MAO019-002-00-00
Doc. ver.: 5.16

sfile = fopern (Z:]

if(sfile == NI

{

refturn -1;

C166/ST10 v8.5

C Cross-Compiler
User’s Manual

&

TASKING

Altram

A publication of
Altium BV
Documentation Department

Copyright O 1991-2004 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Macrovision Corporation.
HP and HP-UX are trademarks of Hewlett—Packard Co.
Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
Jfor inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNODO

Table of Contents

SOFTWARE INSTALLATION 1-1
1.1 Introduction 1-3
1.2 Software Installation 1-3
1.2.1 Installation for Windows 1-3
1.2.2 Installation for Linuxo 1-4
1.2.3 Installation for UNIX Hosts 1-6
13 Software Configuration 1-8
13.1 Configuring the Embedded Development Environment 1-8
1.3.2 Configuring the Command Line Environment 1-9
1.4 Licensing TASKING Products 1-12
1.4.1 Obtaining License Information 1-12
1.4.2 Installing Node-Locked Licenses 1-13
1.4.3 Installing Floating Licenses 1-14
1.4.4 Modifying the License File Location 1-16
1.4.5 How to Determine the Host ID 1-17
1.4.6 How to Determine the Host Name 1-17

OVERVIEW 2-1
2.1 Introduction to C C166/ST10 Cross-Compiler 2-3
2.2 General Implementation 2-4
221 Compiler Phases i 2-4
222 Frontend Optimizations 2-6
23 Program Development Flow 2-9
2.4 Working With Projects in EDE 2-13
2.5 Start EDE 2-15
2.6 Using the Sample Projects 2-16
2.7 Create a New Project Space with a Project 2-17
2.8 Set Options for the Tools in the Toolchain 2-21
29 Build your Application 2-23
2.10 How to Build Your Application on the Command Line 2-24
2.10.1 Using the Control Program 2-24
2.10.2 Using the Separate Programs 2-26
2.10.3 Using a Makefile 2-29
211 Debugging your Application 2-30

\

Table of Contents

2.12 Using DAVE Projects with EDE 2-31
LANGUAGE IMPLEMENTATION 3-1
3.1 Introduction 3-3
3.2 Accessing Memory o e 3-5
3.2.1 Memory Models 3-6
3.2.1.1 Tiny Memory Model 3-6
3.2.1.2 Small Memory Model 3-8
3213 Medium Memory Model 3-13
3.2.14 Large Memory Model 3-15
3.2.15 Huge Memory Model 3-17
3.2.1.6 CMODEL ... oo 3-18
3.2.1.7 Efficiency in Large Data Models (Medium/Large/Huge) 3-19
3.2.1.8 _Near, Xnear, Far, Huge and Shuge 3-22
3.2.19 _System, Iramand Bita 3-25
322 User Stack Model oL, 3-28
323 Section Allocation 3-30
3.2.4 Code Memory Fragmentation 3-37
3.2.5 Constant Romdata Section Allocation 3-38
3.2.6 The at() Attribute 3-41
3.2.7 The atbit() Attribute 3-43
3.2.8 Inline C Functions: _inline 3-44
3.2.9 Unaligned Data: _noalign 3-45
3.2.10 Using Packed Structures: _packed 3-46
33 Task SCOPE . ..o 3-49
3.4 Data TYPES . oot 3-53
3.4.1 ANSI C Type Conversionso..... 3-54
3.4.2 Character Arithmetic 3-57
343 The Bit TyPE .. oo 3-58
3.4.4 The Bitword Typeo 3-59
3.4.5 Special Function Registers 3-60
3.5 Predefined Macros, 3-62
3.6 Function Parametersc....cooo... 3-63
3.6.1 Static Approach of Function Automatics 3-64

Table of Contents

3.7

3.8
3.8.1
3.8.2
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.16.1
3.16.2
3.16.3
3.16.4
3.16.4.1
3.16.4.2
3.16.4.3
3.16.5
3.16.5.1
3.16.5.2
3.16.5.3
3.16.5.4
3.16.6
3.16.7
3.16.8
3.16.9
3.17
3171
3.17.2

3.18
3.19
3.20

Register Variables 3-66
Initialized Variables 3-68
Automatic Initializations 3-68
Static Initializations 3-68
Non-Initialized Variables 3-69
Strings 3-70
Inline Assembly 3-73
INEEITUPL ..o 3-76
Extensions for the XC16x/Super10 Architectures 3-78
Switch Statement 3-85
Register USAgEo v et 3-86
Floating Point Interfacing 3-87
Introduction Software Floating Point Usage 3-87
The IEEE-754 Format 3-87
Storage in Memory 3-89
Single Precision Usagecoooo... 3-90
Float Base Expression Subroutines 3-90
Float Conversion Subroutines 3-91
Register Usage Single Precision 3-91
Double Precision Usagecovvn... 3-92
Double Base Expression Subroutines 3-92
Double Conversion Subroutines 3-93
Double Support Subroutines 3-94
Register Usage Double Precision 3-95
Float/Double Usage for Assembly Programmers 3-95
Floating Point Trapping 3-96
Handling Floating Point Traps in a C Application 3-98
IEEE-754 Compliant Error Handling 3-105
Intrinsic Functions 3-106
User Defined Intrinsics 3-128
Implementing Other CoXXX Intrinsics Using the

_CoXXX Intrinsic Functions 3-132
Code Memory Banking 3-134
C Code Checking: MISRAC 3-139

PEC SUPPOIt . ..ot 3-141

Vil

VI

=

Table of Contents

3.21 Portable CCode 3-143
3.22 How to Program Smart with ¢166 3-143
COMPILER USE 4-1
4.1 Control Program i, 4-3
4.2 Compiler 4-6
43 Detailed Description of the Compiler options 4-10
4.4 Include Files i 4-86
4.5 Pragmast 4-89
4.6 AlIAS ..o 4-98
4.7 Compiler Limits i 4-100
COMPILER DIAGNOSTICS 5-1
5.1 Introduction 5-3
5.2 Return Values i, 5-4
5.3 Errors and Warnings, 5-6
LIBRARIES 6-1
6.1 Introduction i 6-3
6.2 Small, Medium and Large I/O Formatters 6-5
6.3 Single Precision Floating Point 6-6
6.4 CAN SUPPOIT + oottt 6-6
6.5 Header Files i ., 6-7
6.6 C Library Interface Description 6-10
6.7 CAN Library Interface Description 6-108
6.8 Creating your own C Library 6-111
RUN-TIME ENVIRONMENT 7-1
7.1 Startup Code 7-3
7.2 Stack Size 7-8
7.3 Heap Size 7-10
7.4 Assembly Language Interfacing 7-12

Table of Contents

MISRA C A-1
DEBUG ENVIRONMENT B-1
1 CrossView Pro and Evaluation Boards B-3
2 Kontron Debugger B—4
3 Hitex HITOP Telemon 80C167 B-6
4 pls fast—=viewo0 B-7
CPU FUNCTIONAL PROBLEMS C-1
1 Introduction i C-3
2 CPU Functional Problem Bypasses C+4
USER STACK MODEL D-1
1 Introduction D-3
2 Function Call and Return D-4
2.1 Direct Intra-segment Function Call and Return D-4
2.2 Indirect Intra-segment Function Call and Return D-5
2.3 Direct Inter-segment Function Call and Return D-6
2.4 Indirect Inter-segment Function Call and Return D-8
2.5 Inter—-segment Call and Return Table Stub Functions .. D-10
2.6 Intra—segment Call and Return Stub Functions D-12
3 Using the Extended Instruction Set D-14
3.1 Introduction D-14
3.2 Direct Inter-segment Function Call and Return D-15
33 Indirect Inter-segment Function Call and Return D-16
4 Mixing User Stack and non-User Stack Functions D-17

INDEX

CONTENTS

Table of Contents

Manual Purpose and Structure

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING C166/ST10 C
Cross—Compiler. It assumes that you are familiar with the C language.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

Chapters

1. Software Installation
Describes the installation of the C Cross—Compiler for the C166/ST10.

2. Overview
Provides an overview of the TASKING C166/ST10 toolchain and gives
you some familiarity with the different parts of it and their relationship.
A sample session explains how to build a C166/ST10 application from
your C file.

3. Language Implementation
Concentrates on the approach of the C166/ST10 architecture and
describes the language implementation. The C language itself is not
described in this document. We recommend: "The C Programming
Language” (second edition) by B. Kernighan and D. Ritchie (1988,
Prentice Hall).

4. Compiler Use
Deals with control program and C compiler invocation, command line
options and pragmas.

5. Compiler Diagnostics
Describes the exit status and error/warning messages of the compiler.

6. Libraries
Contains the library functions supported by the compiler, and describes
their interface and "header’ files.

Xl

Xl

=

Manual Purpose and Structure

7. Run-time Environment
Describes the run—time environment for a C application. It deals with
items like assembly language interfacing, C startup code and
stack/heap size.

Appendices

A. MISRA C
Supported and unsupported MISRA C rules.

B. Debug Environment
Contains operation remarks when you want to use a debug
environment such as CrossView Pro with evaluation boards, Kontron
debugger, Hitex HiTOP or the pls fast-view66 debugger.

C. CPU Functional Problems
Describes how the C166/ST10 toolchain can bypass some functional
problems of the CPU.

D. User Stack Model
Describes the special coding methods used in the libraries and
C166/ST10 C compiler to support a special stack frame.

Manual Purpose and Structure

RELATED PUBLICATIONS

The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)
ANSI X3.159-1989 standard [ANSI]

C166/ST10 Cross—Assembler, Linker/Locator, Utilities User’s Manual
[TASKING, MA019-000-00-00]

C166/ST10 C++ Compiler User’s Manual [TASKING, MA019-012-00-00)

C166/ST10 CrossView Pro Debugger User’s Manual
[TASKING, MA019-041-00-00]

C16x User’s Manuals [Infineon Technologies]
ST10 User’s Manuals [STMicroelectronics]
ST10 Family Programming Manual [STMicroelectronics]

XC16x/Superl0 User’s Manuals
[Infineon Technologies / STMicroelectronics|

X

XV

Manual Purpose and Structure

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{J

italics

screen font

bold font

For example

Items shown inside curly braces enclose a list from which
you must choose an item.

Items shown inside square brackets enclose items that are
optional.

The vertical bar separates items in a list. It can be read as
OR.

Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

Represents input examples and screen output examples.

Represents a command name, an option or a complete
command line which you can enter.

command [option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure

@2 This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

% This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XV

Té

MANUAL STRUCTURE

Manual Purpose and Structure

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

1.1 INTRODUCTION

This chapter guides you through the procedures to install the software on
a Windows system or on a Linux or UNIX host.

The software for Windows has two faces: a graphical interface (Embedded
Development Environment) and a command line interface. The Linux and
UNIX software have only a command line interface.

After the installation, it is explained how to configure the software and
how to install the license information that is needed to actually use the
software.

1.2 SOFTWARE INSTALLATION

1.2.1 INSTALLATION FOR WINDOWS

1.

2.

Start Windows 95/98/XP/NT/2000, if you have not already done so.
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.
Click the Start button and select Run...

In the dialog box type d:\setup (substitute the correct drive letter for
your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.
Select a product and click on the Install button.

Follow the instructions that appear on your screen.

You can find your serial number on the invoice, delivery note, or picking
slip delivered with the product.

License the software product as explained in section 1.4, Licensing
TASKING Products.

1-4

=

Chapter 1

1.2.2 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian
package and as a gzipped tar file. For each product the following files are
present:

SWproduct-version—-RPMrelease.i386.rpm
swproduct_version-release_1i386.deb
SWproduct-version.tar.gz

These three files contain exactly the same information, so you only have
to install one of them. When your Linux distribution supports RPM
packages, you can install the .rpm file. For a Debian based distribution,
you can use the .deb file. Otherwise, you can install the product from the
.tar.gz file.

RPM Installation

1. In most situations you have to be "root” to install RPM packages, so either
login as "root”, or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom
4. To install or upgrade all products at once, issue the following command:

rpm -U SW*.rpm

This will install or upgrade all products in the default installation directory
/usr/local. Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable’, so it is possible to select a different
installation directory with the ——prefix option. For instance when you
want to install the products in /opt, use the following command:

rpm -U ——prefix /opt SW*.rpm

For Red Hat 6.0 users: The ——prefix option does not work with RPM
version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the .tar.gz file installation described
in the next section if you want to install in a non-standard directory.

Software Installation

Debian Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD-ROM is mounted:
cd /cdrom

4. To install or upgrade all products at once, issue the following command:
dpkg —i sw*.deb

This will install or upgrade all products in a subdirectory of the default
installation directory /usr/local.

Tar.gz Installation
1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD-ROM is mounted:
cd /cdrom

4. To install the products from the .tar.gz files in the directory
/usr/local, issue the following command for each product:

tar xzf SWproduct-version.tar.gz —-C /usr/local

Every .tar.gz file creates a single directory in the directory where it is
extracted.

1-6 Chapter 1

=

1.2.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

If you are a first time user, decide where you want to install the product.
By default it will be installed in /usr/local.

2. For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example /cdrom. Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manual pages about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

mkdir /tmp/instdir

3. For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tmp/instdir
tar xvf /dev/tape

where tape is the name of your tape device.

@ If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

4. Run the installation script:
sh install

and follow the instructions appearing on your screen.

Software Installation

First a question appears about where to install the software. The default
answer is /usr/local. On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

% WARNING *
SWxxxxxX XXxXxX.xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installation of SWxxxxxx XxxxXx.xxxx completed.

For tape install: remove the temporary installation directory with the
following commands:

cd /tmp
rm —-rf instdir

If you purchased a protected TASKING product, license the software
product as explained in section 1.4, Licensing TASKING Products.

1-8

=

Chapter 1

1.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the
Embedded Development Environment and the command line environment
for Windows, Linux and UNIX.

1.3.1

CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation, the Embedded Development Environment is
automatically configured with default search paths to find the executables,
include files and libraries. In most cases you can use these settings. To
change the default settings, follow the next steps:

1.

Double—click on the EDE icon on your desktop to start the Embedded
Development Environment (EDE).

From the Project menu, select Directories...

The Directories dialog box appears.

Fill in the following fields:

In the Executable Files Path field, type the pathname of the
directory where the executables are located. The default directory is
$ (PRODDIR) \bin.

In the Include Files Path field, add the pathnames of the
directories where the compiler and assembler should look for
include files. The default directory is $ (PRODDIR)\include.
Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and
assembler look for include files. To change the search order, simply
change the order of pathnames.

In the Library Files Path field, add the pathnames of the
directories where the linker should look for library files. The default
directory is $ (PRODDIR)\1lib. Separate pathnames with a
semicolon ().

The first path in the list is the first path where the linker looks for
library files. To change the search order, simply change the order of
pathnames.

Software Installation

@ Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove
them again and change their order.

1.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either
using a2 Windows command prompt or using Linux or UNIX), you can set

environment variables.

You can set the following variables:

Environment
Variable

Description

A166INC

With this variable you specify one or more additional
directories in which the assembler a166 looks for
STDNAMES files.

C166INC

With this variable you specify one or more additional
directories in which the C compiler ¢166 looks for
include files. The compiler first looks in these
directories, then always looks in the default
include directory relative to the installation
directory.

CC166BIN

When this variable is set, the control program
cc166, prepends the directory specified by this
variable to the names of the tools invoked.

CC1660PT

With this variable you specify options and/or
arguments to each invocation of the control program
cc166. The control program processes these
arguments before the command line arguments.

LINK166

With this variable you specify extra options and/or
arguments to each invocation of the link stage of
1166.

LM_LICENSE_FILE

With this variable you specify the location of the
license data file. You only need to specify this
variable if the license file is not on its default location
(c:\flexlm for Windows,
/usr/local/flexlm/licenses for UNIX).

1-10

Chapter 1

Environment Description

Variable

LOCATE166 With this variable you specify extra options and/or
arguments to each invocation of the locate stage of
1166.

M166INC With this variable you specify one or more additional
directories in which the macro preprocessor m166
looks for include files.

PATH With this variable you specify the directory in which

the executables reside. This allows you to call the
executables when you are not in the bin directory.

Usually your system already uses the PATH variable
for other purposes. To keep these settings, you
need to add (rather than replace) the path. Use a
semicolon (;) to separate pathnames.

TASKING_LIC_WAIT

If you set this variable, the tool will wait for a license
to become available, if all licenses are taken. If you
have not set this variable, the tool aborts with an
error message. (Only useful with floating licenses)

TMPDIR

With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

Table 1-1: Environment variables

The following examples show how to set an environment variable using
the C166INC variable as an example.

% See also section 4.4, Include Files in chapter Compiler Use.

Example Windows 95/98

Add the following line to your autoexec.bat file.

set Cl66INC=c:\cl66\include

@ You can also type this line in a Command Prompt window but you will
loose this setting after you close the window.

Software Installation

Example Windows NT

1.

5.

Right—click on the My Computer icon on your desktop and select
Properties.

The System Properties dialog appears.

Select the Environment tab.

In the Variable edit field enter:
Cl66INC

In the Value edit field enter:
c:\cl66\include

Click on the Set button, then click OK.

Example Windows XP / 2000

1.

6.

Right—click on the My Computer icon on your desktop and select
Properties.

The System Properties dialog appears.

Select the Advanced tab and click on the Environment Variables
button.

The Environment Variables dialog appears.
In the System variables ficld, click on the New button.
The New System Variable dialog appears.
In the Variable name field enter:
C166INC
In the Variable value field enter:

c:\cl66\include

Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C—shell):

setenv Cl66INC /usr/local/cl66/include

1-12

=

Chapter 1

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the license key
provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License Key”
containing the license information for your software product. If you have
not received such a license key follow the steps below to obtain one.
Otherwise, you can install the license.

