
MA199–024–00–00
Doc. ver.: 1.1

R8C v1.0

C Compiler,

Assembler, Linker

User's Guide

A publication of

Altium BV

Documentation Department

Copyright 2002-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION AND CONFIGURATION 1-1

1.1 Introduction 1-3.

1.2 Software Installation 1-3.

1.2.1 Installation for Windows 1-3.

1.2.2 Installation for Linux 1-4.

1.2.3 Installation for UNIX Hosts 1-6.

1.3 Software Configuration 1-7.

1.3.1 Configuring the Embedded Development Environment 1-7

1.3.2 Configuring the Command Line Environment 1-9.

1.4 Licensing TASKING Products 1-12.

1.4.1 Obtaining License Information 1-12.

1.4.2 Installing Node-Locked Licenses 1-13.

1.4.3 Installing Floating Licenses 1-14.

1.4.4 Starting the License Daemon 1-16.

1.4.5 Setting Up the License Daemon to Run Automatically 1-17.

1.4.6 Modifying the License File Location 1-18.

1.4.7 How to Determine the Hostid 1-19.

1.4.8 How to Determine the Hostname 1-19.

GETTING STARTED 2-1

2.1 Introduction 2-3.

2.2 Working With Projects in EDE 2-7.

2.3 Start EDE 2-8.

2.4 Using the Sample Projects 2-9.

2.5 Create a New Project Space with a Project 2-10.

2.6 Set Options for the Tools in the Toolchain 2-14.

2.7 Build your Application 2-16.

2.8 How to Build Your Application on the Command Line 2-17

2.9 Debug getstart.elf 2-18.

Table of ContentsVI
C
O
N
T
E
N
T
S

C LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Data Types 3-4.

3.2.1 Fundamental Data Types 3-4.

3.2.2 Bit Data Type 3-5.

3.3 Memory Qualifiers 3-6.

3.3.1 Memory Type Qualifiers 3-6.

3.3.2 Define Special Function Registers: __sfr 3-8.

3.3.3 Declare a Data Object at an Absolute Address: __at() 3-10.

3.4 Using Assembly in the C Source: __asm() 3-11.

3.5 Controlling the Compiler: Pragmas 3-18.

3.6 Predefined Macros 3-20.

3.7 Initialized Variables 3-20.

3.8 Strings 3-21.

3.9 Switch Statement 3-22.

3.10 Functions 3-23.

3.10.1 Parameter Passing 3-23.

3.10.2 Function Return Types 3-24.

3.10.3 Inlining Functions: inline 3-24.

3.10.4 Intrinsic Functions 3-27.

3.10.5 Interrupt Functions 3-28.

3.10.5.1 Defining an Interrupt Service Routine: __interrupt() 3-29. .

3.10.5.2 Register Bank Switching: __bankswitch 3-30.

3.10.5.3 Interrupt Frame: __frame() 3-30.

3.11 Section Naming 3-32.

3.12 Libraries 3-34.

3.12.1 Overview of Libraries 3-34.

3.12.2 Printf and Scanf Formatting Routines 3-34.

3.12.3 Rebuilding Libraries 3-35.

ASSEMBLY LANGUAGE 4-1

4.1 Introduction 4-3.

4.2 Assembly Syntax 4-3.

4.3 Assembler Significant Characters 4-4.

Table of Contents VII

• • • • • • • •

4.4 Operands 4-5.

4.4.1 Operands and Addressing Modes 4-5.

4.5 Symbol Names 4-8.

4.6 Expressions 4-8.

4.6.1 Numeric Constants 4-10.

4.6.2 Strings 4-10.

4.6.3 Expression Operators 4-11.

4.7 Built-in Assembly Functions 4-13.

4.8 Directives and Controls 4-15.

4.8.1 Overview of Assembler Directives 4-16.

4.8.2 Overview of Assembler Controls 4-18.

4.9 Macro Operations 4-19.

4.9.1 Defining a Macro 4-19.

4.9.2 Calling a Macro 4-20.

4.9.3 Using Operators for Dummy Arguments 4-22.

4.9.4 Using the DUP, DUPA, DUPC, DUPF Directives

as Macros 4-26.

4.9.5 Conditional Assembly: IF, ELIF and ELSE Directives 4-26. . .

USING THE COMPILER 5-1

5.1 Introduction 5-3.

5.2 Compilation Process 5-4.

5.3 Compiler Optimizations 5-5.

5.3.1 Optimize for Size or Speed 5-8.

5.4 Calling the Compiler 5-9.

5.5 Specifying a Target Processor 5-13.

5.6 How the Compiler Searches Include Files 5-14.

5.7 Compiling for Debugging 5-15.

5.8 C Code Checking: MISRA C 5-16.

5.9 C Compiler Error Messages 5-18.

Table of ContentsVIII
C
O
N
T
E
N
T
S

USING THE ASSEMBLER 6-1

6.1 Introduction 6-3.

6.2 Assembly Process 6-3.

6.3 Assembler Optimizations 6-4.

6.4 Calling the Assembler 6-5.

6.5 Specifying a Target Processor 6-8.

6.6 How the Assembler Searches Include Files 6-9.

6.7 Generating a List File 6-9.

6.8 Assembler Error Messages 6-10.

USING THE LINKER 7-1

7.1 Introduction 7-3.

7.2 Linking Process 7-4.

7.2.1 Phase 1: Linking 7-6.

7.2.2 Phase 2: Locating 7-7.

7.2.3 Linker Optimizations 7-9.

7.3 Calling the Linker 7-11.

7.4 Linking with Libraries 7-14.

7.4.1 Specifying Libraries to the Linker 7-14.

7.4.2 How the Linker Searches Libraries 7-16.

7.4.3 How the Linker Extracts Objects from Libraries 7-17.

7.5 Incremental Linking 7-18.

7.6 Controlling the Linker with a Script 7-18.

7.6.1 Purpose of the Linker Script Language 7-19.

7.6.2 EDE and LSL 7-19.

7.6.3 Structure of a Linker Script File 7-20.

7.6.4 The Architecture Definition 7-23.

7.6.5 The Derivative Definition 7-25.

7.6.6 The Memory Definition 7-27.

7.6.7 The Section Layout Definition: Locating Sections 7-28.

7.6.8 The Processor Definition: Using Multi-Processor

Systems 7-32.

7.7 Linker Labels 7-33.

7.8 Generating a Map File 7-35.

Table of Contents IX

• • • • • • • •

7.9 Linker Error Messages 7-36.

USING THE UTILITIES 8-1

8.1 Introduction 8-3.

8.2 Control Program 8-4.

8.2.1 Calling the Control Program 8-4.

8.3 Make Utility 8-8.

8.3.1 Calling the Make Utility 8-10.

8.3.2 Writing a Makefile 8-11.

8.4 Archiver 8-22.

8.4.1 Calling the Archiver 8-22.

8.4.2 Examples 8-24.

FLEXIBLE LICENSE MANAGER (FLEXlm) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-7.

3 License Administration Tools A-8.

3.1 lmcksum A-10.

3.2 lmdiag (Windows only) A-11.

3.3 lmdown A-12.

3.4 lmgrd A-13.

3.5 lmhostid A-15.

3.6 lmremove A-16.

3.7 lmreread A-17.

3.8 lmstat A-18.

3.9 lmswitchr (Windows only) A-20.

3.10 lmver A-21.

3.11 License Administration Tools for Windows A-22.

3.11.1 LMTOOLS for Windows A-22.

3.11.2 FLEXlm License Manager for Windows A-23.

Table of ContentsX
C
O
N
T
E
N
T
S

4 The Daemon Log File A-25.

4.1 Informational Messages A-26.

4.2 Configuration Problem Messages A-29.

4.3 Daemon Software Error Messages A-31.

5 FLEXlm License Errors A-33.

6 Frequently Asked Questions (FAQs) A-37.

6.1 License File Questions A-37.

6.2 FLEXlm Version A-37.

6.3 Windows Questions A-38.

6.4 TASKING Questions A-39.

6.5 Using FLEXlm for Floating Licenses A-41.

INDEX

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

Windows Users

The documentation explains and describes how to use the R8C toolchain

to program an R8C MCU.

You can use the tools either with the graphical Embedded Development

Environment (EDE) or from the command line in a command prompt

window.

Structure

The toolchain documentation consists of a User's Guide (this manual)

which includes a Getting Started section and a separate Reference Guide.

First you need to install the software and make it run under the licence

manager FLEXlm. This is described in Chapter 1, Software Installation and
Configuration

After installation you are ready to follow the Getting Started in Chapter 2.

Next, move on with the other chapters which explain how to use the

compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Guide

to lookup specific options and details to make full use of the R8C

toolchain.

User’s GuideXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: Software Installation and Configuration

Guides you through the installation of the software. Describes the most

important settings, paths and filenames that you must specify to get the

package up and running.

Chapter 2: Getting Started

Overview of the toolchain and its individual elements. Describes the

relation between the toolchain and specific features of the R8C. Explains

step-by-step how to write, compile, assemble and debug your application.

Teaches how you can use projects to organize your files.

Chapter 3: C Language

The TASKING R8C C compiler is fully compatible with ISO-C. This chapter

describes the specific R8C features of the C language, including language

extensions that are not standard in ISO-C. For example, pragmas are a

way to control the compiler from within the C source.

Chapter 4: Assembly Language

Describes the specific features of the assembly language as well as

'directives', which are pseudo instructions that are interpreted by the

assembler.

Chapter 5: Using the Compiler

Describes how you can use the compiler. An extensive overview of all

options is included in the Reference Guide.

Chapter 6: Using the Assembler

Describes how you can use the assembler. An extensive overview of all

options is included in the Reference Guide.

Chapter 7: Using the Linker

Describes how you can use the linker. An extensive overview of all

options is included in the Reference Guide.

Chapter 8: Using the Utilities

Describes several utilities and how you can use them to facilitate various

tasks. The following utilities are included: control program, make utility

and archiver.

Manual Purpose and Structure XIII

• • • • • • • •

Appendix A: Flexible Licence Manager (FLEXlm)

TASKING products are licensed through FLEXlm. This chapter provides

information about this license system and how to solve possible problems.

User’s GuideXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

cr8c [-?]

Both cr8c and cr8c –? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,

separating each item with a comma.

Example

cr8c [option]... filename

You can read this line as follows: enter the command cr8c with or without

an option, follow this by zero or more options and specify a filename. The

following input lines are all valid:

cr8c test.c
cr8c –g test.c
cr8c –g –E test.c

Not valid is:

cr8c –g

According to the syntax description, you have to specify a filename.

Manual Purpose and Structure XV

• • • • • • • •

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making

serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as

EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

User’s GuideXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

C Standards

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

More information on the standards can be found at

http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),

Programming languages - C [TASKING, TK0071-14]

MISRA C

• Guidelines for the Use of the C Language in Vehicle Based Software

[MISRA]

See also http://www.misra.org.uk

TASKING Tools

• R8C C Compiler, Assembler, Linker Reference Guide

[TASKING, MB199-024-00-00]

• R8C CrossView Pro Debugger User's Guide

[TASKING, MA199-043-00-00]

R8C

• R8C/10 Group Hardware Manual [Renesas]

• R8C/Tiny Series Software Manual [Renesas]

1

SOFTWARE
INSTALLATION AND
CONFIGURATION

C
H

A
P

T
E

R

User’s Guide1–2
IN
S
TA

L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation and Configuration 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter guides you through the procedures to install the software on

a Windows system or on a Linux or UNIX host.

The software for Windows has two faces: a graphical interface (Embedded

Development Environment) and a command line interface. The Linux and

UNIX software has only a command line interface.

After the installation, it is explained how to configure the software and

how to install the license information that is needed to actually use the

software.

1.2 SOFTWARE INSTALLATION

1.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for

your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the Start-up kit envelope, delivered

with the product.

7. License the software product as explained in section 1.4, Licensing
TASKING Products.

User’s Guide1–4
IN
S
TA

L
L
A
T
IO
N

1.2.2 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian

package and as a gzipped tar file. For each product the following files are

present:

SWproduct –version –RPMrelease .i386.rpm
swproduct _version –release _i386.deb
SWproduct –version .tar.gz

These three files contain exactly the same information, so you only have

to install one of them. When your Linux distribution supports RPM

packages, you can install the .rpm file. For a Debian based distribution,

you can use the .deb file. Otherwise, you can install the product from the

.tar.gz file.

RPM Installation

1. In most situations you have to be "root" to install RPM packages, so either

login as "root", or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

rpm –U SW*.rpm

This will install or upgrade all products in the default installation directory

/usr/local . Every RPM package will create a single directory in the

installation directory.

The RPM packages are 'relocatable', so it is possible to select a different

installation directory with the --prefix option. For instance when you

want to install the products in /opt , use the following command:

rpm –U ––prefix /opt SW*.rpm

For Red Hat 6.0 users: The --prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to

RPM verion 3.0.3 or higher, or use the .tar.gz file installation described

in the next section if you want to install in a non-standard directory.

Software Installation and Configuration 1–5

• • • • • • • •

Debian Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

dpkg –i sw*.deb

This will install or upgrade all products in a subdirectory of the default

installation directory /usr/local .

Tar.gz Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install the products from the .tar.gz files in the directory

/usr/local , issue the following command for each product:

tar xzf SW product –version .tar.gz –C /usr/local

Every .tar.gz file creates a single directory in the directory where it is

extracted.

User’s Guide1–6
IN
S
TA

L
L
A
T
IO
N

1.2.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.

By default it will be installed in /usr/local .

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a

directory, for example /cdrom .

Be sure to use an ISO 9660 file system with Rock Ridge extensions

enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local .

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it otherwise the product will not work on

those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Software Installation and Configuration 1–7

• • • • • • • •

Answer y (yes) to continue with the installation. The last message will be:

Installation of SW xxxxxx xxxx . xxxx completed.

5. If you purchased a protected TASKING product, license the software

product as explained in section 1.4, Licensing TASKING Products.

1.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the

Embedded Development Environment and the command line environment

for Windows, Linux and UNIX.

1.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation, the Embedded Development Environment is

automatically configured with default search paths to find the executables,

include files and libraries. In most cases you can use these settings. To

change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded

Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the

directory where the executables are located. The default directory is

$(PRODDIR)\bin .

• In the Include Files Path field, add the pathnames of the

directories where the compiler and assembler should look for

include files. The default directory is $(PRODDIR)\include .

Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and

assembler look for include files. To change the search order, simply

change the order of pathnames.

User’s Guide1–8
IN
S
TA

L
L
A
T
IO
N

• In the Library Files Path field, add the pathnames of the

directories where the linker should look for library files. The default

directory is $(PRODDIR)\lib . Separate pathnames with a

semicolon (;).

The first path in the list is the first path where the linker looks for

library files. To change the search order, simply change the order of

pathnames.

Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove

them again and change their order.

Software Installation and Configuration 1–9

• • • • • • • •

1.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either

using a Windows command prompt or using Linux or UNIX), you can set

environment variables.

You can set the following variables:

Environment
Variable

Description

PATH With this variable you specify the directory in which
the executables reside (default: c:\cr8c\bin).
This allows you to call the executables when you
are not in the bin directory.

Usually your system already uses the PATH variable
for other purposes. To keep these settings, you
need to add (rather than replace) the path. Use a
semicolon (;) to separate pathnames.

CR8CINC With this variable you specify one or more additional
directories in which the C compiler cr8c looks for
include files. The compiler first looks in these
directories, then always looks in the default
include directory relative to the installation
directory.

ASR8CINC With this variable you specify one or more additional
directories in which the assembler asr8c looks for
include files. The assembler first looks in these
directories, then always looks in the default
include directory relative to the installation
directory.

CCR8CBIN With this variable you specify the directory in which
the control program ccr8c looks for the executable
tools. The path you specify here should match the
path that you specified for the PATH variable.

CCR8COPT With this variable you specify options and/or
arguments to each invocation of the control program
ccr8c . The control program processes these
arguments before the command line arguments.

LIBR8C With this variable you specify one or more
alternative directories in which the linker lr8c looks
for library files for a specific core. The linker first
looks in these directories, then always looks in the
default lib directory.

User’s Guide1–10
IN
S
TA

L
L
A
T
IO
N

DescriptionEnvironment
Variable

LM_LICENSE_FILE With this variable you specify the location of the
license data file. You only need to specify this
variable if your host uses the FLEXlm licence
manager.

TMPDIR With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

Table 1-1: Environment variables

The following examples show how to set an environment variable using

the PATH variable as an example.

Example for Windows 95/98

Add the following line to your autoexec.bat file:

set PATH=%path%;c:\cr8c\bin

You can also type this line in a Command Prompt window but you will

loose this setting after you close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Environment tab.

3. In the list of System Variables select Path.

4. In the Value field, add the path where the executables are located to the

existing path information. Separate pathnames with a semicolon (;). For

example: c:\cr8c\bin .

5. Click on the Set button, then click OK.

Software Installation and Configuration 1–11

• • • • • • • •

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the list of System variables select Path.

5. Click on the Edit button.

The Edit System Variable dialog appears.

6. In the Variable value field, add the path where the executables are

located to the existing path information. Separate pathnames with a

semicolon (;). For example: c:\cr8c\bin .

7. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C-shell):

setenv PATH $PATH:/usr/local/cr8c/bin

User’s Guide1–12
IN
S
TA

L
L
A
T
IO
N

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the licensing

information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License

Information Form" containing the license information for your software

product. If you have not received such a form follow the steps below to

obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the

computer where you will be using the product. See section 1.4.7, How to
Determine the Hostid.

2. When you order a TASKING product, provide the hostid to your local

TASKING sales representative. The License Information Form which

contains your license key information will be sent to you with the software

product.

Software Installation and Configuration 1–13

• • • • • • • •

Floating license

1. If you need a floating license, you must determine the hostid and

hostname of the computer where you want to use the license manager.

Also decide how many users will be using the product. See section 1.4.7,

How to Determine the Hostid and section 1.4.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and

number of users to your local TASKING sales representative. The License

Information Form which contains your license key information will be sent

to you with the software product.

1.4.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described in section 1.2.1, Installation for Windows.

Step 2

Create a file called "license.dat " in the c:\flexlm directory, using an

ASCII editor and insert the license information contained in the "License

Information Form" in this file. This file is called the "license file". If the

directory c:\flexlm does not exist, create the directory.

If you wish to install the license file in a different directory, see section

1.4.6, Modifying the License File Location.

If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 1.4.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

User’s Guide1–14
IN
S
TA

L
L
A
T
IO
N

1.4.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described earlier in this chapter on the computer or workstation where

you will use the software product.

As a result of this installation two additional files for FLEXlm will be

present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

Step 2

If you already have installed FLEXlm v6.1 or higher for Windows or v2.4

or higher for UNIX (for example as part of another product) you can skip

this step and continue with step 3. Otherwise, install SW000098, the

Flexible License Manager (FLEXlm), on the license server where you want

to use the license manager.

The installation of the license manager on Windows also sets up the

license daemon to run automatically whenever a license server reboots.

On UNIX you have to perform the steps as described in section 1.4.5,

Setting Up the License Daemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon (see step 1).

Step 4

Insert the license information contained in the "License Information Form"

in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in

directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX.

Software Installation and Configuration 1–15

• • • • • • • •

If you wish to install the license file in a different directory, see section

1.4.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII

editor. You can use the license file license.dat from the toolchain's

flexlm subdirectory as a template.

If you already have a license file, add the license information to the

existing license file. If the SERVER lines in the license file are the same as

the SERVER lines in the License Information Form, you do not need to add

this same information again. If the SERVER lines are not the same, you

must use another license file. See section 1.4.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software

product the location of the license file must be known. If it differs from

the default location (c:\flexlm\license.dat for Windows,

/usr/local/flexlm/licenses/license.dat for UNIX), then you

must set the environment variable LM_LICENSE_FILE. See section 1.4.6,

Modifying the License File Location, for more information.

Step 6

Now all license information is entered, the license manager must be

started (see section section 1.4.4). Or, if it is already running you must

notify the license manager that the license file has changed by entering the

command (located in the flexlm bin directory):

lmreread

On Windows you can also use the graphical FLEXlm Tools (lmtools): Start

lmtools (if you have used the defaults this can be done by selecting Start

-> Programs -> TASKING FLEXlm -> FLEXlm Tools), fill in the current

license file location if this field is empty, click on the Reread button and

then on OK. Another option is to reboot your PC.

The software product and license file are now properly installed.

Where to go from here?

The license manager (daemon) must always be up and running. Read

section 1.4.4 on how to start the daemon and read section 1.4.5 for

information how to set up the license daemon to run automatically.

User’s Guide1–16
IN
S
TA

L
L
A
T
IO
N

If the license manager is running, you can now start using the TASKING

product.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

1.4.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start

the daemon complete the following steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXlm installation directory (default

/usr/local/flexlm):

cd /usr/local/flexlm

3. For C shell users, start the license daemon by typing the following:

bin/lmgrd –2 –p –c licenses/license.dat >>& \
 /var/tmp/license.log &

Or, for Bourne shell users, start the license daemon by typing the

following:

bin/lmgrd –2 –p –c licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the

lmdown and lmremove license administration tools to the license

administrator. You omit these options if you want. Refer to the usage of

lmgrd in Appendix A, Flexible License Manager (FLEXlm), for more

information.

Software Installation and Configuration 1–17

• • • • • • • •

1.4.5 SETTING UP THE LICENSE DAEMON TO RUN

AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a

license server reboots, follow the instructions below that are appropriate

for your platform. steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Setup tab, enable the Start Server at Power-Up check box.

3. Close the program by clicking on the OK button. If a question appears,

answer Yes to save your settings.

UNIX

In performing any of the procedures below, keep in mind the following:

• Before you edit any system file, make a backup copy.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file /etc/rc.local . Replace

FLEXLMDIR by the FLEXlm installation directory (default

/usr/local/flexlm):

FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.lmgrd with the

following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

User’s Guide1–18
IN
S
TA

L
L
A
T
IO
N

3. Make it executable:

chmod u+x rc.lmgrd

4. Create an 'S' link in the /etc/rc3.d directory to this file and create 'K'

links in the other /etc/rc?.d directories:

ln /etc/init.d/rc.lmgrd /etc/rc3.d/S numrc.lmgrd
ln /etc/init.d/rc.lmgrd /etc/rc?.d/K numrc.lmgrd

num must be an appropriate sequence number. Refer to you operating

system documentation for more information.

1.4.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX also ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

Software Installation and Configuration 1–19

• • • • • • • •

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See Appendix A, Flexible License Manager (FLEXlm), for detailed

information.

1.4.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the

methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

SunOS/Solaris hostid 170a3472

Windows tkhostid

(or use lmhostid)

0800200055327

Table 1-2: Determine the hostid

If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXlm.

1.4.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

SunOS/Solaris hostname

Windows 95/98 Go to the Control Panel, open ”Network”, click on
”Identification”. Look for ”Computer name”.

Windows NT Go to the Control Panel, open ”Network”. In the
”Identification” tab look for ”Computer Name”.

Windows XP/2000 Go to the Control Panel, open ”System”. In the ”Computer
Name” tab look for ”Full computer name”.

Table 1-3: Determine the hostname

User’s Guide1–20
IN
S
TA

L
L
A
T
IO
N

2

GETTING STARTED
C

H
A

P
T

E
R

User’s Guide2–2
G

E
T

T
IN

G
 S

TA
R

T
E

D 2

C
H

A
P

T
E

R

Getting Started 2–3

• • • • • • • •

2.1 INTRODUCTION

With the TASKING R8C suite you can write, compile, assemble, link and

locate applications for the several R8C cores.

Embedded Development Environment

The TASKING Embedded Development Environment (EDE) is a Windows

application that facilitates working with the tools in the toolchain and also

offers project management and an integrated editor.

EDE has three main functions: Edit / Project management, Build and

Debug. The figure below shows how these main functionalities relate to

each other.

makefile

make
compiler

absolute file

debugger

assembler
linker

EDE

project management
editor

tool options

toolchain selection

EDIT

BUILD

DEBUG

Figure 2-1: EDE development flow

User’s Guide2–4
G

E
T

T
IN

G
 S

TA
R

T
E

D

In the Edit part you make all your changes:

- create a project space

- create and maintain one or more projects in a project space

- add, create and edit source files in a project

- set the options for each tool in the toolchain

- select another toolchain if you want to create an application for

another target than the R8C.

In the Build part you build your files:

- a makefile (created by the Edit part) is used to invoke the needed

toolchain components, resulting in an absolute object file.

In the Debug part you can debug your project:

- call the TASKING debugger �CrossView Pro" with the generated

absolute object file.

This Getting Started Chapter guides you step-by-step through the most

important features of EDE

The TASKING EDE is an embedded environment and differs from a native
program development.

A native program development environment is often used to develop

applications for systems where the host system and the target are the

same. Therefore, it is possible to run a compiled application directly from

the development environment.

In an embedded environment, however, a simulator or target hardware is

required to run an application. TASKING offers a number of simulators

and target hardware debuggers.

Toolchain overview

You can use all tools in the toolchain from the embedded development

environment (EDE) and from the command line in a Command Prompt

window or a UNIX shell.

The next illustration shows all components of the R8C toolchain with their

input and output files.

Getting Started 2–5

• • • • • • • •

assembly file

assembler

relocatable object file

CrossView Pro
debugger

C source file

Motorola S–record
object file

.s

Intel Hex
object file

.hex

ELF/DWARF 2
object file

.elf

C compiler

execution
environment

.c

cr8c

asr8c

relocatable object library.a

archiver
arr8c

xfwr8c

list file .lst

.src

.obj

assembly file .asm
(hand coded)

error messages .ers

linker

relocatable linker object file

lkr8c

.eln

linker map file .map

error messages .elk

linker script file
.lsl

relocatable linker object file .eln

error messages .err

Figure 2-2: R8C toolchain

User’s Guide2–6
G

E
T

T
IN

G
 S

TA
R

T
E

D

The following table lists the file types used by the R8C toolchain.

Extension Description

Source files

.c C source file, input for the C compiler

.asm Assembler source file, hand coded

.lsl Linker script file using the Linker Script Language

Generated source files

.src Assembler source file, generated by the C compiler, does not
contain macros

Object files

.obj ELF/DWARF relocatable object file, generated by the assembler

.a or .elb Archive with ELF/DWARF object files

.abs IEEE–695 absolute object file, generated by the locating part of
the linker

.eln Relocatable linker output file

.elf ELF/DWARF absolute object file, generated by the locating part
of the linker

.hex Absolute Intel Hex object file

.s Absolute Motorola S–record object file

List files

.lst Assembler list file

.map Linker map file

.mcr MISRA C report file

Error list files

.err Compiler error messages file

.ers Assembler error messages file

.elk Linker error messages file

Table 2-1: File extensions

Getting Started 2–7

• • • • • • • •

2.2 WORKING WITH PROJECTS IN EDE

EDE is a complete project environment in which you can create and

maintain project spaces and projects. EDE gives you direct access to the

tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one

project. Before you can create a project you have to setup a project space.

