
MB199–024–00–00
Doc. ver.: 1.1

R8C v1.0

C Compiler,

Assembler, Linker

Reference Guide

A publication of

Altium BV

Documentation Department

Copyright 2002-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

C LANGUAGE 1-1

1.1 Introduction 1-3.

1.2 Data Types 1-4.

1.3 Keywords 1-5.

1.4 Function Qualifiers 1-8.

1.5 Intrinsic Functions 1-9.

1.5.1 Arithmetic Functions 1-10.

1.5.2 Interrupt Handling 1-11.

1.5.3 Control Register Handling 1-12.

1.5.4 Block Functions 1-13.

1.5.5 Bit Data Functions 1-13.

1.5.6 Miscellaneous Intrinsic Functions 1-14.

1.6 Pragmas 1-15.

1.7 Predefined Macros 1-19.

LIBRARIES 2-1

2.1 Introduction 2-3.

2.1.1 Header Files 2-4.

2.1.2 C Library Functions 2-11.

ASSEMBLY LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Built-in Assembly Functions 3-3.

3.2.1 Overview of Built-in Assembly Functions 3-3.

3.2.2 Detailed Description of Built-in Assembly Functions 3-5. .

3.3 Assembler Directives and Controls 3-9.

3.3.1 Overview of Assembler Directives 3-9.

3.3.2 Detailed Description of Assembler Directives 3-11.

3.3.3 Overview of Assembler Controls 3-55.

3.3.4 Detailed Description of Assembler Controls 3-55.

Table of ContentsVI
C
O
N
T
E
N
T
S

TOOL OPTIONS 4-1

4.1 Compiler Options 4-3.

4.2 Assembler Options 4-49.

4.3 Linker Options 4-82.

4.4 Control Program Options 4-130.

4.5 Make Utility Options 4-165.

4.6 Archiver Options 4-194.

LIST FILE FORMATS 5-1

5.1 Assembler List File Format 5-3.

5.2 Linker Map File Format 5-5.

OBJECT FILE FORMATS 6-1

6.1 ELF/DWARF Object Format 6-3.

6.2 Motorola S-Record Format 6-4.

6.3 Intel Hex Record Format 6-8.

LINKER SCRIPT LANGUAGE 7-1

7.1 Introduction 7-3.

7.2 Structure of a Linker Script File 7-3.

7.3 Syntax of the Linker Script Language 7-6.

7.3.1 Identifiers 7-7.

7.3.2 Expressions 7-7.

7.3.3 Built-in Functions 7-8.

7.3.4 LSL Definitions in the Linker Script File 7-10.

7.3.5 Memory and Bus Definitions 7-10.

7.3.6 Architecture Definition 7-12.

7.3.7 Derivative Definition 7-15.

7.3.8 Processor Definition and Board Specification 7-15.

7.3.9 Section Placement Definition 7-16.

7.4 Expression Evaluation 7-19.

Table of Contents VII

• • • • • • • •

7.5 Semantics of the Architecture Definition 7-20.

7.5.1 Defining an Architecture 7-21.

7.5.2 Defining Internal Buses 7-22.

7.5.3 Defining Address Spaces 7-22.

7.5.4 Mappings 7-25.

7.6 Semantics of the Derivative Definition 7-28.

7.6.1 Defining a Derivative 7-28.

7.6.2 Instantiating Core Architectures 7-29.

7.6.3 Defining Internal Memory and Buses 7-30.

7.7 Semantics of the Board Specification 7-32.

7.7.1 Defining a Processor 7-32.

7.7.2 Instantiating Derivatives 7-33.

7.7.3 Defining External Memory and Buses 7-34.

7.8 Semantics of the Section Layout Definition 7-36.

7.8.1 Defining a Section Layout 7-36.

7.8.2 Creating and Locating Groups of Sections 7-37.

7.8.3 Creating or Modifying Special Sections 7-43.

7.8.4 Creating Symbols 7-46.

7.8.5 Conditional Group Statements 7-47.

MISRA C RULES 8-1

INDEX

Table of ContentsVIII
C
O
N
T
E
N
T
S

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

Windows Users

The documentation explains and describes how to use the R8C toolchain

to program an R8C MCU.

You can use the tools either with the graphical Embedded Development

Environment (EDE) or from the command line in a command prompt

window.

Unix Users

For UNIX the toolchain works the same as it works for the Windows

command line.

Directory paths are specified in the Windows way, with back slashes as in

\cr8c\bin . Simply replace the back slashes by forward slashes for use

with UNIX: /cr8c/bin .

Structure

The toolchain documentation consists of a User's Guide which includes a

Getting Started section and a separate Reference Guide (this manual).

First you need to install the software and make it run under the licence

manager FLEXlm. This is described in Chapter 1, Software Installation and
Configuration, of the User's Guide.

After installation you are ready to follow the Getting Started in Chapter 2

of the User's Guide.

Next, move on with the other chapters in the User's Guide which explain

how to use the compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Guide

to lookup specific options and details to make fully use of the R8C

toolchain.

Reference GuideX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: C Language

Contains overviews of all language extensions:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

Chapter 2: Libraries

Contains overviews of all library functions you can use in your C source.

First libraries are listed per header file that contains the prototypes. These

tables also show the level of implementation per function. Second, all

library functions are listed and discussed into detail.

Chapter 3: Assembly Language

Contains an overview of all assembly functions that you can use in your

assembly source code.

Chapter 4: Tool Options

Contains a description of all tool options:

• Compiler options

• Assembler options

• Linker options

• Control program options

• Make utility options

• Archiver options

Chapter 5: List File Formats

Contains a description of the following list file formats:

• Assembler List File Format

• Linker Map File Format

Manual Purpose and Structure XI

• • • • • • • •

Chapter 6: Object File Formats

Contains a description of the following object file formats:

• ELF/DWARF Object Formats

• Motorola S-Record Format

• Intel Hex Record Format

Chapter 7: Linker Script Language

Contains a description of the linker script language (LSL).

Chapter 8: MISRA C Rules

Contains a description the supported and unsupported MISRA C code

checking rules.

Reference GuideXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

cr8c [-?]

Both cr8c and cr8c –? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,

separating each item with a comma.

Example

cr8c [option]... filename

You can read this line as follows: enter the command cr8c with or without

an option, follow this by zero or more options and specify a filename. The

following input lines are all valid:

cr8c test.c
cr8c –g test.c
cr8c –g –E test.c

Not valid is:

cr8c –g

According to the syntax description, you have to specify a filename.

Manual Purpose and Structure XIII

• • • • • • • •

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making

serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as

EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

Reference GuideXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

C Standards

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

More information on the standards can be found at

http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),

Programming languages - C [TASKING, TK0071-14]

MISRA C

• Guidelines for the Use of the C Language in Vehicle Based Software

[MISRA]

See also http://www.misra.org.uk

TASKING Tools

• R8C C Compiler, Assembler, Linker User's Guide

[TASKING, MA199-024-00-00]

• R8C CrossView Pro Debugger User's Guide

[TASKING, MA199-043-00-00]

R8C

• R8C/10 Group Hardware Manual [Renesas]

• R8C/Tiny Series Software Manual [Renesas]

1

C LANGUAGE
C

H
A

P
T

E
R

Reference Guide1–2
C

 L
A

N
G

U
A

G
E

1

C
H

A
P

T
E

R

C Language 1–3

• • • • • • • •

1.1 INTRODUCTION

The TASKING R8C C compiler fully supports the ANSI C standard but adds

possibilities to program the special functions of the R8C.

This chapter contains complete overviews of the following C language

extensions of the TASKING R8C C compiler:

• Data types

• Keywords

• Function qualifiers

• Intrinsic functions

• Pragmas

• Predefined macros

Reference Guide1–4
C

 L
A

N
G

U
A

G
E

1.2 DATA TYPES

The TASKING R8C C compiler supports the following data types:

Type Keyword Size
(bit)

Align
(bit) Ranges

Bit __bit 1 1 0 or 1

Boolean _Bool 1 8 0 or 1

Character char

signed char
8 8 –27 .. 27–1

unsigned char 8 8 0 .. 28–1

Integral short
signed short
int
signed int

16 8 / 16* –215 .. 215–1

unsigned short

unsigned int
16 8 / 16* 0 .. 216–1

enum 1
8
16

8
8 / 16*
8 / 16*

0 or 1
–27 .. 27–1

–215 .. 215–1

long

signed long

long long

signed
 long long

32 8 / 16* –231 .. 231–1

unsigned long

unsigned
 long long

32 8 / 16* 0 .. 232–1

Pointer 16 8 / 16* 0 .. 232–1

Floating
Point

float

double

long double

32 8 / 16*
–3.402e38 .. –1.175e–38

1.175e–38 .. 3.402e38

float/double/
long double
 _Imaginary

32 8 / 16*
–3.402e38 .. –1.175e–38

1.175e–38 .. 3.402e38

float/double/
long double
 _Complex

64 8 / 16*
–1.797e308 .. –2.225e–308

2.225e–308 .. 1.797e308

Table 1-1: Data Types

C Language 1–5

• • • • • • • •

* For the marked data types, the alignment is 16 if you specify compiler

option ––align, otherwise the alignment is 8.

The long long types are treated as long .

When you use the enum type, the compiler will use the smallest sufficient

integer type (_Bool , char , int), unless you use compiler option

––integer-enumeration (always use 16-bit integers for enumeration).

float is implemented in little endian IEEE 32-bit single precision format.

double is treated as float .

1.3 KEYWORDS

__asm()

With the __asm() keyword you can use assembly instructions in the C

source and pass C variables as operands to the assembly code.

__asm(”instruction_template ”
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

instruction_template Assembly instructions that may contain

parameters from the input list or output list in

the form: %parm_nr [.regnum]

 %parm_nr[.regnum] Parameter number in the range 0 .. 31. With the

optional .regnum you can access an individual

register from a register pair. For example, with

the word register R2R0, .0 selects register R0.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before

the inputs are read, so this output must not be

the same register as any input.

 constraint _char Constraint character: the type of register to be

used for the C_expression.

Reference Guide1–6
C

 L
A

N
G

U
A

G
E

 C_expression Any C expression. For output parameters it must

be an lvalue, that is, something that is legal to

have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

Constraint
character

Type Operand Remark

a address register A0, A1 word register

A address register A1A0 double–word register

b bit R[0..3]H.[0..7]
R[0..3]L.[0..7]
A[0..1].[0..7]
C
_bitvar

bit registers/variables

h data register R[0..3]H
R[0..3]L

byte registers

i immediate value #value

m memory address, label,
_variable

memory variable or
function address

r data register R[0..3] word registers

R registers R2R0, R3R1 double–word registers

number other operand same as
%number

used when input and
output operands must be
the same

Table 1-2: Available input/output operand constraints

Section 3.4, Using Assembly in the C Source, in Chapter C Language of the

User's Guide.

__at()

With the attribute __at() you can place an object at an absolute address.

int myvar __at(0x100);

Section 3.3.3, Declare a Data Object at an Absolute Address, in Chapter

C Language of the User's Guide.

C Language 1–7

• • • • • • • •

__bita

With the __bita memory type qualifier, you can specify that a variable

must be in bitaddressable RAM.

__bita int array[10][4];

Section 3.3.1, Memory Type Qualifiers, in Chapter C Language of the User's
Guide.

__rom

With the __rom memory type qualifier, you can specify that a variable

must be placed in ROM.

__rom char text[] = ”No smoking”;

Section 3.3.1, Memory Type Qualifiers, in Chapter C Language of the User's
Guide.

__sfr

With the __sfr memory type qualifier you can define a symbol as a

Special Function Register (SFR).

#define P0 (*(__sfr unsigned char *)0x00E0)

Section 3.3.2, Define Special Function Registers: __sfr, in Chapter C
Language of the User's Guide.

Reference Guide1–8
C

 L
A

N
G

U
A

G
E

1.4 FUNCTION QUALIFIERS

inline
__noinline

You can use the inline qualifier to tell the compiler to inline the function

body instead of calling the function. Use the __noinline qualifier to tell

the compiler not to inline the function body.

inline int func1(void)
{
 // inline this function
}

__noinline int func2(void)
{
 // do not inline this function
}

For more information see section 3.10.3, Inlining Functions: inline, in
Chapter C Language of the User's Guide.

__interrupt()
__interrupt_fixed()

With the following function qualifiers you can declare an interrupt handler

using the relocatable or fixed vector table respectively.

void __interrupt(vector ,...) isr(void)
{
...
}

void __interrupt_fixed(vector ,...) isr(void)
{
...
}

The argument vector identifies the interrupt number entry in the interrupt

vector table. This number must be in the range 0 to 63 for

__interrupt() or 0 to 8 for __interrupt_fixed() .

For more information see section 3.10.5, Interrupt Functions, in Chapter C
Language of the User's Guide.

C Language 1–9

• • • • • • • •

1.5 INTRINSIC FUNCTIONS

The TASKING R8C C compiler recognizes intrinsic functions that serve the

following purposes:

• Arithmetic functions

• Interrupt handling

• Control Register handling

• Block functions

• Bit Data functions

• Miscellaneous functions

All intrinsic functions begin with a double underscore character (__). You

can use intrinsic functions as if they were ordinary C functions.

Reference Guide1–10
C

 L
A

N
G

U
A

G
E

1.5.1 ARITHMETIC FUNCTIONS

The next table provides an overview of the intrinsic functions to perform

several arithmetic operations.

Intrinsic Function Description

signed char __absb (signed char) Return absolute value (8 bit)

int __absw (int) Return absolute value (16 bit)

char __dadcb (char, char) Decimal add with carry (8 bit)

int __dadcw (int, int) Decimal add with carry (16 bit)

char __daddb (char, char) Decimal add without carry (8 bit)

int __daddw (int, int) Decimal add without carry (16 bit)

int __divb (int, char) Returns quotient and remainder

char __divb_q (int, char) Returns quotient

char __divb_r (int, char) Returns remainder

long int __divw (long int, int) Returns quotient and remainder

int __divw_q (long int, int) Returns quotient

int __divw_r (long int, int) Returns remainder

int __divub (int, char) Returns quotient and remainder

char __divub_q (int, char) Returns quotient

char __divub_r (int, char) Returns remainder

long int __divuw (long int, int) Returns quotient and remainder

int __divuw_q (long int, int) Returns quotient

int __divuw_r (long int, int) Returns remainder

int __divxb (int, char) Returns quotient and remainder

char __divxb_q (int, char) Returns quotient

char __divxb_r (int, char) Returns remainder

long int __divxw (long int, int) Returns quotient and remainder

int __divxw_q (long int, int) Returns quotient

int __divxw_r (long int, int) Returns remainder

char __dsbbb (char, char) Decimal subtract with borrow
(8 bit)

int __dsbbw (int, int) Decimal subtract with borrow
(16 bit)

C Language 1–11

• • • • • • • •

DescriptionIntrinsic Function

char __dsubb (char, char) Decimal subtract without borrow
(8 bit)

int __dsubw (int, int) Decimal subtract without borrow
(16 bit)

char __rotb (signed char, char) Rotote (8 bit). Signed char
specifies direction.

int __rotw (signed char, int) Rotote (16 bit). Signed char
specifies direction.

char __shab (signed char, char) Shift arithtmetic (8 bit)

int __shaw (signed char, int) Shift arithmetic (16 bit)

long int __shal
 (signed char, long int)

Shift arithmetic (32 bit)

char __shlb (signed char, char) Shift logical (8 bit)

int __shlw (signed char, int) Shift logical (16 bit)

long int __shll
 (signed char, long int)

Shift logical (32 bit)

Table 1-3: Intrinsic Functions for Arithmetic Operations

1.5.2 INTERRUPT HANDLING

The next table provides an overview of the intrinsic functions to generate

interrupts.

Intrinsic Function Description

void __brk (void) break interrupt

void __int (int) software interrupt (vector number)

void __into (void) overflow interrupt

void __und (void) interrupt

void __wait (void) interrupt

Table 1-4: Intrinsic Functions for Interrupt Handling

Reference Guide1–12
C

 L
A

N
G

U
A

G
E

1.5.3 CONTROL REGISTER HANDLING

Access Control Registers

The next table provides an overview of the intrinsic functions that you can

use to acces control registers.

Intrinsic Function Description

int __fclr (int) Use 0 to 7 or __C, __D, __Z, __S, __B,
__O, __I, __U to clear a bit in the flag
register.

int __fset (int) Use 0 to 7 or __C, __D, __Z, __S, __B,
__O, __I, __U to set a bit in the flag
register.

void __ldctx
(_near int, _far long int)

Restore context

int __ldc_fb (int) Load control register fb

int __ldc_sb (int) Load control register sb

int __ldc_sp (int) Load control register sp

int __ldc_isp (int) Load control register isp

int __ldc_flg (int) Load control register flg

int __ldc_intbh (int) Load control register intb (high)

int __ldc_intbl (int) Load control register intb (low)

void __ldintb
 (_far void *)

Load control register intb

void __stctx
(_near int, _far long int)

Store context

int __stc_fb (void) Store control register fb

int __stc_sb (void) Store control register sb

int __stc_sp (void) Store control register sp

int __stc_isp (void) Store control register isp

int __stc_flg void() Store control register flg

int __stc_intbh (void) Store control register intb (high)

int __stc_intbl (void) Store control register intb (low)

Table 1-5: Intrinsic Functions for Accessing Control Registers

C Language 1–13

• • • • • • • •

1.5.4 BLOCK FUNCTIONS

The next table provides an overview of the intrinsic functions to handle

blocks of data.

Intrinsic Function Description

int __rmpab (_near char *source,
 _near char *dest, int count)

Repeat multiply and
addition (8 bit)

long int __rmpaw (_near char *source,
 _near char *dest, int count)

Repeat multiply and
addition (16 bit)

void __smovbb (_far char *source,
 _near char *dest, int count)

String move backward
(8 bit)

void __smovbw (_far int *source,
 _near int *dest, int count)

String move backward
(16 bit)

void __smovfb (_far char *source,
 _near char *dest, int count)

String move forward
(8 bit)

void __smovfw (_far int *source,
 _near int *dest, int count)

String move forward
(16 bit)

void __sstrb (char, _near char *, int) Store string (8 bit)

void __sstrw (int, _near int *, int) Store string (16 bit)

Table 1-6: Intrinsic Functions to Handle Blocks of Data

1.5.5 BIT DATA FUNCTIONS

The next table shows intrinsic functions to handle bit data.

Intrinsic Function Description

__bit __btstc (__bit *) Bit test and clear

__bit __btsts (__bit *) Bit test and set

Table 1-7: Intrinsic Functions to Handle Bit Data

Reference Guide1–14
C

 L
A

N
G

U
A

G
E

1.5.6 MISCELLANEOUS INTRINSIC FUNCTIONS

Intrinsic Function Description

int __enter (int) Build stack frame

void __exitd (void) Deallocate stack frame

int __ldipl (char) Load interrupt permission level

void __nop (void) Insert nop instruction

int __popc (int) The operand is the register as
encoded in the opcode.

int __popm (int) The operand is the register mask as
encoded in the opcode.

int __pushc (int) The operand is the register as
encoded in the opcode.

int __pushm (int) The operand is the register mask as
encoded in the opcode.

void __reit (void) Return from interrupt

void __rts (void) Return from subroutine

Table 1-8: Miscellaneous Intrinsic Functions

C Language 1–15

• • • • • • • •

1.6 PRAGMAS

Pragmas are keywords in the C source that control the behavior of the

compiler. Pragmas overrule compiler options and keywords. The syntax is:

#pragma pragma–spec [ON | OFF | DEFAULT]

or:

_Pragma(” pragma–spec [ON | OFF | DEFAULT]”)

The compiler recognizes the following pragmas, other pragmas are

ignored.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to an equate

directive (EQU) at assembly level. The symbol should not be defined

elsewhere, and defined_symbol should be defined with static storage

duration (not extern or automatic).

See the EQU directive directive in Section 3.3, Assembler Directives and
Controls, in Chapter Assembly Language.

align

align-data
align-func

By default the compiler aligns objects to the minimum alignment required

by the architecture.

With these pragmas you can align objects to even adresses. Pragma align
aligns all objects to even addreses. Pragma align–data aligns all data to

even addresses. Pragma align–func aligns all functions to even

addresses.

See compiler option --align in section 4.1, Compiler Options, in Chapter

Tool Options.

extension isuffix

Enables a language extension to specify imaginary floating point constants.

With this extension, you can use an "i" suffix on a floating point constant,

to make the type _Imaginary .

Reference Guide1–16
C

 L
A

N
G

U
A

G
E

extern symbol

Force an external reference (EXTERN assembler directive), even when the

symbol is not used in the module.

See the EXTERN directive directive in Section 3.3, Assembler Directives
and Controls, in Chapter Assembly Language.

clear

noclear

By default, uninitialized global or static variables are cleared to zero on

startup. With pragma noclear, this step is skipped. Pragma clear resumes

normal behaviour.

See compiler option --noclear in section 4.1, Compiler Options, in
Chapter Tool Options.

inline
noinline

smartinline

Instead of the inline qualifier, you can also use pragma inline and

pragma noinline to inline a function body:

int w,x,y,z;

#pragma inline
int add(int a, int b)
{
 int i=4;
 return(a + b);
}
#pragma noinline

void main(void)
{
 w = add(1, 2);
 z = add(x, y);
}

If a function has an inline or __noinline function qualifier, then this

qualifier will overrule the current pragma setting.

C Language 1–17

• • • • • • • •

smartinline

By default, small fuctions that are not too often called, are inlined. This

reduces execution speed at the cost of code size (compiler option –Oi).

With the pragma noinline / pragma smartinline you can

temporarily disable this optimization.

With the compiler options ––inline-max-incr and ––inline-max-size

you have more control over the function inlining process of the compiler.

See for more information of these options, section 4.1, Compiler Options in
Chapter Tool Options.

linear_switch
jump_switch
binary_switch
auto_switch

With these pragmas you can overrule the compiler chosen switch method:

linear_switch force jump chain code

jump_switch force jump table code

lookup_switch force lookup table code

auto_switch let the compiler decide the switch method used

See Section 3.9, Switch Statement in Chapter C Language of the User's
Guide.

macro

nomacro

Turns macro expansion on or off.

message "string" ...

Print the message string(s) on standard output.

Reference Guide1–18
C

 L
A

N
G

U
A

G
E

optimize flags
endoptimize

You can overrule the compiler option -O for the code between the

pragmas optimize and endoptimize . The pragma works the same as

compiler option -O.

See compiler option -O in section 4.1, Compiler Options, in Chapter Tool
Options.

renamesect spec
endrenamesect

Rename sections of the specified type or restore default section naming.

See section 3.11, Section Naming in Chapter C Language of the User's
Guide.
See compiler option -R in section Compiler Options in Chapter Tool
Options.

source
nosource

With these directives you can choose which C source lines must be listed

as comments in assembly output.

See also compiler option -s (––source)

tradeoff level

Specify tradeoff between speed (0) and size (4).

See also compiler option -t (––trade-off)

warning [number,...]

With this pragma you can disable warning messages. If you do not specify

a warning number, all warnings will be suppressed.

See also compiler option -w (––no-warnings)

weak symbol

Mark a symbol as "weak" (WEAK assembler directive). The symbol must

have external linkage, which means a global or external object or function.

A static symbol cannot be declared weak.

C Language 1–19

• • • • • • • •

A weak external reference is resolved by the linker when a global (or

weak) definition is found in one of the object files. However, a weak

reference will not cause the extraction of a module from a library to

resolve the reference. When a weak external reference cannot be resolved,

the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The

linker will not complain about the duplicate definition, and ignore the

weak definition.

See the WEAK directive directive in Section 3.3, Assembler Directives and
Controls, in Chapter Assembly Language.

1.7 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the

TASKING C compiler supports the predefined macros as defined in the

table below. The macros are useful to create conditional C code.

Macro Description

__SINGLE_FP__ Always defined for the R8C (treat double as float)

__CPU__ Expands to the CPU type specified to the compiler
option –C, or 0 otherwise.

__CR8C__ Identifies the compiler. You can use this symbol to flag
parts of the source which must be recognized by the
cr8c compiler only. It expands to the version number
of the compiler.

__LITTLE_ENDIAN__ Expands to 1, indicating the processor accesses data
in little–endian.

__TASKING__ Identifies the compiler as a TASKING compiler. It
expands to 1.

__DSPC__ Indicates conformation to the DSP–C standard.
Expands to 0, DSP–C extensions are not supported.

Table 1-9: Predefined macros

Reference Guide1–20
C

 L
A

N
G

U
A

G
E

2

LIBRARIES
C

H
A

P
T

E
R

Reference Guide2–2
L
IB
R
A
R
IE
S

2

C
H

A
P

T
E

R

Libraries 2–3

• • • • • • • •

2.1 INTRODUCTION

This chapter contains an overview of all library functions that you can call

in your C source. This includes all functions of the standard C library

(libc.a) and some functions of the floating-point library (libfp.a or

libfpt.a).

Section 2.1.1, Header Files, gives an overview of relevant header files and

shows which header file you must include for the functions and/or macros

that you use in your C source.

Section 2.1.2, C Library Functions, alphabetically lists all library functions

you can use in detail. All listed functions reside in the standard C library

(libc.a) unless stated otherwise.

The following libraries are included in the R8C (cr8c) toolchain. Both EDE

and the control program ccr8c automatically select the appropriate

libraries depending on the specified R8C derivative.

Library to link Description

libc.a C library
(With full printf/scanf functionality. Some functions require the
floating point library. Also includes the startup code.)

libfp.a Floating point library (non–trapping)

libfpt.a Floating point library (trapping)
(Control program option –– fp–trap)

librt.a Run–time library

Table 2-1: Overview of libraries

Reference Guide2–4
L
IB
R
A
R
IE
S

2.1.1 HEADER FILES

In the table below you can find which header file you must include for the

library functions or macros you use in your C source.

Some functions are not completely implemented because their

implementaion depends on the context where your application will run.

These functions are for example all I/O related functions. Where possible,

CrossView Pro's file system simulation is implemented which enables you

to debug your application.

Explanation:

Yes - Fully implemented

FSS - Implemented via CrossView Pro's file system simulation
Empty- Delivered as a skeleton

Header file Function or
maco name

Imple–
mented

Comments

assert.h assert() macro Yes Macro definition

ctype.h isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper
_tolower
_toupper
isascii
toascii

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI

errno.h Yes Only Macros

fcntl.h open FSS Contains also definitions of flags
used by _open

Libraries 2–5

• • • • • • • •

CommentsImple–
mented

Function or
maco name

Header file

float.h copysign
copysignf
isfinite
isfinitef
isinf
isinff
isnan
isnanf
scalb
scalbf

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

fss.h Yes Definitions for file system simulation

iso646.h Yes Alternative spellings. No C functions

limits.h Yes Only Macros

locale.h localeconv
setlocale

Empty
Empty

No OS present
No OS present

math.h acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

setjmp.h longjmp
setjmp

Yes
Yes

signal.h raise
signal

Yes
Yes

Reference Guide2–6
L
IB
R
A
R
IE
S

CommentsImple–
mented

Function or
maco name

Header file

stdarg.h va_arg
va_end
va_start

Yes
Yes
Yes

stddef.h Yes Only Macros

stdio.h clearerr
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
perror
printf
putc
putchar
puts
remove
rename
rewind
scanf
setbuf
setvbuf
sprintf
sscanf
tmpfile
tmpnam

Yes
FSS
Yes
Yes
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
Yes
FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS
Yes
Yes
Yes
Yes
Empty
Empty

Defined in fss_rename.c

Delivered as a random name
generator, but should use
some process ID.

Libraries 2–7

• • • • • • • •

CommentsImple–
mented

Function or
maco name

Header file

ungetc
vfprintf
vprintf
vsprintf
_close
_open
_lseek
_read
_unlink
_write

Yes
FSS
FSS
Yes
FSS
FSS
FSS
FSS
FSS
FSS

Defined in fss__close.c
Defined in fss__open.c
Defined in fss__lseek.c
Defined in fss__read.c
Defined in fss__unlink.c
Defined in fss__write.c

stdlib.h abort
abs
atexit
atof
atoi
atol
bsearch
calloc
div
exit
free
getenv
labs
ldiv
malloc
qsort
rand
realloc
strtod
strtol
strtoul
srand
system
mblen
mbstowcs
mbtowc
wcstombs
wctomb

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Empty
Yes
Yes
Yes
Yes
Yes

Calls _Exit() in cstart

Calls _Exit() in cstart

No OS present

No OS present

Reference Guide2–8
L
IB
R
A
R
IE
S

CommentsImple–
mented

Function or
maco name

Header file

string.h memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

time.h asctime
clock
ctime
difftime
gmtime
localtime
mktime
strftime
time

Yes
Empty
Yes
Yes
Yes
Yes
Yes
Yes
Yes

real time clock not supported

unistd.h access
chdir
close
fstat
getcwd
lseek
lstat
read
stat
unlink
write

FSS
FSS
FSS
Empty
FSS
FSS
Empty
FSS
FSS
FSS
FSS

Defined in fss_access.c
Defined in fss_chdir.c
Defined in fss_close.c

Defined in fss_getcwd.c
Defined in fss_lseek.c

Defined in fss_read.c
Defined in fss_stat.c
Defined in fss_unlink.c
Defined in fss_write.c

Libraries 2–9

• • • • • • • •

CommentsImple–
mented

Function or
maco name

Header file

wchar.h btowc
fgetwc
fgetws
fputwc
fputws
fwide
fwprintf
fwscanf
getwc
getwchar
mbrlen
mbrtowc
mbsinit
mbsrtowcs
putwc
putwchar
swprintf
swscanf
ungetwc
vfwprintf
vswprintf
vwprintf
wcrtomb
wcscat
wcschr
wcscmp
wcscoll
wcscpy
wcscspn
wcsftime
wcslen
wcsncat
wcsncmp
wcsncpy
wcspbrk
wcsrchr
wcsrtombs
wcsspn
wcsstr
wcstod
wcstok
wcstol
wcstoul

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Reference Guide2–10
L
IB
R
A
R
IE
S

CommentsImple–
mented

Function or
maco name

Header file

wcsxfrm
wctob
wmemchr
wmemcmp
wmemcpy
wmemmove
wmemset
wprintf
wscanf

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

wctype.h iswalnum
iswalpha
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
towctrans
towlower
towupper
wctrans
wctype

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Table 2-2: Overview of header files

Libraries 2–11

• • • • • • • •

2.1.2 C LIBRARY FUNCTIONS

_close

#include <stdio.h>
int _close(int fd);

Low level file close function. _close is used by the functions close and

fclose. The given file descriptor should be properly closed, any buffer is

already flushed. This function interfaces to CrossView Pro's file system

simulation.

_lseek

#include <stdio.h>
off_t _lseek(int fd, off_t offset, int whence);

Low level file positioning function. _lseek is used by all file positioning

functions (fgetpos, fseek, fsetpos, ftell, rewind). This function interfaces to

CrossView Pro's file system simulation.

_open

#include <stdio.h>
int _open(int fd, int flags);

Low level file open function. _open is used by the functions fopen and

freopen. The given file descriptor should be properly opened. This

function interfaces to CrossView Pro's file system simulation.

_read

#include <stdio.h>
size_t _read(int fd, char *buffer, size_t count);

Low level input function. It reads a sequence of characters from a file. This

function interfaces to CrossView Pro's file system simulation.

Returns the number of characters read.

Reference Guide2–12
L
IB
R
A
R
IE
S

_tolower

#include <ctype.h>
int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an

uppercase character. This is a non-ANSI function.

Returns the converted character.

_toupper

#include <ctype.h>
int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a

lowercase character. This is a non-ANSI function.

Returns the converted character.

_unlink

#include <stdio.h>
int _unlink(const char *name);

Low level file remove function. _unlink is used by the function remove.

This function interfaces to CrossView Pro's file system simulation.

_write

#include <stdio.h>
size_t _write(int fd, char *buffer, size_t count);

Low level ouput function. It writes a sequence of characters to a file. This

function interfaces to CrossView Pro's file system simulation.

Returns the number of characters correctly written.

Libraries 2–13

• • • • • • • •

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally. It calls the function _Exit , which is

defined in the start-up module.

Returns nothing.

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the

permissions of a file on the host. mode specifies the type of access and is a

bit pattern constructed by a logical OR of the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.

F_OK Checks to see if the file exists.

Returns zero if successful,

-1 on error.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos-1(x) of x in the range [0, π],

x ∈ [-1, 1].

Reference Guide2–14
L
IB
R
A
R
IE
S

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1989\n\0

Returns the time in string form.

asin

#include <math.h>
double asin(double x);

Returns the arcsine sin-1(x) of x in the range [-π/2, π/2],

x ∈ [-1, 1].

assert

#include <assert.h>
void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled

without NDEBUG defined, it checks if expr is true. If it is true, then a line

like:

”Assertion failed: expression , file filename , line num”

is printed.

Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan-1(x) of x in the range [-π/2, π/2].

x ∈ [-1, 1].

Libraries 2–15

• • • • • • • •

atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan-1(y/x) in the range [-π, π].

atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.

Returns zero, if program terminates normally.

non-zero, if the registration cannot be made.

atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the integer value.

Reference Guide2–16
L
IB
R
A
R
IE
S

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the long value.

bsearch

#include <stdlib.h>
void *bsearch(const void *key,
 const void *base, size_t n, size_t size, int (* cmp)
 (const void *, const void *));

This function searches in an array of n members, for the object pointed to

by ptr . The initial base of the array is given by base . The size of each

member is specified by size . The given array must be sorted in ascending

order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL

when not found.

btowc

#include <wchar.h>
wint_t btowc(int c);

Determines whether c constitutes a valid single-byte character in the initial

shift state.

Returns WEOF if c has the value EOF or if (unsigned char)c does

not constitute a valid single-byte character in the initial shift

state. Otherwise, it returns the wide character representation

of that character.

Libraries 2–17

• • • • • • • •

calloc

#include <stdlib.h>
void *calloc(size_t nobj, size_t size);

The allocated space is filled with zeros. The maximum space that can be

allocated can be changed by customizing the heap size. By default no

heap is allocated. When calloc() is used while no heap is defined, the

linker gives an error.

Returns a pointer to space in external memory for nobj items of

size bytes length.

NULL if there is not enough space left.

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x , as a double.

chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the

current directory on the host to the directory indicated by path .

Returns zero if successful,

-1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.

Returns nothing.

Reference Guide2–18
L
IB
R
A
R
IE
S

clock

#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns number of microseconds since the last reset, assuming a 100

MHz cpu.

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.

This function calls _close.

Returns zero if successful,

-1 on error.

copysign

#include <float.h>
double copysign(double d, double sign);

IEEE-754-1985 recommended function. Copy the sign of the second

argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

copysignf

#include <float.h>
float copysignf(float f, float sign);

IEEE-754-1985 recommended function. Copy the sign of the second

argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

Libraries 2–19

• • • • • • • •

cos

#include <math.h>
double cos(double x);

Returns the cosine of x .

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x .

ctime

#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This

function is the same as:

asctime(localtime(tp));

Returns the local time in string form.

difftime

#include <time.h>
double
difftime(time_t time2, time_t time1);

Returns the result of time2 – time1 in seconds.

Reference Guide2–20
L
IB
R
A
R
IE
S

div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()' returns with status
as the return value. It calls the function _Exit , which is defined in the

start-up module.

Returns zero, on successful termination.

exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function ex.

fabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x . |x|

Libraries 2–21

• • • • • • • •

fclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,

frees any automatically allocated buffer, then closes the stream .

Returns zero if the stream is successfully closed, or EOF on error.

feof

#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is

set.

ferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set.

fflush

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If

stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

Reference Guide2–22
L
IB
R
A
R
IE
S

fgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream .

Returns the read character, or EOF on error.

fgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed

to by stream in the object pointed to by ptr . The type fpos_t is

suitable for recording such values.

Returns zero if successful,

a non-zero value on error.

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n-1 characters from the given stream into the

array s until a newline is found.

Returns s , or NULL on EOF or error.

fgetwc

#include <wchar.h>
wint_t fgetwc(FILE *stream);

Reads one wide character from the given stream .

Returns the read wide character, or WEOF on error.

Libraries 2–23

• • • • • • • •

fgetws

#include <wchar.h>
wchar_t *fgetws(wchar_t *s, int n, FILE *stream);

Reads at most the next n-1 wide characters from the given stream into

the array s until a newline is found.

Returns s , or NULL on end-of-file or error.

floor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x , as a double.

fmod

#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of x/y , with the same sign as x .

If y is zero, the result is implementation-defined.

fopen

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.

You can specify the following values for mode:

 "r" read; open text file for reading

 "w" write; create text file for writing; if the file already exists its

contents is discarded

 "a" append; open existing text file or create new text file for

writing at end of file

Reference Guide2–24
L
IB
R
A
R
IE
S

 "r+" open text file for update; reading and writing

 "w+" create text file for update; previous contents if any is

discarded

 "a+" append; open or create text file for update, writes at end of

file

The update mode (with a '+') allows reading and writing of the same file.

In this mode the function fflush must be called between a read and a write

or vice versa. By including the letter b after the initial letter, you can

indicate that the file is a binary file. E.g. "rb" means read binary, "w+b"

means create binary file for update. The filename is limited to

FILENAME_MAX characters. At most FOPEN_MAX files may be open at

once.

fprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Performs a formatted write to the given stream .

See also "printf()", "_write()" and Section 3.12.2, Printf and Scanf
Formatting Routines, in Chapter C Language in the User's Guide.

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream .

See also "_write()".

Returns EOF on error.

Libraries 2–25

• • • • • • • •

fputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream . The terminating NULL character is not

written.

See also "_write()".

Returns NULL if successful, or EOF on error.

fputwc

#include <wchar.h>
wint_t fputwc(int c, FILE *stream);

Puts one wide character onto the given stream .

Returns the wide character written or WEOF on error.

fputws

#include <wchar.h>
int fputws(const wchar_t *s, FILE *stream);

Writes the wide string to a stream . The terminating NULL wide character

is not written.

Returns 0 if successful, or EOF on error.

fread

#include <stdio.h>
size_t fread(void *ptr, size_t size,
 size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array

pointed to by ptr .

See also "_read()".

Returns the number of successfully read objects.

Reference Guide2–26
L
IB
R
A
R
IE
S

free

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

allocated by a call to "calloc()", "malloc()" or "realloc()". Otherwise the

behavior is undefined.

See also "calloc()", "malloc()" and "realloc()".

Returns nothing

freopen

#include <stdio.h>
FILE * freopen(const char *filename,
 const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function

is normally used to change the files associated with stdin, stdout, or stderr.

See also "fopen()".

Returns stream , or NULL on error.

frexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is

returned, and a power of 2, which is stored in *exp . If x is zero, both

parts of the result are zero. For example: frexp(4.0, &var) results in

0.5·23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

Libraries 2–27

• • • • • • • •

fscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream .

See also "scanf()", "_read()" and Section 3.12.2, Printf and Scanf
Formatting Routines, in Chapter C Language in the User's Guide.

Returns the number of items converted successfully.

fseek

#include <stdio.h>
int fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream . A subsequent read or write will

access data beginning at the new position. For a binary file, the position is

set to offset characters from origin , which may be SEEK_SET for the

beginning of the file, SEEK_CUR for the current position in the file, or

SEEK_END for the end-of-file. For a text stream, offset must be zero, or

a value returned by ftell . In this case origin must be SEEK_SET.

Returns zero if successful,

a non-zero value on error.

fsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *ptr);

Positions stream at the position recorded by fgetpos in *ptr .

Returns zero if successful,

a non-zero value on error.

Reference Guide2–28
L
IB
R
A
R
IE
S

fstat

#include <unistd.h>
int fstat(int fd, struct stat * buf);

This function is identical to stat() , except that it uses a file descriptor

instead of a name.

Returns zero if successful, -1 on error.

See also "stat".

ftell

#include <stdio.h>
long ftell(FILE *stream);

Returns the current file position for stream , or

-1L on error.

fwide

#include <wchar.h>
int fwide(FILE *stream, int mode);

Determines the orientation of the stream . If mode is greater than zero, the

function first attempts to make the stream wide oriented. If mode is less

than zero, the function first attempts to make the stream byte oriented.

Otherwise, mode is zero and the function does not alter the orientation of

the stream.

Returns a value greater than zero if, after the call, the stream has wide

orientation, a value less than zero if the stream has byte

orientation, or zero if the stream has no orientation.

Libraries 2–29

• • • • • • • •

fwprintf

#include <wchar.h>
int fwprintf(FILE *stream,
 const wchar_t *format, ...);

Writes output to the given stream under control of the wide string

pointed to by format that specifies how subsequent arguments are

converted for output.

See also "printf()".

Returns the number of wide characters transmitted, or a negative

value if an output or encoding error occurred.

fwrite

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size,
 size_t nobj, FILE *stream);

Writes nobj members of size bytes to the given stream from the array

pointed to by ptr .

Returns the number of successfully written objects.

fwscanf

#include <wchar.h>
int fwscanf(FILE *stream,
 const wchar_t *format, ...);

Reads input from the given stream , under control of the wide string

pointed to by format that specifies the admissible input sequences and

how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input.

See also "scanf()".

Returns the number of input items assigned or EOF on error.

Reference Guide2–30
L
IB
R
A
R
IE
S

getc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream . Currently #defined as

getchar(), because FILE I/O is not supported.

See also "_read()".

Returns the character read or EOF on error.

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.

See also "_read()".

Returns the character read or EOF on error.

getcwd

#include <unistd.h>
char * getcwd(char * buf, size_t size);

Use the file system simulation feature of CrossView Pro to retrieve the

current directory on the host.