Windows

1.

Run the License Administrator during installation and follow the steps to
Request a license key from Altium by E-mail.

E-mail the license request to your local TASKING sales representative. The
license key will be sent to you by E-mail.

Software Installation

UNIX

1.

If you need a floating license on UNIX, you must determine the host ID
and host name of the computer where you want to use the license
manager. Also decide how many users will be using the product. See
section 1.4.5, How to Determine the Host ID and section 1.4.6, How to
Determine the Host Name.

When you order a TASKING product, provide the host ID, host name and
number of users to your local TASKING sales representative. The license
key will be sent to you by E-mail.

1.4.2 [INSTALLING NODE-LOCKED LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

Install the TASKING software product following the installation procedure
described in section 1.2.1, Installation for Windows, if you have not done
this already.

Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator.
Otherwise, start the License Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key
received from Altium by E-mail. The License Administrator creates a
license file for you.

Create a license file manually

&

If you prefer to create a license file manually, create a file called
"license.dat” in the c:\flexlm directory, using an ASCII editor and
insert the license key information received by E-mail in this file. This file is
called the license file”. If the directory c:\flex1lm does not exist, create
the directory.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

1-14

-

&

Chapter 1

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.4.4, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

1.4.3 INSTALLING FLOATING LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

Install the TASKING software product following the installation procedure
described earlier in this chapter on each computer or workstation where
you will use the software product.

On each PC or workstation where you will use the TASKING software
product the location of a license file must be known, containing the
information of all licenses. Either create a local license file or point to a
license file on a server:

Add a licence key to a local license file

S

A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or
create a license file manually, as explained in the previous section with the
installation of a node-locked license.

On UNIX, you have to insert the license key manually in the license file.
The default location of the license file license.dat is in directory
/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
make sure that the number of SERVER lines and their contents match,
otherwise you must use another license file. See section 1.4.4, Modifying
the License File Location, for additional information.

Software Installation

Point to a license file on the server

i+

Set the environment variable LM_LICENSE_FILE to "port@host”, where
bost and port come from the SERVER line in the license file. On Windows,
you can use the License Administrator to do this for you. In the License
Administrator follow the steps to Point to a FLEXIm License Server to
get your licenses.

If you already have installed FLEXIm v8.4 or higher (for example as part of
another product) you can skip this step and continue with step 4.
Otherwise, install SW000098, the Flexible License Manager (FLEXIm), on
the license server where you want to use the license manager.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows XP, NT or 2000 instead, or use UNIX
or Linux.

If FLEXIm has already been installed as part of a non—TASKING product
you have to make sure that the bin directory of the FLEXIm product
contains a copy of the Tasking daemon. This file is present on every
product CD that includes FLEXIm, in directory licensing.

On the license server also add the license key to the license file. Follow
the same instructions as with "Add a license key to a local license file” in
step 2.

See the FLEXIm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for more information.

1-16

-

Chapter 1

1.4.4 MODIFYING THE LICENSE FILE LOCATION

+

The default location for the license file on Windows is:
c:\flexlm\license.dat

On UNIX this is:
/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (fpath) with a ’;’ (on UNIX **'):

Example Windows:
set LM _LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt
Example UNIX:

setenv LM LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM LICENSE_FILE 7594Celliot

See the FLEXIm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for detailed information.

Software Installation

1.4.5 HOW TO DETERMINE THE HOST ID

The host ID depends on the platform of the machine. Please use one of
the methods listed below to determine the host ID.

Platform Tool to retrieve host ID Example host ID

HP-UX lanscan 0000F0050185
(use the station address without
the leading '0x’)

Linux hostid 11ac5702
SunOS/Solaris hostid 170a3472
Windows licadmin (License Administrator, | 0060084dfbe9

or use Imhostid)

Table 1-2: Determine the host ID

On Windows, the License Administrator (licadmin) helps you in the
process of obtaining your license key.

@ If you do not have the program licadmin you can download it from our

Web site at: http://www.tasking.com/support/flexlm/licadmin.zip . It is
also on every product CD that includes FLEXIm, in directory 1icensing.

1.4.6 HOW TO DETERMINE THE HOST NAME

To retrieve the host name of a machine, use one of the following methods.

Platform Method
UNIX hostname
Windows NT licadmin or:

Go to the Control Panel, open "Network”. In the
”Identification” tab look for "Computer Name”.

Windows XP/2000 | licadmin or:

Go to the Control Panel, open "System”. In the "Computer
Name” tab look for "Full computer name”.

Table 1-3: Determine the host name

Chapter 1

1-18

NOILVTIVLSNI

OVERVIEW

N | H31ldVHO

al TASKING [

d31dVHO

Overview

2.1 INTRODUCTION TO C C166/ST10
CROSS-COMPILER

This manual provides a functional description of the TASKING C
C166/ST10 Cross—Compiler. This manual uses €166 (the name of the
binary) as the shorthand notation for "TASKING C C166/ST10
Cross—Compiler’.

TASKING offers a complete toolchain for the Infineon C166 and
STMicroelectronics ST10 microcontroller families and their derivatives.
These derivatives can be based on C16x/ST10x extended architectures
(16M memory, 24 bit addresses) and XC16x/Superl0 extended
architectures. This manual uses 'C166/ST10’ as the shorthand notation for
these microcontroller families. The toolchain contains a C++ compiler, a C
compiler, a control program, a macro preprocessor, an assembler, a
linker/locator, a library manager, a program builder, a disassembler, a
debugger and output format utilities.

The ¢166 is not a general C compiler adapted for use with the C166/ST10
architecture, but instead it is dedicated to the microcontroller architecture
of the C166/ST10 architecture. This means that you can access all special
features of the C166/ST10 architecture in C: 16K page architecture (with
full pointer support), bit-addressable memory, (extended) special function
registers (I/O ports), interrupt support, scalable vector tables, (local)
register banks and a number of built-in (intrinsic) functions to utilize
special C166/ST10 architecture instructions. And yet no compromise is
made to the ANSI standard. It is a fast, single pass, optimizing compiler
that generates extremely fast and compact code.

The ¢166 generates assembly source code using the Infineon assembly
language specification, and must be assembled with the TASKING
C166/ST10 Cross—Assembler. This manual uses a166 as the shorthand
notation for "TASKING C166/ST10 Cross—Assembler’.

The object file generated by al66 can be linked with other objects and
libraries using the TASKING 1166 linker/locator. This manual uses 1166 as
the shorthand notation for "TASKING 1166 linker/locator’. With the link
stage of 1166 you can link objects and libraries to one object. You can
locate assembler objects, linked objects and libraries to a complete
application by using the locate stage of 1166.

Chapter 2

The C166/ST10 toolchain also accepts C++ source files. C++ source files or
sources using C++ language features must be preprocessed by cp166. The
output generated by ¢p166 is C166/ST10 C, which can be translated with
the C compiler ¢166.

@ The C++ compiler is not part of the C compiler package. You can order it
separately from TASKING. The C++ compiler package includes the C
compiler as well.

With the TASKING ¢c166 control program you can invoke the various
components of the C166/ST10 toolchain with one call. This manual uses
cc166 as the shorthand notation for "TASKING ¢c166 control program’.

You can debug the software written in C, C++ and/or assembly with the
TASKING CrossView Pro high-level language debugger. This manual uses
XVW166 as the shorthand notation for "TASKING CrossView Pro high-level
language debugger’. A list of supported platforms and emulators is
available from TASKING.

You can also use other debugging environments supporting the IEEE-695
format (e.g. Kontron, Hitex, Krohn & Stiller, Lauterbach, etc.).

Target Processors:

All C16x/ST10 derivatives (such as C167, ST10x172). This is the default.
All ST10 derivatives with MAC support is enabled with the >-xd’ option.
All C166S v1.0 derivatives support is enabled with the >-x1” option.

All XC16x/Superl0Q derivatives support is enabled with the *-x2” option.
All enhanced Superl0 derivatives support is enabled with the '-x22’
option.

2.2 GENERAL IMPLEMENTATION

This section describes the different phases of the compiler and the target
independent optimizations.

2.2.1 COMPILER PHASES

During the compilation of a C program, a number of phases can be
identified. These phases are divided into two groups, referred to as
Jfrontend and backend.

Overview

Jfrontend:

The preprocessor phase:
File inclusion and macro substitution are done by the preprocessor
before parsing of the C program starts. The syntax of the macro

preprocessor is independent of the C syntax, but also described in the
ANSI X3.159-1989 standard.

The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs
a syntactic and semantic analysis of the program, and generates an
intermediate representation of the program.

The frontend optimization phase:

This phase performs target processor independent optimizations by
transforming the intermediate code. The next section discusses
frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means
another transformation of the intermediate code and actions like
register allocation techniques for variables, expression evaluation and
the best usage of the addressing modes. Chapter 3, Language
Implementation discusses this item in more detail.

The code generator phase:

This phase converts the intermediate code to an internal instruction
code representing the C166/ST10 assembly instructions.

2-5

2-6 Chapter 2

=

The peephole optimizer phase:

This phase uses pattern matching techniques to perform peephole
optimizations on the internal code (e.g. deleting obsolete moves). It
also performs pipeline optimizations, replacing NOP instructions with
other instructions which do not interfere with the pipeline effects of the
processor. Another task of the peephole optimizer is to convert JMPR
instructions to JMPA instructions (or to reverse the condition of
conditional bit jump instructions), if the destination label is not within
the REL range (-128 to 127 words). Finally, the peephole optimizer
translates the internal instruction code into assembly code for a166.
The generated assembly does not contain any macros.

The data flow analysis (DFA) peephole optimizer phase:

This phase uses data flow analysis (DFA) to perform optimizations on
the assembly code. This optimizer runs after the normal peephole
optimizer described above. The optimizer has function scope and
solves a number of DFA problems. With the analysis results,
optimizations can be performed without being hampered by flow
changing instructions.

The instruction reordering phase:

This phase is only enabled for the ext2 architectures. It tries to reorder
the instructions in order to keep the pipeline from stalling as much as
possible. During this phase no instructions will be added or removed.

All phases (of both frontend and backend) are combined into one
program: ¢166. The compiler does not use any intermediate file for
communication between the different phases of compilation. The backend
part is not called for each C statement, but is started after a complete C
function has been processed by the frontend (in memory), thus allowing
more optimization. The compiler only requires one pass over the input
file, resulting in relatively fast compilation.

2.2.2 FRONTEND OPTIMIZATIONS

The following optimizations are performed on the intermediate code. They
are independent of the target processor and the code generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Overview

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x—3)
is transformed into x + (1-3), which can be folded.

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.
Such useless expressions may be introduced by macros in C (#define), or
by the compiler itself.

Logical expression optimization

Expressions involving '&&, ’|
series of conditional jumps.

»and 1" are interpreted and translated into a

Loop rotation

With for and while loops, the expression is evaluated once at the 'top’
and then at the 'bottom’ of the loop. This optimization does not save code,
but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as
the deletion of redundant case labels or even the deletion of the switch.

Control flow optimization

By reversing jump conditions and moving code, the number of jump
instructions is minimized. This reduces both the code size and the
execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately
followed by an unconditional jump may be replaced by a jump to the
destination label of the second jump. These situations frequently occur
with nested control structures. This optimization does not save code, but
speeds up execution.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the
code size and the execution time.

2-7

2-8

Chapter 2

Register coloring

Optimize register allocation within a C function. The compiler tries to keep
as much local variables as possible in registers.

Constant/value propagation

A reference to a variable with a known contents is replaced by those
contents.

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)
expression. Such a “common” expression may be temporarily saved to
avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without
affecting the program. However, the compiler generates a warning
message, because the unreachable code may be the result of a coding
error.

Sharing of string literals and floating point constants

The ANSI X3.159-1989 standard permits string literals to be put in ROM
memory. Strings in ROM cannot be modified, so the compiler overlays
identical strings (within the same module) and let them share the same
space, thus saving ROM space. Likewise, identical floating point constants
are overlaid and allocated only once.

Common Tail Merging

Common pieces of code at the end of case labels and if-else constructions
are replaced by a jump to single instance of the shared code. This will
reduce code size.

Overview

2.3 PROGRAM DEVELOPMENT FLOW

If you want to build a C-166 application you need to invoke the following
programs:

The C compiler (c166), which generates an assembly source file
from the file with suffix .c. The suffix of this file is .src, which is
the default for a166. However, you can direct the output to stdout
with the -n option, or to another file with the —o option. C source
lines can be intermixed with the generated assembly statements by
means of the -s option. High level language debugging information
can be generated with the -g option. You should not use the -g
option, when inspecting the generated assembly source code,
because it contains a lot of 'unreadable’ high level language debug
directives. €166 makes only one pass on every file. This pass
checks the syntax, generates the code and performs a code
optimization.

The al66 cross—assembler which processes the generated assembly
source file into a relocatable object file with suffix .obj. A full
assembly listing with suffix .1st is available after this stage.

The 1166 link stage which links the generated relocatable object
files and C-libraries. The result is a relocatable link file with suffix
.1no. A linker task map file with suffix .1nl is available after this
stage.

The 1166 locate stage which locates the generated relocatable object
files (from assembler or link stage). The result is a loadable file with
suffix .out. A full application map file with suffix .map is available
after this stage.

The ieeel66 program which formats an a.out type file into a
CrossView Pro load file.

The next figure explains the relationship between the different parts of the
TASKING C166/ST10 toolchain:

2-9

2-10

Chapter 2

C++ source file

.CC .ccm
| |
C++ compiler
cp166 .ic
.icm

error list file .err
.sif

global storage optimizer
gso166

error list file .erl

— .sif

C source file
'IC invocation file
—
C compiler
-gso c166 assembly source file
.asm
asm |
macro preprocessor
m166
— listfile .mpl
assembly file error list file .mpe
.Src . .
| — Invocation file
assembler
a166
— C__ listfile .1st

[
archiver
ar166
T
object library

relocatable object
module .obj

I

.1lib

linker 1166
link stage

linked object
module .1no

control program
cc166

11|
linker 1166
locate stage

I L mapfile .map

absolute object
moduleI a.out

1

| C_ printfle .1nl

—

invocation file

invocation file

Motorola S Formatter
srec166

IEEE Formatter
ieee166

Intel Hex Formatter
ihex166

Motorola S-records

|
|IEEE-695 load module. abs
|

Intel Hex-records

CrossView Pro C166/ST10
Debugger execution
xfw166 environment

Figure 2-1: C166/ST10 development flow

Overview

You can use the control program ¢c166 to build an absolute loadable file
starting with an input file of any stage. C++ source programs are compiled
by the C++ compiler. With a C source file as input, ¢c166 calls c166, a166
and 1166 with the appropriate command line arguments.

It is advised to use €c166 when you compile C++ source programs
because of the complex nature of C++ compilation.

The global storage optimizer gso166 is a program to optimize allocation
of objects in memory spaces.

The macro preprocessor m166 is a program to preprocess assembly files
(suffix .asm).

The ihex166 program formats the a.out file into an Intel Hex format file.
You can load this output file into an EPROM programmer.

The srec166 program formats the a.out file into a Motorola S Format for
EPROM programmers.

The ar166 program is a librarian facility. You can use this program to
create and maintain object libraries.

A utility to disassemble absolute object files and relocatable object files is
d166.

A utility to display the contents of an object file is dmp166.

The mk166 program builder uses a set of dependency rules in a 'makefile’
to build only the parts of an application which are out of date

For a full description of all available utilities, see chapter 12 Utilities in the
C166/ST10 Cross—-Assembler, Linker/Locator, Utilities User’s Manual.

The name of the C166/ST10 CrossView Pro Debugger is xfw166. For more
information check the C7166/ST10 CrossView Pro Debugger User’s Manudl.
This manual uses xvw166 as the general executable name.

2-12

-

File extensions

Chapter 2

The following table lists the file types used by the C166/ST10 toolchain.

Extension Description

Source files

.CC, .CXX, .Cpp C++ source file, input for the C++ compiler, compiled to .ic

.ccm C++ source file containing intrinsics, input for the C++
compiler, compiled to .icm

.C C source file, input for the C compiler

.cmp C source file containing intrinsics, input for the C compiler

.asm Assembler source file, hand coded, or generated by C
compiler from .cmp or .icm

Generated source files

.ic C source file, generated by the C++ compiler, input for the C
compiler

.icm C source file containing intrinsics, generated by the C++
compiler, input for the C compiler

.src Assembler source file, generated by the C compiler

.sif Source information file for the global storage optimizer

.gso Global storage optimizer file

Obiject files

.0bj IEEE-695 relocatable object file, generated by the assembler

no Linked object module

dib Object library file

.out Absolute locator output file

.abs IEEE-695 absolute object file

.hex Intel Hex absolute object file

List files

.mpl Macro proprocessor list file

Ist Assembler list file

Anl Linker map file

.map Locator map file

.mcr MISRA C report file

Overview

Extension Description

Error list files

.err Compiler error messages file

.mpe Macro preprocessor error messages file
.erl Assembler error messages file

.elk Linker error messages file

Table 2-1: File extensions

2.4 WORKING WITH PROJECTS IN EDE

EDE is a complete project environment in which you can create and
maintain project spaces and projects. EDE gives you direct access to the
tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one
project. Before you can create a project you have to setup a project space.
All information of a project space is saved in a project space file (.psp):

» a list of projects in the project space

* history information

Within a project space you can create projects. Projects are bound to a
target! You can create, add or edit files in the project which together form
your application. All information of a project is saved in a project file
(-pit):

e the target for which the project is created

» a list of the source files in the project

* the options for the compiler, assembler, linker and debugger

¢ the default directories for the include files, libraries and executables

¢ the build options

* history information

When you build your project, EDE handles file dependencies and the
exact sequence of operations required to build your application. When

you push the Build button, EDE generates a makefile, including all
dependencies, and builds your application.

