU
machines on startup) usage, allowing more for other
processes.

Examples:

B '-Processor=1'limits
CodeWright to CPU 0.

B '-Processor=2'limits
CodeWright to CPU 1.

B '-Processor=3'limits
CodeWright to CPU 0 and
CPU 1.

424 18- Configuration Files & Command Line Parameters

Sample Command Line Parameters

Type Format Description
State Location | -S <stateLoc> Allows you to specify the
Parameter directory or file in which state
CW32 -s information is to be found.

h:\home\ericj
The <stateLoc> argument

names that directory or file. If
<stateLoc> names only a
directory, CodeWright looks for
a file named CWRIGHTPST in
that directory, from which state
information is read. If
<stateLoc> names a complete
path, including filename,
CodeWright will attempt to read
state information from that file.

When this parameter does not
appear on the command line,
CodeWright looks for a state
information file in a series of
places, unless the saving and
restoring of state information
has been turned off. These
places include:

B adirectory or file named by
the CWPST environment
variable,

B in CWRIGHTPST in the
Working Directory,

B in CWRIGHTPST in the
directory in which the
CW.EXE or CW32.EXE file
is located, or

B inalocation named in
CWRIGHT.INI.

18- Configuration Files & Command Line Parameters 425

Sample Command Line Parameters

Type Format Description
Variation of -S- Instructs CodeWright not to
State Location read a state file. State
Parameter CW32 -s- information, however, is not

automatically reinitialized, and
may be used subsequently.

Execute -X <function> Names a function to be invoked
Function as part of CodeWright startup.
Parameter This function should not

attempt to perform any
configuration, since such
configuration may be
overridden or reversed by the
subsequent processing of the
configuration and state files.

The <function> argument to
this parameter contains the
function call. If the call contains
any parameters to the function,
the entire function call must be
enclosed in single or double
quotes. In addition, it must
conform to the syntax required
by LibFunctionExec.

Command Files

A command file is a file that may contain any valid command line parameters,
including additional command files. CodeWright identifies filenames preceded by
an @ sign as command files. Command files are formatted in the following way:

@<commandFile>

Command files are useful for overcoming command line length limits and also for
creating reusable, logical groupings of filenames and parameters.

White space or new lines may separate parameters within a command file. New
lines are often used to promote readability.

426 18- Configuration Files & Command Line Parameters

Appendix | A

A- TagsWNN Utility

TAGSWnn (TAGSW16 or TAGSW32, depending on your platform) is the Tags
program supplied with CodeWright to automatically generate a tags database and
compile it into a format that can be used by the built-in browser. The program is
called when you select Build Tags from the Project menu. You may not ever need to
run the program from the command line, but in the event that you do, or if you just
wish to know more about the program, its options are briefly described here.

TAGSWnn is based on the GNU Tags program written by John Kerchival. The
primary changes made to it are to allow output in the Starbase Compiled Tags
format. This is the -p option, which is the only option we have added. Other
options are as described in the TAGS.DOC file supplied with the GNU Tags program
and provided with CodeWright.

Example: TAGSWnn {[OPTIONS] [SOURCEFILE|QLISTFILE]}

TagsWnn Command Line Options

An option summary follows:
-h,-2
Obtain a detailed help screen directed to standard output.

@LISTFILE

Use LISTFILE as a "response" file. This file lists input filenames (with or without
wildcards) one at a time. Filenames may be separated by a plus sign (+), a comma (,),
a semicolon (;), or by whitespace. In addition, comments are allowed within the
LISTFILE. Comments are delimited by placing a pound sign '#' before the comment.
This is very similar to comments allowed in a makefile, except that comments are
allowed on any line or at the end of any line, start at the '#' and go to the end of the
current line. There must be at least one character between the filename and the
comment character (i.e.'+',', ;' or whitespace) to differentiate between the
beginning of a comment and a filename character (since '#'is a valid element of a

filename).

A- TagsWNN Utility 427

-x{EXCLUDEFILE|QLISTFILE}
Exclude the files specified by EXCLUDEFILE or exclude all files listed in LISTFILE
using the same syntax described above.

-tTAGFILE

Add new generated tags to TAGFILE. This file may or may not exist. All tags from
TAGFILE that were derived from files currently being parsed will be removed
during the merge phase. This tagfile is assumed to be in one of this utility's output
formats. If sorting is specified, then new tags will be merged in correct order with
current case sensitivity. Otherwise, tags will be placed at the beginning of the new
resulting tag file (this will result in quicker responses during tag searches while
editing). If -m or -s are used this switch is ignored (all output is to stdout). The
behavior regarding existing files is determined by the case of the switch as follows:

-t (lower case) creates and outputs to a file overwriting any currently existing
file

-T (upper case) merges all output to the tagfile if there is an already existing file

-pCOMPILEFILE

Convert output tag file (specified by -t) into a compiled file suitable for use with
CodeWright. The output flag (-t) and the CodeWright output format flags (-oc) must
be specified for this flag, otherwise it is ignored.

-1LOGFILE

Output all activity to LOGFILE. The log file will be created in a LISTFILE format (i.e.
suitable as input using the @LISTFILE syntax). The behavior regarding existing files
is determined by the case of the switch as follows:

-1 (lower case) creates and outputs to a file overwriting any currently existing
file

-L (upper case) appends all output to the logfile if there is an already existing
file

-o[options]
This switch is used to determine the output format to the output stream.
[options] may be one of the following:

e Epsilon (>= V6.0) tag format
(tokenString {tab} fileName {tab} characterOffset {tab} line)

This format is used by the Epsilon editor (V6.x) created by Lugaru Software and
specifies the token identifier, the file name (including full path, normally), the
character offset of the beginning character (starting at character 0) and the line
which that offset is located on.

428 A- TagsWNN Utility

Epsilon (<= V5.03) tag format
(tokenString;fileName;characterOffset)

This format is used by the Epsilon editor (V4.x and V5.x) created by Lugaru
Software and specifies the token identifier, the file name (including full path,
normally) and the character offset of the beginning character (starting at
character 0).

g GNU tag format
(tokenString {tab} fileName {tab} /$line /)

This format is used by GNU's EMACS editor, originally written by Richard
Stallman and widely used in the UNIX community. This is also the format
created by its companion utility "ctags" which does very simple function header

tagging.
s Space-Delimited format

(tokenString fileName lineNumber)

This format is the simplest format available and requires very little parsing and
is very simple to import into foreign formats (i.e. database formats, etc.).

m Microsoft Error format
(tokenString fileName(lineNumber))

This format has an advantage in that it has been around for quite some time and
a fair amount of effort has been expended to parse this format and move to the
location in the source specified during compilation stages. Many macros may
be modified to use this type of tag format with very minor changes.

c CodeWright tag format
(tokenString FileName(lineNumber) tokenType)

This format is a minor variant of the Microsoft format but is generally used in
conjunction with a compiled database file format (see -p above). This is the
format used by Starbase's CodeWright editor.

-a[options]

This switch is used to specify the types of tokens for which tags are generated for
tagging of assembly files. All token types are tagged as the default (-afdlmsu).
Source modules are expected in 80x86 assembly using MASM/TASM syntax. The
location of the -a switch on the command line is important. All files (and files found
in LISTFILEs) will be tagged using assembly tagging (and the options specified on
that switch) until another -a or -c switch is found. Order is not important for the
options to this switch.

A- TagsWNN Utility 429

f procedure labels
(token proc)(proc token)

This is a mnemonic for function (which has nothing to do with a procedure call
in assembly, but does well for frail human memory). This option specifies
tagging of the "proc" keyword.

d definition labels
(token equ const)(token db declaration)

This option specifies tagging of defines and definition labels such as the tokens
”equ”, lldb”, qull/ ||dw||/ ||df|l/ etC.

1 local labels
(token label)(label token)(token:)

This option specifies tagging of local labels (labels of local file duration). This
includes the keyword "label" as well as the shorter ":' notation.

m macro labels

(token macro)(macro token)

This option specifies tagging of defined macros using the keyword "macro".
s struc labels

(token struc)(struc token)

This option specifies tagging of structure definitions defined using the keyword
"struc”.

u union labels
(token union)(union token)

This option specifies tagging of union definitions defined using the keyword
"union".

-c[options]

This switch is used to detail the token types to tag in C and C++ source files. All
token types are tagged by default (-cdmstekuvcfpxi). Source files are expected in
standard ANSI 2.0 C/C+ + syntax. The location of the -c switch on the command
line is important. All files (and files found in LISTFILEs) will be tagged using C
tagging (and the options specified on that switch) until another -a or -c switch is
found. Order is not important for the options to this switch.