All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a

target! You can create, add or edit files in the project which together form

your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

When you build your project, EDE handles file dependencies and the

exact sequence of operations required to build your application. When

you push the Build button, EDE generates a makefile, including all

dependencies, and builds your application.

Overview of steps to create and build an application

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

User’s Guide2–8
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.3 START EDE

Start EDE

• Double-click on the EDE shortcut on your desktop.

- or -

Launch EDE via the program folder created by the installation program.

Select Start -> Programs -> TASKING toolchain -> EDE.

Figure 2-3: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,

one or more windows (default, a window to edit source files, a project

window and an output window) and a status bar.

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line ManualsProject Options

Figure 2-4: EDE desktop

Getting Started 2–9

• • • • • • • •

2.4 USING THE SAMPLE PROJECTS

When you start EDE for the first time (see section 2.3, Start EDE), EDE

opens with a ready defined project space that contains several sample

projects. Each project has its own subdirectory in the examples directory.

Each directory contains a file readme.txt with information about the

example. The default project is called demo.pjt and contains a CrossView

Pro debugger example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right-click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

The selected project opens.

3. Read the file readme.txt for more information about the selected sample

project.

Building a sample project

To build the currently active sample project:

• Click on the Execute 'Make' command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

User’s Guide2–10
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.5 CREATE A NEW PROJECT SPACE WITH A PROJECT

Creating a project space is in fact nothing more than creating a project

space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. In the the Filename field, enter a name for your project space (for

example MyProjects). Click the Browse button to select a directory first

and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in

the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Getting Started 2–11

• • • • • • • •

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project

space button (see previous figure).

The Add New Project to Project Space dialog appears.

User’s Guide2–12
G

E
T

T
IN

G
 S

TA
R

T
E

D

5. Give your project a name, for example getstart\getstart.pjt (a

directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart , which is also created. The Project Properties dialog box appears
with the project selected.

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

Getting Started 2–13

• • • • • • • •

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case

getstart.mak). This file contains the rules to build your application.

EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document

window:

#include <stdio.h>

void main(void)
{
 printf(”Hello World!\n”);
}

10. Click on the Save the changed file <Ctrl-S> button.

EDE saves the file.

User’s Guide2–14
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.6 SET OPTIONS FOR THE TOOLS IN THE TOOLCHAIN

The next step in the process of building your application is to select a

target processor and specify the options for the different parts of the

toolchain, such as the C compiler, assembler, linker and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Select group list select (for example) R8C10.

4. In the Select processor list select (for example) R5F21104FP.

5. Click OK to accept the new project settings.

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

Getting Started 2–15

• • • • • • • •

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With

the Default... button you can restore the default project options (for the

current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker, CrossView Pro,

Flasher) of the Project Options dialog in a similar way as described above

for the C compiler.

If available, the Options string field shows the command line options

that correspond to your graphical selections.

User’s Guide2–16
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.7 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results

in an absolute ELF/DWARF object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute 'Make' command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.elf .

The build process only builds files that are out-of-date. So, if you click

Make again in this example nothing is done, because all files are

up-to-date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have

been executed (and inspect generated messages) by the build process in

the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by

selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or

assemble.

2. Click on the Execute 'Compile' command button. The following button

is the execute Compile button which is located in the toolbar.

If you selected the file hello.c , this results in the compiled and assembled
file hello.obj .

Getting Started 2–17

• • • • • • • •

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project

from scratch (regardless of their date/time stamp), you can perform a

rebuild.

• Click on the Execute 'Rebuild' command button. The following

button is the execute Rebuild button which is located in the toolbar.

2.8 HOW TO BUILD YOUR APPLICATION ON THE

COMMAND LINE

If you are not using EDE, you can build your entire application on the

command line. The easiest way is to use the control program ccr8c.

1. In a text editor, write the file hello.c with the following contents:

#include <stdio.h>

void main(void)
{
 printf(”Hello World!\n”);
}

2. Build the file getstart.elf :

ccr8c –ogetstart.elf hello.c –v

The control program calls all tools in the toolchain. The -v option shows all
the individual steps. The resulting file is getstart.elf .

User’s Guide2–18
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.9 DEBUG GETSTART.ELF

The application getstart.elf is the final result, ready for execution

and/or debugging. The debugger uses getstart.elf for debugging but

needs symbolic debug information for the debugging process. This

information must be included in getstart.elf and therefore you need

to compile and assemble hello.c once again.

ccr8c –g –ogetstart.elf hello.c

Now you can start the debugger with getstart.elf and see how it

executes.

Start CrossView Pro

• Click on the Debug application button.

CrossView Pro is launched. CrossView Pro will automatically download the
file getstart.elf for debugging.

See the CrossView Pro Debugger User's Guide for more information.

3

C LANGUAGE
C

H
A

P
T

E
R

User’s Guide3–2
C

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

C Language 3–3

• • • • • • • •

3.1 INTRODUCTION

The TASKING C cross-compiler (cr8c) fully supports the ISO C standard

and adds extra possibilities to program the special functions of the R8C.

In addition to the standard C language, the compiler supports the

following:

• extra data type __bit

• intrinsic (built-in) functions that result in R8C specific assembly

instructions

• pragmas to control the compiler from within the C source

• predefined macros

• the possibility to use assembly instructions in the C source

• keywords to specify memory types for data and functions

• attributes to specify alignment and absolute addresses

• keywords for inlining functions and programming interrupt routines

• libraries

All non-standard keywords have two leading underscores (__).

In this chapter the R8C specific characteristics of the C language are

described, including the above mentioned extensions.

User’s Guide3–4
C

 L
A

N
G

U
A

G
E

3.2 DATA TYPES

3.2.1 FUNDAMENTAL DATA TYPES

The TASKING C compiler for the R8C architecture supports the following

fundamental data types:

Type Keyword Size
(bit)

Align
(bit) Ranges

Boolean _Bool 1 8 0 or 1

Character char

signed char
8 8 –27 .. 27–1

unsigned char 8 8 0 .. 28–1

Integral short

signed short

int

signed int

16 8 / 16* –215 .. 215–1

unsigned short

unsigned int
16 8 / 16* 0 .. 216–1

enum 1
8
16

8
8 / 16*
8 / 16*

0 or 1
–27 .. 27–1

–215 .. 215–1

long

signed long

long long

signed
 long long

32 8 / 16* –231 .. 231–1

unsigned long

unsigned
 long long

32 8 / 16* 0 .. 232–1

Pointer 16 8 / 16* 0 .. 232–1

Floating
Point

float

double

long double

32 8 / 16*
–3.402e38 .. –1.175e–38

1.175e–38 .. 3.402e38

float/double/
long double
 _Imaginary

32 8 / 16*
–3.402e38 .. –1.175e–38

1.175e–38 .. 3.402e38

C Language 3–5

• • • • • • • •

float/double/
long double
 _Complex

64 8 / 16*
–1.797e308 .. –2.225e–308

2.225e–308 .. 1.797e308

Table 3-1: Data Types

* For the marked data types, the alignment is 16 if you specify compiler

option ––align, otherwise the alignment is 8.

The long long types are treated as long .

When you use the enum type, the compiler will use the smallest sufficient

integer type (_Bool , char , int), unless you use compiler option

––integer-enumeration (always use 16-bit integers for enumeration).

float is implemented in little endian IEEE 32-bit single precision format.

double is treated as float .

See also the R8C Applications Binary Interface (ABI).

3.2.2 BIT DATA TYPE

The TASKING R8C C compiler cr8c additionally supports the bit data type:

Type Keyword Size
(bit)

Align
(bit) Range

Bit __bit 1 1 0 or 1

Table 3-2: Bit Data Type

You can use the __bit type to define scalars in the bit-addressable area

and for the return type of functions. A struct containing bit fields cannot

be used for this purpose, for example because the struct is aligned at a

byte boundary. Unlike the _Bool type the __bit type is aligned on a bit

boundary.

The following rules apply to __bit type variables:

• A __bit type variable is always unsigned.

• A __bit type variable can be exchanged with all other type-variables.

The compiler generates the correct conversion.

User’s Guide3–6
C

 L
A

N
G

U
A

G
E

A __bit type variable is like a boolean. Therefore, if you convert an

int type variable to a __bit type variable, it becomes 1 (true) if the

integer is not equal to 0, and 0 (false) if the integer is 0. The next two

C source lines have the same effect:

 bit_variable = int_variable;
 bit_variable = int_variable ? 1 : 0;

• Pointer to __bit is allowed, but you cannot take the address of a bit

on the stack.

• The __bit type is allowed as a structure member. However, a bit

structure can only contain members of type __bit , and you cannot

push a bit structure on the stack or return a bit structure via a function.

• A union of a __bit structure and another type is not allowed.

• A __bit type variable is allowed as a parameter of a function.

• A __bit type variable is allowed as a return type of a function.

• A __bit typed expression is allowed as switch expression.

• The sizeof of a __bit type is 1.

• Global or static __bit type variable can be initialized.

• A __bit type variable can be declared volatile.

3.3 MEMORY QUALIFIERS

You can use static memory qualifiers to allocate static objects in a

particular part of the addressing space of the processor.

In addition, you can place variables at absolute addresses with the

keyword __at() .

3.3.1 MEMORY TYPE QUALIFIERS

In the TASKING C language you can specify that a variable must lie in a

specific part of memory. You can do this with a memory type qualifier.

You can use the following memory type qualifiers:

C Language 3–7

• • • • • • • •

Qualifier Description

__bita Bit–addressable RAM

__sfr Data is located in the SFR space

__rom Data defined with this qualifier is placed in ROM. This
section is excluded from automatic initialization by the
startup code. __rom is not the same as const .

Table 3-3: Memory type qualifiers

Functions are by default allocated in ROM. In this case you can omit the

memory qualifier. You cannot use memory qualifiers for function return

values.

See also the assembler directive DEFSECT (Declare section), in section

3.3, Assembler Directives, in Chapter Assembly Language of the Reference
Guide.

Examples using explicit memory types

__rom char text[] = ”No smoking”;
__bita int array[10][4];

The memory type qualifiers are treated like any other data type specifier

(such as unsigned). This means the examples above can also be declared

as:

char __rom text[] = ”No smoking”;
int __bita array[10][4];

Pointers

Pointers can have two types: a 'logical' type and a memory type. For

example, a function is residing in ROM (memory type), but the logical

type is the return type of this function. For example:

__rom char *__bita p; /* pointer residing in BITA,
 pointing to ROM */

means p has memory type __bita (allocated in bit-addressable RAM), but

has logical type 'character in target memory space DATA ROMDATA'. The

memory type qualifier used to the left of the '*', specifies the target

memory of the pointer, the memory type qualifier used to the right of the

'*', specifies the storage memory of the pointer.

User’s Guide3–8
C

 L
A

N
G

U
A

G
E

Structure tags

A tag declaration is intended to specify the layout of a structure or union.

If a memory type is specified, it is considered to be part of the declarator.

A tag name itself, nor its members can be bound to any storage area,

although members having type "... pointer to" do require one. A tag may

then be used to declare objects of that type, and may allocate them in

different memories (if that declaration is in the same scope). The following

example illustrates this constraint.

struct S {
 __bita int i; /* referring to storage: not correct */
 __rom char *p; /* used to specify target memory: correct */
 };

In the example above the compiler ignores the erroneous __bita
memory type qualifier.

Typedef

Typedef declarations follow the same scope rules as any declared object.

Typedef names may be (re-)declared in inner blocks but not at the

parameter level. However, in typedef declarations, memory type

qualifiers are allowed. A typedef declaration should at least contain one

type qualifier.

typedef __bita int BITAINT; /* storage type __bita: OK */
typedef int __bita *PTR; /* logical type __bita
 storage type ’default’ */

3.3.2 DEFINE SPECIAL FUNCTION REGISTERS: __sfr

With the __sfr memory type qualifier you can define a symbol as a

Special Function Register (SFR). The compiler may assume that special SFR

operations can be performed on such symbols. The compiler can decide

to use bit instructions for those special function registers that are bit

accessible. For example, if bits are defined in the SFR definition, these bits

can be accessed using bit instructions.

C Language 3–9

• • • • • • • •

A typical definition of a special function register looks as follows:

typedef struct
 _Bool __b0:1;
 _Bool __b1:1;
 _Bool __b2:1;
 _Bool __b3:1;
 _Bool __b4:1;
 _Bool __b5:1;
 _Bool __b6:1;
 _Bool __b7:1;
 ...
 _Bool __b31:1;
} __bitstruct_t;

#define P0 (*(__sfr unsigned char *)0x00E0)
#define P0_0 ((__sfr __bitstruct_t *)&P0)–>__b0
#define INTEN (*(__sfr unsigned char *)0x0096)
#define INT0EN ((__sfr __bitstruct_t *)&INTEN)–>__b0

Example of access to the SFR:

P0 = 0x56;
P0_0 = INT0EN;

Because the special function registers are dealing with I/O, it is incorrect

to optimize away the access to them. Therefore, the compiler deals with

the special function registers as if they were declared with the volatile
qualifier. In fact __sfr is treated as volatile __bita .

Non-initialized global SFR variables are not cleared at program startup. For

example:

__sfr int i; // global SFR not cleared

It is not allowed to initialize global SFR variables. SFR variables are not

initialized at startup. For example:

__sfr int j=10; // not allowed to initialize global SFR

See also compiler option –C (Use SFR definitions for CPU) in section

Compiler Options in Chapter Tool Options of the Reference Guide.

User’s Guide3–10
C

 L
A

N
G

U
A

G
E

3.3.3 DECLARE A DATA OBJECT AT AN ABSOLUTE

ADDRESS: __at()

Just like you can declare a variable in a specific part of memory, you can

also place an object at an absolute address in memory. This may be useful

to interface with other programs using fixed memory schemes, or to access

special function registers.

With the attribute __at() you can specify an absolute address.

Examples

unsigned char Display[80*24] __at(0x2000)

The array Display is placed at address 0x2000. In the generated

assembly, an absolute section is created. On this position space is reserved

for the variable Display .

int myvar __at(0x100)=1;

The variable myvar is placed at address 0x100 and is initialized at 1.

void f(void) __at(0xf0ff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an

absolute address:

• The argument of the __at() attribute must be a constant address

expression.

• You can place only global variables at absolute addresses. Parameters

of functions, or automatic variables within functions cannot be placed

at absolute addresses.

• When declared extern , the variable is not allocated by the compiler.

When the same variable is allocated within another module but on a

different address, the compiler, assembler or linker will not notice,

because an assembler external object cannot specify an absolute

address.

• When the variable is declared static , no public symbol will be

generated (normal C behavior).

• You cannot place structure members at absolute addresses.

C Language 3–11

• • • • • • • •

• Absolute variables cannot overlap each other. If you declare two

absolute variables at the same address, the assembler and / or linker

issues an error. The compiler does not check this.

• When you declare the same absolute variable within two modules, this

produces conflicts during link time (except when one of the modules

declares the variable 'extern').

3.4 USING ASSEMBLY IN THE C SOURCE: __asm()

With the __asm() keyword you can use assembly instructions in the C

source and pass C variables as operands to the assembly code. Be aware

that C modules that contain assembly are not portable and harder to

compile in other environments.

Furthermore, assembly blocks are not interpreted by the compiler: they are

regarded as a black box. So, it is your responsibility to make sure that the

assembly block is syntactically correct.

General syntax of the __asm keyword

__asm(”instruction_template ”
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

instruction_template Assembly instructions that may contain

parameters from the input list or output list in

the form: %parm_nr [.regnum]

 %parm_nr[.regnum] Parameter number in the range 0 .. 31. With the

optional .regnum you can access an individual

register from a register pair. For example, with

the word register R2R0, .0 selects register R0.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before

the inputs are read, so this output must not be

the same register as any input.

 constraint _char Constraint character: the type of register to be

used for the C_expression.

(see table 3-4)

User’s Guide3–12
C

 L
A

N
G

U
A

G
E

 C_expression Any C expression. For output parameters it must

be an lvalue, that is, something that is legal to

have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

Typical example: adding two C variables using assembly

int a, b, result;

void main(void)
{
 __asm(”add.w %1, %2\n\t”
 ”mov.w %2, %0” : ”=m”(result) : ”r”(a), ”r”(b));
}

generated code:

mov.w _b, R0
mov.w _a, R1
add.w R1, R0
mov.w R0, _result

%0 corresponds to the first C variable, %1 corresponds to the second and

so on. The escape sequence \t generates a tab, \n generates a newline.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

In the example above, the r is used to force the use of registers (Rn) for

the parameters a and b.

You can reserve the registers that are already used in the assembly

instructions, either in the parameter lists or in the reserved register list

(register_save_list, also called "clobber list"). The compiler takes account of

these lists, so no unnecessary register saves and restores are placed around

the inline assembly instructions.

Constraint
character

Type Operand Remark

a address register A0, A1 word register

A address register A1A0 double–word register

C Language 3–13

• • • • • • • •

RemarkOperandTypeConstraint
character

b bit R[0..3]H.[0..7]
R[0..3]L.[0..7]
A[0..1].[0..7]
C
_bitvar

bit registers/variables

h data register R[0..3]H
R[0..3]L

byte registers

i immediate value #value

m memory address, label,
_variable

memory variable or
function address

r data register R[0..3] word registers

R registers R2R0, R3R1 double–word registers

number other operand same as
%number

used when input and
output operands must be
the same

Table 3-4: Available input/output operand constraints

Loops and conditional jumps

The compiler does not detect loops with multiple __asm statements or

(conditional) jumps across __asm statements and will generate incorrect

code for the registers involved.

If you want to create a loop with __asm, the whole loop must be

contained in a single __asm statement. The same counts for (conditional)

jumps. As a rule of thumb, all references to a label in an __asm statement

must be in that same statement.

Example 1: no input or output

A simple example without input or output parameters. You can just output

any assembly instruction:

__asm(”nop”);

Generated code:

nop

User’s Guide3–14
C

 L
A

N
G

U
A

G
E

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint h a

byte data register is chosen for the parameter; the compiler decides which

data register it uses. The %0 in the instruction template is replaced with the

name of this data register. Finally, the compiler generates code to assign

the result to the output variable.

char result;

void main(void)
{
 __asm(”mov.b #0xFF,%0” : ”=h”(result));
}

Generated assembly code:

mov.b #0xFF,R0H
mov.b R0H,_result

Example 3: using input and output parameters

Add two C variables and assign the result to a third C variable. Data

registers are used for the input and output parameters (constraint r , %1 for

a and %2 for b in the instruction template) and memory is used for the

output parameter (constraint m, %0 for result in the instruction template).

The compiler generates code to move the input expressions into the input

registers and to assign the result to the output variable.

int a, b, result;

void add2(void)
{
 __asm(”add.w %1, %2\n\t”
 ”mov.w %2, %0” : ”=m”(result) : ”r”(a), ”r”(b));
}
void main(void)
{
 a = 3;
 b = 4;
 add2();
}

Generated assembly code:

_add2:
 mov.w _b, R0
 mov.w _a, R1
 add.w R1, R0
 mov.w R0, _result

C Language 3–15

• • • • • • • •

_main:
 mov.w #3, _a
 mov.w #4, _b
 jsr _add2

Example 4: reserve registers

Sometimes an instruction knocks out certain specific registers. The most

common example of this is a function call, where the called function is

allowed to do whatever it likes with some registers. If this is the case, you

can list specific registers that get clobbered by an operation after the

inputs.

Same as Example 3, but now register R0 is a reserved register. You can do

this by adding a reserved register list (: ”R0”). As you can see in the

generated assembly code, register R0 is not used (the first register used is

R1).

int a, b, result;

void add2(void)
{
 __asm(”add.w %1, %2\n\t”
 ”mov.w %2, %0” : ”=m”(result) : ”r”(a), ”r”(b) : ”R0”);
}

Generated assembly code:

mov.w _b, R2
mov.w _a, R1
add.w R1, R2
mov.w R2, _result

User’s Guide3–16
C

 L
A

N
G

U
A

G
E

Example 5: input and output are the same

If the input and output must be the same you must use a number

constraint. The following example inverts the value of the input variable

ivar and returns this value to ovar . Since the assembly instruction not.w
uses only one register, the return value has to go in the same place as the

input value. To indicate that ivar uses the same register as ovar , the

constraint '0' is used which indicates that ivar also corresponds with %0.

int ovar;

void invert(int ivar)
{
 __asm (”not.w %0”: ”=r”(ovar): ”0”(ivar));
}

void main(void)
{
 invert(255);
}

Generated assembly code:

_invert:
 not.w R0
 mov.w R0,_ovar

_main:
 mov.w #255,R0
 jsr _invert

Example 6: inlining assembly functions

Because you can use any assembly instruction with the __asm keyword,

you can use the __asm keyword to perform tasks that have no

equivalence in C. By inlining such a function, rather than calling it, you

can create fast 'functions' to perform tasks that have no equivalent in C.

First write a function with assembly in the body using the keyword __asm.

We use the add routine from Example 3.

Next make sure that the function is inlined rather than being called. You

can do this with the function qualifier inline . This qualifier is discussed

in more detail in section 3.10.3, Inlining Functions.

C Language 3–17

• • • • • • • •

int a, b, result;

inline void __my_add(void)
{
 __asm(”add.w %1, %2\n\t”
 ”mov.w %2, %0” : ”=m”(result) : ”r”(a), ”r”(b));
}

void main(void)
{
 // call to function __my_add
 __my_add();
}

When you call this function from within your C source, the next assembly

code will be inlined (not called!):

_main:
 ; __my_add code is inlined here
 mov.w _b, R0
 mov.w _a, R1
 add.w R1, R0
 mov.w R0, _result

Example 7: accessing individual registers in a register pair

You can access the individual registers in a register pair by adding a '.'

after the operand specifier in the assembly part, followed by the index in

the register pair.

int f1, f2;

void foo(long l)
{
 __asm (”mov.w %2.0, %0\n\t”
 ”mov.w %2.1, %1”
 : ”=m”(f1), ”=m”(f2): ”R”(l));
}

The first mov.w instruction uses index #0 of argument 2 (which is a long

placed in a RnRn register) and the second mov.w instruction uses index

#1. The input operand is located in register pair R2R0. The assembly

output becomes:

 mov.w R0, _f1
 mov.w R2, _f2
 rts

User’s Guide3–18
C

 L
A

N
G

U
A

G
E

If the index is not a valid index (for example, the register is not a register

pair, or the argument has not a register constraint), the '.' is passed into the

assembly output. This way you can still use the '.' in assembly instructions.

3.5 CONTROLLING THE COMPILER: PRAGMAS

Pragmas are keywords in the C source that control the behavior of the

compiler. Pragmas overrule compiler options.

The syntax is:

#pragma pragma–spec [ON | OFF | DEFAULT]

or:

_Pragma(” pragma–spec [ON | OFF | DEFAULT]”)

For example, you can set a compiler option to specify which optimizations

the compiler should perform. With the #pragma optimize flags you

can set an optimization level for a specific part of the C source. This

overrules the general optimization level that is set in the C compiler

Optimization page in the Project Options dialog of EDE (command line

option -O).

The compiler recognizes the following pragmas, other pragmas are

ignored.

Pragma name Description

alias symbol =defined–symbol Defines an alias for a symbol

align
align–data
align–func

Specifies object alignment.
See compiler option ––align in section
4.1, Compiler Options in Chapter Tool
Options of the Reference Guide.

auto_switch
jump_switch
linear_switch
lookup_switch

Specifies switch statement.
See section 3.9, Switch Statement

clear
noclear

Specifies ’clearing’ of non–initialized
static/public variables

extension isuffix
[on|off|default]

Enables a language extension to
specify imaginary floating point
constants

C Language 3–19

• • • • • • • •

DescriptionPragma name

extern symbol Forces an external reference

inline
noinline
smartinline

Specifies function inlining.
See section 3.10.3, Inlining Functions.

macro
nomacro

Specifies macro expansion

message ” string ” ... Emits a message to standard output

optimize flags
endoptimize

Controls compiler optimizations.
See section 5.3, Compiler
Optimizations in Chapter Using the
Compiler

renamesect spec
endrenamesect

Changes section names
See section 3.11, Section Naming and
compiler option –R in section 4.1,
Compiler Options in Chapter Tool
Options of the Reference Guide

source
nosource

Specifies which C source lines must
be shown in assembly output.
See compiler option –s in section 4.1,
Compiler Options in Chapter Tool
Options of the Reference Guide.

tradeoff level Controls the speed/size tradeoff for
optimizations.
See compiler option –t in section 4.1,
Compiler Options in Chapter Tool
Options of the Reference Guide.

warning [number ,...] Disables warning messages.
See compiler option –w in section 4.1,
Compiler Options in Chapter Tool
Options of the Reference Guide.

weak symbol Marks a symbol as ’weak’

Table 3-5: Overview of pragmas

For a detailed description of each pragma, see section 1.6, Pragmas, in
Chapter C Language of the Reference Guide.

User’s Guide3–20
C

 L
A

N
G

U
A

G
E

3.6 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the

TASKING C compiler supports the predefined macros as defined in Table

3-6. The macros are useful to create conditional C code.

Macro Description

__SINGLE_FP__ Always defined for the R8C (treat double as float)

__CPU__ Expands to the CPU type specified to the compiler
option –C, or 0 otherwise.

__CR8C__ Identifies the compiler. You can use this symbol to flag
parts of the source which must be recognized by the
cr8c compiler only. It expands to the version number
of the compiler.

__LITTLE_ENDIAN__ Expands to 1, indicating the processor accesses data
in little–endian.

__TASKING__ Identifies the compiler as a TASKING compiler. It
expands to 1.

__DSPC__ Indicates conformation to the DSP–C standard.
Expands to 0, DSP–C extensions are not supported.

Table 3-6: Predefined macros

Example

#ifdef __CR8C__
/* this part is for the R8C compiler */
...
#endif

3.7 INITIALIZED VARIABLES

Non-automatic initialized variables use the same amount of space in both

ROM and RAM (for all possible RAM memory spaces). This is because the

initializers are stored in ROM and copied to RAM at start-up. This is

completely transparent to the user. The only exception is an initialized

variable residing in ROM, by means of the __rom memory type qualifier:

C Language 3–21

• • • • • • • •

Examples

int i = 100; /* 2 bytes in rom and
 2 bytes in DATA */
__rom int j = 3; /* 2 bytes in DATA ROMDATA */
__rom char a[] = ”HELP”; /* 5 bytes in DATA ROMDATA */

3.8 STRINGS

In this section the word 'strings' means the separate occurrence of a string

in a C program. So, array variables initialized with strings are just

initialized character arrays, which can be allocated in any memory type,

and are not considered as 'strings'. See section 3.7 Initialized Variables for

more information on this topic.