2-14

-

Overview of steps to create and build an application

1.
2.
3.
4.

Create a project space

Add one or more projects to the project space
Add files to the project

Edit the files

Set development tool options

Build the application

Chapter 2

Overview

2.5 START EDE

Start EDE
e Double-click on the EDE shortcut on your desktop.

— Or —

Launch EDE via the program folder created by the installation program.
Select Start —> Programs —> TASKING toolchain —-> EDE.

Elﬂ

Figure 2-2: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,
one or more windows (default, a window to edit source files, a project
window and an output window) and a status bar.

Project Options Compile Build Rebuild Debug On-line Manuals

51 TASKING EDE [Toolchain - C:\target\examples\demo‘\demo.pjt]
File Edt Search Project Build Test Document Customize Took Window Help

|¢-»-ladEa s ma/2c #ae

B C:\targettexamplestdemo\DEMO.C
#include <string.h>
#include <stdio.h>

C:Atargethexamplestdema.psp
dema (1 Project]

7] demo (5 Files)

#define BELL_CHAR

typedef emm color_e Document Windows
! — | Used to view and edit files.

red, yellow, blue

oozt

\

Project Window
Contains several
tabs for viewing T struct rec_s
information about
projects and other
files.

| type;

Output Window

Contains several tabs to display
and manipulate results of EDE
T operations. For example, to view
the results of builds or compiles. _

File Find Search Browse Difference Shell Sumbials

— CED e et 1

Figure 2-3: EDE desktop

2-16 Chapter 2

-

2.6 USING THE SAMPLE PROJECTS

When you start EDE for the first time (see section 2.5, Start EDE), EDE
opens with a ready defined project space that contains several sample
projects. Each project has its own subdirectory in the examples directory.
Each directory contains a file readme.txt with information about the
example. The default project is called demo.pjt and contains a CrossView
Pro debugger example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right—click on the project you want to open.
A menu appears.

2. Select Set as Current Project.
The selected project opens.

3. Read the file readme.txt for more information about the selected sample
project.

Building a sample project
To build the currently active sample project:

¢ C(Click on the Execute "Make’ command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output windouw.

Overview

2.7 CREATE A NEW PROJECT SPACE WITH A PROJECT

Creating a project space is in fact nothing more than creating a project
space file (.psp) in an existing or new directory.

Create a new project space
1. From the File menu, select New Project Space...
The Create a New Project Space dialog appears.

Create a Hew Project Space E3

Current Directary:
C:hkargethexamples

Filenarne:

v ook in zame directony for external workspace

YWorkspace:
Type:
™| futo syne workspace
Browse... |] | Cancel Help

2. In the the Filename field, enter a name for your project space (for
example MyProjects). Click the Browse button to select a directory first
and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in
the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

2-18 Chapter 2

-

Project Properties [x]
% <Default Settings> Directaries I Members | Tools I Errors I Filters I
MyProjects (0 Proj Project Space: ChtargethexamplesikyProjects psp

I PFrojects: ﬁ E‘Xl .]!I

|Add new project to project space [AlteM] ‘

™ Hide projects already in project space

 External ‘Warkspace:
<hone> R

Cancel | Help

Add a new project to the project space
4. 1In the Project Properties dialog, click on the Add new project to project
space button (see previous figure).

The Add New Project to Project Space dialog appears.

Add HNew Project to Project Space E3

Current Directony:
C:htargethexamples

Filenarme:

getztarthgetztart. pit

v Look in zame directory for external makefile
b akefile:
Type:

=} Lota sune makefie

Browse. .. | (] 8 I Cancel Help

Overview 2-19

5. Give your project a name, for example getstart\getstart.pjt (a
directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart, which is also created. The Project Properties dialog box appears
with the project selected.

Project Properties [%]
% <Default Settings> Directories I tdembers I Toale I Ermars I Filers I
MyProjects (1 Project) Project: C:htargetiexamplesigetstatigetstart. pjt
RERg oetstart (0 Files)

I Filers: Iﬁlxl.]!l

Add new file Add existing files
Scan existing files

™ Hide files already in project

i~ Enternal Makefile:

<none> E-'-'-l liI
—WE5 Project:

ey, G

|7 &dd projest files to YE5 Praject

Cancel | Help

5

Add new files to the project

Now you can add all the files you want to be part of your project.
6. Click on the Add new file to project button.
The Add New File to Project dialog appears.

Add New File to Project |

Current Directony:
C:htargethexamplesigetstart

Filenarmne:

hello.c

¥ Ereate rewiwinda

Eru:uwse...l Qk. I Cancel Help

2-20

Chapter 2

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case
getstart.mak). This file contains the rules to build your application.
EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document
window:

#include <stdio.h>

void main(void)

{
printf(”Hello World!\n");

}
10. Click on the Save the changed file <Ctrl-S> button.

H|

EDE saves the file.

Overview

2.8 SET OPTIONS FOR THE TOOLS IN THE TOOLCHAIN

The next step in the process of building your application is to select a
target processor and specify the options for the different parts of the
toolchain, such as the C compiler, assembler, linker and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Application entry and select Processor.

C166/5T10 Project Options [GETSTART FJT]

5- &pplication
E; Processar
E! Flash Setup
Memary Maodel
B:a--Starlup

i C++ Compiler

#- C Compiler

B- Assembler

H- Macro Preprocessor

8- Linker/Locator

#- CrossYiew Fro

~ Processor Selection

Manufacturer:

Processon

All =

User Defined Processor
CPU Problem Bypasses and Checks

o]

Cancel |

Default...

4

3. Optionally select a Manufacturer to narrow the list of processors.

4. In the Processor list select your target processor (for example, C167).

5. Click OK to accept the new project settings.

2-21

2-22 Chapter 2

=

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C

compiler settings.
C166/5T10 Project Options [GETSTART_FJT] HE
Application — Dptimization

- C++ Compiler Optimization: IDefauIt oplirnization 'l

E1- C Compiler
- Preprocessing [Eursban setfing of eptimizations:
Allncfatinn D_f Wariables [Fielax all alias checking -
- Floating Point Relax cross type alias checking

Comman Subexpreszion Elimination [C5E]
Constant and copy propagation
Favor code size above execution speed

- Libraries Code recognition to generate optimal code for expressions
Diagnostics plimization of intermupt frame code for © intermupt functions
- Dutput Peephaole optimizer [remove redundant code)
B- MISRAC Trace contents of registers far reuse without reloading ;I

- Miscellaneous
- Aszembler Optimizations that increase compile time:
- Macra Preprocessar ¥ | strictisn resrdenitn
- Linker/Locator I Dataflow analysis peephale [DFAF]
- Crossiew Pro

Options string:

A $(PRODDIRNinclude’ 4 c-Bhoeufmbnladi An'c-0B wie-0E ;I
Afe-zawitch_tabmern_default “we-zautobitastuct-4 Afe-zautabita-0 -FSC
-noc++ Wil Awc-avolatile_union Awie-01 Awfe-g We-newerr SWe-s tmp

oK I Cancel | Default...

v

3. For each page make your changes. If you have made all changes click OK.

@ The Cancel button closes the dialog without saving your changes. With
the Default... button you can restore the default project options (for the
current page, or all pages in the dialog).

4. Make your changes for all other entries (C++ Compiler, Assembler, Macro
Preprocessor, Linker/Locator, CrossView Pro) of the Project Options dialog
in a similar way as described above for the C compiler.

@ If available, the Options string field shows the command line options
that correspond to your graphical selections.

Overview 2-23

2.9 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results
in an absolute IEEE-695 object file which is ready to be debugged.

Build your Application
To build the currently active project:

¢ C(Click on the Execute "Make’ command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.abs.

@ The build process only builds files that are out-of-date. So, if you click
Make again in this example nothing is done, because all files are
up-to—date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have
been executed (and inspect generated messages) by the build process in
the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by
selecting the Output menu item in the Window menu.

Compiling a Single File
1. Select the window (document) containing the file you want to compile or
assemble.

2. Click on the Execute ’Compile’ command button. The following button
is the execute Compile button which is located in the toolbar.

If you selected the file hello.c, this results in the compiled and assembled
file hello.obj.

2-24

=

Chapter 2

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project
from scratch (regardless of their date/time stamp), you can perform a
rebuild.

* Click on the Execute 'Rebuild’ command button. The following
button is the execute Rebuild button which is located in the toolbar.

2.10 HOW TO BUILD YOUR APPLICATION ON THE

1.

2.

COMMAND LINE

If you are not using EDE, you can build your entire application on the
command line. The easiest way is to use the control program cc166.

In a text editor, write the file hello.c with the following contents:

#include <stdio.h>

void main(void)
{
printf(”Hello World!\n”);

}

Build the file getstart.abs:
ccl66 —g —ieee —o getstart.abs hello.c

The control program calls all tools in the toolchain. The —v option shows all
the individual steps. The resulting file is getstart.abs.

2.10.1 USING THE CONTROL PROGRAM

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING C166/ST10 tools. You
can do this with one call to the control program.

To use the control program on the sieve demo program in the
subdirectory sieve in the examples subdirectory of the C166/ST10
product tree follow the steps below. This procedure is outlined as a guide
for you to build your own executables for debugging.

Overview 2-25

1. Make the subdirectory sieve of the examples directory the current
working directory.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
control program cc166:

ccl66 —g —ieee -o sieve.abs sieve.c

The -g option instructs the compiler to generate symbolic debugging
information. If you want to debug your program with the CrossView Pro
high level language debugger, this option must be on.

The -ieee option specifies that the output file must be formatted in the
IEEE Std. 695 format. The —o sieve.abs option specifies the output
filename to be sieve.abs. The result of the command are the files
sieve.abs which can be loaded and executed by CrossView Pro and
sieve.map containing the locate map of the application.

You can specify the -DMEASURE_TIME option if you want to build the
sieve benchmark program for time measurement. Note that this is done in
the makefile which can be processed by mk166.

Now you have created all the files necessary for debugging with
CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,
link stage, locate stage and formatter, you can use the -v option or -vO
option. The =v0 option only displays the invocations without executing
them. The -v option also executes them:

ccl66 —g —ieee —o sieve.abs sieve.c -vO

The control program shows the following command invocations without
executing them (UNIX output):

+ cl66 sieve.c —o /tmp/cc5882c.src —e —g

+ alé66 /tmp/cc5882c.src TO sieve.obj NOPR

+ 1166 LNK TO /tmp/cc5882d.lno sieve.obj ext/clé66s.lib ext/fplé66s.lib
ext/rtl66s.lib

+ 1166 LOC TO /tmp/cc5882e.out /tmp/cc5882d.lno NOPR

+ ieeel66 /tmp/cc5882e.out sieve.abs

2-26

Chapter 2

The —-e option specifies to remove the output file if compiler errors occur.
The NOPR control suppresses the assembler list file generation. The TO
control has the same function as the —o option of the compiler, and
specifies the output filename.

As you can see, the tools use temporary files for intermediate results. If
you want to keep the intermediate files you can use the —=tmp option. The
following command makes this clear.

ccl66 —g —ieee -o sieve.abs sieve.c -vO —tmp
This command produces the following output:

+ cl66 sieve.c —o sieve.src -e —g

al66 sieve.src TO sieve.obj NOPR

+ 1166 LNK TO sieve.lno sieve.obj ext/clé66s.lib ext/fpl66s.1lib
ext/rtl66s.lib

+ 1166 LOC TO sieve.out sieve.lno

+ ieeel66 sieve.out sieve.abs

+

As you can see, if you use the —-tmp option, the assembly source files and
linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls.

2.10.2 USING THE SEPARATE PROGRAMS

If you want to call each tool separately instead of using the control
program you can issue the following commands (steps 3-7 replace step 3
of the previous section).

Compile the module:
cl66 —s —g —t sieve.c

The -s option puts the C source text as comments into the output
assembly source file sieve.src. The other options are the same as
explained by the invocation of the control program.

4. Assemble the module:

al66 sieve

Overview 2-27

The suffix .src is default and may therefore be omitted. The assembler
produces a relocatable object file called sieve.obj and a list file called
sieve.lst.

If you want to build a complete C166/ST10 executable application, the
module containing the C function main () is treated like a reset task and
therefore must be linked with the C startup code. When the Task Concept
is followed, all tasks should be linked with a library, that contains, among
run-time routines, functions such as printf (). When the Flat Interrupt
Concept is followed the C startup code and the library is linked in the
locate stage and the link stage is skipped. In this example we are using the
Task Concept.

The C startup code is delivered in each run-time library for the memory
model of the library and in assembly source code, because this file usually
must be adapted to the target environment. The library is delivered for all
memory models supported. In this case, we are using the small model,
because this is the default memory model of ¢166. See the next chapter
for detailed information on memory models.

The libraries are organized in two basic library sets: one set for the
C16x/ST10 architecture (subdirectory ext) and one set for the
XC16x/Superl0 architectures (subdirectory ext2).

These two basic library sets are additionally organized in two variants: one
standard variant and one variant with all silicon bug workarounds enabled.
The subdirectories for this last variant are followed by the character 'p’
(subdirectories extp and ext2p).

All four library sets are also available for the User Stack Model. All
subdirectories for this extra variant are preceded with the character 'u’.

It depends on the hardware environment you are using, which library set
must be used. By default the compiler assumes the C16x/ST10 architecture
without any silicon bug workarounds enabled. Therefore, the library set in
the subdirectory ext is used.

5. Link the module by typing:
PC:

1166 link sieve.obj ext\cl66s.lib ext\rtl66s.lib to
sieve.lno

2-28

Chapter 2

UNIX:

1166 link sieve.obj ext/cl66s.lib ext/rtl66s.lib to
sieve.lno

By default the linker searches the 1ib directory for libraries. This way it
finds the c166s.1ib and rt166s.1ib libraries. The cstart.obj C
startup code is extracted from the rt166s.1ib library because the
compiler generates a reference to this module when the main() function
is defined.

The result of this command is the linked task object module sieve.lno.
When you use the PRINT control the file sieve.1lnl is created,
containing information about the linking stage: memory map, symbol
table, register map. However, this is slowing down the process of linking
and therefore turned off by default.

Locate the module by typing:
1166 locate sieve to sieve.out nocc

The result of this command is the absolute output file sieve.out and the
file sieve.map containing the locate map of the application. The nocc
control disables the checking on definition of class ranges, used to locate
all parts of the application in user defined memory ranges.

In order to load this application into the CrossView Pro debugger, the
output file must be formatted into IEEE Std. 695 format.

. Format the output file by typing:

ieeel66 sieve.out sieve.abs

The file sieve.abs can be loaded and executed by CrossView Pro.

Overview 2-29

2.10.3 USING A MAKEFILE

The examples directory contains several subdirectories with example
programs. Each subdirectory contains a makefile which can be
processed by mk166 to build the example.

The examples directory also contains a makefile for building all
examples. For building all examples, add the bin directory of the installed
product to the search path and type:

mk166

For building one example program, make the directory containing the
example the current working directory. Build the example by typing:

mk166

When the example has already been built before, only the parts which are
out of date are rebuilt.

For more information see also the readme. txt files in the subdirectories
of the examples.

To see which commands are invoked by mk166 without actually
executing them, type:

mkl66 —-n

When you want to re-translate the examples with other settings you
should first clean up the results of a previous translation. This can be done
by:

mkl66 clean

You can also use this when you just want to clean up the example
directories.

2-30 Chapter 2

=

2.11 DEBUGGING YOUR APPLICATION

Once the files have been compiled with symbolic debug information
enabled (option -g), assembled, linked, located and formatted they are
ready for debugging.

Start CrossView Pro
» Click on the Debug application button.

&

CrossView Pro is launched. CrossView Pro will automatically download the
absolute file for debugging.

@j See the CrossView Pro Debugger User’s Manual for more information.

Overview

2.12 USING DAVE PROJECTS WITH EDE

Infineon Technologies’ DAVE 2.x is fully supported by means of its
generated project information file (*.dpt). This means that you can easily
import projects created with DAVE in the C166/ST10 EDE. The memory
model, the CPU and startup register settings (in the Project | Project
Options dialog) will reflect the settings you made in DAVE. In addition all
files created by DAVE will be added automatically to your own EDE
project when you press the 'Refresh DAVE imported project’ button (this
button only appears when your EDE project contains a DAVE generated
project information file).

How to add DAVE projects to EDE

Create your DAVE project (for example "my_project.dav”) and generate
code for the TASKING C166/ST10 products. Now follow these steps:

1. Create a new (or open your existing) C166/ST10 EDE project (for example
“ede_project.pjt”). For more information on how to do this, see
section 2.7, Create a New Project Space with a Project.

2. Add the DAVE generated project information file ('my_project.dpt”) to
the project: in the Project Properties dialog click on the Add existing files
to project button and select the DAVE project.

This file appears in the Other Files category of your project.

3. Add the C startup code start.asm to your project: from the Project
menu, select Project Options..., expand the Application entry and select
Startup, enable the check box Generate system startup code and add
it to project and specify the name start.asm in the Startup code file
name field.

4. Click the Refresh DAVE imported project button in the EDE toolbar.

#

The EDE project is now fully setup to build the application you have created
using DAVE.

2-31

2-32

Chapter 2

The C166/ST10 EDE only reflects those (E)SFR register settings which must
be configured when booting the CPU before the execution of the EINIT
(end of initialization) instruction. These registers are configured in the C
startup code. All other registers are configured from the C code which is
generated by DAVE.