430 A- TagsWNN Utility

d defines
(#define token statement)

This option specifies that defines are to be tagged (preprocessor defines). This
does not include macros which are an extended use of the #define preprocessor
directive.

m macro labels
(#define token() statement)

This option specifies tagging of macros defined via use of the preprocessor
#define directive.

s struct globals
(' struct token {})

This option specifies tagging of structures defined via use of the "struct”
keyword and implicitly defined within C+ + syntax variations.

t typedef globals
(typedef declaration token, token, ...)

This option specifies tagging of identifiers defined via use of the "typedef"
keyword.

e enum globals
(enum token {})

This option specifies tagging of enumerations defined via use of the "enum"
keyword.

k enum konstants

(‘enum { token, token, token, ...}) Note the cute spelling of constants with a 'k’
to justify the assignment of this letter. This option specifies tagging of
enumeration constants within declared enumerations.

u union globals

(union token {})

This option specifies tagging of unions defined via use of the "union" keyword.
v global variable

(declaration token, token = {}, token, ...)

This option specifies tagging of global variable declarations.

A- TagsWNN Utility 431

c global class
(class token: {})

This option specifies tagging of class definitions specified via use of the "class"
keyword.

f function definitions

(token() declaration {})

This option specifies tagging of function declarations.
p prototypes

(token();)

This option specifies tagging of prototypes.

x extern defines

(‘extern declaration)

(extern "C" declaration)

(‘extern "C" { declaration; declaration; ... })

This option will specify that tags which have the extern storage class are to be
output. The x option is a modifier and will only be effective when other options
are used (i.e. -cpx must be specified to obtain extern prototypes, -cx alone yields
nothing). Note also that the -cx modifier has no effect for function, define and
macro tags which are tagged only according to the f, d and m options
respectively. This modifier may be placed anywhere within the options list.

i static declarations
('static declaration)

This option will specify that tags that have internal static storage class are to be
output. The i option is a modifier and will only be effective when other options
are used (i.e. -cvi must be specified to obtain static variable declarations, -ci
alone yields nothing). Note also that the -ci modifier has no effect for define
and macro tags that are tagged only according only to the d and m options
respectively. This modifier may be placed anywhere within the options list.

-d

This flag specifies that all input listfiles and exclude response files should be deleted
once parsed. This allows an automated list file generation that is cleaned up by the
tags package. See description of LISTFILE below.

—-3J

This is the junk filter switch to allow the filtering of functions and declarations that
are overloaded operators in C++. For example, if the junk filters are enabled then
the declaration "inline myType operator+(MyType m1, MyType m2);" would not be
tagged for "+" which is normally a standard C delimiter token and operator. The
junk filter, if enabled, will filter all standard C delimiters from the output.

432 A- TagsWNN Utility

-9
This is the quiet switch and will suppress normal status output to stderr and
program version information.

-r
This switch will suppress the default output of the full file path name and will
specify the use of relative pathnames in the generated output.

—-n
This switch will suppress sorting of the tag output (often used in conjunction with
GNU or Epsilon style tags).

-1

This switch specifies the use of a case sensitive sort (normally a case insensitive sort
is used). Although the character i' is normally used for switching to a case
insensitive behavior, it differs in this instance.

A- TagsWNN Utility 433

434 A- TagsWNN Utility

Index

Symbols

${FTEE} 142, 163, 166

% macros 72

%Q macro 146

.CHM Help Files 115

.HLP Help Files 114

.HTML Help Files for MSVC 114
IVT Help Files 115

.MVB Help Files 116

_init 393

_init Function 395

A

Accessing CodeWright Functions
from Perl Scripts 339
accessing errors 151
Accessing Perl functions 340
activestate 344
Adding Your Own Functions 394
Add-Ons 327
Language DLLs 50
Add-Ons/DLLs/Libraries
Additional Add Ons on the CD 24,
42
Loading 24, 42
Alternation and Grouping 221
ANSI
CodeSense translation 96
Answer Wizard 17
API 39
API (C-like) Macros 363
API Assistant 67, 110
Automation Tools 113
checkboxes 111
creating a database 113
databases 112
Modifying the Database 113
using 110
API Assistant Database Editor 113

Index

API Command 80, 340

API Command Prompt
API Command Key/Prompt 40
Command Completion 40
Command Key/Prompt 40
using 40

API Commands 360, 363

API Functions 328
Command Key 328
Expression Evaluator 330
Return Values 328

API Macros 135, 327
CodeWright Event Handling 382
Comments 366
Conditional and Iterative Control
Structures 379
Creating and Editing Macros 364
Differences between API Macros
and C 383
Expressions 371
Identifier Naming Rules 366
Language Definition 365
Literal Values 368
Run-time Error Handling 382
Statements and Statement Blocks
379
String Functions 384
Variables 366

AppBasic 327, 344
Environment 345

AppBasic Macro Language 344
AppBasic macros 349
AppBasic Window 360
AppBasic Window Configuration
360
AppBasic Window Toolbar 360
AppBasic-related API Commands
359
Choosing an Editor 345
Choosing Toolbars 347
Creating a Handler 349
Creating a Macro 348
Creating an Event Handler 355
Debugging Macros 356
Dialog Editor 347
Exported Functions in CWBA-
SIC.DLL 361

435

Initialization Subroutine 351
Load Macros Dialog 358
Modal User Dialog 352
Object and Proc Lists 350
Object Browser 348
Pop-up Menu 347
Related API Commands 359
Running the Macro 355
Special Keybindings 346
User Dialog Editor 352
Window Configuration 360

assemblies 161

assembly language 391

Assign Keys dialog 301

Auto Sync Makefile/ Visual Studio
Workspace 131

Auto-hide
Toolbars 277

auto-list members
CodeSense 95

Auto-parameter Info
CodeSense 96

Auto-Save Settings 308

Auxiliary Services 392

B

back to previous document position
31

Backup Files 312, 418

Backups
Format Controls 313
Formatting the Backup Specifica-
tion 312
Global 308
Individual Files 311
Specific File Types 310
Transformation Patterns 314
Turning off 321

beautify
format source 64

Beautifying Code 265

Bi-directional synchronization 199

Binding Keystrokes to Functions or
Macros 303

Block Alignment 84

Bookmarks 134

436

Global 247
Local 247
Bookmarks Window 249
Borland C+ + Builder File Synchroni-
zation 193
Borland C++ File Synchronization
191
Borland Link 399
Brace 80
Align 82
automatic positioning 82
Brace 80
Brace Expansion 82
BraceFindEx 81
BraceMatch 81
BraceMatchNext 81
highlighting 81
kissing 81
locating 81
locating square brackets 81
matching 80
matching parentheses 81
parenthesis locating 81
Brace Expansion 67, 82
BraceFind 81
BraceMatch 81
BraceMatchNext 81
break
a long search 214
Break Points 356
AppBasic 357
BRIEF 40, 297, 328
BRIEF command set 295
BRIEF Keymap 295
Browse
C++ and Java 242
Browse Object 348, 358
Browser
Database 134
Filter Toggle Buttons 234
Inspect window 230
Jump to Code 232
Objects Window 229
Query Buttons 232
Selecting a Database 230
String Search 232
Support 229

Index

Toolbar 230, 231
Traversing the Tree 230
Tree window 230
Window 230
Browser tree
expand or collapse 230
Browsers 247
Browsing
using Microsoft .BSC files 229
BSC file 230
Bufsethexascii 329
Build 151, 161, 166
Build Command Line 163
Build Tool 142
build utilities 137
builds 161
Button File 135
Button Link 134
Button Links
Comment prefixes 250
Defining buttons 251
How it works 250
Insert Link 20
What you see 251
Buttons 20, 250
action 20, 250
Adding and Changing Toolbar But-
tons 280
Binding a Function to a Button 281
Information File 282

C

C Language Operators 330
C++
Browse 242
Called By 234
Calls To 234
CARP.PM 343
Case
Changing Upper, Lower 22
Centering text 22
Changing Existing Functions 394
Character Classes 53, 59, 219
Character Matching 219
ChromaCoding 365, 387
Adding a New File Type 64

Index

COBOL 103
color-timing 63
enable coloring 65
for embedded languages 63
language specific editing features
65
maximum number of comment-
lines 63
Numbers 58
Strings 57
ChromaCoding Lexer Settings
Default 52
Item Settings 56
List Settings 56
ChromaCoding Lexer Settings Dialog
51
Comments tab 56
Numbers tab 58
Strings tab 57
Words tab 54
ChromaCoding Lexers 24, 51, 62
add keywords 54
add operators 54
Adding Comment Delimiters 56
adding keywords from a file 55
Adding Numbers 58
Delete keywords 55
Deleting Lexers 60
Digits field 59
Exclude Text from Coloring 53
Identifier Characters 52
Identifiers 52
Lexer names 52
Multi-line Comment 57
Single Line Comments 57
user-defined keywords 55
ChromaCoding Lexers--numbers 59
Class browser 242
Clipboard 109
Clipboard Viewer 109
Closed Selections 297
COBOL 104
Automatic Time/Date Stamp 105
Automatically Continue Strings 105
DLL 103
Resequence Line Numbers 104
Toggle comment 105