Returns the directory name if successful,

NULL on error.

getenv

#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with name, or NULL if no

string exists.

Libraries 2–31

• • • • • • • •

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The

newline is replaced by a NULL-character.

See also "_read()".

Returns a pointer to the read string or NULL on error.

getwc

#include <wchar.h>
wint_t getwc(FILE *stream);

Reads one wide character out of the given stream .

Returns the wide character read, or WEOF on error.

getwchar

#include <wchar.h>
wint_t getwchar(void);

Reads one wide character from standard input.

Returns the wide character read, or WEOF on error.

gmtime

#include <time.h>
struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not

available.

Reference Guide2–32
L
IB
R
A
R
IE
S

isalnum

#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when c is an alphabetic character or a

number ([A-Z][a-z][0-9]).

isalpha

#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character

([A-Z][a-z]).

isascii

#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is

a non-ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non-zero value when c is a control character.

isdigit

#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0-9]).

Libraries 2–33

• • • • • • • •

isfinite

#include <float.h>
int isfinite(double d);

IEEE-754-1985 recommended function. Test the given variable on being a

finite (IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.

isfinitef

#include <float.h>
int isfinitef(float f);

IEEE-754-1985 recommended function. Test the given variable on being a

finite (IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.

isgraph

#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.

isinf

#include <float.h>
int isinf(double d);

IEEE-754-1985 recommended function. Test the given variable on being

an infinite (IEEE-754) value.

Returns zero if the variable is not +-infinite, else non-zero.

Reference Guide2–34
L
IB
R
A
R
IE
S

isinff

#include <float.h>
int isinff(float f);

IEEE-754-1985 Recommended function. Test the given variable on being

an infinite (IEEE-754) value.

Returns zero if the variable is not +-infinite, else non-zero.

islower

#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a-z]).

isnan

#include <float.h>
int isnan(double d);

IEEE-754-1985 recommended function. Test the given variable on being a

NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.

isnanf

#include <float.h>
int isnanf(float f);

IEEE-754-1985 Recommended function. Test the given variable on being a

NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.

Libraries 2–35

• • • • • • • •

isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.

ispunct

#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when c is a punctuation character (such as

'.', ',', '!', etc.).

isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space,

tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#include <ctype.h>
int isupper(int c);

Returns a non-zero value when c is an uppercase character ([A-Z]).

iswalnum

#include <wctype.h>
int iswalnum(wint_t wc);

Returns a non-zero value when wc is an alphabetic wide character or

a number ([A-Z][a-z][0-9]).

Reference Guide2–36
L
IB
R
A
R
IE
S

iswalpha

#include <wctype.h>
int iswalpha(wint_t wc);

Returns a non-zero value when wc is an alphabetic wide character

([A-Z][a-z]).

iswcntrl

#include <wctype.h>
int iswcntrl(wint_t wc);

Returns a non-zero value when wc is a control wide character.

iswctype

#include <wctype.h>
int iswctype(wint_t wc, wctype_t desc);

Returns a non-zero value (true) if and only if the value of the wide

character wc has the property described by desc .

For example, the function iswalnum(wc) is the same as specifying:

iswctype(wc, wctype(”alnum”))

iswdigit

#include <wctype.h>
int iswdigit(wint_t wc);

Returns a non-zero value when wc is a numeric character ([0-9]).

iswgraph

#include <wctype.h>
int iswgraph(wint_t wc);

Returns a non-zero value when wc is printable, but not a space.

Libraries 2–37

• • • • • • • •

iswlower

#include <wctype.h>
int iswlower(wint_t wc);

Returns a non-zero value when wc is a lowercase wide character

([a-z]).

iswprint

#include <wctype.h>
int iswprint(wint_t wc);

Returns a non-zero value when wc is printable, including spaces.

iswpunct

#include <wctype.h>
int iswpunct(wint_t wc);

Returns a non-zero value when wc is a punctuation wide character

(such as '.', ',', '!', etc.).

iswspace

#include <wctype.h>
int iswspace(wint_t wc);

Returns a non-zero value when wc is a white-space wide character

(space, tab, vertical tab, formfeed, linefeed, carriage return).

iswupper

#include <wctype.h>
int iswupper(wint_t wc);

Returns a non-zero value when wc is an uppercase wide character

([A-Z]).

Reference Guide2–38
L
IB
R
A
R
IE
S

iswxdigit

#include <wctype.h>
int iswxdigit(wint_t wc);

Returns a non-zero value when wc is a hexadecimal digit

([0-9][A-F][a-f]).

isxdigit

#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit

([0-9][A-F][a-f]).

labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
double ldexp(double x, int n);

Returns the result of: x· 2n.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder

are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

Libraries 2–39

• • • • • • • •

localeconv

#include <locale.h>
struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values

appropriate for the formatting of numeric quantities according to the rules

of the current locale.

Returns a pointer to the filled-in object.

localtime

#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

log

#include <math.h>
double log(double x);

Returns the natural logarithm ln(x), x>0 .

log10

#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0 .

Reference Guide2–40
L
IB
R
A
R
IE
S

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The

function calling the corresponding call to setjmp() may not be terminated

yet. The value of val may not be zero.

Returns nothing.

lseek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

Moves read-write file offset. This function calls _lseek.

Returns the resulting pointer location if successful,

-1 on error.

lstat

#include <unistd.h>
int lstat(const char * name, struct stat * buf);

This function is identical to stat() , except in the case of a symbolic link,

where the link itself is 'stat'-ted, not the file that it refers to.

Returns zero if successful, -1 on error.

See also "stat".

Libraries 2–41

• • • • • • • •

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be

allocated can be changed by customizing the heap size. By default no

heap is allocated. When malloc() is used while no heap is defined, the

linker gives an error.

Returns a pointer to space in external memory of size bytes length.

NULL if there is not enough space left.

mblen

#include <stdlib.h>
int mblen(const char *s, size_t n);

Determines the number of bytes comprising the multi-byte character

pointed to by s , if s is not a null pointer. Except that the shift state is not

affected. At most n characters will be examined, starting at the character

pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

mbrlen

#include <wchar.h>
size_t mbrlen(const char *s, size_t n,
 mbstate_t *ps);

Is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal)

where internal is the mbstate_t object for the mbrlen function,

except that the expression designated by ps is evaluated only once.

Returns a value between zero and n, inclusive, (size_t)(–2) , or

(size_t)(–1) .

Reference Guide2–42
L
IB
R
A
R
IE
S

mbrtowc

#include <wchar.h>
size_t mbrtowc(wchar_t *pwc, const char *s,
 size_t n, mbstate_t *ps);

Inspects at most n bytes beginning with the byte pointed to by s to

determine the number of bytes needed to complete the next multi-byte

character (including any shift sequences). If the function determines that

the next multi-byte character is complete and valid, it determines the

value of the corresponding wide character and then, if pwc is not a NULL

pointer, stores that value in the object pointed to by pwc. If the

corresponding wide character is the NULL wide character, the resulting

state described is the initial conversion state.

Returns the number of bytes, or 0 if s points to the null character, or

(size_t)(–2) if the bytes form an incomplete (but

potentionally valid) multi-byte character, or (size_t)(–1)
if the bytes do not form a valid multi-byte character.

mbsinit

#include <wchar.h>
int mbsinit(const mbstate_t *ps);

Determines whether the pointed-to mbstate_t object describes an initial

conversion state, if ps is not a NUL pointer.

Returns non-zero if ps is a NULL pointer or if the pointed-to object

describes an initial conversion state. Otherwise, it returns

zero.

Libraries 2–43

• • • • • • • •

mbsrtowcs

#include <wchar.h>
size_t mbsrtowcs(wchar_t *dst, const char **src,
 size_t len, mbstate_t *ps);

Converts a sequence of multi-byte characters that begins in the conversion

state described by the object pointed to by ps , from the array indirectly

pointed to by src into a sequence of corresponding wide characters. This

function then stores the converted characters into the array pointed to by

dst , stopping when len wide characters have been stored, or when a

sequence of bytes is encountered that does not form a valid multi-byte

character, or if a null wide character is stored.

Returns the number of multi-byte characters successfully converted

(not including the terminating null character, if any), or

(size_t) -1 if an invalid multi-byte character is

encountered.

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs,
 const char *s, size_t n);

Converts a sequence of multi-byte characters that begins in the initial shift

state from the array pointed to by s , into a sequence of corresponding

codes and stores these codes into the array pointed to by pwcs , stopping

after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a

terminating zero code, if any), or (size_t) -1 if an invalid

multi-byte character is encountered.

Reference Guide2–44
L
IB
R
A
R
IE
S

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Determines the number of bytes that comprise the multi-byte character

pointed to by s . It then determines the code for value of type wchar_t
that corresponds to that multi-byte character. If the multi-byte character is

valid and pwc is not a null pointer, the mbtowc function stores the code in

the object pointed to by pwc. At most n characters will be examined,

starting at the character pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

memchr

#include <string.h>
void *memchr(const void *cs, int c, size_t n);

Checks the first n bytes of cs on the occurrence of character c .

Returns NULL when not found, otherwise a pointer to the found

character is returned.

memcmp

#include <string.h>
int memcmp(const void *cs, const void *ct,
 size_t n);

Compares the first n bytes of cs with the contents of ct .

Returns a value < 0 if cs < ct ,

0 if cs = = ct ,

or a value > 0 if cs > ct .

Libraries 2–45

• • • • • • • •

memcpy

#include <string.h>
void *memcpy(void *s, const void *ct, size_t n);

Copies n characters from ct to s . No care is taken if the two objects

overlap.

Returns s

memmove

#include <string.h>
void *memmove(void *s, const void *ct, size_t n);

Copies n characters from ct to s . Overlapping objects will be

handled correctly.

Returns s

memset

#include <string.h>
void *memset(void *s, int c, size_t n);

Fills the first n bytes of s with character c .

Returns s

mktime

#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

Reference Guide2–46
L
IB
R
A
R
IE
S

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x . It

stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
int offsetof(type, member);

Returns the offset for the given member in an object of type.

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls _open.

See also "fopen()".

Returns the file descriptor if successful (a non-negative integer), or

-1 on error.

Libraries 2–47

• • • • • • • •

perror

#include <stdio.h>
void perror(const char *s);

Prints s and an implementation-defined error message corresponding to

the integer errno , as if by:

fprintf(stderr, ”%s: %s\n”, s, ” error message ”);

The contents of the error message are the same as those returned by the

strerror function with the argument errno .

See also the "strerror()" function.

Returns nothing.

pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0 , or if x<0 and y is not an integer.

Returns the result of x raised to the power of y : xy.

printf

#include <stdio.h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream.

See also "_write()" and Section 3.12.2, Printf and Scanf Formatting
Routines, in Chapter C Language in the User's Guide.

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion

specifiers. Each conversion specifier should be preceded by a '%'

character. The conversion specifier should be build in order:

- Flags (in any order):

– specifies left adjustment of the converted argument.

Reference Guide2–48
L
IB
R
A
R
IE
S

+ a number is always preceded with a sign character.

+ has higher precedence as space.

space a negative number is preceded with a sign, positive

numbers with a space.

0 specifies padding to the field width with zeros (only for

numbers).

specifies an alternate output form. For o, the first digit will

be zero. For x or X, "0x" and "0X" will be prefixed to the

number. For e, E, f, g, G, the output always contains a

decimal point, trailing zeros are not removed.

- A number specifying a minimum field width. The converted

argument is printed in a field with at least the length specified here.

If the converted argument has fewer characters than specified, it will

be padded at the left side (or at the right when the flag '–' was

specified) with spaces. Padding to numeric fields will be done with

zeros when the flag '0' is also specified (only when padding left).

Instead of a numeric value, also '* ' may be specified, the value is

then taken from the next argument, which is assumed to be of type

int.

- A period. This separates the minimum field width from the

precision.

- A number specifying the maximum length of a string to be printed.

Or the number of digits printed after the decimal point (only for

floating point conversions). Or the minimum number of digits to be

printed for an integer conversion. Instead of a numeric value, also

'* ' may be specified, the value is then taken from the next

argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to

be treated as a short or unsigned short number. 'l' should be used if

the argument is a long integer. 'L' indicates that the argument is a

long double.

Libraries 2–49

• • • • • • • •

Flags, length specifier, period, precision and length modifier are optional,

the conversion character is not. The conversion character must be one of

the following, if a character following '%' is not in the list, the behavior is

undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase
respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s char *, the characters from the string are printed until
a NULL character is found. When the given precision
is met before, printing will also stop

f double

e, E double

g, G double

n int *, the number of characters written so far is written
into the argument. This should be a pointer to an inte-
ger in default memory. No value is printed.

p pointer (hexadecimal 24–bit value)

% No argument is converted, a ’%’ is printed.

Table 2-3: Printf conversion characters

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream.

See also "_write()".

Returns EOF on error.

Reference Guide2–50
L
IB
R
A
R
IE
S

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

See also "_write()".

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

See also "_write()".

Returns NULL if successful, or EOF on error.

putwc

#include <wchar.h>
wint_t putwc(wchar_t c, FILE *stream);

Puts one wide character onto the given stream .

Returns the wide character written, or WEOF on error.

putwchar

#include <wchar.h>
wint_t putwchar(wchar_t c);

Puts one wide character onto standard output.

Returns the wide character written, or WEOF on error.

Libraries 2–51

• • • • • • • •

qsort

#include <stdlib.h>
void qsort(
 const void *base, size_t n, size_t size,
 int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is

given by base . The size of each member is specified by size . The given

array is sorted in ascending order, according to the results of the function

pointed to by cmp.

Returns nothing.

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the program.

See also "signal()".

Returns zero if successful, or a non-zero value if unsuccessful.

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to

RAND_MAX.

read

#include <unistd.h>
size_t read(int fd, char * buffer, size_t count);

Reads a sequence of characters from a file. This function calls _read.

See also "_read()".

Reference Guide2–52
L
IB
R
A
R
IE
S

realloc

#include <stdlib.h>
void *realloc(void *p, size_t size);

Reallocates the space for the object pointed to by p. The contents of the

object will be the same as before calling realloc().The maximum space that

can be allocated can be changed by customizing the heap size. By default

no heap is allocated. When "realloc()" is used while no heap is defined,

the linker gives an error.

See also "malloc()".

Returns NULL and *p is not changed, if there is not enough space for

the new allocation. Otherwise a pointer to the newly

allocated space for the object is returned.

remove

#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or

a non-zero value, if the attempt fails.

rename

#include <stdio.h>
int rename(const char *oldname,
 const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or

a non-zero value, if the attempt fails.

Libraries 2–53

• • • • • • • •

rewind

#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the

beginning of the file. This function is equivalent to:

(void) fseek(stream, 0L, SEEK_SET);
clearerr(stream);

Returns nothing.

scalb

#include <float.h>
double scalb(double d, int power);

IEEE-754-1985 Recommended function.

Returns d * 2^power for integral values power without computing

2^N.

scalbf

#include <float.h>
double scalbf(float d, int power);

IEEE-754-1985 Recommended function.

Returns d * 2^power for integral values power without computing

2^N.

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

See also "_read()" and Section 3.12.2, Printf and Scanf Formatting
Routines, in Chapter C Language in the User's Guide.

Reference Guide2–54
L
IB
R
A
R
IE
S

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default

memory) of the type which is specified in the format string.

The format string may contain :

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the

input stream.

- Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

- A '*', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i , n, o, u and x can be preceeded by

'h' if the argument is a pointer to short rather than int , or by 'l'

(letter ell) if the argument is a pointer to long . The conversion

characters e, f , and g can be preceeded by 'l' if a pointer double
rather than float is in the argument list, and by 'L' if a pointer to a

long double .

- A conversion specifier. '*', maximum field width and length modifier

are optional, the conversion character is not. The conversion

character must be one of the following, if a character following '%'

is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character

is not. The conversion character must be one of the following, if a

character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer can be octal (i.e. with a leading 0) or
hexadecimal (leading ”0x” or ”0X”), or just decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

Libraries 2–55

• • • • • • • •

Scanned asCharacter

s char *, a string of non white space characters. The
argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

f float

e, E float

g, G float

n int *, the number of characters written so far is written
into the argument. No scanning is done.

p pointer; hexadecimal 24–bit value which must be en-
tered without 0x– prefix.

[...] Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ’]’
character in the set of scanning characters.

[^...] Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying [^]...] includes the ’]’
character in the set.

% Literal ’%’, no assignment is done.

Table 2-4: Scanf conversion characters

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream , if buf is NULL.

Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ)

Returns nothing.

See also "setvbuf(�)".

Reference Guide2–56
L
IB
R
A
R
IE
S

setjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns 0 after a direct call to setjmp(). Calling the function "longjmp()"

using the saved env restores the current environment and

jumps to this place with a non-zero return value.

See also "longjmp()".

setlocale

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program's locale as specified by the

category and locale arguments.

Returns the string associated with the specified category for the

new locale if the selection can be honored.

null pointer if the selectioin cannot be honored.

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
 int mode, size_t size);

Controls buffering for the stream ; this function must be called before

reading or writing. mode can have the following values:

_IOFBF causes full buffering

_IOLBF causes line buffering of text files

_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be

allocated. size determines the buffer size.

Returns zero if successful

a non-zero value for an error.

Libraries 2–57

• • • • • • • •

See also "setbuf(�)".

signal

#include <signal.h>
void (*signal(int sig, void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handler is

SIG_DFL, the default behavior is used; if handler is SIG_IGN, the signal

is ignored; otherwise, the function pointed to by handler will be called,

with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort
SIGFPE arithmetic error, e.g. zero divide or overflow

SIGILL illegal function image, e.g. illegal instruction

SIGINT interactive attention, e.g. interrupt

SIGSEGV illegal storage access, e.g. access outside

memory limits

SIGTERM termination request sent to this program

When a signal sig subsequenly occurs, the signal is restored to its default

behavior; then the signal-handler function is called, as if by

(*handler)(sig) . If the handler returns, the execution will resume

where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or

SIG_ERR if an error occurs.

sin

#include <math.h>
double sin(double x);

Returns the sine of x .

sinh

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x .

Reference Guide2–58
L
IB
R
A
R
IE
S

sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.

See also "printf()" and Section 3.12.2, Printf and Scanf Formatting
Routines, in Chapter C Language in the User's Guide.

sqrt

#include <math.h>
double sqrt(double x);

Returns the square root of x . √x , where x ≥ 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random

numbers to be returned by subsequent calls to srand(). When srand is

called with the same seed value, the sequence of pseudo-random

numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string.

See also "scanf()" and Section 3.12.2, Printf and Scanf Formatting
Routines, in Chapter C Language in the User's Guide.

Libraries 2–59

• • • • • • • •

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on

the host platform.

Returns zero if successful,

-1 on error.

strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s , including the trailing NULL character.

Returns s

strchr

#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string

cs . If not found, NULL is returned.

strcmp

#include <string.h>
int strcmp(const char *cs, const char *ct);

Compares string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

Reference Guide2–60
L
IB
R
A
R
IE
S

strcoll

#include <string.h>
int strcoll(const char *cs, const char *ct);

Compares string cs to string ct . The comparison is based on strings

interpreted as appropriate to the program's locale.

Returns <0 if cs < ct,
0 if cs = = ct ,

>0 if cs > ct .

strcpy

#include <string.h>
char *strcpy(char *s, const char *ct);

Copies string ct into the string s , including the trailing NULL character.

Returns s

strcspn

#include <string.h>
size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

not in the string ct .

strerror

#include <string.h>
char *strerror(size_t n);

Returns pointer to implementation-defined string corresponding to

error n.

Libraries 2–61

• • • • • • • •

strftime

#include <time.h>
size_t strftime(char *s, size_t smax,
 const char *fmt,
 const struct tm *tp);

Formats date and time information from the structure *tp into s according

to the specified format fmt . fmt is analogous to a printf format. Each

%c is replaced as described below:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c local date and time representation
%d day of the month (01-31)
%H hour, 24-hour clock (00-23)
%I hour, 12-hour clock (01-12)
%j day of the year (001-366)
%m month (01-12)
%M minute (00-59)
%p local equivalent of AM or PM
%S second (00-59)
%U week number of the year, Sunday as first day of the

week (00-53)
%w weekday (0-6, Sunday is 0)
%W week number of the year, Monday as first day of the

week (00-53)
%x local date representation
%X local time representation
%y year without century (00-99)
%Y year with century
%Z time zone name, if any
%% %

Ordinary characters (including the terminating `\0`) are copied into s . No

more than smax characters are placed into s .

Returns the number of characters ('\0' not included), or

zero if more than smax characters where produced.

Reference Guide2–62
L
IB
R
A
R
IE
S

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in cs , not counting the NULL

character.

strncat

#include <string.h>
char *strncat(char *s, const char *ct, size_t n);

Concatenates string ct to string s , at most n characters are copied. Add a

trailing NULL character.

Returns s

strncmp

#include <string.h>
int strncmp(const char *cs, const char *ct,
 size_t n);

Compares at most n bytes of string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

strncpy

#include <string.h>
char *strncpy(char *s, const char *ct, size_t n);

Copies string ct onto the string s , at most n characters are copied. Add a

trailing NULL character if the string is smaller than n characters.

Returns s

Libraries 2–63

• • • • • • • •

strpbrk

#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in cs of any character out of

string ct . If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs, int c);

Returns a pointer to the last occurrence of c in the string cs . If not

found, NULL is returned.

strspn

#include <string.h>
size_t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

in the string ct .

strstr

#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs .

Returns NULL if not found.

Reference Guide2–64
L
IB
R
A
R
IE
S

strtod

#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.

Initial white spaces are skipped. When endp is not a NULL pointer, after

this function is called, *endp will point to the first character not used by

the conversion.

Returns the read value.

strtok

#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct . It

terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.

Initial white spaces are skipped. Then a value is read using the given

base . When base is zero, the base is taken as defined for integer

constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

Libraries 2–65

• • • • • • • •

strtoul

#include <stdlib.h>
unsigned long strtoul(
 const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned

long integer. Initial white spaces are skipped. Then a value is read using

the given base . When base is zero, the base is taken as defined for

integer constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#include <string.h>
size_t
strncmp(char *ct, const char *cs, size_t n);

Transforms the string pointed to by cs and places the resulting string into

the array pointed to by ct . No more than n characters are placed into the

resulting string pointed to by ct , including the terminating null character.

Returns the length of the transformed string.

swprintf

#include <wchar.h>
int swprintf(const wchar_t *s, size_t n,
 const wchar_t *format, ...);

Is equivalent to fwprintf , except that the output is written to an array of

wide characters (argument s). No more than n wide characters are written,

including a terminating null wide character.

Returns the number of wide characters written in the array, not

counting the terminating null wide character, or a negative

value if an encoding error occurred or if n or more wide

characters were requested to be written.

Reference Guide2–66
L
IB
R
A
R
IE
S

swscanf

#include <wchar.h>
int swscanf(const wchar_t *s,
 const wchar_t *format, ...);

Is equivalent to fwscanf , except that the input is obtained from a wide

string (argument s).

Returns the number of input items assigned or EOF on error.

system

#include <stdlib.h>
int system(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is

NULL; or an implementation-dependent value, if s is not

NULL.

tan

#include <math.h>
double tan(double x);

Returns the tangent of x .

tanh

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x .

Libraries 2–67

• • • • • • • •

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp , if tp is not NULL.

Returns the current calendar time, or -1 if the time is not available.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+" that will be automatically

removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be

created.

tmpnam

#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a

different name is created.

tmpnam(NULL) creates a string that is not the name of an existing file,

and returns a pointer to an internal static array. tmpnam(s) creates a

string and stores it in s and also returns it as the function value. s must

have room for at least L_tmpnam characters. At most TMP_MAX different

names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

Reference Guide2–68
L
IB
R
A
R
IE
S

toascii

#include <ctype.h>
int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non-ANSI

function.

Returns the converted value.

tolower

#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

toupper

#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase

character, otherwise c is returned.

towctrans

#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

Returns the mapped value of wc using the mapping described by

desc .

For example, the function tolower(wc) is the same as specifying:

towctrans(wc, wctrans(”tolower”))

Libraries 2–69

• • • • • • • •

towlower

#include <wctype.h>
wint_t towlower(wint_t wc);

Returns wc converted to a lowercase wide character if it is an

uppercase wide character, otherwise wc is returned.

towupper

#include <wctype.h>
wint_t towupper(wint_t wc);

Returns wc converted to an uppercase wide character if it is a

lowercase wide character, otherwise wc is returned.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

ungetwc

#include <wchar.h>
wint_t ungetwc(wint_t c, FILE *stream);

Pushes at the most one wide character back onto the input stream.

Returns the wide character pushed back, or WEOF on error.

Reference Guide2–70
L
IB
R
A
R
IE
S

unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This

function calls _unlink.

Returns zero if file is successfully removed, or

a non-zero value, if the attempt fails.

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.

It's return type has the type of the given argument type . A

next call to this macro will return the value of the next

argument.

va_end

#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It

should be called before the function using the macro 'va_start' is

terminated (ANSI specification).

va_start

#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap . After this call, each call to va_arg() will return

the value of the next argument. In our implementation, va_list cannot

contain any bit type variables. Also the given argument lastarg must be

the last non-bit type argument in the list.

Libraries 2–71

• • • • • • • •

vfprintf

#include <stdio.h>
int vfprintf(FILE *stream,
 const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()", "_write()".

vfwprintf

#include <wchar.h>
int vfwprintf(FILE *stream,
 const wchar_t *format, va_list arg);

Is equivalent to fwprintf , except that instead of a variable argument list

this function expects a pointer to the list.

Returns the number of wide characters transmitted, or a negative

value if an output or encoding error occurred.

vprintf

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Does a formatted write to standard output. Instead of a variable argument

list as for printf(), this function expects a pointer to the list.

See also "printf()", "_write()" and Section 3.12.2, Printf and Scanf
Formatting Routines, in Chapter C Language in the User's Guide.

Reference Guide2–72
L
IB
R
A
R
IE
S

vsprintf

#include <stdio.h>
int vsprintf(char *s, const char *format,
 va_list arg);

Does a formatted write a string. Instead of a variable argument list as for

printf(), this function expects a pointer to the list.

See also "printf()", "_write()" and Section 3.12.2, Printf and Scanf
Formatting Routines, in Chapter C Language in the User's Guide.

vswprintf

#include <wchar.h>
int vswprintf(const wchar_t *s, size_t n,
 const wchar_t *format, va_list arg);

Is equivalent to swprintf , except that instead of a variable argument list

this function expects a pointer to the list.

Returns the number of wide characters written in the array, not

counting the terminating null wide character, or a negative

value if an encoding error occurred or if n or more wide

characters were requested to be written.

vwprintf

#include <wchar.h>
int vwprintf(const wchar_t *format, va_list arg);

Is equivalent to wprintf , except that instead of a variable argument list

this function expects a pointer to the list.

Returns the number of wide characters transmitted, or a negative

value if an output or encoding error occurred.

Libraries 2–73

• • • • • • • •

wcrtomb

#include <wchar.h>
size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);

Determines the number of bytes needed to represent the multi-byte

character that corresponds to the wide character given by wc (including

any shift sequences). It stores the multi-byte character representation in

the array pointed to by s (if s is not a null pointer). At most

MB_CUR_MAX characters are stored. If wc is a null wide character, a null

byte is stored, preceded by any shift sequence needed to restore the initial

shift state; the resulting state described is the initial conversion state.

Returns the number of bytes, or (size_t) -1 if the value of wc does

not correspond to a valid wide character.

wcscat

#include <wchar.h>
wchar_t *wcscat(wchar_t *s1, const wchar_t *s2);

Concatenates a copy of wide string s2 to string s1 , including the trailing

null wide character. The initial wide character of s2 overwrites the null

wide character at the end of s1 .

Returns s1

wcschr

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

Returns a pointer to the first occurrence of wide character c in the

wide string s . If not found, NULL is returned.

Reference Guide2–74
L
IB
R
A
R
IE
S

wcscmp

#include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

Compares wide string s1 to wide string s2 .

Returns <0 if s1 < s2 ,

0 if s1 == s2 ,

>0 if s1 > s2 .

wcscoll

#include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Compares wide string s1 to wide string s2 . The comparison is based on

wide strings interpreted as appropriate to the program's locale.

Returns <0 if s1 < s2 ,

0 if s1 == s2 ,

>0 if s1 > s2 .

wcscpy

#include <wchar.h>
wchar_t *wcscpy(wchar_t *s1, const wchar_t *s2);

Copies wide string s2 intto wide string s1 . including the trailing null wide

character.

Returns s1

wcscspn

#include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

Returns the length of the maximum initial segment of wide string s1
which consists entirely of wide characters not from wide

string s2 .

Libraries 2–75

• • • • • • • •

wcsftime

#include <wchar.h>
size_t wcsftime(wchar_t *s, size_t maxsize,
 const wchar_t *format,
 const struct tm *timeptr);

This function is equivalent to the strftime function, except that:

- The argument s points to the initial element of an array of wide

characters into which the generated output is to be placed.

- The argument maxsize indicates the limiting number of wide

characters.

- The argument format is a wide string and the conversion specifiers

are replaced by corresponding sequences of wide characters.

Returns the number of wide characters ('\0' not included), or

zero if more than maxsize wide characters where produced.

wcslen

#include <wchar.h>
size_t wcslen(const wchar_t *s);

Returns the length of the wide string in s , not counting the null wide

character.

wcsncat

#include <wchar.h>
wchar_t *wcsncat(wchar_t *s1, const wchar_t *s2,
 size_t n);

Concatenates at most n wide characters from wide string s2 to wide string

s1 . A terminating null wide character is always appended to the result.

Returns s1

Reference Guide2–76
L
IB
R
A
R
IE
S

wcsncmp

#include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2,
 size_t n);

Compares at most n wide characters of wide string s1 to wide string s2 .

Returns <0 if s1 < s2 ,

0 if s1 == s2 ,

>0 if s1 > s2 .

wcsncpy

#include <wchar.h>
wchar_t *wcsncpy(wchar_t *s1, const wchar_t *s2,
 size_t n);

Copies at most n characters of wide string s2 onto the wide string s1 .

Adds trailing null characters if the string is smaller than n wide characters.

Returns s1

wcspbrk

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);

Returns a pointer to the first occurrence in s1 of any wide character

out of wide string s2 . If none are found, NULL is returned.

wcsrchr

#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Returns a pointer to the last occurrence of c in the wide string s . If

not found, NULL is returned.

Libraries 2–77

• • • • • • • •

wcsrtombs

#include <wchar.h>
size_t wcsrtombs(char *dst, const wchar_t **src,
 size_t len, mbstate_t *ps);

Converts a sequence of wide characters from the array indirectly pointed

to by src into a sequence of corresponding multi-byte characters that

begins in the conversion state described by the object pointed to by ps .

This function then stores these multi-byte characters into the array pointed

to by dst , stopping if a multi-byte character would exceed the limit of

len total bytes, or when a wide character is reached that does not

correspond to a valid multi-byte character, or if a null character is stored.

Returns the number of bytes modified (not including a terminating

null character, if any), or (size_t) -1 if a wide character is

encountered that does not correspond to a valid multi-byte

character.

wcsspn

#include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Returns the length of the maximum initial segment of wide string s1
which consists entirely of wide characters from wide string

s2 .

wcsstr

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1,
 const wchar_t *s2);

Returns a pointer to the first occurrence of wide string s2 in the wide

string s1 . Returns NULL if not found.

Reference Guide2–78
L
IB
R
A
R
IE
S

wcstod

#include <wchar.h>
double wcstod(const wchar_t *nptr,
 wchar_t **endptr);

Converts the initial portion of the wide string pointed to by nptr to

double . Initial white spaces are skipped. A pointer to the final wide string

is stored in the object pointed to by endptr , provided that endptr is not

a null pointer.

Returns the converted value, or zero if no conversion could be

performed.

wcstok

#include <wchar.h>
wchar_t *wcstok(wchar_t *s1, const wchar_t *s2,
 wchar_t **ptr);

Searches the wide string s1 for tokens delimited by wide characters from

wide string s2 . It terminates the token with a null character.

Returns a pointer to the first wide character of a token.

A subsequent call with s1 == NULL will return the next

token in the string.

wcstol

#include <wchar.h>
long int wcstol(const wchar_t *nptr,
 wchar_t **endptr, int base);

Converts the initial portion of the wide string pointed to by nptr to long
int . Initial white spaces are skipped. Then a value is read using the given

base . When base is zero, the base is taken as defined for integer

constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. A pointer to the final wide string is stored in the object pointed to

by endptr , provided that endptr is not a null pointer.

Returns the converted value, or zero if no conversion could be

performed.

Libraries 2–79

• • • • • • • •

wcstombs

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs,
 size_t n);

Converts a sequence of codes that correspond to multi-byte characters

from the array pointed to by pwcs , into a sequence of multi-byte

characters that begins in the initial shift state and stores these multi-byte

characters into the array pointed to by s , stopping if a multi-byte character

would exceed the limit of n total bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating

null character, if any), or (size_t) -1 if a code is

encountered that does not correspond to a valid multi-byte

character.

wcstoul

#include <wchar.h>
unsigned long int wcstoul(const wchar_t *nptr,
 wchar_t **endptr, int base);

Same as wcstol , except that it converts the initial portion of the wide

string to unsigned long int .

Returns the converted value, or zero if no conversion could be

performed.

wcsxfrm

#include <wchar.h>
size_t wcsxfrm(wchar_t *s1, const wchar_t *s2,
 size_t n);

Transforms the wide string pointed to by s2 and places the resulting string

into the array pointed to by s1 . No more than n wide characters are

placed into the resulting array pointed to by s1 , including the terminating

null wide character.

Returns the length of the transformed wide string.

Reference Guide2–80
L
IB
R
A
R
IE
S

wctob

#include <wchar.h>
int wctob(wint_t c);

Determines whether c corresponds to a member of the extended character

set whose multi-byte character representation is a single byte when in the

initial shift state.

Returns EOF if c does not correspond to a multi-byte character with

length one in the initial shift state. Otherwise, it returns the

single-byte representation of that character as an unsigned
char converted to an int .

wctomb

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte

corresponding to the code whose value is wchar (including any change in

the shift state). It stores the multi-byte character representation in the array

pointed to by s (if s is not a null pointer). At most MB_CUR_MAX

characters are stored. If the value of wchar is zero, the wctomb function is

left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not

correspond to a valid multi-byte character.

wctrans

#include <wctype.h>
wctrans_t wctrans(const char *property);

Constructs a value with type wctrans_t that describes a mapping

between wide characters identified by the string argument property .

Valid strings are: tolower or toupper .

See also "towctrans()".

Returns a non-zero value that is valid as the second argument to the

towctrans function, if property identifies a valid mapping

of wide characters; otherwise, it returns zero.

Libraries 2–81

• • • • • • • •

wctype

#include <wctype.h>
wctype_t wctype(const char *property);

Constructs a value with type wctype_t that describes a class of wide

characters identified by the string argument property . Valid strings are:

alnum , alpha , cntrl , digit , graph , lower , print , punct , space ,

upper or xdigit .

See also "iswctype()".

Returns a non-zero value that is valid as the second argument to the

iswctype function, if property identifies a valid class of

wide characters; otherwise, it returns zero.

wmemchr

#include <wchar.h>
wchar_t *wmemchr(const wchar_t *s,
 wchar_t c, size_t n);

Checks the first n wide characters of s on the occurrence of wide

character c .

Returns a pointer to the located wide character, or a null pointer if

the wide character does not occur in the object.

wmemcmp

#include <wchar.h>
int wmemcmp(const wchar_t *s1,
 const wchar_t *s2, size_t n);

Compares the first n wide characters of s1 to the first n wide characters of

s2 .

Returns <0 if s1 < s2 ,

0 if s1 == s2 ,

>0 if s1 > s2 .

Reference Guide2–82
L
IB
R
A
R
IE
S

wmemcpy

#include <wchar.h>
wchar_t *wmemcpy(wchar_t *s1,
 const wchar_t *s2, size_t n);

Copies n wide characters from s2 to s1 . Does not check for memory

overlapping.

Returns s1

wmemmove

#include <wchar.h>
wchar_t *wmemmove(wchar_t *s1,
 const wchar_t *s2, size_t n);

Copies n wide characters from s2 to s1 . Overlapping objects will be

handled correctly.

Returns s1

wmemset

#include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Fills the first n wide characters of s with the value of c .

Returns s

wprintf

#include <wchar.h>
int wprintf(const wchar_t *format, ...);

Is equivalent to fwprintf , except that the output is written to stdout
instead of a stream.

Returns the number of wide characters transmitted, or a negative

value if an output or encoding error occurred.

Libraries 2–83

• • • • • • • •

write

#include <unistd.h>
size_t write(int fd, char * buffer, size_t count);

Write a sequence of characters to a file. This function calls _write.

See also "_write()".

wscanf

#include <wchar.h>
int wscanf(const wchar_t *format, ...);

Is equivalent to fwscanf , except that the input is obtained from stdin .

Returns the number of input items assigned or EOF on error.

Reference Guide2–84
L
IB
R
A
R
IE
S

3

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

Reference Guide3–2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

Assembly Language 3–3

• • • • • • • •

3.1 INTRODUCTION

This chapter contains a detailed description of all built-in assembly

functions directives and controls. For a description of the R8C instruction

set, refer to the R8C/Tiny Series Software Manual.

3.2 BUILT-IN ASSEMBLY FUNCTIONS

3.2.1 OVERVIEW OF BUILT-IN ASSEMBLY FUNCTIONS

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,

random value, and min/max functions.

• String functions compare strings, return the length of a string, and

return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an

address.

• Assembler mode functions relating assembler operation.

The following tables provide an overview of all built-in assembler

functions.

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@SGN(expr) Returns the sign of an expression as –1, 0 or 1

Reference Guide3–4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,strt]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(str1,expr,expr) Returns substring in string

Overview of macro functions

Function Description

@ARG({symbol|expr}) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

Overview of address calculation functions

Function Description

@LSW(expr) Returns lower 16 bits of expression value

@MSW(expr) Returns upper 16 bits of expression value

Overview of assembler mode functions

Function Description

@DEF(symbol) Returns 1 if symbol has been defined

@LST() LIST control flag value

Assembly Language 3–5

• • • • • • • •

3.2.2 DETAILED DESCRIPTION OF BUILT-IN

ASSEMBLY FUNCTIONS

@ABS(expression)

Returns the absolute value of expression as an integer value.

Example:

MOV.W #@ABS(VAL), R0 ;load absolute value into R0

@ARG(symbol | expression)

Returns an integer 1 if the macro argument represented by symbol or

expression is present, 0 otherwise. If the argument is a symbol it must be

single-quoted and refer to a dummy argument name. If the argument is an

expression it refers to the ordinal position of the argument in the macro

dummy argument list. The assembler issues a warning if this function is

used when no macro expansion is active.

Example:

IF @ARG(’TWIDDLE’) ;twiddle factor provided?

@CAT(string1,string2)

Concatenates the two strings into one string. The two strings must be

enclosed in single or double quotes.

Example:

DEFINE ID ”@ CAT(’R’,’8C’) ” ;ID = ’R8C’

@CNT()

Returns the number of arguments of the current macro expansion as an

integer. The assembler issues a warning if this function is used when no

macro expansion is active.

Example:

ARGCNT SET @CNT() ;reserve argument count

Reference Guide3–6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@DEF(symbol)

Returns an integer 1 if symbol has been defined, 0 otherwise. symbol can

be any label not associated with a MACRO or DEFSECT directive. If symbol
is quoted, it is looked up as a DEFINE symbol; if it is not quoted, it is

looked up as an ordinary label.

Example:

IF @DEF(’ANGLE’) ;is symbol ANGLE defined?
IF @DEF(ANGLE) ;does label ANGLE exist?

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN SET @LEN(’string’) ;SLEN = 6

@LST()

Returns the value of the $LIST ON/OFF control flag as an integer. Each

time a $LIST ON control is encountered in the assembly source, the flag is

incremented. Each time a $LIST OFF control is encountered, the flag is

decremented.

Example:

DUP @ABS(@LST()) ;list unconditionally

@LSW(expression)

Returns the lower 16 bits of a value. @LSW(expression) is equivalent to

expression & 0xffff) .

Example:

mov.w # @LSW(COUNT),a0 ;lower 16 bits of COUNT

@MAC(symbol)

Returns an integer 1 if symbol has been defined as a macro name,

0 otherwise.

Example:

IF @MAC(DOMUL) ;does macro DOMUL exist?

Assembly Language 3–7

• • • • • • • •

@MAX(expr1[,exprN]...)

Returns the largest of expr1,...,exprN as an integer.

Example:

MAX: DB @ MAX(1,5,–3) ;MAX = 5

@MIN(expr1[,exprN]...)

Returns the smallest of expr1,...,exprN as an integer.

Example:

MIN: DB @ MIN(1,5,–3) ;Min = –3

@MSW(expression)

Returns the upper 16 bits of a value. @MSW(expression) is equivalent to

((expression >>16) & 0xffff) .

Example:

movw.w # @MSW(COUNT),a0 ;upper 16 bits of COUNT

@MXP()

Returns an integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

IF @MXP() ;macro expansion active?

@POS(str1,str2[,start])

Returns the position of str2 in str1 as an integer, starting at position start. If
start is not given the search begins at the beginning of str1. If the start
argument is specified it must be a positive integer and cannot exceed the

length of the source string. Note that the first position in a string is

position 0.

Example:

ID EQU @POS(’ASMFUNCTION’,’FUNC’) ;ID = 3
ID2 EQU @POS(’ABCDABCD’,’B’,2) ;ID2 = 5

Reference Guide3–8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

@SCP(str1,str2)

Returns an integer 1 if the two strings compare, 0 otherwise. The two

strings must be separated by a comma.