Every update to the DAVE project will automatically be imported in your
EDE project when you press the 'Refresh DAVE imported project’
button. This will override any settings with respect to the memory model,
the CPU and startup register settings you have made from the EDE (in the
Project | Project Options dialog), because these settings are already
defined by you from within DAVE. All other C166/ST10 EDE settings keep
your configured values. Changes you make manually to your EDE project
settings and the source code which is generated by DAVE, cannot be
imported back into your DAVE project. Therefore, this should only be
done if you plan not to use DAVE anymore for making changes to your
project files and settings.

LANGUAGE
IMPLEMENTATION

al TASKING [

d31dVHO

Language Implementation

3.1 INTRODUCTION

The TASKING C C166/ST10 cross—compiler offers a new approach to
high-level language programming for the C166/ST10 family. It conforms to
the ANSI standard, but allows the user to control the 1/O registers, bit
memory, interrupts and data page architecture of the C166/ST10 in C. This
chapter describes the language implementation in relation to the
C166/ST10 architecture.

The extensions to the C language in ¢166 are:

_bit
You can use data type _bit for the type definition of scalars and for the
return type of functions.

_bitword

You can declare word variables in the bit-addressable area as fp. You can
access individual bits using the intrinsic functions getbit () and
_putbit().

_sfrbit |/ _esfrbit

Data types for the declaration of specific, absolute bits in special function
registers or special absolute bits in the SFR address space.

_Sfr / _esfr

Data types for the declaration of Special Function Registers.

_xsfr

Data type for the declaration of Special Function Registers not residing in
SFR memory but do reside in internal RAM. An example of these SFRs are
PEC source and destination pointers. The compiler will use a 'mem’
addressing mode for this data type whereas for an object of type _sfr a
'reg’ or ‘'mem’ addressing mode may be used.

@ These SFRs are not bitaddressable.

_at

You can specify a variable to be at an absolute address.

3-4

=

Chapter 3

_atbit
You can specify a variable to be at a bit offset within a _bitword or
bitaddressable _sfr variable.

_inline

Used for defining inline functions.

_usm / _nousm

With these function qualifiers you can force that a function is called using
the user stack model calling convention or using the generic CALL/RET
calling convention.

_bita

You can tell the compiler that a struct must be located in bitaddressable
memory by using the bita memory qualifier.

memory-specific pointers

¢166 allows you to define pointers which point to a specific target

memory. These types of pointers are very efficient and require only 2 or 4
bytes memory space.

special types

Apart from a memory category (extern, static, ...) you can specify a storage
type in each declaration. This way you obtain a memory
model-independent addressing of variables in several address ranges of
the C166/ST10 (_near, xnear, far, huge, shuge, system,
_iram).

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the
C language (_interrupt keyword). You may also specify the register
bank to be used (_using keyword).

intrinsic functions

A number of pre-declared functions can be used to generate inline
assembly code at the location of the intrinsic (built-in) function call. This
avoids the overhead which is normally used to do parameter passing and
context saving before executing the called function.

Language Implementation

3.2 ACCESSING MEMORY

The C166/ST10 allows to access memory up to 16 MB using a 24-bit
address. The processor does not use a linear addressing method (as the
Motorola 68000 family), but uses a segmented approach of its memory (as
the Intel 8086 family). Therefore, the difference in address range is only
visible in the amount of bits in the segment/page registers.

The approach of data memory differs with the approach of code memory.
Code memory is accessed in segments of 64K using a 16-bit offset and an
8-bit segment number. Because there is no translation done on this 8-bit
segment number, code memory access is ‘almost’ linear. However, data
memory is accessed within 16 KB pages. The 16-bit address is translated
into a 24-bit address via one of four data page pointers, specified with bit
14 and 15. So, the 24-bit address is made out of the 14-bit page offset and
the 10-bit contents of the selected DPP.

€166 has two methods of gaining greater control over how your program
uses memory. These methods can be used together. First you can specify
the ‘'memory model’ for the program. The compiler allows you to choose
from a number of different approaches. In section 3.2.1 Memory Models
more detailed information is present. Second, you can use one of the
keywords near, xnear, system, iram, far, huge and shuge in
your program. Note that although these keywords are also used by other C
compilers (for the 8086 family), they are not part of the standard C
language. C is meant as a portable language.

In practice the majority of the C code of a complete application will be
standard C (without using any language extension). This part of the
application can be compiled without any modification, using the memory
model which fits best to the requirements of the system (code size,
amount of external RAM etc.). Therefore, ¢166 has a number of features
optimizing data access on standard C in all memory models. Note that a
special section is present called 3.2.1.7, Efficiency in Large Data Models.

Only a small part of the application will use language extensions. These
parts often deal with items such as:
- 1/0, using the (extended) special function registers
— high execution speed needed
— high code density needed
- access to non—-default memory required (e.g. far/huge/shuge data)
- bit type needed

3-6 Chapter 3

- Cinterrupt functions

3.2.1 MEMORY MODELS

¢166 supports five memory models: tiny, small, medium, large, huge. You
can select one of these models with the =M option. If you do not specify a
memory model on the command line, ¢166 uses the small memory model
by default. The memory models with their characteristics are represented
in the following table:

Model | DPP $SEGMENTED | CPU normal | code far/ near
usage | control segmented | data size huge/ data
mode size shuge allowed
data
allowed
tiny linear no no <64K <64K no n.a.
small linear no yes <64K >64K yes n.a.
medium | paged | yes yes >64K <64K yes yes
large paged | yes yes >64K >64K yes yes
huge paged | yes yes >64K >64K yes yes
n.a. = not applicable

Table 3-1: Memory models

The memory models can be described as follows:

3.2.1.1 TINY MEMORY MODEL

This memory model is the only model where the processor does not run
in segmented mode, limiting the sum of code and data space to 64K. The
DPP registers always contain their startup values thus allowing linear 64K
access of data. This results in relatively high code density and execution
speed. On interrupt the C166/ST10 does not have to save the CS register
and an extra port (Port 4) is available, because address lines A16 — A23 are
not used. The usage of the far, huge and _shuge keywords is not
allowed. The tiny memory model is meant for very small (even
single—chip) applications.

Language Implementation

Map example

256K
64K
normal data
code
0

Figure 3-1: Tiny memory map example

Item Usage Comments
CPU non-segmented only model which runs non-segmented.
code < 64K limited to first segment of 64K.
normal data < 64K limited to first segment of 64K.
Thus: (code + normal data) < 64K.
far data not allowed -
huge data not allowed -
shuge data not allowed -

Table 3-2: Tiny memory model

3-8 Chapter 3

=

3.2.1.2 SMALL MEMORY MODEL

The small memory model is the most used memory model. It allows you
to have a total code size up to 16M, up to 64K of fast accessible 'normal
user data’ in three different memory configurations and the possibility to
access far/huge data, if more than 64K of data is needed.

The compiler does not assume the CSP register to contain something valid.
Each call results in a far inter-segment code access, unless the near
keyword is used explicitly in the function prototype. We therefore
recommend using the near keyword with static functions when using
the small or large model, since static functions are always in the same
code section as their caller functions. This model allows code access in all
segments up to 16M.

The small memory model supports 64K of 'normal user data’ via fixed DPP
values, specified at locate time. This results in high code density and
execution speed. Note that the ROM data of an application (e.g. strings,
floating point constants, jump tables, etc.) must also be allocated in this
area of 64K of 'normal user data’. There are three memory configurations
possible for this 64K of 'normal user data’:

I (default)

The four DPP registers are assumed to contain their system startup value
(0-3), providing one linear data area of 64K in the first segment
(0-OFFFFh).

II Addresses Linear

DPP3 contains page number 3, allowing access to SYSTEM (extended) SFR
registers and bitaddressable memory. DPPO — DPP2 provide a linear data
area of 48K anywhere in memory. You must specify the
‘base—-page-number’ of this area at locate time via the ADDRESSES(
LINEAR((address)) locator control.

III SND

DPP3 contains page number 3, allowing access to SYSTEM (extended) SFR
registers and bitaddressable memory. DPPO, DPP1 and DPP2 contain the
page number of a data area of 16K anywhere in memory. These page
numbers are specified at locate time via the SND locator control. When
you use this configuration, the size of a single 'normal data’ object is
limited to 16K.

Language Implementation 3-9

In variant I and II, the paging principle is not really used, so the size of a
single 'normal data’ object (e.g. array) can be greater than 16K (one page).

If you use the small memory model (default of ¢166), the compiler uses
the section type 'LDAT’ for normal user data. This means that a non—-paged
section (unless SND is used of course) must be allocated by the locator in
either:

I first segment of 64K (default)

I linear area of 48K specified with ADDRESSES LINEAR
or in page 3

111 one of the three possible areas of 16K specified with SND
or in page 3

If you need more than 64K of data (or if you need a huge data object),
you can use the far/ huge keywords in the declaration of these
variables.

Small model memory map examples
ExampleI Default
Example I Using locate control:
AD LINEAR(page 8)
Example III Using locate control:

SND(DPPO(10), DPP1(12), DPP2(7))

@ 'normal data’ sections can contain both RAM data and ROM data.

3-10 Chapter 3

Map example I Map example II
256K 256K
far data / far data /
huge data / huge data /
shuge data shuge data
code
page 10 DPP2
page 9 normal data DPP1
code page 8 DPPO
code
64K 64K
page 3 DPP3 page 3 normal data DPP3
page 2 normal data DPP2
page 1 DPP1 code
page 0 code DPPO
0 0

Map example III

256K
far data /
huge data /
shuge data
page 12 normal data DPP1
code
page 10 normal data DPPO
code
page 7 normal data DPP2
code
64K
page 3 normal data DPP3
code
0

Figure 3-2: Small memory map examples

Language Implementation

Item

Usage

Comments

CPU

segmented

code

>64K

allows code anywhere in 256K/16M.

normal data

< 64K

64Kb of fast accessible user data using
direct MEM addressing mode. Except for
map Il (SND control), the size of a single
user data object is not limited to 16K (16 bit
address arithmetic). Also contains ROM
data.

far data

allowed
(optional)

supports far data (paged) access anywhere
in 256K/16M. The size of a single far object
is limited to 16K. Far data access is less
fast than normal data access.

huge data

allowed
(optional)

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (32 bit address
arithmetic). Huge data access is less fast
than far data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-3: Small memory model

@ ROM data (e.g. strings, floating point constants, jump tables, etc.) is also

present in LDAT sections and thus needs some space in the 64K of 'normal
user data’. We recommend using page 3 for (external) ROM, allowing this
ROM data (and code sections) to be allocated in this page and yet use
DPP3 for SYSTEM (SFR) access. This means that the other three pages can

be used for (external) RAM.

3-12

Chapter 3

In the small model far/huge/shuge data access causes the compiler to emit
code which, temporarily, overrules DPPO with the page number of the far
data. The DPPO register is restored afterwards. DPP2 is sometimes used for
far/near copy actions. During a task switch (interrupt) DPPO and DPP2 are
preserved and the correct page number is assigned to these DPP registers
before activating the C code of this task, because a far access might be
interrupted. The compiler also uses the special prefix instructions, which
are treated by the processor as a prefix for a number of so—called ’atomic
instructions’: thus uninterruptable.

Far/huge/shuge data access produces extra code and results into slow
execution. Therefore accessing far/huge/shuge data must be an exception
within the application. The majority of the execution time of the
application should be dealing with normal data, otherwise it is better to
use the large model, allowing more efficient usage of far/huge/shuge data.

Far data is allocated in "PDAT” sections, telling the assembler/linker/locator
that a 'paged section’ (must be checked to be in—page) is needed, which
can be anywhere in memory. Huge data is allocated in "THDAT’ sections,
specifying that a 'non—-paged’ (no checking for 16K) is needed, which can
be anywhere in memory. Shuge data is allocated in 'SDAT’ sections, which
have the same properties as HDAT sections. The difference is that address
calculations on shuge data is done in 16 bit rather than in 32 bit as with
huge data. This implies that no shuge object can exceed 64K.

The following scheme is used for the data section types:

Section | NON-SEGMENTED DATA SEGMENTED DATA
type (tiny/small) (medium/large/huge)

meaning location meaning location
DATA paged (<16K) | 1st segment: <64K paged (16K) | anywhere
LDAT linear(<64K) | tiny: 1st segment: <64K | - -

small: method I, Il or llI

PDAT paged (<16K) | anywhere - -

HDAT non-paged anywhere non-paged anywhere

SDAT - - non-paged anywhere

Table 3-4: Small memory data section types

LDAT and PDAT section types are not allowed in segmented data mode.
The only section type allowed in a DGROUP is the DATA type (not
HDAT).

Language Implementation

3.2.1.3 MEDIUM MEMORY MODEL

The compiler assumes that the CSP register contains the initial value of 0,
which allows code access in the first 64K segment. The four DPP registers
do not contain the system startup values. The DPP registers are used to
access the 16M of data in 16K pages. Because the paging principle is used
with 14 bit address arithmetic, data objects (e.g. arrays) cannot be greater
than 16K (one page), unless the huge or _shuge keyword is used. The
_huge keyword tells the compiler to generate 24 bit address arithmetic.
The shuge keyword tells the compiler to generate 16 bit address
arithmetic. Because paging is used, the processor must run in segmented
mode. Exceptional access to code beyond 64K is possible declaring a huge
function. However, it is not allowed for such a huge function to call any
standard C (or run—time) library function, or any other 'near function’ in
the first segment. In section 3.2.1.7, Efficiency in Large Data Models, some
details are present about efficiency in large data models.

Map example

256K

huge data /
shuge data

normal data

near data

normal data

64K xnear data

code

0

Figure 3-3: Medium memory map example

3-14

Chapter 3

Item

Usage

Comments

CPU

segmented

code

<64K

limited to first segment of 64K.

xnear data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

normal data

>64K

paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K.

near data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via ’default data
group’. Automatically utilized by ¢166 !

The keywords _near, systemand iram
also allow explicit user manipulation.

huge data

allowed

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24 bit address
arithmetic). Huge data access is less fast
than normal data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-5: Medium memory model

Language Implementation 3-15

3.2.1.4 LARGE MEMORY MODEL

The compiler does not assume the CSP register to contain something valid.
Each call results in a far inter-segment code access (unless the near
keyword is used explicitly in the function prototype). Therefore this model
allows code access in all segments up to 16M. As in the medium model, all
data accesses are far. The four DPP registers do not contain the system
startup values. The DPP registers are used to access the 16M of data in 16K
pages. Because the paging principle is used with 14 bit address arithmetic,
data objects (e.g. arrays) cannot be greater than 16K (one page), unless the
_huge or _shuge keyword is used. The _huge keyword tells the compiler
to generate 24 bit address arithmetic. The _shuge keyword tells the
compiler to generate 16 bit address arithmetic. Of course the processor
must run in segmented mode. In section 3.2.1.7, Efficiency in Large Data
Models (Medium/Large/Huge) some details are present about efficiency in
large data models.

Map example

256K

huge data /
shuge data

code

near data

normal data

Xnear data

code

0

Figure 3-4: Large memory map example

3-16

Chapter 3

Item

Usage

Comments

CPU

segmented

code

>64K

allows code anywhere in 256K/16M.

normal data

>64K

paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K for objects larger than the specified
near data threshold (see the -T compiler
option).

xnear data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

near data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via ’default data
group’. Automatically utilized by ¢166 !

The keywords _near, systemand iram
also allow explicit user manipulation.

huge data

allowed

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24-bit address
arithmetic). Huge data access is less fast
than normal data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-6: Large memory model

Language Implementation

3.2.1.5 HUGE MEMORY MODEL

The compiler does not assume the CSP register to contain something valid.
Each call results in a far inter-segment code access (unless the near
keyword is used explicitly in the function prototype). Therefore this model
allows code access in all segments up to 16M. All data accesses are huge.
The four DPP registers do not contain the system startup values. The DPP
registers are used to access the 16M of explicitely far data. Because all
accesses are huge by default, data objects can easily be greater than 64K.
As with the large and medium models, the processor must run in
segmented mode. In section 3.2.1.7, Efficiency in Large Data Models
(Medium/Large/Huge) some details are present about efficiency in large
data models.

Map example

16M

normal data /
shuge data

code

near data

far data

Xnear Ea%a

code

0

Figure 3-5: Huge memory map example

3-17

3-18

Chapter 3

Item

Usage

Comments

CPU

segmented

code

>64K

allows code anywhere in 256K/16M.

normal data

>64K

huge data access anywhere in 256K/16M.
The size of a single object is not limited.
Huge data access is less fast than near or
far data access.

Size of one struct < 64K.

Array of struct/any type > 64K

xnear data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

near data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via ’default data
group’. Automatically utilized by ¢166 !

The keywords _near, systemand iram
also allow explicit user manipulation.

far data

>64K

paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K for objects larger than the specified
near data threshold (see the -T compiler
option).

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-7: Huge memory model

3.2.1.6 _MODEL

¢166 introduces the predefined preprocessor symbol MODEL. The value
of this symbol represents the memory model selected. This can be very
helpful in making conditional C code in one source module, used for
different applications in different memory models. See also section 3.21,
Portable C Code, explaining the include file c¢166.h.