437

Validate Line Number Sequence
106
COBOL ChromaCoding support 103
COBOLLine Number Handling 105
Code Beautification 265
Code Composer
Bi-directional synchronization 199
synchronization 197
Code Reformatting 64
Code Snippet
execute 75
Code Snippet Properties Dialog 78
CodeFolio
Tab on Project Window 29
CodeFolio Snippets 29, 67, 74
adding 77
Adding or Removing Directories 79
Code Snippet Properties Dialog 78
Creating a Snippet from Clipboard
or Document Selection 77
Deleting or Renaming 78
directories 75
Editing 78
using 75
CodeSense 24, 86
access definition 94, 95
ANSI translation 96
Auto-list Members 95
Auto-parameter Info 96
Auto-type information 95
Create library database 89
database files 92
delete library database 90
edit library database 89
Extended Functionality 96
from files that are open in Code-
Wright 88
Global Configuration 89
libraries 88
Main Features 94
Name Completion 94
parser priority 91
Symbol Lookups 97
Troubleshooting 98
Unicode translation 96
CodeWright API 328
CodeWright API functions 39, 334

438

use interactively 39
CodeWright Event Handling 382
CodeWright Libraries 24, 42, 51
Collapse text 226
Colors 45

changing colors 46

changing individual screen ele-

ments 46

changing whole background only

46

ChromaCoding Lexers 51

for embedded languages 63

Synchronize text background 46
Columns

Formatting 22

Marking 297

Selection 297
Combo Box History Lists 282
Combo box lists 282
Command Files 426
Command Key 40, 80, 227, 328, 330,

419

API Command Prompt 40

BRIEF keymap 40

CUA keymap 40

examples 329

using 40

VI keymap 40
command line length limits 146
Command Line Parameters 4, 419

Command Files 426

Order of Processing 419

Samples 421

Types 419
Command Options 143
Comment

Comments 99
Comments

API Macros 366

Comment Box 99

Comment Boxes 67

comments and comment boxes 64

inserting 22
Common User Access 294
Compact Mode 227
Compile 161, 166

command line compilers 137

Index

compile a specified target 164
Compile and Link Options 398
compile tools 139, 162
compile utilities 137
compiled tags database (.ptg) 134
Compiler 151, 162, 163
batch files 165
command line 163
command line length limits 146
directory structure 164
setting up 161
Compiler commands 161, 162
Compiler name 162
creating, deleting 162
Conditional statements
API Macros 379
CONFIG.PM 343
Configuration
Project Files 409
Configuration and State
Command Line Parameters 419
introduction to 408
Configuration File 4, 421, 422, 424
Command Line Parameter 408
Contents and Purpose 408
Example 410
Location 407
Options (Dialogs and Functions)
416
Processing at Startup 412
User-Defined Sections 414
Configuration Hierarchy 159
configuration settings
reading from other files 136
Configuration Wizards 17
Control Structures
API Macros 379
Copy 108, 299
Core Services 387
CPAN 344
Creating a ChromaCoding Lexer 52
Creating a Macro
API Macros 364
Creating a Project 34, 125
Creating and Editing Perl Scripts 335
Creating Windows With A Mouse 300
Ctags Support 235

Index

CUA 40, 294, 295, 297, 328
CUA Keymap 295
Cursor
Placement After Search 223
Custom Error Parsers 149, 150
making 150
Custom tools 25, 140, 161
creating 140
Customization 331
Customize
using your own DLL 400
Customize Menu 23
Environment option 42
Customize |Language 61, 62, 84, 85,
311, 313, 315
Customize | Libraries Dialog 50
Customizing the CodeWright Inter-
face
Dockable Toolbars and Windows
275
Keymaps 294
Menus 283
Mouse Commands 296
Toolbars and Buttons 279
cwbLoadFile 355, 359
cwbShowProcDisplay 360, 362
cwbShowToolbar 360, 362
cwbUnloadFile 359
CWConst 341
CWD 206
CWDDE.DLL 392
CWDIALOG DLL 390
CWDIALOG.H 390, 394
CWExec 342
CWHELP.H 394
CWLDRAW.DLL 392
CWP.DLL 339, 343
cwp.dll 334
CWP.PM 334, 339, 343
CWP.XS 343
CWPERL.DLL 343
CWPERLLDLL 343
CWPERLLMNU 343
CWPerlIO 342
CWRIGHT.INI 355, 360, 391
CWRIGHT.MAC 363
CWRIGHT.PST 425

439

CWSTART.DLL 387, 391
CWSTART.H 387, 394

D

-d flag 340
data types 348, 357
Debug 161
Debug Compile 151, 161
Debugging using expression evalua-
tion 330
Debugging Your AppBasic Macro 356
Default
Backup Specification 313
Keymap 422
DefaultKeymap 400
Delphi File Synchronization 189
Delphi's API 112
Differencing
Advantages 253
Analysis Dialog (Interleaved) 254
Difference Analysis Dialog (Side-
by-Side) 256
Interleaved 254
Interleaved Document 255
Interleaved Options 254
Reference vs. Target File 255
Side-by-Side 256
Side-by-Side Difference Controls
261
Side-by-Side Difference Window
257
Side-by-Side Edit Mode 259
Side-by-Side Options 257
Side-by-Side View Only Mode 258
directories
Edit Search Path 135
system files 133
Displaying Return Values 328
Dissecting a CodeWright DLL 393
DLL Extensions 333
DLLs 327
Compile and Link Options 398
CWDIALOG.DLL 390
CWHELP.DLL 390
CWSTART 387
Dynamic Link Libraries 42

440

Installing your DLL 400
Libraries and Add-ons 24
Link Libraries 398
Makefiles 397
Making Add-ons 385
Organization of DLLs within Code-
Wright 386
Recompiling 397
Source Code 331
Supplemental Features 392
Supplemental Language Support
391
Typical Contents 393
Using your Own Custom DLLs 400
DLLs/Libraries/ Add-Ons
loading 42
Dockable Toolbars 347
manually dock and undock 278
Dockable Toolbars and Windows 275
Document
Difference between windows and
documents 26
move forward and back 31
Document Menu 22
Document/Window Manager Dialog
23
Drag and Drop
Copy 299
File Loading 300
Move 299
Text 299
Drag and drop
projects and project spaces 300
Visual Studio workspaces and
projects 300
DYNALOADER.PM 343

E

Edit Menu 20
Edit Search Path 135
Edit UserDialog 352
Editing a Macro

API Macros 364
Editing features 65
Elision 227
Email 8

Index

embedded language support 63
environment 45
setting up the 164
Environment dialog and options 42
environment space 165
Epsilon command set 295
Error File 148
Error Handling
API Macros 382
error output 147, 151
accessing compiler, linker and as-
sembler 149
Error Parsers 149, 150
Error Parsing
Supporting Files 389
errors
accessing 147, 151, 152
EvalExpression 341
Evaluate Expression and Add Watch
AppBasic 357
event handler 355
EventHandler in AppBasic 355
Example Configuration File Settings
AppBasic 361
Exclusive Selection 296
Execute 161
Exiting and Macro return values
API Macros 379
Expand / Collapse 301
Expanding And Collapsing Text 301
EXPORTER.PM 343
Expression Evaluator 330
Expressions
API Macros 371
ExtAssignTemplate 68, 69
Extend
using your own DLL 400
Extending CodeWright
API Functions 328
Changing and Adding Functions
394
Core Services 387
Creating New Keymap Command
Sets 395
Keyboard Command Sets 390
Macro Languages and DLL Source
Code 327

Index

Macros, Macro Languages and
DLLs 331
Making DLL Add-ons 385
Supplemental Language Support
391
Extensibility 331
Extension File 134
External documents/ programs- ac-
cessing
Button Links 250
ExtExpandTemplate 70
ExtSetTemplateMacro 73

F

F1key
Configuring MSVC HTML help 115
Fast Find 214
Fax
Number 8
support via 8
File Finding
File Find tab 27
File Grep 208
File Headers 67, 69, 76
File Menu 19
file type
defined 61
File View Window
Icons 174
FILE.TPL 70
Filename Component Macros 144, 145
Filename Transformation 312, 313,
314
Filenames 420
Files
Attributes - Open Tab 30
Backups for Individual Files 311
Backups for Specific File Types 310
delays when opening/closing 240
File Manager 29
File Open dialog functionality 29
Finding 19
Formatting the Backup Specifica-
tion 312
Global Backups and Auto-Save 308
loading 135