Example:

IF @SCP(STR,’MAIN’) ;does STR equal MAIN?

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative,

0 if zero, 1 if positive. The expression can be relative or absolute.

Example:

VAR1 SET @SGN(–12) ;VAR1 = –1
VAR2 SET @SGN(0) ;VAR2 = 0
VAR3 SET @SGN(28) ;VAR3 = 1

@SUB(string,expression1,expression2)

Returns the substring from string as a string. Expression1 is the starting

position within string, and expression2 is the length of the desired string.

The assembler issues an error if either expression1 or expression2 exceeds

the length of string. Note that the first position in a string is position 0.

Example:

DEFINE ID ”@SUB (’ASMFUNCTION’,3,4) ” ;ID = ’FUNC’

Assembly Language 3–9

• • • • • • • •

3.3 ASSEMBLER DIRECTIVES AND CONTROLS

3.3.1 OVERVIEW OF ASSEMBLER DIRECTIVES

Assembler directives are grouped in the following categories:

• Assembly control directives

• Symbol definition directives

• Data definition / Storage allocation directives

• Macro and conditional assembly directives

• Debug directives

The following tables provide an overview of all assembler directives.

Overview of assembly control directives

Directive Description

COMMENT Start comment lines

DEFINE Define substitution string

DEFSECT Define section name and attributes

END End of source program

FAIL Programmer generated error message

INCLUDE Include secondary file

MSG Programmer generated message

NAME Identification for object file (instead of file name)

RADIX Change input radix for constants

SECT Activate a declared section

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning

Reference Guide3–10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of symbol definition directives

Directive Description

BTEQU Bit equate

EQU Assign permanent value to a symbol

EXTERN External symbol declaration

GLOBAL Global section symbol declaration

LOCAL Local symbol declaration

SET Assign value to a symbol

WEAK Mark symbol as ’weak’

Overview of data definition / storage allocation directives

Directive Description

ALIGN Define alignment

ASCII / ASCIIZ Define ASCII string without / with ending NULL byte

BS Define block storage (initialized)

BSB Define byte block storage (initialized)

BSBIT Define bit block storage in bit addressable data

BSL Define long block storage (initialized)

BSW Define word block storage (initialized)

DB Define constant byte

DBIT Define constant bit

DL Define a constant long (4 bytes)

DS Define storage

DW Define a constant word (2 bytes)

Assembly Language 3–11

• • • • • • • •

Overview of macro and conditional assembly directives

Directive Description

DUP / ENDM Duplicate sequence of source lines

DUPA / ENDM Duplicate sequence with arguments

DUPC / ENDM Duplicate sequence with characters

DUPF / ENDM Duplicate sequence in loop

EXITM Exit macro

IF / ELIF / ELSE /
ENDIF

Conditional assembly

MACRO / ENDM Define macro

PMACRO Purge macro definition

Overview of debug directives

Function Description

CALLS Passes call information to object file. Used by the
linker to build a call graph.

3.3.2 DETAILED DESCRIPTION OF ASSEMBLER

DIRECTIVES

Some assembler directives can be preceeded with a label. If you do not

preceede an assembler directive with a label, you must use white space

instead (spaces or tabs). The assembler recognizes both upper and lower

case for directives.

Reference Guide3–12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

ALIGN

Syntax

ALIGN expression

Description

With the ALIGN directive you instruct the assembler to align the location

counter. Default the assembler aligns on one byte.

When the assembler encounters the ALIGN directive, it advances the

location counter to an address that is aligned as specified by expression
and places the next instruction on that address. The assembler fills the

'gap' with NOP instructions. If the location counter is already aligned on

the specified alignment, it remains unchanged. The location of absolute

sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify

another value, the assembler changes the alignment to the next higher

power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value

occurring in that section.

Example

 ALIGN 4 ;the assembler aligns
 add.w a0,r0 ;this instruction on 4 bytes

 ALIGN 6 ;not a 2 k value.
lab1: ;a warning is issued
 ;lab1 is aligned on 8 bytes

Related information

-

Assembly Language 3–13

• • • • • • • •

ASCII/ASCIIZ

Syntax

[label:] ASCII string[,string]...

[label:] ASCIIZ string[,string]...

Description

With the ASCII or ASCIIZ directive the assembler allocates and initializes

memory each string.

The ASCII directive does not add a NULL byte to the end of the string.

The ASCIIZ directive does add a NULL byte to the end of the string. Use

commas to separate multiple strings.

Example

STRING: ASCII ”Hello world”

STRING: ASCIIZ ”Hello world”

With the DB directive you can obain exactly the same effect:

STRING: DB ”Hello world” ; without a NULL byte
STRING: DB ”Hello world”,0 ; with a NULL byte

Related information

DS (Define storage)

DB (Define a constant byte)

Reference Guide3–14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

BS

Syntax

[label] BS expression1[,expression2]

Description

With the BS directive (Block Storage) the assembler reserves a block

ofmemory. By default, the reserved block of memory is initialized with

zeroes. With expression2 you can specify a value to initialize the block

with.

With expression1 you specify the number of bits, bytes (depending on the

mau size of a the section) you want to reserve, and how much the

location counter will advance. The expression must be an integer greater

than zero and cannot contain any forward references to address labels

(labels that have not yet been defined).

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Example

The BS directive is for example useful to define an array that is only

partially initialized:

DEFSECT ”test_INI_DA”, data, init
SECT ”test_INI_DA”
DB 84,101,115,116 ; initalize 4 bytes
BS 96 ; reserve another 96 bytes (zeroed)

BSB (Define byte block storage (initialized)

BSBIT (Define bit block storage)

BSL (Define long block storage (initialized)

BSW (Define word block storage (initialized)

DS (Define storage)

Assembly Language 3–15

• • • • • • • •

BSB

Syntax

[label] BSB expression1[,expression2]

Description

With the BSB directive (Byte Block Storage) the assembler reserves a block

of bytes in memory. By default, the reserved block of memory is initialized

with zeroes. With expression2 you can specify a value to initialize the

block with.

With expression1 you specify the number of bytes you want to reserve,

and how much the location counter will advance. The expression must be

an integer greater than zero and cannot contain any forward references to

address labels (labels that have not yet been defined).

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Example

The BS directive is for example useful to define and initialize an array that

is only partially filled:

DEFSECT ”test_INI_DA”, data, init
SECT ”test_INI_DA”
DB 84,101,115,116 ; initalize 4 bytes
BSB 96,0xFF ; reserve another 96 bytes,
 initialized with FF.

BS (Block storage)

DS (Define storage)

Reference Guide3–16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

BSBIT

Syntax

[label] BSBIT expression1[,expression2]

Description

With the BSBIT directive (Block Storage) the assembler reserves a block of

bits in memory. By default, the reserved block of bits is initialized with

zeroes. With expression2 you can specify a value (0 or 1) to initialize the

bits with.

With expression1 you specify the number of bit you want to reserve, and

how much the location counter will advance. The expression must be an

integer greater than zero and cannot contain any forward references to

address labels (labels that have not yet been defined).

If you specify label, it gets the value of the location counter at the start of

the directive processing.

You can use the BSBIT directive only within bit sections.

Example

To initialize 16 bits with the value '1':

DEFSECT ”test_INI_DA”, bit, init
SECT ”test_INI_DA”
BSBIT 16,1 ; reserve 16 bits, initialized with ’1’

BS (Block storage)

DS (Define storage)

Assembly Language 3–17

• • • • • • • •

BSL/BSW

Syntax

[label] BSL expression1[,expression2]

[label] BSW expression1[,expression2]

Description

With the BSL or BSW directive the assembler reserves a block of longs (32

bits) or words (16 bits) in memory. By default, the reserved block is

initialized with zeroes. With expression2 you can specify a value to

initialize the block with.

With expression1 you specify the number of longs or words you want to

reserve, and how much the location counter will advance. The expression

must be an integer greater than zero and cannot contain any forward

references to address labels (labels that have not yet been defined).

Examples

LNG: BSL 16,0x12345678

WRD: BSW 16,0x1234
WRD: BSW 16,0x12345678 ; initalized with 0x5678

You can of course initialize a single long or word imitating the effect of

the DL/DW directive:

LNG: BSL 1,0x12345678

has the same effect as:

LNG: DL 0x78563412

BS (Block storage)

DS (Define storage)

Reference Guide3–18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

BTEQU

Syntax

symbol BTEQU bit,base

Description

With the BTEQU directive (equate symbol to a bit value) you can assign a

bit position to a symbol. The symbol name cannot be redefined anywhere

else in the program.

Base is the base address in which you want to identify a bit. You then can

use symbol to refer to that bit.

Example

Flp_Bit BTEQU 5,19 ;bit 5 in byte 19

The symbol Flp_Bit is now associated with the forementioned bit and

you can use the symbol for example to clear the bit:

bclr Flp_Bit

Related information

-

Assembly Language 3–19

• • • • • • • •

CALLS

Syntax

CALLS 'caller', 'callee'

Description

Create a flow graph reference between caller and callee. The linker needs

this information to build a call graph. Caller and Callee are names of

functions.

The compiler inserts CALLS directives automatically to pass call tree

information. Normally it is not necessary to use the CALLS directive in

hand coded assembly.

A label is not allowed with this directive.

Example

To indicate that the function main calls the function nfunc :

CALLS ’main’, ’nfunc’

Related information

-

Reference Guide3–20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

COMMENT

Syntax

COMMENT delimiter
.

.

delimiter

Description

With the COMMENT directive (Start Comment Lines) you can define one or

more lines as comments. The first non-blank character after the .COMMENT
directive is the comment delimiter. The two delimiters are used to define

the comment text. The line containing the second comment delimiter will

be considered the last line of the comment. The comment text can include

any printable characters and the comment text will be produced in the

source listing as it appears in the source file.

A label is not allowed with this directive.

Example

COMMENT + This is a one line comment +
COMMENT * This is a multiple line
 comment. Any number of lines
 can be placed between the two
 delimiters.
 *

Related information

-

Assembly Language 3–21

• • • • • • • •

DB

Syntax

[label] DB argument[,argument]...

Description

With the DB directive (Define Constant Byte) the assembler allocates and

initializes a byte of memory for each argument.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument

is NULL its corresponding byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Integer arguments are stored as is, but must be byte values (within the

range 0-255); floating-point numbers are not allowed. If the evaluated

expression is out of the range [-256, +255] the assembler issues an error.

For negative values within that range, the assembler adds 256 to the

specified value (for example, -254 is stored as 2).

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

DB ’R’ ; = 0x52
DB ’AB’,,’D’ ; = 0x41420043

Example

TABLE DB ’two’,0,’strings’,0
CHARS DB ’A’,’B’,’C’,’D’

Reference Guide3–22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related information

BS (Block storage)

DS (Define storage)

Assembly Language 3–23

• • • • • • • •

DBIT

Syntax

[label] DBIT argument[,argument]...

Description

With the DBIT directive (Define Bit) you allocate and initialize memory in

bit units for each argument.

You can use the DBIT directive only within sections of the type bit .

An argument is 0 or 1.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

Example

NBITS: DBIT 1,0,1,1 ; allocate and initialize
 ; four bits.

Related information

BS (Block storage)

DS (Define storage)

Reference Guide3–24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

DEFINE

Syntax

DEFINE symbol string

Description

With the DEFINE directive you define a substitution string that you can

use on all following source lines. The assembler searches all succeeding

lines for an occurrence of symbol, and replaces it with string.

This directive is useful for providing better documentation in the source

program. Symbol must adhere to the restrictions for labels. That is, a

symbol can consist of letters, digits and underscore characters (_), and the

first character cannot be a digit.

The assembler issues a warning if you redefine an existing symbol.

Macros represent a special case. DEFINE directive translations are applied

to the macro definition as it is encountered. When the macro is expanded

any active DEFINE directive translations will again be applied.

A label is not allowed with this directive.

Example

If the following DEFINE directive occurred in the first part of the source

program:

DEFINE SIZE ’32’

then the source line below:

DS SIZE

would be transformed by the assembler to the following:

DS 32

Related information

UNDEF (Undefine DEFINE symbol)

SET (Set temporary value to a symbol)

Assembly Language 3–25

• • • • • • • •

DEFSECT

Syntax

DEFSECT name, type [, attr]... [AT address]

Description

With the DEFSECT directive you can define a section with a name, type
and optional attributes. Before any code or data can be placed in a

section, you must use the SECT directive to activate the section.

This directive uses the following arguments:

type: A section type:

code code section

data data section

bit __bit type section

bita bitaddressable data (__bita)

sfr special function register

attribute: An optional section attribute:

init section is copied from ROM to RAM at startup

clear section is cleared during startup

noclear section is not cleared during startup

overlay overlayable section

max maximum section size

romdata data section remains in ROM

Sections with attribute noclear are not zeroed at startup. This is a default

attribute for data sections. You can only use this attribute with a data
type section.

The attribute init defines that the code section contains initialization

data, which is copied from ROM to RAM at program startup.

Sections with the attribute romdata contain data to be placed in ROM.

This ROM area is not executable.

When data sections with the same name occur in different object

modules with the attribute max, the linker generates a section with a size

that is the largest of the sizes in the individual object modules. The

attribute max only applies to data sections.

Reference Guide3–26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Examples:

DEFSECT ”text_DA”, DATA ;declare section text_DA
SECT ”text_DA” ;switch to section text_DA

SECT (Activate a declared section)

Assembly Language 3–27

• • • • • • • •

DL/DW

Syntax

[label] DL argument[,argument]...

[label] DW argument[,argument]...

Description

With the DL or DW directive the assembler allocates and initializes a long

(32 bits) or a word (16 bits) of memory for each argument.

An argument can be:

• a numeric constant

• a single or multiple character string constant

• a symbol

• an expression

• NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument

is NULL its corresponding byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of

the directive processing.

In case of single and multiple character strings, each character is stored in

consecutive bytes whose lower seven bits represent the ASCII value of the

character. The standard C escape sequences are allowed:

DL ’R’ ; = 0x52000000
DL ’ABCD’ ; = 0x44434241

DW ’R’ ; = 0x5200
DW ’AB’ ; = 0x4241
DW ’ABCD’ ; = 0x4241 ;value truncated

If the evaluated argument is too large to be represent in a word /

halfword, the assembler issues an error and truncates the value.

Examples

LNG: DL 14,1635,0x34266243,’ABCD’

WRD: DW 14,1635,0x2662,’AB’

Reference Guide3–28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

With the DB directive you can obain exactly the same effect:

LNG: DB 14,0,0,0,1635%256,6,0,0,
 0x43,0x62,0x26,0x34,’D’,’C’,’B’,’A’

WRD: DB 14,0,1635%256,6,0x62,0x26,’B’,’A’

Related information

BS (Block storage)

DS (Define storage)

Assembly Language 3–29

• • • • • • • •

DS

Syntax

[label] DS expression

Description

With the DS directive (Define Storage) the assembler reserves a block of

memory. The reserved block of memory is not initialized to any value.

With expression you specify the number of bits, bytes (depending on the

mau size of a the section) you want to reserve, and how much the

location counter will advance.

The expression must be an integer greater than zero and cannot contain

any forward references to address labels (labels that have not yet been

defined).

If you specify label, it gets the value of the location counter at the start of

the directive processing.

You cannot use the DS directive in sections of type init. If you need to

reserve initialized space in an init section, use the BS directive instead.

Example

To reserve 12 bytes (not initialized) of memory in a data section:

S_BUF DS 12 ; Sample buffer

Related information

BS (Block storage)

DB (Define constant byte)

DBIT (Define constant bit)

DL (Define constant long)

DW (Define constant word)

ASCII / ASCIIZ (Define ASCII string without/with ending NULL)

Reference Guide3–30
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

DUP / ENDM

Syntax

[label] DUP expression
 .

 .

 ENDM

Description

The sequence of source lines between the DUP and ENDM directives will be

duplicated by the number specified by the integer expression. If the

expression evaluates to a number less than or equal to 0, the sequence of

lines will not be included in the assembler output. The expression result

must be an absolute integer and cannot contain any forward references to

address labels (labels that have not already been defined). You can nest

the DUP directive to any level.

If you specify label, it gets the value of the location counter at the start of

the DUP directive processing.

Example

Consider the following source input statements,

COUNT SET 3
 DUP COUNT ; duplicate NOP count times
 NOP
 ENDM

This is expanded as follows:

COUNT SET 3
 NOP
 NOP
 NOP

Related information

DUPA (Duplicate Sequence with Arguments),

DUPC (Duplicate Sequence with Characters),

DUPF (Duplicate Sequence in Loop),

MACRO (Define Macro)

Assembly Language 3–31

• • • • • • • •

DUPA / ENDM

Syntax

[label] DUPA dummy,argument[,argument]...
 .

 .

 ENDM

Description

With the DUPA and ENDM directives (Duplicate Sequence with Arguments)

you can repeat a block of source statements for each argument. For each

repetition, every occurrence of the dummy parameter within the block is

replaced with each succeeding argument string. If an argument includes

an embedded blank or other assembler-significant character, it must be

enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of

the DUPA directive processing.

Example

Consider the following source input statements,

DUPA VALUE,12,,32,34
DB VALUE
ENDM

This is expanded as follows:

DB 12
DB VALUE
DB 32
DB 34

Related information

DUP (Duplicate Sequence of Source Lines),

DUPC (Duplicate Sequence with Characters),

DUPF (Duplicate Sequence in Loop),

MACRO (Define Macro)

Reference Guide3–32
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

DUPC / ENDM

Syntax

[label] DUPC dummy,string

 .

 .

 ENDM

Description

With the DUPC and ENDM directives (Duplicate Sequence with Characters)

you can repeat a block of source statements for each character of string.

For each repetition, every occurrence of the dummy parameter within the

block is replaced with each succeeding character in the string. If the string
is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of

the DUPC directive processing.

Example

Consider the following source input statements,

DUPC VALUE,’123’
DB VALUE
ENDM

This is expanded as follows:

DB 1
DB 2
DB 3

Related information

DUP (Duplicate Sequence of Source Lines),

DUPA (Duplicate Sequence with Arguments),

DUPF (Duplicate Sequence in Loop),

MACRO (Define Macro)

Assembly Language 3–33

• • • • • • • •

DUPF / ENDM

Syntax

[label] DUPF dummy,[start],end[,increment]
 .

 .

 ENDM

Description

With the DUPF and ENDM directives (Duplicate Sequence in Loop) you can

repeat a block of source statements (end - start) + 1 times when

increment is 1. Start is the starting value for the loop index; end
represents the final value. Increment is the increment for the loop index; it

defaults to 1 if omitted (as does the start value). The dummy parameter

holds the loop index value and may be used within the body of

instructions.

If you specify label, it gets the value of the location counter at the start of

the DUPF directive processing.

Example

Consider the following source input statements,

DUPF NUM,0,3
MOV.W R0,NUM
ENDM

This is expanded as follows:

MOV.W R0,0
MOV.W R0,1
MOV.W R0,2
MOV.W R0,3

Related information

DUP (Duplicate Sequence of Source Lines),

DUPA (Duplicate Sequence with Arguments),

DUPC (Duplicate Sequence with Characters),

MACRO (Define Macro)

Reference Guide3–34
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

END

Syntax

END [expression]

Description

With the optional END directive you tell the assembler that the logical end

of the source program is reached. If the assembler finds assembly source

lines beyond the END directive, it ignores those lines and issues a warning.

The expression is only permitted here for compatibility reasons. It is

ignored during assembly.

You cannot use the END directive in a macro expansion.

A label is not allowed with this directive.

Example

END ;End of source program

Related information

-

Assembly Language 3–35

• • • • • • • •

EQU

Syntax

symbol EQU expression

Description

With the EQU directive you assign the value of expression to symbol
permanently. Once defined, you cannot redefine the symbol.

The expression can be relative or absolute and forward references are

allowed.

Example

To assign the value 0x4000 permanently to the symbol A_D_PORT:

A_D_PORT EQU 0x4000

You cannot redefine the symbol A_D_PORT after this.

Related information

SET (Set temporary value to a symbol)

Reference Guide3–36
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

EXITM

Syntax

EXITM

Description

With the EXITM directive (Exit Macro) the assembler will immediately

terminate a macro expansion. It is useful when you use it with the

conditional assembly directive IF to terminate macro expansion when, for

example, error conditions are detected.

A label is not allowed with this directive.

Example

CALC MACRO XVAL,YVAL
 IF XVAL<0
 FAIL ’Macro parameter value out of range’
 EXITM ;Exit macro
 ENDIF
 .
 .
 .
 ENDM

Related information

DUP (Duplicate Sequence of Source Lines),

DUPA (Duplicate Sequence with Arguments),

DUPC (Duplicate Sequence with Characters),

DUPF (Duplicate Sequence in Loop),

MACRO (Define Macro)

Assembly Language 3–37

• • • • • • • •

EXTERN

Syntax

EXTERN [section_type] symbol[,symbol]...

Description

With the EXTERN directive (External Symbol Declaration) you specify that

the list of symbols is referenced in the current module, but is not defined

within the current module. These symbols must either have been defined

outside of any module or declared as globally accessible within another

module with the GLOBAL directive. The optional argument section_type is
used for type checking.

If you do not use the EXTERN directive to specify that a symbol is defined

externally and the symbol is not defined within the current module, the

assembler issues a warning and inserts the EXTERN directive for that

symbol.

A label is not allowed with this directive.

Example

EXTERN init AA,CC,DD ;defined elsewhere

Related information

GLOBAL (Global symbol declaration)

LOCAL (Local symbol declaration)

Reference Guide3–38
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

FAIL

Syntax

FAIL [{str | exp}[,{str | exp}]...]

Description

With the FAIL directive (Programmer Generated Error) you tell the

assembler to output an error message during the assembling process.

The total error count will be incremented as with any other error. The

FAIL directive is for example useful in combination with conditional

assembly for exceptional condition checking. The assembly process

proceeds normally after the error has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated error. The assembler outputs a space between each argument.

A label is not allowed with this directive.

Example

FAIL ’Parameter out of range’

Related information

MSG (Programmer Generated Message),

WARN (Programmer Generated Warning)

Assembly Language 3–39

• • • • • • • •

GLOBAL

Syntax

GLOBAL symbol[,symbol]...

Description

With the GLOBAL directive (Global Section Symbol Declaration) you

declare one of more symbols as global. This means that the specified

symbols are defined within the current section or module, and that those

definitions should be accessible by all modules.

Only symbols that are defined with the EQU or with the BTEQU directive

can be made global.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed with this directive.

Example

 DEFSECT ”data_io”,DATA
 SECT ”data_io”
 GLOBAL LOOPA ; LOOPA will be globally
 ; accessible by other modules
LOOPA DW 0x100 ; assigns the value 0x100 to LOOPA

Related information

EXTERN (External symbol declaration)

LOCAL (Local symbol declaration)

Reference Guide3–40
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

IF / ELIF / ELSE / ENDIF

Syntax

IF expression
 .

 .

[ELIF expression] (the ELIF directive is optional)

 .

 .

[ELSE] (the ELSE directive is optional)

 .

 .

ENDIF

Description

With the IF/ ENDIF directives you can create a part of conditional

assembly code. The assembler assembles only the code that it reaches.

The expression must evaluate to an absolute integer and cannot contain

forward references. If expression evaluates to zero, the IF -condition is

considered FALSE. Any non-zero result of expression is considered as

TRUE.

You can nest IF directives to any level. The ELSE, .ELIF and ENDIF
directives always refer to the nearest previous IF directive.

A label is not allowed with this directive.

Example

Suppose you have an assemble source file with specific code for a test

version, for a demo version and for the final version. Within the assembly

source you define this code conditionally as follows:

IF TEST
... ; code for the test version
ELIF DEMO
... ; code for the demo version
ELSE
... ; code for the final version
ENDIF

Assembly Language 3–41

• • • • • • • •

Before assembling the file you can set the values of the symbols TEST and

DEMO in the assembly source before the IF directive is reached. For

example, to assemble the demo version:

TEST 0
DEMO 1

You can also define the symbols on the command line with the option –D:

asr8c –DDEMO –DTEST=0 test.src

Related information

-

Reference Guide3–42
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

INCLUDE

Syntax

INCLUDE 'string' | <string>

Description

With the INCLUDE directive you direct the assembler to include another

file before the resulting file is assembled. The INCLUDE directive works

similarly to the #include statement in C.

The string specifies the filename of the secondary file. The filename must

be compatible with the operating system and can include a directory

specification.

The order in which the assembler searches for include files is:

1. The current directory if only a filename is given, unless the <string>

syntax is used, or in the directory specified in string if you specify both

a pathname and a filename.

2. The path that is specified with the assembler option –I.

3. The path that is specified in the environment variable ASR8CINC when

the product was installed.

A label is not allowed with this directive.

Example

INCLUDE ’storage\mem.asm’ ; include file
INCLUDE <data.asm> ; Do not look in current
 directory

Related information

Assembler option –I (Add directory to include file search path) in section

4.2, Assembler Options, of Chapter Tool Options.

Assembly Language 3–43

• • • • • • • •

LOCAL

Syntax

LOCAL symbol[,symbol]...

Description

By default, labels in a module are defined "global". With the LOCAL
directive (Local Section Symbol Declaration) you declare one of more

symbols as local. This means that the specified symbols are explicitly local

to the section or module in which you define them.

If the symbols that appear in the operand field are not used in the module,

the assembler gives a warning.

A label is not allowed with this directive.

Example

 DEFSECT ”data_io”,DATA
 SECT ”data_io”
 LOCAL LOOPA ; LOOPA is local to this section

LOOPA WORD 0x100 ; assigns the value 0x100 to LOOPA

Related information

EXTERN (External symbol declaration)

GLOBAL (Global symbol declaration)

Reference Guide3–44
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

MACRO / ENDM

Syntax

macro_name MACRO [dumarg[,dumarg]...]

 .

 macro_definition_statements
 .

 .

 ENDM

Description

With the MACRO directive you define a macro. Macros provide a shorthand

method for handling a repeated pattern of code or group of instructions.

You can define the pattern as a macro, and then call the macro at the

points in the program where the pattern would repeat. The ENDM directive

indicates the end of the macro.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the dummy

arguments.

• Body, which contains the code or instructions to be inserted when the

macro is called.

• Terminator, which indicates the end of the macro definition (ENDM
directive).

The dummy arguments are symbolic names that the macro processor

replaces with the literal arguments when the macro is expanded (called).

Each dummy argument must follow the same rules as symbol names.

Dummy argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined

until the primary macro is expanded.

Example

The macro definition:

SWAP_REGS MACRO REG1,REG2 ;header
 XCHG.W REG1,REG2 ;body
 ENDM ;terminator

Assembly Language 3–45

• • • • • • • •

The macro call:

 DEFSECT ”data”,DATA
 SECT ”data”

 SWAP_REGS R0,R1

 END

The macro expands as follows:

 XCHG.W R0,R1

Related information

DUP (Duplicate Sequence of Source Lines),

DUPA (Duplicate Sequence with Arguments),

DUPC (Duplicate Sequence with Characters),

DUPF (Duplicate Sequence in Loop)

Section 4.9, Macro Operations, in Chapter Assembly Language of the

User's Guide.

Reference Guide3–46
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

MSG

Syntax

MSG [{str | exp}[,{str | exp}]...]

Description

With the MSG directive (Programmer Generated Message) you tell the

assembler to output an information message durring assembly.

The error and warning counts will not be affected. The MSG directive is for

example useful in combination with conditional assembly for informational

purposes. The assembly proceeds normally after the message has been

printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

message. The assembler outputs a space between each argument.

A label is not allowed with this directive.

Example

DEFINE LONG ”SHORT”
MSG ’This is a LONG string’
MSG ”This is a LONG string”

Within single quotes, the defined symbol LONG is not expanded. Within

double quotes the symbol LONG is expanded. So, the actual message is

printed as:

This is a LONG string
This is a SHORT string

Related information

FAIL (Programmer Generated Error)

WARN (Programmer Generated Warning)

Assembly Language 3–47

• • • • • • • •

NAME

Syntax

NAME "str"

Description

With the NAME directive you give an identification to the generated object

file. The linker and or debugger uses this identification (instead of the file

name) to refer to the file.

Example

Suppose the assembler assembles the file test.src and generates

test.obj . To change the identification (used by the linker and debugger)

from the name "test" into "strcat":

NAME ”strcat”

Reference Guide3–48
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

PMACRO

Syntax

PMACRO symbol[,symbol]...

Description

With the PMACRO directive you tell the assembler to purge the specified

macro from the macro table, reclaiming the macro table space.

A label is not allowed with this directive.

Example

PMACRO MAC1,MAC2

This statement causes the macros named MAC1 and MAC2 to be purged.

Related information

MACRO (Define Macro)

Assembly Language 3–49

• • • • • • • •

RADIX

Syntax

RADIX expression

Description

With the RADIX directive (Change Input Radix for Constants) you tell the

assembler to changes the input base of constants to the result of

expression.

The absolute integer expression must evaluate to one of the legal constant

bases (2, 8, 10, or 16). The default radix is 10. The RADIX directive allows

the programmer to specify constants in a preferred radix without a leading

radix indicator. Note that if a constant is used to alter the radix, it must be

in the appropriate input base at the time the RADIX directive is

encountered.

A label is not allowed with this directive.

Example

_RAD10: DB 10 ; Evaluates to hex A
 RADIX 2
_RAD2: DB 10 ; Evaluates to hex 2
 RADIX 0x10
_RAD16: DB 10 ; Evaluates to hex 10
 RADIX 3 ; Bad radix expression

Related information

-

Reference Guide3–50
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

SECT

Syntax

SECT "name" [, RESET]

Description:

With the SECT directive you activate a previously declared section with the

name name. Before you can activate a section, you must define the

section with the DEFSECT directive. You can activate a section as many

times as you need.

With the section attribute RESET you can reset counting storage allocation

in data sections that have section attribute max.

Examples:

DEFSECT ”text”, DATA ;declare section text
SECT ”text” ;switch to section text

DEFSECT (Declare a section with name, type and attributes)

Assembly Language 3–51

• • • • • • • •

SET

Syntax

symbol SET expression

 SET symbol expression

Description

With the SET directive you assign the value of expression to symbol. If a
symbol was defined with the SET directive, you can redefine that symbol

in another part of the assembly source, using the SET.

The SET directive is useful in establishing temporary or reusable counters

within macros. Expression must be absolute and forward references are

not allowed.

Symbols that are set with the EQU directive, cannot be redefined.

Example

COUNT SET 0 ; Initialize COUNT. Later on you can
 ; assign other values to the symbol COUNT.

Related information

EQU (Assign permanent value to a symbol)

Reference Guide3–52
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

UNDEF

Syntax

UNDEF symbol

Description

With the UNDEF directive you can undefine a substitution string that was

previously defined with the DEFINE directive. The substitution string

associated with symbol is released, and symbol will no longer represent a

valid DEFINE substitution.

A label is not allowed with this directive.

Example

UNDEF SIZE ; Undefines the SIZE substitution string
 ; that was previously defined with the
 ; DEFINE directive

Related information

DEFINE (Define Substitution String)

Assembly Language 3–53

• • • • • • • •

WARN

Syntax

WARN [{str | exp}[,{str | exp}]...]

Description

With the WARN directive (Programmer Generated Warning) you tell the

assembler to output a warning message during the assembling process.

The total warning count will be incremented as with any other warning.

The WARN directive is for example useful in combination with conditional

assembly for exceptional condition checking. The assembly process

proceeds normally after the warning has been printed.

Optionally, you can specify an arbitrary number of strings and expressions,

in any order but separated by commas, to describe the nature of the

generated warning. The assembler outputs a space between each

argument.

A label is not allowed with this directive.

Example

WARN ’parameter too large’

Related information

FAIL (Programmer Generated Error),

MSG (Programmer Generated Message)

Reference Guide3–54
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

WEAK

Syntax

WEAK symbol[,symbol]...

Description

With the WEAK directive you mark one of more symbols as 'weak'. The

symbol must be defined in the same module with the GLOBAL directive or

the EXTERN directive.

A 'weak' external reference is resolved by the linker when a global (or

weak) definition is found in one of the object files. However, a weak

reference will not cause the extraction of a module from a library to

resolve the reference.

You can overrule a weak definition with a GLOBAL definition in another

module. The linker will not complain about the duplicate definition, and

ignore the weak definition.

Only program labels and symbols defined with EQU can be made weak.

Example

LOOPA EQU 1 ; definition of symbol LOOPA
 GLOBAL LOOPA ; LOOPA will be globally
 ; accessible by other modules
 WEAK LOOPA ; mark LOOPA as weak

Related information

-

Assembly Language 3–55

• • • • • • • •

3.3.3 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls.

Overview of assembler listing controls

Function Description

$LIST ON / OFF Generation of assembly list file temporary ON/OFF

$LIST ”flags” Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file

$TITLE Set program title in headerof assembly list file

Overview of miscellaneous assembler controls

Function Description

$CASE ON / OFF Case sensitive user names ON/OFF

$DEBUG ON / OFF Generation of symbolic debug ON/OFF

$DEBUG ”flags” Select debug information

$IDENT LOCAL /
GLOBAL

Assembler treats labels by default as local or global

$OBJECT Alternative name for the generated object file

$OPTJ Turn on conditional optimization

$WARNING OFF Suppress all or some warnings

3.3.4 DETAILED DESCRIPTION OF ASSEMBLER

CONTROLS

The assembler recognizes both upper and lower case for controls.

Reference Guide3–56
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$CASE ON / OFF

Syntax

$CASE ON (default)

$CASE OFF

Description

With the $CASE ON and $CASE OFF controls you specify whether the

assembler operates in case sensitive mode or not. Default the assembler

operates in case sensitive mode.

Example

;begin of source
$CASE OFF ; assembler in case insensitive mode

Related option

Assembler option –c (Switch to case insensitive mode) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

-

Assembly Language 3–57

• • • • • • • •

$DEBUG ON / OFF

Syntax

$DEBUG ON

$DEBUG OFF

$DEBUG "flags"

Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation

of debug infomation on or off. ($DEBUG ON is similar to the assembler

option -gl).

If you use $DEBUG control with flags, you can set the following flags:

a/A assembler source line information

h/H pass HLL debug information

You cannot use these two types of debug information both. So,

$DEBUG ”ah” is not allowed.

l/L local symbols debug information

s/S always debug; either "AhL" or "aHl"

Debug information that is generated by the C compiler, is always passed

to the object file.

Example

;begin of source
$DEBUG ON ; generate local symbols debug information

Related option

Assembler option –g (Select debug information) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

-

Reference Guide3–58
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$IDENT

Syntax

$IDENT LOCAL

$IDENT GLOBAL

Description

With the controls $IDENT LOCAL and $IDENT GLOBAL you tell the

assembler how to treat symbols that you have not specified explicitly as

local or global with the assembler directives LOCAL or GLOBAL.

Default the assembler treats all symbols as local symbols unless you have

defined them explicitly as global.

Example

;begin of source
$IDENT GLOBAL ; assembly labels are global by default

Related option

Assembler option –i (Treat labels by default local / global) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

Assembler directive LOCAL (Local symbol declaration)

Assembler directive GLOBAL (Global symbol declaration)

Assembly Language 3–59

• • • • • • • •

$LIST ON / OFF

Syntax

$LIST ON

 .

 . ; assembly source lines

 .

$LIST OFF

Description

If you generate a list file with the assembler option –l, you can use the

$LIST ON and $LIST OFF controls to specify which source lines the

assembler must write to the list file. Without the command line option –l,

the $LIST ON and $LIST OFF controls have no effect.

The $LIST ON control actually increments a counter that is checked for a

positive value and is symmetrical with respect to the $LIST OFF control.

Note the following sequence:

; Counter value currently 1
$LIST ON ; Counter value = 2
$LIST ON ; Counter value = 3
$NOLIST OFF ; Counter value = 2
$NOLIST OFF ; Counter value = 1

The listing still would not be disabled until another NOLIST control was

issued.

A label is not allowed with this control.

Example

Suppose you assemble the following assembly source with the assembler

option –l:

DEFSECT ”text_CO”,CODE
SECT ”text_CO”
... ; source line in list file
$LIST ON
... ; source line not in list file
$LIST
... ; source line also in list file
END

Reference Guide3–60
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The assembler generates a list file with the following lines:

DEFSECT ”text_CO”,CODE
SECT ”text_CO”
... ; source line in list file
$LIST ON
... ; source line also in list file
END

Related option

Assembler option –l (Generate list file) in section 4.2, Assembler Options,
of Chapter Tool Options.

Related information

Assembler control $LIST (Exclude / include lines in assembly list file)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

Assembly Language 3–61

• • • • • • • •

$LIST flags

Syntax

Begin of assembly file

$LIST "flags"

Description

If you generate a list file with the assembler option –l, you can use the

$LIST controls to specify which type of source lines the assembler must

exclude from the list file. Without the command line option –l, the $LIST
control has no effect.

You can set the following flags to remove or include lines:

c/C Lines with assembler controls

d/D Lines with section directives (SECT and DEFSECT)

e/E Lines with symbol definition directives (EXTERN, GLOBAL,

LOCAL, CALLS)

g/G Lines with generic instruction expansion

i/I Lines with generic instructions

m/M Lines with macro definitions (MACRO and DUP)

n/N Empty source lines

p/P Lines with conditional assembly

q/Q Lines with the EQU or SET directive

r/R Relocation characters ('r')

s/S Lines with symbolic debug information

v/V Assembler EQU or SET values

w/W Wrapped part of a line

x/X Lines with expanded macros

y/Y Lines with cycle counts

If you do not specify this control or the assembler option -Lflag, the

assembler uses the default: –LcDEGilMnPqrsVWXy.

Example

To exclude assembly files with controls from the list file:

;begin of source
$LIST ”C”

Reference Guide3–62
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related option

Assembler option –L (List file formatting options) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

Assembler control $LIST ON / OFF (Assembly list file ON / OFF)

Assembler function @LST() in section 3.2, Built-in Asembly Functions.

Assembly Language 3–63

• • • • • • • •

$OBJECT

Syntax

$OBJECT "file"

$OBJECT OFF

Description

With the $OBJECT control you can specify an alternative name for the

generated object file. With the $OBJECT OFF control, the assembler does

not generate an object file at all.

Example

;Begin of source
$object ”x1.obj” ; generate object file x1.obj

Related option

Assembler option –o (Define output filename) in section 4.2, Assembler
Options, of Chapter Tool Options.

Related information

-

Reference Guide3–64
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$OPTJ

Syntax

$OPTJ [on|off]

Description

With the $OPTJ control you can turn on or off conditional jump

optimization. This control overrules the -O command line option.

Example

To enable jump and branch optimization, enter:

$OPTJ ON

Related option

Assembler option -Oj (Assembler optimizations) in Section 4.2, Assembler
options, of Chapter Tool Options.

Related information

-

Assembly Language 3–65

• • • • • • • •

$PAGE

Syntax

$PAGE [width,length,blanktop,blankbtm,blankleft]

Description

If you generate a list file with the assembler option –l, you can use the

$PAGE control to format the generated list file.

width Number of characters on a line (1-255). Default is 132.

length Number of lines per page (10-255). Default is 66. As a special

case a page length of 0 (zero) turns off all headers, titles,

subtitles, and page breaks.

blanktop Number of blank lines at the top of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankbtm Number of blank lines at the bottom of the page. Default = 0.

Specify a value so that blanktop + blankbtm ≤ length - 10.

blankleft Number of blank columns at the left of the page. Default = 0.

Specify a value smaller than width.

If you use the $PAGE control without arguments, it causes a 'formfeed': the

next source line is printed on the next page in the list file. The $PAGE
control itself is not printed.

You can omit an argument by using two adjacent commas. If the

remaining arguments after an argument are all empty, you can omit them.

Example

$PAGE ; formfeed, the next source line is printed
 ; on the next page in the list file.

$PAGE 96 ; set page width to 96. Note that you can
 ; omit the last four arguments.

$PAGE ,,3,3; use 3 line top/bottom margins.

Related option

-

Reference Guide3–66
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Related information

Assembler control $STITLE (Set program subtitle in header of list file)

Assembler control $TITLE (Set program title in header of list file)

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

Assembler option –L (List file formatting options) in Section 4.2, Assembler
Options, of Chapter Tool Options.

Assembly Language 3–67

• • • • • • • •

$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option –l, you can use the

$PRCTL control to send control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to

the listing file (the control line itself is not printed unless there is an error).

You can specify the following arguments:

exp a byte expression which may be used to encode

non-printing control characters, such as ESC.

string an assembler string. which may be of arbitrary length, up to

the maximum assembler-defined limits.

The $PRCTL control can appear anywhere in the source file; the assembler

sends out the control string at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed,

the assembler insures that all error summaries, symbol tables, and

cross-references have been printed before sending out the control string.

In this manner, you can use a PRCTL control to restore a printer to a

previous mode after printing is done.

Similarly, if the $PRCTL control appears as the first line in the first input

file, the assembler sends out the control string before page headings or

titles.

Example

$PRCTL $1B,’E’ ; Reset HP LaserJet printer

Related option

-

Related information

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

Reference Guide3–68
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$STITLE

Syntax

$STITLE "title"

Description

If you generate a list file with the assembler option –l, you can use the

$STITLE control to specify the program subtitle which is printed at the

top of all succeeding pages in the assembler list file below the title.

The specified subtitle is valid until the assembler encouters a new STITLE
control. Default, the subtitle is empty.

The $STITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

$TITLE ’This is the title’
$STITLE ’This is the subtitle’

The header of the second page in the list file will now be:

TASKING R8C Assembler v x. yr z Build nnn SN 00000000
This is the title Page 2
This is the subtitle

Related option

-

Related information

Assembler control $TITLE (Set program title in header of list file)

Assembler option –l (Generate list file) in Section 4.2, Assembler Options,
of Chapter Tool Options.