Strings and literals in a C source program, which are not used to initialize

an array, have static storage duration. The ISO C standard does not require

that these strings be modifiable. Allocating the strings in ROM is therefore

possible. By default strings are allocated in the R8C code space.

It is also possible to allocate strings and literals in the ROM code space

only. When you use the compiler option ––romstrings the compiler will

place strings in this ROM code area. When you use the compiler option

––romconstants the compiler will place constants in this ROM code area.

User’s Guide3–22
C

 L
A

N
G

U
A

G
E

3.9 SWITCH STATEMENT

The TASKING C compiler supports three ways of code generation for a

switch statement: a jump chain (linear switch), a jump table or a lookup

table.

A jump chain is comparable with an if/else-if/else-if/else construction. A

jump table is a table filled with target addresses for each possible switch

value. The switch argument is used as an index within this table. A lookup
table is a table filled with a value to compare the switch argument with

and a target address to jump to. A binary search lookup is performed to

select the correct target address.

By default, the compiler will automatically choose the most efficient switch

implementation based on code and data size and execution speed. You

can influence the selection of the switch method with compiler option –t

(––tradeoff), which determines the speed/size tradeoff.

It is obvious that, especially for large switch statements, the jump table

approach executes faster than the lookup table approach. Also the jump

table has a predictable behavior in execution speed. No matter the switch

argument, every case is reached in the same execution time. However,

when the case labels are distributed far apart, the jump table becomes

sparse, wasting code memory. The compiler will not use the jump table

method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in

execution and shorter in size.

How to overrule the default switch method

You can overrule the compiler chosen switch method with a pragma:

#pragma linear switch /* force jump chain code */
#pragma jump_switch /* force jump table code */
#pragma lookup_switch /* force lookup table code */
#pragma auto_switch /* let the compiler decide
 the switch method used */

Pragma auto_switch is also the default of the compiler.

C Language 3–23

• • • • • • • •

3.10 FUNCTIONS

3.10.1 PARAMETER PASSING

A lot of execution time of an application is spent transferring parameters

between functions. The fastest parameter transport is via registers.

Therefore, function parameters are first passed via registers. If no more

registers are available for a parameter, the parameter is passed via the

stack. See the table below.

Parameter Type Parameter Number

1 2 3 4 5 .. 16

__bit / _Bool 0,R0 1,R0 2,R0 3,R0 4,R0 .. 15,R0

char R0L R0H

8–bit struct R0L R0H

short / int R0 R2 R1 R3

16–bit struct R0 R2 R1 R3

16–bit pointer A0 A1

long R2R0 R3R1

float /
float _Imaginary

R2R0 R3R1

float _Complex R3R1R2R0

Table 3-7: Register usage for parameter passing

All '...' parameters of a variable argument list function are always passed

over the stack. Parameters are pushed in reverse order, so all ISO C

macros defined in stdarg.h can be applied.

Example with five arguments

func1(char a, long b, long c, int d, char e)

- a (first parameter) is passed in register R0L

- b (second parameter) is passed in registers R3R1

- c (third parameter) is passed via the stack

- d (fourth parameter) is passed in register R2

- e (fifth parameter) is passed in register R0H

User’s Guide3–24
C

 L
A

N
G

U
A

G
E

Example with variable argument function

printf(char *format, ...)

- format (first parameter) is passed in register A0

- all other parameters are passed via the stack

3.10.2 FUNCTION RETURN TYPES

The C compiler uses registers to store C function return values, depending

on the function return types.

Return type Register

__bit / _Bool C

char R0L

8–bit struct R0L

short / int R0

16–bit struct R0

16–bit pointer A0

long R2R0

float /
float _Imaginary

R2R0

float _Complex R3R1R2R0

Table 3-8: Register usage for function return types

3.10.3 INLINING FUNCTIONS: INLINE

You can use the inline keyword to tell the compiler to inline the

function body instead of calling the function. Use the __noinline
keyword to tell the compiler not to inline the function body.

You must define inline functions in the same source module as in which

you call the function, because the compiler only inlines a function in the

module that contains the function definition. When you need to call the

inline function from several source modules, you must include the

definition of the inline function in each module (for example using a

header file).

C Language 3–25

• • • • • • • •

The compiler inserts the function body at the place the function is called.

If the function is not called at all, the compiler does not generate code for

it.

Example: inline

int w,x,y,z;

inline int add(int a, int b)
{
 int i = 4;
 return(a + b);
}

void main(void)
{
 w = add(1, 2);
 z = add(x, y);
}

The function add() is defined before it is called. The compiler inserts

(optimized) code for both calls to the add() function. The generated

assembly is:

User’s Guide3–26
C

 L
A

N
G

U
A

G
E

_main:
 mov.w #3, _w
 mov.w _y, A0
 add.w _x, A0

 mov.w A0, _z

Example: #pragma inline / #pragma noinline

Instead of the inline qualifier, you can also use #pragma inline and

#pragma noinline to inline a function body:

int w,x,y,z;

#pragma inline
int add(int a, int b)
{
 int i=4;
 return(a + b);
}
#pragma noinline

void main(void)
{
 w = add(1, 2);
 z = add(x, y);
}

If a function has an inline /__noinline function qualifier, then this

qualifier will overrule the current pragma setting.

#pragma smartinline

By default, small fuctions that are not too often called, are inlined. This

reduces execution speed at the cost of code size (compiler option –Oi).

With the #pragma noinline / #pragma smartinline you can

temporarily disable this optimization.

With the compiler options ––inline-max-incr and ––inline-max-size

you have more control over the function inlining process of the compiler.

See for more information of these options, section Compiler Options in
Chapter Tool Options of the Reference Guide.

C Language 3–27

• • • • • • • •

Combining inline with __asm to create intrinsic functions

With the keyword __asm it is possible to use assembly instructions in the

body of an inline function. Because the compiler inserts the (assembly)

body at the place the function is called, you can create your own intrinsic

function.

See section 3.4, Using Assembly in the C Source, for more information

about the __asm keyword.

Example 6 in that section shows how to inline assembly functions with the

inline keyword.

3.10.4 INTRINSIC FUNCTIONS

Some specific R8C assembly instructions have no equivalence in C.

Intrinsic functions give the possibility to use these instructions. Intrinsic

functions are predefined functions that are recognized by the compiler.

The compiler then generates the most efficient assembly code for these

functions.

The compiler always inlines the corresponding assembly instructions in the

assembly source rather than calling the function. This avoids unnecessary

parameter passing and register saving instructions which are normally

necessary when a function is called.

Intrinsic functions produce very efficient assembly code. Though it is

possible to inline assembly code by hand, registers are used even more

efficient by intrinsic functions. At the same time your C source remains

very readable.

You can use intrinsic functions in C as if they were ordinary C (library)

functions. All intrinsics begin with a double underscore character. The

following example illustrates the use of an intrinsic function and its

resulting assembly code.

char q;
q = __divb_q(10,3); // return quotient of divide

The resulting assembly code is inlined rather than being called:

mov.w #10, R0
div.b #3
mov.b R0L, _q

User’s Guide3–28
C

 L
A

N
G

U
A

G
E

For extended information about all available intrinsic functions, refer to

section 1.5, Intrinsic Functions, in Chapter C Language of the Reference
Guide.

3.10.5 INTERRUPT FUNCTIONS

The TASKING R8C C compiler supports a number of function qualifiers

and keywords to program interrupt service routines (ISR).

An interrupt service routine (or: interrupt function, or: interrupt handler) is

called when an interrupt event (or: service request) occurs. This can be a

software interrupt or a hardware interrupt.

A software interrupt occurs when certain instructions are executed.

Software interrupt are non-maskable, which means that the interrupt

cannot be enable or disabled by the interrupt enable flag (I flag) or that its

interrupt priority cannot be changed by priority level.

A hardware interrupt can be a special (non-maskable) interrupt, for

example an interrupt triggered by a watchdog timer, or a peripheral

function interrupt generated by a microcomputer's internal function.

Peripheral function interrupts are maskable, which means that the interrupt

can be enable or disabled by the interrupt enable flag (I flag) or that its

interrupt priority can be changed by priority level.

Each maskable interrupt has an interrupt priority level. This number (0 to

7) is set in the interrupt control register (xxxIC) by the interrupt control

unit. If multiple interrupts occur at the same time, the interrupt request that

has the highest priority is accepted. A request is handled if the priority

number is higher than the processor interrupt priority level (IPL). An

interrupt service routine can be interrupted again by another interrupt

request with a higher priority. Interrupts with priority number 0 are never

handled.

The R8C uses two interrupt vector tables for the hardware and software

interrupts: a relocatable vector table and a fixed vector table. The interrupt

vector contains the start address of the interrupt service routine.

With the following function qualifiers you can declare an interrupt handler

using the relocatable or fixed vector table respectively:

__interrupt()
__interrupt_fixed()

C Language 3–29

• • • • • • • •

For an extensive description of the R8C interrupt system, see chapter

Interrupts in the R8C Group Hardware Manual [2003, Renesas]

3.10.5.1 DEFINING AN INTERRUPT SERVICE ROUTINE:

__INTERRUPT()

Interrupt functions cannot accept arguments and do not return anything.

For the relocatable vector table use:

__interrupt(vector ,...)
void isr(void)
{
...
}

For the fixed vector table use:

__interrupt_fixed(vector ,...)
void isr(void)
{
...
}

The argument vector identifies the interrupt number entry in the interrupt

vector table. This number must be in the range 0 to 63 for

__interrupt() or 0 to 8 for __interrupt_fixed() .

When you define an interrupt service routine, the compiler generates an

entry for the interrupt vector table (unless disabled by compiler option

––novector). This vector jumps to the interrupt handler. The difference

between a normal function and an interrupt function is that an interrupt

function ends with a REIT instruction instead of a RTS, and that all

registers that might possibly be corrupted during the execution of the

interrupt function are saved on function entry (this is called the interrupt
frame) and restored on function exit.

Example

The next example illustrates the function definition for a function for a

software interrupt with vector number 0x30 in the relocatable vector table:

int c;

User’s Guide3–30
C

 L
A

N
G

U
A

G
E

void __interrupt(0x30) transmit(void)
{
 c = 1;
}

Compiler option ––novector (Do not generate interrupt vectors)

3.10.5.2 REGISTER BANK SWITCHING: __BANKSWITCH

Normally when an interrupt function is called, all registers that might

possibly be corrupted during the execution of the interrupt function are

saved on the stack so the registers are available for the interrupt function.

After return from the interrupt function the original values are restored

from the stack.

With the function qualifier __bankswitch you can specify to use register

bank 1 for the interrupt function. This minimizes the interrupt latency

because registers do not need to be pushed on the stack. You can use this

to reduce time for high-speed interrupt handling.

__interrupt(vector ,...) __bankswitch
void isr(void)
{
...
}

__interrupt_fixed(vector ,...) __bankswitch
void isr(void)
{
...
}

3.10.5.3 INTERRUPT FRAME: __frame()

With the function qualifier __frame() you can specify which registers

must be saved for a particular interrupt function. Only the specified

registers will be pushed and popped from the stack. The syntax is:

__interrupt(vector ,...) __frame(reg ,...)
void isr(void)
{
...
}

C Language 3–31

• • • • • • • •

__interrupt_fixed(vector ,...) __frame(reg ,...)
void isr(void)
{
...
}

where, reg can be one of the following registers: R0..R3, A0, A1, FB or SB.

If you do not specify the function qualifier __frame() , the C compiler

determines which registers must be pushed and popped.

Example

__interrupt(1) __frame(R0,R1)
void alarm(void)
{
 /* an interrupt function */
}

When you do not want the interrupt frame (saving/restoring registers) to

be generated you can use the compiler option ––noframe. In that case

you will have to specify your own interrupt frame. For this you can use

the inline capabilities of the compiler.

Compiler option ––noframe (Do not generate frame for interrupt handler)

User’s Guide3–32
C

 L
A

N
G

U
A

G
E

3.11 SECTION NAMING

The compiler generates code and data in several types of sections. The

compiler uses the following section naming convention:

module-name[_attr]_mem[_address]

The mem suffix depends on the type of the section and the optional attr
suffix depends on the section attributes and determines if the section is

initialized, constant or uninitialized. The compiler adds the optional

_address when you use the __at() keyword to specify an absolute

address.

Type mem suffix Description

code CO program code

data DA data

bit BI __bit type section

bita BA bitaddressable data (__bita)

Table 3-9: Section types and mem section name suffixes

Attribute attr suffix Description

init INI defines that the section contains
initialization data, which is copied from
ROM to RAM at program startup

clear CLR section is cleared (zeroed) at startup

noclear NCL section is not cleared at startup

romdata RO section contains data to be placed in ROM
(__rom)

Table 3-10: Section attributes and attr section name suffixes

Rename sections

You can change the default section names with the following pragma:

#pragma renamesect mem=name [attribute] [__at(address)]

The new name replaces the module-name and attr part of the section

names that have type mem. With the optional attribute you can overrule

the section attribute. With the optional __at() keyword you can place a

section at an absolute address.

C Language 3–33

• • • • • • • •

For example,

#pragma renamesect DA=flash clear __at(0x20)

All sections of type 'data' have the name "flash_DA " and have attribute

'clear' and 'at 0x20'.

The following pragma restores the default section naming for type mem.

#pragma endrenamesect mem

See also compiler option –R in section Compiler Options in Chapter Tool
Options of the Reference Guide.

User’s Guide3–34
C

 L
A

N
G

U
A

G
E

3.12 LIBRARIES

The TASKING C compiler cr8c comes with standard C libraries (ISO/IEC

9899:1999) and header files with the appropriate prototypes for the library

functions. The standard C libraries are available in object format and in C

or assembly source code.

A number of standard operations within C are too complex to generate

inline code for. These operations are implemented as run-time library

functions.

The libraries are present in the lib directory of the toolchain.

3.12.1 OVERVIEW OF LIBRARIES

Table 3-11 lists the libraries included in the R8C (cr8c) toolchain.

Library to link Description

libc.a C library
(With full printf/scanf functionality. Some functions require the
floating point library. Also includes the startup code.)

libfp.a Floating point library (non–trapping)

libfpt.a Floating point library (trapping)
(Control program option –– fp–trap)

librt.a Run–time library

Table 3-11: Overview of libraries

See section 2.1.2, Library Functions, in Chapter Libraries of the Reference
Guide for an extensive description of all standard C library functions.

3.12.2 PRINTF AND SCANF FORMATTING ROUTINES

The C library functions printf() , fprintf() , vfprintf() ,

vsprintf() , ... call one single function, _doprint() , that deals with the

format string and arguments. This is a rather big function because the

number of possibilities of the format specifiers in a format string are large.

If you do not need all the possibilities of the format specifiers, you can use

a smaller _doprint() . Three different versions exist:

C Language 3–35

• • • • • • • •

LARGE the full formatter, no restrictions (used in libc.a)

MEDIUM floating point printing is not supported

SMALL floating point printing and the precision

specifier '.' are not supported (for example, %10.10s)

The same applies to all scanf type functions, which call the function

_doscan() .

If you want to use the MEDIUM or SMALL formatters you must rebuild the

C library libc.a as described in section 3.12.3, Rebuilding Libraries.

3.12.3 REBUILDING LIBRARIES

If you have manually changed one of the standard C library functions, or

you want to use the MEDIUM or SMALL printf and scanf routines, you

need to recompile the standard C libraries.

The sources of the libraries are present in the lib\src directory. This

directory also contains subdirectories with a makefile for each type of

library:

lib\src\
 libc\makefile
 librt\makefile

To rebuild the libraries, follow the steps below. As an example the

instructions are given to rebuild a C library with MEDIUM sized printf

routines.

First make sure that the bin directory for the toolchain is included in your

PATH environment variable. (See section 1.3.2, Configuring the Command
Line Environment.

1. Make the directory lib\src\libc the current working directory.

This directory contains a makefile which also uses the default make
rules from mkr8c.mk from the cr8c\etc directory.

2. Edit the makefile as follows to set the macro MEDIUM:

CC = $(PRODDIR)\bin\cr8c –DMEDIUM

See section 8.3, Make Utility, in Chapter Utilities for an extensive

description of the make utility and makefiles.

User’s Guide3–36
C

 L
A

N
G

U
A

G
E

3. Assuming the lib\src\libc directory is still the current working

directory, type:

mkr8c

to build the library.

The new library is created in the lib\src\libc directory. All routines
with conditional code are compiled for the MEDIUM printf/scanf
formatters.

4. Make a backup copy of the original library and copy the new library to

the lib directory of the product.

4

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

User’s Guide4–2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4

C
H

A
P

T
E

R

Assembly Language 4–3

• • • • • • • •

4.1 INTRODUCTION

In this chapter the most important aspects of the R8C assembly language

are described. For a complete overview of the R8C assembly language,

refer to the R8C/Tiny Series Software Manual.

4.2 ASSEMBLY SYNTAX

An assembly program consists of zero or more statements. A statement

may optionally be followed by a comment. Any source statement can be

extended to more lines by including the line continuation character (\) as

the last character on the line. The length of a source statement (first line

and continuation lines) is only limited by the amount of available memory.

Mnemonics and directives are case insensitive. Labels, symbols, directive

arguments, and literal strings are case sensitive.

The syntax of an assembly statement is:

[label[:]] [instruction | directive | macro_call] [;comment]

label A label can consist of letters, digits and underscore characters

(_). The first character cannot be a digit. A label which is

prefixed by whitespace (spaces or tabs) has to be followed

by a colon (:). The size of an identifier is only limited by the

amount of available memory.

Examples:

 LAB1: ; This label is followed by a colon and
 can start with a space or tab
LAB1 ; This label has to start at the beginning
 of a line

instruction An instruction consists of a mnemonic and zero, one, two or

three operands. Operands are described in section 4.4,

Operands. The instructions are described in the R8C/Tiny
Series Software Manual.

Examples:

REIT ; No operand
PUSH.W R0 ; One operand
ADD.W R0,R1 ; Two operands
STZX #12,#22,15[FB] ; Three operands

User’s Guide4–4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

directive With directives you can control the assembler from within the

assembly source. Directives are described in section 4.8,

Directives.

macro_call A call to a previously defined macro. Macros are described in

section 4.9 Macro Operations.

You can use empty lines or lines with only comments.

4.3 ASSEMBLER SIGNIFICANT CHARACTERS

Some characters have a special meaning to the assembler. Special

characters associated with expression evaluation are described in section

4.6.3, Expression Operators. Other special assembler characters are:

; - Comment delimiter

\ - Line continuation character or

Macro dummy argument concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

^ - Macro local label override operator

" - Macro string delimiter or

Quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

- Constant number (immediate addressing mode)

++ - String concatenation operator

[] - Substring delimiter or

Indirect addressing mode operator

Assembly Language 4–5

• • • • • • • •

4.4 OPERANDS

In an instruction, the mnemonic is followed by zero, one, two, three, four

or five operands. An operand has one of the following types:

Operands Description

label A label reference as described in section 4.2, Assembly
Syntax.

register Any valid data register (R0, R0H, R0L, R1, R1H, R1L, R2, R3),

address register (A0, A1), frame base register (FB), static base

register (SB), control register (PC, INTB, USP, ISP, FLG) or

special function register. For some instruction you can use a

register pair (R2R0, R3R1, A1A0).

symbol A symbolic name as described in section 4.5, Symbol Names.
Symbols can also occur in expressions.

expression Any valid expression as described in the section 4.6,

Expressions.

address A combination of expression, register and symbol.

4.4.1 OPERANDS AND ADDRESSING MODES

The R8C assembly language has several addressing modes. These are listed

below with a short description. For details see the R8C/Tiny Series
Software Manual [Renesas].

Immediate

An immediate operand is either a 4, 8, or 16-bit number, which is encoded

as part of the instruction. Immediate operands are indicated by the # sign

before the expression defining the value of the operand.

Syntax:

#number

User’s Guide4–6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Absolute

The instruction contains the operand address. The address can be 8 or 16

bits (or 20 bits for special instructions).

Syntax:

direct_address

Register Direct

The instruction specifies the register which contains the operand. Only the

general purpose and address registers can be used here.

Syntax:

register

Address Register Indirect

The value of an address register is the effective address to be operated on.

The range of effective addresses is 00000H to 0FFFFFH. If the address

indicated by the concatenated registers A1A0 exceeds 0FFFFFH, the bits

above bit 21 are ignored.

Syntax:

[A0]

[A1]

[A1A0]

Address Register Relative

The value of an address register plus a displacement is the effective

address to be operated on. The range of effective addresses is 00000H to

0FFFFH.

Syntax:

offset[A0]

offset[A1]

Assembly Language 4–7

• • • • • • • •

SB Relative

The value of the SB register plus a displacement is the effective address to

be operated on. The range of effective addresses is 00000H to 0FFFFH.

Syntax:

offset[SB]

FB Relative

The value of the FB register plus a displacement is the effective address to

be operated on. The range of effective addresses is 00000H to 0FFFFH.

Syntax:

-offset[FB]

offset[FB]

Stack Pointer Relative

In this addressing mode, the value of SP plus a displacement or the value

of the SP register minus a displacement is the effective address to be

operated on. You can use this addressing mode in the MOV instruction

only.

Syntax:

offset[SP]

-offset[SP]

PC Relative

The value of the program counter (PC) plus a displacement is the effective

address to be operated on. The value of the PC here is the start address of

an instruction in which this addressing is used. You can use the PC relative

addressing JMP and JSR instructions.

Syntax:

offset

User’s Guide4–8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

FLG Direct

You can use this addressing in FCLR and FSET instructions. The bit

positions that can be specified here are only the 8 low-order bits of the

FLG register.

Syntax:

flag

4.5 SYMBOL NAMES

A symbol can consist of letters, digits and underscore characters (_). The

first character cannot be a digit. The size of an identifier is limited to 4000

characters. The symbol represents a value, which you can use in

expressions. You can define a symbol by means of a label declaration or

an equate directive.

Register names and names of assembler directives are reserved for the

system.

Examples:

 CON1 EQU 3H ; The symbol CON1 represents
 ; the value of 3 hex

 MOV.W CON1 + 020H, R1 ; Move contents of address
 ; 023H to register R1

Valid symbol names Invalid symbol names

loop_1
ENTRY
a_B_c
_aBC

1_loop (starts with a number)
R0 (reserved name)
DEFINE (reserved name)

4.6 EXPRESSIONS

An expression is a combination of symbols, constants, operators, and

parentheses which represent a value that is used as an operand of an

assembler instruction (or directive).

Assembly Language 4–9

• • • • • • • •

Expressions can contain user-defined labels (and their associated integer

or floating-point values), and any combination of integers, floating-point

numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean

arithmetic.

Expressions that can be evaluated at assembly time are called absolute
expressions. Expressions where the result is unknown until all sections

have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is

relocatable. Relocatable expressions are emitted in the object file and are

evaluated by the linker. Relocatable expressions can only contain integral

functions; floating-point functions and numbers are not supported by the

ELF/DWARF object format. An error is emitted when during object creation

non-ELF/DWARF relocatable expressions are found.

The assembler evaluates expressions with 64-bit precision in two's

complement.

The syntax of an expression can be any of the following:

- numeric contant

- string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

- function call

All types of expressions are explained below and in the following sections.

() You can use parentheses to control the evaluation order of the

operators. What is between parentheses is evaluated first.

User’s Guide4–10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.6.1 NUMERIC CONSTANTS

Numeric constants can be used in expressions. If there is no prefix, the

assembler assumes the number is a decimal number.

Base Description Example

Binary ’0B’ or ’0b’ followed by binary digits (0,1). 0B1101
0b11001010

Hexadecimal
’0X’ or ’0x’ followed by a hexadecimal
digits (0–9, A–F, a–f).

0X12FF
0x45
0x9abc

Decimal,
integer Decimal digits (0–9).

12
1245

Decimal,
floating point

Includes an ’E’ or ’e’ followed by the
exponent.

6E10
2e10

4.6.2 STRINGS

ASCII characters, enclosed in single (’) or double (″) quotes constitue a

literal ASCII string. Both type of strings can contain escape characters.

Strings constants in expressions are evaluated to a number. Strings in

expressions can have the size of a long word (first 4 characters); any

subsequent characters in the string are ignored. In this case the assembler

issues a warning. An exception to this rule is when a string longer than 4

characters is used in a DB assembler directive; in that case all characters

result in a constant byte. Null strings have a value of 0.

Assembly Language 4–11

• • • • • • • •

Examples

’ABCD’ ; (0x41424344)

’’’79’ ; to enclose a quote double it

”A\”BC” ; or to enclose a quote escape it

’A’+1 ; (0x42)

’’ ; null string

’abcdef’ ; (0x61626364)

’abc’++’de’ ; you can concatenate
 ; two strings with the ’++’ operator.
 ; This results in ’abcde’

4.6.3 EXPRESSION OPERATORS

The next table shows the assembler operators. They are ordered according

to their precedence. Operators of the same precedence are evaluated left

to right. Expressions between parentheses have the highest priority

(innermost first).

Valid operands include numeric constants, literal ASCII strings and

symbols.

Most assembler operators can be used with both integer and floating-point

values. If one operand has an integer value and the other operand has a

floating-point value, the integer is converted to a floating-point value

before the operator is applied. The result is a floating-point value.

Type Oper
ator

Name Description

() parentheses Expressions enclosed by parenthesis
are evaluated first.

Unary + plus Returns the value of its operand.

– minus Returns the negative of its operand.

~ complement Returns complement, integer only

! logical
negate

Returns 1 if the operands’ value is 1;
otherwise 0. For example, if buf is 0
then !buf is 1.

User’s Guide4–12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

DescriptionNameOper
ator

Type

Arithmetic * multiplication Yields the product of two operands.

/ division Yields the quotient of the division of the
first operand by the second.
With integers, the divide operation
produces a truncated integer.

% mod Used with integers: yields the
remainder from a division of the first
operand by the second.

Used with floats:
Y%Z = Y if Z= 0
Y%Z = Y–(integer*Z)

+ addtion Yields the sum of its operands.

– subtraction Yields the difference of its operands.

Shift << shift left Integer only: shifts the left operand to
the left (zero–filled) by the number of
bits specified by the right operand.

>> shift right Integer only: shifts the left operand to
the right (sign bit extended) by the
number of bits specified by the right
operand.