441

Loading and Validation 305
Open tab -- Project Window 30
opening 135
Opening as Read-only 317
Read-only Files for Specified File
Types 316
Read-only for Individual Files 316
Reloading current file from disk 19
Saving Large Files 324
Sending via Email 19
Show File List on File Menu 43
Working with Large Files 319
Files used by Perl for CodeWright 343
File-Validation 4
Fill Pattern 314
Filter 245
Filters 19, 25
File | Filters dialog 19
project filters 154
Find Fast 214
first error 152
Flag Initialization 395
Flags 420
Fmatch 413
Fold text 226
Fonts 45
print fonts 46
screen fonts 46
Format Controls 313
Format Source 22, 64, 265
Formatting Source Code
Language Dialog 266
forward to next document position 31
FTEE 166
FTEE.EXE 163
FTP
Put and Get 318
Full Screen
Window menu 26
FUNCT.TPL 70
Function calls
API Macros 378
Function Completion
CodeSense 86
Function Headers 67, 69
Functions
Changing and Adding 394

442

G

Getting Started with API Macros 364
Getting Started with Perl 334
Gnu Tags 235
Grep
Search and Replacement Edit Box-
es 205
Selective Display 13

H

Handlers 348, 350
Help
accessing from other environments
113
Compiled Microsoft HTML (.CHM)
Help Files 115
configuring 113
DLL 390
Index File Wizard 17
InfoViewer 116
Integrating with MSVC 5.0 (IVT)
help 115
MSVC 4.0 (MVB) Help Files 116
MSVC 6.0 HTML help integration
114
Standard toolbar 31
Help Menu 27
Hex Editing 107, 108
Hex Mode 107
Hexadecimal values 107
searching 225
Hidden Characters
making visible 46
Hidden files
Open tab-- Project Window 30
Hide
text 226
History Of Responses 282
hotspots on the status line 298
HTML
Editing 100, 101
language support 100
popup menu 100

Index

toolbar 100

turn on WYSIWYG 101

Using MSVC 6.0 Help Files 114
View 100

WYSIWYG 101

WYSIWYG editor/viewer 100

1

Identifier Characters
First Field and Follow Field 53
Identifiers 52
if-else statement 379
Importing names into Perl’s
namespace 339
Inclusive or Exclusive Selection 296
Incremental Searching 215
Indent
Alignment 84
Prompted Slide In/Out 22
Seek Indentation 84
Slide In 22
Slide Out 22
Smart Indenting 84
indentation styles 84
Indented Alignment 85
Indenting 83
InfoView 113
Insert
Braces 82
Button Links 20
Comment 99
File 20
Function and File Headers 69, 76
functions 74, 110
Line Numbers 22
Link 251
Literal (Hex, Decimal, ASCII) 20
Insert/Edit User Dialog 352
Installing Your DLL 400
Interleaved Differencing 254
Internet Mail 8
Interpreters dialog 341
Introduction 327
Iteration Qualifiers 220
Iterative statements
API Macros 381

Index

J

Java 112
Browse 242
jump to first error 151, 152

K

Key Assignments 413, 422
Key Command
Command Completion 40
Keyboard
Assign Keys 24
Keyboard Command Sets 390
Keymap Function 395
Keymaps 390
Binding Keystrokes to Functions or
Macros 303
BRIEF Key Commands 295
Creating New Keymap Command
Sets 395
CUA Key Commands 295
Customizing 294
Customizing Keybindings 301
Specific Assignments 396
Specific Keymap Assignments 301
Keystroke Macros 20, 135
Editor 302
Keystrokes
modifying 301
keywords
from file 63
KmapAssign 396

L

Language
coloring 49
coloring embedded 62, 63
Customize Menu 24
Language Definition
API Macros 365
Language Dialog 68
ChromaCoding 62
Comments Tab 64

443

DLL radio button 62
Format Tab 64
Lexer radio button 62
Options Tab 61
Symbols Tab 64
Tabs/Indenting Tab 62
Templates Tab 62

Language DLL 50, 65
Creating a Language Support DLL
66

Language Features
Supporting Files 387

Language Indenting 387

language support 49, 391
Adding a New File Type 64
additional language support 50
Alias or map non-supported lan-
guages to supported ones 65
ChromaCoding Lexers 51, 62
COBOL 103
Creating a ChromaCoding Lexer 52
Creating a Language Support DLL
66
default language support 49
enable coloring 65
Language DLLs 50, 65
language specific editing features
65
loading 50
setting configurations 60
user-defined keywords 55

Large Files 319
Changing Block Size 320
Changing the Number of Swap
Blocks 319
Disabling File Pre-loading 322
File Rewrite Save Method 325
Saving 324
Swap Blocks Allotting Memory to
Swap Blocks 319
Turning off Backups 321
Turning Off Scroll Bars 321

Left Justify 22

Lexers 62
COBOL 104
Default Settings 52

LibExport 339, 348, 393

444

LibFunctionExec 74, 339, 348
LibFunctionExistsWhere 333
Libraries/ Add-Ons/DLLs
loading 24, 42
Line
Numbering 22
Saver Alignment 85
Selections 297
Link
insert 251
Insert Button Link 20
Link Libraries 398
Borland Link 399
Microsoft Link 398
Literal
Insert Hex, Decimal, or ASCII Liter-
al 20
load and execute a Perl script 338
Load Macros Dialog
AppBasic 358
loaded for execution 351
Loading and running scripts 336
Loading and Validating Files 305

M

Macro File 135

Macro Languages
API (C-like) Macros 363
AppBasic 344
Comparison of Supported Lan-
guages 332
Perl 334

Macros
Binding Keystrokes to Functions or
Macros 303
Creating a Macro in AppBasic 348
Debuggin in AppBasic 356
Defined 331
In templates 70
Keystroke Macro Editor 302
Loading a Perl Macro 337
Recording a Keystroke Macro 302
run from Button Links 251
Running AppBasic Macros 355
Supporting Files 389
Tools Menu options 25

Index

Using Macros vs. DLL Extensions
333
MACROS subdirectory 335
Mail
Sending files 19
make utilities 137
Makefile Parsers 131
Makefiles 397, 398
adding files to CodeWright projects
129
Auto-Sync 131
reading into projects 131
Synchronize with CodeWright
projects 131
Making Changes and Additions 394
Mark Database 134
MarkBeginSel 341
Members tab of Project Properties Di-
alog 36, 128
Memory
Block Size 320
Pre-loading Files 322
Swap Blocks 319
Menu Accelerators 396
Menu items 284
adding 284
deleting 284
separator 284
MenuAddKeyString 396
Menus
adding 283
Adding a Menu Item 286
Adding External Operations 287
changing position 283
Changing the Functionality of a
Menu Item 285
Customizing 283
Defining a Popup Menu 288
deleting 284
Document Menu 22
Edit Menu 20
Editing Menu Items and Submenus
284
Editing Top-Level Menus 283
file lists 284
File Menu 19
Project Menu 21

Index

Search Menu 20
Sending Menu Commands to Syn-
chronized Environments 201
Text Menu 22
Tools Menu 25
Merging Files 262
Output 263
Removing Changes 264
Metacharacters 219, 220, 221, 222, 223
Microsoft Browser Database (.BSC)
134
Microsoft Foundation Classes 112
Microsoft Link 398
Microsoft Visual Studio
Bi-directional synchronization 199
Drag and drop workspaces and
projects 300
Synchronization 187
Microsoft Visual Studio Workspace
Auto Synchronize 131
drag and drop to create project
space 129
opening as project space 129
Parsing 131
Reading 131
Modal User Dialog in AppBasic 352
Modules Properties dialog 348, 349
Mouse 297, 299, 300
Copying Text 300
Creating Windows With 300
Moving Text 299
Mouse Commands 296
Block Selection 296, 297
Column Marking 297
Copy and Move 299
Creating Windows 300
Expand/Collapse Sections of Text
301
File Loading 300
scrolling speed 296
Selecting Lines 297
Selecting Words 298
Status Line Actions 298
Text Drag and Drop 299
Move 299
MsgNotify 349
MSVC workspaces and projects

445

Drag and drop 300
MSVC+ + File Synchronization 187
Multiple Sources Search Dialog 205
Multi-source search

Fast Find 214

N

name confusion 333
Navigate
move between documents 31
Newline Character 69, 218
Next Error 152
Nmake 142
No Command Shell 143
note links 251
NotePad 294