Assembly Language 3–69

• • • • • • • •

$TITLE

Syntax

$TITLE "title"

Description

If you generate a list file with the assembler option –l, you can use the

$TITLE control to specify the program title which is printed at the top of

each page in the assembler list file.

Default, the title is empty.

If the page width is too small for the title to fit in the header, it will be

truncated.

Example

$TITLE ’This is the title’

The header of the list file will now be:

TASKING R8C Assembler v x. yr z Build nnn SN 00000000
This is the title Page 1

Related option

-

Related information

STITLE (Set program subtitle in header of assembly list file)

Reference Guide3–70
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

$WARNING OFF

Syntax

$WARNING OFF

$WARNING OFF number

Description

With the $WARNING OFF control you can suppresses all warning

messages or specific warning messages.

• Default, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed.

Example

$WARNING OFF ; all warning messages are suppressed

$WARNING OFF 135 ; suppress warning message 135

Related option

Assembler option –w (Suppress some or all warnings) in section 4.2,

Assembler Options, of Chapter Tool Options.

Related information

-

4

TOOL OPTIONS
C

H
A

P
T

E
R

Reference Guide4–2
T

O
O

L
 O

P
T

IO
N

S

4

C
H

A
P

T
E

R

Tool Options – Compiler 4–3

• • • • • • • •

4.1 COMPILER OPTIONS

This section lists all compiler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional compiler

options field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option –n sends output to stdout

instead of a file and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

cr8c –Oac test.c
cr8c ––optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

Reference Guide4–4
T

O
O

L
 O

P
T

IO
N

S

–? (––help)

EDE

-

Command line syntax

–?

––help[=item]

You can specify the following arguments:

intrinsics Show the list of intrinsic functions

options Show extended option descriptions

pragmas Show the list of supported pragmas

Description

Displays an overview of all command line options. When you specify an

argument you can list extended information such as a list of intrinsic

functions, pragmas or option descriptions.

Example

The following invocations all display a list of the available command line

options:

cr8c –?
cr8c ––help
cr8c

The following invocation displays a list of the available pragmas:

cr8c ––help=pragmas

Related information

-

Tool Options – Compiler 4–5

• • • • • • • •

–A (––language)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Enable or disable the options Allow C++ style comments in ISO C90

mode and Relax const check for string literals.

Command line syntax

–A[flags]

––language=[flags]

You can set the following flags:

p/P (+/–comments) Allow C++ style comments in ISO C90

x/X (+/–strings) Relaxed const check for string literals

Default

–Apx

Description

With this option you control the language extensions the compiler can

accept. Default the C compiler allows all language extensions.

–A (––language) is the equivalent of –APX and disables all language

extensions.

With –Ap you tell the compiler to allow C++ style comments (//) in ISO

C90 mode (option –c90). In ISO C99 mode this style of comments is

always accepted.

With –Ax you tell the compiler not to check for assignments of a constant

string to a non-constant string pointer. With this option the following

example does not produces a warning:

char *p;
void main(void) { p = ”hello”; }

Reference Guide4–6
T

O
O

L
 O

P
T

IO
N

S

Example

cr8c –APx –c90 test.c
cr8c ––language=–comments,+strings ––iso=90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a

constant string to a non-constant string pointer but ignores C++ style

comments.

Related information

Compiler option –c (ISO C standard)

Tool Options – Compiler 4–7

• • • • • • • •

––align

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Alignment.

3. Enable the option Align all objects to an even address.

Command line syntax

––align

Description

By default the cr8c compiler aligns objects to the minimum alignment

required by the architecture. With this option you force the compiler to

align all objects greater than 8 bits to an even address. This optimizes

access time for a 16-bit address bus to functions but may take extra

memory space.

Example

To align all objects to even addresses, enter:

cr8c ––align test.c

Related information

Compiler option --align-data (Align data to an even address)

Compiler option --align-func (Align functions to an even address)

Reference Guide4–8
T

O
O

L
 O

P
T

IO
N

S

––align-data

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Alignment.

3. Enable the option Align data to an even address.

Command line syntax

––align-data

Description

By default the cr8c compiler aligns objects to the minimum alignment

required by the architecture. With this option you force the compiler to

align 16, 32 and 64 bit data variables to even addresses. This optimizes

access time for a 16-bit address bus but may take extra memory space.

Example

To align all data to even addresses, enter:

cr8c ––align–data test.c

Related information

Compiler option --align (Align everything to an even address)

Compiler option --align-func (Align functions to an even address)

Tool Options – Compiler 4–9

• • • • • • • •

––align-func

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Alignment.

3. Enable the option Align functions to an even address.

Command line syntax

––align-func

Description

By default the cr8c compiler aligns objects to the minimum alignment

required by the architecture. With this option you force the compiler to

align all functions to an even address. This optimizes access time for a

16-bit address bus to functions but may take extra memory space.

Example

To align all functions to even addresses, enter:

cr8c ––align–func test.c

Related information

Compiler option --align (Align everything to an even address)

Compiler option --align-data (Align data to an even address)

Reference Guide4–10
T

O
O

L
 O

P
T

IO
N

S

–C (––cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. Select a processor from the Select processor box.

Command line syntax

–Ccpu

––cpu=cpu

Description

With this option you define the target processor for which you create your

application. You can choose the following CPU's:

R8C10

R8C11

The compiler automatically includes the register file reg cpu .sfr .

Example

To compile the file test.c for the R8C10 processor and use the SFR file

regr8c10.sfr :

cr8c –Cr8c10 test.c
cr8c ––cpu=r8c10 test.c

To avoid conflicts, make sure you specify the same target processor to the

assembler.

Related information

Assembler option –C (Select CPU)

Control program option –C (Select target CPU)

Section 5.5, Specifying a Target Processor, in Chapter Using the Compiler of

the User's Guide.

Tool Options – Compiler 4–11

• • • • • • • •

–c (––iso)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Language.

3. Select the ISO C standard C90 or C99.

Command line syntax

–c{90|99}

––iso={90|99}

Default

–c99

Description

With this option you select the ISO C standard. C90 is also referred to as

the "ANSI C standard". C99 refers to the newer ISO/IEC 9899:1999 (E)

standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

cr8c –c90 test.c
cr8c ––iso=90 test.c

Related information

Compiler option –A (Language extensions)

Reference Guide4–12
T

O
O

L
 O

P
T

IO
N

S

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Click on an empty Macro field and enter a macro name.

4. Optionally, click in the Definition field and enter a definition.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor.

If you only specify a macro name (no macro definition), the macro

expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line, use the

option –D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the compiler with the option –f file.

Defining macros with this option (instead of in the C source) is, for

example, useful to compile conditional C source as shown in the example

below.

Tool Options – Compiler 4–13

• • • • • • • •

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

void main(void)
{
#if DEMO
 demo_func(); /* compile for the demo program */
#else
 real_func(); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

cr8c –DDEMO test.c
cr8c –DDEMO=1 test.c

cr8c ––define=DEMO test.c
cr8c ––define=DEMO=1 test.c

Note that all four invocations have the same effect.

The next example shows how to define a macro with arguments. Note that

the macro name and definition are placed between double quotes because

otherwise the spaces would indicate a new option.

cr8c –D”MAX(A,B)=((A) > (B) ? (A) : (B))”

Related information

Compiler option –U (Remove preprocessor macro)

Compiler option –f (Read options from file)

Reference Guide4–14
T

O
O

L
 O

P
T

IO
N

S

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all|nr[,nr]...}

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout
(normally your screen) and in the format you specify.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the compiler does not compile any files.

Example

To display an explanation of message number 282, enter:

cr8c ––diag=282

This results in the following message and explanation:

E282: unterminated comment

Make sure that all every comment starting with /* has
a matching */. Nested comments are not possible.

Tool Options – Compiler 4–15

• • • • • • • •

To write an explanation of all errors and warnings in HTML format to a file

named cerrors.html , enter:

cr8c ––diag=html:all > cerrors.html

Related information

-

Reference Guide4–16
T

O
O

L
 O

P
T

IO
N

S

–E (––preprocess)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enable the option Store the C compiler preprocess output

(<file>.pre).

Command line syntax

–E[flags]

––preprocess[=flags]

You can set the following flags (when you specify –E without flags, the

default is –ECMP):

c/C (+/–comments) Keep comments

m/M (+/–make) Generate dependencies for make

p/P (+/–noline) Strip #line source position info

Description

With this option you tell the compiler to preprocess the C source. EDE

stores the preprocess output in the file name.pre (where name is the

name of the C source file to compile). EDE also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout.

To capture the information in a file, specify an output file with the

option –o.

With –Ec you tell the preprocessor to keep the comments from the C

source file in the preprocessed output.

With –Em the compiler will generate dependency lines that can be used

in a Makefile. The preprocessor output is discarded.

With –Ep you tell the preprocessor to strip the #line source position

information (lines starting with #line). These lines are normally

processed by the assembler and not needed in the preprocessed output.

When you leave these lines out, the output is easier to read.

Tool Options – Compiler 4–17

• • • • • • • •

Example

cr8c –EcMP test.c –o test.pre

cr8c ––preprocess=+comments,–make,–noline test.c
 ––output=test.pre

The compiler preprocesses the file test.c and sends the output to the

file test.pre . Comments are included but no dependencies are

generated and the line source position information is not stripped from the

output file.

Related information

-

Reference Guide4–18
T

O
O

L
 O

P
T

IO
N

S

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the compiler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .err .

Example

To write errors to errors.err instead of stderr , enter:

cr8c ––error–file=errors.err test.c

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Compiler 4–19

• • • • • • • •

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option –f to the Additional compiler options field.

In EDE you can save your options in a file and restore them to call the

compiler with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional

compiler options field, the options are added to the compiler options

you have set in the Project Options dialog. Only in extraordinary cases

you may want to use them in combination.

Command line syntax

–f file

––option-file=file

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the compiler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

Reference Guide4–20
T

O
O

L
 O

P
T

IO
N

S

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Cr8c10
–s
test.c

Specify the option file to the compiler:

cr8c –f myoptions
cr8c ––option–file=myoptions

This is equivalent to the following command line:

cr8c –Cr8c10 –s test.c

Related information

-

Tool Options – Compiler 4–21

• • • • • • • •

–g (––debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Debug.

3. Enable the option Generate symbolic debug infomation

Command line syntax

–g

––debug-info

Description

With this option you tell the compiler to add directives to the output file

for including symbolic information. This facilitates high level debugging

but increases code size. For the final application, compile your C files

without debug information.

When you specify a high optimization level, the debug comfort may

decrease. Therefore, the compiler issues warning W555 if the debug

comfort would be decreased as a result of the chosen optimizations.

Example

To add symbolic debug information to the output file, enter:

cr8c –g test.c
cr8c ––debug test.c

Related information

-

Reference Guide4–22
T

O
O

L
 O

P
T

IO
N

S

–H (––include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

–Hfile,...

––include-file=file,...

Description

With this option you include one extra file at the beginning of each C

source file, before other includes. This is the same as specifying #include
” file ” at the beginning of each of your C sources.

Example

cr8c –Hstdio.h test1.c test2.c
cr8c ––include–file=stdio.h test1.c test2.c

The file stdio.h is included at the beginning of both test1.c and

test2.c .

Related information

Compiler option –I (Add directory to include file search path)

Section 5.6, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Guide.

Tool Options – Compiler 4–23

• • • • • • • •

–I (––include-directory)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Open the Build Options tab.

3. Enter one or more search paths in the Include Files Path field.

If you enter multiple paths, separate them with a semicolon (;).

Command line syntax

–Ipath,...

––include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source

(only for #include files that are enclosed in "")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CR8CINC when

the product was installed.

4. The default include directory.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include ”myinc.h”

You can call the compiler as follows:

cr8c –Imyinclude test.c
cr8c ––include–directory=myinclude test.c

Reference Guide4–24
T

O
O

L
 O

P
T

IO
N

S

First the compiler looks in the directory where test.c is located for the

file myinc.h .

Then the compiler looks in the myinclude subdirectory relative to the

current directory for the stdio.h file and, if it was not found yet, also for

the myinc.h file (this option).

If the file(s) are still not found, the compiler searches in the enviroenment

variable and then in the default include directory.

Related information

Compiler option –H (Include file at the start of a compilation)

Section 5.6, How the Compiler Searches Include Files, in Chapter Using the
Compiler of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Tool Options – Compiler 4–25

• • • • • • • •

––inline-max-incr /

––inline-max-size

EDE

-

Command line syntax

––inline-max-incr=percentage

––inline-max-size=threshold

Default

––inline-max-incr=25

––inline-max-size=10

Description

With these options you can control the function inlining optimization

process of the compiler. These options have only effect when you have

enabled the inlining optimization (option –Oi).

Regardless of the optimization process, the compiler always inlines all
functions that have the function qualifier inline .

With the option ––inline-max-size you can specify the maximum size of

functions that the compiler inlines as part of the optimization process. The

compiler always inlines all functions that are smaller than the specified

threshold. The threshold is measured in compiler internal units and the

compiler uses this measure to decide which functions are small enough to

inline. The default threshold is 10.

After the compiler has inlined all functions that have the function qualifier

inline and all functions that are smaller than the specified threshold, the

compiler looks whether it can inline more functions without increasing the

code size too much. With the option ––inline-max-incr you can specify

how much the code size is allowed to increase. Default, this is 25% which

means that the compiler continues inlining functions until the resulting

code size is 25% larger than the original size.

Reference Guide4–26
T

O
O

L
 O

P
T

IO
N

S

Example

cr8c ––inline–max–incr=40 ––inline–max–size=15 test.c

The compiler first inlines all functions with the function qualifier inline
and all functions that are smaller than the specified threshold of 15. If the

code size has still not increased with 40%, the compiler decides which

other functions it can inline.

Related information

Compiler option –O (Specify optimization level)

Section 3.10.3, Inlining Functions, in Chapter C Language of the User's
Guide.

Tool Options – Compiler 4–27

• • • • • • • •

––integer-enumeration

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Use 16-bit integers for enumeration.

Command line syntax

––integer-enumeration

Description

Normally the compiler treats small enumerated types as char or even as

__bit instead of int . This reduces code size. With this option the

compiler always treats enum-types as integer.

Example

To treat enumerated types always as integer, enter:

cr8c ––integer–enumeration test.c

Related information

-

Reference Guide4–28
T

O
O

L
 O

P
T

IO
N

S

–k (––keep-output-files)

EDE

EDE always removes the .src file when errors occur during compilation.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during compilation, the resulting .src file may be

incomplete or incorrect. With this option you keep the generated output

file (.src) when an error occurs.

By default the compiler removes the generated output file (.src) when an

error occurs. This is useful when you use the make utility mkr8c. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to inspect the generated assembly

source. Even if it is incomplete or incorrect.

Example

cr8c –k test.c

When an error occurs during compilation, the generated output file

test.src will not be removed.

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Compiler 4–29

• • • • • • • •

––misrac

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

Command line syntax

––misrac={all | number [-number],... }

Description

With this option you specify to the compiler which MISRA C rules must be

checked. With the option ––misrac=all the compiler checks for all

supported MISRA C rules.

Example

cr8c ––misrac=9–13 test.c

The compiler generates an error for each MISRA C rule 9, 10, 11, 12 or 13

violation in file test.c .

Related information

See Chapter 8 MISRA C Rules for a list of all supported MISRA C rules.

Linker option ––misra-c-report.

Reference Guide4–30
T

O
O

L
 O

P
T

IO
N

S

–n (––stdout)

EDE

-

Command line syntax

–n

––stdout

Description

With this option you tell the compiler to send the output to stdout (usually

your screen). No files are created.

This option is for example useful to quickly inspect the output or to

redirect the output to other tools.

Example

cr8c –n test.c
cr8c ––stdout test.c

The compiler sends the output (normally test.src) to stdout and does

not create the file test.src .

Related information

-

Tool Options – Compiler 4–31

• • • • • • • •

––noclear

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option ––noclear to the Additional C Compiler options

field.

Command line syntax

––noclear

Description

Normally variables are cleared at program startup. With this option you tell

the compiler to generate code to prevent non-initialized global variables

from being cleared at program startup.

Example

To prevent non-initialized global variables in the module test.c from

being cleared at program startup, enter:

cr8c ––noclear test.c

Related information

-

Reference Guide4–32
T

O
O

L
 O

P
T

IO
N

S

––noframe

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Code Generation.

3. Disable the option Generate frame for interrupt handler.

Command line syntax

––noframe

Description

This option tells the compiler not to generate an interrupt frame

(saving/restoring registers) for interrupt handlers.

Example

To disable the generation of an interrupt frame:

cr8c ––noframe test.c

Related information

Compiler option ––novector (do not generate interrupt vectors)

Tool Options – Compiler 4–33

• • • • • • • •

––novector

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Code Generation.

3. Disable the option Generate code for fixed interrupt vector.

Command line syntax

––novector

Description

With this option you tell the compiler not to generate code for interrupt

vectors and references to the interrupt handler in the run-time library.

Example

To disable code generation for interrupt vectors:

cr8c ––novector test.c

Related information

Compiler option ––noframe (do not generate frame for interrupt handler)

Reference Guide4–34
T

O
O

L
 O

P
T

IO
N

S

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

Command line syntax

–O[flags]

––optimize[=flags]

You can set the following flags:

a/A (+/–coalesce) Coalescer: remove unnecessary moves

b/B (+/–ipro) Interprocedural register optimizations

c/C (+/–cse) Common subexpression elimination

e/E (+/–expression) Expression simplification

f/F (+/–flow) Control flow optimization and code reordering

g/G (+/–glo) Generic assembly optimizations

i/I (+/–inline) Function inlining

l/L (+/–loop) Loop transformations

o/O (+/–forward) Forward store

p/P (+/–propagate) Constant propagation

r/R (+/–compact) Code compaction (reverse inlining)

s/S (+/–subscript) Subscript strength reduction

y/Y (+/–peephole) Peephole optimizations

Use the following options for predefined sets of flags:

–O0 (––optimize=0) No optimization.

Alias for: –OABCEFGILOPRSY

–O1 (––optimize=1) Few optimizations

Alias for: –OabcefgILOPRSy

–O2 (––optimize=2) Medium optimization (default)

Alias for: –OabcefgIlopRsy

Tool Options – Compiler 4–35

• • • • • • • •

–O3 (––optimize=3) Full optimization

Alias for: –Oabcefgiloprsy

Default

–O2

Description

With this option you can control the level of optimization. If you do not

use this option, the default optimization level is medium optimization
(option –O2 or –O or –OabcefgIlopRsy).

When you use this option to specify a set of optimizations, you can

overrule these settings in your C source file with

#pragma optimize flag and #pragma endoptimize .

In addition to the option –O, you can specify the option –t. With this

option you specify whether the used optimizations should optimize for

more speed (regardless of code size) or for smaller code size (regardless of

speed).

Example

The following invocations are equivalent and result all in the default

medium optimization set:

cr8c test.c

cr8c –O2 test.c
cr8c ––optimize=2 test.c

cr8c –O test.c
cr8c ––optimize test.c

cr8c –OabcefgIlopRsy test.c
cr8c ––optimize=+coalesce,+ipro,+cse,+expression,
 +flow,+glo,–inline,+loop,+forward,+propagate,
 –compact,+subscript,+peephole test.c

Reference Guide4–36
T

O
O

L
 O

P
T

IO
N

S

Related information

Compiler option –t (Trade off between speed (–t0) and size (–t4))

#pragma optimize flag
#pragma endoptimize

Section 5.3, Compiler Optimizations, in Chapter Using the Compiler of the

User's Guide.

Tool Options – Compiler 4–37

• • • • • • • •

–o (––output)

EDE

-

Command line syntax

–ofile

––output=file

Description

With this option you can specify another filename for the output file of the

compiler. Without this option the basename of the C source file is used

with extension .src .

EDE names the output file always after the C source file.

Example

cr8c –o output.src test.c
cr8c ––output=output.src test.c

The compiler creates the file output.src for the compiled file test.c .

Without the option –o, like EDE, the compiler uses the names of the input

file and creates test.src .

Related information

-

Reference Guide4–38
T

O
O

L
 O

P
T

IO
N

S

–R (––rename-sections)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option –R to the Additional compiler options field.

Command line syntax

–R [type][=name]

––rename-sections[=type][=name]

The type is a two-letter abbreviation indicating the memory type. You can

specify the following memory types:

Type Description

CO program code

DA data

BI __bit type section

BA bitaddressable data (__bita)

Description

The compiler uses the following method to create section names: it uses

the module name and a two letter memory type abbreviation to create the

name name_type. For example, if you compile the C source file test.c ,

the compiler creates the name test_CO for executable code sections.

In case a module must be loaded at a fixed address or a data section

needs a special place in memory, you can use the option -R to generate a

unique section name. Having unique names, you can use the Linker Script

Language (LSL) to control the location of these sections.

When you use -R without a value, the compiler uses the default section

naming.

Tool Options – Compiler 4–39

• • • • • • • •

Example

To create a new section name (MARK_CLR_BI) for cleared _bit sections,

enter:

cr8c –RBI=MARK test.c
cr8c ––rename–section=BI=MARK test.c

Without the option -R the cleared bit sections would have received the

name TEST_CLR_BI.

Related information

Section 3.11, Section Naming, in Chapter C Language of the User's Guide.

Reference Guide4–40
T

O
O

L
 O

P
T

IO
N

S

––romstrings / ––romconstants

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Code Generation.

3. Enable the options Keep strings in ROM or Keep constants in ROM.

Command line syntax

––romstrings

––romconstants

Description

By default, strings literals and constants are copied from ROM to RAM at

program startup. With these option you tell the compiler to keep string

literals and / or constants in ROM. If you use these options, you can

access these string literals or constants only with the __rom keyword.

Example

To keep constant strings in ROM:

cr8c ––romstrings test.c

Related information

See also section 3.8, Strings in Chapter C Language of the User's Guide.

Tool Options – Compiler 4–41

• • • • • • • •

–s (––source)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Merge C source code with assembly in output

file (.src).

Command line syntax

–s

––source

Description

With this option you tell the compiler to merge C source code with

generated assembly code in the output file. The C source lines are

included as comments.

Example

cr8c –s test.c

The output file test.src contains the original C source lines as

comments, besides the generated assembly code.

Related information

-

Reference Guide4–42
T

O
O

L
 O

P
T

IO
N

S

–t (––tradeoff)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Optimization.

3. Select a trade-off level in the Size/speed trade-off box.

Command line syntax

–t{0|1|2|3|4}

––tradeoff={0|1|2|3|4}

Default

–t0

Description

If the compiler uses certain optimizations (option –O), you can use this

option to specify whether the used optizations should opimize for more

speed (regardless of code size) or for smaller code size (regardless of

speed).

Default the compiler optimizes the selected optimizations for more speed

(–t0).

If you have not used the option –O, the compiler uses default medium

optimization, so you can still specify the option –t.

Example

To set the trade-off level for the used optimizations:

cr8c –t4 test.c
cr8c ––tradeoff=4 test.c

The compiler uses the default medium optimization level and optimizes

for code size rather than for speed.

Related information

Compiler option –O (Specify optimization level)

Tool Options – Compiler 4–43

• • • • • • • •

–U (––undefine)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Add the option –U to the Additional compiler options field.

Command line syntax

–Umacro_name

––undefine=macro_name

Description

With this option you can undefine an earlier defined macro as with

#undef .

This option is for example useful to undefine predefined macros.

However, the following predefined ISO C standard macros cannot be

undefined:

__FILE__ current source filename
__LINE__ current source line number (int type)
__TIME__ hh:mm:ss
__DATE__ Mmm dd yyyy
__STDC__ level of ANSI standard

Example

To undefine the predefined macro __TASKING__:

cr8c –U__TASKING__ test.c
cr8c ––undefine=__TASKING__ test.c

Related information

Compiler option –D (Define preprocessor macro)

Section 3.6, Predefined Macros, in Chapter Using the Compiler of the Users
Guide.

Reference Guide4–44
T

O
O

L
 O

P
T

IO
N

S

–u (––uchar)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Miscellaneous.

3. Enable the option Treat 'char' variables as unsigned instead of

signed.

Command line syntax

–u

––uchar

Description

Treat 'character' type variables as 'unsigned character' variables. By default

char is the same as specifying signed char . With -u char is the same

as unsigned char .

Example

With the following command char is treated as unsigned char :

cr8c –u test.c
cr8c ––uchar test.c

Related information

-

Tool Options – Compiler 4–45

• • • • • • • •

–V (––version)

EDE

-

Command line syntax

–V

––version

Description

Display version information. The compiler ignores all other options or

input files.

Example

cr8c –v
cr8c ––version

The compiler does not compile any files but displays the following version

information:

TASKING R8C C compiler v xx . yr z Build nnn
Copyright 2002– year Altium BV Serial# 00000000

Related information

-

Reference Guide4–46
T

O
O

L
 O

P
T

IO
N

S

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Diagnostics.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr]

––no-warnings[=nr]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option –w multiple times.

Example

To suppress all warnings:

cr8c test.c –w
cr8c test.c ––no–warnings

To suppress warnings 135 and 136:

cr8c test.c –w135 –w136
cr8c test.c ––no–warnings=135 ––no–warnings=136

Tool Options – Compiler 4–47

• • • • • • • •

Related information

Compiler option ––warnings-as-errors (Treat warnings as errors)

Reference Guide4–48
T

O
O

L
 O

P
T

IO
N

S

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select Diagnostics.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the compiler to treat warnings as errors.

Example

cr8c ––warnings–as–errors test.c

When a warning occurs, the compiler considers it as an error.

Related information

Compiler option –w (suppress some or all warnings)

Tool Options – Assembler 4–49

• • • • • • • •

4.2 ASSEMBLER OPTIONS

This section lists all assembler options.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line. If there is no equivalent

option in EDE, you can specify a command line option in EDE as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enter one or more command line options in the Additional assembler

options field.

Be aware that some command line options are not useful in EDE or just

do not have any effect. For example, the option –V displays version

header information and has no effect in EDE.

Short and long option names

Options have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

asr8c –Lmx test.src
asr8c ––list–format=+macro,+macro–expansion test.src

When you do not specify an option, a default value may become active.

Reference Guide4–50
T

O
O

L
 O

P
T

IO
N

S

–? (––help)

EDE

-

Command line syntax

–?

––help[=options]

Description

Displays an overview of all command line options. When you specify the

options argument, a list with option descriptions is displayed.

Example

The following invocations all display a list of the available command line

options:

asr8c –?
asr8c ––help
asr8c

The following invocation displays extended information about all options:

asr8c ––help=options

Related information

-

Tool Options – Assembler 4–51

• • • • • • • •

–C (––cpu)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. Select a processor from the Select processor box.

Command line syntax

–Ccpu

––cpu=cpu

Description

With this option you define the target processor for which you create your

application. You can choose the following CPU's:

R8C10

R8C11

The assembler automatically uses the register file reg cpu .sfr .

Example

To assemble the file test.src for the R8C10 processor and use the SFR

file regr8c.sfr :

asr8c –Cr8c10 test.src
asr8c ––cpu=r8c10 test.src

To avoid conflicts, make sure you specify the same target processor as you

did for the compiler.

Related information

Compiler option –C (Select the CPU type)

Control program option –C (Select target CPU)

Section 6.5, Specifying a Target Processor, in Chapter Using the Assembler
of the User's Guide.

Reference Guide4–52
T

O
O

L
 O

P
T

IO
N

S

–c (––case-insensitive)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Disable the option Case sensitive assembly.

Command line syntax

–c

––case-insensitive

Description

With this option you tell the assembler not to distinguish between upper

and lower case characters. By default the assembler considers upper and

lower case characters as different characters.

Disabling the option Assemble case sensitive in EDE is the same as

specifying the option –c on the command line.

Assembly source files that are generated by the compiler must always be

assembled case sensitive. When you are writing your own assembly code,

you may want to specify the case insensitve mode.

Example

To assemble case insensitive:

asr8c –c test.src
asr8c ––case–insensitive test.src

The assembler considers upper and lower case characters as being the

same. So, for example, the label LabelName is the same label as

labelname .

Related information

Linker option ––case-sensitive (Link case insensitive)

Tool Options – Assembler 4–53

• • • • • • • •

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Click on an empty Macro field and enter a macro name.

4. Optionally, click in the Definition field and enter a definition.

Use commas to separate multiple macro definitions.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler

preprocessor. If you only specify a macro name (no macro definition), the

macro expands as '1'.

You can specify as many macros as you like. In EDE, use commas to

separate multiple macro definitions. On the command line you can use the

option –D multiple times. If the command line exceeds the limit of the

operating system, you can define the macros in an option file which you

then must specify to the assembler with the option –ffile.

Defining macros with this option (instead of in the assembly source) is, for

example, useful in combination with conditional assembly as shown in the

example below.

This option has the same effect as defining symbols via the DEFINE, SET,
and EQU directives. (similar to #define in the C language). With the

MACRO directive you can define more complex macros.

Reference Guide4–54
T

O
O

L
 O

P
T

IO
N

S

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

IF DEMO == 1
 ... ; instructions for demo application
ELSE
 ... ; instructions for the real application
ENDIF

You can now use a macro definition to set the DEMO flag:

asr8c –DDEMO test.src
asr8c –DDEMO=1 test.src

asr8c ––define=DEMO test.src
asr8c ––define=DEMO=1 test.src

Note that all four invocations have the same effect.

Related information

Assembler option –f (Specify an option file)

Section 4.9.5, Conditional Assembly, in Chapter Assembly Language of the

User's Guide.

Tool Options – Assembler 4–55

• • • • • • • •

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout
(normally your screen) and in the format you specify.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the assembler does not assemble any files.

Example

To display an explanation of message number 241, enter:

asr8c ––diag=241

This results in the following message and explanation:

W241: additional input files will be ignored

The assembler supports only a single input file. All
other input files are ignored.

Reference Guide4–56
T

O
O

L
 O

P
T

IO
N

S

To write an explanation of all errors and warnings in HTML format to file

aserrors.html , enter:

asr8c ––diag=html:all > aserrors.html

Related information

-

Tool Options – Assembler 4–57

• • • • • • • •

––emit-locals

EDE

-

Command line syntax

––emit-locals

Description

With this option the assembler also emits local symbols to the object file.

Normally, only global symbols are emitted.

Example

To emit local symbols, enter:

asr8c ––emit–locals test.src

Related information

-

Reference Guide4–58
T

O
O

L
 O

P
T

IO
N

S

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the assembler redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .ers .

Example

To write errors to errors.ers instead of stderr , enter:

asr8c ––error–file=errors.ers test.src

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Assembler 4–59

• • • • • • • •

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Add the option –f to the Additional assembler options field.

In EDE you can save your options in a file and restore them to call the

assembler with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional

assembler options field, the options are added to the assembler options

you have set in the Project Options dialog. Only in extraordinary cases

you may want to use them in combination.

Command line syntax

–f file,...

––option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the assembler.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option -f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

Reference Guide4–60
T

O
O

L
 O

P
T

IO
N

S

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Cr8c10
test.src

Specify the option file to the assembler:

asr8c –f myoptions
asr8c ––option–file=myoptions

This is equivalent to the following command line:

asr8c –Cr8c10 test.src

Related information

-

Tool Options – Assembler 4–61

• • • • • • • •

–g (––debug-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Debug.

3. Enable one or more debug options.

You cannot use Assembly source line information and Pass HLL

debug information simultaneously.

Command line syntax

–g[flag]

––debug-info[=flag]

You can set the following flags:

a/A (+/–asm) Assembly source line information

h/H (+/–hll) Pass HLL debug information

l/L (+/–local) Local symbols debug information

s/S (+/–smart) Smart debug information

Default

–gs

Description

With this option you tell the assembler to generate debug information. If

you do not use this option or if you specify –g without any flags, the

default is –gs.

You cannot specify –gah. Either the assembler generates assembly source

line information, or it passes HLL debug information.

When you specify –gs, the assembler selects which flags to use. If high

level language information is available in the source file, the assembler

passes this information (same as –gAhL). If not, the assembler generates

assembly source line information and local symbols debug information

(same as –gaHl).

Reference Guide4–62
T

O
O

L
 O

P
T

IO
N

S

With -gAHLS the assembler does not generate any debug information.

Example

To disable symbolic debug information, turn all flags off:

asr8c –gAHLS test.src
asr8c ––debug–info=–asm,–hll,–local,–smart test.src

To enable smart debugging, enter:

asr8c –gs test.src
asr8c ––debug–info=+smart test.src

Related information

-

Tool Options – Assembler 4–63

• • • • • • • •

–H (––include-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Preprocessing.

3. Enter the name of the file in the Include this file before source field.

Command line syntax

–Hfile,...

––include-file=file,...

Description

With this option you include one extra file at the beginning of the

assembly source file, before other includes. This is the same as specifying

INCLUDE ’ file ’ at the beginning of your assembly sources.

Example

asr8c –Hmyinc.inc test1.src
asr8c ––include–file=myinc test1.src

The file myinc.inc is included at the beginning of test1.src before it

is assembled.

Related information

Assembler option –I (Add directory to include file search path)

Section 6.6, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Guide.

Reference Guide4–64
T

O
O

L
 O

P
T

IO
N

S

–I (––include-directory)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Enter one or more search paths in the Include Files Path field.

Command line syntax

–Ipath,...

––include-directory=path,...

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly

source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASR8CINC when

the product was installed.

4. The default include directory relative to the installation directory.

Example

Suppose that your assembly source file test.src contains the following

line:

.INCLUDE ’myinc.inc’

You can call the assembler as follows:

asr8c –Ic:\proj\include test.src
asr8c ––include–directory=c:\proj\include test.src

First the assembler looks in the directory where test.src is located for

the file myinc.inc . If it does not find the file, it looks in the directory

c:\proj\include for the file myinc.inc (this option).

Tool Options – Assembler 4–65

• • • • • • • •

Related information

Section 6.6, How the Assembler Searches Include Files, in Chapter Using the
Assembler of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Assembler option –H (Include file at the start of the input files)

Compiler option -I (Add directory to include file search path)

Reference Guide4–66
T

O
O

L
 O

P
T

IO
N

S

–i (––symbol-scope)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Add the option –i to the Additional assembler options field.

Command line syntax

–i{g|l}

––symbol-scope={global|local}

Default

–il

Description

With this option you tell the assembler how to treat symbols that you have

not specified explicitly as global or local.

By default the assembler treats all symbols as local symbols unless you

have defined them explicitly as global.

Example

asr8c –ig test.src
asr8c ––symbol–scope=global test.src

The assembler treats all symbols as global symbols unless they are defined

as local symbols in the assembly source file.

Related information

-

Tool Options – Assembler 4–67

• • • • • • • •

–k (––keep-output-files)

EDE

EDE always removes the assembler output file when errors occur during

assembling.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during assembly, the resulting .obj file may be

incomplete or incorrect. With this option you keep the generated object

file (.obj) when an error occurs.

By default the assembler removes the generated object file (.obj) when

an error occurs. This is useful when you use the make utility. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated object. For

example when you know that a particular error does not result in a

corrupt object file.

Example

asr8c –k test.src

When an error occurs during assembly, the generated output file

test.obj will not be removed.

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

Reference Guide4–68
T

O
O

L
 O

P
T

IO
N

S

–L (––list-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Select Custom list file generation from the List file generation box.

4. Enable the options to include that information in the list file.

Command line syntax

–Lflags

––list-format=flags

You can set the following flags:

0 same as –LCDEGIMNPQRSVWXY

1 same as –Lcdegimnpqrsvwxy

c/C (+/–control) Assembler control lines

d/D (+/–section) Section directives

e/E (+/–symbol) Symbol definition directives

g/G (+/–generic-expansion) Generic instruction expansion

i/I (+/–generic) Generic instructions

m/M (+/–macro) Macro definitions

n/N (+/–empty-line) Empty source lines

p/P (+/–conditional) Conditional assembly

q/Q (+/–equate) Assembler EQU and SET directives

r/R (+/–relocations) Relocation characters ('r')

s/S (+/–hll) HLL symbolic debug information

v/V (+/–equate-values) Assembler EQU and SET values

w/W (+/–wrap-lines) Wrapped source lines

x/X (+/–macro-expansion) Macro expansions

y/Y (+/–cycle-count) Cycle counts

Default

–LcDEGiMnPqrsVWXy

Tool Options – Assembler 4–69

• • • • • • • •

Description

With this option you specify which information you want to include in the

list file. Use this option in combination with the option –l (––list-file).

If you do not specify this option, the assembler uses the default:

–LDEGiMnPqrsVWXy.

Example

asr8c –l –Ldm test.src
asr8c ––list–file ––list–format=+section,+macro
 test.src

The assembler generates a list file that includes all default information plus

section directives and macro definitions.

Related information

Assembler option –l (Generate list file)

Assembler option –tl (Display section information in list file)

Linker option –M (Generate map file)

Section 5.1, Assembler List File Format, in Chapter List File Formats.

Reference Guide4–70
T

O
O

L
 O

P
T

IO
N

S

–l (––list-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option List file generation.

Command line syntax

–l

––list-file

Description

With this option you tell the assembler to generate a list file. A list file

shows the generated object code and the relative addresses. Note that the

assembler generates a relocatable object file with relative addresses.

Example

To generate a list file with the name test.lst , enter:

asr8c –l test.src
asr8c ––list–file test.src

Related information

Assembler option –L (List file formatting options)

Linker option –M (Generate map file)

Section 5.1, Assembler List File Format, in Chapter List File Formats.

Tool Options – Assembler 4–71

• • • • • • • •

–m (––preprocessor-type)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Add the option –m to the Additional assembler options field.

Command line syntax

–m{n|t}

––preprocessor-type={none|tasking}

Default

–mt

Description

With this option you select the preprocessor that the assembler will use.

Default, the assembler uses the TASKING preprocessor.

When the assembly source file does not contain any preprocessor

symbols, you can specify the assembler not to use a preprocessor.

Example

asr8c test.src
asr8c –mt test.src
asr8c ––preprocessor=tasking test.src

These invocations have the same effect: the assembler preprocesses the

file test.src with the TASKING preprocessor.

Related information

-

Reference Guide4–72
T

O
O

L
 O

P
T

IO
N

S

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enable or disable the optimization suboptions.

Command line syntax

–Oflags

––optimize=flags

You can set the following flags:

a/A (+/–align) Speed optimization by means

 of instruction alignment

g/G (+/–generics) Allow generic instructions

s/S (+/–instr-size) Optimize instruction size

Default

–OAgs

Description

With this option you can control the level of optimization. If you do not

use this option, –OAgs is the default.

Example

The following invocations are equivalent and result all in the default

optimizations:

asr8c test.src
asr8c –OAgs test.src
asr8c ––optimize=–align,+generics,+instr–size test.src

Related information

Section 6.3, Assembler Optimizations, in Chapter Using the Assembler of the

User's Guide.

Tool Options – Assembler 4–73

• • • • • • • •

–o (––output)

EDE

-

Command line syntax

–ofile

––output=file

Description

With this option you can specify another filename for the output file of the

assembler. Without this option, the basename of the assembly source file is

used with extension .obj .

EDE names the output file always after the assembly source file.

Example

asr8c –o relobj.obj asm.src
asr8c ––output=relobj.obj asm.src

The assembler creates the file relobj.obj for the assembled file

asm.src .

Without the option –o, like EDE, the assembler uses the name of the input

file and creates asm.obj .

Related information

-

Reference Guide4–74
T

O
O

L
 O

P
T

IO
N

S

–t (––section-info)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Miscellaneous.

3. Enable the option Generate section summary.

EDE always writes the section information to the list file.

Command line syntax

–tflags

––section-info=flags

You can set the following flags:

c/C (+/–console) Display section information on stdout .

l/L (+/–list) Write section information to the list file.

Description

With this option you tell the assembler to display section information. For

each section its memory space, size, total cycle counts and name is listed

on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the

section and the total accumulated count for all repeated instructions. In the

case of nested loops it is possible that the total supersedes the section

total.

With –tl, the assembler writes the section information to the list file. You

must specify this option in combination with the option –l (generate list

file).

Tool Options – Assembler 4–75

• • • • • • • •

Example

asr8c –l –tcl test.src
asr8c ––list–file ––section–info=+console,+list
 test.src

The assembler generates a list file and writes the section information to

this file. The section information is also displayed on stdout .

Section summary:

 REL 2 6 test_CO
 REL 20 test_INI_BI
 REL c test_INI_DA
 ABS (00000010) 2 test_CLR_DA_00000010
 REL 2 test_RO_DA

Related information

Assembler option –l (Generate list file)

Reference Guide4–76
T

O
O

L
 O

P
T

IO
N

S

––type-checking

EDE

-

Command line syntax

––type-checking

Description

With this option the assembler checks expressions for type conflicts.

Example

To turn on type checking:

asr8c ––type–checking test.src

Related information

-

Tool Options – Assembler 4–77

• • • • • • • •

–V (––version)

EDE

-

Command line syntax

–V

––version

Description

Display version information. The assembler ignores all other options or

input files.

Example

asr8c –V
asr8c ––version

The assembler does not assemble any files but displays the following

version information:

TASKING R8C Assembler v x. yr z Build nnn
Copyright 2003– years Altium BV Serial# 00000000

Related information

-

Reference Guide4–78
T

O
O

L
 O

P
T

IO
N

S

–v (––verbose)

EDE

-

Command line syntax

–v

––verbose

Description

With this option you put the assembler in verbose mode. The assembler

prints the filenames and the assembly passes while it processes the files so

you can monitor the current status of the assembler.