Relational <

<=

>

>=

==

!=

less than

less or equal

more than

mor or equal

equal

not equal

If the indicated condition is:

– True: result is an integer 1

– False: result is an integer 0

Be cautious when you use floating
point values in an equality test;
rounding errors can cause unexpected
results.

Bitwise & AND Integer only: yields bitwise AND

| OR Integer only: yields bitwise OR

^ exclusive OR Integer only: yields bitwise exlusive OR

Logical && logical AND Returns an integer 1 if both operands
are nonzero; otherwise, it returns an
integer 0.

|| logical OR Returns an integer 1 if either of the
operands is nonzero; otherwise, it
returns an integer 1

Table 4-1: Assembly expression operators

Assembly Language 4–13

• • • • • • • •

4.7 BUILT-IN ASSEMBLY FUNCTIONS

The assembler has several built-in functions to support data conversion,

string comparison, and math computations. You can use functions as terms

in any expression. Functions have the following syntax:

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments,

and are always followed by opening and closing parentheses. White space

(a blank or tab) is not allowed between the function name and the

opening parenthesis and between the (comma-separated) arguments.

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,

random value, and min/max functions.

• String functions compare strings, return the length of a string, and

return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an

address.

• Assembler mode functions relating assembler operation.

The following tables provide an overview of all built-in assembler

functions. For a detailed description of these functions, see section 3.2,

Built-in Assembly Function, in Chapter Assembly Language of the

Reference Guide.

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@SGN(expr) Returns the sign of an expression as –1, 0 or 1

User’s Guide4–14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,strt]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(str1,expr,expr) Returns substring in string

Overview of macro functions

Function Description

@ARG({symbol|expr}) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

Overview of address calculation functions

Function Description

@LSW(expr) Returns lower 16 bits of expression value

@MSW(expr) Returns upper 16 bits of expression value

Overview of assembler mode functions

Function Description

@DEF(symbol) Returns 1 if symbol has been defined

@LST() LIST control flag value

Assembly Language 4–15

• • • • • • • •

4.8 DIRECTIVES AND CONTROLS

An assembler directive is simply a message to the assembler. Assembler

directives are not translated into machine code because they are not

instructions. There are three types of assembler directives.

• Assembler directives that tell the assembler how to go about translating

instructions into machine code. This is the most typical form of

assembly directives. Typically they tell the assembler where to put a

program in memory, what space to allocate to variables, and allow you

to preset memory with data. When code is assembled, a location

counter in the assembler keeps track of where the code and data is to

go in memory.

• Directives that are processed by the macro processor. These directives

in fact tell the macro processor how to manipulate your assembly code

before it is actually being assembled. You can use these directives to

write macros and to write conditional source code. Parts of the code

that do not match the condition, will not be assembled at all.

• Some directives act as assembler options and most of them indeed do

have an equivalent assembler (command line) option. The advantage

of using a directive is that with such a directive you can overrule the

assembler option for a particular part of the code. Directives of this

kind are called controls. A typical example is to tell the assembler with

an option to generate a list file while with the controls $LIST ON and

$LIST OFF you overrule this option for a part of the code that you do

not want to appear in the list file. Controls always start with a '$' sign.

Assembler directives are grouped in the following categories:

• Assembly control directives

• Symbol definition directives

• Data definition / Storage allocation directives

• Macro and conditional assembly directives

• Debug directives

Assembler controls are grouped in the following categories:

• Assembler listing controls

• Miscellaneous controls

Each assembler directive or control has its own syntax. You can use

assembler directives and controls in the assembly code as pseudo

instructions.

User’s Guide4–16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.8.1 OVERVIEW OF ASSEMBLER DIRECTIVES

The following tables provide an overview of all assembler directives. For a

detailed description, see section 3.3.2, Detailed Description of Assembler
Directives, in Chapter Assembly Language of the Reference Guide.

Overview of assembly control directives

Directive Description

COMMENT Start comment lines. You cannot use this directive in
IF/ELSE/ENDIF constructs and MACRO/DUP
definitions.

DEFINE Define substitution string

DEFSECT Define section name, type and attributes

END End of source program

FAIL Programmer generated error message

INCLUDE Include secondary file

MSG Programmer generated message

NAME Identification for object file (instead of file name)

RADIX Change input radix for constants

SECT Activate a declared section

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning

Overview of symbol definition directives

Directive Description

BTEQU Bit equate

EQU Assigns permanent value to a symbol

EXTERN External symbol declaration

GLOBAL Global symbol declaration

LOCAL Local symbol declaration

SET Set temporary value to a symbol

WEAK Mark symbol as ’weak’

Assembly Language 4–17

• • • • • • • •

Overview of data definition / storage allocation directives

Directive Description

ALIGN Define alignment

ASCII / ASCIIZ Define ASCII string without / with ending NULL byte

BS Define block storage (initialized)

BSB Define byte block storage

BSBIT Define bit block storage in bit–addressable data

BSW / BSL Define word / long block storage (initialized)

DB Define constant byte

DBIT Define constant bit

DS Define storage

DW / DL Define a word / long constant

Overview of macro and conditional assembly directives

Directive Description

DUP Duplicate sequence of source lines

DUPA Duplicate sequence with arguments

DUPC Duplicate sequence with characters

DUPF Duplicate sequence in loop

ENDM End of macro or duplicate sequence

EXITM Exit macro

IF/ELIF/ELSE/ENDIF Conditional assembly

MACRO Define macro

PMACRO Purge macro definition

Overview of debug directives

Directive Description

CALLS Passes call information to object file. Used by the
linker to build a call graph.

User’s Guide4–18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.8.2 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls. For a

detailed description, see section 3.3.4, Detailed Description of Assembler
Controls, in Chapter Assembly Language of the Reference Guide.

Overview of assembler listing controls

Control Description

$LIST ON/OFF Generation of assembly list file temporary ON/OFF

$LIST ”flags” Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file

$TITLE Set program title in headerof assembly list file

Overview of miscellaneous assembler controls

Control Description

$CASE ON/OFF Case sensitive user names ON/OFF

$DEBUG ON/OFF Generation of symbolic debug ON/OFF

$DEBUG ”flags” Generation of symbolic debug ON/OFF

$IDENT
 LOCAL/GLOBAL

Assembler treats labels by default as local or global

$OBJECT Alternative name for the generated object file

$OPTJ ON/OFF Turn on/off conditional optimization

$WARNING OFF [num] Suppress one or all warnings

Assembly Language 4–19

• • • • • • • •

4.9 MACRO OPERATIONS

Macros provide a shorthand method for handling a repeated pattern of

code or group of instructions. Yuo can define the pattern as a macro, and

then call the macro at the points in the program where the pattern would

repeat.

Some patterns contain variable entries which change for each repetition of

the pattern. Others are subject to conditional assembly for a given

occurrence of the instruction group. In either case, macros provide a

shorthand notation for handling these instruction patterns.

When a macro is called, the assembler generates in-line source statements.

The generated statements may contain substitutable arguments. The

statements produced by a macro can be any processor instruction, almost

any assembler directive, or any previously-defined macro. Source

statements resulting from a macro call are subject to the same conditions

and restrictions as any other statements.

The assembler is able to process nested macro calls at expansion time

only. However, the nested macro definition is not processed until the

primary macro is expanded.

4.9.1 DEFINING A MACRO

The first step in using a macro is to define it in the source file. The

definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the dummy

arguments.

• Body, which contains the code or instructions to be inserted when te

macro is called.

• Terminator, which indicates the end of the macro definition (ENDM

directive).

A macro definition takes the following form:

Header: macro_name MACRO [dumarg [, dumarg ...] [; comment]
 .
Body: source statements
 .
Terminator: ENDM

User’s Guide4–20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

If the macro name is the same as an existing assembler directive or

mnemonic opcode, the assembler replaces the directive or mnemonic

opcode with the macro and issues a warning.

The dummy arguments are symbolic names that the macro processor

replaces with the literal arguments when the macro is expanded (called).

Each dummy argument must follow the same rules as global symbol

names. Dummy argument names cannot start with an underscore (_).

Example

The macro definition:

CONSTD MACRO reg,value ;header
 mov.w #value,reg ;body
 ENDM ;terminator

The macro call:

 DEFSECT ”data”,DATA
 SECT ”data”

 CONSTD R0,0x1234

 END

The macro expands as follows:

 mov.w #0x1234,R0

4.9.2 CALLING A MACRO

To invoke a macro, construct a source statement with the following format:

[label] macro_name [arg [, arg ...]] [; comment]

where:

label An optional label that corresponds to the value of the

location counter at the start of the macro expansion.

macro_name The name of the macro. This must be in the operation

field.

arg One or more optional, substitutable arguments. Multiple

arguments must be separated by commas.

Assembly Language 4–21

• • • • • • • •

comment An optional comment.

The following applies to macro arguments:

• Each argument must correspond one-to-one with the dummy

arguments of the macro definition. If the macro call does not contain

the same number of arguments as the macro definition, the assembler

issues a warning.

• If an argument has an embedded comma or space, you must surround

the argument by single quotes (').

• You can declare a macro call argument as NULL in four ways:

- enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument
 is a NULL argument

- terminate the argument list with a comma, the arguments that

normally would follow, are now considered NULL

macroname ARG1, ; the second and all following
 arguments are NULL

- declare the argument as a NULL string

• No character is substituted in the generated statements that reference a

NULL argument.

User’s Guide4–22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.9.3 USING OPERATORS FOR DUMMY ARGUMENTS

The assembler recognizes certain text operators within macro definitions

which allow text substitution of arguments during macro expansion. You

can use these operators for text concatenation, numeric conversion, and

string handling.

Operator Name Description

\ Macro argument
concatenation

Concatenates a macro dummy argument with
adjacent alphanumeric characters.

? Return decimal
value of symbol

Substitutes the ?symbol sequence with a
character string that represents the decimal
value of the symbol.

% Return hex
value of symbol

Substitutes the ?symbol sequence with a
character string that represents the
hexadecimal value of the symbol.

” Macro string
delimiter

Allows the use of macro arguments as literal
strings.

^ Macro local label
override

Causes local labels in its term to be evaluated
at normal scope rather than at macro scope.

Example: Argument Concatenation Operator - \

Consider the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap register contents
 XCHG.W R\REG1, R\REG2
 ENDM

The macro is called as follows:

 SWAP_REG 0,1

The macro expands as follows:

 XCHG.W R0, R1

The macro processor would substitutes the character '0' for the dummy

argument REG1, and the character '1' for the dummy argument REG2. The

concatenation operator (\) indicates to the macro processor that the

substitution characters for the dummy arguments are to be concatenated

with the character 'R'.

Assembly Language 4–23

• • • • • • • •

Example: Decimal value Operator - ?

Instead of substituting the dummy arguments with the macro call

arguments, you can also use the value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYM after

the argument AREG has been set to 0 and BREG has been set to 1.

AREG SET 0
BREG SET 1
 SWAP_SYM AREG,BREG

If you want to replace the dummy arguments with the value of AREG and

BREG rather than with the literal strings 'AREG' and 'BREG', you can use

the ? operator and modify the macro as follows:

SWAP_SYM MACRO REG1,REG2 ;swap memory contents
 XCHG.W R\ ?REG1, R\ ?REG2
 ENDM

The macro first expands as follows:

 XCHG.W R\ ?AREG, R\ ?BREG

Then ?AREG is replaced by '0' and ?BREG is replaced by '1':

 XCHG.W R\0, R\1

Finally, the strings are concatenated because of the '\' operator '\':

 XCHG.W R0, R1

Example Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator

except that it returns the hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\ %VAL STMT
 ENDM

A symbol with the name NUM is set to 10 and the macro is called with

NUM as argument:

NUM SET 10
 GEN_LAB HEX,NUM,NOP

User’s Guide4–24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The macro expands as follows:

HEXA NOP

The %VAL dummy argument is replaced by the character 'A' which

represents the hexadecimal value 10 of the dummy argument VAL.

Example: Dummy Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the

argument string operator (") in the macro definition.

Consider the following macro definition:

STR_MAC MACRO STRING
 DB ” STRING”
 ENDM

The macro is called as follows:

STR_MAC ABCD

The macro expands as follows:

 DB ’ABCD’

Within double quotes DEFINE directive definitions can be expanded. Take

care when using constructions with quotes and double quotes to avoid

inappropriate expansions. Since a DEFINE expansion occurs before a

macro substitution, all DEFINE symbols are replaced first within a macro

dummy argument string:

 DEFINE LONG ’short’
STR_MAC MACRO STRING
 MSG ’This is a LONG STRING’
 MSG ” This is a LONG STRING ”
 ENDM

If the macro is called as follows:

 STR_MAC sentence

The macro expands as:

MSG ’This is a LONG STRING’
MSG ’This is a short sentence’

Assembly Language 4–25

• • • • • • • •

Single quotes prevent expansion so the first MSG is not stated as is. In the

double quoted MSG, first the define LONG is expanded to 'short' and then

the argument STRING is substituted by 'sentence'.

Macro Local Label Override Operator - ^

The macro ^-operator prevents name mangling on the LAB label.

Consider the following macro definition:

INIT MACRO ARG, CNT
 MOV.W #CNT,A0
^LAB:
 DB ARG
 DEC.W A0
 JNZ ^LAB
 ENDM

The macro is called as follows:

 INIT 2,4

The macro expands as:

 MOV.W #4,A0
LAB:
 DB 2
 DEC.W A0
 JNZ LAB

Without the ^ operator, the macro processor would choose another name

for LAB because the label already exists. The macro then would expand

like:

 MOV.W #4,A0
LAB__M_L000001:
 DB 2
 DEC.W A0
 JNZ LAB__M_L000001

User’s Guide4–26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.9.4 USING THE DUP, DUPA, DUPC, DUPF

DIRECTIVES AS MACROS

The DUP, DUPA, DUPC, and DUPF directives are specialized macro forms.

You can think of them as a simultaneous definition and call of an

unnamed macro. The source statements between the DUP, DUPA, DUPC,

and DUPF directives and the ENDM directive follow the same rules as

macro definitions.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Guide.

4.9.5 CONDITIONAL ASSEMBLY: IF, ELIF AND ELSE

DIRECTIVES

With the conditional assembly directives you can create a part of

conditional assembly code. The assembler assembles only the code that it

reaches.

You can specify assembly conditions with arguments in the case of

macros, or through definition of symbols via the DEFINE, SET, and EQU
directives.

The built-in functions of the assembler provide a versatile means of testing

many conditions of the assembly environment

You can use conditional directives also within a macro definition to check

at expansion time if arguments fall within a certain range values. In this

way macros become self-checking and can generate error messages to any

desired level of detail.

The conditional assembly directive IF has the following form:

IF expression
 .
 .
[ELSE] ;(the ELSE directive is optional)
 .
 .
[ELIF] ;(the ELIF directive is optional)
 .
 .
ENDIF

Assembly Language 4–27

• • • • • • • •

The expression must evaluate to an absolute integer and cannot contain

forward references. If expression evaluates to zero, the IF -condition is

considered FALSE. Any non-zero result of expression is considered as

TRUE.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Guide.

User’s Guide4–28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

5

USING THE
COMPILER

C
H

A
P

T
E

R

User’s Guide5–2
C
O
M
P
IL
E
R

5

C
H

A
P

T
E

R

Using the Compiler 5–3

• • • • • • • •

5.1 INTRODUCTION

EDE uses a makefile to build your entire project, from C source till the

final ELF/DWARF object file which serves as input for the debugger.

Although in EDE you cannot run the compiler separately from the other

tools, this chapter discusses the options that you can specify for the

compiler.

On the command line it is possible to call the compiler separately from the

other tools. However, it is recommended to use the control program ccr8c

for command line invocations of the toolchain (see section 8.2, Control
Program, in Chapter Using the Utilities). With the control program it is

possible to call the entire toolchain with only one command line.

The compiler takes the following files for input and output:

assembly file

C source file

C compiler

.ic

cr8c
.err

.src

C source file
(hand coded)

.c

error messages

Figure 5-1: C compiler

This chapter first describes the compilation process which consists of a

frontend and a backend part. During compilation the code is optimized in

several ways. The various optimizations are described in the second

section. Third it is described how to call the compiler and how to use its

options. An extensive list of all options and their descriptions is included

in the section 4.1, Compiler Options, in Chapter 4, Tool Options, of the

Reference Guide. Finally, a few important basic tasks are described.

User’s Guide5–4
C
O
M
P
IL
E
R

5.2 COMPILATION PROCESS

During the compilation of a C program, the compiler cr8c runs through a

number of phases that are divided into two groups: frontend and backend.

The backend part is not called for each C statement, but starts after a

complete C module or set of modules has been processed by the frontend

(in memory). This allows better optimization.

Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses

only string manipulations on the C source. The syntax for the preprocessor

is independent of the C syntax but is also described in the ISO/IEC

9899:1999(E) standard.

2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a

syntactic and semantic analysis of the program, and generates an

intermediate representation of the program. This code is called MIL

(Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming

the intermediate code.

Using the Compiler 5–5

• • • • • • • •

Backend phases

5. Instruction selector phase:

This phase reads the MIL input and translates it into Low level

Intermediate Language (LIL). The LIL objects correspond to a R8C

processor instruction, with an opcode, operands and information used

within the compiler.

6. Peephole optimizer phase:

This phase replaces instruction sequences by equivalent but faster and/or

shorter sequences, rearranges instructions and deletes unnecessary

instructions.

7. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

8. The backend optimization phase:

Performs target processor independent and dependent optimizations which

operate on the Low level Intermediate Language.

9. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly

language output.

5.3 COMPILER OPTIMIZATIONS

The compiler has a number of optimizations which you can enable or

disable. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

or:

In the Optimization level box, select Custom optimization and

enable the optimizations you want in the Custom optimization box.

User’s Guide5–6
C
O
M
P
IL
E
R

If you specify a certain optimization, all code in the module is subject to

that optimization. Within the C source file you can overrule the compiler

options for optimizations with #pragma optimize flag and #pragma
endoptimize . Nesting is allowed:

#pragma optimize e /* Enable expression
... simplification */
... C source ...
...
#pragma optimize c /* Enable common expression
... elimination. Expression
... C source ... simplification still enabled */
...
#pragma endoptimize /* Disable common expression
... elimination */
#pragma endoptimize /* Disable expression
... simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option –O (––optimize) in section 4.1, Compiler Options, of

Chapter Tool Options of the R8C Reference Guide.

Generic optimizations (frontend)

Common subexpression elimination (CSE) (option –Oc/–OC)

The compiler detects repeated use of the same (sub-)expression. Such a

"common" expression is replaced by a variable that is initialized with the

value of the expression to avoid recomputation. This method is called

common subexpression elimination (CSE).

Expression simplification (option –Oe/–OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.

Such useless expressions may be introduced by macros or by the compiler

itself (for example, array subscription).

Constant propagation (option –Op/–OP)

A variable with a known constant value is replaced by that value.

Using the Compiler 5–7

• • • • • • • •

Function Inlining (option –Oi/–OI)

Small functions that are not too often called, are inlined. This reduces

execution speed at the cost of code size.

Control flow simplification (option –Of/–OF)

A number of techniques to simplify the flow of the program by removing

unnecessary code and reducing the number of jumps. For example:

Switch optimization:
A number of optimizations of a switch statement are performed, such

as removing redundant case labels or even removing an entire switch.

Jump chaining:
A (conditional) jump to a label which is immediately followed by an

unconditional jump may be replaced by a jump to the destination label

of the second jump. This optimization speeds up execution.

Conditional jump reversal:
A conditional jump over an unconditional jump is transformed into one

conditional jump with the jump condition reversed. This reduces both

the code size and the execution time.

Dead code elimination:
Code that is never reached, is removed. The compiler generates a

warning messages because this may indicate a coding error.

Subscript strength reduction (option –Os/–OS)

An array of pointer subscripted with a loop iterator variable (or a simple

linear function of the iterator variable), is replaced by the dereference of a

pointer that is updated whenever the iterator is updated.

Loop transformations (option –Ol/–OL)

Temporarily transform a loop with the entry point at the bottom, to a loop

with the entry point at the top. This enables constant propagation in the

initial loop test and code motion of loop invariant code by the CSE
optimization.

Forward store (option –Oo/–OO)

A temporary variable is used to cache multiple assignments (stores) to the

same non-automatic variable.

User’s Guide5–8
C
O
M
P
IL
E
R

Core specific optimizations (backend)

Coalescer (option –Oa/–OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV

instruction) by smart use of registers. This optimizes both speed as code

size.

Peephole optimizations (option –Oy/–OY)

The generated assembly code is improved by replacing instruction

sequences by equivalent but faster and/or shorter sequences, or by

deleting unnecessary instructions.

Generic assembly optimizations (option –Og/–OG)

A set of target independent optimizations that increase speed and decrease

code size.

5.3.1 OPTIMIZE FOR SIZE OR SPEED

You can tell the compiler to focus on execution speed or code size during

optimizations. You can do this by specifying a size/speed trade-off level

from 0 (speed) to 4 (size). This trade-off does not turn optimization

phases on or off. Instead, its level is a weight factor that is used in the

different optimization phases to influence the heuristics. The higher the

level, the more the compiler focuses on code size optimization.

To specify the size/speed trade-off optimization level:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select one of the options Optimize for size or Optimize for speed.

See also option –t (––tradeoff) in section 4.1, Compiler Options, in
Chapter Tool Options of the R8C Reference Guide.

Using the Compiler 5–9

• • • • • • • •

5.4 CALLING THE COMPILER

EDE uses a makefile to build your entire project. This means that you

cannot run the compiler only. If you compile a single C source file from

within EDE, the file is also automatically assembled. However, you can set

options specific for the compiler. After you have build your project, the

output files of the compilation step are available in your project directory.

To compile your program, click either one of the following buttons:

Compiles and assembles the currently selected file. This

results in a relocatable object file (.obj).

Builds your entire project but looks whether there are already

files available that are needed in the building process. If so,

these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To access the R8C processor options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry, fill in the Processor Definition page

and optionally the Startup Code page and click OK to accept the

processor options.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
compiler are listed in table 5-1.

To specify the search path and include directories:

1. From the Project menu, select Directories...

The Directories dialog box appears.

2. Fill in the directory path settings and click OK.

To get access to the compiler options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

User’s Guide5–10
C
O
M
P
IL
E
R

2. Expand the C Compiler entry, fill in the various pages and click OK to

accept the compiler options.

The command line variant is shown simultaneously.

The following processor options are available:

EDE options Command line

Processor Definition

Target processor –Ccpu

Memory

Internal memory EDE only

Startup

Automatically add cstart.asm to your project EDE only

Table 5-1: Processor options

The following project directories are available:

EDE options Command line

Directories

Executable files path

Include files path

Library files path

$PATH environment

–Idir

linker option –Ldir

Table 5-2: Project directories

The following compiler options are available:

EDE options Command line

Code Generation

Keep strings in ROM ––romstrings

Keep constants in ROM ––romconstant s

Generate code for fixed interrupt vector ––novector

Preprocessing

Define preprocessor macro –Dmacro[=def]

Store the C compiler preprocess output (file.pre) –Eflag

Include an extra file at the beginning of the C source –Hfile

Using the Compiler 5–11

• • • • • • • •

Command lineEDE options

Alignment

Align functions to an even address ––align–func

Align data to an even address ––align–data

Optimization

Optimization level
Custom optimization

–O{0|1|2|3}
–Oflag

Optimize for size/speed –t{0|1|2|3|4}

Language

ISO C standard 90 or 99 (default: 99) –c{90|99}

Treat ’char’ variables as unsigned instead of signed –u

Treat ’int’ bitfield as signed ––signed–bitfields

Language extensions
Allow C++ style comments in C source
Check assignment constant string to
non constant string pointer

–Aflag
–Ap
–Ax

Debug

Generate symbolic debug information –g

Floating Point

Floating point trap/exception handling control program option
–– fp–trap

Diagnostics

Report all warnings
Suppress all warnings
Suppress specific warnings
Treat warnings as errors

no option –w
–w
–wnum[,num]...
––warnings–as–
errors

MISRA C

MISRA C rules ––misrac= {all |nr[–nr]
,...}

Produce MISRA C report file linker option
––misra–c–report

User’s Guide5–12
C
O
M
P
IL
E
R

Command lineEDE options

Miscellaneous

Merge C source code with assembly in output file
(.src)

–s

Additional C Compiler options options

Table 5-3: Compiler options

The following options are only available on the command line:

Description Command line

Display invocation syntax –?

Align all objects on an even address ––align

Show description of diagnostic(s) ––diag= [fmt:]{all |nr,...}

Redirect diagnostic messages to a file ––error–file [=file]

Read options from file –f file

Maximum size increment inlining (in %) (default: 25) –– inline–max–incr=
value

Maximum size for function to always inline
(default: 10)

–– inline–max–size=
value

Always use 16–bit integers for enumeration –– integer–
 enumeration

Keep output file after errors –k

Send output to standard output –n

Do not clear non–initialized global variables ––noclear

Do not generate frame for interrupt handler ––noframe

Specify name of output file –o file

Rename sections –Rmem=name

Display version header only –V

Table 5-4: Compiler options only available on the command line

Using the Compiler 5–13

• • • • • • • •

The invocation syntax on the command line is:

cr8c [option]... [file]

The input file must be a C source file (.c or .ic).

cr8c test.c

This compiles the file test.c and generates the file test.src which

serves as input for the assembler.

For a complete overview of all options with extensive description, see

section 4.1, Compiler Options, of Chapter Tool Options of the R8C
Reference Guide.

5.5 SPECIFYING A TARGET PROCESSOR

Before you call the compiler, you need to tell the compiler for which

target processor it needs to compile. Based on the CPU type, the compiler

includes a special function register file. This is a regular include file which

enables you to use virtual registers that are located in memory.

Select a predefined target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Select processor list select the target processor.

4. Click OK to accept the new project settings.

The compiler includes the register file reg cpu .sfr .

Define a user defined target processor

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Processor Definition.

3. Select User defined processor.

User’s Guide5–14
C
O
M
P
IL
E
R

4. In the Processor type filed, specify (part of) the name of the user

defined SFR file.

The compiler uses this name to include the register file reg name.sfr .

5. Click OK to accept the new project settings.

The settings in EDE affect your whole project. If you use the command

line, you must specify the same options to the assembler when assembling

the file, or you can use the control program.

cr8c –Cr8c10 test.c

Instead of using the -C option, you can also include the special function

register file in the C source with the line:

#include ”regr8c10.sfr”

5.6 HOW THE COMPILER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.

The compiler searches the specified locations in the following order:

1. If the #include statement contains a pathname, the compiler looks for this

file. If no path is specified, the compiler looks in the same directory as the

source file. This is only possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories

that are specified in the Directories dialog (–I option).