(0)

O'Reilly Press 344
Object and Proc Drop Down Lists 350
Object Browser 348, 357, 358
Obijects tab 229
Objects Window 242
Filter/Legend dialog 245
OLE Automation 348
One Document per Window 26
Online Help
AppBasic 347
Perl 336
Open projects and project spaces 129
Open tab
Project Window 29
option 25
Outline Symbols 238
Auto-Expand Collapse 239
sorting 239
Outline Window 229, 236, 238
output
capturing 143, 147, 166
Output Window 27, 151, 208, 229, 230,
334, 336, 348
AppBasic tab 344
Browse tab 28
Build tab 27, 151, 166

446

ClipView tab 109
Difference tab 28
Perl tab 335
Search tab 28
Shell tab 28
Symbols tab 28
Override Pattern 314

P

Parameter Checking 111

Parameters 420

parentheses
locating 81
matching 81

Parentheses in Expressions
API Macros 378

Pascal 391

paste 108

Pctags 235

Perl 327, 334
books 344

Perl Macro Language 334
Accessing CodeWright Functions
339
Accessing Perl Functions 340
already installed 334
Creating and Editing Scripts 335
Debug Mode 340
Files used within CodeWright 343
help 336
Importing Names into Perl's
Namespace 339
Loading a Macro 337
Loading and Running Scripts 336
Other Resources 344
Perl Tab on Output Window 335
Pop-up Menu and Options 336
Special API Functions 341
Specifying the Intended Subrou-
tine 341
Unloading a Perl Macro 340

Perl options dialog 340

Perl popup menu 342

Perl Window 335

Perl. HLP 336

perl.org 344

Index

PERL_IN_ 342

PERL5DB.PL 343

PerlExec 338, 340

PerlExecStr 338

PerlExecSub 338

PerlLoad 338

PerlRun 338

PerlUnload 340

Phone Number 8

PL extension 335

Pop-up Menu 288
AppBasic 347
Supporting Functions 294
Version Control 175

Pop-up Menu and Options
Fast Find 214
Perl 336

Pre-loading Files 322

Preprocessor coloring
Ignore Remainder of Line 56

Preprocessor directives
selective display 227

PRG.DLL 391

print configurations 117

Print Preview 118

Printing 117
color 118

date, timestamps, page number,

filename 119
header and footer macros 119
Headers and Footers 118
line numbers 118
multi copy 118
Paper Selection Override 117
Wrap Long Lines 118
wrapping long lines 118
Processing At Startup 412
Project and Output Windows 27
toggle 26
Project Files 159
format 409
grouping 153
loading 156
Options 416
Project Menu 21
Project Properties Dialog 230
Directories tab 133, 134

Index

Errors tab 147

Filter tab 153
Members tab 35, 127
Tools tab 137, 140

Project Setup Checklist 154
Project Space 122
Project Spaces 121

creating 33, 122

Defined 122

Drag and drop 300

drag and drop 129
opening or loading 129
selecting or changing 155

Project Tools 137

Build command 164
Command Options 143
Running in the Background 143

Project Window 28, 132, 133, 156, 229

Bookmarks tab 29

CodeFolio tab 29

File View Icons 174

File View tab 28

Files tab 132

Objects tab 28, 229, 242

Open tab 29

Outline tab 28

refresh 133, 174

version control 132

version control operations 133
viewing version control status 133,
174

Projects 121

add files 35, 127

adding files from external make-
files/Workspaces 129

Associating ~ Version ~ Control
Projects with 171

Auto-Update Symbols database 135
Command lines 154

Command Options 143

Compile commands 155
Compiling 155

Compute Document Symbols 135
creating 34, 125

Custom tools 140

defined 121

Directories 154

447

Drag and drop 300
drag and drop 129
filters 132, 153, 154, 156
loading member files 156
opening or loading 129
Project Properties Dialog 36
Project Tools 36
setting project configurations 36
setting up project tools 142
storing configuration settings with
135
synchronize with external make-
files/Workspaces 131
use with version control 158
Working Directory 133, 134, 154
Prompt for Arguments 143
Prompts
System 43
PTG file 230
PWB 415

Q

Quick Search 215, 233
quit

a long search 214
Quoting 221, 222, 223

R

Read User Makefile 130
Read Visual Studio Workspace 130
README.TXT 8, 18
Read-Only Files 315
By File 316
By Type 316
Set upon Opening 317
Rebuild 151, 161, 166
Recompiling a DLL 397
Recording a Keystroke Macro 302
Redirect Output 143
Reference Groups and Replacement
Strings 222
Regular Expressions 216, 220, 222, 223
Alternation and Grouping 221
Character Classes 219, 220

448

Escape Sequences 218
Escaping Characters in a Class 219
Examples 223
Iteration Qualifiers 220
Matching End Of Line 221
metacharacters 217
Placing the Cursor 223
positioning at Beginning/End of
Line 221
Reference Groups and Replace-
ment Strings 222
searching for more than one char-
acter 220
special characters 217
Reload 19
Replace
Global replacement 211
Multiple Sources/files 205
Prompt options 211
Prompted replacement 211
Single replacement 211
Replacement Options 210
resolve name ambiguity 333
resources
CodeSense parser priority 91
Response File 146
Contents 146
Restore Current Position 249
Rich Text Editor 345, 346, 360
Right Justify 22
Run mode 356
Running The Macro
AppBasic 355

S

Sample EHTEST.CWB 356

SAMPLE.DLL 392

Save
All Files automatically 143
Current File automatically 143
Current Position 249
Files with Auto-Save 308
Large Files 324

SC.DLL 391

Scrap Buffers 108, 109
multiple 415

Index

Scrap Viewer 109
scripting language
coloring 63
Scroll Bars
Turning Off 321
Scrollbars 45
Search
for word at cursor 215
Ignore case 212
Maximal match 212
Multiple Sources/ Files 205
on toolbar 216
Regular expression 212
Restrict to selection 213
Retain selection 212
Select matching string 212
Whole word 212
search
stopping or quitting 214
Search After Go To 234
Search and Replace
Dialog 204
Search List 207
creating/modifying 209
Drive and Directory Lists 209
File Pattern 208
Include Directory 209
List Editing Buttons 209
Patterns List 209
Search Menu 20
Search multi-source
Documents only 206
Edit Modified Files 207
Fast Find 214
Files and folders 206
Output Window 208
Project 206
Search Options 31, 204, 216
Case Sensitivity 21
Dialog 20, 204, 298
Prompt On Replacement 21
Regular Expressions 21
Search Pattern List
editing 208
Search results
search output window 205
Search Subdirectories 207

Index

Searching
background Thread 208
binary/ hexadecimal data 225
CWEFGREP 208
direction 210
Displaying and controlling Output
208
Exclude Start Position 213
incremental 215
listbox control 216
newlines 224
Regular Expressions 216
sets of files 207
spaces/tabs 224
Subdirectories 207
Wrap at beginning/end 213
Searching Project Files 158
SELECTION_LINE 341
Selections
by Word 298
Closed 297
Line 297
Selective Display 22, 226
preprocessor directives 227
save between CW sessions 228
Send Mail 19
Set As CWD 206
SetStringMacro 147
Setting Project Defaults 34, 124
Shell Command
Tools Menu option 25
Show Loaded Modules dialog 351
Side-by-Side Differencing 256
Smart Indenting 84
Snippets
Adding a Snippet to CodeFolio tree
directory 77
Adding or Removing a CodeFolio
Snippet Directory 79
Code Snippet Properties Dialog 78
CodeFolio Tab on Project Window
29
CodeFolio Tab on the Project Win-
dow 74
Creating a Snippet from Clipboard
or Document Selection 77
Deleting or Renaming CodeFolio

449

Snippet 78
Directories 75
Editing a CodeFolio Snippet 78
Executing a Snippet into your Doc-
ument 75
Source Code Revision Control
Maintenance Dialog 170
Spaces
setting 83
Special Characters 69
Special Keybindings
Appbasic 346
speed
auto validating 307
CodeSense parser priority 91
increasing 135
Spell Check
Tools Menu option 25
Spell Check Dialog
Advanced Tab 271
Documents Tab 273
General Tab 268
Word Format Tab 269
Spell Checking 268
Spell Check Dialog 268
split window 46
SrchSetFlags 396
Standard Toolbar 30
Help button 31
repeat last search button 31
search for word under cursor but-
ton 31
State File 282, 417, 420, 426
Contents 409, 418
Location 417
Statements and Statement Blocks
API Macros 379
Status Line Actions 298
stderr 335
stdin 335
stdout 335
stop
a long search 214
StrAscii 384
StrFileMatch 385
StrFormatDate 385
String functions