Example

asr8c –v test.src
asr8c ––verbose test.src

Related information

-

Tool Options – Assembler 4–79

• • • • • • • •

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Diagnostics.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr,...]

––no-warnings[=nr,...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warning is

suppressed. You can specify the option –w multiple times.

Example

To suppress all warnings:

asr8c –w test.src
asr8c ––no–warnings test.src

To suppress warnings 135 and 136:

asr8c –w135,136 test.src
asr8c ––no–warnings=135,136 test.src

Reference Guide4–80
T

O
O

L
 O

P
T

IO
N

S

Related information

Assembler option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Assembler 4–81

• • • • • • • •

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select Diagnostics.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the assembler to treat warnings as errors.

Example

asr8c ––warnings–as–errors test.src

When a warning occurs, the assembler considers it as an error.

Related information

Assembler option –w (suppress some or all warnings)

Reference Guide4–82
T

O
O

L
 O

P
T

IO
N

S

4.3 LINKER OPTIONS

EDE uses a makefile to build your entire project. This means that you

cannot run the linker separately. However, you can set options specific for

the linker.

Options in EDE versus options on the command line

Most command line options have an equivalent option in EDE but some

options are only available on the command line.

See section 4.4, Control Program Options.

If there is no equivalent option in DXP, you can specify a command line

option in DXP as follows:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enter one or more command line options in the Additional linker

options field.

Be aware that some options are not useful in EDE or just will not have any

effect. For example, the option –k keeps files after an error occurred.

When you specify this option in EDE, it will have no effect because EDE

always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always

begin with a single minus (–) character, long option names always begin

with two minus (––) characters. You can abbreviate long option names as

long as it forms a unique name. You can mix short and long option names

on the command line.

Options can have flags or suboptions. To switch a flag 'on', use a

lowercase letter or a +longflag. To switch a flag off, use an uppercase

letter or a -longflag. Separate longflags with commas. The following two

invocations are equivalent:

lkr8c –mfkl test.obj
lkr8c ––map–file–format=+files,+link,+locate test.obj

When you do not specify an option, a default value may become active.

Tool Options – Linker 4–83

• • • • • • • •

–? (––help)

EDE

-

Command line syntax

–?

––help

Description

Displays an overview of all command line options.

Example

The following invocations all display a list of the available command line

options:

lkr8c –?
lkr8c ––help
lkr8c

Related information

-

Reference Guide4–84
T

O
O

L
 O

P
T

IO
N

S

––case-insensitive

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Disable the option Link case sensitive.

Command line syntax

––case-insensitive

Description

With this option you tell the linker not to distinguish between upper and

lower case characters. By default the linker considers upper and lower

case characters as different characters.

Disabling the option Link case sensitive in EDE is the same as specifying

the option ––case-insensitive on the command line.

Assembly source files that are generated by the compiler must always be

assembled and thus linked case sensitive. When you have written your

own assembly code and specified to assemble it case insensitive, you must

also link the .obj file case insensitive.

Example

To link case insensitive:

lkr8c ––case–insensitive test.obj

The linker considers upper and lower case characters as being the same.

So, for example, the label LabelName is considered the same label as

labelname .

Related information

Assembler option –c (Assemble case insensitive)

Tool Options – Linker 4–85

• • • • • • • •

–c (––chip-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Output Format.

3. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Command line syntax

–cformat[:addr_size][,format[:addr_size]]...

––chip-format=format[:addr_size][,format[:addr_size]]...

You can specify the following formats:

IHEX Intel Hex

SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length).

For Intel Hex you can use the values: 1, 2 and 4 (default). For Motorola S

you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3

records).

Description

With this option you specify the Intel Hex or Motorola S-record output

format for loading into a PROM-programmer. The linker generates a file

for each memory chip.

Examples

Generate Intel Hex output files for each chip:

lkr8c –cIHEX test1.obj test2.obj
lkr8c ––chip–format=IHEX test1.obj test2.obj

Related information

Linker option –o (output file)

Reference Guide4–86
T

O
O

L
 O

P
T

IO
N

S

Section 6.2, Motorola S-Record Format,
Section 6.3, Intel Hex Record Format, in Chapter Object File Formats.

Tool Options – Linker 4–87

• • • • • • • •

–D (––define)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –D to the Additional linker options field.

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker

preprocessor. If you only specify a macro name (no macro definition), the

macro expands as '1'.

You can specify as many macros as you like: you can use the option –D

multiple times. If the command line exceeds the limit of the operating

system, you can define the macros in an option file which you then must

specify to the linker with the option –ffile.

Define macro to the preprocessor, as in #define. Any number of symbols

can be defined. The definition can be tested by the preprocessor with #if,

#ifdef and #ifndef, for conditional locating.

Example

To define the RESET vector, interrupt table start address and trap table start

address which is used in the linker script file r8c.lsl , enter:

lkr8c test.obj –otest.elf –dr8c.lsl
 –DRESET=0xa0000000 –DINTTAB=0xa00f0000
 –DTRAPTAB=0xa00f2000

or:

lkr8c test.obj –otest.elf ––lsl–file=r8c.lsl
 ––define=RESET=0xa0000000 ––define=INTTAB=0xa00f0000
 ––define=TRAPTAB=0xa00f2000

Reference Guide4–88
T

O
O

L
 O

P
T

IO
N

S

Related information

Linker option –f (Name of invocation file)

Tool Options – Linker 4–89

• • • • • • • •

–d (––lsl-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Script File.

3. Select Use standard description for selected derivative or select

Use project specific processor description and specify a name.

Command line syntax

–dfile
––lsl-file=file

Description

With this option you specify a linker script file to the linker. If you do not

specify this option, the linker uses a default script file. You can specify the

existing file target .lsl or the name of a manually created linker script

file. You can use this option multiple times. The linker processes the LSL

files in the order in which they appear on the command line.

The linker script file contains vital information about the core for the

locating phase of the linker. A linker script file is coded in LSL and

contains the following types of information:

• the architecture partition describes the core's hardware architecture.

• the memory partition describes the physical memory in the system.

• the section partition describes how to locate sections in memory.

Example

To read linker script file information from file mylslfile.lsl :

lkr8c –dmylslfile.lsl test.obj
lkr8c ––lsl–file=mylslfile.lsl test.obj

Related information

Linker option ––lsl-check (Check LSL file(s) and exit)

Section 7.6, Controlling the Linker with a Script in Chapter Linker of the

Users Guide.

Reference Guide4–90
T

O
O

L
 O

P
T

IO
N

S

––diag

EDE

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

Command line syntax

––diag=[format:]{all | number[,number]... }

Optionally, you can use one of the following display formats (format):

text The default is plain text

html Display explanation in HTML format

rtf Display explanation in RTF format

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout
(normally your screen) and in the format you specify.

To create a file with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the linker does not link any files.

Example

To display an explanation of message number 104, enter:

lkr8c ––diag=106

This results in the following message and explanation:

E106: unresolved external: message

The linker could not resolve all external symbols. This is an
error when the incremental linking option is disabled. The
<message> indicates the symbol that is unresolved.

Tool Options – Linker 4–91

• • • • • • • •

To write an explanation of all errors and warnings in HTML format to file

lerrors.html , enter:

lkr8c ––diag=html:all > lerrors.html

Related information

-

Reference Guide4–92
T

O
O

L
 O

P
T

IO
N

S

–e (––extern)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –e in the Additional linker options field.

Command line syntax

–e symbol

––extern=symbol

Description

With this option you force the linker to consider the given symbol as an

undefined reference. The linker tries to resolve this symbol by extracting

the corresponding symbol definition from a library. If the symbol is

defined in an object file, this option has no influence on the link process.

Suppose you are linking from a library. Because the library itself already

has been compiled and assembled, the linker does not find any

unresolved symbols. Hence, the linker will not extract any module from

the library. When you force a symbol to be undefined, the linker extracts

those modules that contain the symbol.

This option is, for example, useful if the startup code is part of a library.

Because your own application does not refer to the startup code, you can

force the startup code to be extracted by specifying the symbol __TART as

an unresolved external.

Example:

Consider the following invocation:

lkr8c mylib.a

Nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a .

lkr8c –e __START mylib.a
lkr8c ––extern=__START mylib.a

Tool Options – Linker 4–93

• • • • • • • •

In this case the linker searches for the symbol __START in the library and

(if found) extracts the object that contains __START, the startup code. If

this module contains new unresolved symbols, the linker looks again in

mylib.a . This process repeats until no new unresolved symbols are

found.

Related information

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Guide.

Reference Guide4–94
T

O
O

L
 O

P
T

IO
N

S

––error-file

EDE

-

Command line syntax

––error-file[=file]

Description

With this option the linker redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .elk .

Example

lkr8c ––error–file=my.elk test.obj

The linker writes error messages to the file my.elk instead of stderr .

Related information

Linker option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Linker 4–95

• • • • • • • •

–f (––option-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –f to the Additional linker options field.

In EDE you can save your options in a file and restore them to call the

linker with those options:

1. From the Project menu, select Save Options... or Load Options...

Be aware that when you specify the option –f in the Additional linker

options field, the options are added to the linker options you have set in

the Project Options dialog. Only in extraordinary cases you may want to

use them in combination.

Command line syntax

–f file,...

––option-file=file,...

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and files you want to specify. With

this option you specify the option file to the linker.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

Reference Guide4–96
T

O
O

L
 O

P
T

IO
N

S

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–Mmymap (generate a map file)

test.obj (input file)

–Lc:\mylibs (additional search path for system libraries)

Specify the option file to the linker:

lkr8c –f myoptions
lkr8c ––option–file=myoptions

This is equivalent to the following command line:

lkr8c –Mmymap test.obj –Lc:\mylibs

Related information

-

Tool Options – Linker 4–97

• • • • • • • •

––first-library first

EDE

-

Command line syntax

––first-library-first

Description

When the linker processes a library it searches for symbols that are

referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference the linker extracts the

object that contains the definition from the library.

By default the linker processes object files and libraries in the order in

which they appear at the command line. If you specify the option

––first-library-first the linker always tries to take the symbol definition

from the library that appears first on the command line before scanning

subsequent libraries.

This is for example useful when you are working with a newer version of

a library that partially overlaps the older version. Because they do not

contain exactly the same functions, you have to link them both. However,

when a function is present in both libraries, you may want the linker to

extract the most recent function.

With this option, you tell the linker to scan the libraries from left to right,

and extract the symbol from the first library where the linker finds it.

Example:

lkr8c ––first–library–first a.a test.obj b.a

If the file test.obj calls a function which is both present in a.a and

b.a , normally the function in b.a would be extracted. With this option

the linker first tries to extract the symbol from the first library a.a .

Related information

Linker option ––no-rescan (Do not rescan libraries)

Reference Guide4–98
T

O
O

L
 O

P
T

IO
N

S

–i

(––user-provided-initialization-co

de)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Disable the option Use standard copy-table for initialization.

Command line syntax

–i

––user-provided-initialization-code

Description

It is possible to use your own initialization code, for example, to save

ROM space. With this option you tell the linker not to generate a copy

table for initialize/clear sections. Use linker labels in your source code to

access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error

is emitted: it is either the TASKING initialization routine or your own, not

both.

Note that the options --no-rom-copy and --non-romable, may vary

independently. The 'copytable-item-compression' and

'copytable-compression' optimizations are automatically disabled when

you enable this option.

Example:

To link with your own startup code:

lkr8c –i test.obj

lkr8c ––user–provided–initialization–code test.obj

Tool Options – Linker 4–99

• • • • • • • •

Related information

-

Reference Guide4–100
T

O
O

L
 O

P
T

IO
N

S

–I (––include-directory)

EDE

-

Command line syntax

–Ipath,...

––include-directory=path,...

Description

With this option you can specify the path where your LSL include files are

located. A relative path will be relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL files are

located (only for #include files that are enclosed in "")

2. The path that is specified with this option.

3. The default directory c:\cr8c\include .

Example

Suppose that the LSL file lslfile.lsl contains the following lines:

#include <standard.lsl>
#include ”mypart.lsl”

You can call the linker as follows:

lkr8c –Imyinclude –dlslfile.lsl test.obj
lkr8c ––include–directory=myinclude
 ––lsl–file=lslfile.lsl test.obj

First the linker looks in the directory where lslfile.lsl is located for

the file standard.lsl .

Then the compiler looks in the myinclude subdirectory relative to the

current directory for the mypart.lsl file and, if it was not found yet, also

for the standard.lsl file (this option).

Tool Options – Linker 4–101

• • • • • • • •

Related information

Linker option –d (Linker script file)

Reference Guide4–102
T

O
O

L
 O

P
T

IO
N

S

–k (––keep-output-files)

EDE

EDE always removes the output files when errors occur during linking.

Command line syntax

–k

––keep-output-files

Description

If an error occurs during linking, the resulting output file may be

incomplete or incorrect. With this option you keep the generated output

files when an error occurs.

By default the linker removes the generated output files when an error

occurs. This is useful when you use the make utility mkr8c. If the

erroneous files are not removed, the make utility may process corrupt files

on a subsequent invocation.

Use this option when you still want to use the generated file. For example

when you know that the error(s) do not result in a corrupt output file, or

when you want to inspect the output file, or send it to Altium support.

Example

lkr8c –k test.obj
lkr8c ––keep–output–files test.obj

When an error occurs during linking, the generated output file test.elf
will not be removed.

Related information

-

Tool Options – Linker 4–103

• • • • • • • •

–L (––library-directory /

––ignore-default-library-path)

EDE

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Add a pathname in the Library Files Path field.

3. In the Library Files Path field, add the pathnames of the directories

where the linker should look for library files.

If you enter multiple paths, separate them with a semicolon (;).

Command line syntax

–Lpath,...

––library-directory=path,...

–L

––ignore-default-library-path

Description

With this option you can specify the path(s) where your system libraries,

specified with the -l option, are located. If you want to specify multiple

paths, use the option –L for each separate path.

By default path this is $(PRODDIR)\cr8c\lib directory.

If you specify only –L (without a pathname) or the long option

––ignore-default-library-path, the linker will not search the default

path and also not in the paths specified in the environment variable

LIBR8C. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries

specified with the -l option is:

1. The path that is specified with the -L option.

2. The path that is specified in the environment variable LIBR8C when the

product was installed.

3. The default directory c:\cr8c\lib .

Reference Guide4–104
T

O
O

L
 O

P
T

IO
N

S

Example

Suppose you call the linker as follows:

lkr8c test.obj –Lc:\mylibs –lc

First the linker looks in the directory c:\mylibs for library libc.a (this

option).

If it does not find the requested libraries, it looks in the directory that is set

with the environment variable LIBR8C.

Then the linker looks in the default directory c:\cr8c\lib for libraries.

Related information

Linker option –l (Link system library)

Section 7.4.2, How the Linker Searches Libraries, in Chapter Using the
Linker of the User's Guide.

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Tool Options – Linker 4–105

• • • • • • • •

–l (––library)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Enable the option Link default C libraries.

Command line syntax

–lname

––library=name

Description

With this option you tell the linker to search also in system library

lib name.a , where name is a string. The linker first searches for system

libraries in any directories specified with –Lpath, then in the directories

specified with the environment variable LIBR8C, unless you used the

option –L without a directory.

Example

To search in the system library libfp.a (floating-point library):

lkr8c test.obj mylib.a –lfp
lkr8c test.obj mylib.a ––library=fp

The linker links the file test.obj and first looks in mylib.a (in the

current directory only), then in the system library libfp.a to resolve

unresolved symbols.

Related information

Linker option –L (Additional search path for system libraries)

Section 7.4.1, Specifying Libraries to the Linker, in Chapter Using the Linker
of the User's Guide.

Reference Guide4–106
T

O
O

L
 O

P
T

IO
N

S

––link-only

EDE

-

Command line syntax

––link-only

Description

With this option you suppress the locating phase. The linker stops after

linking. The linker complains if any unresolved references are left.

Example:

lkr8c ––link–only hello.obj

The linker checks for unresolved symbols and creates the file hello.eln .

Related information

Control program option –cl (Stop after linking)

Tool Options – Linker 4–107

• • • • • • • •

––lsl-check

EDE

-

Command line syntax

––lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and

exits. No linking or locating is performed.

Example:

To check the LSL file(s) and exit:

lkr8c ––lsl–check ––lsl–file=mylslfile.lsl

Related information

Linker option –d (Linker script file)

Linker option ––lsl-dump (Dump LSL info)

Chapter 7, Linker Script Language.

Reference Guide4–108
T

O
O

L
 O

P
T

IO
N

S

––lsl-dump

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the option Dump processor and memory info from LSL

file.

Command line syntax

––lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in

a separate file, independent of the -M (generate map file) option. If you

do not specify a filename, the file lkr8c.ldf is used.

Example

lkr8c ––lsl–dump=mydump.ldf test.obj

The linker dumps the processor and memory info from the LSL file in the

file mydump.ldf .

Related information

Linker option –m (Map file formatting options)

Tool Options – Linker 4–109

• • • • • • • •

–M (––map-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the option Generate a map file (.map).

Command line syntax

–M[file]

––map-file[=file]

Description

With this option you tell the linker to generate a linker map file. If you do

not specify a filename, the linker uses the same basename as the output

file with the extension .map .

A linker map file is a text file that shows how the linker has mapped the

sections and symbols from the various object files (.obj) to the linked

object file. A locate part shows the absolute position of each section.

External symbols are listed per space with their absolute address, both

sorted on symbol and sorted on address.

With the option -m (map file formatting) you can specify which parts you

want to place in the map file.

Example

To generate a map file (test.map):

lkr8c –Mtest.map test.obj
lkr8c ––map–file=test.map test.obj

The control program by default tells the linker to generate a map file.

Related information

Linker option –m (Map file formatting options)

Section 5.2, Linker Map File Format, in Chapter List File Formats.

Reference Guide4–110
T

O
O

L
 O

P
T

IO
N

S

–m (––map-file-format)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Map File.

3. Enable the options to include several kinds of information in the map

file.

Command line syntax

–mflags

––map-file-format=flags

You can set the following flags:

0 same as –mfkLMrSU (link info)

1 same as –mfKlmRSU (locate info)

2 same as –mfklmrsu (all)

f/F (+/–files) Processed files info

k/K (+/–link) Link result info

l/L (+/–locate) Locate result info

m/M (+/–memory) Memory usage info

r/R (+/–crossref) Cross references info

s/S (+/–lsl) Processor and memory info

u/U (+/-rules) Locate rules

Default

–mfklMRSU

Description

With this option you specify which information you want to include in the

map file. Use this option in combination with the option –M

(––map-file).

If you do not specify this option, the linker uses the default: –mfklMRSU.

Tool Options – Linker 4–111

• • • • • • • •

Example

lkr8c –Mtest.map –mFr test.obj
lkr8c ––map–file=test.map ––map–file–format=+crossref,
 –files test.obj

The linker generates the map file test.map that includes all default

information plus the cross reference part, but not the processed files part.

Related information

Linker option –M (Generate map file)

Section 5.2, Linker Map File Format, in Chapter List File Formats.

Reference Guide4–112
T

O
O

L
 O

P
T

IO
N

S

––misra-c-report

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration.

4. Enable the option Produce a MISRA C report.

Command line syntax

––misra-c-report[=file]

Description

With this option you tell the linker to create a MISRA C Quality Assurance

report. This report lists the various modules in the project with the

respective MISRA C settings at the time of compilation. If you do not

specify a filename, the file name.mcr is used.

Example

lkr8c ––misra–c–report test.obj

The linker creates a MISRA C report file test.mcr .

Related information

Compiler option ––misrac

Tool Options – Linker 4–113

• • • • • • • •

––munch

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option ––munch to the Additional linker options field.

Command line syntax

––munch

Description

With this option you tell the linker to activate the muncher in the

pre-locate phase.

Example

lkr8c ––munch test.obj

The linker activates the muncher in the pre-locate phase while linking the

file test.obj .

Related information

-

Reference Guide4–114
T

O
O

L
 O

P
T

IO
N

S

–N (––no-rom-copy)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –N to the Additional linker options field.

Command line syntax

–N

––no-rom-copy

Description

With this option the linker will not generate a ROM copy for data sections.

A copy table is generated and contains entries to clear sections. However,

no entries to copy data sections from ROM to RAM are placed in the copy

table.

The data sections are initialized when the application is downloaded. The

data sections are not re-initialized when the application is restarted.

Example

lkr8c –N test.obj
lkr8c ––no–rom–copy test.obj

The linker does not generate a copy table.

Related information

-

Tool Options – Linker 4–115

• • • • • • • •

––no-rescan

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Libraries.

3. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

––no-rescan

Description

When the linker processes a library, it searches for symbol definitions that

are referenced by the objects and libraries processed so far. If the library

contains a definition for an unresolved reference, the linker extracts the

object that contains the definition from the library. The linker processes

object files and libraries in the order in which they appear on the

command line.

When all objects and libraries are processed the linker checks if there are

unresolved symbols left. If so, the default behavior of the linker is to

rescan all libraries in the order given on the command line. The linker

stops rescanning the libraries when all symbols are resolved, or when the

linker could not resolve any symbol(s) during the rescan of all libraries.

Notice that resolving one symbol may introduce new unresolved symbols.

With this option, you tell the linker to scan the object files and libraries

only once. When the linker has not resolved all symbols after the first

scan, it reports which symbols are still unresolved. This option is useful if

you are building your own libraries. The libraries are most efficiently

organized if the linker needs only one pass to resolve all symbols.

Example:

To scan the libraries only once:

lkr8c ––no–rescan test.obj a.a b.a

The linker resolves all unresolved symbols while scanning the object files

and libraries and reports all remaining unresolved symbols after this scan.

Reference Guide4–116
T

O
O

L
 O

P
T

IO
N

S

Related information

Linker option ––first-library-first (Scan libraries in the specified order)

Tool Options – Linker 4–117

• • • • • • • •

––non-romable

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option to the Additional linker options field.

Command line syntax

––non-romable

Description

With this option you tell the linker that the application is not romable. The

linker will locate all ROM sections in RAM. A copy table is generated and

is located in RAM. When the application is started, the data sections are

re-initialized.

Example

lkr8c ––non–romable test.obj

The linker locates all ROM sections in RAM.

Related information

-

Reference Guide4–118
T

O
O

L
 O

P
T

IO
N

S

–O (––optimize)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Optimization.

3. Enable or disable the optimization suboptions.

Command line syntax

–Oflags

––optimize=flags

You can set the following flags:

c/C (+/-delete-unreferenced-code)

Delete unreferenced code sections from the output file

(no effect on sources compiled with debug information)

d/D (+/-delete-unreferenced-data)

Delete unreferenced data sections from the output file

(no effect on sources compiled with debug information)

l/L (+/-first-fit-decreasing)

Use a 'first fit decreasing' algorithm to locate unrestricted

sections in memory.

s/S (+/-delete-unreferenced-symbols)

Delete unreferenced symbols from the output file

t/T (+/-copytable-compression)

Emit smart restrictions to reduce copy table size

x/X (+/-delete-duplicate-code)

Delete duplicate code from the output file

y/Y (+/-delete-duplicate-data)

Delete duplicate constant data from the output file

Tool Options – Linker 4–119

• • • • • • • •

Use the following options for predefined sets of flags:

–O0 (––optimize=0) No optimization.

Alias for: –OCDLSTXY

–O1 (––optimize=1) Normal optimization (default).

Alias for: –OCDLStXY

–O2 (––optimize=2) All optimizations.

Alias for: –Ocdlstxy

Default

–O1

Description

With this option you can control the level of optimization. If you do not

use this option, –OCDLStXY (–O1) is the default.

Example

The following invocations are equivalent and result all in the default

optimizations.

lkr8c test.obj
lkr8c –O test.obj
lkr8c –O1 test.obj
lkr8c –OCDLSt test.obj

lkr8c ––optimize test.obj
lkr8c ––optimize=1 test.obj
lkr8c ––optimize=–delete–unreferenced–code,
 –delete–unreferenced–data,–first–fit–decreasing,
 –delete–unreferenced–symbols,+copytable–compression
 test.obj

Related information

Section 7.2.3, Linker Optimizations, in Chapter Using the Linker of the

User's Guide.

Reference Guide4–120
T

O
O

L
 O

P
T

IO
N

S

–o (––output-file)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –o in the Additional linker options field.

Command line syntax

–o[filename][:format[:addr_size][,space_name]]...

––output=[filename][:format[:addr_size][,space_name]]...

You can specify the following formats:

ELF ELF/DWARF

IEEE IEEE-695

IHEX Intel Hex

SREC Motorola S-records

Description

By default, the linker generates an output file in ELF/DWARF format,

named after the first input file with extension .elf .

With this option you can specify an alternative filename, and an alternative

output format. The default output format is the format of the first input

file.

You can use the -o option multiple times. This useful to generate multiple

output formats or to link multiple address spaces. With the first occurrence

of the -o option you must specify the filename without extension. If you

do not specify a filename, or you do not specify the -o option at all, the

linker uses the default basename task n.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you

can use the argument addr_size to specify the size of addresses in bytes

(record length). For Intel Hex you can use the values: 1, 2, and 4

(default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2

records, default) or 4 bytes (S3 records).

Tool Options – Linker 4–121

• • • • • • • •

For these formats you must also choose which address space must be

emitted. With the argument space_name you can specify the name of the

address space. The name of the output file will be filename_spacename
with the extension .hex or .s . (Remember to use the -o option multiple

times to link multiple address spaces.)

If you do not specify space_name, the default address space is emitted. In

this case the name of the output file does not reflect the emitted space.

Use option –c (––chip-format) to create Intel Hex or Motorola S-record

output files for each chip (suitable for loading into a PROM-programmer).

Example

To create the output file myfile of the address space named near :

lkr8c test.obj –omyfile:IHEX:2,near
lkr8c test.obj ––output–file=myfile:IHEX:2,near

To create the output file myfile of the default address space:

lkr8c test.obj –omyfile:IHEX:2
lkr8c test.obj ––output–file=myfile:IHEX:2

Related information

Linker option –c (Generate an output file for each chip)

Reference Guide4–122
T

O
O

L
 O

P
T

IO
N

S

–r (––incremental)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Add the option –r in the Additional linker options field.

Command line syntax

–r

––incremental

Description

Normally the linker links and locates the specified object files. With this

option you tell the linker to link only the specified files. The linker creates

a linker output file .eln . You then can link this file again with other

object files until you have reached the final linker output file that is ready

for locating.

In the last pass, you call the linker without this option with the final linker

output file .eln . The linker will now locate the file.

Example

In this example, the files test1.obj , test2.obj and test3.obj are

incrementally linked:

1. lkr8c –r test1.obj test2.obj –otest.eln
lkr8c ––incremental test1.obj test2.obj –otest.eln

test1.obj and test2.obj are linked

2. lkr8c –r test3.obj test.eln
lkr8c ––incremental test3.obj test.eln

test3.obj is linked together with test.eln . The file task1.eln is
created.

3. lkr8c task1.eln

test.eln is located

Tool Options – Linker 4–123

• • • • • • • •

Related information

Section 7.5, Incremental Linking, in Chapter Using the Linker of the User's
Guide.

Reference Guide4–124
T

O
O

L
 O

P
T

IO
N

S

–S (––strip-debug)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Disable the option Include symbolic debug information.

Command line syntax

–S

––strip-debug

Description

With this option you specify not to include symbolic debug information in

the resulting output file.

Example

lkr8c –S test.obj –otest.elf
lkr8c ––strip–debug test.obj ––output=test.elf

The linker generates the object file test.elf without symbolic debug

information.

Related information

-

Tool Options – Linker 4–125

• • • • • • • •

–V (––version)

EDE

-

Command line syntax

–V

Description

Display version information. The linker ignores all other options or input

files.

Example

lkr8c –V
lkr8c ––version

The linker does not link any files but displays the following version

information:

TASKING R8C linker v x. yr z Build 000
Copyright 2002– year Altium BV Serial# 00000000

Related information

-

Reference Guide4–126
T

O
O

L
 O

P
T

IO
N

S

–v (––verbose)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Miscellaneous.

3. Enable the option Print the name of each file as it is processed.

Command line syntax

–v

Description

With this option you put the linker in verbose mode. The linker prints the

filenames and the link passes while it processes the files. It also shows

which objects are extracted from libraries. With this option you can

monitor the current status of the linker.

Example

lkr8c test.obj –lc –lfp –lrt –v

The linker links the file test.obj and displays the steps it performs.

Related information

-

Tool Options – Linker 4–127

• • • • • • • •

–w (––no-warnings)

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable one of the options Report all warnings, Suppress all

warnings, or Suppress specific warnings.

If you select Suppress specific warnings:

4. Enter the numbers, separated by commas, of the warnings you want to

suppress.

Command line syntax

–w[nr[,nr]...]

––no-warnings[=nr[,nr]...]

Description

With this option you can suppresses all warning messages or specific

warning messages.

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are

suppressed.

• If you specify this option with a number, only the specified warnings

are suppressed. Separate multiple warnings by commas.

Example:

To suppress all warnings:

lkr8c –w test.obj
lkr8c ––no–warnings test.obj

To suppress warnings 135 and 136:

lkr8c –w135,136 test.obj
lkr8c ––no–warnings=135,136 test.obj

Reference Guide4–128
T

O
O

L
 O

P
T

IO
N

S

Related information

Linker option ––warnings-as-errors (Treat warnings as errors)

Tool Options – Linker 4–129

• • • • • • • •

––warnings-as-errors

EDE

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Linker entry and select Warnings.

3. Enable the option Treat warnings as errors.

Command line syntax

––warnings-as-errors

Description

With this option you tell the linker to treat warnings as errors.

When the linker detects an error, it tries to continue the link process and

reports other errors and warnings. However, the linker will exit with an

exit status not equal zero (!= 0) and will not produce any output files.

Example

lkr8c ––warnings–as–errors test.obj

When a warning occurs, the linker considers it as an error.

Related information

Linker option –w (Suppress some or all warnings)

Reference Guide4–130
T

O
O

L
 O

P
T

IO
N

S

4.4 CONTROL PROGRAM OPTIONS

The control program ccr8c facilitates the invocation of the various

components of the R8C toolchain from a single command line. The control

program is a command line tool so there are no equivalent options in

EDE.

For the linker options in EDE, EDE invokes the linker via the control

program. Therefore, it uses the syntax of the control program to pass

options and files to the linker. See section 4.3, Linker Options, for an

overview of the EDE linker options and the corresponding command line

linker options.

Some options are interpreted by the control program itself; other options

are passed to those programs in the toolchain that accept the option.

Recognized input files

The control program recognizes the following input files:

• Files with a .c suffix are interpreted as C source programs and are

passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly

source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source

files. They are directly passed to the assembler.

• Files with a .a suffix are interpreted as library files and are passed to

the linker.

• Files with a .obj suffix are interpreted as object files and are passed to

the linker.

• Files with a .eln suffix are interpreted as linked object files and are

passed to the locating phase of the linker. The linker accepts only one

.eln file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and

is passed to the linker.

Normally, the control program tries to compile, assemble, link and locate

all source files to absolute object files. There are however, options to

suppress the assembler, link or locate stage.

Tool Options – Control Program 4–131

• • • • • • • •

–? (––help)

Command line syntax

–?[options]

––help[=options]

Description

Displays an overview of all command line options. When you specify the

suboption options, you receive extended information.

Example

The following invocations all display a list of the available command line

options:

ccr8c –?
ccr8c ––help
ccr8c

Related information

-

Reference Guide4–132
T

O
O

L
 O

P
T

IO
N

S

–A (––language)

Command line syntax

–A[flags]

––language[=flags]

You can set the following flags:

p/P (+/–comments) Allow C++ style comments in ISO C90

x/X (+/–strings) Relaxed const check for string literals

Default

–Apx

Description

With this option you control the language extensions the compiler can

accept. Default the C compiler allows all language extensions.

–A (––language) is the equivalent of –APX and disables all language

extensions.

With –Ap you tell the compiler to allow C++ style comments (//) in ISO

C90 mode (option –c90). In ISO C99 mode this style of comments is

always accepted.

With –Ax you tell the compiler not to check for assignments of a constant

string to a non-constant string pointer. With this option the following

example does not produces a warning:

char *p;
void main(void) { p = ”hello”; }

Example

ccr8c –APx test.c
ccr8c ––language=–comments,+strings test.c

The control program calls the compiler in such a way that it accepts

assignments of a constant string to a non-constant string pointer but

ignores C++ style comments.

Tool Options – Control Program 4–133

• • • • • • • •

Related information

Compiler option -A (Control language extensions)

Reference Guide4–134
T

O
O

L
 O

P
T

IO
N

S

–C (––cpu)

Command line syntax

–Ccpu

––cpu=type

Description

With this option you define the target processor for which you create your

application. You can choose the following CPU's:

R8C10

R8C11

The compiler automatically includes the register file reg cpu .sfr .

Example

To build the file test.c for the R8C10 processor and use the SFR file

regr8c10.sfr :

cr8c –Cr8c10 test.c
cr8c ––cpu=r8c10 test.c

Related information

Compiler option –C (Select the CPU type)

Assembler option –C (Select CPU)

Tool Options – Control Program 4–135

• • • • • • • •

–cs/–co/–cl (––create)

Command line syntax

–cs

––create=assembly

–co

––create=object

–cl

––create=relocatable

Description

Normally the control program generates an absolute object file of the

specified output format from the file you supplied as input.

With this option you tell the control program to stop after a certain

number of phases.

–cs Stop after C files are compiled to assembly (.src)

–co Stop after the files are assembled to object files (.obj)

–cl Stop after the files are linked to a linker object file (.eln)

Example

To generate the object file test.obj :

ccr8c –co test.c
ccr8c ––create=object test.c

The control program stops after the file is assembled. It does not link nor

locate the generated output.

Related information

-

Reference Guide4–136
T

O
O

L
 O

P
T

IO
N

S

––diag

Command line syntax

––diag=[format:]{all|nr,...]

Description

With this option you can ask for an extended description of error

messages in the format you choose. The output is directed to stdout

(normally your screen) and in the format you specify. You can specify the

following formats: html, rtf or text (default). To create a file with the

descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given. If

you want the description of one or more selected error messages, you can

specify the error message numbers, separated by commas.

With this option the control program does not process any files.

Example

To display an explanation of message number 103 , enter:

ccr8c ––diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file

ccerrors.html , enter:

ccr8c ––diag=html:all > ccerrors.html

Related information

-

Tool Options – Control Program 4–137

• • • • • • • •

–d (––lsl-file)

Command line syntax

–dfile

––lsl-file=file

Description

A linker script file contains vital information about the core for the locating

phase of the linker. A linker script file is coded in LSL and contains the

following types of information:

• the architecture and derivative definition describe the core's hardware

architecture and its internal memory.

• the board specification describes the physical memory available in the

system.

• the section layout definition describes how to locate sections in

memory.

With this option you specify a linker script file via the control program to

the linker. If you do not specify this option, the linker does not use a

script file. You can specify the existing file r8c.lsl or the name of a

manually written linker script file. You can use this option multiple times.

The linker processes the LSL files in the order in which they appear on the

command line.

Example

To read linker script file information from file mylslfile.lsl :

ccr8c –dmylslfile.lsl test.obj
ccr8c ––lsl–file=mylslfile.lsl test.obj

Related information

Section 7.6, Controlling the Linker with a Script, in the User's Guide

Reference Guide4–138
T

O
O

L
 O

P
T

IO
N

S

–D (––define)

Command line syntax

–Dmacro_name[=macro_definition]

––define=macro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor.

If you only specify a macro name (no macro definition), the macro

expands as '1'.

You can specify as many macros as you like. On the command line, use

the option –D multiple times. If the command line exceeds the length limit

of the operating system, you can define the macros in an option file which

you then must specify to the control program with the option -f file.

Defining macros with this option (instead of in the C source) is, for

example, useful to compile or assemble conditional source as shown in

the example below.

The control program passes the option –D (––define) to the compiler and

the assembler.

Example

Consider the following C program with conditional code to compile a

demo program and a real program:

void main(void)
{
#if DEMO == 1
demo_func(); /* compile for the demo program */
#else
real_func(); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag. With the

control program this looks as follows:

ccr8c –DDEMO test.c
ccr8c –DDEMO=1 test.c

Tool Options – Control Program 4–139

• • • • • • • •

ccr8c ––define=DEMO test.c
ccr8c ––define=DEMO=1 test.c

Note that all four invocations have the same effect.

The next example shows how to define a macro with arguments. Note that

the macro name and definition are placed between double quotes because

otherwise the spaces would indicate a new option.

ccr8c –D”MAX(A,B)=((A) > (B) ? (A) : (B))”
ccr8c ––define=”MAX(A,B)=((A) > (B) ? (A) : (B))”

Related information

Control program option -U (Undefine preprocessor macro)

Control program option -f (Read options from file)

Reference Guide4–140
T

O
O

L
 O

P
T

IO
N

S

–E (––preprocess)

Command line syntax

–E[flags]

––preprocess=[flags]

You can set the following flags:

c/C (+/–comments) Keep comments

p/P (+/–noline) Strip #line source position info

Description

With this option you tell the control program to preprocess the C source.

The compiler sends the preprocessed file to stdout. To capture the

information in a file, specify an output file with the option -o.

With -Ec you tell the preprocessor to keep the comments from the C

source file in the preprocessed output.

With -Ep you tell the preprocessor to strip the #line source position

information (lines starting with #line). These lines are normally

processed by the assembler and not needed in the preprocessed output.

When you leave these lines out, the output is more orderly to read.

Example

ccr8c –EcP test.c –o test.pre
ccr8c ––preprocess +comments,–noline test.c
 ––output=test.pre

The compiler preprocesses the file test.c and sends the output to the

file test.pre . Comments are included but the line source position

information is not stripped from the output file.

Related information

-

Tool Options – Control Program 4–141

• • • • • • • •

––error-file

Command line syntax

––error-file[=file]

Description

With this option the control program redirects error messages to a file.

If you do not specify a filename, the error file will be named after the

input file with extension .err .

Example

To write errors to errors.err instead of stderr, enter:

ccr8c ––error–file=errors.err test.c

Related information

Control program option ––warnings-as-errors (Warnings as errors)

Reference Guide4–142
T

O
O

L
 O

P
T

IO
N

S

–f (––option-file)

Command line syntax

–f file

––option-file=file

Description

Instead of typing all options on the command line, you can create a option

file which contains all options and file you want to specify. With this

option you specify the option file to the control program.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –f multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Tool Options – Control Program 4–143

• • • • • • • •

Example

Suppose the file myoptions contains the following lines:

–g
–k
test.c

Specify the option file to the control program:

ccr8c –m myoptions
ccr8c ––option–file=myoptions

This is equivalent to the following command line:

ccr8c –g –k test.c

Reference Guide4–144
T

O
O

L
 O

P
T

IO
N

S

––format

Command line syntax

––format=format

You can specify the following formats:

ELF ELF/DWARF

IEEE IEEE-695

IHEX Intel Hex

SREC Motorola S-records

Description

With this option you specify the output format for the resulting (absolute)

object file. The default output format is ELF/DWARF, which can directly be

used by the CrossView Pro debugger.

Example

To generate an ELF/DWARF output file:

ccr8c ––format=ELF test1.c test2.c ––output=test.elf

Related information

Linker option –o (output file)

Linker option –Cformat (Chip format)

Section 6.1, ELF/DWARF Object Format, in Chapter Object File Formats.

Tool Options – Control Program 4–145

• • • • • • • •

––fp-trap

Command line syntax

––fp-trap

Description

By default the control program uses the non-trapping floating point library

(libfp.a). With this option you tell the control program to use the

trapping floating point library (libfpt.a).

If you use the trapping floating point library, exceptional floating point

cases are intercepted and can be handled separately by an application

defined exception handler. Using this library decreases the execution

speed of your application.

Example

ccr8c ––fp–trap test.c

Link the trapping floating point library when generating the object file

test.elf .

Related information

-

Reference Guide4–146
T

O
O

L
 O

P
T

IO
N

S

–g (––debug-info)

Command line syntax

–g

––debug-info

Description

With this option you tell the control program to include debug information

in the generated object file.

Example

ccr8c –g test.c
ccr8c ––debug–info test.c

The control program includes symbolic debug information in the

generated object file test.elf .

Related information

-

Tool Options – Control Program 4–147

• • • • • • • •

–I (––include-directory)

Command line syntax

–Ipath

––include-directory=path

Description

With this option you can specify the path where your include files are

located. A relative path will be relative to the current directory.

The order in which the compiler searches for include files is:

• The pathname in the C source file and the directory of the C source

(only for #include files that are enclosed in "")

• The path that is specified with this option.

• The path that is specified in the environment variable CR8CINC when

the product was installed.

• The default include directory relative to the installation directory.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include ”myinc.h”

You can call the control program as follows:

ccr8c –Imyinclude test.c
ccr8c ––include–directory=myinclude

First the compiler looks in the directory where test.c is located for the

file myinc.h .

Then the compiler looks in the myinclude sub-directory relative to the

current directory for the file stdio.h and, if it was not found yet, also for

the file myinc.h .

If the file(s) are still not found, the compiler searches in the environment

variable and then in the default include directory.

Reference Guide4–148
T

O
O

L
 O

P
T

IO
N

S

Related information

Compiler option -I (Add directory to include file search path)

Compiler option -H (Include file at the start of a compilation)

Tool Options – Control Program 4–149

• • • • • • • •

––iso

Command line syntax

––iso={90|99}

Description

With this option you specify to the control program against which ISO

standard it should check your C source. C90 is also referred to as the

"ANSI C standard". C99 refers to the newer ISO/IEC 9899:1999 (E) standard

and is the default.