Language Implementation

The value of MODEL is:

tiny model v
small model s’
medium model ‘m’
large model T
huge model '’
Example:
#if MODEL == 'm’ || _MODEL == ’l1’ /* medium or
large model */
#endif

3.2.1.7 EFFICIENCY IN LARGE DATA MODELS
(MEDIUM/LARGE/HUGE)

For programs compiled with the medium, large and huge memory model,
the compiler creates default data sections (member of the default data
group) and additional far/huge/shuge data sections for each module. Since
accessing data outside the default data page is slower than accessing data
within the default data page, programs will run faster if as many of their
variables as possible are declared in such a way that they are allocated in
the default data page. There are a number of ways to control the
allocation of data:

1. All initialized static/public RAM data will be allocated in these default
data sections unless the _far/ huge/ shuge keyword is explicitly used
in the declaration or the —T option is used for specifying a certain
threshold value for this data.

All non-initialized static/public RAM data having a size below a
certain ’threshold’ value will be allocated in these default data sections
unless the far/ huge/ shuge keyword is used explicitly in the
declaration.

Strings, floating point constants and jump tables are allocated in ROM and
can never be in the default data sections.

3-20

Chapter 3

The default data sections are member of a special DGROUP group which
is (of course) limited to 16K. It is possible to have a DGROUP area (of
max 16K) per task. DPP2 is ASSUMED to contain the page number of this
group, which is assigned at system startup. During a context switch
(interrupt) DPP2, and the scratch register DPPO, are saved, assigned new
values and restored afterwards. However, you can also share the default
data group area with the default data groups of each task (interrupt).

The sections of the DGROUP must be declared as a COMMON section:
same name, same size and same contents. In that case the total size of the
default data group area of the whole application is limited to 16K. This
results in the following DPP-usage:

DPPO far pointer dereferencing, external far variables
DPP1 user stack (RO user stack pointer) / xnear data space
DPP2 default data group (C166. DGROUP)
DPP3 SYSTEM (SFR access, bit-addressable access,

iram access and system access)

The threshold value is user definable via the -T option. The default value
is 256 for non-initialized static/public RAM data. The major advantage of
this approach is that better performance is achieved with existing C source
code. However, addresses of these variables are still treated ’far’, ’huge’ or
'shuge’ (4 bytes), for usage with (default) pointers.

. The introduction of the near keyword.

Near forces allocation in the default data group. It also allows better
pointer arithmetic, because a pointer to near (2 bytes instead of 4 bytes) is
supported. And last but not least near public/external references are
supported, assuming DPP2 is used with an external near variable. Of
course a near address can be converted to a far, huge or shuge address.

. The introduction of the _system keyword.

System forces allocation in the system data group. The system data group
C166_SGROUP is always located in the system page (page 3). It also
allows better pointer arithmetic, because a pointer to system (2 bytes
instead of 4 bytes) is supported. Public/external references are supported,
assuming DPP3 is used with an external system variable. Of course a
system address can be converted to a far, huge or shuge address.

Language Implementation

4.

&

The introduction of the _xnear keyword.

The xnear keyword forces data to be allocated in the data group
'C166_XGROUP’. Variables in the 'xnear’ memory space have the same
properties as 'near’ variables. The C166_ XGROUP contains variables in the
xnear data space and the user stack. The size of xnear data and the user
stack size cannot exceed 16Kb. Objects in the xnear data space are
accessed through DPP1. Of course an xnear address can be converted to a
far, huge or shuge address.

C supports so-called 'tentative declarations’, which means that a
declaration such as ’int i; remains tentative during the module until
'defining occurrence’ is given (e.g. via ’int 1i=5;’). If such does not
happen, it is, for example, allowed to declare this variable to be external
at the end of the module! Because this programming style is not very
common (probably only needed for generated C source), the compiler
option -Ot is available, to assign 'defining occurrence’ immediately to
every tentative declaration, allowing more data to be optimized. This
option is default on, using the medium/large/huge model (lazy
programmers often ’forget’ the static attribute of public non-initialized
variables which are only used in one module).

If the tentative property described above is really used in a C program, a
double definition error will occur. In this case the option must be turned
off (-OT) for this module (or the module must be edited of course).

Using —OT results in more code and slower execution.

C166_DGROUP sections

If the cumulated size of all C166_ DGROUP sections of a task exceeds 10K,
there are five possibilities to solve it (to be tried in this order):

Declare 'near’ variables as 'xnear’ / ’system’ variables.
Declare variables to be ’far’ explicitly (using the far keyword).
Declare variables to be 'huge’ explicitly (using the _huge keyword).

Decrease the ’'threshold’” values (-T option), so more variables are
allocated in far data sections. If the threshold value is 0, only 'near’
variables will be allocated in the default data sections.

Decrease the number of 'near’ variables.

3-21

3-22

=

6.

&
&

Chapter 3

Use this possibility only if the other solutions cannot be used!

Use the -Ggroupname option, to specify the group to be used by the
compiler. So, for example, one set of C modules can allocate their default
data in the first data group and all other modules allocate their default data
in a second data group. If the -G option is used, the C compiler emits
code at each public (not static) function entry point to preserve the current
DPP2 value and assign the page number of the new correct data group to
DPP2. At function exit the original DPP2 value is restored. This seems
rather expensive, but the gain of code size by using DPP2 can be more
than the loss introduced by these instructions.

This is the last alternative and certainly not recommended, because it
might introduce some dangerous, hard to find side—effects, as described
below in separate notes.

If you use this option, it is your own responsibility to declare ’extern near’
variables within the same group! Therefore the compiler emits warnings
for ’extern near’ declarations if you use the =G option.

Be sure that functions called by this module do NOT use their own default
data. Some C library functions might use default data too!

3.2.1.8 _NEAR, XNEAR, FAR, HUGE AND _SHUGE

As described before, a limitation of a predefined memory model is that,
when you change memory models, all data and code address sizes are
subject to change. Therefore ¢166 lets you override the default addressing
convention for a given memory model and access near, far, huge or shuge
objects using special declarations. This is done with the near, far,
_huge or _shuge keyword. These special type modifiers can be used with
a standard memory model (except tiny) to overcome addressing limitations
for particular items (either data or code) without changing the addressing
conventions for the program as a whole.

The near, xnear, far, huge and _shuge keywords are not allowed
with automatics and parameters (unless used as a target of a pointer of
course).

The following explains how the usage of these keywords affects the
addressing of code, data or pointers to code or data in all models:

Language Implementation 3-23

tiny model

In this model all normal data is implicitly _near, because the processor
does not run in segmented mode. A linear 16 bit (64K) data area is
achieved. The far, huge and _shuge keywords are not possible (and
not allowed).

small model

In this model all normal data is implicitly _near. Address arithmetic is
performed on 16 bit addresses (linear address space assumed). Therefore
objects may be greater than 16K, unless the SND locator control is used,
which introduces gaps in the address space of normal data. Besides 64K of
normal data (including ROM data), far data is supported. Far data may be
anywhere in memory, not assumed to be in the linear data area. You can
reference far data using a 24 bit address. Address arithmetic is performed
on 14 bit (page offset only). Therefore, individual data items (e.g. arrays)
cannot exceed 16K (page) and cannot cross page boundaries if declared
_far. If you use far objects greater than 16K, you must declare them
_huge or _shuge. Huge data may be anywhere in memory and you can
also reference it using a 24 bit address. However, address arithmetic is
done using the complete address (24 bit). Shuge data may also be
anywhere in memory and you can also reference it using a 24 bit address.
However, address arithmetic is done using a 16 bit address.

All function calls are assumed to be _huge (maybe in another code
segment of 64K). However, an intra—segment call is supported via a _near
function (the keyword near must be present in the function prototype).
In fact you could declare (and define) all static functions as near functions,
because they are always allocated in the same code section as the
functions they are called by. You cannot apply the far keyword to
functions.

medium model

In this model 'near data’ means data allocated into a special page for fast
access. See section 3.2.1.7, Efficiency in Large Data Models
(Medium/Large/Huge) for more details on the 'default data group’. Address
arithmetic on near and far data is always 14 bit. As in the small model,
huge and shuge data access is supported.

This model also supports 'xnear’ data. This data is allocated together with
the user stack in DPP1. The access to this memory space is just as fast as
to 'near’ data. Address arithmetic on _xnear data is done in 14 bits. See
section 3.2.1.7, Efficiency in Large Data Models (Medium/Large/Huge) for
more details on the 'C166_ XGROUP’ data group.

3-24

Chapter 3

All function calls are assumed to be in the same (first) segment of 64K.
However, an inter-segment call is supported via a huge function (the
keyword _huge must be present in the function prototype). The huge
function may not call any standard C library function, run—-time library or
any normal _near function in another segment. You cannot apply the
_far keyword to functions.

large/buge model

In these models 'near data’ means data allocated into a special page for
fast access. See section 3.2.1.7, Efficiency in Large Data Models
(Medium/Large/Huge) for more details on the 'default data group’. Address
arithmetic on near and far data is always 14 bit. As in the small and
medium models, huge and shuge data access is supported.

Without any of the near, xnear, far, huge and _shuge keywords,
the default data access is _far paged data for the large model and _huge
for the huge model.

These models also support 'xnear’ data. This data is allocated together with
the user stack in DPP1. The access to this memory space is just as fast as
to ‘near’ data. Address arithmetic on _xnear data is done in 14 bits. See
section 3.2.1.7, Efficiency in Large Data Models (Medium/Large/Huge) for
more details on the 'C166_ XGROUP’ data group.

All function calls are assumed to be _huge (in another code segment of
64K), unless you use the near keyword in the function prototype. In fact
you could declare (and define) all static functions as near functions,
because they are always allocated in the same code section as the
functions they are called by.

Object or pointer modification

The near, xnear, far, huge and _shuge keywords modify either
objects or pointers to objects. When using them to declare data or code
(or pointers to data or code), the following rules must be kept in mind:

* The keyword always modifies the object or pointer immediately to
its right. In complex declarations such as

char _far * _near p;
think of the _far keyword and the item to its right as being a

single unit. In this case, p is a pointer to a far char, and therefore
contains a 24 bit far address.

Language Implementation 3-25

» If the item immediately to the right of the keyword is an identifier,
the keyword determines the storage type of the item: whether it
must be allocated in the default data section or a separate data
section. In this case the pointer p is explicitly declared to be
allocated in normal data (if tiny/small model is used) or in the
default data group (if medium/large/huge model is used).

5

» If the item immediately to the right of the keyword is a pointer (a *
(star)), the keyword determines the logical type: whether the
pointer will hold a _near address (2 bytes), a _far address (4
bytes), a _huge address (4 bytes) or an _shuge address (4 bytes).
For example,

char _far * near p;

allocates p as a _far pointer to an item of type char. The pointer p
itself is allocated in near data.

* The memory model used determines the default logical type of a
pointer. In:

int *p;

p is a far pointer when you use the medium or large model, a huge
pointer in the huge model otherwise a near pointer. The storage
type of p itself is near in tiny and small model, and, depending on
the threshold value, probably also near in medium, large and huge
model.

* You cannot apply the far keyword to functions.

3.2.1.9 _SYSTEM, _IRAM AND _BITA

As described before, €166 lets you override the default addressing
convention for a given memory model and access near, far, huge or shuge
objects using special declarations. But also special declarations are
supported by €166 to access data objects in the SYSTEM page, like
internal RAM data, overall system data or bitaddressable memory. This is
done with the keywords system, iram and bita. These special type
modifiers can be used in all memory models to overcome addressing
‘limitations’ for particular near data items.

The system, iramand bita keywords are not allowed with
automatics, functions and constants unless used as a target of a pointer.

3-26 Chapter 3

=

_System

Objects declared with the keyword _system are allocated in system data
sections (see paragraph 3.2.3, Section Allocation). The system data sections
are member of the special group C166_SGROUP which is limited to the
size of the SYSTEM page (16K-SFRs). DPP3 is ASSUMED to contain the
page number of this group which is equal to the SYSTEM page number
(page 3) and is assigned at system startup.

_iram

Objects declared with the keyword _iram are allocated in
IRAMADDRESSABLE data sections (see paragraph 3.2.3, Section
Allocation). The locator places IRRMADDRESSABLE sections in the internal
RAM of the C166/ST10.

Addressing of _iram objects is exactly the same as addressing system
objects because the internal RAM is located in the SYSTEM page. Both
_iram and _system are addressed via the SYSTEM data page pointer
DPP3 which is assigned to the system page at system startup.

The iram sections are limited to 2048 bytes internal RAM. By default the
_iram section size is limited by the compiler to 2048 bytes. But you can
always set your own _iram sections size limit with the -m mem=size
compiler option (e.g. -mIR=512). See for more information section 4.3,
Detailed Description of the Compiler Options.

_bita

When using bit fields in structures that are located in bitaddressable
memory the compiler can take advantage of the bit and bit field
instructions of the processor. You can tell the compiler that a struct must
be located in bitaddressable memory by using the bita memory
qualifier.

Example:

_bita struct {
unsigned bfl:1;
unsigned pit:2;
unsigned bf2:1;

} os;

The compiler will allocate the struct in a bitaddressable section. For nested
structures and unions _bita can only be applied to the outer level. When
_bita is used for structure members the compiler ignores this.

Language Implementation

Example:

struct m {
int ml:2;
int m2:3;
} mm;

struct n {
_bita struct m nl; // _bita ignored
struct m n2;

} nn;

@ Even with the bita keyword structures will be word aligned. Also the

structure members are aligned as they would be without the bita
qualifier; i.e., byte addressable members (signed/unsigned char) are
byte aligned and word addressable members (such as int and pointers)
are word aligned.

The bita keyword can also be applied to global or static variables of
type char, int and long. In bitaddressable memory chars will be word
aligned. When accessing single bits in these variables like:

_bita int w;

w |= 0x4000;
if (w & (1 << 10))

{
w &= OXFFEF;
}
then the compiler will use bit instructions:
BSET w.1l4
JNB _w.10, 3
BCLR _w.4

3:

For non-static local variables the _bita keyword is not allowed. Most
local variables will be placed in registers automatically, making them
bitaddressable anyway. See also the pragmas autobita and autobitastruct
in section 4.5, Pragmas.

3-27

3-28 Chapter 3

=

3.2.2 USER STACK MODEL

If you use the -P or -Pd option of €166, the compiler does not emit the
regular CALL/RET instructions when calling a C function, but emits code
using a jumping mechanism, specifying the return address on the user
stack. The advantage of this approach is that the system stack is not used
at all. The price paid for this feature is an execution speed penalty.

@? In EDE you can select the user stack model as follows:
From the Project menu, select Project Options... Expand the
Application entry and select Memory Model. Enable the Use user stack
for return addresses check box.

When using plain user stack model, special libraries are needed to support
this feature. These user stack model libraries are an integral part of this
product. If =Pd was specified at the command line, all calls to the library
use the regular CALL/RET calling convention.

This behavior can also be forced for user defined functions using either
the usm or nousm function qualifiers. If usm is specified at the
function definition, the function is called using user stack model calling
conventions. If _nousm is specified, the function is called using the
generic CALL/RET calling method, even if =P was specified on the
command line.

-P option Libraries Def. func. _USmMLIB
qualifier macro
none default _nousm _nousm
-P USM _usm _usm
-Pd default _usm _nousm

Table 3-8: User stack model

There are two valid reasons to use this option (and libraries):
* Real-time Operation Systems

When using a real-time kernel, it is often not allowed to use the
system stack area (in fact change SP), because this area is reserved for
the kernel. Therefore, the =P option can be used, when using a kernel.
Please refer to the documentation supplied with the kernel to verify if
this option must be used.

Language Implementation 3-29

¢ Heavy recursion

When the system stack area is getting too small and it is not possible to
implement a circular system stack approach (using SOV/SUN exception
handlers), the =P option can be used. In this case the compiler uses the
user stack instead of the system stack. You must link the application
with the user stack model libraries.

Using =P does not mean that you have to use a kernel. You can run the
application as a standalone application, without any kernel.

% For more details see Appendix D, User Stack Model.

3-30 Chapter 3

=

3.2.3 SECTION ALLOCATION

Unlike some other microcontrollers, the C166/ST10 microcontroller does
not have different memory spaces with the same address. This means that
a non—automatic object can be referred to solely by its starting address,
because the address represents a unique memory location. There is also
no difference in assembly code accessing internal RAM, external RAM,
internal ROM or external ROM (within the same page/segment).

The processor, however, distinguishes memory access in execution speed.
Code access to internal ROM is faster than access to external ROM. Data
access to internal RAM is faster than access to external RAM. So, a piece of
assembly code executes faster if the code is allocated in internal ROM
instead of external ROM. And the same piece of code gets an even higher
execution speed if the data structures accessed are allocated in internal
RAM instead of external RAM.

In the C166/ST10 compiler the code generator does not have to know if
internal or external RAM is accessed, because the same code can be
generated. Execution speed is in fact a matter of allocating sections in
internal memory instead of external memory. The allocation of sections is
done by the locator stage of 1166, and can be manipulated by specifying a
memory range for each ’class’ of sections.

¢166 allows you to control the class, align type and combine type of a
section with a command line option (e.g. ~RcINB=NEARRAM changes the
class of non-initialized near data to 'NEARRAM’ for this module). The
disadvantage of this method is that the changed attributes are used for the
complete C module.

However, using pragmas, ¢166 allows more flexibility of storage
specification within a C module. In this approach it is possible to declare
for example only a few C variables of a module to be allocated in a special
section which must be PEC-addressable and the rest in normal data
sections. Or only one function of the module in internal ROM and the rest
in external ROM.

Language Implementation 3-31

Naming convention

c166 uses a naming convention for the generated sections. In general the
following modifications are applied to a filename:
— whitespace and dots are converted to underscores
- filenames are converted to uppercase.
— if a filename starts with a digit, the first digit is replaced by an
underscore.