3. When the compiler did not find the include file (because it is not in the

specified include directory or because no directory is specified), it looks

which paths were set during installation. You can still change these paths.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable CR8CINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. When the compiler still did not find the include file, it finally tries the

default include directory relative to the installation directory.

Using the Compiler 5–15

• • • • • • • •

5.7 COMPILING FOR DEBUGGING

Compiling your files is the first step to get your application ready to run

on a target. However, during development of your application you first

may want to debug your application.

To create an object file that can be used for debugging, you must instruct

the compiler to include symbolic debug information in the source file.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Debug Information.

3. Enable the option Generate symbolic debug information.

4. Click OK to accept the new project settings.

cr8c –g

Due to different compiler opimizations, it might be possible that certain

debug information is optimized away. Therefore, it is best to specify No

optimization (–O0) when you want to debug your application.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. In the Optimization level box, select No optimization.

User’s Guide5–16
C
O
M
P
IL
E
R

5.8 C CODE CHECKING: MISRA C

The C programming language is a standard for high level language

programming in embedded systems, yet it is considered somewhat

unsuitable for programming safety-related applications. Through enhanced

code checking and strict enforcement of best practice programming rules,

TASKING MISRA C code checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is

intended to be suitable for embedded automotive systems. It consists of a

set of 127 rules, defined in the document "Guidelines for the Use of the C

Language in Vehicle Based Software" published by "Motor Industry

Research Association" (MISRA).

For a complete overview of all MISRA C rules, see Chapter 8, MISRA C
Rules, in the Reference Guide.

The MISRA C implementation in the compiler supports 117 of the 127

rules. Some MISRA C rules address documentation, run-time behavior, or

other issues that cannot be checked by static source code inspection.

Therefore, the following rules are not implemented: 2, 4, 6, 15, 41, 116,

117. In addition, the rules 23, 25 and 27 are not implemented in the

compiler, because they cannot be checked without an application-wide

overview.

During compilation of the code, violations of the enabled MISRA C rules

are indicated with error messages and the build process is halted.

Note that not all MISRA C violations will be reported when other errors are

detected in the input source. For instance, when there is a syntax error, all

semantic checks will be skipped, including some of the MISRA C checks.

Also note that some checks cannot be performed when the optimizations

are switched off.

To ensure compliance to the MISRA C rules throughout the entire project,

the TASKING R8C linker can generate a MISRA C Quality Assurance report.

This report lists the various modules in the project with the respective

MISRA C settings at the time of compilation. You can use this in your

company's quality assurance system to provide proof that company rules

for best practice programming have been applied in the particular project.

Using the Compiler 5–17

• • • • • • • •

Apply MISRA C code checking to your application

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration. Select a predefined configuration for

conformance with the required rules in the MISRA C guidelines.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

cr8c ––misrac= { all | number [–number],...}

See compiler option ––misrac in section 4.1, Compiler Options in Chapter

Tool Options of the R8C Reference Guide.

See linker option ––misra-c-report in section 4.3, Linker Options in
Chapter Tool Options of the R8C Reference Guide.

User’s Guide5–18
C
O
M
P
IL
E
R

5.9 C COMPILER ERROR MESSAGES

The cr8c compiler reports the following types of error messages:

F Fatal errors

After a fatal error the compiler immediately aborts compilation.

E Errors

Errors are reported, but the compiler continues compilation. No output

files are produced unless you have set the compiler option

––keep-output-files (the resulting output file may be incomplete).

W Warnings

Warning messages do not result into an erroneous assembly output file.

They are meant to draw your attention to assumptions of the compiler for

a situation which may not be correct. You can control warnings in the C

Compiler | Diagnostics page of the Project | Project Options... menu

(compiler option –w).

I Information

Information messages are always preceded by an error message.

Information messages give extra information about the error.

S System errors

System errors occur when internal consistency checks fail and should

never occur. When you still receive the system error message

S9##: internal consistency check failed – please report

please report the error number and as many details as possible about the

context in which the error occurred. The following helps you to prepare

an e-mail using EDE:

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

Using the Compiler 5–19

• • • • • • • •

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

cr8c ––diag= [format :]{ all | number ,...}

See compiler option ––diag in section 4.1, Compiler Options in Chapter

Tool Options of the R8C Reference Guide.

User’s Guide5–20
C
O
M
P
IL
E
R

6

USING THE
ASSEMBLER

C
H

A
P

T
E

R

User’s Guide6–2
A
S
S
E
M
B
L
E
R

6

C
H

A
P

T
E

R

Using the Assembler 6–3

• • • • • • • •

6.1 INTRODUCTION

The assembler converts hand-written or compiler-generated assembly

language programs into machine language, using the Executable and

Linking Format (ELF) for object files.

The assembler takes the following files for input and output:

assembly file

assembler
asr8c

.src
assembly file .asm

(hand coded)

relocatable object file
.obj

list file .lst

error messages .ers

Figure 6-1: Assembler

This chapter first describes the assembly process. The various assembler

optimizations are described in the second section. Third it is described

how to call the assembler and how to use its options. An extensive list of

all options and their descriptions is included in the Reference Guide.
Finally, a few important basic tasks are described.

6.2 ASSEMBLY PROCESS

The assembler generates relocatable output files with the extension .o bj.

These files serve as input for the linker.

Phases of the assembly process

1. Preprocess directives

2. Check syntax of instructions

3. Instruction grouping and reordering

4. Optimization (instruction size and generic instructions)

5. Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See section 4.9,

Macro Operations, in Chapter Assembly Language for more information.

User’s Guide6–4
A
S
S
E
M
B
L
E
R

6.3 ASSEMBLER OPTIMIZATIONS

The asr8c assembler performs various optimizations to reduce the size of

the assembled applications. There are two options available to influence

the degree of optimization. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry and select Optimization.

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option –O (––optimize) in section 4.2, Assembler Options, in
Chapter Tool Options of the R8C Reference Guide.

Instruction alignment (option –Oa/–OA)

When this option is enabled, the assembler aligns instructions with an

even size on even addresses. Odd sized instructions are not aligned.

Allow generic instructions (option –Og/–OG)

When this option is enabled, you can use generic instructions in your

assembly source. The assembler tries to replace the generic instructions by

faster or smaller instructions. For example, the instruction

jeq_label1 is replaced by jne __T1; jz _label1; __T1: .

By default this option is enabled. Because shorter instructions may

influence the number of cycles, you may want to disable this option when

you have written timed code. In that case the assembler encodes all

instructions as they are.

Optimize instruction size (option –Os/–OS)

When this option is enabled, the assembler tries to find the shortest

possible operand encoding for instructions. By default this option is

enabled.

Using the Assembler 6–5

• • • • • • • •

6.4 CALLING THE ASSEMBLER

EDE uses a makefile to build your entire project. You can set options

specific for the assembler. After you have build your project, the output

files of the assembling step are available in your project directory.

To assemble your program, click either one of the following buttons:

Assembles the currently selected assembly file (.asm or

.src). This results in a relocatable object file (.obj).

Builds your entire project but looks whether there are already

files available that are needed in the building process. If so,

these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To access the R8C processor options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry, fill in the Processor Definition page

and optionally the Startup Code page and click OK to accept the

processor options.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
assembler are listed in table 6-1.

To get access to the assembler options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry, fill in the various pages and click OK to

accept the compiler options.

The command line variant is shown simultaneously.

User’s Guide6–6
A
S
S
E
M
B
L
E
R

The following processor options are available:

EDE options Command line

Processor Definition

Target processor –Ccpu

Memory

Internal memory EDE only

Startup

Automatically add cstart.asm to your project EDE only

Table 6-1: Processor options

The following assembler options are available:

EDE options Command line

Preprocessing

Define preprocessor macro –Dmacro[=def]

Optimization

Optimize speed by means of instruction alignment
Allow generic instructions
Optimize instruction size

–Oa/–OA (= on/off)
–Og/–OG
–Os/–OS

Debug

No debug information
Automatic HLL or assembly level debug information
Custom debug information

–gAHLS
–gs
–gflag

List File

Generate list file –l

Suboptions for the Generate list file option –Lflags

Diagnostics

Report all warnings
Suppress all warnings
Suppress specific warnings

no option –w
–w
–wnum[,num]...

Treat warnings as errors ––warnings–as–errors

Using the Assembler 6–7

• • • • • • • •

Command lineEDE options

Miscellaneous

Generate section summary –tl

Case sensitive identifiers –c

Additional assembler options options

Table 6-2: Assembler options

The following options are only available on the command line:

Description Command line

Display invocation syntax –?

Show description of diagnostic(s) ––diag= [fmt:]{all |nr,...}

Emit local symbols ––emit–locals

Redirect diagnostic messages to a file ––error–file [=file]

Read options from file –f file

Labels are by default:
local (default)
global

–il
–ig

Keep output file after errors –k

Select TASKING preprocessor or no preprocessor –m{t|n}

Specify name of output file –o file

Enable expression type checking –– type–checking

Verbose information –v

Display version header only –V

Table 6-3: Assembler command line options

The invocation syntax on the command line is:

asr8c [option]... [file]

The input file must be an assembly source file (.asm or .src).

asr8c test.asm

This assembles the file test.asm for and generates the file test.o
which serves as input for the linker.

User’s Guide6–8
A
S
S
E
M
B
L
E
R

For a complete overview of all options with extensive description, see

section 4.2, Assembler Options, of Chapter Tool Options of the R8C
Reference Guide.

6.5 SPECIFYING A TARGET PROCESSOR

Before you call the assembler, you need to tell the assembler for which

target processor it needs to assemble. Based on the processor type, the

assembler includes a special function register file. This is a regular include

file which enables you to use virtual registers that are located in memory.

The settings in EDE affect your whole project. If you already specified

these settings, you do not need to specify them again for the assembler.

When you use the command line, you must specify the same options to

the assembler as you did for the compiler.

Select a predefined target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Select processor list select the target processor.

4. Click OK to accept the new project settings.

The assembler includes the register file reg cpu .def .

Define a user defined target processor

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Processor Definition.

3. Select User defined processor.

4. In the Processor type filed, specify (part of) the name of the user

defined SFR file.

The assembler uses this name to include the register file reg name.def .

5. Click OK to accept the new project settings.

Using the Assembler 6–9

• • • • • • • •

asr8c –Cr8c10 test.src

6.6 HOW THE ASSEMBLER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.

The assembler searches the specified locations in the following order:

1. If the INCLUDE directive contains a pathname, the assembler looks for this

file. If no path is specified, the assembler looks in the same directory as

the source file.

2. When the assembler did not find the include file, it looks in the directories

that are specified in the Directories dialog (–I option).

3. When the assembler did not find the include file (because it is not in the

specified include directory or because no directory is specified), it looks

which paths were set during installation. You can still change these paths

if you like.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable ASR8CINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. When the assembler still did not find the include file, it finally tries the

default include directory relative to the installation directory.

6.7 GENERATING A LIST FILE

The list file is an additional output file that contains information about the

generated code. With the options in the List File page of the Assembler

entry in the Project Options dialog you choose to generate a list file or to

skip it (–l option). You can also customize the amount and form of

information (–L option).

If the assembler generates errors or warnings, these are reported in the list

file just below the source line that caused the error or warning.

See section 5.1, Assembler List File Format, in Chapter List File Formats of

the Reference Guide for an explanation of the format of the list file.

Example:

asr8c –l test.src

User’s Guide6–10
A
S
S
E
M
B
L
E
R

With this command the list file test.lst is created.

6.8 ASSEMBLER ERROR MESSAGES

The assembler produces error messages of the following types:

F Fatal errors

After a fatal error the assembler immediately aborts the assembling

process.

E Errors

Errors are reported, but the assembler continues assembling. No output

files are produced unless you have set the assembler option

––keep-output-files (the resulting output file may be incomplete).

W Warnings

Warning messages do not result into an erroneous assembly output file.

They are meant to draw your attention to assumptions of the assembler for

a situation which may not be correct. You can control warnings in the

Assembler | Diagnostics page of the Project | Project Options...

menu (assembler option –w).

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

asr8c ––diag= [format :]{ all | number ,...}

See assembler option ––diag in section 4.2, Assembler Options in Chapter

Tool Options of the R8C Reference Guide.

7

USING THE LINKER
C

H
A

P
T

E
R

User’s Guide7–2
L
IN
K
E
R

7

C
H

A
P

T
E

R

Using the Linker 7–3

• • • • • • • •

7.1 INTRODUCTION

The linker lkr8c is a combined linker/locator. The linker phase combines

relocatable object files (.obj files, generated by the assembler), and

libraries into a single relocatable linker object file (.eln). The locator

phase assigns absolute addresses to the linker object file and creates an

absolute object file which you can load into a target processor. From this

point the term linker is used for the combined linker/locator.

The linker takes the following files for input and output:

relocatable object files

linker

relocatable linker object file

lkr8c

.obj

.eln

linker map file .map

error messages .elk

relocatable object library.a

Motorola S–record
absolute object file

.s

Intel Hex
absolute object file

.hex

ELF/DWARF 2
absolute object file

.elf

linker script file .lsl

relocatable linker object file .eln

IEEE–695
absolute object file

.abs

Figure 7-1: lkr8c Linker

This chapter first describes the linking process. Then it describes how to

call the linker and how to use its options. An extensive list of all options

and their descriptions is included in section 4.3, Linker Options, of the

Reference Guide.

To gain even more control over the link process, you can write a script for

the linker. This chapter shortly describes the purpose and basic principles

of the Linker Script Language (LSL) on the basis of an example. A

complete description of the LSL is included in Chapter 7, Linker Script
Language, of the Reference Guide.

Finally, a few important features are described such as overlaying and

choosing among various output formats.

User’s Guide7–4
L
IN
K
E
R

7.2 LINKING PROCESS

The linker combines and transforms relocatable object files (.o bj) into a

single absolute object file. This process consists of two phases: the linking

phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files

and libraries into a single relocatable object file. In the second phase, the

linker assigns absolute addresses to the object file so it can actually be

loaded into a target.

Glossary of terms

Term Definition

Absolute object file Object code in which addresses have fixed absolute
values, ready to load into a target.

Address A specification of a location in an address space.

Address space The set of possible addresses. A core can support
multiple spaces, for example in a Harvard architecture
the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the
location of a data object refer to a data space.

Architecture A description of the characteristics of a core that are of
interest for the linker. This encompasses the logical
address space(s) and the internal bus structure. Given
this information the linker can convert logical addresses
into physical addresses.

Copy table A section created by the linker. This section contains
data that specifies how the startup code initializes the
data sections. For each section the copy table contains
the following fields:
– action: defines whether a section is copied or zeroed
– destination: defines the section’s address in RAM
– source: defines the sections address in ROM
– length: defines the size of the section in MAUs
 of the destination space

Core An instance of a core architecture.

Derivative The design of a processor. A description of one or more
cores including internal memory and any number of
buses.

Library Collection of relocatable object files. Usually each
object file in a library contains one symbol definition
(for example, a function).

Using the Linker 7–5

• • • • • • • •

DefinitionTerm

Logical address An address as encoded in an instruction word, an
address generated by a core (CPU).

LSL file The set of linker script files that are passed to the linker.

MAU Minimum Addressable Unit. For a given processor the
number of bits loaded between an address and the next
address. This is not necessarily a byte or a word.

Object code The binary machine language representation of the
C source.

Physical address An addresses generated by the memory system.

Processor An instance of a derivative. Usually implemented as a
(custom) chip, but can also be implemented in an
FPGA, in which case the derivative can be designed by
the developer.

Relocatable object
file

Object code in which addresses are represented by
symbols and thus relocatable.

Relocation The process of assigning absolute addresses.

Relocation
information

Information about how the linker must modify the
machine code instructions when it relocates addresses.

Section A group of instructions and/or data objects that occupy
a contiguous range of addresses.

Section attributes Attributes that define how the section should be linked
or located.

Target The hardware board on which an application is
executing. A board contains at least one processor.
However, a complex target may contain multiple
processors and external memory that may be shared
between processors.

Unresolved
reference

A reference to a symbol for which the linker did not find
a definition yet.

Table 7-1: Glossary of terms

User’s Guide7–6
L
IN
K
E
R

7.2.1 PHASE 1: LINKING

The linker takes one or more relocatable object files and/or libraries as

input. A relocatable object file, as generated by the assembler, contains the

following information:

• Header information: Overall information about the file, such as the

code size, name of the source file it was assembled from, and creation

date.

• Object code: Binary code and data, divided into various named

sections. Sections are contiguous chunks of code or data that have to

be placed in specific parts of the memory. The program addresses start

at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use

in other files. Other symbols are imported - used in the file but not

defined (external symbols). Generally these symbols are names of

routines or names of data objects.

• Relocation information: A list of places with symbolic references that

the linker has to replace with actual addresses. When in the code an

external symbol (a symbol defined in another file or in a library) is

referenced, the assembler does not know the symbol's size and

address. Instead, the assembler generates a call to a preliminary

relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is

used by a debugger. The assembler optionally generates this

information and can consist of line numbers, C source code, local

symbols and descriptions of data structures.

The linker resolves the external references between the supplied

relocatable object files and/or libraries and combines the supplied

relocatable object files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files

and libraries. If the linker encounters an unresolved symbol, it remembers

its name and continues scanning. The symbol may be defined elsewhere

in the same file, or in one of the other files or libraries that you specified

to the linker. If the symbol is defined in a library, the linker extracts the

object file with the symbol definition from the library. This way the linker

collects all definitions and references of all of the symbols.

Using the Linker 7–7

• • • • • • • •

With this information, the linker combines the object code of all

relocatable object files. The linker combines sections with the same section

name and attributes into single sections, starting each section at address

zero. The linker also substitutes (external) symbol references by

(relocatable) numerical addresses where possible. At the end of the linking

phase, the linker either writes the results to a file (a single relocatable

object file) or keeps the results in memory for further processing during

the locating phase.

The resulting file of the linking phase is a single relocatable object file

(.eln). If this file contains unresolved references, you can link this file

with other relocatable object files (.obj) or libraries (.a) to resolve the

remaining unresolved references.

With the linker command line option ––link-only, you can tell the linker

to only perform this linking phase and skip the locating phase. The linker

complains if any unresolved references are left.

7.2.2 PHASE 2: LOCATING

In the locating phase, the linker assigns absolute addresses to the object

code, placing each section in a specific part of the target memory. The

linker also replaces references to symbols by the actual address of those

symbols. The resulting file is an absolute object file which you can actually

load into a target memory. Optionally, when the resulting file should be

loaded into a ROM device the linker creates a so-called copy table section

which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to

modify this code according to certain rules or relocation expressions to
reflect the new addresses. These relocation expressions are stored in the

relocatable object file. Consider the following snippet of x86 code that

moves the contents of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b is imported so the instruction refers to
 0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a
is located is relocated by 0x10000 bytes, and b turns out to be at 0x9A12.

The linker modifies the code to be:

User’s Guide7–8
L
IN
K
E
R

A1 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers

in the data part of a relocatable object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default

ELF/DWARF2 format (.elf) contains an image of the executable code and

data, and can contain additional debug information. The Intel-Hex format

(.hex) and Motorola S-record format (.s) only contain an image of the

executable code and data. You can specify a format with the options –o

(––output) and -c (––chip-format).

Controlling the linker

Via a so-called linker script file you can gain complete control over the

linker. The script language used to describe these features is called the

Linker Script Language (LSL). You can define:

• The types of memory that are installed in the embedded target system:

To assign locations to code and data sections, the linker must know

what memory devices are actually installed in the embedded target

system. For each physical memory device the linker must know its

start-address, its size, and whether the memory is read-write accessible

(RAM) or read-only accessible (ROM).

• How and where code and data should be placed in the physical

memory:

Embedded systems can have complex memory systems. If for example

on-chip and off-chip memory devices are available, the code and data

located in internal memory is typically accessed faster and with

dissipating less power. To improve the performance of an application,

specific code and data sections should be located in on-chip memory.

By writing your own LSL file, you gain full control over the locating

process.

• The underlying hardware architecture of the target processor.

Using the Linker 7–9

• • • • • • • •

To perform its task the linker must have a model of the underlying

hardware architecture of the processor you are using. For example the

linker must know how to translate an address used within the object

file (a logical address) into an offset in a particular memory device

(a physical address). In most linkers this model is hard coded in the

executable and can not be modified. For the lkr8c linker this hardware

model is described in the linker script file. This solution is chosen to

support configurable cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the

standard linker script files with architecture descriptions delivered with the

product.

See also section 7.6, Controlling the Linker with a Script.

7.2.3 LINKER OPTIMIZATIONS

During the linking and locating phase, the linker looks for opportunities to

optimize the object code. Both code size and execution speed can be

optimized. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Optimization.

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option –O (––optimize) in section 4.3, Linker Options, in
Chapter Tool Options of the R8C Reference Guide.

First fit decreasing (option –Ol/–OL)

When the physical memory is fragmented or when address spaces are

nested it may be possible that a given application cannot be located

although the size of available physical memory is larger than the sum of

the section sizes. Enable the first-fit-decreasing optimization when this

occurs and re-link your application.

User’s Guide7–10
L
IN
K
E
R

The linker's default behavior is to place sections in the order that is

specified in the LSL file. This also applies to sections within an unrestricted

group. If a memory range is partially filled and a section must be located

that is larger than the remainder of this range, then the section and all

subsequent sections are placed in a next memory range. As a result of this

gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first

place the largest sections in the smallest memory ranges that can contain

the section. Small sections are located last and can likely fit in the

remaining gaps.

Copy table compression (option –Ot/–OT)

The startup code initializes the application's data areas. The information

about which memory addresses should be zeroed and which memory

ranges should be copied from ROM to RAM is stored in the copy table.

When this optimization is enabled the linker will try to locate sections in

such a way that the copy table is as small as possible thereby reducing the

application's ROM image.

This optimization reduces both memory and startup speed.

Delete unreferenced code sections (option –Oc/–OC)

Delete unreferenced data sections (option –Od/–OD)

These two optimizations remove unused sections from the resulting object

file. Because debug information normally refers to all sections, these

optimizations have no effect until you compile your project without debug

information or use linker option ––strip-debug to remove the debug

information.

Delete unreferenced symbols (option –Os/–OS)

This optimization tells the linker to remove all unreferenced symbols, such

as local assembler symbols.

Delete duplicate code fragments (option –Ox/–OX)

Delete duplicate data (option –Oy/–OY)

These two optimizations remove code and constant data that is defined

more than once, from the resulting object file.

Using the Linker 7–11

• • • • • • • •

7.3 CALLING THE LINKER

EDE uses a makefile to build your entire project. This means that you

cannot run only the linker. However, you can set options specific for the

linker. After you have build your project, the output files of the linking

step are available in your project directory, unless you specified an

alternative output directory in the Build Options dialog.

To link your program, click either one of the following buttons:

Builds your entire project but only updates files that are

out-of-date or have been changed since the previous build,

which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To get access to the linker options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry. Select the subentries and set the options in

the various pages.

The command line variant is shown simultaneously.

User’s Guide7–12
L
IN
K
E
R

The following linker options are available:

EDE options Command line

Output Format

Output formats –o[filename][:format
[:addr_size][,space]]

–cformat[:addr_size]

Libraries

Link default C libraries –lx

Rescan libraries to solve unresolved exernals ––no–rescan

Link case sensitive (required for C language) ––case–sensitive

Optimization

Use a ’first fit decreasing’ algorithm
Use copy table compression
Delete unreferenced code sections
Delete unreferenced data sections
Delete unreferenced symbols
Delete duplicate code
Delete duplicate constant data

–Ol/–OL (= on/off)
–Ot/–OT
–Oc/–OC
–Od/–OD
–Os/–OS
–Ox/–OX
–Oy/–OY

Map File

Generate a map file (.map) –M

Suboptions for the Generate a map file option –mflags

Warnings

Report all warnings
Suppress all warnings
Suppress specific warnings

no option –w
–w
–wnum[,num]...

Treat warnings as errors ––warnings–as–errors

Miscellaneous

Use standard copy–table for initialization no option –i

Strip symbolic debug information –S

Dump processor and memory info from LSL file –– lsl–dump [=file]

Select linker script file –dfile

Additional linker options options

Table 7-2: Linker options

Using the Linker 7–13

• • • • • • • •

The following options are only available on the command line:

Description Command line

Display invocation syntax –?

Define preprocessor macro –Dmacro[=def]

Show description of diagnostic(s) ––diag= [fmt:]{all |nr,...}

Specify a symbol as unresolved external –esymbol

Redirect errors to a file with extension .elk ––error–file [=file]

Read options from file –f file

Scan libraries in given order –– first–library–first

Search only in –L directories, not in default path –– ignore–default–
library–path

Keep output files after errors –k

Link only, do not locate –– link–only

Check LSL file(s) and exit –– lsl–check

Do not generate ROM copy –N

Locate all ROM sections in RAM ––non–romable

Link incrementally –r

Display version header only –V

Print the name of each file as it is processed –v

Table 7-3: Linker command line options

The invocation syntax on the command line is:

lkr8c [option]... [file]...]...

When you are linking multiple files (either relocatable object files (.obj)

or libraries (.a), it is important to specify the files in the right order. This

is explained in Section 7.4.1, Specifying Libraries to the Linker

Example:

lkr8c –otest.elf –dr8c.lsl test.obj

This links and locates the file test.ob j and generates the file test.elf .

For a complete overview of all options with extensive description, see

section 4.3, Linker Options, of the Reference Guide.

User’s Guide7–14
L
IN
K
E
R

7.4 LINKING WITH LIBRARIES

There are two kinds of libraries: system libraries and user libraries.

System library

The system libraries are installed in the lib directory of the toolchain. An

overview of the system libraries is given in the following table.

Library to link Description

libc.a C library
(With full printf/scanf functionality. Some functions require the
floating point library. Also includes the startup code.)

libfp.a Floating point library (non–trapping)

libfpt.a Floating point library (trapping)
(Control program option –– fp–trap)

librt.a Run–time library

Table 7-4: Overview of libraries

For more information on these libraries see section 3.12, Libraries, in
Chapter C Language.

User library

You can also create your own libraries. Section 8.4, Archiver, in Chapter

Using the Utilities, describes how you can use the archiver to create your

own library with object modules. To link user libraries, specify their

filenames on the command line.

7.4.1 SPECIFYING LIBRARIES TO THE LINKER

In EDE you can specify both system and user libraries.

Link a system library with EDE

To specify to link the default C libraries:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Libraries.