Example

To compile the file test.c conform the ISO C90 standard:

ccr8c ––iso=90 test.c

Related information

Compiler option -c (ISO C standard)

Reference Guide4–150
T

O
O

L
 O

P
T

IO
N

S

–k (––keep-output-files)

Command line syntax

–k

––keep-output-files

Description

If an error occurs during the compilation, assembling or linking process,

the resulting output file may be incomplete or incorrect. With this option

you keep the generated output files when an error occurs.

By default the control program removes generated output files when an

error occurs. This is useful when you use the make utility. If the erroneous

files are not removed, the make utility may process corrupt files on a

subsequent invocation.

Use this option when you still want to use the generated files. For

example when you know that a particular error does not result in a

corrupt file, or when you want to inspect the output file, or send it to

Altium support.

Example

ccr8c –k test.c
ccr8c ––keep–output–files test.c

When an error occurs during compiling, assembling or linking, the

erroneous generated output files will not be removed.

Related information

-

Tool Options – Control Program 4–151

• • • • • • • •

–L (––library-directory /

––ignore-default-library-path)

Command line syntax

–Lpath
––library-directory=path

–L

––ignore-default-library-path

Description

With this option you can specify the path(s) where your system libraries,

specified with the -l option, are located. If you want to specify multiple

paths, use the option -L for each separate path.

By default path this is $(PRODDIR)\lib directory.

If you specify only -L (without a pathname) or the long option

––ignore-default-library-path, the linker will not search the default

path and also not in the paths specified in the environment variable

LIBR8C. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries

specified with the -l option is:

1. The path that is specified with the -L option.

2. The path that is specified in the environment variable LIBR8C when the

product was installed.

3. The default directory $(PRODDIR)\lib.

Example

Suppose you call the control program as follows:

ccr8c test.c –Lc:\mylibs –lc
ccr8c test.c ––library–directory=c:\mylibs –lc

First the linker looks in the directory c:\mylibs for library libc.a
(this option).

If it does not find the requested libraries, it looks in the directory that is set

with the environment variable LIBR8C.

Reference Guide4–152
T

O
O

L
 O

P
T

IO
N

S

Then the linker looks in the default directory $(PRODDIR)\lib for libraries.

Related information

Linker option -l (Search also in system library libname)

Tool Options – Control Program 4–153

• • • • • • • •

–l (––library)

Command line syntax

–lname

––library=name

Description

With this option you tell the linker via the control program to search also

in system library lib name.a , where name is a string. The linker first

searches for system libraries in any directories specified with -Lpath, then

in the directories specified with the environment variable LIBR8C, unless

you used the option -L without a directory.

Example

To search in the system library libfp.a (floating-point library):

ccr8c test.obj mylib.a –lfp
ccr8c test.obj mylib.a ––library=fp

The linker links the file test.obj and first looks in mylib.a (in the

current directory only), then in the system library libfp.a to resolve

unresolved symbols.

Related information

Control program option -L (Add library directory)

Section 7.4, Linking with Libraries, in the User's Guide

Reference Guide4–154
T

O
O

L
 O

P
T

IO
N

S

–n (––dry-run)

Command line syntax

–n

––dry-run

Description

With this option you put the control program verbose mode. The control

program prints the invocations of the tools it would use to process the

files.

Example

To see how the control program will invoke the tools it needs to process

the file test.c :

ccr8c –n test.c
ccr8c ––dry–run test.c

The control program only displays the invocations of the tools it would

use to create the final object file but does not actually perform the steps.

Related information

Control program option –v (Verbose output)

Tool Options – Control Program 4–155

• • • • • • • •

––no-default-libraries

Command line syntax

––no-default-libraries

Description

Default the control program specifies the standard C libraries and run-time

library to the linker.

With this option you tell the control program not to specify the standard C

libraries and run-time library to the linker.

In this case you must specify the libraries you want to link to the linker

with the option –llibrary_name. The control program recognizes the

option –l as an option for the linker.

Example

ccr8c ––no–default–libraries test.c

The control program does not specify any libraries to the linker. In normal

cases this would result in unresoved externals.

To specify your own libraries (libmy.a) and avoid unresolved externals:

ccr8c ––no–default–libraries –lmy test.c

Related information

Linker option –l (Search also in system library lib x.a)

Reference Guide4–156
T

O
O

L
 O

P
T

IO
N

S

––no-map-file

Command line syntax

––no-map-file

Description

By default the control program generates a linker map file (.map).

A linker map file is a text file that shows how the linker has mapped the

sections and symbols from the various object files (.obj) to the linked

object file. A locate part shows the absolute position of each section.

External symbols are listed per space with their absolute address, both

sorted on symbol and sorted on address.

With this option you prevent the generation of a map file.

Example

To prevent the generation of the linker map file test.map :

ccr8c ––no–map–file test.c

Related information

Linker option –M (Generate map file)

Tool Options – Control Program 4–157

• • • • • • • •

–o (––output)

Command line syntax

–ofile

––output=file

Description

By default, the control program generates a file with the same basename

as the first specified input file. With this option you specify another name

for the resulting absolute object file.

Example

ccr8c test.c prog.c

The control program generates an ELF/DWARF object file (default) with

the name test.elf .

To generate the file result.elf :

ccr8c –oresult.elf test.c prog.c
ccr8c ––output=result.elf test.c prog.c

Related information

-

Reference Guide4–158
T

O
O

L
 O

P
T

IO
N

S

–t (––keep-temporary-files)

Command line syntax

–t

––keep-temporary-files

Description

By default, the control program removes intermediate files like the .src
file (result of the compiler phase) and the .eln file (result of the linking

phase).

With this option you tell the control program to keep temporary files it

generates during the creation of the absolute object file.

Example

To keep all temporary files:

ccr8c –t test.c
ccr8c ––keep–temporary–files test.c

The control program keeps all intermediate files it generates while creating

the absolute object file test.elf .

Related information

-

Tool Options – Control Program 4–159

• • • • • • • •

–Wtool (––pass)

Command line syntax

–Wcoption ––pass-c=option Pass option directly to the
C compiler

–Waoption ––pass-assembler=option Pass option directly to the
assembler

–Wloption ––pass-linker=option Pass option directly to the
linker

Description

With this option you tell the control program to call a tool with the

specified option. The control program does not use the option itself, but

specifies it directly to the tool which the control program calls.

Example

ccr8c –Wl–r test.c

The control program does not use the option –r but calls the linker with

the option –r (lkr8c –r).

Related information

-

Reference Guide4–160
T

O
O

L
 O

P
T

IO
N

S

–U (––undefine)

Command line syntax

–Umacro_name
––undefine=macro_name

Description

With this option you can undefine an earlier defined macro as with

#undef .

This option is for example useful to undefine predefined macros.

However, the following predefined ISO C standard macros cannot be

undefined:

__FILE__ current source filename

__LINE__ current source line number (int type)

__TIME__ hh:mm:ss

__DATE__ mmm dd yyyy

__STDC__ level of ANSI standard

The control program passes the option –U (––undefine) to the compiler.

Example

To undefine the predefined macro __TASKING__:

ccr8c –U__TASKING__ test.c
ccr8c ––undefine=__TASKING__ test.c

Related information

Control Pogram option -D (Define preprocessor macro)

Tool Options – Control Program 4–161

• • • • • • • •

–V (––version)

Command line syntax

–V

-–version

Description

Display version information. The control program ignores all other options

or input files.

Example

ccr8c –V
ccr8c ––version

The control program does not call any tools but displays the following

version information:

TASKING R8C control program v x. yr z Build nnn
Copyright years Altium BV Serial# 00000000

Related information

-

Reference Guide4–162
T

O
O

L
 O

P
T

IO
N

S

–v (––verbose)

Command line syntax

–v

––verbose

Description

With this option you put the control program in verbose mode. With the

option -v the control program performs it tasks while it prints the steps it

performs to stdout .

Example

ccr8c –v test.c
ccr8c ––verbose test.c

The control program processes the file test.c and displays the

invocations of the tools it uses to create the final object file

Related information

Control program option -n (Verbose output and suppress execution)

Tool Options – Control Program 4–163

• • • • • • • •

–w (no-warnings)

Command line syntax

–w

––no-warnings

Description

With this option suppresses all warning messages. If you do not specify

this option, all warnings are reported.

Example

To suppress all warnings:

ccr8c –w test.c
ccr8c ––no–warnings test.c

Related information

Control program option ––warnings-as-errors (Warnings as errors)

Reference Guide4–164
T

O
O

L
 O

P
T

IO
N

S

––warnings-as-errors

Command line syntax

––warnings-as-errors

Description

With this option you tell the control program to treat warnings as errors.

Example

ccr8c ––warnings–as–errors test.c

When a warning occurs, the control program considers it as an error.

Related information

Control program option -w (Suppress all warnings)

Tool Options – Make Utility 4–165

• • • • • • • •

4.5 MAKE UTILITY OPTIONS

When you build a project in EDE, EDE generates a makefile and uses the

graphical make utility wmk to build all your files. However, you can also

use the make utility mkr8c from the command line to build your project.

The invocation syntax is:

mkr8c [option ...] [target ...] [macro =def]

This section describes all options for the make utility. The make utility is a

command line tool so there are no equivalent options in EDE.

Reference Guide4–166
T

O
O

L
 O

P
T

IO
N

S

Defining Macros

Command line syntax

macro=definition

Description

With this argument you can define a macro and specify it to the make

utility.

A macro definition remains in existence during the execution of the

makefile, even when the makefile recursively calls the make utility again.

In the recursive call, the macro acts as an environment variable. This

means that it is overruled by definitions in the recursive call. Use the

option –e to prevent this.

You can specify as many macros as you like. If the command line exceeds

the limit of the operating system, you can define the macros in an option
file which you then must specify to the compiler with the option –m file.

Defining macros on the command line is, for example, useful in

combination with conditional processing as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo

program and a real program:

ifdef DEMO # the value of DEMO is of no importance
 real.eln : demo.obj
 lkr8c demo.obj main.obj –lc –lfp –lrt
else
 real.eln : real.obj
 lkr8c real.obj main.obj –lc –lfp –lrt
endif

real.elf : real.eln
 lkr8c –FELF –oreal.elf real.eln

You can now use a macro definition to set the DEMO flag:

mkr8c real.elf DEMO=1

In both cases the absolute obect file real.elf is created but depending

on the DEMO flag it is linked with demo.obj or with real.eln .

Tool Options – Make Utility 4–167

• • • • • • • •

Related information

Make utility option –e (Environment variables override macro definitions)

Make utility option –m (Name of invocation file)

Reference Guide4–168
T

O
O

L
 O

P
T

IO
N

S

–?

Command line syntax

–?

Description

Displays an overview of all command line options.

Example

To display a list of the available command line options:

mkr8c –?

Related information

-

Tool Options – Make Utility 4–169

• • • • • • • •

–a

Command line syntax

–a

Description

Normally the make utility rebuilds only those files that are out of date.

With this option you tell the make utility to rebuild all files, without

checking whether they are out of date.

Example

mkr8c –a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

Reference Guide4–170
T

O
O

L
 O

P
T

IO
N

S

–c

Command line syntax

–c

Description

EDE uses this option for the graphical version of make when you create

sub-projects. In this case make calls another instance of make for the

sub-project. With the option –c, the make utility runs as a child process of

the current make.

The option –c overrules the option –err.

Example

The following command runs the make utility as a child process:

mkr8c –c

Related information

Make utility option –err (Redirect error message to file)

Tool Options – Make Utility 4–171

• • • • • • • •

–D/–DD

Command line syntax

–D

–DD

Description

With the option –D the make utility prints every line of the makefile to

standard output as it is read by mkr8c.

With the option –DD not only the lines of the makefile are printed but

also the lines of the mkr8c.mk file (implicit rules).

Example

mkr8c –D

Each line of the makefile that is read by the make utility is printed to

standard output (usually your screen).

Related information

-

Reference Guide4–172
T

O
O

L
 O

P
T

IO
N

S

–d/–dd

Command line syntax

–d

–dd

Description

With the option –d the make utility shows which files are out of date and

thus need to be rebuild. The option –dd gives more detail than the option

–d.

Example

mkr8c –d

Shows which files are out of date and rebuilds them.

Related information

-

Tool Options – Make Utility 4–173

• • • • • • • •

–e

Command line syntax

–e

Description

If you use macro definitions, they may overrule the settings of the

environment variables.

With the option –e, the settings of the environment variables are used

even if macros define otherwise.

Example

mkr8c –e

The make utility uses the settings of the environment variables regardless

of macro definitions.

Related information

-

Reference Guide4–174
T

O
O

L
 O

P
T

IO
N

S

–err

Command line syntax

–err file

Description

With this option the make utility redirects error messages and verbose

messages to a specified file.

With the option –s the make utility only displays error messages.

Example

mkr8c –err error.txt

The make utility writes messages to the file error.txt .

Related information

Make utility option –s (Do not print commands before execution)

Tool Options – Make Utility 4–175

• • • • • • • •

–f

Command line syntax

–f my_makefile

Description

Default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of

the file makefile . Multiple –f options act as if all the makefiles were

concatenated in a left-to-right order.

Example

mkr8c mymake

The make utility uses the file mymake to build your files.

Related information

-

Reference Guide4–176
T

O
O

L
 O

P
T

IO
N

S

–G

Command line syntax

–G path

Description

Normally you must call the make utility mkr8c from the directory where

your makefile and other files are stored.

With the option –G you can call the make utility from within another

directory. The path is the path to the directory where your makefile and

other files are stored and can be absolute or relative to your current

directory.

Example

Suppose your makefile and other files are stored in the directory

\myfiles . You can call the make utility as follows:

mkr8c –G ..\myfiles

Related information

-

Tool Options – Make Utility 4–177

• • • • • • • •

–i

Command line syntax

–i

Description

When an error occurs during the make process, the make utility exits with

a certain exit code.

With the option –i, the make utility exits without an error code, even

when errors occurred.

Example

mkr8c –i

The make utility exits without an error code, even when an error occurs.

Related information

-

Reference Guide4–178
T

O
O

L
 O

P
T

IO
N

S

–K

Command line syntax

–K

Description

With this option the make utility keeps temporary files it creates during the

make process. The make utility stores temporary files in the directory that

you have specified with the environment variable TMPDIR or in the

default 'temp' directory of your system when the TMPDIR variable is not

specified.

Example

mkr8c –K

The make utility preserves all temporary files.

Related information

Section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation of the User's Guide.

Tool Options – Make Utility 4–179

• • • • • • • •

–k

Command line syntax

–k

Description

When during the make process the make utility encounters an error, it

stops rebuilding your files.

With the option –k, the make utility only stops building the target that

produced the error. All other targets defined in the makefile are built.

Example

mkr8c –k

If the make utility encounters an error, it stops building the current target

but proceeds with the other targets that are defined in the makefile.

Related information

Make utility option –S (Undo the effect of –k)

Reference Guide4–180
T

O
O

L
 O

P
T

IO
N

S

–m

Command line syntax

–m file

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and flags you want to specify. With

this option you specify the option file to the make utility.

Use an option file when the length of the command line would exceed the

limits of the operating system, or just to store options and save typing.

You can specify the option –m multiple times.

Format of an option file

• Multiple command line arguments on one line in the option file are

allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Tool Options – Make Utility 4–181

• • • • • • • •

Example

Suppose the file myoptions contains the following lines:

–k
–err errors.txt
test.elf

Specify the option file to the make utility:

mkr8c –m myoptions

This is equivalent to the following command line:

mkr8c –k –err errors.txt test.elf

Related information

-

Reference Guide4–182
T

O
O

L
 O

P
T

IO
N

S

–n

Command line syntax

–n

Description

With this option you tell the make utility to perform a dry run. The make

utility shows what it would do but does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if

you call the make utility.

Example

mkr8c –n

The make utility does not perform any tasks but displays what it would do

if called without the option –n.

Related information

Make utility option –s (Do not print commands before execution)

Tool Options – Make Utility 4–183

• • • • • • • •

–p

Command line syntax

–p

Description

Normally, if a command in a target rule in a makefile returns an error or

when the target construction is interrupted, the make utility removes that

target file. With this option you tell the make utility to make all target files

precious. This means that all dependency files are never removed.

Example

mkr8c –p

The make utility never removes target dependency files.

Related information

-

Reference Guide4–184
T

O
O

L
 O

P
T

IO
N

S

–q

Command line syntax

–q

Description

With this option the make utility does not perform any tasks but only

returns an error code. A zero status indicates that all target files are up to

date, a non-zero status indicates that some or all target files are out of

date.

Example

mkr8c –q

The make utility only returns an error code that indicates whether all target

files are up to date or not. It does not rebuild any files.

Related information

-

Tool Options – Make Utility 4–185

• • • • • • • •

–r

Command line syntax

–r

Description

When you call the make utility, it first reads the implicit rules from the file

mkr8c.mk , then it reads the makefile with the rules to build your files.

(The file mkr8c.mk is located in the \etc directory of the toolchain.)

With this option you tell the make utility not to read mkr8c.mk and to rely

fully on the make rules in the makefile.

Example

mkr8c –r

The make utility does not read the implicit make rules in mkr8c.mk .

Related information

-

Reference Guide4–186
T

O
O

L
 O

P
T

IO
N

S

–S

Command line syntax

–S

Description

With this option you cancel the effect of the option –k. This is never

necessary except in a recursive make where the option –k might be

inherited from the top-level make via MAKEFLAGS or if you set the option

–k in the environment variable MAKEFLAGS.

Example

mkr8c –S

The effect of the option –k is cancelled so the make utility stops with the

make process after it encounters an error.

The option –k in this example may have been set with the environment

variable MAKEFLAGS or in a recursive call to mkr8c in the makefile.

Related information

Make utility option –k (On error, abandon the work for the current target

only)

Tool Options – Make Utility 4–187

• • • • • • • •

–s

Command line syntax

–s

Description

With this option you tell the make utility to perform its tasks without

printing the commands it executes. Error messages are normally printed.

Example

mkr8c –s

The make utility rebuilds your files but does not print the commands it

executes during the make process.

Related information

Make utility option –n (Perform a dry run)

Reference Guide4–188
T

O
O

L
 O

P
T

IO
N

S

–t

Command line syntax

–t

Description

With this option you tell the make utility to touch the target files, bringing

them up to date, rather than performing the rules to rebuild them.

Example

mkr8c –t

The make utility updates out-of-date files by giving them a new date and

time stamp. The files are not actually rebuild.

Related information

-

Tool Options – Make Utility 4–189

• • • • • • • •

–time

Command line syntax

–time

Description

With this option you tell the make utility to display the current date and

time on standard output.

Example

mkr8c –time

The make utility displays the current date and time and updates

out-of-date files.

Related information

-

Reference Guide4–190
T

O
O

L
 O

P
T

IO
N

S

–V

Command line syntax

–V

Description

Display version information. The make utility ignores all other options or

input files.

Example

mkr8c –V

The make utility does not perform any tasks but displays the following

version information:

TASKING R8C program builder v x. yr z Build nnn
Copyright 2003– year Altium BV Serial# 00000000

Related information

-

Tool Options – Make Utility 4–191

• • • • • • • •

–W

Command line syntax

–W target

Description

With this option the make utility considers the specified target file always

as up to date and will not rebuild it.

Example

mkr8c –W test.elf

The make utility rebuilds out of date targets in the makefile except the file

test.elf which is considered now as up to date.

Related information

-

Reference Guide4–192
T

O
O

L
 O

P
T

IO
N

S

–w

Command line syntax

–w

Description

With this option the make utility sends error messages and verbose

messages to standard out. Without this option, the make utility sends these

messages to standard error.

This option is only useful on UNIX systems.

Example

mkr8c –w

The make utility sends messages to standard out instead of standard error.

Related information

-

Tool Options – Make Utility 4–193

• • • • • • • •

–x

Command line syntax

–x

Description

With this option the make utility shows extended error messages.

Extended error messages give more detailed information about the exit

status of the make utility after errors. EDE uses this option for the

graphical version of make.

This option is only useful on UNIX systems.

Example

mkr8c –x

If errors occur, the make utility gives extended information.

Related information

-

Reference Guide4–194
T

O
O

L
 O

P
T

IO
N

S

4.6 ARCHIVER OPTIONS

The archiver and library maintainer arr8c is a tool to build library files and

it offers the possibility to replace, extract and remove modules from an

existing library.

The invocation syntax is:

arr8c key_option [sub_option ...] library [object_file]

This section describes all options for the archiver. Some suboptions can

only be used in combination with certain key options. They are described

together. Suboptions that can always be used are described separately.

The archiver is a command line tool so there are no equivalent options in

EDE.

Description Option Suboption

Main functions

Replace or add an object module –r –a –b –c –u –v

Extract an object module from the library –x –v

Delete object module from library –d –v

Move object module to another position –m –a –b –v

Print a table of contents of the library –t –s0 –s1

Print object module to standard output –p

Miscellaneous

Display options –?

Display version header –V

Read options from file –f file

Suppress warnings above level n –wn

Table 4-1: Overview of archiver options and suboptions

Tool Options – Archiver 4–195

• • • • • • • •

–?

Command line syntax

–?

Description

Displays an overview of all command line options.

Example

The following invocations display a list of the available command line

options:

arr8c –?
arr8c

Related information

-

Reference Guide4–196
T

O
O

L
 O

P
T

IO
N

S

-d

Command line syntax

-d [-v]

Description

Delete the specified object modules from a library. With the suboption -v

the archiver shows which files are removed.

-v Verbose: the archiver shows which files are removed.

Example

arr8c –d lib.a obj1.obj obj2.obj

The archiver deletes obj1.obj and obj2.obj from the library lib.a .

arr8c –d –v lib.a obj1.obj obj2.obj

The archiver deletes obj1.obj and obj2.obj from the library lib.a
and displays which files are removed.

Related information

-

Tool Options – Archiver 4–197

• • • • • • • •

-f

Command line syntax

-f file

Description

Instead of typing all options on the command line, you can create an

option file which contains all options and flags you want to specify. With

this option you specify the option file to the librarian arr8c.

Use an option file when the command line would exceed the limits of the

operating system, or just to store options and save typing.

Option files can also be generated on the fly, for example by the make

utility. You can specify the option -f multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with

single or double quotes.

• If you want to use single quotes as part of the argument, surround the

argument by double quotes and vise versa:

 ”This has a single quote ’ embedded”

 ’This has a double quote ” embedded’

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

• When a text line reaches its length limit, use a '\' to continue the line.

Whitespace between quotes is preserved.

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

–x lib.lib obj1.obj
–w5

Reference Guide4–198
T

O
O

L
 O

P
T

IO
N

S

Specify the option file to the librarian:

arr8c –f myoptions

This is equivalent to the following command line:

arr8c –x lib.lib obj1.obj –w5

Related information

-

Tool Options – Archiver 4–199

• • • • • • • •

–m

Command line syntax

–m [–a posname] [–b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how

programs are linked if a symbol is defined in more than one member.

Default, the specified members are moved to the end of the archive. Use

the suboptions –a or –b to move them to a specified place instead.

–a posname Move the specified object module(s) after

the existing module posname.

–b posname Move the specified object module(s) before

the existing module posname.

Example

Suppose the library lib.a contains the following objects (see option –t):

obj1.obj
obj2.obj
obj3.obj

To move obj1.obj to the end of lib.a :

arr8c –m lib.a obj1.obj

To move obj3.obj just before obj2.obj :

arr8c –m –b obj3.obj lib.a obj2.obj

The library lib.a after these two invocations now looks like:

obj3.obj
obj2.obj
obj1.obj

Related information

Archiver option –t (Print library contents)

Reference Guide4–200
T

O
O

L
 O

P
T

IO
N

S

–p

Command line syntax

–p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other

files or tools that serve your own purposes. Normally you do not need this

option.

Example

arr8c –p lib.a obj1.obj > file.obj

The archiver prints the file obj1.obj to standard output where it is

redirected to the file file.obj . The effect of this example is very similar

to extracting a file from the library but in this case the 'extracted' file gets

another nam.

Related information

-

Tool Options – Archiver 4–201

• • • • • • • •

–r

Command line syntax

–r [–a posname] [–b posname] [–c] [–u] [–v]

Description

You can use the option –r for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option –r normally adds a new module to the library. However, if the

library already contains a module with the specified name, the existing

module is replaced. If you specify a library that does not exist, the archiver

creates a new library with the specified name.

If you add a module to the library without specifying the suboption –a or

–b, the specified module is added at the end of the archive. Use the

suboptions –a or –b to insert them to a specified place instead.

–a posname Add the specified object module(s) after the

existing module posname.

–b posname Add the specified object module(s) before

the existing module posname.

–c Create a new library without checking

whether it already exists. If the library

already exists, it is overwritten.

–u Insert the specified object module only if it

is newer than the module in the library.

–v Verbose: the archiver shows which files are

removed.

The suboptions –a or –b have no effect when an object is added to the

library.

Reference Guide4–202
T

O
O

L
 O

P
T

IO
N

S

Examples

Suppose the library lib.a contains the following objects (see option –t):

obj1.obj

To add obj2.obj to the end of lib.a :

arr8c –r lib.a obj2.obj

To insert obj3.obj just before obj2.obj :

arr8c –r –b obj2.obj lib.a obj3.obj

The library lib.a after these two invocations now looks like:

obj1.obj
obj3.obj
obj2.obj

Creating a new library

To create a new library file, add an object file and specify a library that

does not yet exist:

arr8c –r obj1.obj newlib.a

The archiver creates the library newlib.a and adds the object obj1.obj
to it.

To create a new library file and overwrite an existing library, add an object

file and specify an existing library with the supoption –c:

arr8c –r –c obj1.obj lib.a

The archiver overwrites the library lib.a and adds the object obj1.obj
to it. The new library lib.a only contains obj1.obj .

Related information

Archiver option –t (Print library contents)

Tool Options – Archiver 4–203

• • • • • • • •

–t

Command line syntax

–t [–s0|–s1]

Description

Print a table of contents of the library to standard out. With the

suboption –s you the archiver displays all symbols per object file.

–s0 Displays per object the library in which it resides, the

name of the object itself and all symbols in the object.

–s1 Displays only the symbols of all object files in the

library.

Example

arr8c –t lib.a

The archiver prints a list of all object modules in the library lib.a .

arr8c –t –s0 lib.a

The archiver prints per object all symbols in the library. This looks like:

prolog.obj
 symbols:
lib.a:prolog.obj:___Qabi_callee_save
lib.a:prolog.obj:___Qabi_callee_restore
div16.obj
 symbols:
lib.a:div16.obj:___udiv16
lib.a:div16.obj:___div16
lib.a:div16.obj:___urem16
lib.a:div16.obj:___rem16

Related information

-

Reference Guide4–204
T

O
O

L
 O

P
T

IO
N

S

–V

Command line syntax

–V

Description

Display version information. The archiver ignores all other options or

input files.

Example

arr8c –V

The archiver does not perform any tasks but displays the following version

information:

TASKING R8C ELF archiver v x. yr z Build nnn
Copyright 2003– year Altium BV Serial# 00000000

Related information

-

Tool Options – Archiver 4–205

• • • • • • • •

–w

Command line syntax

–wlevel

Description

With this suboption you tell the archiver to suppress all warnings above

the specified level. The level is a number between 0 - 9.

The level of a message is printed between parentheses after the warning

number. If you do not use the –w option, the default warning level is 8.

Example

To suppresses warnings above level 5:

arr8c –x –w5 lib.a obj1.obj

Related information

-

Reference Guide4–206
T

O
O

L
 O

P
T

IO
N

S

–x

Command line syntax

–x [–o] [–v]

Description

Extract an existing module from the library.

–o Give the extracted object module the same date as the

last-modified date that was recorded in the library.

Without this suboption it receives the last-modified

date of the moment it is extracted.

–v Verbose: the archiver shows which files are extracted.

Example

To extract the file obj.obj from the library lib.a :

arr8c –x lib.a obj1.obj

If you do not specify an object module, all object modules are extracted:

arr8c –x lib.a

Related information

-

5

LIST FILE FORMATS
C

H
A

P
T

E
R

Reference Guide5–2
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

5

C
H

A
P

T
E

R

List File Formats 5–3

• • • • • • • •

5.1 ASSEMBLER LIST FILE FORMAT

The assembler list file is an additional output file of the assembler that

contains information about the generated code.

The list file consists of a page header and a source listing.

Page header

The page header consists of four lines:

TASKING R8C Assembler v x. yr z Build nnn SN 00000000
This is the page header title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains information about the assembler name, version

number and serial number. The second line contains a title specified by

the TITLE (first page) assembler directive and a page number. The third

line is empty. The fourth line contains the heading of the source listing.

Source listing

The following is a sample part of a listing. An explanation of the different

columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE
 .
 .
0000 754Frrrr 4 4 14 push.w _world
0004 A2rrrr 2 6 15 mov.w #__2_ini, A0
0007 FDrrrr0r 9 15 16 jsr _printf
000B 7DB2 1 16 17 add.b #2, SP
000D F3 6 22 18 rts
 .
 .
0000 33 _world:
0000 34 ds 4
 | RESERVED
0003

The meaning of the different columns is:

ADDR This column contains the memory address. The

address is a hexadecimal number that represents the

offset from the beginning of a relocatable section or

the absolute address for an absolute section. The

address only appears on lines that generate object

code.

Reference Guide5–4
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

CODE This is the object code generated by the assembler for

this source line, displayed in hexadecimal format. The

displayed code need not be the same as the generated

code that is entered in the object module. The code

can also be relocatable code. In this case the letter 'r'

is printed for the relocatable code part in the listing.

For lines that allocate space, the code field contains

the text "RESERVED". For lines that initialize a buffer,

the code field lists one value followed by the word

"REPEATS".

CYCLES The first number in this column is the number of

instruction cycles needed to execute the instruction(s)

as generated in the CODE field. The second number is

the accumulated cycle count of this section.

LINE This column contains the line number. This is a

decimal number indicating each input line, starting

from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of

the source line from the assembly source file.

For the SET and EQU directives the ADDR and CODE columns do not apply.

The symbol value is listed instead.

Related information

See section 6.7, Generating a List File, in Chapter Using the Assembler of

the User's Guide for more information on how to generate a list file and

specify the amount of list file information.

List File Formats 5–5

• • • • • • • •

5.2 LINKER MAP FILE FORMAT

The linker map file is an additional output file of the linker that shows

how the link phase has mapped the sections and symbols from the various

object files (.obj) to output sections. The locate part shows the absolute

position of each section. External symbols are listed per space with their

absolute address, both sorted on symbol and sorted on address.

With the linker option -m (map file formatting) you can specify which

parts of the map file you want to see.

Example (part of) linker map file

R8C linker – mapfile (task1)

–––

** File Part ************************************

* Processed files:

==================

 File | From archive | Symbol causing the extraction

 –––

 cstart.obj | libc.a | __START

 hello.obj | |

 printf.obj | libc.a | _printf

** Link Part ************************************

* Section translation:

======================

 [in] File | [in] Section | [in] Size | [out] Offset | [out] Section

 –––

 cstart.obj | .cstart | 0x0000001f | 0x00000000 | .cstart

 –––

 hello.obj | hello_CO | 0x0000000e | 0x00000000 | hello_CO

 –––

 hello.obj | hello_CO | 0x00000014 | 0x00000000 | hello_CO

 –––

 printf.obj | printf_CO | 0x0000001e | 0x00000000 | printf_CO

Reference Guide5–6
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

*********************************** Cross Reference Part ******************************

* Defined symbols:

==================

 Definition file | Definition section | Symbol | Referenced in

 –––

 cstart.obj | .cstart | __Exit | exit.obj

 cstart.obj | .cstart | __START | hello.obj

 hello.obj | hello_CO | _main | cstart.obj, exit.obj,

* Undefined symbols:

====================

 Symbol | Referenced in

 –––

 __init | cstart.obj

 __lc_es | cstart.obj

 __vecttab | cstart.obj

*************************************** Locate Part ***********************************

* Task entry address:

=====================

 symbol : __START

* Section translation:

======================

 + Space R8C:R8C:near

 Chip | Group | Section | Size (MAU) | Space addr | Chip addr

 ––

 sfr | sfr | sfr | 0x00000300 | 0x00000000 | 0x00000000

 iram | | _iob_INI_DA | 0x0000006e | 0x00000400 | 0x00000000

 | | fss_init_INI_DA | 0x0000000c | 0x0000046e | 0x0000006e

 | | hello_INI_DA | 0x00000014 | 0x0000047a | 0x0000007a

 irom | | [_iob_INI_DA] | 0x0000006e | 0x0000c000 | 0x00000000

 | | [fss_init_INI_DA] | 0x0000000c | 0x0000c06e | 0x0000006e

 | | [hello_INI_DA] | 0x00000014 | 0x0000c07a | 0x0000007a

 | | hello_CO | 0x0000000e | 0x0000c08e | 0x0000008e

 | | table | 0x00000011 | 0x0000c09c | 0x0000009c

List File Formats 5–7

• • • • • • • •

* Symbol translation (sorted on symbol):

==

 Symbol | Address | Space

 –––

 __dcti | 0x00000000 |

 __vecttab | 0x00000000 |

 –––

 __Exit | 0x0000cddf | R8C:R8C:near

 __START | 0x0000cdc2 |

* Symbol translation (sorted on address):

===

 Address | Symbol | Space

 –––

 0x00000000 | __vecttab |

 0x00000000 | __dcti |

 –––

 0x00000000 | __lc_gb_sfr | R8C:R8C:near

 0x00000300 | __lc_ge_sfr |

*************************************** Memory Part ***********************************

* Address range usage at space level:

=====================================

 Name | Total | Used % | Free % | > free gap %

 ––

 R8C:R8C:bit | 0x00004000 | 0x000019d8 41 | 0x00002628 59| 0x00002000 50

 R8C:R8C:bita | 0x00000800 | 0x0000033b 41 | 0x000004c5 59| 0x00000400 50

 R8C:R8C:near | 0x00010000 | 0x00001120 7 | 0x0000eee0 93| 0x0000b8c5 72

* Address range usage at memory level:

======================================

 Name | Total | Used % | Free % | > free gap %

 ––

 iram | 0x00000400 | 0x0000033b 81 | 0x000000c5 19| 0x000000c5 19

 irom | 0x00004000 | 0x00000de5 22 | 0x0000321b 78| 0x0000321b 78

 sfr | 0x00000300 | 0x00000000 0 | 0x00000300 100| 0x00000300 100

********************************* Linker Script File Part *****************************

************************************ Locate Rule Part *********************************

 Address space | Type | Properties | Sections

 ––

 R8C:R8C:near | clustered | | [_iob_INI_DA] + ...

 R8C:R8C:near | clustered | gaps(protected, not filled) | _iob_CLR_DA + ...

 R8C:R8C:near | absolute address | 0x0000fffc | .reset

 R8C:R8C:near | absolute address | 0x00000000 | sfr

Reference Guide5–8
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

The meaning of the different parts is:

File Part

This part of the map file shows all processed files. This also includes

object files that are extracted from a library, with the symbol that led to the

extraction

Link Part: Section translation

This part of the map file shows per object file how the link phase has

mapped the sections from the various object files (.obj) to output

sections.

[in] File The name of an input object file.

[in] Section A section name from the input object file.

[in] Size The size of the input section.

[out] Offset The offset relative to the start of the output section.

[out] Section The resulting output section name.

Cross Reference Part

This part of the map file lists all symbols defined in the object modules

and for each symbol the object modules that contain a reference to the

symbol are shown. Also, symbols that remain undefined are shown.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mr (cross references info).

Locate Part: Section translation

This part of the map file shows the absolute position of each section in the

absolute object file. It is organized per address space, memory chip and

group and sorted on space address.

+ Space The names of the address spaces as defined in the

linker script file (*.lsl). The names are constructed

of the derivative name followed by a colon ':', the

core name, another colon ':' and the space name.

For example: R8C:R8C:near

Chip The names of the memory chips as defined in the

linker script file (*.lsl) in the memory definitions.

List File Formats 5–9

• • • • • • • •

Group Sections can be ordered in groups. These are the

names of the groups as defined in the linker script file

(*.lsl) with the keyword group in the

section_layout definition. The name that is

displayed is the name of the deepest nested group.

Section The name of the section. Names within square

brackets [] will be copied during initialization from

ROM to the corresponding section name in RAM.

Size (MAU) The size of the section in minimum addressable units.

Space addr The absolute address of the section in the address

space.

Chip addr The absolute offset of the section from the start of a

memory chip.

Locate Part: Symbol translation

This part of the map file lists all external symbols per address space name,

both sorted on address and sorted on symbol name.

Symbol The name of the symbol.

Address The absolute address of the symbol in the address

space.

Space The names of the address spaces as defined in the

linker script file (*.lsl). The names are constructed

of the derivative name followed by a colon ':', the

core name, another colon ':' and the space name.

For example: R8C:R8C:near

Memory Part

This part of the map file shows the memory usage in totals and

percentages for spaces and chips. The largest free block of memory per

space and per chip is also shown.

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mm (memory usage info).

Linker Script File Part

This part of the map file shows the processor and memory information of

the linker script file.

Reference Guide5–10
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -ms (processor and memory info). You

can print this information to a separate file with linker option

––lsl-dump.

Locate Rule Part

This part of the map file shows the rules the linker uses to locate sections.

Address space The names of the address spaces as defined in the

linker script file (*.lsl). The names are constructed

of the derivative name followed by a colon ':', the

core name, another colon ':' and the space name.

For example: R8C:R8C:near

Type The rule type:

 ordered/contiguous/clustered Specifies how sections are

grouped.

 absolute address The section must be located at the address

shown in the Properties column

 address range The section must be located in the union of

the address ranges shown in the Properties

column; end addreses are not included in

the range.

 address range size The sections must be located in some

address range with size not larger than

shown in the Properties column; the second

number in that field is the alignment

requirement for the address range.

Properties The contents depends on the Type column.

Sections The sections to which the rule applies;

restrictions between sections are shown in this

column:

 < ordered

 | contiguous

 + clustered

For contiguous sections, the linker uses the section

order as shown here. Clustered sections can be located

in any relative order.

List File Formats 5–11

• • • • • • • •

By default this part is not shown in the map file. You have to turn this part

on manually with linker option -mu (locate rules).

Related information

Section 7.8, Generating a Map File, in Chapter Using the Linker of the

User's Guide.

Linker option –M (Generate map file)

Reference Guide5–12
L

IS
T

 F
IL

E
 F

O
R

M
A

T
S

6

OBJECT FILE
FORMATS

C
H

A
P

T
E

R

Reference Guide6–2
O

B
JE

C
T

 F
O

R
M

A
T

S 6

C
H

A
P

T
E

R

Object File Formats 6–3

• • • • • • • •

6.1 ELF/DWARF OBJECT FORMAT

The R8C toolchain by default produces objects in the ELF/DWARF 2

(.elf) format.

For a complete description of the ELF and DWARF formats, please refer to

the Tools Interface Standards on Intel's website for developers:

http://developer.intel.com/vtune/tis.htm

Reference Guide6–4
O

B
JE

C
T

 F
O

R
M

A
T

S

6.2 MOTOROLA S-RECORD FORMAT

With the linker option -ofilename:SREC option the linker produces output

in Motorola S-record format with three types of S-records: S0, S2 and S8.

With the options -ofilename:SREC:2 or -ofilename:SREC:4 option you

can force other types of S-records. They have the following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A linker generated S-record file starts with a S0 record with the following

contents:

length_byte : 0x8

comment : lkr8c

checksum : 0x13

 l k r 8 c
S00800006C6B72386313

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0xFF.

S1 - record

With the linker option -ofilename:SREC:2, the actual program code and

data is supplied with S1 records, with the following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Object File Formats 6–5

• • • • • • • •

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The length of the output buffer for generating S1 records is 32 code bytes.

The checksum calculation of S1 records is identical to S0.

S2 - record

With the linker option -ofilename:SREC:3, which is the default, the actual

program code and data is supplied with S2 records, with the following

layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

By default, the linker generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The length of the output buffer for generating S2 records is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S3 - record

With the linker option -ofilename:SREC:4, the actual program code and

data is supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

Reference Guide6–6
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The length of the output buffer for generating S3 records is 32 code bytes.

The checksum calculation of S3 records is identical to S0.

S7 - record

With the linker option -ofilename:SREC:4, at the end of an S-record file,

the linker generates an S7 record, which contains the program start

address. S7 is the corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S7 records is identical to S0.

S8 - record

With the linker option -ofilename:SREC:3, which is the default, at the end

of an S-record file, the linker generates an S8 record, which contains the

program start address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9
 | | |_checksum
 | |_ address
 |_ length

Object File Formats 6–7

• • • • • • • •

The checksum calculation of S8 records is identical to S0.

S9 - record

With the linker option -ofilename:SREC:4, at the end of an S-record file,

the linker generates an S9 record, which contains the program start

address. S9 is the corresponding termination record for S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Example:

S9030210EA
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S9 records is identical to S0.

Reference Guide6–8
O

B
JE

C
T

 F
O

R
M

A
T

S

6.3 INTEL HEX RECORD FORMAT

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the R8C the linker generates records in the 32-bit format (4-byte

addresses with linker option -ofilename:IHEX).

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁ
ÁÁÁ
ÁÁÁ

type
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

content
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The linker outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than 0xFF.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Object File Formats 6–9

• • • • • • • •

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32–bit)

05 Start linear address (32–bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The linker computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The linker then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

Reference Guide6–10
O

B
JE

C
T

 F
O

R
M

A
T

S

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁ
ÁÁÁ
ÁÁÁ

00

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The linker has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

Object File Formats 6–11

• • • • • • • •

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

05
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:040000050000CE2405
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

Reference Guide6–12
O

B
JE

C
T

 F
O

R
M

A
T

S

7

LINKER SCRIPT
LANGUAGE

C
H

A
P

T
E

R

Reference Guide7–2
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7

C
H

A
P

T
E

R

Linker Script Language 7–3

• • • • • • • •

7.1 INTRODUCTION

To make full use of the linker, you can write a script with information

about the architecture of the target processor and locating information.