450

API Macros 384
StringApnd 384
StringCompare 384
StringlCompare 384
StringLength 384
StringNApnd 384
StringNCompare 384
StringNICompare 384
StrltoA 384
StrLtrim 384
StrSubStr 385
StrTrim 385
Submenus 284, 285
adding 284
Swap Blocks
Changing the Number Allotted 319
Symbol File 135
Symbol lookups
CodeSense 96
Symbol Parsers
making/creating 240
Symbol Scanning 238
Symbolic macros 146
Symbols 229, 236, 247
Auto-Expand Collapse 239
Auto-Update Symbols database 135
Compute Document Symbols 135
configuring 240
displayed in symbols window 237
making/creating 240
navigating and using 238
sorting 239
Symbols Parser 236
Symbols Window 229, 236
Synchronization
Borland C++ Builder File Setup
193
Borland C++ Setup 191
Delphi Setup 189
Initial Setup in CodeWright 185
Microsoft Visual Studio 187
MSVC+ + Setup 187
Sending Menu Commands to Syn-
chronized Environments 201
Supported Environments 185
TI Code Composer Setup 197
Visual Basic Setup 195

Index

Wizard 17
syntax coloring
Adding a New File Type 64
adding keywords from a file 55
Comments 56
Creating a ChromaCoding Lexer 52
Creating a Language Support DLL
66
enable coloring 65
keywords 54
language specific editing features
65
Numbers 58
operators 54
preprocessors 54
stop coloring certain items 55
user-defined keywords 55
SysEdit 294
SysSetDefault 396
SysSetFileLocking 410
SysSetFlags 396
system files
directories 133

T

Tabs 220, 221, 222
controlling/customizing 62
insert spaces only 83
setting 83
showing tabs 46

Tags 5, 235, 247, 427
Database 134
Setup 235
Support 235
Tagfind Function 236
TagNext 236
TagPrev 236
Using Database 236

Tags Database 235

Tags Support 229

TagsWnn 229

Technical Support 8

Template Expansion 62, 67, 387

Template macros
list of 72

Templates

Index

abbreviations that trigger 68
creating and modifying 68
example 69
ExtAssignTemplate 69
for language constructs 68
non-language-specific 69
run from Button Links 251
special characters in 69
Special Chars In 68
using macros in 69
viewing 68
TERM.PM 343
Texas Instruments Code Composer
Bi-directional synchronization 199
synchronization 197
Text
Copy and Move 299
Expand/Collapse Sections of Text
301
Text Drag and Drop 299
Text Link DB 134
Text Menu 22
TI Code Composer Synchronization
197
Bi-directional synchronization 199
Timestamps
Open tab-- Project Window 30
Toolbar
Buttons 135
forward and back button 31
Toolbar Search 31, 216, 298
Toolbars
Adding and Changing Buttons 280
Adding New Toolbars 279
Appbasic 347
Auto-hide 277
Binding a Function to a Button 281
Customization 24
Customizing 279
Default Toolbars 275
Docking and moving 278
Docking Manually 278
Enabling and Disabling 278
Options 275
Standard toolbar 30
undock 27
Toolbars dialog 347

451

Tools

Custom 25
Tools Menu 25

Adding External Program/Opera-

tion Links 287

API Command 39, 328
Transformation

Fill Pattern 314

Override Pattern 314
Transformation Patterns 314
TransformFilename 385
TYPEMAP 343

u

Undo 20, 31
Unicode
CodeSense translation 96
Unindented Alignment 85
UNIX
Changing EOL 404
Compiling from CodeWright 406
Enabling Auto-Sense File Type
EOL 404
File Securities 406
File Transfer using FTP 318
Filename Case 406
Recommendations for Running
CodeWright with UNIX 403
Using UNIX End of Line Charac-
ters 403
Update Configuration Files checkbox
137
UPDATE.TXT 18
User-defined commands
Open tab--Project Window 30
user-defined keywords 55
UserDialog 347
UserDialog Editor 347, 352
Using the Tags Database 236
Utilities
Supporting Files 388
Tools Menu options 25

452

Vv

Variables
API Macros 366

VCS tool 141

VDOS 143
capturing output 166

Version Control 132, 137, 169
Adding a New Command Line Pro-
vider 179
Adding CodeWright Project Files
to an SCC Provider Project 173
Adding Version Control Files to a
CodeWright Project 172
Associating ~ Version ~ Control
Projects with CodeWright Projects
171
Configuring SCC Provider Support
183
Current Project Tree List 174
Customizing Version Control Com-
mands 179
Default Command Line Version
Control Commands 180
File Icons 174
Integration Methods 178
Location of the SCC Provider DLLs
184
Maintenance Dialog 170
Making Your Own Popup Menu
176
Menu 169
Modifying the Standard Popup
Menu 175
Source Code Control Provider 183
Tools Menu option 25
User-defined Popup Menu 175
Using Command Line Version
Control Provider 178
Using Multiple Configuration/
Project Files 176

version control utilities 137

vi command set 295

View Setups 24
Defaults 47
Synchronize text background 46

Index

Visibles tab 46
View Setups Dialog 47
Colors tab 46
Font tab 46
General tab 46
visibles
making visible 46
Visual Basic Synchronization 195
Visual Studio
Bi-directional synchronization 199
Synchronization 187
Visual Studio Workspaces
creating CodeWright projects from
129
drag and drop to create project
space 129, 300
open or load to create project space
129

W

Web browser interface
turn on 101
Web Page 8
Editing 101
turn on editing 101
turn on viewing 101
Viewing 100
WYSIWYG editor 100
Where is it Defined? 333
Wild Cards
File Filters 19
Wildcard Patterns 19
Win32 systems 344
Window Menu 26
Windows
Attributes 45
Creating with a Mouse 300
Difference between windows and
documents 26
Docking and Moving 278
Docking Manually 278
move forward and back 31
split into multiple panes 46
Windows and Documents
One Document Per window 43
Windows API 112

Index

Windows Explorer 300
Wizards
configuration 17
Word Selections 298
Word Wrap 22
Working Directory 133, 134, 408, 425
Workspace
creating 156
defined 122
Workspaces 121, 122
Closing Windows 158
creating 156
Deleting Buffers 158
loading 158
saving 156
saving automatically 157
updating current 158
WYSIWYG 101
WYSIWYG HTML
turn on 101
WYSIWYG HTML editing 100

X

XML split window viewer 103
XSUBPP.PL 343

453

	Publication History
	Trademarks
	Contact Information
	Table of Contents
	Chapter Outline
	Chapter 1: Introduction
	Chapter 2: Run CodeWright for the First Time
	Chapter 3: Build Your First Project
	Chapter 4: Command Key, Libraries, & Environment
	Chapter 5: View Setups and Language Support
	Chapter 6: Editing & Printing
	Chapter 7: Projects, Project Spaces, and Workspaces
	Chapter 8: Set up a Compiler
	Chapter 9: Version Control
	Chapter 10: Synchronization
	Chapter 11: Search and Replace and Navigational Tools
	Chapter 12: Checking and Reformatting Files
	Chapter 13: Custom Interface
	Chapter 14: File Loading, Backup and FTP
	Chapter 15: Large Files
	Chapter 16:Extend CodeWright
	Chapter 17: UNIX
	Chapter 18:Configuration Files & Command Line Parameters
	Appendix A: TagWnn Utility

	1- Introduction
	What's In This Chapter
	What Makes CodeWright Different
	Additional Product Support
	Web Page
	Internet Mail
	Fax
	Phone Support

	Key Editor Features

	2- Run CodeWright for the First Time
	Configuration Wizards
	A First Look
	The Menu Bar
	File Menu
	Edit Menu
	Search Menu
	Project Menu
	Text Menu
	Document Menu
	Customize Menu
	Tools Menu
	Window Menu
	The Difference between Windows and Documents
	Details of the Window Menu

	Help Menu

	Output and Project Windows
	Output Window
	The Project Window
	More on the Open Tab

	The Standard Toolbar

	3- Build Your First Project
	Making CodeWright Projects and Project Spaces
	Creating a Project Space
	Setting Project Defaults
	Creating a Project
	Adding Files to a Project
	Project|Properties
	Project Tools

	Project Window File View

	4- Command Key, Libraries, & Environment
	API Command Dialog/Prompt
	API Command Key
	Command Completion
	API Command Completion Example

	Customize|Libraries: Loading CodeWright Add-Ons
	General Environment Settings

	5- View Setups and Language Support
	View Setups: Colors, Window Attributes, Scrollbars, Fonts, Etc.
	CodeWright View Setups
	Default View Setup
	Output Window View Setup
	Using View Setups