Everything after (and including) the last dot is stripped from the filename.
Thus, the filename: "long file.name.c” will result in the following
string to be used as a basis for the section name (in the text below
referred to as "module”):

"LONG_FILE NAME"”

The length of a filename is unlimited. Furthermore, the section naming is
divided into three categories as described below:

I Non-initialized Data Sections/Normal Sections /Romdata Sections

For non-initialized data sections, normal sections and romdata sections the
section name is generated as follows:

module_number_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

number is a2 unique number.

mem is a memory abbreviation code as shown in the next table.

You may change the section attributes of this category.

¢166 uses the following table for its defaults (e.g. compiling mod. ¢):

Description mem | type align combine | class example
-Mm/ -Mt/ type type section name
-MI -Ms

bits BI BIT BIT BIT PUBLIC CBITS MOD_1_BI

strings/floating CcO DATA LDAT WORD PUBLIC CROM MOD_2_CO

point constants?

bitwords BA DATA LDAT WORD PUBLIC CBITWORDS | MOD_3_BA

3-32

Chapter 3

Description mem | type align combine | class example

-Mm/ -Mt/ type type section name

-Mi -Ms
near data NB DATA LDAT WORD PUBLIC CNEAR MOD_4_NB
xnear data XN DATA - WORD PUBLIC CUSTACK MOD_15_XN
far data FB DATA PDAT WORD PUBLIC CFAR MOD_5_FB
huge data HB HDAT HDAT WORD PUBLIC CHUGE MOD_6_HB
shuge data XB SDAT SDAT WORD PUBLIC CSHUGE MOD_7_XB
functions PR CODE CODE WORD PUBLIC CPROGRAM MOD_8_PR
near romdata NC DATA LDAT WORD PUBLIC CNEAR? MOD_9 NC
xnear romdata XR DATA - WORD PUBLIC CUSTACK MOD_16_XR
far romdata FC DATA PDAT WORD PUBLIC CFARROM MOD_10_FC
huge romdata HC HDAT HDAT WORD PUBLIC CHUGEROM MOD_11_HC
shuge romdata XC SDAT SDAT WORD PUBLIC CSHUGEROM | MOD_12_XC
system data SB DATA DATA WORD PUBLIC CSYSTEM MOD_12_SB
internal ram IR DATA LDAT IRAM- PUBLIC CIRAM MOD_14_IR
data ADDRES-

SABLE

1 See also section 3.2.5, Constant Romdata Section Allocation, for small model only.
2 CNEARROM when tiny/small model is used.

Table 3-9: Section names (non-initialized data, normal and romdata)

When using the medium or large model, near data, xnear data or system
data always remain a member of the default data group or system data

group. So for these memory areas, it is not possible to change all section
attributes.

II Initialized Ramdata Sections

For initialized data the section name is generated as follows:

module IR mem

module_ 1D _mem
module ER_mem
module_ED_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

mem is a memory abbreviation code as used by non-initialized

ramdata sections (SB, IR, BI, BA, NB, FB, HB or XB).

Language Implementation

You can NOT change the section attributes of this category.

¢166 uses the following table for its defaults (near data):

Description type align- | combine | class example
-Mm/ | -Mt/ type type section
-Mi -Ms name
near iramdata DATA | LDAT (t) | WORD | PUBLIC | CINITROM | MOD_IR_NB
(ROM copy) PDAT (s)
near iramdata DATA | LDAT WORD | PUBLIC CINITIRAM | MOD_ID_NB
(RAM space)
near eramdata DATA | LDAT () | WORD | PUBLIC CINITROM MOD_ER_NB
(ROM copy) PDAT (s)
near eramdata DATA | LDAT WORD | PUBLIC | CINITERAM | MOD_ED_NB
(RAM space)
Table 3-10: Section names (initialized romdata)
Example:
File mod.c contains the following initialized romdata:
#pragma eramdata
int 1 = 1; /* default near data */
#pragma iramdata
_far int j = 2;
Generated assembly (compiled with -Ms):
MOD_ER_NB SECTION PDAT WORD PUBLIC 'CINITROM’
MOD_ER_NB_ENTRY LABEL BYTE
DW 01h
MOD_ER_NB ENDS
MOD_ED_NB SECTION LDAT WORD PUBLIC 'CINITERAM’
MOD_ED_NB_ENTRY LABEL BYTE
i LABEL WORD
DS 2
PUBLIC i
MOD_ED_NB ENDS

3-33

3-34

MOD_IR_FB SECTION PDAT WORD PUBLIC
MOD IR FB ENTRY LABEL BYTE
DW 02h
MOD IR FB ENDS
MOD_ID FB SECTION PDAT WORD PUBLIC
MOD ID FB ENTRY LABEL BYTE
j LABEL WORD
DS 2
PUBLIC _j
MOD_ID FB ENDS

1 Specials

The following special section names exist:

Chapter 3

"CINITROM’

"CINITIRAM’

C166_INIT init table for initialized RAM

C166_BSS clear table for non-initialized RAM

C166_US user stack

C166_USO user stack for local register bank 0.

C166_US1 user stack for local register bank 1.

C166_INT scalable interrupt vector table.

?C166_ HEAP heap section for memory allocation
(linker or locator generated)

INTVECT interrupt vector table (locator generated)

You can NOT change the section attributes of this category.

¢166 uses the following table for its defaults:

Description | type align- | combine class (fixed)
-Mm/ | -Mt/ type type section
-Mi -Ms name
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_US
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_USO
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_US1
init table DATA LDAT () WORD | GLOBAL CINITROM C166_INIT
PDAT (s)
clear table DATA LDAT (1) WORD | GLOBAL CINITROM C166_BSS
PDAT (s)
heap HDAT LDAT WORD | PUBLIC ?CHEAP ?C166_HEAP
vector table CODE CODE WORD | PUBLIC C166_VECTAB | C166_INT

Table 3-11: Section names (specials)

Language Implementation

You can only change the section attributes of non-initialized data sections,
normal sections and romdata sections (category I), using the mem code
listed in the table.

You can tell the compiler to use other class names, combine types and
align types instead of the defaults listed above by means of the following
pragmas. Each pragma, has an equivalent command line option that can
be used if the complete module must use the changed attributes.

#pragma class mem=name /* use name as class for
section of area mem */
#pragma combine mem=ctype /* use ctype as combine type
for section of area mem */
#pragma align mem=atype /* use atype as align type
for section of area mem */
#pragma default attributes /* use default attributes as

listed above */
atype is one of the following align types:

Byte alignment
Word alignment
Page alignment
Segment alignment
PEC addressable
IRAM addressable

TOvwT W

ctype is one of the following combine types:

L private ('Local’)

P Public

C Common

G Global

S Sysstack

U Usrstack

A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

3-35

3-36 Chapter 3

=

Examples:

1. The C module is called ’test.c’. The example illustrates how to allocate one
array in a special section with the class 'SLOWRAM’ and the rest of the
data in data section with default attributes. The generated code is listed
below:

C:

#pragma class nb=SLOWRAM
int array[1000];

#pragma default_ attributes
int j;

Generated code:

TEST 1 _NB SECTION LDAT WORD PUBLIC ’'SLOWRAM'
TEST 1 NB ENTRY LABEL BYTE
_array LABEL WORD
DS 2000
PUBLIC _array
TEST 1 NB ENDS

TEST_2_ NB SECTION LDAT WORD PUBLIC ‘CNEAR’
TEST_2_ NB_ENTRY LABEL BYTE
3 LABEL WORD

DS 2

PUBLIC _j

TEST_2_NB ENDS

2. The C module is called 'test.c’. The example illustrates how to allocate one
C variable on a fixed memory location (address 8000H) and the rest of the
data in a data section with default attributes. As described in the "TASKING
C166/ST10 Cross—Assembler, Linker/Locator, Utilities User’s Manual’, AT is
considered as an additional align-type and implies the default combine
type PRIVATE.

C:
#pragma combine nb=A32768
volatile int cntrl_reg;

/* e.g. an I/O register of peripheral chip */

#pragma default_attributes
int 1i;

Language Implementation 3-37

Generated code:

TEST_1_NB SECTION LDAT WORD AT 08000h ’'CNEAR’
TEST 1 NB_ENTRY LABEL BYTE
_cntrl reg LABEL WORD
DS 2
PUBLIC _cntrl_reg
TEST 1 NB ENDS

TEST 2 NB SECTION LDAT WORD PUBLIC ’'CNEAR’
TEST_ 2_NB_ENTRY LABEL BYTE

i LABEL WORD
DS 2
PUBLIC i

TEST 2 NB ENDS

3.2.4 CODE MEMORY FRAGMENTATION

By default the compiler uses one section per module that contains the
code. You can change this behavior with the following pragmas:

#pragma fragment
#pragma fragment resume
#pragma fragment continue

The #pragma fragment causes the compiler to generate each single
function in its own section. The compiler will continue to do so until it
encounters either #pragma fragment resume or #pragma fragment
continue.

In case of #pragma fragment resume the compiler will resume code
generation in the last active section (with the same attributes) before
#pragma fragment.

In case of #pragma fragment continue the compiler will start a new
continuous code.

These pragmas are especially useful in combination with the smart linking
feature of the linker/locator. When you use smart linking, the linker will
only link sections that are referenced. Thus if each function has its own
section, only functions that are actually called (referenced) are linked
rather than all functions in an .ob7j file at once.

3-38 Chapter 3

=

Example:

void funcl(void) { } /* Code section 1 */

#pragma fragment

void func2(void) { } /* Code section 2 */
void func3(void) { } /* Code section 3 */
#pragma fragment resume
void func4(void) { } /* Resume in code section 1 */
#pragma fragment
void func5(void) { } /* Code section 4 */
#pragma fragment continue
void funcé6(void) { } /* Continue in code section 5 */
void _near func7(void) { } /* Code section 5 */
#pragma fragment resume /* No effect: Code section 5 */
void func8(void) { }
#pragma fragment continue /* No effect */
#pragma fragment
_near void func9(void) { } /* Code section 6 */
#pragma fragment resume
void main(void) /* Resume in code section 5 */
{

func9();

func7();

return;

3.2.5 CONSTANT ROMDATA SECTION ALLOCATION

In the small memory model €166 default allocates all constant romdata for
strings, floating point constants, initialization of aggregates and jump tables
in normal data (near in small memory model), which is limited to 4 pages
of 16K. When you do not want to sacrifice a normal data page for ROM,
you should use the —Oe option of ¢166.

When the -Oe option is enabled the following changes are in effect for
the small memory model:

Language Implementation 3-39

* 166 allocates string and floating point constants in a far romdata
section (PDAT). During startup this data is copied from far ROM to
near RAM like initialized ramdata. The code generated for accessing
these constants is not changed. This means no change in execution
speed. The disadvantage is that the memory for these constants is
allocated twice: once in far ROM and once in near RAM. The ROM
sections have class 'CINITROM’ and the RAM sections have the class
"CINITERAM’ or 'CINITIRAM’, depending on the #pragma
eramdata/iramdata.

* constant data for initialization of automatic aggregates and jump
tables is allocated in far ROM. ¢166 generates different code for
accessing this data as far data, which implies a minor draw-back in
code execution performance.

When you use the const keyword for normal data, this data is placed in
near ROM, even with the -Oe option.

To move jump tables separately from string and floating point constants to
various locations, you can use the following pragmas:

#pragma switch_tabmem_far

For the small memory model, jump tables are placed in far ROM. The
location of string and floating point constants is still controlled by the
-Oe/-OE option as described above. The ROM section where the jump
tables are placed have class 'CFARROM’. The code generated for accessing
the jump table in far ROM is slightly slower compared to the situation
where jump tables reside in near ROM.

#pragma switch_tabmem_near

For the small memory model, jump tables are placed in near ROM. The
location of string and floating point constants is still controlled by the —-Oe
/ =OE option as described above. The ROM section where the jump tables
are placed have class 'CNEARROM'.

#pragma switch_tabmem_default

This is the default. Use this pragma to return the control of the jump table
locations back to the -Oe / -=OE command line option as described above.

The pragmas switch_tabmem_far, switch_tabmem_near and
switch_tabmem_default can be used anywhere in the source file. The
location of the jump table is affected by the last pragma before a switch
statement.

3-40

Chapter 3

The pragmas can be passed through the command line by using the
-zpragma command line option.

The delivered small C libraries do not support constant romdata as far
data, because it is not commonly used. All C library functions are compiled
with the default option -OE, to allocate constant romdata 'CROM’ in linear
data sections (LDAT). You have to re-compile the C-library functions
which contain constant romdata 'CROM’ with the option —Oe if you do not
want near ROM. You can rebuild the small C libraries (c166s.1ib and
cl66ss.1lib) using the makefiles in the library directories.

All library modules are re-compiled and the libraries are rebuilt by these
makefiles.

String constants are in:

_doflt.c, _dowflt.c, _doprint.c, _dowprin.c,

_doscan.c, _dowscan.c, _tzone.c, asctime.c,
assert.h, fss_init.c, locale.c, perror.c,
raise.c, strerror.c, strftime.c, tmpfile.c,

tmpnam.c, wcsftime.c, wctrans.c, wctype.c
The const keyword is in:
_ctype.c, strftime.c, wcsftime.c

Floating point constants are in:

_atan.c, _doflt.c, _dowflt.c, fmod.c, _getflt.c,
_getwflt.c, _sinus.c, _strtod.c, _wcstod.c, acos.c,
asin.c, atan.c, atan2.c, cos.c, cosh.c,
exp.c, log.c, logl0.c, pow.c, sinh.c,
sqgrt.c, strtod.c, tan.c, tanh.c, wcstod.c

Before running these makefile you should have rights to write to the
library files c166s.1ib and c166ss.1ib.

Restriction:

When the #pragma initeram or #pragma initiram is used, only the last
pragma in the source file affects the section attributes of the near ram data
sections for string and floating point constants.

Language Implementation 3-41

3.2.6 THE _AT() ATTRIBUTE

In €166 it is possible to locate a global variable at a specified address. This
can be done with the _at() attribute. The syntax is:

_at(address)
where, address is the location in memory of the variable.

In the tiny memory model, the address is limited to 64Kbytes. In all other
models, the address space of the used device is the limit.

The _at() attribute can only be used on non-initialized global variables.
Variables, which are declared constant, using the const modifier can be
initialized and they will be placed in a rom section. Depending on the
memory modifier, this will be near—, far—, huge- or shugerom.

If a variable meets the autobita or autobitastruct pragma requirements
and the _at () keyword is specified, the _at () attribute overrules the
autobita/autobitastruct pragmas.

The _at() attribute has no effect on variables which are declared extern.

In the segmented memory models, variables which have the at()
attribute are not moved automatically to near memory. However, you can
explicitly specify an absolute variable to be near.

For near variables, the locator automatically assigns the correct page to the
correct DPP register. Note that all other relocatable variables in the
concerning page will also be moved. The dynamic assignments of DPP
registers can be overruled by the linker/locator controls. However, in case
of absolute variables, this will usually lead to errors because there is only
one valid DPP-register / page-number combination.

If two sections overlap, or if not all near sections can be located the
linker/locator will generate an error message.

The _at() attribute cannot be used with the bit, system, bita,
_sfr, esfr, xsfr and iram memory modifiers.

Examples:

_near int i _at(0x29000);

_far const char ch _at(0x2A900) = 100;
int j, * k _at(0x2B002);

int * (* * fptr)(int, int) _at(0x12344);

3-42

-

Chapter 3

This will generate the following sections, when compiled in the small
memory model:

TEST _
TEST _

_i

TEST _

TEST _
TEST _

_ch

TEST_

TEST_
TEST_

_k

TEST_

TEST_
TEST

1 NB SECTION LDAT WORD AT 029000h ‘CNEAR’
1 _NB_ENTRY LABEL BYTE
LABEL WORD
DS 2
PUBLIC i
1 NB ENDS

2 _FC SECTION PDAT BYTE AT 02A900h ‘CFARROM’
2_FC_ENTRY

LABEL BYTE

DB 64h

PUBLIC _ch

2_FC ENDS

3_NB SECTION LDAT WORD AT 02B002h ‘CNEAR’
3_NB_ENTRY LABEL BYTE

LABEL WORD

DS 2

PUBLIC _k

3_NB ENDS

4 NB SECTION LDAT WORD AT 012344h ‘CNEAR’
4 NB_ENTRY LABEL BYTE

_fptr LABEL WORD

TEST _

TEST _
TEST _

3

TEST _

DS 2
PUBLIC _fptr
4 NB ENDS

5 NB SECTION LDAT WORD PUBLIC ’CNEAR’
5 NB _ENTRY LABEL BYTE
LABEL WORD
DS 2
PUBLIC _j
5 NB ENDS

For example, in this case the linker/locator assigns a value of 0x0A to
DPP2. This is the same as using the SND(DPP2(10)) linker/locator control.

When specifying a near address, bits 14 and 15 implicitly specify the
DPP-register that will be used. DPP3 cannot be changed. This is because
DPP3 points to the memory that contains SFRs and bit addressable
memory.Therefore it is not possible to locate 'near’ variables in the third
page of any segment, other than segment 0.

Language Implementation 3-43

3.2.7 THE _ATBIT() ATTRIBUTE

In €166 it is possible to define bit variables within a _bitword or
(bit-addressable) _sfr variable. This can be done with the _atbit()
attribute. The syntax is:

_atbit(name, offset)

where, name is the name of a _bitword or _sfr variable and offset
(range 0-15) is the bit-offset within the variable.

Examples:

_sfr PO;
_sfrbit P0_6 _atbit(PO, 6);

_bitword bw; /* bitaddressable word */
_bit myb _atbit(bw, 3);

Using the defined bit:

if (myb)
myb = 0;

generates the same code as:

if (_getbit(bw, 3))
_putbit(0, bw, 3);

The first example defines an _sfrbit within a (bit-addressable) sfr
variable. The second example defines a bitaddress within a bitaddressable
word. For more information on SFR variables see section 3.4.5, Special
Function Registers. For more information on _bitword variables see
section 3.4.4, The Bitword Type.