The language for the script is called the Linker Script Language (LSL). This

chapter first describes the structure of an LSL file. The next section

contains a summary of the LSL syntax. Finally, in the remaining sections,

the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can

simultaneously link and locate all programs for all cores available on a

target board. The target board may be of arbitrary complexity. A simple

target board may contain one standard processor with some external

memory that executes one task. A complex target board may contain

multiple standard processors and DSPs combined with configurable

IP-cores loaded in an FPGA. Each core may execute a different program,

and external memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics

(that are of interest to the linker) of your specific target board and of the

cores installed on the board. Second it enables you to specify how

sections should be located in memory.

7.2 STRUCTURE OF A LINKER SCRIPT FILE

 A script file generally consists of the following parts:

The architecture definition (required)

In essence an architecture definition describes how the linker should

convert logical addresses into physical addresses for a given type of core.

If the core supports multiple address spaces, then for each space the linker

must know how to perform this conversion. In this context a physical

address is an offset on a given internal or external bus. Additionally the

architecture definition contains information about items such as the

(hardware) stack and the interrupt vector table.

Typically an architecture definition is written by Altium and should not be

changed by you unless you also modify a core's hardware architecture. If

the LSL file describes a multi-core system an architecture definition must

be available for each different type of core.

Reference Guide7–4
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

See section 7.5, Semantics of the Architecture Definition for detailed

descriptions of LSL in the architecture definition.

The derivative definition (required)

The derivative definition describes the configuration of the internal

(on-chip) bus and memory system. Basically it tells the linker how to

convert offsets on the buses specified in the architecture definition into

offsets in internal memory. A derivative definition must be present in an

LSL file. Microcontrollers and DSPs often have internal memory and I/O

sub-systems apart from one or more cores. The design of such a chip is

called a derivative. Altium provides LSL descriptions of supported

derivatives, along with "SFR files", which provide easy access to registers

in I/O sub-systems from C and assembly programs. When you build an

ASIC or use a derivative that is not (yet) supported by the TASKING tools,

you may have to write a derivative definition.

See section 7.6, Semantics of the Derivative Definition for a detailed

description of LSL in the derivative definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the

processor definition instantiates one derivative only (single-core

processor). A processor that contains multiple cores having the same

(homogeneous) or different (heterogeneous) architecture can also be

described by instantiating multiple derivatives of the same or different

types in separate processor definitions.

See section 7.7, Semantics of the Board Specification for a detailed

description of LSL in the processor definition.

The memory and bus definitions (optional)

Memory and bus definition are used within the context of a derivative

definition to specify internal memory and on-chip buses. In the context of

a board specification the memory and bus definitions are used to define

external (off-chip) memory and buses. Given the above definitions the

linker can convert a logical address into an offset into an on-chip or

off-chip memory device.

See section 7.7.3, Defining External Memory and Buses, for more

information on how to specify the external physical memory layout.

Internal memory for a processor should be defined in the derivative

definition for that processor.

Linker Script Language 7–5

• • • • • • • •

The board specification

The processor definition and memory and bus definitions together form a

board specification. LSL provides language constructs to easily describe

single-core and heterogeneous or homogeneous multi-core systems. The

board specification describes all characteristics of your target board's

system buses, memory devices, I/O sub-systems, and cores that are of

interest to the linker. Based on the information provided in the board

specification the linker can for each core:

• convert a logical address to a physical addresses (offsets within a

memory device)

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within

the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control

where input sections are located. Features are provided such as: the

ability to place sections at a given load-address or run-time address, to

place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given

core is specified on the command line when you invoke the linker. The

linker will link and locate all sections of all tasks simultaneously. From the

section layout definition the linker can deduce where a given section may

be located in memory, form the board specification the linker can deduce

which physical memory is (still) available while locating the section.

See section 7.8, Semantics of the Section Layout Definition,, for more

information on how to locate a section at a specific place in memory.

Skeleton of a Linker Script File

The skeleton of a linker script file now looks as follows:

architecture architecture_name
{
 architecture definition
}

derivative derivative_name
{
 derivative definition
}

Reference Guide7–6
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

processor processor_name
{
 processor definition
}

memory definitions and/or bus definitions

section_layout space_name
{
 section placement statements
}

7.3 SYNTAX OF THE LINKER SCRIPT LANGUAGE

The following lexicon is used to describe the syntax of the Linker Script

Language:

A ::= B = A is defined as B
A ::= B C = A is defined as B and C; B is followed by C
A ::= B | C = A is defined as B or C
0|1 = zero or one occurrence of B
>=0 = zero of more occurrences of B
>=1 = one of more occurrences of B

IDENTIFIER = a character sequence starting with 'a'-'z', 'A'-'Z', _ , . or @

STRING = sequence of characters not starting with \n, \r or \t

DQSTRING = ” STRING ” (double quoted string)

OCT_NUM = octal number, starting with a zero (06, 045)
DEC_NUM = decimal number, not starting with a zero (14, 1024)
HEX_NUM = hexadecimal number, starting with '0x' (0x0023, 0xFF00)

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M

(mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are

higher order terms that are defined in the same or in one of the other

sections.

Linker Script Language 7–7

• • • • • • • •

7.3.1 IDENTIFIERS

arch_name ::= IDENTIFIER
bus_name ::= IDENTIFIER
core_name ::= IDENTIFIER
derivative_name ::= IDENTIFIER
file_name ::= DQSTRING
group_name ::= IDENTIFIER
mem_name ::= IDENTIFIER
proc_name ::= IDENTIFIER
section_name ::= DQSTRING
space_name ::= IDENTIFIER
stack_name ::= section_name
symbol_name ::= DQSTRING

7.3.2 EXPRESSIONS

The expressions and operators in this section work the same as in ANSI C.

number ::= OCT_NUM
 | DEC_NUM
 | HEX_NUM

expr ::= number
 | symbol_name
 | unary_op expr
 | expr binary_op expr
 | expr ? expr : expr
 | (expr)
 | function_call

unary_op ::= ! // logical NOT
 | ~ // bitwise complement
 | – // negative value

Reference Guide7–8
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

binary_op ::= ^ // exclusive OR
 | * // multiplication
 | / // division
 | % // modulus
 | + // addition
 | – // subtraction
 | >> // right shift
 | << // left shift
 | == // equal to
 | != // not equal to
 | > // greater than
 | < // less than
 | >= // greater than or equal to
 | <= // less than or equal to
 | & // bitwise AND
 | | // bitwise OR
 | && // logical AND
 | || // logical OR

7.3.3 BUILT-IN FUNCTIONS

function_call ::= absolute (expr)
 | addressof (addr_id)
 | exists (section_name)
 | max (expr , expr)
 | min (expr , expr)
 | sizeof (size_id)

addr_id ::= sect : section_name
 | group : group_name

size_id ::= sect : section_name
 | group : group_name

• Every space, bus, memory, section or group your refer to, must be

defined in the LSL file.

• The addressof() and sizeof() functions can only be used in

the right hand side of an assignment.

You can use the following built-in functions in expressions. All functions

return a numerical value. This value is a 64-bit signed integer.

Linker Script Language 7–9

• • • • • • • •

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.

absolute(”labelA”–”labelB”)

addressof()

int addressof(addr_id)

Returns the address of addr_id, which is a named section or group. To get

the offset of the section with the name asect :

addressof(sect: ”asect”)

This function only works in assignments.

exists()

int exists(section_name)

The function returns 1 if the section section_name exists in one or more

object file, 0 otherwise. If the section is not present in input object files,

but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files

that is specified to the linker:

exists(”mysection”)

max()

int max(expr , expr)

Returns the value of the expression that has the largest value. To get the

highest value of two symbols:

max(”sym1” , ”sym2”)

Reference Guide7–10
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

min()

int min(expr , expr)

Returns the value of the expression hat has the smallest value. To get the

lowest value of two symbols:

min(”sym1” , ”sym2”)

sizeof()

int sizeof(size_id)

Returns the size of a section or group in an object file. To get the size of

the section "asection":

sizeof(sect: ”asection”)

This function only works in assignments.

7.3.4 LSL DEFINITIONS IN THE LINKER SCRIPT FILE

description ::= < definition >>=1

definition ::= architecture_definition
 | derivative_definition
 | board_spec
 | section_definition

• At least one architecture_definition must be present in the

LSL file.

7.3.5 MEMORY AND BUS DEFINITIONS

mem_def ::= memory mem_name { < mem_descr ; >>=0 }

• A mem_def defines a memory with the mem_name as a unique

name.

Linker Script Language 7–11

• • • • • • • •

mem_descr ::= type = mem_type
 | mau = expr
 | size = expr
 | speed = number
 | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one speed statement

(default value is 1).

• A mem_def contains at least one mapping .

mem_type ::= rom // attrs = rx
 | ram // attrs = rw
 | nvram // attrs = rwx

bus_def ::= bus bus_name { < bus_descr ; >>=0 }

• A bus_def statement defines a bus with the given bus_name as a

unique name within a core architecture.

bus_descr ::= mau = expr
 | width = expr // bus width, nr
 | // of data bits
 | mapping // legal destination
 // ’bus’ only

• The mau and width statements appear exactly once in a

bus_descr . The default value for width is the mau size.

• The bus width must be an integer times the bus MAU size.

• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through

dest = bus:).

mapping ::= map (map_descr < , map_descr >>=0)

map_descr ::= dest = destination
 | dest_dbits = range
 | dest_offset = expr
 | size = expr
 | src_dbits = range
 | src_offset = expr

• A mapping requires at least the size and dest statements.

• Each map_descr can occur only once.

Reference Guide7–12
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value

defaults to the width value if the source/destination is a bus, and to

the mau size otherwise.

destination ::= space : space_name
 | bus : < proc_name |
 core_name : >0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

- space => space

- space => bus

- bus => bus

- memory => bus

range ::= number .. number

7.3.6 ARCHITECTURE DEFINITION

architecture_definition
 ::= architecture arch_name
 <(parameter_list) >0|1
 <extends arch_name
 < (argument_list) >0|1 > 0|1
 { arch_spec >=0 }

• An architecture_definition defines a core architecture with

the given arch_name as a unique name.

• At least one space_def and at least one bus_def have to be

present in an architecture_definition .

• An architecture_definition that uses the extends construct

defines an architecture that inherits all elements of the architecture

defined by the second arch_name . The parent architecture must

be defined in the LSL file as well.

parameter_list ::= parameter < , parameter >>=0

Linker Script Language 7–13

• • • • • • • •

parameter ::= IDENTIFIER < = expr >0|1

argument_list ::= expr < , expr >>=0

arch_spec ::= bus_def
 | space_def
 | endianness_def

space_def ::= space space_name { < space_descr ; >>=0 }

• A space_def defines an address space with the given

space_name as a unique name within an architecture.

space_descr ::= space_property ;
 | section_definition //no space ref

space_property ::= id = number // as used in object
 | mau = expr
 | align = expr
 | page_size = expr
 | stack_def
 | heap_def
 | copy_table_def
 | start_address
 | mapping

• A space_def contains exactly one id and one mau statement.

• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def ::= stack stack_name (stack_heap_descr
 < , stack_heap_descr > >=0)

• A stack_def defines a stack with the stack_name as a unique

name.

heap_def ::= heap heap_name (stack_heap_descr
 < , stack_heap_descr > >=0)

• A heap_def defines a heap with the heap_name as a unique

name.

copy_table_def ::= copytable (copy_table_descr
 < , copy_table_descr >>=0)

• A space_def contains at most one copytable statement.

Reference Guide7–14
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• If the architecture definition contains more than one address space,

exactly one copy table must be defined in one of the spaces. If the

the architecture definition contains only one address space, a copy

table definition is optional (it will be generated in the space).

stack_heap_descr ::= min_size = expr
 | grows = direction
 | align = expr
 | fixed

• The min_size statement must be present.

• You can specify at most one align statement and one grows
statement.

direction ::= low_to_high
 | high_to_low

• If you do not specify the grows statement, the stack and grow

low–to–high .

copy_table_descr ::= align = expr
 | copy_unit = expr
 | dest = space_name

• The copy_unit is defined by the size in MAUs in which the startup

code moves data.

• The dest statement is only required when the startup code

initializes memory used by another processor that has no access to

ROM.

• A space_name refers to a defined address space.

start_addr ::= start_address (start_addr_descr
 <, start_addr_descr >>=0)

start_addr_descr ::= run_addr = expr
 | symbol = symbol_name

• A symbol_name refers to the section that contains the startup code.

endianness_def ::= endianness { < endianness_type ; >>=1 }

endianness_type ::= big
 | little

Linker Script Language 7–15

• • • • • • • •

7.3.7 DERIVATIVE DEFINITION

derivative_definition
 ::= derivative derivative_name
 <(parameter_list) >0|1
 <extends derivative_name
 < (argument_list) >0|1 > 0|1
 { < derivative_spec >>=0 }

• A derivative_definition defines a derivative with the given

derivative_name as a unique name.

• At least one core_def must be present in a

derivative_definition .

derivative_spec ::= core_def
 | bus_def
 | mem_def
 | section_definition // no processor
 // name

core_def ::= core core_name { < core_descr ; >>=0 }

• A core_def defines a core with the given core_name as a unique

name.

core_descr ::= architecture = arch_name
 < (argument_list) >0|1
 | endianness = (endianness_type
 <, endianness_type >>=0)

• An arch_name refers to a defined core architecture.

• Exactly one architecture statement must be present in a

core_def .

7.3.8 PROCESSOR DEFINITION AND BOARD

SPECIFICATION

board_spec ::= proc_def
 | bus_def
 | mem_def

proc_def ::= processor proc_name
 { proc_descr ; }

proc_descr ::= derivative = derivative_name
 < (argument_list) >0|1

Reference Guide7–16
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• A proc_def defines a processor with the proc_name as a unique

name.

• If you do not explicitly define a processor for a derivative in an LSL

file, the linker defines a processor with the same name as that

derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

7.3.9 SECTION PLACEMENT DEFINITION

section_definition ::= section_layout < space_ref >0|1
 < (locate_direction) >0|1
 { < section_statement >>=0 }

• A section definition inside a space definition does not have a

space_ref .

• All global section definitions have a space_ref .

space_ref ::= < proc_name >0|1 : <core_name >0|1

 : space_name

• If more than one processor is present, the proc_name must be

given for a global section layout.

• If the section layout refers to a processor that has more than one

core, the core_name must be given in the space_ref .

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

locate_direction ::= direction = direction

direction ::= low_to_high
 | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction

of the section layout is low–to–high .

section_statement
 ::= simple_section_statement ;
 | aggregate_section_statement

Linker Script Language 7–17

• • • • • • • •

simple_section_statement
 ::= assignment
 | select_section_statement
 | special_section_statement

assignment ::= symbol_name assign_op expr

assign_op ::= =
 | :=

select_section_statement
 ::= select < section_name >0|1
 < section_selections >0|1

• Either a section_name or at least one section_selection must

be defined.

section_selections
 ::= (section_selection
 < , section_selection >>=0)

section_selection
 ::= attributes = < < +| –> attribute >>0

• +attribute means: select all sections that have this attribute.

• -attribute means: select all sections that do not have this

attribute.

special_section_statement
 ::= heap stack_name < size_spec >0|1

 | stack stack_name < size_spec >0|1

 | copytable
 | reserved < section_name >0|1
 < reserved_specs >0|1

• Special sections cannot be selected in load-time groups.

size_spec ::= (size = expr)

reserved_specs ::= (reserved_spec
 < , reserved_spec >>=0)

reserved_spec ::= attributes
 | fill = fill_values
 | (size = expr)

fill_values ::= expr
 | [expr < , expr >>=0]

Reference Guide7–18
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• If a reserved section has attributes r , rw , x , rx or rwx , and no fill

pattern is defined, the section is filled with zeros. If no attributes are

set, the section is created as a scratch section (attributes ws, no

image).

aggregate_section_statement
 ::= { < section_statement >>=0 }
 | group_descr
 | if_statement

group_descr ::= group <group_name> 0|1
 < (group_specs) >0|1

 section_statement
group_specs ::= group_spec < , group_spec >>=0

group_spec ::= group_alignment
 | attributes
 | group_load_address
 | group_page
 | group_run_address
 | group_type
 | allow_cross_references

• The allow–cross–references property is only allowed for

overlay groups.

• Sub groups inherit all properties from a parent group.

group_alignment ::= align = expr

attributes ::= attributes = <attribute >>=1

group_load_address
 ::= load_addr <= load_or_run_addr >0|1

group_page ::= page < = expr >0|1

group_run_address ::= run_addr <= load_or_run_addr >0|1

group_type ::= clustered
 | contiguous
 | ordered
 | overlay

• For non-contiguous groups, you can only specify

group_alignment and attributes .

• The overlay keyword also sets the contiguous property.

Linker Script Language 7–19

• • • • • • • •

• The clustered property cannot be set together with contiguous
or ordered on a single group.

attribute ::= r // read–only sections
 | w // read/write sections
 | x // executable code sections
 | i // initialized sections
 | s // scratch sections
 | b // blanked (cleared) sections

load_or_run_addr ::= expr
 | memory_reference
 load_or_run_addr_mem_postfix

load_or_run_addr_mem_postfix
 ::= < | memory_reference > >=0

 | [expr]

memory_reference ::= mem : <proc_name : >0|1

 <core_name : >0|1 mem_name

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A mem_name refers to a defined memory.

if_statement ::= if (expr) section_statement
 < else section_statement >0|1

7.4 EXPRESSION EVALUATION

Only constant expressions are allowed, including sizes, but not addresses,

of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The

result of an expression can be absolute or relocatable. A symbol you

assign is created as an absolute symbol.

Reference Guide7–20
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.5 SEMANTICS OF THE ARCHITECTURE DEFINITION

Keywords in the architecture definition

architecture
 extends
bus
 mau
 width
 map
space
 id
 mau
 align
 page_size
 stack
 min_size
 grows low_to_high high_to_low
 align
 fixed
 heap
 min_size
 grows low_to_high high_to_low
 align
 fixed
 copytable
 align
 copy_unit
 dest
 start_address
 run_addr
 symbol
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

Linker Script Language 7–21

• • • • • • • •

7.5.1 DEFINING AN ARCHITECTURE

With the keyword architecture you define an architecture and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

architecture name
{
 definitions
}

If you are defining multiple core architectures that show great

resemblance, you can define the common features in a parent core

architecture and extend this with a child core architecture that contains

specific features. The child inherits all features of the parent. With the

keyword extends you create a child core architecture:

architecture name_child_arch extends name_parent_arch
{
 definitions
}

A core architecture can have any number of parameters. These are

identifiers which get values assigned on instantiation or extension of the

architecture. You can use them in any expression within the core

architecture. Parameters can have default values, which are used when the

core architecture is instantiated with less arguments than there are

parameters defined for it. When you extend a core architecture you can

pass arguments to the parent architecture. Arguments are expressions that

set the value of the parameters of the sub-architecture.

architecture name_child_arch (parm1,parm2=1)
 extends name_parent_arch (arguments)
{
 definitions
}

Reference Guide7–22
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.5.2 DEFINING INTERNAL BUSES

With the bus keyword you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions in an architecture

definition or derivative definition define internal buses. Some internal

buses are used to communicate with the components outside the core or

processor. Such buses on a processor have physical pins reserved for the

number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the data bus. This field is required.

• The width field specifies the width (number of address lines) of the

data bus. The default value is the MAU size.

• The map keyword specifies how this bus maps onto another bus (if so).

Mappings are described in section 7.5.4, Mappings.

bus bus_name
{
 mau = 8;
 width = 8;
 map (map_description);
}

7.5.3 DEFINING ADDRESS SPACES

With the space keyword you define a logical address space. The space

name is used to identify the address space and does not conflict with other

identifiers.

• The id field defines how the addressing space is identified in object

files. In general, each address space has a unique ID. The linker locates

sections with a certain ID in the address space with the same ID. This

field is required. In IEEE this ID is specified explicitly for sections and

symbols, ELF sections map by default to the address space with ID 1.

Sections with one of the special names defined in the ABI (Application

Binary Interface) may map to different address spaces.

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the space. This field is required.

• The align value must be a power of two. The linker uses this value to

compute the start addresses when sections are concatenated. An align

value of n means that objects in the address space have to be aligned

on n MAUs.

Linker Script Language 7–23

• • • • • • • •

• The page_size field sets the page size in MAUs for the address space.

It must be a power of 2. The default page size is 1. See also the page
keyword in subsection Locating a group in section 7.8.2, Creating and
Locating Groups of Sections.

• The stack keyword defines a stack in the address space and assigns a

name to it. The architecture definition must contain at least one stack

definition. Each stack of a core architecture must have a unique name.

See also the stack keyword in section 7.8.3, Creating or Modifying
Special Sections.

The stack is described in terms of a minimum size (min_size) and the

direction in which the stack grows (grows). This can be either from

low_to_high addresses (stack grows upwards, this is the default) or

from high_to_low addresses (stack grows downwards). The

min_size is required.

By default, the linker tries to maximize the size of the stacks and heaps.

After locating all sections, the largest remaining gap in the space is

used completely for the stacks and heaps. If you specify the keyword

fixed , you can disable this so-called 'balloon behavior'. The size is

also fixed if you used a stack or heap in the software layout definition

in a restricted way. For example when you override a stack with

another size or select a stack in an ordered group with other sections.

Optionally you can specify an alignment for the stack with the

argument align . This alignment must be equal or larger than the

alignment that you specify for the address space itself.

• The heap keyword defines a heap in the address space and assigns a

name to it. The definition of a heap is similar to the definition of a

stack. See also the heap keyword in section 7.8.3, Creating or
Modifying Special Sections.

See section 7.8, Semantics of the Section Layout Definition for

information on creating and placing stack sections.

• The copytable keyword defines a copy table in the address space.

The content of the copy table is created by the linker and contains the

start address and size of all sections that should be initialized by the

startup code. If the architecture definition contains more than one

address space, you must define exactly one copy table in one of the

address spaces. If the architecture definition contains only one address

space, the copy table definition is optional.

Reference Guide7–24
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

Optionally you can specify an alignment for the copy table with the

argument align . This alignment must be equal or larger than the

alignment that you specify for the address space itself. If smaller, the

alignment for the address space is used.

The copy_unit argument specifies the size in MAUs of information

chunks that are copied. If you do not specify the copy unit, the MAU

size of the address space itself is used.

The dest argument specifies the destination address space that the

code uses for the copy table. The linker uses this information to

generate the correct addresses in the copy table. The memory into

where the sections must be copied at run-time, must be accessible

from this destination space.

• The start_address keyword specifies the start address for the

position where the C startup code is located. When a processor is reset,

it initializes its program counter to a certain start address, sometimes

called the reset vector. In the architecture definition, you must specify

this start address in the correct address space in combination with the

name of the label in the application code which must be located here.

The run_addr argument specifies the start address (reset vector). If the

core starts executing using an entry from a vector table, and directly

jumps to the start label, you should omit this argument.

The symbol argument specifies the name of the label in the

application code that should be located at the specified start address.

The symbol argument is required. The linker will resolve the start

symbol and use its value after locating for the start address field in

IEEE-695 files and Intel Hex files. If you also specified the run_addr
argument, the start symbol (label) must point to a section. The linker

locates this section such that the start symbol ends up on the start

address.

• The map keyword specifies how this address space maps onto an

internal bus or onto another address space. Mappings are described in

section 7.5.4, Mappings.

Linker Script Language 7–25

• • • • • • • •

space space_name
{
 id = 1;
 mau = 8;
 align = 8;
 page_size = 1;
 stack name (min_size = 1k, grows = low_to_high);
 start_address (run_addr = 0x0000,
 symbol = ” start_label ”)
 map (map_description);
}

7.5.4 MAPPINGS

You can use a mapping when you define a space, bus or memory. With

the map field you specify how addresses from the source (space, bus or

memory) are translated to addresses of a destination (space, bus). The

following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map

(specified by a source offset and a size), the destination to which you

want to map them (a bus or another address space), and the offset address

in the destination.

• The dest argument specifies the destination. This can be a bus or

another address space (only for a space to space mapping). This

argument is required.

• The src_offset argument specifies the offset of the source addresses.

In combination with size, this specifies the range of address that are

mapped. Default the source offset is 0x0000.

• The size argument specifies the number of addresses that are

mapped. This argument is required.

• The dest_offset argument specifies the position in the destination to

which the specified range of addresses is mapped. Default the

destination offset is 0x0000.

Reference Guide7–26
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

If you are mapping a bus to another bus, the number of data lines of each

bus may differ. In this case you have to specify a range of source data

lines you want to map (src_dbits = begin .. end) and the range of

destination data lines you want to map them to (dest_dbits =
first .. last).

• The src_dbits argument specifies a range of data lines of the source

bus. Default all data lines are mapped.

• The dest_dbits argument specifies a range of data lines of the

destination bus. Default, all data lines from the source bus are mapped

on the data lines of the destination bus (starting with line 0).

From space to bus

All spaces that are not mapped to another space must map to a bus in the

architecture:

space large
{
 id = 1;
 mau = 4;
 map (src_offset = 0, dest_offset = 0,
 dest = bus : bus_name , size = 16M);
}

From space to space

If you map an address space to another address space (nesting), you can

do this by mapping the subspace to the containing larger space. In this

example a small space of 64k is mapped on a large space of 16M.

space small
{
 id = 2;
 mau = 4;
 map (src_offset = 0, dest_offset = 0,
 dest = space : large, size = 64k);
}

From bus to bus

The next example maps an external bus called e_bus to an internal bus

called i_bus . This internal bus resides on a core called mycore . The

source bus has 16 data lines whereas the destination bus has only 8 data

lines. Therefore, the keywords src_dbits and dest_dbits specify

which source data lines are mapped on which destination data lines.

Linker Script Language 7–27

• • • • • • • •

architecture mycore
{
 bus i_bus
 {
 mau = 4;
 }

 space i_space
 {
 map (dest=bus:i_bus, size=256);
 }
}

bus e_bus
{
 mau = 16;
 width = 16;
 map (dest = bus : mycore : i_bus,
 src_dbits = 0 .. 7, dest_dbits = 0 .. 7)
}

It is not possible to map an internal bus to an external bus.

Reference Guide7–28
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.6 SEMANTICS OF THE DERIVATIVE DEFINITION

Keywords in the derivative definition

derivative
 extends
core
 architecture
bus
 mau
 width
 map
memory
 type rom ram nvram
 mau
 size
 speed
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

7.6.1 DEFINING A DERIVATIVE

With the keyword derivative you define a derivative and assign a

unique name to it. The name is used to refer to it at other places in the

LSL file:

derivative name
{
 definitions
}

Linker Script Language 7–29

• • • • • • • •

If you are defining multiple derivatives that show great resemblance, you

can define the common features in a parent derivative and extend this

with a child derivative that contains specific features. The child inherits all

features of the parent (cores and memories). With the keyword extends
you create a child derivative:

derivative name_child_deriv extends name_parent_deriv
{
 definitions
}

As with a core architecture, a derivative can have any number of

parameters. These are identifiers which get values assigned on

instantiation or extension of the derivative. You can use them in any

expression within the derivative definition.

derivative name_child_deriv (parm1,parm2=1)
 extends name_parent_derivh (arguments)
{
 definitions
}

7.6.2 INSTANTIATING CORE ARCHITECTURES

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given

core has a certain architecture. The architecture name refers to an

existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2)

that have the same architecture (called mycorearch), you must

instantiate both cores as follows:

core mycore_1
{
 architecture = mycorearch;
}

core mycore_2
{
 architecture = mycorearch;
}

Reference Guide7–30
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

If the architecture definition has parameters you must specify the

arguments that correspond with the parameters. For example

mycorearch1 expects two parameters which are used in the

architecture definition:

core mycore
{
 architecture = mycorearch1 (1,2);
}

7.6.3 DEFINING INTERNAL MEMORY AND BUSES

With the memory keyword you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. It is common to define internal

memory (on-chip) in the derivative definition. External memory (off-chip

memory) is usually defined in the board specification (See section 7.7.3,

Defining External Memory and Buses).

• The type field specifies a memory type:

- rom : read only memory

- ram : random access memory

- nvram : non volatile ram

• The mau field specifies the MAU size (Minimum Addressable Unit) of

the memory. This field is required.

• The size field specifies the size in MAU of the memory. This field is

required.

• The speed field specifies a symbolic speed for the memory (0..4): 0 is

the fastest, 4 the slowest. The linker uses the relative speed of the

memories in such a way, that optimal speed is achieved. The default

speed is 1.

• The map field specifies how this address space maps onto an (internal)

bus. Mappings are described in section 7.5.4, Mappings.

memory mem_name
{
 type = rom;
 mau = 8;
 size = 64k;
 speed = 2;
 map (map_description);
}

Linker Script Language 7–31

• • • • • • • •

With the bus keyword you define a bus in a derivative definition. Buses

are described in section 7.5.2, Defining Internal Buses.

Reference Guide7–32
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.7 SEMANTICS OF THE BOARD SPECIFICATION

Keywords in the board specification

processor
 derivative
bus
 mau
 width
 map
memory
 type rom ram nvram
 mau
 size
 speed
 map

 map
 dest bus space
 dest_dbits
 dest_offset
 size
 src_dbits
 src_offset

7.7.1 DEFINING A PROCESSOR

If you have a target board with multiple processors that have the same

derivative, you need to instantiate each individual processor in a processor

definition. This information tells the linker which processor has which

derivative and enables the linker to distinguish between the present

processors.

If you use processors that all have a unique derivative, you may omit the

processor definitions. In this case the linker assumes that for each

derivative definition in the LSL file there is one processor. The linker uses

the derivative name also for the processor.

Linker Script Language 7–33

• • • • • • • •

With the keyword processor you define a processor. You can freely

choose the processor name. The name is used to refer to it at other places

in the LSL file:

processor proc_name
{
 processor definition
}

7.7.2 INSTANTIATING DERIVATIVES

With the keyword derivative you tell the linker that the given processor

has a certain derivative. The derivative name refers to an existing

derivative definition in the same LSL file.

For examples, if you have two processors on your target board (called

myproc_1 and myproc_2) that have the same derivative (called

myderiv), you must instantiate both processors as follows:

processor myproc_1
{
 derivative = myderiv;
}

processor myproc_2
{
 derivative = myderiv;
}

If the derivative definition has parameters you must specify the

arguments that correspond with the parameters. For example

myderiv1 expects two parameters which are used in the derivative

definition:

processor myproc
{
 derivative = myderiv1 (2,4);
}

Reference Guide7–34
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.7.3 DEFINING EXTERNAL MEMORY AND BUSES

It is common to define external memory (off-chip) and external buses at

the global scope (outside any enclosing definition). Internal memory

(on-chip memory) is usually defined in the scope of a derivative

definition.

With the keyword memory you define physical memory that is present on

the target board. The memory name is used to identify the memory and

does not conflict with other identifiers. If you define memory parts in the

LSL file, only the memory defined in these parts is used for placing

sections.

If no external memory is defined in the LSL file and if the linker option to

allocate memory on demand is set then the linker will assume that all

virtual addresses are mapped on physical memory. You can override this

behavior by specifying one or more memory definitions.

memory mem_name
{
 type = rom;
 mau = 8;
 size = 64k;
 speed = 2;
 map (map_description);
}

For a description of the keywords, see section 7.6.3, Defining Internal
Memory and Buses.

With the keyword bus you define a bus (the combination of data and

corresponding address bus). The bus name is used to identify a bus and

does not conflict with other identifiers. Bus descriptions at the global

scope (outside any definition) define external buses. These are buses that

are present on the target board.

bus bus_name
{
 mau = 8;
 width = 8;
 map (map_description);
}

For a description of the keywords, see section 7.5.2, Defining Internal
Buses.

Linker Script Language 7–35

• • • • • • • •

You can connect off-chip memory to any derivative: you need to map the

off-chip memory to a bus and map that bus on the internal bus of the

derivative you want to connect it to.

Reference Guide7–36
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

7.8 SEMANTICS OF THE SECTION LAYOUT DEFINITION

Keywords in the section layout definition

section_layout
 direction low_to_high high_to_low
group
 align
 attributes + – r w x b i s
 ordered
 clustered
 contiguous
 overlay
 allow_cross_references
 load_addr
 mem
 run_addr
 mem
 page
select
heap
 size
stack
 size
reserved
 size
 attributes r w x
 fill
copytable

if
else

7.8.1 DEFINING A SECTION LAYOUT

With the keyword section_layout you define a section layout for

exactly one address space. In the section layout you can specify how input

sections are placed in the address space, relative to each other, and what

the absolute run and load addresses of each section will be.

Linker Script Language 7–37

• • • • • • • •

You can define one or more section definitions. Each section definition

arranges the sections in one address space. You can precede the address

space name with a processor name and/or core name, separated by

colons. You can omit the processor name and/or the core name if only

one processor is defined and/or only one core is present in the processor.

A reference to a space in the only core of the only processor in the system

would look like "::my_space ". A reference to a space of the only core

on a specific processor in the system could be "my_chip::my_space ".

The next example shows a section definition for sections in the my_space
address space of the processor called my_chip :

section_layout my_chip::my_space (locate_direction)
{
 section statements
}

With the optional keyword direction you specify whether the linker

starts locating sections from low_to_high (default) or from

high_to_low . In the second case the linker starts locating sections at the

highest addresses in the address space but preserves the order of sections

when necessary (one processor and core in this example).

section_layout ::my_space (direction = high_to_low)
{
 section statements
}

If you do not explicitly tell the linker how to locate a section, the linker

decides on the basis of the section attributes in the object file and the

information in the architecture definition and memory parts where to

locate the section.

7.8.2 CREATING AND LOCATING GROUPS OF

SECTIONS

Sections are located per group. A group can contain one or more (sets of)

input sections as well as other groups. Per group you can assign a mutual

order to the sets of sections and locate them into a specific memory part.

group (group_specifications)
{
 section_statements
}

Reference Guide7–38
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

With the section_statements you generally select sets of sections to form

the group. This is described in subsection Selecting sections for a group.

Instead of selecting sections, you can also modify special sections like

stack and heap or create a reserved section. This is described in section

7.8.3, Creating or Modifying Special Sections.

With the group_specifications you actually locate the sections in the group.

This is described in subsection Locating a group.

Selecting sections for a group

With the select keyword you can select one or more sections for the

group. You can select a section by name or by attributes. If you select a

section by name, you can use a wildcard pattern:

"*" matches with all section names

"?" matches with a single character in the section name

"\" takes the next character literally

"[abc]" matches with a single 'a', 'b' or 'c' character

"[a-z]" matches with any single character in the range 'a' to 'z'

group (...)
{
 select ”.mysection”;
 select ”*”;
}

The first select statement selects the section with the name ".mysection".

The second select statement selects all sections that were not selected

yet.

A section is selected by the first select statement that matches, in the

union of all section layouts for the address space. Global section layouts

are processed in the order in which they appear in the LSL file. Internal

core architecture section layouts always take precedence over global

section layouts.

• The attributes field selects all sections that carry (or do not carry)

the given attribute. With +attribute you select sections that have the

specified attribute set. With -attribute you select sections that do not

have the specified attribute set. You can specify one or more of the

following attributes:

- r readable sections

- w readable/writable sections

Linker Script Language 7–39

• • • • • • • •

- x executable sections

- i initialized sections

- b sections that should be cleared at program startup

- s scratch sections (not cleared and not initialized)

To select all read-only sections:

group (...)
{
 select (attributes = +r);
}

Keep in mind that all section selections are restricted to the address space

of the section layout in which this group definition occurs.

Locating a group

group group_name (group_specifications)
{
 section_statements
}

With the group_specifications you actually define how the linker must

locate the group. You can roughly define three things: 1) assign properties

to the group like alignment and read/write attributes, 2) define the mutual

order in the address space for sections in the group and 3) assign a

load-time address or run-time address to the group.

The linker creates labels that allow you to refer to the begin and end

address of a group from within the application software. Labels

__lc_gb_ group_name and __lc_ge_ group_name mark the begin and

end of the group respectively, where the begin is the lowest address used

within this group and the end is the highest address used. Notice that a

group not necessarily occupies all memory between begin and end

address. The given label refers to where the section is located at run-time

(versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups)

and override the attributes of the input sections.

Reference Guide7–40
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The align field tells the linker to align all sections in the group and

the group as a whole according to the align value. Default the linker

uses the largest alignment constraint of either the input sections or the

alignment of the address space.

• The attributes field tells the linker to assign one or more attributes

to the sections in the group. Default the linker uses the attributes of the

input sections. The list of available attributes is the same as described

above for the selection of sections.

2. Define the mutual order of the sections in the group. By default, a group

is unrestricted which means that the linker has total freedom to place the

sections of the group in the address space.

• The ordered keyword tells the linker to locate the sections in the

same order in the address space as they appear in the group (but not

necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B'

 and 'C'. Default the linker places the sections in the address space like

'A' - 'B' - 'C', where section 'A' gets the lowest possible address. With

direction=high_to_low in the section_layout space properties,

the linker places the sections in the address space like 'C' - 'B' - 'A',

where section 'A' gets the highest possible address.

• The contiguous keyword tells the linker to locate the sections in the

group in a single address range, thus without 'gaps' between the

sections.

When you define a group that is both ordered and contiguous , this

is called a sequential group. In a sequential group the linker places

sections in the same order in the address space as they appear in the

group and leaves no 'gaps' between them.

• The clustered keyword tells the linker to locate the sections in the

group in a number of contiguous blocks. It tries to keep the number of

these blocks to a minimum. If enough memory is available, the group

will be located as if it was specified as contiguous . Otherwise, it gets

split into two or more blocks.

• The overlay keyword tells the linker to overlay the sections in the

group. The linker places all sections in the address space using a

contiguous range of addresses. (Thus an overlay group is automatically

also a contiguous group.) To overlay the sections, all sections in the

overlay group share the same run-time address.

Linker Script Language 7–41

• • • • • • • •

For each input section within the overlay the linker automatically

defines two symbols. The symbol __lc_cb_ section_name is defined

as the load-time start address of the section. The symbol

__lc_ce_ section_name is defined as the load-time end address of

the section. C (or assembly) code may be used to copy the overlaid

sections.

If sections in the overlay group contain references between groups, the

linker reports an error. The keyword allow_cross_references tells

the linker to accept cross-references. Normally, it does not make sense

to have references between sections that are overlaid.

group ovl (overlay)
{
 group a
 {
 select ”my_ovl_p1”;
 select ”my_ovl_p2”;
 }
 group b
 {
 select ”my_ovl_q1”;
 }
}

It may be possible that one of the sections in the overlay group already

has been defined in another group where it received a load-time

address. In this case the linker does not overrule this load-time address

and excludes the section from the overlay group.

3. Assign a load-time address, run-time address or page to the group.

The load-time address specifies where the group's elements are loaded in

at download time. The run-time address specifies where sections are

located at run-time, that is when the program is executing. If you do not

explicitly set the load-time or run-time address in the LSL file, the linker

assigns addresses to the sections based on the restrictions relative to other

sections in the LSL file and section alignments. The program is responsible

for copying overlay sections at appropriate moment from its load-time

location to its run-time location (this is typically done by the startup

code).

Reference Guide7–42
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The run_addr keyword defines the run-time address. If the run-time

location of a group is set explicitly, the given order between groups

specify whether the run-time address propagates to the parent group

or not. With an expression you can specify that the group should be

located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)

With the mem keyword you can specify that the group should be

located within a physical memory device, instead of an address value:

group (run_addr = mem: my_dram)

You can use the '| ' to specify an address range of more than one

physical memory device:

group (run_addr = mem: A | mem :B)

Use the '[offset] ' variant to locate the group at the given offset in

memory:

group (run_addr = mem: A[0x1000])

• The load_addr keyword defines the load-time address. It also

changes the meaning of the section selection in the group: the linker

selects the load-time ROM copy of the name section(s) instead of the

regular sections. With an expression you can specify that the first

element of the group should be loaded at the absolute address

specified by the expression:

group (load_addr = 0x00000000)

With the mem keyword you can specify that the elements of the group

should be loaded within a physical memory (use '| ' to specify an

address range or use '[offset] ' to load the group at the given offset):

group (load_addr = mem: my_ram)

The load_addr keyword itself (without an assignment) specifies that

the group's position in the LSL file defines its load-time address.

group (load_addr)
select ”mydata”; // select ROM copy of mydata:
 // ”[mydata]”

Linker Script Language 7–43

• • • • • • • •

The load-time and run-time addresses of a group cannot be set at the

same time. If the load-time property is set for a group, the group (only)

restricts the positioning at load-time of the group's sections. It is not

allowed to set the address of a group that has a not-unrestricted parent

group.

The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the

application copies the sections from their load location to their

run-time location, but only if these two addresses are different. For

non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted

groups.

• For non-overlay groups that do not have an overlay parent, the

load-time start address equals the run-time start address.

• For any group, if the run-time start address is not set, the linker

selects an appropriate address.

For overlays, the linker reserves memory at the run-time start address as

large as the largest element in the overlay group.

• The page keyword tells the linker to place the group in one page.

Instead of specifying a run-time address, you can specify a page and

optional a page number. Page numbers start from zero. If you omit the

page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in

the architecture definition. See also the page keyword in section 7.5.3,

Defining Address Spaces.

group (page , ...)
group (page = 3 , ...)