Using the Linker 7–15

• • • • • • • •

3. Select Link default C libraries.

4. Click OK to accept the linker options.

When you want to link system libraries from the command line, you must

specify this with the linker option -l. With the option -lc you specify the

system library libc.a . For example:

lkr8c –lc start.obj

Link a user library in EDE

To specify your own libraries, you have to add the library files to your

project:

1. From the Project menu, select Properties...

The Project Properties dialog box appears.

2. In the Members tab, click on the Add existing files to project

button.

3. Select the libraries you want to add and click Open.

4. Click OK to accept the new project settings.

The invocation syntax on the command line is for example:

lkr8c start.obj mylib.a

If the library resides in a subdirectory, specify that directory with the

library name:

lkr8c start.obj mylibs\mylib.a

User’s Guide7–16
L
IN
K
E
R

Library order

The order in which libraries appear on the command line is important. By

default the linker processes object files and libraries in the order in which

they appear on the command line. Therefore, when you use a weak

symbol construction, like printf , in an object file or your own library,

you must position this object/library before the C library.

With the option ––first-library-first you can tell the linker to scan the

libraries from left to right, and extract symbols from the first library where

the linker finds it. This can be useful when you want to use newer

versions of a library routine.

Example:

lkr8c ––first–library–first a.a test.obj b.a

If the file test.obj calls a function which is both present in a.a and

b.a , normally the function in b.a would be extracted. With this option

the linker first tries to extract the symbol from the first library a.a .

7.4.2 HOW THE LINKER SEARCHES LIBRARIES

System libraries

You can specify the location of system libraries (specified with option -l)

in several ways. The linker searches the specified locations in the

following order:

1. The linker first looks in the directories that are specified in the

Directories dialog (-L option). If you specify the -L option without a

pathname, the linker stops searching after this step.

2. When the linker did not find the library (because it is not in the specified

library directory or because no directory is specified), it looks which paths

were set during installation. You can still change these paths if you like.

See environment variables LIBR8C in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

3. When the linker did not find the library, it tries the default lib directory

relative to the installation directory.

Using the Linker 7–17

• • • • • • • •

User library

If you use your own library, the linker searches the library in the current

directory only.

7.4.3 HOW THE LINKER EXTRACTS OBJECTS FROM

LIBRARIES

A library built with arr8c always contains an index part at the beginning

of the library. The linker scans this index while searching for unresolved

externals. However, to keep the index as small as possible, only the

defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the

corresponding object file is extracted from the library and is processed.

After processing the object file, the remaining library index is searched. If

after a complete search of the library unresolved externals are introduced,

the library index will be scanned again. After all files and libraries are

processed, and there are still unresolved externals and you did not specify

the linker option ––no-rescan, all libraries are rescanned again. This way

you do not have to worry about the library order. However, this

rescanning does not work for 'weak symbols'. If you use a weak symbol

construction, like printf , in an object file or your own library, you must

position this object/library before the C library

The -v option shows how libraries have been searched and which objects

have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbol

definition(s) to which you refer, are extracted from the library. This implies

that if you invoke the linker like:

lkr8c mylib.a

nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a .

It is possible to force a symbol as external (unresolved symbol) with the

option -e:

lkr8c –e main mylib.a

User’s Guide7–18
L
IN
K
E
R

In this case the linker searches for the symbol main in the library and (if

found) extracts the object that contains main . If this module contains new

unresolved symbols, the linker looks again in mylib.a . This process

repeats until no new unresolved symbols are found.

7.5 INCREMENTAL LINKING

With the R8C linker lkr8c it is possible to link incrementally. Incremental

linking means that you link some, but not all .obj modules to a

relocatable object file .eln . In this case the linker does not perform the

locating phase. With the second invocation, you specify both new .obj
files and the .eln file you had created with the first invocation.

Incremental linking is only possible on the command line.

lkr8c –r test1.obj –otest.eln
lkr8c test2.obj test.eln

This links the file test1.obj and generates the file test.eln . This file is

used again and linked together with test2.obj to create the file

task1.elf (the default name if no output filename is given in the default

ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the

output file until all .obj files are linked and the final .eln or .elf file

has been reached. The option -r for incremental linking also suppresses

warnings and errors because of unresolved symbols.

7.6 CONTROLLING THE LINKER WITH A SCRIPT

With the options on the command line you can control the linker's

behavior to a certain degree. From EDE it is also possible to determine

where your sections will be located, how much memory is available,

which sorts of memory are available, and so on. EDE passes these locating

directions to the linker via a script file. If you want even more control over

the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly

LSL. You can specify the script file to the linker, which reads it and locates

your application exactly as defined in the script. If you do not specify your

own script file, the linker always reads a standard script file which is

supplied with the toolchain.

Using the Linker 7–19

• • • • • • • •

7.6.1 PURPOSE OF THE LINKER SCRIPT LANGUAGE

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture.

This definition is supplied with the toolchain.

2. It provides the linker with a specification of the memory attached to

the target processor.

3. It provides the linker with information on how your application should

be located in memory. This gives you, for example, the possibility to

create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the

R8C architectures that Altium has supplied in the include.lsl directory.

Do not change these files.

If you use a different memory layout than described in the LSL file

supplied for the target core, you must specify this in a separate LSL file

and pass both the LSL file that describes the core architecture and your LSL

file that contains the memory specification to the linker. Next you may

want to specify how sections should be located and overlaid. You can do

this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard ANSI C

preprocessor keywords because the linker sends the script file first to the

C preprocessor before it starts interpreting the script.

The complete syntax is described in Chapter 7, Linker Script Language, in
the Reference Guide.

7.6.2 EDE AND LSL

In EDE you can specify the size of the stack and heap; the physical

memory attached to the processor; identify that particular address ranges

are reserved; and specify which sections are located where in memory.

EDE translates your input into an LSL file that is stored in the project

directory under the name project .lsl and passes this file to the linker.

User’s Guide7–20
L
IN
K
E
R

If you want to learn more about LSL you can inspect the generated file

project .lsl . Each time you close the Project Options dialog the file

project .lsl is updated and you can immediately see how your settings

are encoded in LSL.

Note that EDE supports ChromaCoding (applying color coding to text) and

template expansion when you edit LSL files.

7.6.3 STRUCTURE OF A LINKER SCRIPT FILE

A script file consists of several definitions. The definitions can appear in

any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should

convert logical addresses into physical addresses for a given type of core.

If the core supports multiple address spaces, then for each space the linker

must know how to perform this conversion. In this context a physical

address is an offset on a given internal or external bus. Additionally the

architecture definition contains information about items such as the

(hardware) stack and the interrupt vector table.

This specification is normally written by Altium. For the R8C core

architecture, a separate LSL file is provided r8c.lsl .

The architecture definition of the LSL file should not be changed by you

unless you also modify the core's hardware architecture. If the LSL file

describes a multi-core system an architecture definition must be available

for each different type of core.

The derivative definition (required)

The derivative definition describes the configuration of the internal

(on-chip) bus and memory system. Basically it tells the linker how to

convert offsets on the buses specified in the architecture definition into

offsets in internal memory. A derivative definition must be present in an

LSL file. Microcontrollers and DSPs often have internal memory and I/O

sub-systems apart from one or more cores. The design of such a chip is

called a derivative.

Using the Linker 7–21

• • • • • • • •

When you design an FPGA together with a PCB, the components on the

FPGA become part of the board design and there is no need to distinguish

between internal and external memory. For this reason you probably do

not need to work with derivative definitions at all. There are, however,

two situations where derivative definitions are useful:

1. When you re-use an FPGA design for several board designs it may be

practical to write a derivative definition for the FPGA design and

include it in the project LSL file.

2. When you want to use multiple cores of the same type, you must

instantiate the cores in a derivative definition, since the linker

automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor

definition is only needed in a multi-processor embedded system. It allows

you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker

automatically creates a processor named 'A' of derivative 'A'. This is why

for single-processor applications it is enough to specify the derivative in

the LSL file, for example with -dr8c.lsl.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative

definition to specify internal memory and on-chip buses. In the context of

a board specification the memory and bus definitions are used to define

external (off-chip) memory and buses. Given the above definitions the

linker can convert a logical address into an offset into an on-chip or

off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a

board specification. LSL provides language constructs to easily describe

single-core and heterogeneous or homogeneous multi-core systems. The

board specification describes all characteristics of your target board's

system buses, memory devices, I/O sub-systems, and cores that are of

interest to the linker. Based on the information provided in the board

specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

User’s Guide7–22
L
IN
K
E
R

• maintain an overall view of the used and free physical memory within

the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control

where input sections are located. Features are provided such as: the ability

to place sections at a given address, to place sections in a given order, and

to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the R8C

architecture, its external memory and how sections are located in memory,

may have the following skeleton:

architecture R8C
{
 // Specification of the R8C core architecture.
 // Written by Altium.
}

derivative X // derivative name is arbitrary
{
 // Specification of the derivative.
 // Written by Altium.
 core R8C // always specify the core
 {
 architecture = R8C;
 }

 bus data_bus // internal bus
 {
 // maps to data_bus in ”R8C” core
 }

 // internal memory
}

processor proc1 // processor name is arbitrary
{
 derivative = X;

 // You can omit this part, except if you use a
 // multi–core system.
}

Using the Linker 7–23

• • • • • • • •

memory ext_name
{
 // external memory definition
}

section_layout proc1:R8C:near // section layout
{
 // section placement statements

 // sections are located in address space ’near’
 // of core ’R8C’ of processor ’proc1’
}

7.6.4 THE ARCHITECTURE DEFINITION

Although you will probably not need to program the architecture

definition (unless you are building your own processor core) it helps to

understand the Linker Script Language and how the definitions are

interrelated.

Within an architecture definition the characteristics of a target processor

core that are important for the linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the

connections between logical address spaces and buses and the address

translations between buses

Address spaces

A logical address space is a memory range for which the core has a

separate way to encode an address into instructions. Most microcontrollers

and DSPs support multiple address spaces. For example, the R8C has

separate spaces for byte-addressable data and bit-addressable data.

Normally, the size of an address space is to 2N, with N the number of bits

used to encode the addresses.

The relation of an address space with another address space can be one of

the following:

• one space is a subset of the other. These are often used for "small"

absolute, and relative addressing.

User’s Guide7–24
L
IN
K
E
R

• the addresses in the two address spaces represent different locations so

they do not overlap. This means the core must have separate sets of

address lines for the address spaces. For example, in Harvard

architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units

(MAU), alignment restrictions, and page sizes.

The R8C architecture in LSL notation

The best way to program the architecture definition, is to start with a

drawing. The following figure shows a part of the R8C architecture:

0

64k

8k

space near

space bita

bus data_bus

id = 3
mau = 8

id = 1
mau = 8

mau = 8
width=8

Figure 7-2: Scheme of (part of) the R8C architecture

The figure shows two address spaces called near , and bita . The address

space bita is a subset of the address space near . All address spaces have

attributes like a number that identifies the logical space (id), a MAU size

and an alignment. In LSL notation the definition of these address spaces

looks as follows:

space near
{
 id = 1;
 mau = 8;

 map (src_offset=0x00000, dest_offset=0x00000,
 size=64k, dest=bus:data_bus);
}

space bita
{
 id = 3;
 mau = 8;

 map (src_offset=0x00000, dest_offset=0x00000,
 size=8K, dest=space:near);
}

Using the Linker 7–25

• • • • • • • •

The keyword map corresponds with the arrows in the drawing. You can

map:

• address space => address space

• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

Next the internal bus, named data_bus must be defined in LSL:

bus data_bus
{
 mau = 8;
 width = 8; // there are 8 data lines on the bus
}

This completes the LSL code in the architecture definition. Note that all

code above goes into the architecture definition, thus between:

architecture R8C
{
 All code above goes here.
}

7.6.5 THE DERIVATIVE DEFINITION

Although you will probably not need to program the derivative definition

(unless you are using multiple cores) the description below helps to

understand the Linker Script Language and how the definitions are

interrelated.

A derivative is the design of a processor, as implemented on a chip (or

FPGA). It comprises one or more cores and on-chip memory. The

derivative definition includes:

• core definition: an instance of a core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

User’s Guide7–26
L
IN
K
E
R

Core

Each derivative must have at least one core and each core must have a

specification of its core architecture. This core architecture must be defined

somewhere in the LSL file(s).

core R8C
{
 architecture = R8C;
}

Bus

Each derivative can contain a bus definition for connecting external

memory. In this example, the bus data_bus maps to the bus data_bus
defined in the architecture definition of core R8C:

bus data_bus
{
 mau = 8;
 width = 8;
 map (dest=bus:R8C:data_bus, dest_offset=0, size=256);
}

Memory

Memory is usually described in a separate memory definition, but you can

specify on-chip memory for a derivative. For example:

memory internal_ram
{
 type = ram;
 size = 16k;
 mau = 8;
 map(src_offset=0x0000, dest_offset=0x0000,
 size=16k, dest=bus:R8C:data_bus);
}

This completes the LSL code in the derivative definition. Note that all code

above goes into the derivative definition, thus between:

derivative X // name of derivative
{
 All code above goes here.
}

Using the Linker 7–27

• • • • • • • •

If you want to create a custom derivative and you want to use EDE to

select sections, the derivative must be called "R8C", since EDE uses this

name in the generated LSL file. If you want to specify external memory in

EDE, the custom derivative must contain a bus named "data_bus" for the

same reason. In EDE you have to define a target processor as specified in

section 5.5, Specifying a Target Processor, in Chapter Using the Compiler.

7.6.6 THE MEMORY DEFINITION

Once the core architecture is defined in LSL, you may want to extend the

processor with memory. You need to specify the location and size of the

physical external memory devices in the target system.

The principle is the same as defining the core's architecture but now you

need to fill the memory definition:

memory name
{
 memory definitions.
}

0

64k

8k

space near

space bita

bus data_bus

id = 3
mau = 8

id = 1
mau = 8

mau = 8
width=8

1k

0
memory iram

mau = 8

16k

memory irom

0

mau = 8

Figure 7-3: Adding external memory to the R8C architecture

Suppose your embedded system has 1k of RAM, named iram . and 16k of

ROM, named irom (see figure above). Both memories are connected to

the bus data_bus . In LSL this looks like:

User’s Guide7–28
L
IN
K
E
R

memory iram
{
 type = ram;
 size = 1k;
 mau = 8;
 map(src_offset=0x0000, dest_offset=0x0400,
 size=1k, dest=bus:R8C:data_bus);
}

The memory irom is connected to the bus with an offset of 0xC000:

memory irom
{
 type = rom;
 size = 16k;
 mau = 8;
 map(src_offset=0x0000, dest_offset=0xc000,
 size=16k, dest=bus:R8C:data_bus);
}

If you use a different memory layout than described in the LSL file

supplied for the target core, you can specify this in EDE or you can specify

this in a separate LSL file and pass both the LSL file that describes the core

architecture and your LSL file that contains the memory specification to the

linker.

In order to bypass the default memory setup, your memory definition file

must contain a #define __NODEFAULTMEM , and you must specify this file

before the core architecture LSL file.

7.6.7 THE SECTION LAYOUT DEFINITION: LOCATING

SECTIONS

Once you have defined the internal core architecture and optional

memory, you can actually define where your application must be located

in the physical memory.

During compilation, the compiler divides the application into sections.

Sections have a name, an indication in which address space it should be

located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections

are placed in address spaces, relative to each other, and what their

absolute run-time and load-time addresses will be. To illustrate section

placement the following example of a C program is used:

Using the Linker 7–29

• • • • • • • •

Example: section propagation through the toolchain

To illustrate section placement, the following example of a C program

(bat.c) is used. The program prints the number of times it has been

executed.

#define BATTERY_BACKUP_TAG 0xa5f0
#include <stdio.h>

int uninitialized_data;
int initialized_data = 1;
#pragma renamesect DA ”non_volatile”
int battery_backup_tag;
int battery_backup_invok;
#pragma endrenamesect DA

void main (void)
{
 if (battery_backup_tag != BATTERY_BACKUP_TAG)
 {
 // battery back–upped memory area contains invalid data
 // initialize the memory
 battery_backup_tag = BATTERY_BACKUP_TAG;
 battery_backup_invok = 0;
 }
 printf(”This application has been invoked %d times\n”,
 battery_backup_invok++);
}

The compiler assigns names and attributes to sections. With the #pragma
renamesect DA ” name” the compiler's default section naming

convention is overruled and a section with the name non_volatile is

defined. In this section the battery back-upped data is stored.

By default the compiler creates the section bat_CLR_DA, data, clear
(a section with the name bat_CLR_DA carrying section attributes "data"

and "clear") to store uninitialized data objects. The section attributes tell

the linker to locate the section in address space data and that the section

content should be filled with zeros at startup.

As a result of the #pragma renamesect DA ”non_volatile” , the data

objects between the pragma pair are placed in non_volatile_DA,
data, clear . Note that the compiler sets the "clear" attribute. However,

battery back-upped sections should not be cleared and therefore we will

change this section attribute using the LSL.

User’s Guide7–30
L
IN
K
E
R

The generated assembly may look like:

 extern (code)_printf
 extern (code)___printf_int
 extern (code)__START

 defsect ”bat_CO”, code
 sect ”bat_CO”
 global _main

; Function _main
_main:
 cmp.w #42480, _battery_backup_tag
 jeq _2
 .
 .
 .
 jsr _printf
 rts
 ; End of function
 ; End of section

 defsect ”bat_CLR_DA”, data, clear
 sect ”bat_CLR_DA”
 global _uninitialized_data
_uninitialized_data:
 ds 2
 ; End of sectionn

 defsect ”bat_INI_DA”, data, init
 sect ”bat_INI_DA”
 global _initialized_data
_initialized_data:
 dw 1
 ; End of section

 defsect ”non_volatile_DA”, data, clear
 sect ”non_volatile_DA”
 global _battery_backup_tag
_battery_backup_tag:
 ds 2
 global _battery_backup_invok
_battery_backup_invok:
 ds 2
 ; End of section

Using the Linker 7–31

• • • • • • • •

 sect ”bat_INI_DA”
__1_ini:
 db 84, 104, 105, 115, 32, 97, 112, 112, 108, 105
 db 99, 97, 116, 105, 111, 110, 32, 104, 97, 115
 db 32, 98, 101, 101, 110, 32, 105, 110, 118, 111
 db 107, 101, 100, 32, 37, 100, 32, 116, 105, 109
 db 101, 115, 10, 0
 ; This application has been invoked %d times\n

 ; Module end

Section placement

The number of invocations of the example program should be saved in

non-volatile (battery back-upped) memory. This is the memory iram
from the example in the previous section.

To control the locating of sections, you need to write one or more section

definitions in the LSL file. At least one for each address space where you

want to change the default behavior of the linker. In our example, we

need to locate sections in the address space near :

section_layout ::near
{
 Section placement statements
}

To locate sections, you must create a group in which you select sections

from your program. For the battery back-up example, we need to define

one group, which contains the section non_volatile_DA . All other

sections are located using the defaults specified in the architecture

definition. Section non_volatile_DA should be placed in non-volatile

ram. To achieve this, the run address refers to our non-volatile memory

called iram . Furthermore, the section should not be cleared and therefore

the attribute s (scratch) is assigned to the group:

group (ordered, run_addr = mem:iram, attributes = s)
{
 select ”non_volatile_DA”;
}

This completes the LSL file for the sample architecture and sample

program. You can now call the linker with this file and the sample

program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter

7, Linker Script Language, in the Reference Guide.

User’s Guide7–32
L
IN
K
E
R

7.6.8 THE PROCESSOR DEFINITION: USING

MULTI-PROCESSOR SYSTEMS

The processor definition is only needed when you write an LSL file for a

multi-processor embedded system. The processor definition explicitly

instantiates a derivative, allowing multiple processors of the same type.

processor proc_name
{
 derivative = deriv_name
}

If no processor definition is available that instantiates a derivative, a

processor is created with the same name as the derivative.

Using the Linker 7–33

• • • • • • • •

7.7 LINKER LABELS

The linker creates labels that you can use to refer to from within the

application software. Some of these labels are real labels at the beginning

or the end of a section. Other labels have a second function, these labels

are used to address generated data in the locating phase. The data is only

generated if the label is used.

Linker labels are labels starting with __lc_. The linker assigns addresses to

the following labels when they are referenced:

Label Description

__lc_cp Start of copy table. Same as __lc_ub_table . The copy
table gives the source and destination addresses of
sections to be copied. This table will be generated by the
linker only if this label is used.

__lc_bh Begin of heap. Same as __lc_ub_heap .

__lc_eh End of heap. Same as __lc_ue_heap .

__lc_bs Begin of stack. Same as __lc_ub_sp .

__lc_es End of stack. Same as __lc_ue_sp .

__lc_u_ name User defined label. The label must be defined in the LSL
file. For example,

 ”__lc_u_int_tab” = (INTTAB);

__lc_ub_ name

__lc_b_ name

Begin of section name. Also used to mark the begin of the
stack or heap or copy table.

__lc_ue_ name

__lc_e_ name

End of section name. Also used to mark the begin of the
stack or heap.

__lc_cb_ name Start address of an overlay section in ROM.

__lc_ce_ name End address of an overlay section in ROM.

__lc_gb_ name Begin of group name. This label appears in the output file
even if no reference to the label exist in the input file.

__lc_ge_ name End of group name. This label appears in the output file
even if no reference to the label exist in the input file.

Table 7-5: Linker labels

The linker only allocates space for the stack and/or heap when a reference

to either of the section labels exists in one of the input object files.

User’s Guide7–34
L
IN
K
E
R

At C level, all linker labels start with one leading underscore (the compiler

adds an extra underscore).

Example

Suppose in an LSL file you have defined a user stack section with the

name "ustack " (with the keyword stack). You can refer to the begin

and end of the stack from your C source as follows (labels have one

leading underscore):

#include <stdio.h>
extern char *_lc_ub_ustack;
extern char *_lc_ue_ustack;
void main()
{
 printf(”Size of user stack is %d\n”,
 _lc_ue_ustack – _lc_ub_ustack);
}

From assembly you can refer to the end of the user stack with:

extern __lc_ue_ustack ; user stack end

Using the Linker 7–35

• • • • • • • •

7.8 GENERATING A MAP FILE

The map file is an additional output file that contains information about

the location of sections and symbols. You can customize the type of

information that should be included in the map file.

To generate a map file

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Map File.

3. Select Generate a linker map file (.map)

4. (Optional) Enable the options to include that information in the map

file.

Example on the command line

lkr8c –Mtest.map test.o

With this command the list file test.map is created.

See section 5.2, Linker Map File Format, in Chapter List File Formats of the

Reference Guide for an explanation of the format of the map file.

User’s Guide7–36
L
IN
K
E
R

7.9 LINKER ERROR MESSAGES

The linker produces error messages of the following types:

F Fatal errors

After a fatal error the linker immediately aborts the link/locate process.

E Errors

Errors are reported, but the linker continues linking and locating. No

output files are produced unless you have set the linker option

––keep-output-files.

W Warnings

Warning messages do not result into an erroneous output file. They are

meant to draw your attention to assumptions of the linker for a situation

which may not be correct. You can control warnings in the Linker |

Diagnostics page of the Project | Project Options... menu (linker

option –w).

I Information

Verbose information messages do not indicate an error but tell something

about a process or the state of the linker. To see verbose information, use

the linker option –v.

S System errors

System errors occur when internal consistency checks fail and should

never occur. When you still receive the system error message

S6##: message

please report the error number and as many details as possible about the

context in which the error occurred. The following helps you to prepare

an e-mail using EDE:

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

Using the Linker 7–37

• • • • • • • •

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

lkr8c ––diag= [format :]{ all | number ,...}

See linker option ––diag in section 4.3, Linker Options in Chapter Tool
Options of the R8C Reference Guide.

User’s Guide7–38
L
IN
K
E
R

8

USING THE
UTILITIES

C
H

A
P

T
E

R

User’s Guide8–2
U
T
IL
IT
IE
S

8

C
H

A
P

T
E

R

Using the Utilities 8–3

• • • • • • • •

8.1 INTRODUCTION

The TASKING toolchain for the R8C processor family comes with a

number of utilities that provide useful extra features.

ccr8c A control program for the R8C toolchain. The control

program invokes all tools in the toolchain and lets you

quickly generate an absolute object file from C source input

files.

mkr8c A utility program to maintain, update, and reconstruct groups

of programs. The make utility looks whether files are out of

date, rebuilds them and determines which other files as a

consequence also need to be rebuild.

arr8c An ELF archiver. With this utility you create and maintain

object library files.

User’s Guide8–4
U
T
IL
IT
IE
S

8.2 CONTROL PROGRAM

The control program ccr8c is a tool that invokes all tools in the toolchain

for you. It provides a quick and easy way to generate the final absolute

object file out of your C sources without the need to invoke the compiler,

assembler and linker manually.

8.2.1 CALLING THE CONTROL PROGRAM

You can only call the control program from the command line. The

invocation syntax is

ccr8c [[option]... [file]...]...

For example:

ccr8c –v test.c

The control program calls all tools in the toolchain and generates the

absolute object file test.elf . With the control program option -v you

can see how the control program calls the tools:

+ c:\cr8c\bin\cr8c –o test.src test.c
+ c:\cr8c\bin\asr8c –o test.obj test.src
+ c:\cr8c\bin\lkr8c test.obj –o test.elf ––map–file
–lc –lfp –lrt

By default, the control program removes the intermediate output files

(test.src in the example above) afterwards, unless you specify the

command line option -t (––keep-temporary-files).

Recognized input files

The control program recognizes the following input files:

• Files with a .c suffix are interpreted as C source programs and are

passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly

source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source

files. They are directly passed to the assembler.

• Files with a .a suffix are interpreted as library files and are passed to

the linker.

Using the Utilities 8–5

• • • • • • • •

• Files with a .obj suffix are interpreted as object files and are passed to

the linker.

• Files with a .eln suffix are interpreted as linked object files and are

passed to the locating phase of the linker. The linker accepts only one

.eln file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and

is passed to the linker.

Options of the control program

The following control program options are available:

Description Option

Information

Display invocation options –?