The storage class of the defined bit is ignored. The storage class is
inherited from the bitword variable instead.

The atbit() attribute has no effect on variables which are declared
extern.

3-44 Chapter 3

In the following situation, the bit b0 will be allocated statically. Yet it will
be initialized at run—time, each time the function is entered:

_bit funct (void)

{
static _bitword bw;
_bit b0 _atbit(bw, 2) = 1;
return b0;

}

3.2.8 INLINE C FUNCTIONS: _inline

With the inline keyword, a C function can be defined to be inlined by
the compiler. An inline function must be defined in the same source file
before it is 'called’. When an inline function has to be called in several
source files, each file must include the definition of the inline function.
This is typically solved by defining the inline function in a header file.

Example:

_inline int
add(int a, int b)

{
return(a + b);
}
void
main(void)
{
int ¢ = add(1, 2);
}

The pragmas asm and endasm are allowed in inline functions. This makes
it possible to define inline assembly functions. See also section 3.11, Inline
Assembly in this chapter.

Language Implementation 3-45

3.2.9 UNALIGNED DATA: noalign

With the noalign attribute you can tell the compiler that an object is
possibly located at an unaligned address and that the compiler must not
spend any effort to align the data. This means that the object will not be
aligned using an EVEN directive. When the noalign attribute is applied
to a struct/union member, the member will not be aligned. When an
object at a possibly unaligned address needs to be accessed, the compiler
generates two byte instructions. The following example illustrates this.

_noalign int i; /* possibly unaligned object */

void func(void)

{
i++;
return;
}
This generates the following code:
_func PROC FAR
MOVB RL1, i ;; fetch object using
MOVB RH1, (_i+1) ;7 byte instructions
ADD R1,#01h
MOVB _i,RL1 ;; store object using
MOVB (_i+1),RH1 ;7 byte instructions
RETS

_func ENDP

Since the code that is generated is less efficient (two byte instructions), use
this attribute only when really needed. For example, for data exchange
with 8-bit processors.

Do not use the _noalign attribute on:
e automatic/register variables
* parameters

e function return values

The compiler issues a warning when you use the noalign attribute on
an unsupported object.

3-46 Chapter 3

=

It is also possible to have a pointer referring to an unaligned object. In this
case the type the pointer refers to must also be qualified as possibly
unaligned. For example,

_noalign int i; /* possibly unaligned int */
_noalign int * pi; /* pointer referring to
possibly unaligned int */
_noalign int * noalign npi; /* same as above, but
pointer itself is
also unaligned */

3.2.10 USING PACKED STRUCTURES: packed

By default the compiler aligns structure members on word boundaries.
Due to this alignment 'gaps’ can appear between the structure members.
When you do not want these gaps, you can use the _packed qualifier. In
this case the compiler does not align the structure members. However, bit
fields will still be aligned in some special cases, as explained below. With
the packed attribute the compiler pads the size of the structure or union
to an 8-bit boundary instead of a 16-bit boundary.

You can use the _packed attribute on struct and union types only. The
_packed attribute applies to the struct/union definition itself, rather than
to an instance of the struct/union. So, each instance of the struct/union
must also have the packed attribute. The following example
demonstrates the usage of the packed attribute:

_packed struct ps
{
char c; /* offset 0 bytes */
int i; /* offset 1 byte */
}i

_packed struct ps st0; /* correct, _packed struct */
struct ps stl; /* error, conflict in
_packed attribute */

Language Implementation

Besides the padding of the struct/union size, the _packed attribute is
basically a shortcut for:

struct s
{
_noalign char c;
_noalign int i;
} st2;

So, if you want to use a pointer to a member of a _packed struct/union,
you must qualify the pointer with the noalign attribute:

_noalign int * p = &st2.i;

The packed attribute does not say anything about the alignment of the
struct/union itself. Therefore, when an instance of a struct/union does not
need alignment you must add the _noalign attribute:

typedef packed struct ps

{
char c; /* offset 0 bytes */
int i; /* offset 1 byte */
char byte; /* offset 3 bytes */
} tPS; /* struct size: 4 bytes */
tPS st3; /* aligned _packed structure */

_noalign tPS st4; /* not aligned _packed structure */

When you do not use the noalign attribute on _packed structures, the
compiler can use the word copy routines for _packed struct/unions.

@ Since the code that is generated after the _packed qualifier is less

efficient, use packed structures only when really needed, for example for
data exchange with 8-bit processors. Consider in such case first other
solutions like for example, mapping structures on character arrays.

3-47

3-48

Chapter 3

Bit fields in packed structures

&

Bit fields in a _packed struct/union sometimes need alignment. The
following example shows such a situation:

_packed struct ps

{
int bf7 : 7; /* bit-offset 00-06 */
/* gap: 1 bit */
int bfl0 : 10; /* bit-offset 08-17 */
/* bit—offset 18-23:
padding to next byte */
bi

In this example, there is a gap of one bit between bf7 and b£f10 and the
total size of the structure is 3 bytes. The alignment is needed because
otherwise 3 byte moves are needed in order to access all bits of b£10.

In the next situation no alignment is needed:

_packed struct ps

{
int Dbf9 : 9; /* bit-offset 00-08 */
int bf7 : 7; /* bit-offset 09-15 */
/* no padding needed */

bi

The latter example does not need alignment nor padding. The size of the
structure is 2 bytes.

Note that an unnamed bit field with size 0 aligns to the next word
boundary as is the case with non-packed struct/unions.

Language Implementation 3-49

3.3 TASK SCOPE

¢166 supports both the "Task Concept’ and the ’Flat Interrupt Concept’.
These two concepts are explained in the chapter Software Concept of the
"TASKING Cross—Assembler, Linker/Locator, Utilities User’s Manual’. We
strongly recommend reading this section first!

When the Task Concept is strictly followed the entry point of each task is
an interrupt function, either activated by hardware (interrupt) or by
software (TRAP instruction). Each task has only one entry point and no
code and data is shared. This implies that reentrancy of code does not
exist. See section 3.12, Interrupt in this chapter for more details about
interrupt functions.

In C the outermost level of scope is a public (non-static) variable. Via the
extern keyword this variable can be accessed in other C modules. This
scope level in C is treated by €166 as the task scope (public) in the Task
Concept. This means that all public/extern variables are not known
outside the task. This allows each task to have its own I/O channels and
administration (e.g. print£()), heap area (e.g. malloc()), floating point
stack and public data. The public/extern variables are solved at the link
stage of 1166. In practice it is in a lot of cases possible to share code and
data between several tasks or interrupt functions. The following ways exist
to do this:

define code or data to be shared to ' COMMON’

In this case, the common section must be linked with each task needing
access to the shared data/code. The '"COMMON’ section attribute tells the
locator to 'overlay’ the section with another common section carrying the
same name. The module referencing the shared data of another C module
uses the normal keyword extern in the declaration. When using, a
prototype of the function is enough. Similar to the normal C rules, the
extern keyword may be omitted with functions. This approach is used by
the C library, where a number of standard C functions (such as strlen()
and isdigit()) are allocated in common sections. The ROM table used
by <ctype.h> functions is allocated in a common data section. Therefore,
the C library must be linked with each task.

The combine type of a section can be changed in two ways. Firstly a
command line option (-R), resulting in shared code and data of the
complete C module. Secondly via a pragma, allowing some data or code
of a C module to be shared and the rest not.

3-50 Chapter 3

=

Example:

C module is called test.c. The example illustrates how to declare a ROM
table (array) as 'shared among several tasks’ and the rest of the C data in a
normal data section. The generated code is listed below.

#pragma save_ attributes

#if MODEL == ’1’ || _MODEL == ’'m’
#pragma combine fc=C

#define FAR _far /* far common data */

#else

#pragma combine nc=C

#define FAR /* normal common data */
#endif

/*

* COMMON data section in ROM, linked with
* each task and overlaid by the locator:
* shared data among all tasks.
*/
FAR const char table[10)] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

#pragma restore attributes

/*
* public within task scope: each task can have
* it’s own instance of the public variable 1i.
*/

int i; /* task scope */

/*
* static within module scope: each module can have
* it’s own instance of the static variable s.
*/

static int s; /* module scope */

TEST 1 _NC SECTION LDAT WORD COMMON 'CNEARROM’
_table LABEL BYTE

DB 00h,01h,02h,03h,04h

DB 05h,06h,07h,08h,09h

PUBLIC _table
TEST_1_NC ENDS

TEST 2 NB SECTION LDAT WORD PUBLIC ’'CNEAR’
TEST 2_NB_ENTRY LABEL BYTE

i LABEL WORD
DS 2
PUBLIC _i

_s LABEL WORD
DS 2

TEST 2 NB ENDS

Language Implementation

&

The same object module (containing the common section) must be linked
with all tasks using the shared data, because the module name is part of
the section name. Of course it is not possible for shared code to access
non automatic data which is not shared.

If the medium or large model is used, a shared 'near’ data section will
cause all near data sections of all tasks to be allocated in the same page,
limiting the total near data area of the whole application to 16K. However,
it is still possible to have both shared (common) and non-shared (public)
near data sections of each task in this area.

If the feature of a 16K near data area for every task is needed, the shared
data must be explicitly declared far (or _huge or _shuge) as done in
the example above.

use pragmas ’‘global’ and public’

All public declarations in a source file following a pragma ’global’ are
defined by €166 at the application (global) scope level in the Task
Concept. This means that externs referencing these public variables have
to be resolved at the locate stage of 1166.

Example:

An application consists of two tasks TASK_A and TASK_B.

A module mod_a.c in TASK_A defines a variable which has to be
accessed in mod_b.c in TASK_B. The variable (gi) is defined in mod_a.c
as follows:

#pragma global
unsigned int gi;

#pragma public

The #pragma global promotes the scope of the variable gi from the
task scope (public) to the application scope (global).

In mod_b.c in TASK B the variable is declared via:

extern unsigned int gij;

3-51

3-52

Chapter 3

When linking TASK_B.LNO, the linker will produce a warning about an
‘'unresolved external _gi’. However, you can tell the linker to check the
unresolved externals with the object file (mod_a.obj) or the task object
file (TASK_A.LNO), which should contain the corresponding global
definition using the CHECKGLOBALS(0object_file) linker control. If the
corresponding global definition is found by the linker, no warning is
emitted, because the external is resolved at locate time when both TASK_A
and TASK_B are located. The linker and locator invocation may look like:

1166 LINK mod_a.obj TO TASK_A.LNO
1166 LINK mod_b.obj TO TASK_B.LNO "CHECKGLOBALS(TASK_A.LNO)”
1166 LOCATE TASK_A.LNO TASK_B.LNO TO tasks.Out

define more than one interrupt function in one task

This is the easiest way to share code and data between interrupt functions.
It is in fact a step towards the Flat Interrupt concept. When a task has
more than one entry point (several interrupt functions) reentrancy of the
functions and data must be checked.

use the Flat Interrupt Concept

When the the Flat Interrupt Concept is used, the assembler objects are
directly input for the locator and the linker stage is skipped. The public
(Task) scope level of the Task Concept is promoted to the global
(application) scope level by using the PUBTOGLB (abbreviation PTOG)
locator control. The PTOG control can also be applied to a set of objects
files, which makes it possible to mix the Flat Interrupt Concept with the
Task Concept. When the PTOG is specified for an object file, all public
(task scope) variables and functions are promoted to the application scope
(global) as if they were defined after a pragma ’global’. See the section
1166 Controls in the "TASKING Cross—Assembler, Linker/Locator, Utilities
User’s Manual’ for more information about the 1166 linker/locator controls.

Language Implementation

3.4 DATA TYPES

All (ANSI C) types are supported. In addition to these types, the sfr,
_sfrbit, esfr, esfrbit, bit, xsfr and bitword types are
added. Object size and ranges:

Data Type Size (bytes) | Range

_bit 1 bit Oor1

_sfrbit 1 bit Oor1

_esfrbit 1 bit Oori

signed char 1 -128 to +127

unsigned char 1 0 to 255U

_sfr 2 0 to 65535U

_esfr 2 0 to 65535U

_xsfr 2 0 to 65535U

signed short 2 -32768 to +32767

unsigned short 2 0 to 65535U

_bitword 2 0 to 65535U

signed int 2 -32768 to +32767

unsigned int 2 0 to 65535U

signed long 4 -2147483648 to +2147483647

unsigned long 4 0 to 4294967295UL

float 4 +/- 1,176E-38 to +/- 3,402E+38

double 8 +/- 2,225E-308 to +/- 1,797E+308

long double 8 +/- 2,225E-308 to +/- 1,797E+308

_near pointer 2 16 bits (64K) when using -Mt/-Ms
14 bits (16K) when using -Mm/-MI
(default data group)

_Xnear pointer 2 14 bits (16K) when using -Mm/-MI.

Not allowed in non-segmented memory
models.

_far pointer

14 bits (16K) in any page (16M)

_huge pointer

24 bits (16M)

_shuge pointer

24 bits (16M), but arithmetic is done
16-bit wide

Table 3-12: Data types

3-53

3-54

Chapter 3

— €166 generates instructions using (8 bit) character arithmetic, when
it is correct to evaluate a character expression this way. This results
in a higher code density compared with integer arithmetic. Section
3.4.2, Character Aritbmetic provides detailed information.

— The C166/ST10 convention is used, storing variables with the least
significant part at low memory address. Float and double are
implemented using IEEE single and double precision formats. See
section 3.16, Floating Point Interfacing in this chapter for more
details.

3.4.1 ANSI C TYPE CONVERSIONS

According to the ANSI C X3.159-1989 standard, a character, a short integer,
an integer bit field (either signed or unsigned), or an object of
enumeration type, may be used in an expression wherever an integer may
be used. If a signed int can represent all the values of the original type,
then the value is converted to signed int; otherwise the value will be
converted to unsigned int. This process is called integral promotion.

Integral promotion is also performed on function pointers and function
parameters of integral types using the old-style declaration. To avoid
problems with implicit type conversions, you are advised to use function
prototypes.

Many operators cause conversions and yield result types in a similar way.
The effect is to bring operands into a common type, which is also the type
of the result. This pattern is called the usual arithmetic conversions.

Integral promotions are performed on both operands; then, if either
operand is unsigned long, the other is converted to unsigned
long.

Otherwise, if one operand is long and the other is unsigned int,
the effect depends on whether a 1ong can represent all values of an
unsigned int; if so, the unsigned int operand is converted to
long; if not, both are converted to unsigned long.

Otherwise, if one operand is long, the other is converted to long.
Otherwise, if either operand is unsigned int, the other is converted
to unsigned int.

Otherwise, both operands have type int.

% See also section 3.4.2, Character Arithmetic.

Language Implementation

@ Sometimes surprising results may occur, for example when unsigned char
is promoted to int. You can always use explicit casting to obtain the type

required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()
{

b="a;

if (b == "a)

{
/* This code is never reached because,
* 0x0000 is compared to O0xFF00.
* The compiler converts character ’'a’ to
* an int before applying the ~ operator
*/

}

c=atl;

while(¢ != a+l)

{
/* This loop never stops because,
* 0x0000 is compared to 0x0100.
* The compiler evaluates ‘a+l’ as an
* integer expression. As a side effect,
* the comparison will also be an integer
* operation
*

}

3-55

3-56 Chapter 3

-

To overcome this 'unwanted’ behavior use an explicit cast:

static unsigned char a=0xFF, b, c;

void f()
{

b="a;
if (== (unsigned char)a)
{
/* This code is always reached */

}

c=a+l;
while(c¢ != (unsigned char)(a+l))

{

/* This code is never reached */

}
Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, J;
static long k, 1, m;

/* In C the following rules apply:

int * int result: int
long * long result: long
*
* and NOT int * int result: long

*/

Language Implementation 3-57

void f()

{
h =1 * j; /* int * int = int */
k=1*m; /* long * long = long */
1 =1%*73; /* int * int = int, afterwards

* promoted (sign or zero
* extended) to long
*/
1 = (long) i * j; /* long * long = long */
1 = (long)(i * Jj); /* int * int = int,
* afterwards casted to long
*/

3.4.2 CHARACTER ARITHMETIC

¢c166 generates code using 8 bit character arithmetic as long as the result
of the expression is exactly the same as if it was evaluated using integer
arithmetic. This approach increases code density and execution speed
(when character typed variables are used of course).

In strict ANSI-C, character arithmetic does not exist: all character variables
are converted to integer before the operation is performed.

However, if the integer result is not used (e.g. by assigning it to a character
variable) the operation could have been evaluated using character
arithmetic, giving the same result. This is how ¢166 works.

There is one exception to this rule, dealing with the sizeof operator:

char a, b;

int 1i;
void
main()
{
i = sizeof('A’); /* —-Ac: 1, —-AC option: 2 */
i = sizeof(a + b); /* -Ac: 1, —-AC option: 2 */
}

You can enable/disable character arithmetic with the —Ac/-AC command
line option.

3-58

Chapter 3

3.4.3 THE BIT TYPE

The bit type is subject to the following rules:
1. A bit type variable is always placed in bit-addressable RAM.
2. A bit type variable is always unsigned.

3. A bit type variable can be exchanged with all other type-variables. The
compiler generates the correct conversion.

4. Pointer to a bit-variable and array of bit is not allowed, because the
C166/ST10 has no instructions to indirectly access a bit variable.

5. Structure of bit is supported, with the restriction that no other type than bit
is member of this structure. Structure of bit is not allowed as parameter or
return value of a function.