	CodeWright Language Support
	Language Support Lexers and DLL’s
	Language DLLs
	Customize|Libraries

	ChromaCoding Lexers
	Creating a Lexer

	Configuring Options in the Language Dialog
	File Type List
	Options Tab
	Tabs/Indenting Tab
	Templates Tab
	Coloring Tab
	CodeSense Tab
	Format Tab
	Comments Tab

	Adding a New File Type to the Language Dialog
	Aliasing
	Creating a Language Support DLL

	6- Editing & Printing
	Templates and Brace Expansion
	Templates
	Language Specific Templates
	Creating and Modifying Language Specific Templates
	Non-Language-Specific Templates, Function and File Headers, and Macros in Templates
	Template Macros

	CodeFolio Snippets
	Using an Existing Code Snippet
	Adding a Code Snippet
	Creating a Snippet from the Current Document or Clipboard
	Deleting or Renaming a Snippet
	Editing a Snippet
	Adding or Removing Snippets Directories

	Brace Matching and Brace Expansion
	Brace Function: Finding Unmatched Braces
	Brace Highlighting
	Brace Locating
	BraceFindEx
	Brace Expansion
	Align Beginning and End of Block

	Indenting
	Setting Spaces and Tabs
	Seek Indentation and Smart Indenting
	Block Alignment

	Name Completion
	CodeSense
	Where CodeSense Gets its Information
	Library and Project Databases
	CodeSense for Files that are Open in CodeWright

	CodeSense Global Configuration Dialog
	Create CodeSense Library Database
	Edit CodeSense Library Database Location
	Delete CodeSense Library Database
	Parser Priority/Resource Use

	CodeSense Databases
	Database Files
	Database Corruption

	CodeSense: Main Features
	Name Completion
	Auto-list Members
	Auto-type Info
	Auto-Parameter Info

	Extending CodeSense Functionality
	ANSI and Unicode CodeSense Translations
	Disable CodeSense for Sections of Code Only
	Project Matches in Non-Project Files
	Consolidate Matching Lookup Definitions

	Symbol Lookups
	Troubleshooting

	Comments and Comment Boxes
	HTML Editing
	HTML Language Support
	HTML Popup Menu
	WYSIWYG Editor/Viewer
	HTML Viewing - Web Browser Interface
	Viewing and Editing Internet Files: Installation Instructions
	Using HTML WYSIWYG

	XML Split Window Viewer
	COBOL Editing
	COBOL Lexer and DLL
	COBOL Extensions
	Resequence Line Numbers
	Line Number Handling when Lines are Copied or Moved
	Toggle COBOL Comment
	Automatic Time/Date Stamp on Modified Lines
	String Literals Automatically Continue on New Lines
	Validate Line Number Sequence
	Patch File Shows Changes in a File

	Hex Editing
	Insert vs. Overtype Mode
	Handy Hex-Editing Tips and Features

	Clipboard and Scrap Buffers
	Scrap Buffers
	Multiple Clipboard/Scrap Buffers
	Clipboard/Scrap Viewer

	API Assistant
	Using the API Assistant
	Using the Checkboxes

	API Assistant Example
	API Assistant Databases
	Modifying the Database
	Automation Tools

	Using Help in CodeWright
	Indexing and Accessing Help Files
	Indexing .HLP Help Files
	Accessing MSVC 6.0 Help Files
	Accessing Compiled Microsoft HTML (.CHM) Help Files
	Accessing MSVC 5.0 (.IVT) Help Files
	Accessing MSVC 4.0 (.MVB) Help Files

	Printing
	Print Configurations
	Paper Selection Override
	Color Printing
	Print Preview
	Multi-Copy Printing
	Printing Line Numbers
	Wrapping Long Lines in Printed Documents
	Print Headers and Footers

	7- Projects, Project Spaces, and Workspaces
	Definitions
	What is a Project?
	What is a Project Space?
	What is a Workspace?

	Creating a Project Space
	The Project Properties List and Project Settings
	Project Properties List
	Default Settings
	Working Directory

	Creating a Project and the Members Tab of Project Properties
	Creating a New Project
	Adding Files to a Project
	Adding Existing Projects to a Space
	Auto Detect File Type to Load or Create Projects and Project Spaces
	Reading External Makefiles and Visual Studio Workspaces
	Steps for Setting up New Makefile/Workspace Parsers
	Synchronize Makefile/Workspace with Project/Project Space

	Characteristics of the File View Tab

	Directories Tab of Project Properties
	Storing Configuration Options with a Project
	Reading Configuration Settings from Other Files

	Tools Tab of Project Properties
	Tool Categories
	Build Tools
	Compile Tools
	Custom Tools
	VCS Tools

	Setting up Project Tools
	Command Options on the Tools Tab
	Filename Component Macros
	Response File

	Symbolic Macros

	Errors tab of Project Properties
	Custom Error Parsers
	Navigating Build and Rebuild Command Output
	Traversing the Output

	Filters tab of Project Properties
	Project Setup Checklist
	Using Project Spaces
	Selecting or Changing Projects
	Selecting or Changing Project Spaces

	Using Projects
	Loading Files for Editing
	Creating, Selecting and Saving Workspaces
	Creating a New Workspace
	Automatic Saving
	Loading an Existing Workspace

	Searching Project Space and Project Files
	Selecting files for Check-in or Check-out

	Project Files
	Configuration and State Hierarchy

	8- Set up a Compiler
	Categories of Command Line Tools
	Compiler Definition
	Response File Contents
	Compiler Command Line
	Build Command Line
	Other Tool Categories
	Special Considerations

	Modifying the Command Line Environment
	Displaying Output in CodeWright (FTEE and VDOS)
	FTEE
	Use VDOS

	Version Control Commands

	9- Version Control
	Using Version Control in CodeWright
	Version Control Menu
	Source Code Revision Control - Maintenance
	Version Control and CodeWright Projects
	Associate Version Control Projects with CodeWright Projects
	Add Version Control Project Files to a CodeWright Project
	Add CodeWright Project Files to an SCC Provider Project
	Current Project Tree List

	VCS and the User-Defined Popup Menu
	Modifying the Standard Popup: A Simple Example
	Making Your Own Version Control Popup Menu

	Using Multiple Configuration/Project Files (DOS VCS Utilities Only)

	Version Control Integration Configuration
	Using a Command Line Version Control Provider
	Adding a New Command Line Provider to Version Control Setup Dialog
	Customizing Version Control Commands
	Default Command-Line Version Control Commands Described
	Additional Tips

	CodeWright SCC Integration with Version Control Systems
	Version Control for Use with a Source Code Provider DLL
	Location of the SCC Provider DLLs

	10- Synchronization
	Initial CodeWright Setup
	CodeWright's Synchronization Wizard, and Loading CWSync.DLL

	Synchronization Setup From Within the Development Environments
	MSVC++ File Synchronization
	VCSync Setup
	A First View

	Delphi File Synchronization
	DPRSync Setup
	A First View
	Known Problems

	Borland C++ File Synchronization
	BCWSync Setup
	A First View

	Borland C++ Builder File Synchronization
	BCBSync Setup
	A First View

	Visual Basic File Synchronization
	VBSync Setup
	A First View

	TI Code Composer Studio File Synchronization
	TICCSync Setup
	A First View

	Bi-directional Synchronization
	Sync Configuration Options
	Accessing Menu Items via Synchronization

	11- Search and Replace and Navigational Tools
	Search and Replace and Regular Expressions
	Search and Replace Dialog
	Search and Replacement Edit Boxes
	Save Settings

	Multiple Sources Search Dialog
	Search and Replacement Edit Boxes
	Current Directory
	Multiple Source Options
	File Pattern
	Search List
	Search Subdirectories
	Edit Modified Files
	Threaded
	Send Listing to Output Window

	Edit Search List
	Search Pattern
	Patterns List
	Drive and Directory Lists
	Include Directory
	List Editing Buttons

	Default Button
	Default Options
	Search Direction
	Replacement
	Prompt
	Search Options
	Matches
	Start
	Example: Multi-Source Search

	Fast Find on Standard Right-Click Popup
	Incremental Searching
	Quick Search
	Toolbar Search
	Regular Expressions
	Special Characters
	Escape Sequences
	Matching a Character
	Character Classes
	Escaping Characters in a Class
	Iteration Qualifiers
	Examples
	Regular Expressions: Positioning at Beginning/End of Line
	Alternation and Grouping
	Reference Groups and Replacement Strings
	Placing the Cursor
	Examples

	Searching for Spaces, Tabs and other Blank Characters
	Searching for Spaces or Tabs
	Searching for New lines