7.8.3 CREATING OR MODIFYING SPECIAL SECTIONS

Instead of selecting sections, you can also create a reserved section or

modify special sections like a stack or a heap, a reserved section. Because

you cannot define these sections in the input files, you must use the linker

to create them.

Reference Guide7–44
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

• The stack keyword tells the linker to reserve memory for the stack.

The name for the stack section refers to the stack as defined in the

architecture definition. If no name was specified in the architecture

definition, the default name is stack .

With the keyword size you can specify the size for the stack. If the

size is not specified, the linker uses the size given by the min_size
argument as defined for the stack in the architecture definition.

Normally the linker automatically tries to maximize the size, unless you

specified the fixed keyword.

group (...)
{
 stack ”mystack” (size = 2k);
}

The linker creates two labels to mark the begin and end of the stack,

__lc_ub_ stack_name for the begin of the stack and

__lc_ue_ stack_name for the end of the stack. The linker allocates

space for the stack when there is a reference to either of the labels.

See also the stack keyword in section 7.5.3, Defining Address Spaces.

• The heap keyword tells the linker to reserve a dynamic memory range

for the malloc() function. Optionally you can assign a name to the

heap section. With the keyword size you can change the size for the

heap. If the size is not specified, the linker uses the size given by the

min_size argument as defined for the heap in the architecture

definition. Normally the linker automatically tries to maximize the size,

unless you specified the fixed keyword.

group (...)
{
 heap ”myheap” (size = 2k);
}

The linker creates two labels to mark the begin and end of the heap,

__lc_ub_ heap_name for the begin of the heap and

__lc_ue_ heap_name for the end of the heap. The linker allocates

space for the heap when a reference to either of the section labels

exists in one of the input object files.

• The reserved keyword tells the linker to create a section of a given

size. The linker will not locate any other sections in the memory

occupied by a reserved section. Optionally you can assign a name to a

reserved section. With the keyword size you can specify a size for a

given reserved section.

Linker Script Language 7–45

• • • • • • • •

group (...)
{
 reserved ”myreserved” (size = 2k);
}

The optional fill field contains a bit pattern that the linker writes to

all memory addresses that remain unoccupied during the locate

process. The result of the expression, or list of expressions, is used as

values to write to memory, each in MAU. The first MAU of the fill

pattern is always the first MAU in the section.

With the attributes field you can set the access type of the reserved

section. The linker locates the reserved section in its space with the

restrictions that follow from the used attributes, r , w or x or a valid

combination of them. The allowed attributes are shown in the

following table. A value between < and > in the table means this value

is set automatically by the linker.

Properties set in LSL Resulting section properties

attributes filled access memory content

x yes <rom> executable

r yes r <rom> data

r no r <rom> scratch

rx yes r <rom> executable

rw yes rw <ram> data

rw no rw <ram> scratch

rwx yes rw <ram> executable

group (...)
{
 reserved ”myreserved” (size = 2k,
 attributes = rw, fill = 0xaa);
}

If you do not specify any attributes, the linker locates the reserved

section in its space as a non-executable section, whatever type of

memory lies beneath. If you use the reserved section in combination

with other sections that do have a predefined memory constraint, the

reserved section(s) adapt to the memory constraint of the others.

Reference Guide7–46
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

The linker creates two labels to mark the begin and end of the section,

__lc_ub_ name for the start, and _lc_ue_ name for the end of the

reserved section.

• The copytable keyword tells the linker to select a section that is used

as copy-table. The content of the copy-table is created by the linker. It

contains the start address and length of all sections that should be

initialized by the startup code.

The linker creates two labels to mark the begin and end of the section,

__lc_ub_table for the start, and _lc_ue_table for the end of the

copy table. The linker generates a copy table when a reference to

either of the section labels exists in one of the input object files.

7.8.4 CREATING SYMBOLS

You can tell the linker to create symbols before locating by putting

assignments in the section layout definition. Symbol names are

represented by double-quoted strings. Any string is allowed, but object

files may not support all characters for symbol names. You can use two

different assignment operators. With the simple assignment operator '=',

the symbol is created unconditionally. With the ':=' operator, the symbol is

only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may

contain references to other symbols. If such a referred symbol is a special

section symbol, creation of the symbol in the left hand side of the

assignment will cause creation of the special section.

section_layout
{
 ”__lc_bs” := ”__lc_ub_stack”;
 // when the symbol __lc_bs occurs in the object
 // file, the linker allocates space for the stack
}

Linker Script Language 7–47

• • • • • • • •

7.8.5 CONDITIONAL GROUP STATEMENTS

Within a group, you can conditionally select sections or create special

sections.

• With the if keyword you can specify a condition. The succeeding

section statement is executed if the condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which

is executed in case the if-condition evaluates to FALSE (0).

group (...)
{
 if (size_of (sect:.mysection) < 2k)
 select ”.mysection”;
 else
 select ”.othersection”;
}

Reference Guide7–48
L

IN
K

E
R

 S
C

R
IP

T
 L

A
N

G
U

A
G

E

8

MISRA C RULES
C
H
A
P
T
E
R

Reference Guide8–2
M

IS
R

A
 C

8

C
H
A
P
T
E
R

MISRA C Rules 8–3

• • • • • • • •

Supported and unsupported MISRA C rules

A number of MISRA C rules leave room for interpretation. Other rules can

only be checked in a limited way. In such cases the implementation

decisions and possible restrictions for these rules are listed.

1. The code shall conform to standard C, without language extensions

* 2. Other languages should only be used with an interface standard

3. Inline assembly is only allowed in dedicated C functions

* 4. Provision should be made for appropriate run-time checking

5. Only use characters and escape sequences defined by ISO C

* 6. Character values shall be restricted to a subset of ISO 106460-1

7. Trigraphs shall not be used

8. Multibyte characters and wide string literals shall not be used

9. Comments shall not be nested

10. Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of comment

is C code that is commented out, or just some pseudo code. Instead,

the following heuristics are used to detect possible C code inside a

comment:

- a line ends with ';', or

- a line starts with '}', possibly preceded by white space

11. Identifiers shall not rely on significance of more than 31 characters

12. The same identifier shall not be used in multiple name spaces

13. Specific-length typedefs should be used instead of the basic types

14. Use 'unsigned char' or 'signed char' instead of plain 'char'

* 15. Floating point implementations should comply with a standard

16. The bit representation of floating point numbers shall not be used

A violation is reported when a pointer to a floating point type is

converted to a pointer to an integer type.

Reference Guide8–4
M

IS
R

A
 C

17. "typedef" names shall not be reused

18. Numeric constants should be suffixed to indicate type

A violation is reported when the value of the constant is outside the

range indicated by the suffixes, if any.

19. Octal constants (other than zero) shall not be used

20. All object and function identifiers shall be declared before use

21. Identifiers shall not hide identifiers in an outer scope

22. Declarations should be at function scope where possible

* 23. All declarations at file scope should be static where possible

24. Identifiers shall not have both internal and external linkage

* 25. Identifiers with external linkage shall have exactly one definition

26. Multiple declarations for objects or functions shall be compatible

* 27. External objects should not be declared in more than one file

28. The "register" storage class specifier should not be used

29. The use of a tag shall agree with its declaration

30. All automatics shall be initialized before being used

This rule is checked using worst-case assumptions. This means that

violations are reported not only for variables that are guaranteed to

be uninitialized, but also for variables that are uninitialized on some

execution paths.

31. Braces shall be used in the initialization of arrays and structures

32. Only the first, or all enumeration constants may be initialized

33. The right hand operand of && or || shall not contain side effects

34. The operands of a logical && or || shall be primary expressions

35. Assignment operators shall not be used in Boolean expressions

36. Logical operators should not be confused with bitwise operators

37. Bitwise operations shall not be performed on signed integers

MISRA C Rules 8–5

• • • • • • • •

38. A shift count shall be between 0 and the operand width minus 1

This violation will only be checked when the shift count evaluates

to a constant value at compile time.

39. The unary minus shall not be applied to an unsigned expression

40. "sizeof" should not be used on expressions with side effects

* 41. The implementation of integer division should be documented

42. The comma operator shall only be used in a "for" condition

43. Don't use implicit conversions which may result in information loss

44. Redundant explicit casts should not be used

45. Type casting from any type to or from pointers shall not be used

46. The value of an expression shall be evaluation order independent

This rule is checked using worst-case assumptions. This means that

a violation will be reported when a possible alias may cause the

result of an expression to be evaluation order dependent.

47. No dependence should be placed on operator precedence rules

48. Mixed arithmetic should use explicit casting

49. Tests of a (non-Boolean) value against 0 should be made explicit

50. F.P. variables shall not be tested for exact equality or inequality

51. Constant unsigned integer expressions should not wrap-around

52. There shall be no unreachable code

53. All non-null statements shall have a side-effect

54. A null statement shall only occur on a line by itself

55. Labels should not be used

56. The "goto" statement shall not be used

57. The "continue" statement shall not be used

58. The "break" statement shall not be used (except in a "switch")

Reference Guide8–6
M

IS
R

A
 C

59. An "if" or loop body shall always be enclosed in braces

60. All "if", "else if" constructs should contain a final "else"

61. Every non-empty "case" clause shall be terminated with a "break"

62. All "switch" statements should contain a final "default" case

63. A "switch" expression should not represent a Boolean case

64. Every "switch" shall have at least one "case"

65. Floating point variables shall not be used as loop counters

66. A "for" should only contain expressions concerning loop control

A violation is reported when the loop initialization or loop update

expression modifies an object that is not referenced in the loop test.

67. Iterator variables should not be modified in a "for" loop

68. Functions shall always be declared at file scope

69. Functions with variable number of arguments shall not be used

70. Functions shall not call themselves, either directly or indirectly

A violation will be reported for direct or indirect recursive function

calls in the source file being checked. Recursion via functions in

other source files, or recursion via function pointers is not detected.

71. Function prototypes shall be visible at the definition and call

72. The function prototype of the declaration shall match the definition

73. Identifiers shall be given for all prototype parameters or for none

74. Parameter identifiers shall be identical for declaration/definition

75. Every function shall have an explicit return type

76. Functions with no parameters shall have a "void" parameter list

77. An actual parameter type shall be compatible with the prototype

78. The number of actual parameters shall match the prototype

79. The values returned by "void" functions shall not be used

MISRA C Rules 8–7

• • • • • • • •

80. Void expressions shall not be passed as function parameters

81. "const" should be used for reference parameters not modified

82. A function should have a single point of exit

83. Every exit point shall have a "return" of the declared return type

84. For "void" functions, "return" shall not have an expression

85. Function calls with no parameters should have empty parentheses

86. If a function returns error information, it should be tested

A violation is reported when a the return value of a function is

ignored.

87. #include shall only be preceded by another directives or comments

88. Non-standard characters shall not occur in #include directives

89. #include shall be followed by either <filename> or "filename"

90. Plain macros shall only be used for constants/qualifiers/specifiers

91. Macros shall not be #define'd and #undef'd within a block

92. #undef should not be used

93. A function should be used in preference to a function-like macro

94. A function-like macro shall not be used without all arguments

95. Macro arguments shall not contain pre-preprocessing directives

A violation is reported when the first token of an actual macro

argument is '#'.

96. Macro definitions/parameters should be enclosed in parentheses

97. Don't use undefined identifiers in pre-processing directives

98. A macro definition shall contain at most one # or ## operator

99. All uses of the #pragma directive shall be documented

This rule is really a documentation issue. The compiler will flag all

#pragma directives as violations.

Reference Guide8–8
M

IS
R

A
 C

100. "defined" shall only be used in one of the two standard forms

101. Pointer arithmetic should not be used

102. No more than 2 levels of pointer indirection should be used

A violation is reported when a pointer with three or more levels of

indirection is declared.

103. No relational operators between pointers to different objects

In general, checking whether two pointers point to the same object

is impossible. The compiler will only report a violation for a

relational operation with incompatible pointer types.

104. Non-constant pointers to functions shall not be used

105. Functions assigned to the same pointer shall be of identical type

106. Automatic address may not be assigned to a longer lived object

107. The null pointer shall not be de-referenced

A violation is reported for every pointer dereference that is not

guarded by a NULL pointer test.

108. All struct/union members shall be fully specified

109. Overlapping variable storage shall not be used

A violation is reported for every 'union' declaration.

110. Unions shall not be used to access the sub-parts of larger types

A violation is reported for a 'union' containing a 'struct' member.

111. Bit fields shall have type "unsigned int" or "signed int"

112. Bit fields of type "signed int" shall be at least 2 bits long

113. All struct/union members shall be named

114. Reserved and standard library names shall not be redefined

115. Standard library function names shall not be reused

* 116. Production libraries shall comply with the MISRA C restrictions

* 117. The validity of library function parameters shall be checked

MISRA C Rules 8–9

• • • • • • • •

118. Dynamic heap memory allocation shall not be used

119. The error indicator "errno" shall not be used

120. The macro "offsetof" shall not be used

121. <locale.h> and the "setlocale" function shall not be used

122. The "setjmp" and "longjmp" functions shall not be used

123. The signal handling facilities of <signal.h> shall not be used

124. The <stdio.h> library shall not be used in production code

125. The functions atof/atoi/atol shall not be used

126. The functions abort/exit/getenv/system shall not be used

127. The time handling functions of library <time.h> shall not be used

* = Not supported by the TASKING C compiler

See also section 5.8, C Code Checking: MISRA C, in Chapter Using the
Compiler of the User's Guide.

Reference Guide8–10
M

IS
R

A
 C

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
#define, 4-12, 4-87

#include, 4-23

#undef, 4-43

__asm(), 1-5

__at(), 1-6

__bita, 1-7

__interrupt(), 1-8

__interrupt_fixed(), 1-8

__LITTLE_ENDIAN__, 1-19

__noinline, 1-8

__rom, 1-7

__sfr, 1-7

_close, 2-11

_lseek, 2-11

_open, 2-11

_read, 2-11

_tolower, 2-12

_toupper, 2-12

_unlink, 2-12

_write, 2-12

A
abort, 2-13

abs, 2-13, 3-5

access, 2-13

acos, 2-13

align, 3-12

architecture definition, 7-3, 7-20

archiver options

-?, 4-195
-d, 4-196
-p, 4-200
-f, 4-197
-m, 4-199
-r, 4-201
-t, 4-203
-V, 4-204
-w, 4-205

-x, 4-206
add module, 4-201
create library, 4-201
delete module, 4-196
extract module, 4-206
move module, 4-199
print list of objects, 4-203
print list of symbols, 4-203
print module, 4-200
replace module, 4-201

arg, 3-5

ascii, 3-13

asciiz, 3-13

asctime, 2-14

asin, 2-14

assembler controls

case, 3-56
debug, 3-57
detailed description, 3-55
ident, 3-58
list, 3-61
list on/off, 3-59
listing controls (overview), 3-55
miscellaneous (overview), 3-55
object, 3-63
optj, 3-64
overview, 3-55
page, 3-65
prctl, 3-67
stitle, 3-68
title, 3-69
warning off, 3-70

assembler directives

align, 3-12
ascii, 3-13
asciiz, 3-13
assembly control (overview), 3-9
bs, 3-14
bsb, 3-15
bsbit, 3-16
bsl, 3-17
bsw, 3-17

IndexIndex–4
IN
D
E
X

btequ, 3-18
calls, 3-19
comment, 3-20
conditional assembly (overview),

3-11
data definition (overview), 3-10
db, 3-21
dbit, 3-23
debug information (overview), 3-11
define, 3-24
defsect, 3-25
detailed description, 3-11
dl, 3-27
ds, 3-29
dup/endm, 3-30
dupa/endm, 3-31
dupc/endm, 3-32
dupf/endm, 3-33
dw, 3-27
end, 3-34
equ, 3-35
exitm, 3-36
extern, 3-37
fail, 3-38
global, 3-39
if, 3-40
include, 3-42
local, 3-43
macro/endm, 3-44
macros (overview), 3-11
message, 3-46
name, 3-47
overview, 3-9
pmacro, 3-48
radix, 3-49
sect, 3-50
set, 3-51
storage allocation (overview), 3-10
symbol definitions (overview), 3-10
undef, 3-52
warn, 3-53
weak, 3-54

assembler list file, 4-68

assembler options

-?, 4-50
--case-sensitive, 4-52
--cpu, 4-51
--debug-info, 4-61
--define, 4-53
--diag, 4-55
--emit-locals, 4-57
--error-file, 4-58
--help, 4-50
--include-directory, 4-64
--include-file, 4-63
--keep-output-files, 4-67
--list-file, 4-70
--list-format, 4-68
--no-warnings, 4-79
--optimize, 4-72
--option-file, 4-59
--output, 4-73
--preprocessor-type, 4-71
--section-info, 4-74
--symbol-scope, 4-66
--type-checking, 4-76
--version, 4-77, 4-78
--warnings-as-errors, 4-81
-C, 4-51
-c, 4-52
-D, 4-53
-f, 4-59
-g, 4-61
-H, 4-63
-I, 4-64
-i, 4-66
-k, 4-67
-L, 4-68
-l, 4-70
-m, 4-71
-O, 4-72
-o, 4-73
-t, 4-74
-V, 4-77, 4-78
-w, 4-79

Index Index–5

• • • • • • • •

assembly functions

abs, 3-5
arg, 3-5
fract, 3-5
cnt, 3-5
def, 3-6
len, 3-6
lst, 3-6
lsw, 3-6
mac, 3-6
max, 3-7
min, 3-7
msw, 3-7
mxp, 3-7
pos, 3-7
scp, 3-8
sgn, 3-8
sub, 3-8
syntax, 3-3

assert, 2-14

assert.h, assert, 2-14

atan, 2-14

atan2, 2-15

atexit, 2-15

atof, 2-15

atoi, 2-15

atol, 2-16

B
board specification, 7-5, 7-32

bs, 3-14, 3-29

bsb, 3-15

bsbit, 3-16

bsearch, 2-16

bsl, 3-17

bsw, 3-17

btequ, 3-18

btowc, 2-16

bus definition, 7-4

C
calloc, 2-17

calls, 3-19

case, 3-56

case sensitivity, 4-84

cat, 3-5

ceil, 2-17

char type, treat as unsigned, 4-44

chdir, 2-17

clearerr, 2-17

clock, 2-18

close, 2-18

cnt, 3-5

command file, 4-19, 4-59, 4-95, 4-142,

4-180

comment, 3-20

compiler options

-?, 4-4
--align, 4-7
--align-data, 4-8
--align-func, 4-9
--cpu, 4-10
--debug-info, 4-21
--define, 4-12
--diag, 4-14
--error-file, 4-18
--help, 4-4
--include-directory, 4-23
--include-file, 4-22
--inline-max-incr, 4-25
--inline-max-size, 4-25
--integer-enumeration, 4-27
--iso, 4-11
--keep-output-files, 4-28
--language, 4-5
--misrac, 4-29
--no-warnings, 4-46
--noclear, 4-31
--noframe, 4-32
--novector, 4-33

IndexIndex–6
IN
D
E
X

--optimize, 4-34
--option-file, 4-19
--output, 4-37
--preprocess, 4-16
--rename-sections, 4-38
--romconstants, 4-40
--romstrings, 4-40
--source, 4-41
--stdout, 4-30
--tradeoff, 4-42
--uchar, 4-44
--undefine, 4-43
--version, 4-45
--warnings-as-errors, 4-48
-A, 4-5
-C, 4-10
-c, 4-11
-D, 4-12
-E, 4-16
-f, 4-19
-g, 4-21
-H, 4-22
-I, 4-23
-k, 4-28
-n, 4-30
-O, 4-34
-o, 4-37
-R, 4-38
-s, 4-41
-t, 4-42
-U, 4-43
-u, 4-44
-V, 4-45
-w, 4-46

conditional make rules, 4-166

control program options

-?, 4-131, 4-132
--cpu, 4-134
--create, 4-135
--debug-info, 4-146
--define, 4-138
--diag, 4-136, 4-137
--dry-run, 4-154

--error-file, 4-141
--format, 4-144
--fp-trap, 4-145
--help, 4-131, 4-132
--ignore-default-library-path,

4-151
--include-directory, 4-147
--iso, 4-149
--keep-output-files, 4-150
--keep-temporary-files, 4-158
--library, 4-153
--library-directory, 4-151
--no-default-libraries, 4-155
--no-map-file, 4-156
--no-warnings, 4-163
--option-file, 4-142
--output, 4-157
--pass, 4-159
--pass-assembler, 4-159
--pass-c, 4-159
--pass-linker, 4-159
--preprocess, 4-140
--undefine, 4-160
--verbose, 4-162
--version, 4-161
--warnings-as-errors, 4-164
-C, 4-134
-cl, 4-135
-co, 4-135
-cs, 4-135
-D, 4-138
-E, 4-140
-f, 4-142
-g, 4-146
-I, 4-147
-k, 4-150
-L, 4-151
-l, 4-153
-n, 4-154
-o, 4-157
-t, 4-158
-U, 4-160
-V, 4-161

Index Index–7

• • • • • • • •

-v, 4-162
-W, 4-159
-w, 4-163
-Wa, 4-159
-Wc, 4-159
-Wl, 4-159

controls

See also assembler directives
detailed description, 3-55

copy table, 4-114, 7-46

copysign, 2-18

copysignf, 2-18

core type, 4-51

cos, 2-19

cosh, 2-19

CPU type, 4-10, 4-51, 4-134

ctime, 2-19

ctype.h

_tolower, 2-12
_toupper, 2-12
isalnum, 2-32
isalpha, 2-32
isascii, 2-32
iscntrl, 2-32
isdigit, 2-32
isgraph, 2-33
islower, 2-34
isprint, 2-35
ispunct, 2-35
isspace, 2-35
isupper, 2-35
isxdigit, 2-38
toascii, 2-68
tolower, 2-68
toupper, 2-68

cycle count, 4-74

D
data types, 1-4

db, 3-21

dbit, 3-23

debug, 3-57

debug information, 4-21, 4-61, 4-124

def, 3-6

define, 3-24

defsect, 3-25

derivative definition, 7-4, 7-28

difftime, 2-19

directives

See also assembler directives
detailed description, 3-11

div, 2-20

dl, 3-27

ds, 3-29

dup, 3-30

dupa, 3-31

dupc, 3-32

dupf, 3-33

dw, 3-27

E
ELF/DWARF object format, 6-3

elif, 3-40

else, 3-40

end, 3-34

endif, 3-40

enum, 4-27

equ, 3-35

exit, 2-20

exit macro, 3-36

exitm, 3-36

exp, 2-20

extern, 3-37

F
fabs, 2-20

fail, 3-38

fclose, 2-21

fcntl.h, open, 2-46

IndexIndex–8
IN
D
E
X

feof, 2-21

ferror, 2-21

fflush, 2-21

fgetc, 2-22

fgetpos, 2-22

fgets, 2-22

fgetwc, 2-22

fgetws, 2-23

float.h

copysign, 2-18
copysignf, 2-18
isfinite, 2-33
isfinitef, 2-33
isinf, 2-33
isinff, 2-34
isnan, 2-34
isnanf, 2-34
scalb, 2-53
scalbf, 2-53

floor, 2-23

fmod, 2-23

fopen, 2-23

fprintf, 2-24

fputc, 2-24

fputs, 2-25

fputwc, 2-25

fputws, 2-25

fread, 2-25

free, 2-26

freopen, 2-26

frexp, 2-26

fscanf, 2-27

fseek, 2-27

fsetpos, 2-27

fstat, 2-28

ftell, 2-28

functions, assembly, 3-3

fwide, 2-28

fwrintf, 2-29

fwrite, 2-29

fwscanf, 2-29

G
getc, 2-30

getchar, 2-30

getcwd, 2-30

getenv, 2-30

gets, 2-31

getwc, 2-31

getwchar, 2-31

global, 3-39

gmtime, 2-31

H
header files, 2-4

I
ident, 3-58

IEEE 32-bit single precision format,

1-5

if, 3-40

include, 3-42

inline, 1-8

inline functions, 4-25

Intel hex, record type, 6-8

interrupt handling, 1-11

intrinsic functions, 1-9

interrupt handling, 1-11
miscellaneous, 1-14
register handling, 1-12

isalnum, 2-32

isalpha, 2-32

isascii, 2-32

iscntrl, 2-32

isdigit, 2-32

isfinite, 2-33

isfinitef, 2-33

Index Index–9

• • • • • • • •

isgraph, 2-33

isinf, 2-33

isinff, 2-34

islower, 2-34

isnan, 2-34

isnanf, 2-34

ISO C standard, 4-11

isprint, 2-35

ispunct, 2-35

isspace, 2-35

isupper, 2-35

iswalnum, 2-35

iswalpha, 2-36

iswcntrl, 2-36

iswctype, 2-36

iswdigit, 2-36

iswgraph, 2-36

iswlower, 2-37

iswprint, 2-37

iswpunct, 2-37

iswspace, 2-37

iswupper, 2-37

iswxdigit, 2-38

isxdigit, 2-38

L
labs, 2-38

language extensions, intrinsic

functions, 1-9

ldexp, 2-38

ldiv, 2-38

len, 3-6

linker map file, 4-109

linker options

-?, 4-83
--case-insensitive, 4-84
--chip-format, 4-85
--define, 4-87
--diag, 4-90
--error-file, 4-94

--extern, 4-92
--first-library-first, 4-97
--help, 4-83
--ignore-default-library-path,

4-103
--include-directory, 4-100
--incremental, 4-122
--keep-output-files, 4-102
--library, 4-105
--library-directory, 4-103
--link-only, 4-106
--lsl-check, 4-107
--lsl-dump, 4-108
--map-file, 4-109
--map-file-format, 4-110
--misra-c-report, 4-112
--munch, 4-113
--no-rescan, 4-115
--no-rom-copy, 4-114
--no-warnings, 4-127
--non-romable, 4-117
--optimize, 4-118
--option-file, 4-95
--output-file, 4-120
--strip-debug, 4-124
--user-provided-initialization-code,

4-98
--verbose, 4-126
--version, 4-125
--warnings-as-errors, 4-129
-c, 4-85
-D, 4-87
-d, 4-89
-e, 4-92
-f, 4-95
-I, 4-100
-i, 4-98
-k, 4-102
-L, 4-103
-l, 4-105
-M, 4-109
-m, 4-110

IndexIndex–10
IN
D
E
X

-N, 4-114
-O, 4-118
-o, 4-120
-r, 4-122
-S, 4-124
-t, 4-126
-V, 4-125
-v, 4-126
-w, 4-127

linker script file

architecture definition, 7-3
boad specification, 7-5
bus definition, 7-4
derivative definition, 7-4
memory definition, 7-4
processor definition, 7-4
section layout definition, 7-5

list, 3-61

list file, 4-70

assembler, 4-68
linker, 4-109

list on/off, 3-59

local, 3-43

locale.h

localeconv, 2-39
setlocale, 2-56

localeconv, 2-39

localtime, 2-39

log, 2-39

log10, 2-39

longjmp, 2-40

lseek, 2-40

LSL expression evaluation, 7-19

LSL functions

absolute(), 7-9
addressof(), 7-9
exists(), 7-9
max(), 7-9
min(), 7-10
sizeof(), 7-10

LSL keywords

align, 7-22, 7-39
allow_cross_references, 7-40

architecture, 7-21, 7-29
attributes, 7-38, 7-39
bus, 7-22, 7-25, 7-34
contiguous, 7-40
copytable, 7-23
create_section, 7-40
derivative, 7-28, 7-33
dest, 7-25
dest_dbits, 7-25
dest_offset, 7-25
direction, 7-36, 7-40
else, 7-47
extends, 7-21, 7-28
fill, 7-30, 7-34
group, 7-37, 7-39
grows, 7-23
heap, 7-23, 7-43
id, 7-22
if, 7-47
load_addr, 7-41
map, 7-25
mau, 7-22, 7-30, 7-34
mem, 7-41
memory, 7-30, 7-34
min_size, 7-23
ordered, 7-40
overlay, 7-40
page, 7-41
page_size, 7-23
processor, 7-32
reserved, 7-43
run_addr, 7-41
section_layout, 7-36
select, 7-38
size, 7-25, 7-30, 7-34, 7-43
space, 7-22, 7-25
speed, 7-30, 7-34
src_dbits, 7-25
src_offset, 7-25
stack, 7-23, 7-43
start_address, 7-24
table, 7-43
type, 7-30, 7-34

Index Index–11

• • • • • • • •

width, 7-22
lst, 3-6

lstat, 2-40

lsw, 3-6

M
mac, 3-6

macro, 3-44

define, 4-138
undefine, 4-160

macros, 1-19

make utility, 4-166
macros, predefined

__DATE__, 4-43
__FILE__, 4-43
__LINE__, 4-43
__STDC__, 4-43
__TIME__, 4-43

make utility options

-?, 4-168
-a, 4-169
-c, 4-170
-D, 4-171
-d, 4-172
-DD, 4-171
-dd, 4-172
-e, 4-173
-err, 4-174
-f, 4-175
-G, 4-176
-i, 4-177
-K, 4-178
-k, 4-179
-m, 4-180, 4-186
-n, 4-182
-p, 4-183
-q, 4-184
-r, 4-185
-s, 4-187
-t, 4-188

-time, 4-189
-V, 4-190
-W, 4-191
-w, 4-192
-x, 4-193
defining a macro, 4-166

malloc, 2-41

map file

control program option, 4-156
format, 4-110
linker, 4-109

math.h

acos, 2-13
asin, 2-14
atan, 2-14
atan2, 2-15
ceil, 2-17
cos, 2-19
cosh, 2-19
exp, 2-20
fabs, 2-20
floor, 2-23
fmod, 2-23
frexp, 2-26
ldexp, 2-38
log, 2-39
log10, 2-39
modf, 2-46
pow, 2-47
sin, 2-57
sinh, 2-57
sqrt, 2-58
tan, 2-66
tanh, 2-66

max, 3-7

mblen, 2-41

mbrlen, 2-41

mbrtowc, 2-42

mbsinit, 2-42

mbsrtowcs, 2-43

mbstowcs, 2-43

mbtowc, 2-44

IndexIndex–12
IN
D
E
X

memchr, 2-44

memcmp, 2-44

memcpy, 2-45

memmove, 2-45

memory definition, 7-4

memset, 2-45

message, 3-46

min, 3-7

MISRA C, 4-29

supported rules, 8-3
mktime, 2-45

modf, 2-46

msw, 3-7

mxp, 3-7

N
name, 3-47

O
object, 3-63

offsetof, 2-46

open, 2-46

optimization, 4-34, 4-72, 4-118

option file, 4-19, 4-59, 4-95, 4-142,

4-180, 4-197

optj, 3-64

output file, 4-37, 4-73, 4-120, 4-157

output format, 4-85, 4-144

P
page, 3-65

pass option to tool, 4-159

perror, 2-47

pmacro, 3-48

pos, 3-7

pow, 2-47

pragmas, 1-15

prctl, 3-67

predefined macros, 1-19

predefined macros in C

__CPU__, 1-19
__CR8C__, 1-19
__DSPC__, 1-19
__SINGLE_FP__, 1-19
__TASKING__, 1-19

preprocessor, 4-71

printf, 2-47

processor definition, 7-4, 7-32

putc, 2-49

putchar, 2-50

puts, 2-50

putwc, 2-50

putwchar, 2-50

Q
qsort, 2-51

R
radix, 3-49

raise, 2-51

rand, 2-51

read, 2-51

realloc, 2-52

register handling, 1-12

remove, 2-52

rename, 2-52

rename sections, 4-38

rewind, 2-53

S
scalb, 2-53

scalbf, 2-53

Index Index–13

• • • • • • • •

scanf, 2-53

scp, 3-8

sect, 3-50

section, summary, 4-74

section activation, 3-50

section attributes, 3-25

section declaration, 3-25

section layout definition, 7-5, 7-36

sections, rename, 4-38

set, 3-51

setbuf, 2-55

setjmp, 2-56

setjmp.h

longjmp, 2-40
setjmp, 2-56

setlocale, 2-56

setvbuf, 2-56

sgn, 3-8

SIGABRT, 2-57

SIGFPE, 2-57

SIGILL, 2-57

SIGINT, 2-57

signal, 2-57

signal.h

raise, 2-51
signal, 2-57

signals, 2-57

SIGSEGV, 2-57

SIGTERM, 2-57

sin, 2-57

sinh, 2-57

sprintf, 2-58

sqrt, 2-58

srand, 2-58

sscanf, 2-58

stat, 2-59

stdarg.h

va_arg, 2-70
va_end, 2-70
va_start, 2-70

stddef.h, offsetof, 2-46

stdio.h

_close, 2-11

_lseek, 2-11
_open, 2-11
_read, 2-11
_unlink, 2-12
_write, 2-12
clearerr, 2-17
fclose, 2-21
feof, 2-21
ferror, 2-21
fflush, 2-21
fgetc, 2-22
fgetpos, 2-22
fgets, 2-22
fopen, 2-23
fprintf, 2-24
fputc, 2-24
fputs, 2-25
fread, 2-25
freopen, 2-26
fscanf, 2-27
fseek, 2-27
fsetpos, 2-27
ftell, 2-28
fwrite, 2-29
getc, 2-30
getchar, 2-30
gets, 2-31
perror, 2-47
printf, 2-47
putc, 2-49
putchar, 2-50
puts, 2-50
remove, 2-52
rename, 2-52
rewind, 2-53
scanf, 2-53
setbuf, 2-55
setvbuf, 2-56
sprintf, 2-58
sscanf, 2-58
tmpfile, 2-67
tmpnam, 2-67
ungetc, 2-69

IndexIndex–14
IN
D
E
X

vfprintf, 2-71
vprintf, 2-71
vsprintf, 2-72

stdlib.h

abort, 2-13
abs, 2-13
atexit, 2-15
atof, 2-15
atoi, 2-15
atol, 2-16
bsearch, 2-16
calloc, 2-17
div, 2-20
exit, 2-20
free, 2-26
getenv, 2-30
labs, 2-38
ldiv, 2-38
malloc, 2-41
mblen, 2-41
mbstowcs, 2-43
mbtowc, 2-44
qsort, 2-51
rand, 2-51
realloc, 2-52
srand, 2-58
strtod, 2-64
strtol, 2-64
strtoul, 2-65
system, 2-66
wcstombs, 2-79
wctomb, 2-80

stitle, 3-68

strcat, 2-59

strchr, 2-59

strcmp, 2-59

strcoll, 2-60

strcpy, 2-60

strcspm, 2-60

strerror, 2-60

strftime, 2-61

string.h

memchr, 2-44
memcmp, 2-44
memcpy, 2-45
memmove, 2-45
memset, 2-45
strcat, 2-59
strchr, 2-59
strcmp, 2-59
strcoll, 2-60
strcpy, 2-60
strcspn, 2-60
strerror, 2-60
strlen, 2-62
strncat, 2-62
strncmp, 2-62
strncpy, 2-62
strpbrk, 2-63
strrchr, 2-63
strspn, 2-63
strstr, 2-63
strtok, 2-64
strxfrm, 2-65

strlen, 2-62

strncat, 2-62

strncmp, 2-62

strncpy, 2-62

strpbrk, 2-63

strrchr, 2-63

strspn, 2-63

strstr, 2-63

strtod, 2-64

strtok, 2-64

strtol, 2-64

strtoul, 2-65

strxfrm, 2-65

sub, 3-8

swprintf, 2-65

swscanf, 2-66

system, 2-66

system libraries, 4-103, 4-105

Index Index–15

• • • • • • • •

T
tan, 2-66

tanh, 2-66

temporary files, 4-158

time, 2-67

time.h

asctime, 2-14
clock, 2-18
ctime, 2-19
difftime, 2-19
gmtime, 2-31
localtime, 2-39
mktime, 2-45
strftime, 2-61
time, 2-67

tmpfile, 2-67

tmpnam, 2-67

toascii, 2-68

tolower, 2-68

toupper, 2-68

towctrans, 2-68

towlower, 2-69

towupper, 2-69

trap handling, 4-145

U
undef, 3-52

ungetc, 2-69

ungetwc, 2-69

unistd.h

access, 2-13
chdir, 2-17
close, 2-18
fstat, 2-28
getcwd, 2-30
lseek, 2-40
lstat, 2-40
read, 2-51
stat, 2-59

unlink, 2-70
write, 2-83

unlink, 2-70

V
va_arg, 2-70

va_end, 2-70

va_start, 2-70

verbose, 4-126, 4-162

version information, 4-45, 4-77, 4-78,

4-125, 4-161, 4-190, 4-191, 4-204

vfprintf, 2-71

vfwprintf, 2-71

vprintf, 2-71

vsprintf, 2-72

vswprintf, 2-72

vwprintf, 2-72

W
warn, 3-53

title, 3-69, 3-70

warnings, 4-164

suppress, 4-79
warnings as errors, 4-48, 4-81, 4-129

warnings, suppress, 4-46, 4-127

wchar.h

btowc, 2-16
fgetwc, 2-22
fgetws, 2-23
fputwc, 2-25
fputws, 2-25
fwide, 2-28
fwprintf, 2-29
fwscanf, 2-29
getwc, 2-31
getwchar, 2-31
mbrlen, 2-41
mbrtowc, 2-42

IndexIndex–16
IN
D
E
X

mbsinit, 2-42
mbsrtowcs, 2-43
putwc, 2-50
putwchar, 2-50
swprintf, 2-65
swscanf, 2-66
ungetwc, 2-69
vfwprintf, 2-71
vswprintf, 2-72
vwprintf, 2-72
wcrtomb, 2-73
wcscat, 2-73
wcschr, 2-73
wcscmp, 2-74
wcscoll, 2-74
wcscpy, 2-74
wcscspn, 2-74
wcsftime, 2-75
wcslen, 2-75
wcsncat, 2-75
wcsncmp, 2-76
wcsncpy, 2-76
wcspbrk, 2-76
wcsrchr, 2-76
wcsrtombs, 2-77
wcsspn, 2-77
wcsstr, 2-77
wcstod, 2-78
wcstok, 2-78
wcstol, 2-78
wcstoul, 2-79
wcsxfrm, 2-79
wctob, 2-80
wmemchr, 2-81
wmemcmp, 2-81
wmemcpy, 2-82
wmemmove, 2-82
wmemset, 2-82
wprintf, 2-82
wscanf, 2-83

wcrtomb, 2-73

wcscat, 2-73

wcschr, 2-73

wcscmp, 2-74

wcscoll, 2-74

wcscpy, 2-74

wcscspn, 2-74

wcsftime, 2-75

wcslen, 2-75

wcsncat, 2-75

wcsncmp, 2-76

wcsncpy, 2-76

wcspbrk, 2-76

wcsrchr, 2-76

wcsrtombs, 2-77

wcsspn, 2-77

wcsstr, 2-77

wcstod, 2-78

wcstok, 2-78

wcstol, 2-78

wcstombs, 2-79

wcstoul, 2-79

wcsxfrm, 2-79

wctob, 2-80

wctomb, 2-80

wctrans, 2-80

wctype, 2-81

wctype.h

iswalnum, 2-35
iswalpha, 2-36
iswcntrl, 2-36
iswctype, 2-36
iswdigit, 2-36
iswgraph, 2-36
iswlower, 2-37
iswprint, 2-37
iswpunct, 2-37
iswspace, 2-37
iswupper, 2-37
iswxdigit, 2-38
towctrans, 2-68
towlower, 2-69
towupper, 2-69
wctrans, 2-80
wctype, 2-81

weak, 3-54

Index Index–17

• • • • • • • •

wmemchr, 2-81

wmemcmp, 2-81

wmemcpy, 2-82

wmemmove, 2-82

wmemset, 2-82

wprintf, 2-82

write, 2-83

wscanf, 2-83

IndexIndex–18
IN
D
E
X

	TABLE OF CONTENTS
	C LANGUAGE
	Introduction
	Data Types
	Keywords
	Function Qualifiers
	Intrinsic Functions
	Arithmetic Functions
	Interrupt Handling
	Control Register Handling
	Block Functions
	Bit Data Functions
	Miscellaneous Intrinsic Functions

	Pragmas
	Predefined Macros

	LIBRARIES
	Introduction
	Header Files
	C Library Functions

	ASSEMBLY LANGUAGE
	Introduction
	Built-in Assembly Functions
	Overview of Built-in Assembly Functions
	Detailed Description of Built-in Assembly Functions

	Assembler Directives and Controls
	Overview of Assembler Directives
	Detailed Description of Assembler Directives
	Overview of Assembler Controls
	Detailed Description of Assembler Controls

	TOOL OPTIONS
	Compiler Options
	Assembler Options
	Linker Options
	Control Program Options
	Make Utility Options
	Archiver Options

	LIST FILE FORMATS
	Assembler List File Format
	Linker Map File Format

	OBJECT FILE FORMATS
	ELF/DWARF Object Format
	Motorola S-Record Format
	Intel Hex Record Format

	LINKER SCRIPT LANGUAGE
	Introduction
	Structure of a Linker Script File
	Syntax of the Linker Script Language
	Identifiers
	Expressions
	Built-in Functions
	LSL Definitions in the Linker Script File
	Memory and Bus Definitions
	Architecture Definition
	Derivative Definition
	Processor Definition and Board Specification
	Section Placement Definition

	Expression Evaluation
	Semantics of the Architecture Definition
	Defining an Architecture
	Defining Internal Buses
	Defining Address Spaces
	Mappings

	Semantics of the Derivative Definition
	Defining a Derivative
	Instantiating Core Architectures
	Defining Internal Memory and Buses

	Semantics of the Board Specification
	Defining a Processor
	Instantiating Derivatives
	Defining External Memory and Buses

	Semantics of the Section Layout Definition
	Defining a Section Layout
	Creating and Locating Groups of Sections
	Creating or Modifying Special Sections
	Creating Symbols
	Conditional Group Statements

	MISRA C RULES
	INDEX