Display version header –V

Show description of diagnostics ––diag= [fmt:]{all |nr}

Verbose option: show commands invoked
Verbose option: show commands without executing

–v
–n

Suppress all warnings –w

Treat warnings as errors ––warnings–as–
errors

Language

ISO C standard 90 or 99 (default: 99) –c{90|99}

Language extensions
Allow C++ style comments in C source
Check assignment constant string to
non constant string pointer

–Aflag
–Ap
–Ax

Preprocessing

Define preprocessor macro –Dmacro[=def]

Remove preprocessor macro –Umacro

Store the C compiler preprocess output (file.pre) –Eflag

Code generation

Select CPU type
Generate symbolic debug information

–Ccpu
–g

Libraries

Add library directory –Ldir

Add library –llib

User’s Guide8–6
U
T
IL
IT
IE
S

OptionDescription

Ignore the default search path for libraries –– ignore–default–
library–path

Do not include default list of libraries ––no–default–
libraries

Use trapped floating–point library –– fp–trap

Input files

Specify linker script file –d file

Read options from file –f file

Add include directory –Idir

Output files

Redirect diagnostic messages to a file ––error–file

Select final output file:
 relocatable output file
 object file(s)
 assembly file(s)

–cl
–co
–cs

Specify linker output format (ELF, IEEE) –– format= type

Keep output file(s) after errors –k

Do not generate linker map file ––no–map–file

Specify name of output file –o file

Do not delete intermediate (temporary) files –t

Table 8-1: Overview of control program options

For a complete list and description of all control program options, see

section 4.4, Control Program Options, in Chapter Tool Options of the

Reference Guide.

The options in table 8-1 are options that the control program interprets

itself. The control program however can also pass an option directly to a

tool. Such an option is not interpreted by the control program but by the

tool itself. The next example illustrates how an option is passed directly to

the linker to link a user defined library:

ccr8c –Wl–lmylib test.c

Use the following options to pass arguments to the various tools:

Using the Utilities 8–7

• • • • • • • •

Description Option

Pass argument directly to the C compiler
Pass argument directly to the assembler
Pass argument directly to the linker

–Wcarg
–Waarg
–Wlarg

Table 8-2: Control program options to pass an option directly to a tool

If you specify an unknown option to the control program, the control

program looks if it is an option for a specific tool. If so, it passes the

option directly to the tool. However, it is recommended to use the control

program options for passing arguments directly to tools.

With the environment variable CCR8COPT you can define options and/or

arguments that the control programs always processes before the command

line arguments.

For example, if you use the control program always with the option

––no-map-file (do not generate a linker map file), you can specify

"--no-map-file" to the environment variable CCR8COPT.

See section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation.

User’s Guide8–8
U
T
IL
IT
IE
S

8.3 MAKE UTILITY

If you are working with large quantities of files, or if you need to build

several targets, it is rather time-consuming to call the individual tools to

compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program ccr8c and

define an options file. You can even create a batch file or script that

invokes the control program for each target you want to create. But with

these methods all files are completely compiled, assembled, linked and

located to obtain the target file, even if you changed just one C source.

This may demand a lot of (CPU) time on your host.

The make utility mkr8c is a tool to maintain, update, and reconstruct

groups of programs. The make utility looks which files are out-of-date

and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

• the target it should build, specified as argument on the command line

• the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mkr8c.mk which contains

predefined rules and macros. See section 8.3.2, Writing a Makefile.

The makefile contains the relationships among your files (called

dependencies) and the commands that are necessary to create each of the

files (called rules). Typically, the absolute object file (.elf) is updated

when one of its dependencies has changed. The absolute file depends on

.obj files and libraries that must be linked together. The .obj files on

their turn depend on .src files that must be assembled and finally, .src
files depend on the C source files (.c) that must be compiled. In the

makefile makefile this looks like:

test.src : test.c # dependency
 cr8c test.c # rule

test.obj : test.src
 asr8c test.src

test.elf : test.obj
 lkr8c –otest.elf test.obj –lc –lfp –lrt

Using the Utilities 8–9

• • • • • • • •

You can use any command that is valid on the command line as a rule in

the makefile . So, rules are not restricted to invocation of the toolchain.

Example

To build the target test.elf , call mkr8c with one of the following lines:

mkr8c test.elf

mkr8c –f mymake.mak test.elf

By default, the make utility reads makefile so you do not need to specify

it on the command line. If you want to use another name for the makefile,

use the option -f my_makefile.

If you do not specify a target, mkr8c uses the first target defined in the

makefile. In this example it would build test.src instead of test.elf .

The make utility now tries to build test.elf based on the makefile
and peforms the following steps:

1. From the makefile the make utility reads that test.elf depends on

test.obj .

2. If test.obj does not exist or is out-of-date, the make utility first tries

to build this file and reads from the makefile that test.obj depends

on test.src .

3. If test.src does exist, the make utility now creates test.obj by

executing the rule for it: asr8c test.src .

4. There are no other files necessary to create test.elf so the make

utility now can use test.obj to create test.elf by executing the

rule lkr8c –otest.elf test.obj –lc –lfp –lrt .

The make utility has now built test.elf but it only used the assembler

to update test.obj and the linker to create test.elf .

If you compare this to the control program:

ccr8c test.c

This invocation has the same effect but now all files are recompiled

(assembled, linked and located).

User’s Guide8–10
U
T
IL
IT
IE
S

8.3.1 CALLING THE MAKE UTILITY

You can only call the make utility from the command line. The invocation

syntax is

mkr8c [[options] [targets] [macro=def]...]

For example:

mkr8c test.elf

target You can specify any target that is defined in the makefile.

A target can also be one of the intermediate files specified

in the makefile.

macro=def Macro definition. This definition remains fixed for the

mkr8c invocation. It overrides any regular definitions for

the specified macro within the makefiles and from the

environment. It is inherited by subordinate mkr8c's but

act as an environment variable for these. That is,

depending on the -e setting, it may be overridden by a

makefile definition.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an

error. Otherwise it returns an exit status of 0.

Options of the make utility

The following make utility options are available:

Description Option

Display options
Display version header

–?
–V

Verbose

Print makefile lines while being read
Display time comparisons which indicate a target is out of date
Display current date and time
Verbose option: show commands without executing (dry run)
Do not show commands before execution
Do not build, only indicate whether target is up–to–date

–D/–DD
–d/–dd
–time
–n
–s
–q

Using the Utilities 8–11

• • • • • • • •

OptionDescription

Input files

Use makefile instead of the standard makefile makefile
Change to directory before reading the makefile
Read options from file
Do not read the mkr8c.mk file

–f makefile
–G path
–m file
–r

Process

Always rebuild target without checking whether it is out–of–date
Run as a child process
Environment variables override macro definitions
Do not remove temporary files
On error, only stop rebuilding current target
Overrule the option –k (only stop rebuilding current target)
Make all target files precious
Touch the target files instead of rebuilding them
Treat target as if it has just been reconstructed

–a
–c
–e
–K
–k
–S
–p
–t
–W target

Error messages

Redirect error messages and verbose messages to a file
Ignore error codes returned by commands
Redirect messages to standard out instead of standard error
Show extended error messages

–err file
–i
–w
–x

Table 8-3: Overview of control program options

For a complete list and description of all make utility options, see section

4.5, Make Utility Options, in Chapter Tool Options of the Reference Guide.

8.3.2 WRITING A MAKEFILE

In addition to the standard makefile makefile , the make utility always

reads the makefile mkr8c.mk before other inputs. This system makefile

contains implicit rules and predefined macros that you can use in the

makefile makefile .

With the option -r (Do not read the mkr8c.mk file) you can prevent the

make utility from reading mkr8c.mk .

The default name of the makefile is makefile in the current directory. If

on a UNIX system this file is not found, the file Makefile is used as the

default. If you want to use other makefiles, use the option -f my_makefile.

User’s Guide8–12
U
T
IL
IT
IE
S

The makefile can contain a mixture of:

• targets and dependencies

• rules

• macro definitions or functions

• comment lines

• include lines

• export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro.

this comment line ends with a backslash \$(EMPTY)
this is a new line

Targets and dependencies

The basis of the makefile is a set of targets, dependencies and rules. A

target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
 [rule]
 ...

Target lines must always start at the beginning of a line, leading white

spaces (tabs or spaces) are not allowed. A target line consists of one or

more targets, a semicolon and a set of files which are required to build the

target (dependencies). The target itself can be one or more filenames or

symbolic names.:

all: demo.elf final.elf

demo.elf final.elf: test.obj demo.obj final.obj

You can now can specify the target you want to build to the make utility.

The following three invocations all have the same effect:

mkr8c
mkr8c all
mkr8c demo.elf final.elf

Using the Utilities 8–13

• • • • • • • •

If you do not specify a target, the first target in the makefile (in this

example all) is build. The target all depends on demo.elf and

final.elf so the second and third invocation have also the same effect

and the files demo.elf and final.elf are built.

In MS-Windows you can normally use colons to denote drive letters. The

following works as intended: c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are

added to form the target's complete dependency list:

all: demo.elf # These two lines are equivalent with:
all: final.elf # all: demo.elf final.elf

For target lines, macros and functions are expanded at the moment they

are read by the make utility. Normally macros are not expanded until the

moment they are actually used.

Special Targets

There are a number of special targets. Their names begin with a period.

.DEFAULT: If you call the make utility with a target that has no definition

in the make file, this target is build.

.DONE: When the make utility has finished building the specified

targets, it continues with the rules following this target.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying the

option -i on the command line.

.INIT: The rules following this target are executed before any other

targets are build.

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying the

option -s on the command line.

.SUFFIXES: This target specifies a list of file extensions. Instead of

building a completely specified target, you now can build a

target that has a certain file extension. Implicit rules to build

files with a number of extensions are included in the system

makefile mkr8c.mk .

User’s Guide8–14
U
T
IL
IT
IE
S

If you specify this target with dependencies, these are added

to the existing .SUFFIXES target in mkr8c.mk . If you

specify this target without dependencies, the existing list is

cleared.

.PRECIOUS: Dependency files mentioned for this target are never

removed. Normally, if a command in a rule returns an error

or when the target construction is interrupted, the make

utility removes that target file. You can use the -p command

line option to make all target files precious.

Rules

A line with leading white space (tabs or spaces) is considered as a rule

and associated with the most recently preceding dependency line. A rule
is a line with commands that are executed to build the associated target.

A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
 mv test.c final.c # rule1
 cr8c final.c # rule2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command (ERRORLEVEL

in MS-DOS). Normally the make utility stops if a non-zero exit code is

returned. This is the same as specifying the option -i on the command

line or specifying the special .IGNORE target.

+ The make utility uses a shell or COMMAND.COM to execute the

command. If the '+' is not followed by a shell line, but the command is

a DOS command or if redirection is used (<, |, >), the shell line is

passed to COMMAND.COM anyway. For UNIX, redirection, backquote

(`) parentheses and variables force the use of a shell.

You can force mkr8c to execute multiple command lines in one shell

environment. This is accomplished with the token combination ';\'. For

example:

cd c:\cr8c\bin ;\
ccr8c –V

Using the Utilities 8–15

• • • • • • • •

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

The make utility can generate inline temporary files. If a line contains

<<LABEL (no whitespaces!) then all subsequent lines are placed in a

temporary file until the line LABEL is encountered. Next, <<LABEL is
replaced by the name of the temporary file.

Example:

lkr8c –o $@ –f <<EOF
$(separate ”\n” $(match .obj $!))
$(separate ”\n” $(match .a $!))
$(LKFLAGS)

EOF

The three lines between <<EOF and EOF are written to a temporary file

(for example mkce4c0a.tmp), and the rule is rewritten as lkr8c –o $@
–f mkce4c0a.tmp .

Instead of specifying a specific target, you can also define a general target.

A general target specifies the rules to generate a file with extension . ex1
to a file with extension . ex2 . For example:

.SUFFIXES: .c

.c.src :
 lkr8c $<

Read this as: to build a file with extension .src out of a file with

extension .c , call the compiler with $<. $< is a predefined macro that is

replaced with the basename of the specified file. The special target

.SUFFIXES: is followed by a list of file extensions of the files that are

required to build the target.

Implicit Rules

Implicit rules are stored in the system makefile mkr8c.mk and are

intimately tied to the .SUFFIXES special target. Each dependency that

follows the .SUFFIXES target, defines an extension to a filename which

must be used to build another file. The implicit rules then define how to

actually build one file from another. These files share a common

basename, but have different extensions.

User’s Guide8–16
U
T
IL
IT
IE
S

If the specified target on the command line is not defined in the makefile

or has not rules in the makefile, the make utility looks if there is an

implicit rule to build the target.

Example

This makefile says that prog.elf depends on two files prog.obj and

sub.obj , and that they in turn depend on their corresponding source files

(prog.c and sub.c) along with the common file inc.h .

LIB = –lc # macro

prog.elf: prog.obj sub.obj
 lkr8c prog.obj sub.obj $(LIB) –o prog.elf

prog.obj: prog.c inc.h
 cr8c prog.c
 asr8c prog.src

sub.obj: sub.c inc.h
 cr8c sub.c
 asr8c sub.src

The following makefile uses implicit rules (from mkr8c.mk) to perform

the same job.

LKFLAGS = –lc # macro used by implicit rules
prog.elf: prog.obj sub.obj # implicit rule used
prog.obj: prog.c inc.h # implicit rule used
sub.obj: sub.c inc.h # implicit rule used

Files

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mkr8c.mk Default dependencies and rules.

Diagnostics

mkr8c returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Macro definitions

A macros is a symbol names that is replaced with it's definition before the

makefile is executed. Although the macro name can consist of lower case

or upper case characters, upper case is an accepted convention. The

general form of a macro definition is:

Using the Utilities 8–17

• • • • • • • •

MACRO = text and more text

Spaces around the equal sign are not significant. To use a macro, you must

access it's contents:

$(MACRO) # you can read this as
${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note

that the expansion is done recursively, so the body of a macro may

contain other macros. These macros are expanded when the macro is

actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

The macro FOOD is expanded as meat and/or vegetables and
water at the moment it is used in the export line.

Predefined Macros

MAKE Holds the value mkr8c . Any line which uses MAKE,
temporarily overrides the option -n (Show commands

without executing), just for the duration of the one line. This

way you can test nested calls to MAKE with the option -n.

MAKEFLAGS

Holds the set of options provided to mkr8c (except for the

options -f and -d). If this macro is exported to set the

environment variable MAKEFLAGS, the set of options is

processed before any command line options. You can pass

this macro explicitly to nested mkr8c's, but it is also

available to these invocations as an environment variable.

PRODDIR Holds the name of the directory where mkr8c is installed.

You can use this macro to refer to files belonging to the

product, for example a library source file.

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mkr8c is installed in the directory /cr8c/bin this

line expands to:

DOPRINT = /cr8c/lib/src/_doprint.c

User’s Guide8–18
U
T
IL
IT
IE
S

SHELLCMD Holds the default list of commands which are local to the

SHELL. If a rule is an invocation of one of these commands, a

SHELL is automatically spawned to handle it.

TMP_CCPROG

Holds the name of the control program: ccr8c . If this macro

and the TMP_CCOPT macro are set and the command line

argument list for the control program exceeds 127 characters,

then mkr8c creates a temporary file with the command line

arguments. mkr8c calls the control program with the

temporary file as command input file.

TMP_CCOPT

Holds -f, the control program option that tells it to read

options from a file. (This macro is only available for the

Windows command prompt version of mkr8c.)

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

Using the Utilities 8–19

• • • • • • • •

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match , separate , protect , exist and

nexist .

match The match function yields all arguments which match a

certain suffix:

$(match .obj prog.obj sub.obj mylib.a)

yields:

prog.obj sub.obj

separate The separate function concatenates its arguments using the

first argument as the separator. If the first argument is

enclosed in double quotes then '\n' is interpreted as a

newline character, '\t' is interpreted as a tab, '\ooo' is

interpreted as an octal value (where, ooo is one to three octal

digits), and spaces are taken literally. For example:

$(separate ”\n” prog.obj sub.obj)

results in:

prog.obj
sub.obj

Function arguments may be macros or functions themselves.

So,

$(separate ”\n” $(match .obj $!))

yields all object files the current target depends on, separated

by a newline string.

protect The protect function adds one level of quoting. This

function has one argument which can contain white space. If

the argument contains any white space, single quotes, double

quotes, or backslashes, it is enclosed in double quotes. In

addition, any double quote or backslash is escaped with a

backslash.

User’s Guide8–20
U
T
IL
IT
IE
S

Example:

echo $(protect I’ll show you the ”protect”
function)

yields:

echo ”I’ll show you the \”protect\”
function”

exist The exist function expands to its second argument if the

first argument is an existing file or directory.

Example:

$(exist test.c ccr8c test.c)

When the file test.c exists, it yields:

ccr8c test.c

When the file test.c does not exist nothing is expanded.

nexist The nexist function is the opposite of the exist function. It

expands to its second argument if the first argument is not an

existing file or directory.

Example:

$(nexist test.src ccr8c test.c)

Conditional Processing

Lines containing ifdef , ifndef , else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef , ifndef , else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

Using the Utilities 8–21

• • • • • • • •

First the macro-name after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef , the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

See also Defining Macros in section 4.5, Make Utility Options, in Chapter

Tools Options of the Reference Guide.

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#"

is inside a quoted string, it is not treated as a comment. Completely blank

lines are ignored.

test.src : test.c # this is comment and is
 cr8c test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like

including a .h file in a C source). Macros in the name of the included file

are expanded before the file is included. Include files may be nested.

include makefile2

Export lines

An export line is used to export a macro definition to the environment of

any command executed by the make utility.

GREETING = Hello

export GREETING

This example creates the environment variable GREETING with the value

Hello . The macros is exported at the moment the export line is read so

the macro definition has to proceed the export line.

User’s Guide8–22
U
T
IL
IT
IE
S

8.4 ARCHIVER

The archiver arr8c is a program to build and maintain your own library

files. A library file is a file with extension .a and contains one or more

object files (.obj) that may be used by the linker.

The archiver has five main functionalities:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

assembler

relocatable object file

linker

asr8c

lkr8c

relocatable object library
.a

archiver
arr8c .obj

Figure 8-1: ELF/DWARF archiver and library maintainer

The linker optionally includes object modules from a library if that module

resolves an external symbol definition in one of the modules that are read

before.

8.4.1 CALLING THE ARCHIVER

You can only call the archiver from the command line. The invocation

syntax is:

arr8c key_option [sub_ option ...] library [object_file]

key_option With a key option you specify the main task which the

archiver should perform. You must always specify a key

option.

Using the Utilities 8–23

• • • • • • • •

sub_option Sub-options specify into more detail how the archiver should

perform the task that is specified with the key option. It is

not obligatory to specify sub-options.

library The name of the library file on which the archiver performs

the specified action. You must always specify a library name,

except for the option -? and -V. When the library is not in

the current directory, specify the complete path (either

absolute or relative) to the library.

object_file The name of an object file. You must always specify an

object file name when you add, extract, replace or remove an

object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub–option

Main functions (key options)

Replace or add an object module –r –a –b –c –u –v

Extract an object module from the library –x –v

Delete object module from library –d –v

Move object module to another position –m –a –b –v

Print a table of contents of the library –t –s0 –s1

Print object module to standard output –p

Sub–options

Append or move new modules after existing
module name

–a name

Append or move new modules before
existing module name

–b name

Create library without notification if library
does not exist

–c

Preserve last–modified date from the library –o

Print symbols in library modules –s{0|1}

Replace only newer modules –u

Verbose –v

User’s Guide8–24
U
T
IL
IT
IE
S

Sub–optionOptionDescription

Miscellaneous

Display options –?

Display version header –V

Read options from file –f file

Suppress warnings above level n –wn

Table 8-4: Overview of archiver options and sub-options

For a complete list and description of all archiver options, see section 4.6,

Archiver Options, in Chapter Tool Options of the Reference Guide.

8.4.2 EXAMPLES

Create a new library

If you add modules to a library that does not yet exist, the library is

created. To create a new library with the name mylib.a and add the

object modules cstart.obj and calc.obj to it:

arr8c –r mylib.a cstart.obj calc.obj

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the

end of the module. (If the module already exists in the library, it is

replaced.)

arr8c –r mylib.a mod3.obj

Print a list of object modules in the library

To inspect the contents of the library:

arr8c –t mylib.a

The library has the following contents:

cstart.obj
calc.obj
mod3.obj

Using the Utilities 8–25

• • • • • • • •

Move an object module to another position

To move mod3.obj to the beginning of the library, position it just before

cstart.obj :

arr8c –mb cstart.obj mylib.a mod3.obj

Delete an object module from the library

To delete the object module cstart.obj from the library mylib.a :

arr8c –d mylib.a cstart.obj

Extract all modules from the library

Extract all modules from the library mylib.a :

arr8c –x mylib.a

User’s Guide8–26
U
T
IL
IT
IE
S

A

FLEXIBLE LICENSE
MANAGER (FLEXlm)

A
P

P
E

N
D

IX

User’s GuideA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Globetrotter Software's Flexible License Manager

and how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

User’s GuideA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Software Installation.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

on UNIX, the directory /usr/local/flexlm will contain two

subdirectories, bin and licenses . After installing SW000098 on Windows

the directory c:\flexlm will contain the subdirectory bin . The exact

location may differ if FLEXlm has already been installed as part of a

non-TASKING product but in general there will be a directory for

executables such as bin . That directory must contain a copy of the

Tasking daemon shipped with every TASKING product. It also contains

the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a license file must be present containing the information of all

licenses. This file is usually called license.dat . The default location of

the license file is in directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX. If you did install SW000098

then the licenses directory on UNIX will be empty, and on Windows

the file license.dat will be empty. In that case you can copy the

license.dat file from the product to the licenses directory after filling

in the data from your "License Information Form".

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

User’s GuideA–6
F
L
E
X
L
M

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If the pathname of the resulting license file differs from this default

location then you must set the environment variable LM_LICENSE_FILE to

the correct pathname. If you have more than one product using the

FLEXlm license manager you can specify multiple license files by

separating each pathname (lfpath) with a ';' (on UNIX also ':') :

Windows:

set LM_LICENSE_FILE= lfpath[;lfpath]...

UNIX:

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If you are running the TASKING software on multiple nodes, you have

three options for making your license file available on all the machines:

1. Place the license file in a partition which is available (via NFS on Unix

systems) to all nodes in the network that need the license file.

2. Copy the license file to all of the nodes where it is needed.

3. Set LM_LICENSE_FILE to "port@host", where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/license.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/flexlm/Tasking.opt (UNIX), then

you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexlm/Tasking.opt

User’s GuideA–8
F
L
E
X
L
M

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

3 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmcksum

Prints license checksums.

lmdiag (Windows only)

Diagnoses license checkout problems.

lmdown

Gracefully shuts down all license daemons (both lmgrd all vendor

daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

lmgrd

The main daemon program for FLEXlm.

lmhostid

Reports the hostid of a system.

lmremove

Removes a single user's license for a specified feature.

lmreread

Causes the license daemon to reread the license file and start any new

vendor daemons.

lmstat

Helps you monitor the status of all network licensing activities.

lmswitchr

Switches the report log file.

lmver

Reports the FLEXlm version of a library or binary file.

lmtools (Windows only)

This is a graphical Windows version of the license administration tools.

User’s GuideA–10
F
L
E
X
L
M

3.1 LMCKSUM

Name

lmcksum - print license checksums

Synopsis

lmcksum [-c license_file] [-k]

Description

The lmcksum program will perform a checksum of a license file. This is

useful to verify data entry errors at your location. lmcksum will print a

line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

• hostid on the SERVER lines

• daemon name on the DAEMON lines

• feature name, version, daemon name, expiration date, # of licenses,

encription code, vendor string and hostid on the FEATURE lines

• daemon name and encryption code on FEATURESET lines

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmcksum looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmcksum looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,

lmcksum will compute the checksum using the exact case of

the FEATURE's and FEATURESET's encryption code.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3.2 LMDIAG (Windows only)

Name

lmdiag - diagnose license checkout problems

Synopsis

lmdiag [-c license_file] [-n] [feature]

Description

lmdiag (Windows only) allows you to diagnose problems when you

cannot check out a license.

If no feature is specified, lmdiag will operate on all features in the license

file(s) in your path. lmdiag will first print information about the license,

then attempt to check out each license. If the checkout succeeds, lmdiag

will indicate this. If the checkout fails, lmdiag will give you the reason for

the failure. If the checkout fails because lmdiag cannot connect to the

license server, then you have the option of running "extended connection

diagnostics".

These extended diagnostics attempt to connect to each port on the license

server node, and can detect if the port number in the license file is

incorrect. lmdiag will indicate each port number that is listening, and if it

is an lmgrd process, lmdiag will indicate this as well. If lmdiag finds the

vendor daemon for the feature being tested, then it will indicate the

correct port number for the license file to correct the problem.

Parameters

feature Diagnose this feature only.

Options

-c license_file
Diagnose the specified license_file. If no -c option is

specified, lmdiag looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdiag looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-n Run in non-interactive mode; lmdiag will not prompt for

any input in this mode. In this mode, extended connection

diagnostics are not available.

User’s GuideA–12
F
L
E
X
L
M

3.3 LMDOWN

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. You may want to protect the execution of lmdown, since shutting

down the servers causes users to lose their licenses. See the -p option in

Section 3.4, lmgrd.

lmdown sends a message to every license daemon asking it to shut down.

The license daemons write out their last messages to the log file, close the

file, and exit. All licenses which have been given out by those daemons

will be revoked, so that the next time a client program goes to verify his

license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd, lmstat, lmreread

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

3.4 LMGRD

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-2 -p] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features. On UNIX systems, it

is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-2 -p Restricts usage of lmdown, lmreread, and lmremove to a

FLEXlm administrator who is by default root. If there is a

UNIX group called "lmadmin" then use is restricted to only

members of that group. If root is not a member of this group,

then root does not have permission to use any of the above

utilities.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

User’s GuideA–14
F
L
E
X
L
M

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown, lmstat

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

3.5 LMHOSTID

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1999 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

User’s GuideA–16
F
L
E
X
L
M

3.6 LMREMOVE

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

lmstat

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

3.7 LMREREAD

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

The license administrator may want to protect the execution of lmreread.

See the -p option in Section 3.4, lmgrd for details about securing access to

lmreread.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You cannot use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down (lmdown) the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file license.dat in the default location.

lmdown

User’s GuideA–18
F
L
E
X
L
M

3.8 LMSTAT

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Options

-a Display all information.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd

User’s GuideA–20
F
L
E
X
L
M

3.9 LMSWITCHR (Windows only)

Name

lmswitchr - switch the report log file

Synopsis

lmswitchr [-c license_file] feature new-file

or:

lmswitchr [-c license_file] vendor new-file

Description

lmswitchr (Windows only) switches the report writer (REPORTLOG) log

file. It will also start a new REPORTLOG file if one does not already exist.