	Searching for control characters (binary/hex data)
	Searching for New lines: Issues

	Selective Display
	Selective Display Options:
	Pre-processed View
	Viewing/Hiding Lines

	Browse, Tags, Symbols and Objects
	Which Navigational Tool Should I Use?
	Browser
	Tags
	Outline Symbols
	Objects Window

	Browser Support
	Selecting a Database
	Traversing the Tree
	Label Bitmaps
	Browser Toolbar

	Tags Support
	Tags Setup
	Using the Tags Database

	Outline Symbols: Overview
	What are Symbols?
	Symbol Scanning
	Outline Window
	Outline Scanning
	Symbol Parsers
	Symbols Database
	Popup Symbols Menu

	Objects Window
	Display an Object Hierarchy
	Using the Objects Window
	Objects Window and CodeSense
	Objects Window Popup Menu

	Symbols vs. Objects vs. Tags
	Pros and Cons of Tags, Browsers, and Symbols

	Bookmarks
	Global and Local Bookmarks
	Graphical Bookmark Images
	Setting and Removing Bookmarks
	Bookmarks Dialog
	Bookmarks Window
	Bookmarks Window: Global Bookmarks
	Bookmarks Window: Local Bookmarks
	Bookmarks Window: "Other Documents" Node
	Auto-Expand/Collapse

	Button Links
	How it Works
	What you See
	Defining Buttons

	12- Checking and Reformatting Files
	Differencing
	Interleaved Differencing
	Difference Analysis Dialog for Interleaved Differencing
	Interleaved Document

	Side-by-Side Differencing
	Difference Analysis Dialog for Side-by-Side Differencing
	Side-By-Side Difference Window

	Using Difference Utilities

	Merging
	Using the Merge Files Dialog
	Merge Output
	Removing Changes with Merge

	Format Source
	Setting up Your Formatting Criteria
	Using the Format Feature

	Spell Check
	Check Spelling
	General Tab of Check Spelling
	Word Format Tab of Check Spelling
	Advanced Tab of Check Spelling
	Documents Tab of Check Spelling

	Dictionaries Dialog
	Dictionaries

	13- Custom Interface
	Dockable Toolbars and Windows
	Toolbars
	Auto-hide Toolbars
	What Does Dockable Mean?
	Toolbar Docking Precedence
	Enabling and Disabling Toolbars
	Docking and Moving Toolbars and Windows
	Docking a Toolbar or Window Manually
	Undocking a Toolbar or Window

	Customizing Toolbars and Buttons
	Adding New Toolbars
	Adding and Changing Toolbar Buttons
	Binding a Function to a Button

	Combo Box History Lists
	Editing Combo box History Lists

	Customizing Menus
	Menu Editor
	Menus
	Menu Items and Submenus
	Changing the Functionality of a Menu Item
	Adding a Menu Item

	Customizing External Operations within CodeWright
	User-Definable Popup Menus
	Editing or Creating a Popup Menu
	Popup Menu Semantics
	Dynamic Menu Generation

	Supporting Popup Menu Functions

	Using Keymaps
	CUA Key Commands
	BRIEF Key Commands

	Mouse Commands
	Mouse Scrolling Speed
	Inclusive or Exclusive Selection
	Closed Selections
	Column Marking
	Line Selections
	Word Selections
	Status Line Actions
	Text Drag and Drop
	Mouse Copy and Move
	Creating Windows with a Mouse
	Drag-and-Drop File Loading
	Expand / Collapse Selective Display

	Reassigning Keys and Mouse Actions
	Keymap-Specific Assignments
	Customizing with Keybindings
	Keystroke Recording/Playback
	Recording a Keystroke Macro
	Saving a Macro
	Binding Keystrokes to Functions or Macros

	14- File Loading, Backup and FTP
	File Loading, Reloading and Validation
	File Backups and Auto-save
	Global Backup and Auto-Save Settings
	Backup Settings for Specific File Types
	Backup Settings for Individual Files
	Formatting the Backup Specification
	Format Controls
	Transformation Patterns

	Making Files Read-only
	File Types
	Individual Files
	Individual File upon Opening

	FTP: File Transfer in CodeWright

	15- Large Files
	Swap Blocks
	How to Change the Number of Swap Blocks
	Block Size
	Consider Your Resources

	Backup Files
	Scroll Bars
	Pre-loading Files
	Turn off ChromaCoding
	Saving Large Files
	Default File Saving Method
	File Rewrite Save Method (for Files over 1MB)

	16- Extend CodeWright
	CodeWright API
	Using the API from the Command Key
	Displaying Return Values With the Command Key
	Run Multiple Commands
	Examples of Command Key Usage
	Command Key Expression Evaluation

	Macros, Macro Languages and DLL’s
	Macros and Macro Languages
	DLL Extensions

	Where is it Defined?
	Perl
	Getting Started with Perl
	Creating and Editing Perl Scripts
	Supplied Perl Macros
	Perl Window
	Popup Menu and Options
	Online Help

	Loading and Running Scripts
	Running a Script Directly
	Loading a Perl macro
	Accessing CodeWright Functions from Perl Scripts
	Importing Names into Perl’s Namespace
	Unloading a Perl macro

	Using Perl's Debug Mode
	Accessing Perl functions
	Avoiding Ambiguity

	Special API Functions for Perl
	Files used by Perl for CodeWright
	Other Perl Resources

	AppBasic
	Getting Started
	Two Editors
	Special Keybindings
	Two Toolbars
	Popup Menu
	Online Help
	UserDialog Editor
	Object Browser

	Creating a Macro
	Creating a Handler
	Object and Proc Drop-down Lists
	Private Sub Main
	Tips on Creating Macros
	Creating a Modal User Dialog
	Running the Macro
	Creating an EventHandler in AppBasic
	Sample EHTEST.CWB

	Debugging Your AppBasic Macro
	Break Points
	Evaluate Expression and Add Watch
	Object Browser

	Load Macros Dialog
	AppBasic Sample Macros
	AppBasic-related API Commands
	AppBasic Window Configuration
	Example Configuration File Settings

	Exported Functions in CWBASIC.DLL

	API (C-like) Macros
	API Macros Defined
	Getting Started with API Macros
	Creating a Macro
	Editing a Macro
	Special Editing Keystrokes
	Editing API Macros in a CodeWright Window
	Running a Macro

	Language Definition
	Comments
	Identifier Naming Rules
	Data Types for Variables
	Declaring Variables and Arrays
	Literal Values
	Array Initializers
	Automatic Type Conversion
	Expressions
	Statements and Statement Blocks
	Program Flow of Control Structures
	Run-time Error Handling
	CodeWright Event Handling
	Differences between API Macros and C
	String functions

	Making and Modifying CodeWright DLLs
	Core Services
	CWSTART DLL
	CWDIALOG DLL
	CWHELP DLL

	Keyboard Command Sets
	Supplemental Language Support
	Auxiliary Services
	Sample DLL
	Dissecting a CodeWright DLL
	The _init Function
	Exporting Functions

	Making Changes and Additions
	Changing Existing Functions
	Adding Your Own Functions

	Creating New Keymap Command Sets
	Keymap _init Function
	Keymap Function
	Flag Initialization
	Basic Assignments
	Keymap-Specific Assignments
	Menu Accelerators

	Recompiling a DLL
	Using and Modifying the Makefiles
	Adding Files

	Compile and Link Options
	Link Libraries
	Microsoft Link
	Borland Link

	Using Your Own DLL
	Installing Your DLL
	Load Functions at Startup
	Load DLL as Needed

	17- UNIX
	End-of-Line (EOL) Characters
	Make UNIX EOL Characters the Default
	Enable Auto-sense File Type Option
	Change EOL Characters in the Source File
	Macro for Automating UNIX EOL Conversion

	Compiling UNIX Programs from CodeWright
	Preserving Filename Case and File Securities between UNIX and Windows Environments

	18- Configuration Files & Command Line Parameters
	Configuration and State
	Location of the Configuration File
	Introduction to Configuration and State
	Configuration File
	State File
	Other Files Containing Configuration Data
	Example File
	Example Interpretation

	Processing At Startup
	Order of Processing
	Descriptions of Sections
	User-Defined Sections

	Relating Checkboxes to Functions
	State File
	Location of the State File
	Contents of the State File

	Command Line Parameters
	Filenames
	Parameters
	-C<configLoc>
	-C-
	-G <lineNumber>
	CW32 -g215
	CW32 -heapalloc
	CW32 -k mycua
	-L <library>
	CW32 -N
	-P <section>
	CW32 -s h:\home\ericj
	CW32 -s-

	Command Files

	A- TagsWNN Utility
	TagsWnn Command Line Options

	Index