Parameters

feature Any feature this daemon supports.

vendor The name of the vendor daemon (such as Tasking).

new-file New file path.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmswitchr looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmswitchr looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

3.10 LMVER

Name

lmver - report the FLEXlm version of a library or binary file

Synopsis

lmver filename

Description

The lmver utility reports the FLEXlm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to

get the FLEXlm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

User’s GuideA–22
F
L
E
X
L
M

3.11 LICENSE ADMINISTRATION TOOLS FOR WINDOWS

3.11.1 LMTOOLS FOR WINDOWS

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is

provided. It has the same functionality as listed in the previous sections

but is graphically-oriented. Simply run the program (Start | Programs
| TASKING FLEXlm | FLEXlm Tools) and choose a button for the

functionality required. Refer to the previous sections for information about

the options of each feature. The command line interface is replaced by

pop-up dialogs that can be filled out.The central EDIT field is where the

license file path is placed. This will be used for all other functions and

replaces the "-c license_file" argument in the other utilities.

The HOSTID button displays the hostid's for the computer on which the

program is running. The TIME button prints out the system's internal time

settings, intended to diagnose any time zone problems. The TCP
Settings button is intended to fix a bug in the Microsoft TCP protocol

stack which has a symptom of very slow connections to computers. After

pressing this button, the system will need to be rebooted for the settings to

become effective.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

3.11.2 FLEXLM LICENSE MANAGER FOR WINDOWS

lmgrd.exe can be run manually or using the graphical Windows tool. You

can start this tool from the FLEXlm program folder. Click on Start |
Programs | TASKING FLEXlm | FLEXlm Tools

From the Control tab you can start, stop, and check the status of your

license server. Select the Setup tab to enter information about your

license server.

User’s GuideA–24
F
L
E
X
L
M

Select the Control tab and click the Start button to start your license

server. lmgrd.exe will be launched as a background application with the

license file and debug log file locations passed as parameters.

If you want lmgrd.exe to start automatically on NT, select the Use NT
Services check box and lmgrd.exe will be installed as an NT service.

Next, select the Start Server at Power–UP check box.

The Licenses tab provides information about the license file and the

Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

User’s GuideA–26
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn
EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license
daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

User’s GuideA–28
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–29

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting
Error closing lock file
Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

User’s GuideA–30
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–31

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

User’s GuideA–32
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–33

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

User’s GuideA–34
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license key is incorrect. If this is the case then there must be an error

message in the log file of lmgrd. Correct the key using the license data

sheet for the product. Finally rerun lmreread. The log file of lmgrd is

usually specified to lmgrd at startup with the -l option or with >.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–35

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

User’s GuideA–36
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

Flexible License Manager (FLEXlm) A–37

• • • • • • • •

6 FREQUENTLY ASKED QUESTIONS (FAQS)

6.1 LICENSE FILE QUESTIONS

I've received FLEXlm license files from 2 different companies. Do I
have to combine them?

You don't have to combine license files. Each license file that has any

'counted' lines (the 'number of licenses' field is >0) requires a server. It's

perfectly OK to have any number of separate license files, with different

lmgrd server processes supporting each file. Moreover, since lmgrd is a

lightweight process, for sites without system administrators, this is often

the simplest (and therefore recommended) way to proceed. With v6+

lmgrd/lmdown/lmreread, you can stop/reread/restart a single vendor

daemon (of any FLEXlm version). This makes combining licenses more

attractive than previously. Also, if the application is v6+, using 'dir/*.lic' for

license file management behaves like combining licenses without

physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine

license files to ease administration of FLEXlm licenses. It's purely a matter

of preference.

Does FLEXlm handle dates in the year 2000 and beyond?

Yes. The FLEXlm date format uses a 4-digit year. Dates in the 20th century

(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of

this feature is quite widespread. Dates in the year 2000 and beyond must

specify all 4 year digits.

6.2 FLEXLM VERSION

Which FLEXlm versions does TASKING deliver?

For Windows we deliver FLEXlm v6.1 and for UNIX we deliver v2.4.

User’s GuideA–38
F
L
E
X
L
M

I have products from several companies at various FLEXlm version
levels. Do I have to worry about how these versions work together?

If you're not combining license files from different vendors, the simplest

thing to do is make sure you use the tools (especially lmgrd) that are

shipped by each vendor.

lmgrd will always correctly support older versions of vendor daemons

and applications, so it's always safe to use the latest version of lmgrd and

the other FLEXlm utilities. If you've combined license files from 2 vendors,

you must use the latest version of lmgrd.

If you've received 2 versions of a product from the same vendor, you must

use the latest vendor daemon they sent you. An older vendor daemon

with a newer client will cause communication errors.

Please ignore letters appended to FLEXlm versions, i.e., v2.4d. The

appended letter indicates a patch, and does NOT indicate any

compatibility differences. In particular, some elements of FLEXlm didn't

require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b

vendor daemon.

I've received a new copy of a product from a vendor, and it uses a new
version of FLEXlm. Is my old license file still valid?

Yes. Older FLEXlm license files are always valid with newer versions of

FLEXlm.

6.3 WINDOWS QUESTIONS

What Windows Host Platforms can be used as a server for Floating
Licenses?

The system being used as the server (where the FLEXlm License Manager

is running) for Floating licenses, must be Windows NT. The FLEXlm

License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to

provide connectivity with a Netware License server.

Flexible License Manager (FLEXlm) A–39

• • • • • • • •

6.4 TASKING QUESTIONS

How will the TASKING licensing/pricing model change with License
Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can

purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a
specific system. It cannot be
moved to another system.

The pricing for this
license will be the
current product pricing.

Floating This license requires a network
(license server and a TCP/IP (or
IPX/SPX) connection between
clients and server) and can be used
on any host system (using the
same operating system) in the
network.

The pricing for this
license will be 50%
higher than the node
locked license.

How does FLEXlm affect future product ordering?

For all licenses, node locked or floating, you must provide information

that is used to create a license key. For node locked licenses we must

have the HOST ID. Floating licenses require the HOST ID and HOST

NAME. The HOST ID is a unique identification of the machine, which is

based upon different hardware depending upon host platform. The HOST

NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the

HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display

the HOST ID so a customer can easily obtain this information. This utility

is available from our web site, placed on all product CDs (which support

FLEXlm), and from technical support. If you have already installed

FLEXlm, you can also use lmhostid.

• In the case of a Node locked license, it is important that the customer

runs this utility on the exact machine he intends to run the

TASKING tools on.

User’s GuideA–40
F
L
E
X
L
M

• In the case of a Floating License, the tkhostid.exe (or lmhostid)

utility should be run on the machine on which the FLEXlm license

manager will be installed, e.g. the server. The HOST NAME

information can be obtained from within the Windows Control

Panel. Select "Network", click on "Identification", look for

"Computer name".

How will the �locking" mechanism work?

• For node locked licenses, FLEXlm will first search for an ethernet card.

If one exists, it will lock onto the number of the ethernet card. If an

ethernet card does not exist, FLEXlm will lock onto the hard disk serial

number.

• For floating licenses, the ethernet card number will be used.

What happens if I try to move my node locked license to another
system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license

from the license server. The license server keeps track of the number of

licenses already issued, and grants or denies the request. When the

software has finished running, the license is kept by the license server for

a period of time known as the �linger-time". If the same user requests the

TASKING product again within the linger-time, he is granted the license

again. If another user requests a license during the linger-time, his

request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is

5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)

than the time specified by TASKING.

What happens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due

to a system crash or to move from one system to another system. You will

then need to work with your local sales representative to obtain a

permanent new license key.

Flexible License Manager (FLEXlm) A–41

• • • • • • • •

6.5 USING FLEXLM FOR FLOATING LICENSES

Does FLEXlm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the

internet. This can be limited with the 'INTERNET=' attribute on the

FEATURE line, which limits access to a range of internet addresses. You

can also use the INCLUDE and EXCLUDE options in the daemon option

file to allow (or deny) access to clients running on a range of internet

addresses.

Does FLEXlm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.

FLEXlm v5 lmgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client's whole system crashes. Assuming communications is

TCP, the license is automatically freed immediately. If communications are

UDP, then the license is freed after the UDP timeout, which is set by each

vendor, but defaults to 45 minutes. UDP communications is normally only

set by the end-user, so TCP should be assumed. If the whole system

crashes, then the license is not freed, and you should use 'lmremove' to

free the license.

What happens when the license server dies?

FLEXlm applications send periodic heartbeats to the server to discover if it

has died. What happens when the server dies is then up to the application.

Some will simply continue periodically attempting to re-checkout the

license when the server comes back up. Some will attempt to re-checkout

a license a few times, and then, presumably with some warning, exit.

Some GUI applications will present pop-ups to the user periodically

letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it's in use, it's because lmgrd is already running on

the port - or was recently killed, and the port isn't freed yet. Assuming this

is not the case, then use 'telnet host port' - if it says "can't connect", it's a
free port.

User’s GuideA–42
F
L
E
X
L
M

Does FLEXlm require root permissions?

No. There is no part of FLEXlm, lmgrd, vendor daemon or application,

that requires root permissions. In fact, it is strongly recommended that you

do not run the license server (lmgrd) as root, since root processes can

introduce security risks.

If lmgrd must be started from the root user (for example, in a system boot

script), we recommend that you use the 'su' command to run lmgrd as a

non-privileged user:

su username –c” / path / lmgrd –c / path / license.dat \
 –l / path / log”

where username is a non-privileged user, and path is the correct paths to

lmgrd, license.dat and debug log file. You will have to ensure that the

vendor daemons listed in /path-to-license/license.dat have execute

permissions for username. The paths to all the vendor daemons in the

license file are listed on each DAEMON line.

Is it ok to run lmgrd as 'root' (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on

UNIX, as it may pose a security risk to the Operating System. Therefore,

we recommend that lmgrd be run as a non-privileged user (not 'root'). If

you are starting lmgrd from a boot script, we recommend that you use

su username –c”umask 022; / path / lmgrd \
 –c / path / license.dat –l / path / log”

to run lmgrd as a non-privileged user.

Does FLEXlm licensing impose a heavy load on the network?

No, but partly this depends on the application, and end-user's use. A

typical checkout request requires 5 messages and responses between

client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.

When an application, or lmstat, requests the list of current users, this can

significantly increase the amount of networking FLEXlm uses, depending

on the number of current users. Also, prior to FLEXlm v5, use of

'port@host' can increase network load, since the license file is

down-loaded from the server to the client. 'port@host' should be, if

possible, limited to small license files (say < 50 features). In v5, 'port@host'

actually improves performance.

Flexible License Manager (FLEXlm) A–43

• • • • • • • •

Does FLEXlm work with NFS?

Yes. FLEXlm has no direct interaction with NFS. FLEXlm uses an

NFS-mounted file like any other application.

Does FLEXlm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXlm. FLEXlm requires TCP/IP or

SPX (Novell Netware). So long as TCP/IP works, FLEXlm will work.

Does FLEXlm work with subnets, fully-qualified names, multiple
domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a

license server and a client are located in different domains, fully-qualified

host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the 'hostname'

command or 'uname -n') domain is the internet domain name, e.g.

'globes.com'.

To ensure success with FLEXlm across domains, do the following:

1. Make the sure the fully-qualified hostname is the name on the SERVER

line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet'

to that fully-qualified hostname. For example, if the host is locally called

'speedy', and the domain name is 'corp.com', local systems will be able to

logon to speedy via 'telnet speedy'. But very often, 'telnet

speedy.corp.com' will fail, locally.

Note that this telnet command will always succeed on hosts in other

domains (assuming everything is configured correctly), since the network

will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias' for speedy so it's also known locally as

speedy.corp.com. This alias is added to the /etc/hosts file, or if

NIS/Yellow Pages are being used, then it will have to be added to the NIS

database. This requirement goes away in version 3.0 of FLEXlm.

If all components (application, lmgrd and vendor daemon) are v6.0 or

higher, no aliases are required; the only requirement is that the

fully-qualified domain name, or IP-address, is used as a hostname on the

SERVER, or as a hostname in LM_LICENSE_FILE port@host, or @host.

User’s GuideA–44
F
L
E
X
L
M

Does FLEXlm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause

FLEXlm to fail. In v5 of FLEXlm, NIS and DNS can be avoided to solve this

problem. In particular, sometimes DNS is configured for a server that's not

current available (e.g., a dial-up connection from a PC). Again, if DNS is

configured, but the server is not available, FLEXlm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that

applications be linked dynamically to support NIS or DNS. If a vendor

links statically, this can cause the application to fail at a site that uses NIS

or DNS. In these situations, the vendor will have to relink, or recompile

with v5 FLEXlm. Vendors are strongly encouraged to use dynamic libraries

for libc and networking libraries, since this tends to improve quality in

general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is

usually because the system is configured for a dial-up DNS server which is

not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not

legal hostnames, although PCs will allow you to enter them, and they will

not work with DNS.

We're using FLEXlm over a wide-area network. What can we do to
improve performance?

FLEXlm network traffic should be minimized. With the most common uses

of FLEXlm, traffic is negligible. In particular, checkout, checkin and

heartbeats use very little networking traffic. There are two items, however,

which can send considerably more data and should be avoided or used

sparingly:

• 'lmstat -a' should be used sparingly. 'lmstat -a' should not be

used more than, say, once every 15 minutes, and should be

particularly avoided when there's a lot of features, or concurrent

users, and therefore a lot of data to transmit; say, more than 20

concurrent users or features.

• Prior to FLEXlm v5, the 'port@host' mode of the LM_LICENSE_FILE

environment variable should be avoided, especially when the

license file has many features, or there are a lot of license files

included in LM_LICENSE_FILE. The license file information is sent

via the network, and can place a heavy load. Failures due to

'port@host' will generate the error LM_SERVNOREADLIC (-61).

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
__asm, syntax, 3-11

__bita, 3-7

__LITTLE_ENDIAN__, 3-20

__rom, 3-7

__sfr, 3-7, 3-8

A
absolute address, 3-10

absolute variable, 3-10

addressing modes, 4-5

absolute, 4-6
address register indirect, 4-6
address register relative, 4-6
FB relative, 4-7
FLG direct, 4-8
immediate, 4-5
PC relative, 4-7
register direct, 4-6
SB relative, 4-7
stack pointer relative, 4-7

architecture definition, 7-20

archiver, 8-22

invocation, 8-22
options (overview), 8-23

arr8c, 8-22

assembler controls, overview, 4-18

assembler directives, overview, 4-16

assembler error messages, 6-10

assembler options, overview, 6-6

assembly, programming in C, 3-11

assembly syntax, 4-3

auto_switch, 3-22

B
backend

compiler phase, 5-5

optimization, 5-5
board specification, 7-21

build, viewing results, 2-16

bus definition, 7-21

C
ccr8c, 8-4

CCR8COPT, 8-7

character, 4-4

coalescer, 5-8

code checking, 5-16

code generator, 5-5

common subexpression elimination,

5-6

compile, 2-16

compiler

invocation, 5-9
optimizations, 5-5

compiler error messages, 5-18

compiler options, overview, 5-10

compiler phases

backend, 5-4
code generator phase, 5-5
optimization phase, 5-5
peephole optimizer phase, 5-5

frontend, 5-4
optimization phase, 5-4
parser phase, 5-4
preprocessor phase, 5-4
scanner phase, 5-4

conditional assembly, 4-26

conditional jump reversal, 5-7

configuration

EDE directories, 1-7
UNIX, 1-9

constant propagation, 5-6

control flow simplification, 5-7

control program, 8-4

invocation, 8-4
options (overview), 8-5

IndexIndex–4
IN
D
E
X

control program options, overview,

8-5, 8-23

creating a makefile, 2-13

CSE, 5-6

D
data types, 3-4

bit, 3-5
fundamental, 3-4

dead code elimination, 5-7

derivative definition, 7-20

directive, 4-4

conditional assembly, 4-26
directories, setting, 1-7, 1-9

dummy argument string, 4-24

E
EDE, 2-3

build an application, 2-16
create a project, 2-11
create a project space, 2-10
rebuild an application, 2-17
specify development tool options,

2-14
starting, 2-8

ELF/DWARF, archiver, 8-22

ELF/DWARF2 format, 7-8

Embedded Development Environment,

2-3

environment variable

CCR8COPT, 8-7
LM_LICENSE_FILE, 1-18, A-6

environment variables, 1-9

ASR8CINC, 1-9
CCR8CBIN, 1-9
CCR8COPT, 1-9
CR8CINC, 1-9
LIBR8C, 1-9
LM_LICENSE_FILE, 1-10

PATH, 1-9
TMPDIR, 1-10

error messages

assembler, 6-10
compiler, 5-18
linker, 7-36

errors, FLEXlm license, A-33

expression simplification, 5-6

expressions, 4-8

absolute, 4-9
relative, 4-9
relocatable, 4-9

F
FAQ, FLEXlm, A-37

file extensions, 2-6

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-25
daemon options file, A-7
FAQ, A-37
frequently asked questions, A-37
license administration tools, A-8

for Windows, A-22
license errors, A-33

floating license, 1-12

flow simplification, 5-7

formatters

printf, 3-34
scanf, 3-34

forward store, 5-7

frontend

compiler phase, 5-4
optimization, 5-4

function, 4-13

syntax, 4-13
function qualifiers

__bankswitch, 3-30
__frame, 3-30
__interrupt, 3-29
__interrupt_fixed, 3-29

Index Index–5

• • • • • • • •

functions, 3-23

inline, 3-24
parameter passing, 3-23
return types, 3-24

H
hostid, determining, 1-19

hostname, determining, 1-19

I
IEEE 32-bit single precision format,

3-5

include files

default directory, 5-14, 6-9, 7-16
setting search directories, 1-7, 1-9

incremental linking, 7-18

initialized variables, 3-20

inline assembly, 3-16

__asm, 3-11
inline functions, 3-24

inlining functions, 5-7

input specification, 4-3

installation

licensing, 1-12
Linux, 1-4

Debian, 1-5
RPM, 1-4
tar.gz, 1-5

UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

instruction, 4-3

Intel-Hex format, 7-8

interrupt frame, 3-30

interrupt function, 3-28

interrupt service routine, 3-28

defining, 3-29
intrinsic functions, 3-27

J
jump chain, 3-22

jump chaining, 5-7

jump table, 3-22

jump_switch, 3-22

L
label, 4-3

libraries

rebuilding, 3-35
setting search directories, 1-8, 1-9

library, user, 7-14

library maintainer, 8-22

license

floating, 1-12
node-locked, 1-12
obtaining, 1-12

license file

default location, A-6
location, 1-18
setting search directory, 1-10

licensing, 1-12

linear_switch, 3-22

linker, optimizations, 7-9

linker error messages, 7-36

linker options, overview, 7-12

linker output formats

ELF/DWARF2 format, 7-8
Intel-Hex format, 7-8
Motorola S-record format, 7-8

linker script file, 7-8

architecture definition, 7-20
boad specification, 7-21
bus definition, 7-21
derivative definition, 7-20
memory definition, 7-21
processor definition, 7-21
section layout definition, 7-22

IndexIndex–6
IN
D
E
X

linker script language (LSL), 7-8, 7-18

internal memory, 7-25
on-chip memory, 7-25

linking process, 7-4

linking, 7-6
locating, 7-7
optimizing, 7-9

LM_LICENSE_FILE, 1-18, A-6

lmcksum, A-10

lmdiag, A-11

lmdown, A-12

lmgrd, A-13

lmhostid, A-15

lmremove, A-16

lmreread, A-17

lmstat, A-18

lmswitchr, A-20

lmver, A-21

local label override, 4-25

lookup table, 3-22

lookup_switch, 3-22

loop transformations, 5-7

lsl, 7-18

M
macro, 4-4

argument concatenation, 4-22
call, 4-20
conditional assembly, 4-26
definition, 4-19
dummy argument operator, 4-22
dummy argument string, 4-24
dup directive, 4-26
local label override, 4-25
return hex value operator, 4-23
return value operator, 4-23

macro operations, 4-19

macros, 4-19

macros in C, 3-20

make utility, 8-8

.DEFAULT target, 8-13

.DONE target, 8-13

.IGNORE target, 8-13

.INIT target, 8-13

.PRECIOUS target, 8-14

.SILENT target, 8-13

.SUFFIXES target, 8-13
conditional processing, 8-20
dependency, 8-12
else, 8-20
endif, 8-20
exist function, 8-20
export line, 8-21
functions, 8-19
ifdef, 8-20
ifndef, 8-20
implicit rules, 8-15
invocation, 8-10
macro definition, 8-10
macro MAKE, 8-17
macro MAKEFLAGS, 8-17
macro PRODDIR, 8-17
macro SHELLCMD, 8-18
macro TMP_CCOPT, 8-18
macro TMP_CCPROG, 8-18
makefile, 8-8, 8-11
match function, 8-19
nexist function, 8-20
options (overview), 8-10
predefined macros, 8-17
protect function, 8-19
rules in makefile, 8-14
separate function, 8-19
special targets, 8-13

make utility options, overview, 8-10

makefile, 8-8

automatic creation of, 2-13
updating, 2-13
writing, 8-11

memory definition, 7-21

Index Index–7

• • • • • • • •

memory qualifiers, 3-6
__bita, 3-7
__rom, 3-7, 3-20
__sfr, 3-7

memory type qualifiers, 3-6
MISRA C, 5-16
mkr8c. See make utility
Motorola S-record format, 7-8

N
node-locked license, 1-12

O
operands, 4-5
opimizations, size/speed trade-off, 5-8
optimization (backend)

coalescer, 5-8
loop transformations, 5-7
peephole optimizations, 5-8
subscript strength reduction, 5-7

optimization
backend, 5-5
compiler, common subexpression

elimination, 5-6
frontend, 5-4

optimization (frontend)
conditional jump reversal, 5-7
constant propagation, 5-6
control flow simplification, 5-7
dead code elimination, 5-7
expression simplification, 5-6
flow simplification, 5-7
forward store, 5-7
inlining functions, 5-7
jump chaining, 5-7
switch optimization, 5-7

optimizations, compiler, 5-5

P
parameter passing, 3-23
parentheses, 4-9
parser, 5-4
peephole optimization, 5-5, 5-8
pragmas, 3-18

inline, 3-26
noinline, 3-26
smartinline, 3-26

predefined macros in C, 3-20
__CPU__, 3-20
__CR8C__, 3-20
__DSPC__, 3-20
__SINGLE_FP__, 3-20
__TASKING__, 3-20

printf formatter, 3-34
processor definition, 7-21
project, 2-7

add new files, 2-12
create, 2-11

project file, 2-7
project space, 2-7

create, 2-10
project space file, 2-7

R
rebuilding libraries, 3-35
register allocator, 5-5
register bank switching, 3-30
register usage, 3-23, 3-24
relocatable object file, 7-3

debug information, 7-6
header information, 7-6
object code, 7-6
relocation information, 7-6
symbols, 7-6

relocation expressions, 7-7
return hex value operator, 4-23

IndexIndex–8
IN
D
E
X

return value operator, 4-23
rom, 3-7

S
scanf formatter, 3-34
scanner, 5-4
section layout definition, 7-22
section names, 3-32
sections, 3-32
software installation

Linux, 1-4
UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

special function registers, define, 3-8
statement, 4-3
storage types. See memory qualifiers
string, 3-21
subscript strength reduction, 5-7
switch, restore, 3-22
switch optimization, 5-7
switch statement, 3-22
symbol, 4-8
syntax of an expression, 4-9

T
temporary files, setting directory, 1-10
transferring parameters between

functions, 3-23

U
updating makefile, 2-13
utilities

archiver, 8-22
arr8c, 8-22
ccr8c, 8-4
control program, 8-4
make utility, 8-8
mkr8c, 8-8

V
variables, initialized, 3-20
verbose option, linker, 7-17

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION AND CONFIGURATION
	Introduction
	Software Installation
	Installation for Windows
	Installation for Linux
	Installation for UNIX Hosts

	Software Configuration
	Configuring the Embedded Development Environment
	Configuring the Command Line Environment

	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	GETTING STARTED
	Introduction
	Working With Projects in EDE
	Start EDE
	Using the Sample Projects
	Create a New Project Space with a Project
	Set Options for the Tools in the Toolchain
	Build your Application
	How to Build Your Application on the Command Line
	Debug getstart.elf

	C LANGUAGE
	Introduction
	Data Types
	Fundamental Data Types
	Bit Data Type

	Memory Qualifiers
	Memory Type Qualifiers
	Define Special Function Registers: __sfr
	Declare a Data Object at an Absolute Address: __at()

	Using Assembly in the C Source: __asm()
	Controlling the Compiler: Pragmas
	Predefined Macros
	Initialized Variables
	Strings
	Switch Statement
	Functions
	Parameter Passing
	Function Return Types
	Inlining Functions: inline
	Intrinsic Functions
	Interrupt Functions
	Defining an Interrupt Service Routine: __interrupt()
	Register Bank Switching: __bankswitch
	Interrupt Frame: __frame()

	Section Naming
	Libraries
	Overview of Libraries
	Printf and Scanf Formatting Routines
	Rebuilding Libraries

	ASSEMBLY LANGUAGE
	Introduction
	Assembly Syntax
	Assembler Significant Characters
	Operands
	Operands and Addressing Modes

	Symbol Names
	Expressions
	Numeric Constants
	Strings
	Expression Operators

	Built-in Assembly Functions
	Directives and Controls
	Overview of Assembler Directives
	Overview of Assembler Controls

	Macro Operations
	Defining a Macro
	Calling a Macro
	Using Operators for Dummy Arguments
	Using the DUP, DUPA, DUPC, DUPF Directives as Macros
	Conditional Assembly: IF, ELIF and ELSE Directives

	USING THE COMPILER
	Introduction
	Compilation Process
	Compiler Optimizations
	Optimize for Size or Speed

	Calling the Compiler
	Specifying a Target Processor
	How the Compiler Searches Include Files
	Compiling for Debugging
	C Code Checking: MISRA C
	C Compiler Error Messages

	USING THE ASSEMBLER
	Introduction
	Assembly Process
	Assembler Optimizations
	Calling the Assembler
	Specifying a Target Processor
	How the Assembler Searches Include Files
	Generating a List File
	Assembler Error Messages

	USING THE LINKER
	Introduction
	Linking Process
	Phase 1: Linking
	Phase 2: Locating
	Linker Optimizations

	Calling the Linker
	Linking with Libraries
	Specifying Libraries to the Linker
	How the Linker Searches Libraries
	How the Linker Extracts Objects from Libraries

	Incremental Linking
	Controlling the Linker with a Script
	Purpose of the Linker Script Language
	EDE and LSL
	Structure of a Linker Script File
	The Architecture Definition
	The Derivative Definition
	The Memory Definition
	The Section Layout Definition: Locating Sections
	The Processor Definition: Using Multi-Processor Systems

	Linker Labels
	Generating a Map File
	Linker Error Messages

	USING THE UTILITIES
	Introduction
	Control Program
	Calling the Control Program

	Make Utility
	Calling the Make Utility
	Writing a Makefile

	Archiver
	Calling the Archiver
	Examples

	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	INDEX