6. A union of a bit structure and another type is not allowed. The bitword
type can be used for this purpose.

7. A bit type variable is not allowed as parameter. The allowed classes for bit
are: automatic, static, public or extern.

8. A function may have return type bit.
9. The sizeof of a bit type is 1.

10. A bit typed expression is not allowed as switch expression.

@ The constants need a (bit) cast operator in order to enable bit operations
such as &, "*’. Of course this is not needed with (compound)
assignments.

The following table shows which operators are allowed with bit type

variables:
Allowed is:
==, 1=, <, <=, >, >=
&&, ||, ', ~
? :, CALL, RETURN
& |, °
&=I |_I t=

conversions to/from char/int/long/float/double
bit structures (bit members only)
unary plus

Language Implementation 3-59

Not allowed is:

++, —— (post/pre increment/decrement)
unary minus

indirection (array/pointer/address)

+l ~r *l /l %r <<, >>

+=, —=, *=, /=, %=, <<=, >>=

3.4.4 THE BITWORD TYPE

You can declare word variables in the bit-addressable area as _bitword.
You can access individual bits using the intrinsic functions getbit ()
and _putbit() or declare the individual bits of this bitword variable
using _atbit. A prototype for these functions is given in the include file
cl66.h.

For example:

_bitword bwl, bw2; /* bitaddressable words */

if (_getbit(bwl, 3))
_putbit(1, bw2, 7); /* set bit 7 of bw2 */

% See also section 3.2.7, The _atbit() Attribute.
The bitword type is subject to the following rules.
1. A bitword type variable is always unsigned.

2. A bitword type variable can be exchanged with all other type—variables.
The compiler generates the correct conversion.

3. Pointer to a bitword variable and array of bitword is allowed.

4. Structure of bitword is supported, with the restriction that no other type
than bitword is member of this structure. Structure of bitword is not
allowed as parameter or return value of a function.

5. A bitword type variable is not allowed as automatic or parameter. The
allowed classes for bitword are: static, public or extern.

6. The sizeof of a bitword type is same as int.

7. A bitword typed expression is allowed as switch expression.

3-60 Chapter 3

=

3.4.5 SPECIAL FUNCTION REGISTERS

¢166 recognizes the keywords: _sfr and _sfrbit to access the special
function register area. With the keywords esfr and esfrbit you can
access the extended special function reigister area.

c166 also recognizes the keyword: _xsfr. The xsfr keyword is used to
access special function registers outside the (E)SFR areas but within
internal RAM (DPP3). Variables declared as xsfr are not bitaddressble.
Example: PEC source and destination pointers (SRCPx/DSTPx).

c166 emits the name of the special function register in the assembly code.
¢166 does not perform any check whether the name is correct or not, but
passes the name to a166. The assembler checks the validity of the name.

For each derivative a special include file regderivative.h is delivered
with the package, which contains all sfr, xsfr, sfrbit and esfrbit declarations
of the selected derivative. Depending on the selected —x option, the
compiler generates a $STDNAMES assembler control for a default register
definition file for the assembler:

-x, -xd $STDNANES(reg.def)

reg.def contains the C167 register set
-x2 $STDNAMES(regsuperl0bo.def)
-x22 $STDNAMES(regsuperl0m345.def)

By default a166 searches files supplied to the STDNAMES control in the
etc directory installed with the product. This way a166 finds the file
reg.def in that directory. To select the same register file for the
assembler as for the compiler it is recommended to supply the
$STDNAMES control on the command line of the assembler. For example,
if your C code includes the file regl63.h, you should supply the control
$STDNAMES (regl63.def) to the assembler on the command line.

All reg*.h files consist of a number of parts, which are all included by
default. However, if you do not need every part in your source file, you
can omit each part by defining the appropriate macro before you include
this file. These ’control’ macros are described in the reg*.h files.

REG163 NOPORT omit port I/O registers
REG163 NORS232 omit serial I/O registers
REG163 NOTIMER omit timer registers

REG163 NOADINT omit additional peripheral
REG163 NOEXTINT omit fast external interrupt

Language Implementation

REG165_NOCPU
REG165_NOPEC
REG165 NOPORT
REG165 NORS232
REG165_NOTIMER
REG165_NOADINT

REG165 NOEXTINT

REG166_NOADC
REG166_NOCAPCOM
REG166_NOCPU
REG166_NOPEC
REG166_NOPORT
REG166_NORS232
REG166_NOTIMER

REG167 NOADC
REG167_NOCAPCOM
REG167 NOCPU
REG167_NOPEC
REG167_NOPORT
REG167_NORS232

omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

omit timer registers

omit additional peripheral

interrupt registers

omit fast external interrupt registers

omit analog/digital registers
omit capture/compare registers
omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

omit timer registers

omit analog/digital registers
omit capture/compare registers
omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

You can make your own special function register header file, but in that
case you must supply the same names to al66 by an STDNAMES file.

€166 and a166 do not generate symbolic debugging information for
special function registers, because the register names should be known by
the debugger.

Because the special function registers are dealing with I/O, it is not correct
to optimize away the access to these registers. Therefore, 166 deals with
special function registers as if they were declared with the volatile
qualifier.

_sfr varl; is treated like: volatile unsigned int varl;
_sfrbit var2; is treated like: volatile bit var2;
_xsfr var3; is treated like: volatile unsigned int var3;

3-61

3-62

=

Chapter 3

3.5 PREDEFINED MACROS

In addition to the predefined macros required by the ANSI C standard, the
TASKING C compiler supports the predefined macros as defined in Table
3-13. The macros are useful to create conditional C code.

Macro

Description

_DOUBLE_FP

Defined when you do not use compiler option -F
(Treat double as float)

_SINGLE_FP

Defined when you use compiler option -F (Treat
double as float)

_C166

Identifies the compiler. You can use this symbol to flag
parts of the source which must be recognized by the
¢166 compiler only. It expands to the version number
of the compiler.

_CPUTYPE

Expands to a value representing the CPU type,
depending on option -x:

-X 0x167 (default)
-xd 0x272

-x1 0x1661

-x2 0x1662

-Xx22 0x16622

_MODEL

Identifies the memory model. Expands to the
argument of option -M. See section 3.2.1.6,
_MODEL.

USMLIB

Expands to _usm if -P is specified, or _nousm
otherwise. See section 3.2.2, User Stack Model, for
more information.

Table 3-13: Predefined macros

Example:

#if CPUTYPE == '0x1662’' /* XCl6x/Superl0 */

#endif

Language Implementation

3.6 FUNCTION PARAMETERS

&
&

A lot of execution time of an application is spent transferring parameters
between functions. Therefore this is an area which is very interesting for
optimization. The conventional CPU approach for parameter passing is via
the stack, because C allows recursion and reentrancy (the stack sizes of
each task are accumulated by the locator stage of 1166).

Because it is very important to optimize parameter passing, c166 uses a
resource which a RISC processor like the C166/ST10 has plenty of:
registers. The first parameters are placed in specific registers (R12— R15).
Very often the parameter computation can be done directly in the
appropriate register. In practice the bulk (80-90%) of the calls pass four or
fewer (word-sized) parameters.

A special keyword _stackparm is introduced as a ’function qualifier’ (like
_interrupt) to tell the code generator to pass all parameters via the user
stack. This keyword is very convenient for interfacing with (existing)
assembly functions or when register usage must be minimized (e.g. -r6 is
used for a small C interrupt function calling another C function):

void _stackparm assembly function(char type,
long size);

Register parameter passing is NOT done if one of the following conditions
is true:

e the 'dot arguments’ of a function having a variable argument list
(ANSI notation of prototype declaration, using three dots, e.g.: void
f(char *, ...);)

» the called function has a prototype with the stackparm function
qualifier.

* the register parameters are already full or one of the parameters
cannot be passed in a register (explained below in more detail).

If a variable argument list function (e.g. printf ()) is called without a
valid prototype (#include <stdio.h>) run-time errors occur due to
parameter transfer mismatches.

If a function prototype is used with a function call but NOT with the
function body (or vice versa), run—time errors may occur due to parameter
type mismatches.

3-63

3-64

Chapter 3

A function that does not call any other function is called a ’leaf function. If
a function is a leaf function and the C code does not calculate the address
of a parameter (via the & operator) the parameters of this function do not
have to be saved. Thus, the parameters of such a function are left in the
input registers. A lot of C library functions (such as strlen(), strcpy() etc.)
meet these requirements.

Non-leaf functions must save the parameter registers on the user stack at
function entry, as if they were pushed by the caller. However, the code
generator tries to use the register copies of these parameters as long as
possible. If automatic registers are available, these registers are used
instead of the user stack.

If a parameter does not fit (anymore) in the parameter registers or the
parameter is a float/double or a structure/union (not a pointer), it is
passed via the (more conventional) user stack. All next parameters are
passed via the stack to maintain correct stack offsets, even if one of these
next parameters would fit in the register area. The following examples
(small model) clarify this item:

Example 1:
void funcl(long 11, int i, long 12, char *p);
/* R12-R13 R14 stack stack: not R15 */
better:

void funcl(long 11, int i, char *p, long 12);

/* R12-R13 R14 R15 stack */
Example 2:
void func2(double d, double *p, int i);
/* stack stack stack */
better:

void func2(double *p, int i, double d);
/* R12 R13 stack */

3.6.1 STATIC APPROACH OF FUNCTION AUTOMATICS

Function automatics (not parameters) which can not be allocated to a
register are present on the user stack. Compared to static variables these
stack variables have the following disadvantages:

Language Implementation 3-65

* Access to these variables is only possible via an ’indirect register
plus offset” addressing mode. This addressing mode is supported in
the following two instructions only:

1) MOV Rn,[Rm+#d16]
2) MOV [Rm+#d16],Rn

This means that all arithmetic operations (add, and, cmp, or, subb
and xor) with a stack variable need an extra register move, before
the operation can be done. With static memory variables a register
move is not needed, because the operations mentioned above allow
the usage of the MEM operand.

e Heavy usage of instruction 1) is slowing down execution time,
because this instruction takes twice as much time as any other move
instruction or arithmetic operation (200ns instead of 100ns at
40MH?z).

Therefore, code size and execution speed can be improved if the
non-register function automatics may be treated by the compiler as if they
were static and it is possible to allocate these ’automatic’ variables in the
fast internal RAM of the C166/ST10 using a CLASSES or ADDRESSES(
SECTIONS) locator control. Of course, this is not possible with recursive
functions. Because function automatics do not have any interaction with
other functions (unlike parameters), it is not necessary to introduce a
special static model to support this optimization. It is even possible to
enable this optimization for only one function in a module.

The compiler supports two ways of specifying function automatics can be
treated in a static way:

1. command line option.

-S All functions of the C module are compiled using static
memory for non register function automatics. This option
may be useful for non recursive applications.

2. pragmas.

If only a few functions of the entire application are recursive, the
following pragmas can be used to enable (or disable) this optimization:

pragma static Use static memory for non register function
automatics.

3-66

Chapter 3

pragma automatic Default (unless -8 is used). Use stack approach
for non register function automatics. Support
recursion.

The usage of the =S option (or pragma static) does not change the
semantic behavior of ¢166 with automatics: explicit storage type specifiers
(far, near, huge, shuge) remain illegal and the initialization of an automatic
variable is done run-time (each time the function is entered).

3.7 REGISTER VARIABLES

Via the register keyword you are able to control which automatic
variable must be allocated to a CPU register by the code generator.
However, if the register keyword is NOT used, the front end phase of
¢166 determines which C automatic variables might be allocated to a
register by the code—generator (unless the —OR option is specified to turn
this optimization off).

If a C function is a non-leaf function (i.e. calling another C function), four
registers (R6-R9) are available to support C register variables. However, if
the C function is a leaf function, not occupied registers of the parameter
register area (R12-R15) can be used for automatic registers too. These
registers do not have to be saved at entry and restored at exit. Thus, leaf
functions allow up to eight registers to be used for register automatics!

The code generator of ¢166 uses a ’saved by callee’ strategy. This means
that a function which needs one or more registers for register variables,
must save the contents of these registers and restore before returning to
the caller. The major advantage of this approach is, that only registers
which are really used by the function are saved. If the function does not
have any register variable, the registers of the caller function remain valid
without being saved.

The code generator prefers to assign the register character type automatics
to R6 or R7 (using RL6/RL7) and the other types to the rest in the order of
their declaration.

Language Implementation 3-67

A declaration like (£ () being a non-leaf function):

void f()
{

register int 1i;
register char c;
register long 1;

would have been allocated by the code generator in the following

registers:
i ==> RO
¢ ==> RL6

1 ==> R7-R8

If £() would have been a leaf function, the register automatics would
have been allocated in the following registers:

i ==> RI15
¢ ==> Rl4
I ==> RI12-R13

All basic data types which are allowed as automatic variable are
supported, except float/double/bit: char, int, long, near/far/huge/shuge
pointer. Of course _sfr, sfrbit, xsfr and bitword are not
possible.

If register usage must be minimized (e.g. interrupt function/module),
specify —r6 on the command line (RO-R5 used in REGDEF). When the -r
option is used, the automatic register allocation scheme of ¢166 is
adjusted to meet the requirements of the user.

3-68 Chapter 3

=

3.8 INITIALIZED VARIABLES

There are two types of initialized variables, which depend on the class of
the variable: static or automatic. The implementation is described in
the following sections.

3.8.1 AUTOMATIC INITIALIZATIONS

Automatic initialized variables are initialized (run—time) each time a C
function is entered. Normally, this is done by generating code which
assigns the value to the automatic variable.

In the old (K & R) language definition it was not allowed to initialize an
automatic aggregate type (e.g. an array or structure), but only integral
types. The ANSI standard also allows run—time initialization of automatic
aggregate types. To support this feature, ¢166 generates code to copy the
initialization constants from ROM to RAM each time the function is
entered.

3.8.2 STATIC INITIALIZATIONS

There is a lot of existing C source which use static initializations. Static
initialized variables normally use the same amount of space in both ROM
and RAM. This is because the initializers are stored in ROM and copied to
RAM at start-up. In the task philosophy of 166, this ROM to RAM copy
has to be performed at ’startup’ for each task.

¢166 takes care of a mechanism, which is completely transparent for the
user. It performs initialization per task from system startup code, using
compiler generated tables.

Static initialized variables use the same amount of space in both ROM and
RAM. The only exception is an initialized variable residing in ROM, by
means of either the #pragma romdata or the const storage type
qualifier. For normal initialized RAM variables, you can specify the class
name (CINITIRAM’ or 'CINITERAM’) to be used with #pragma iramdata
or #pragma eramdata. You can use the CLASSES locator control to affect
the location of these variables. See section 3.2.3, Section Allocation, for
details on section names and section attributes.

Language Implementation

Example (using small model):

const char b = 'b’; /* 1 byte in ROM */
#pragma iramdata /* default, may be omitted, unless pragma
romdata/eramdata was used before */
int i = 100; /* 2 bytes in ROM, 2 bytes in IRAM */
char a = 'a’; /* 1 byte in ROM, 1 byte in IRAM */
char *p = "ABCD”; /* 5 bytes in ROM (for "ABCD") */
/* 2 bytes in ROM, 2 bytes in IRAM
(for p)*/
#pragma romdata /* Needed for ROM only allocation */
int j = 100; /* 2 bytes in ROM */
char *q = "WXYZ"; /* 5 bytes in ROM (for "WXYz") */

/* 2 bytes in ROM (for p) */

c166 treats romdata variables as if they were declared with the const
storage type qualifier.

3.9 NON-INITIALIZED VARIABLES

&

In some cases there is a need to keep variables unchanged even if power
is turned off. In these systems some of the RAM is implemented in
EEPROM or in a battery-powered memory device. In a simulator
environment, clearing non-initialized variables might not be wanted too.

To avoid the ’clearing’ of non-initialized variables at startup, one of the
following things should be performed:

Define (allocate) these variables in a special C module and compile this
module using the -Ob option. ¢166 will omit these data sections, when
building the C166_BSS section.

From EDE: from the Projects menu, select Project Options... Expand the
C Compiler entry and select Allocation of Variables. Disable the check
box Perform ’clearing’ of non-initialized static/public variables.

Define (allocate) these variables between #pragma noclear and
#pragma clear. c166 will omit these data sections, when building the
C166_BSS section.

The last #pragma [no|clear before or in a function, applies to all
static/global variables, in or outside a function.

3-69

3-70

&
&

Chapter 3

Use inline assembly to allocate the special variables in a special data
section (NOT used by other C variables).

Make a separate assembly module, containing the allocation of these
variables in a special data section.

It is not possible to remove the ’clearing code’ from the startup file,
because other C modules (and the C libraries) depend on it too.

Variables in bit-addressable RAM are cleared by default and not effected
by any of the above mentioned methods. However, you can disable this
automatic clearing from EDE: from the Projects menu, select Project
Options... Expand the Application entry and select Startup. Disable the
check box Clear bit-addressable RAM at startup.

3.10 STRINGS

In this section the word ’string’ means the separate occurrence of a string
in a C program. So variables initialized with strings are just initialized
character arrays and are not considered as ’strings’. See section 3.8,
Initialized Variables, for more information on this topic.

Strings have static storage. The ANSI X3.159-1989 standard pemits string
literals to be put in ROM. Because there is no difference in accessing ROM
or RAM, ¢166 allocates strings in ROM only. This approach also saves
RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, ¢166 offers the possibility to allocate a static
initialized variable in ROM only, when declared with the const qualifier
or after a #pragma romdata. This enables the initialization of a (const)
character array in ROM:

const char romhelp[] = "help”;
/* allocation of 5 bytes in ROM only */

Or a pointer array in ROM only, initialized with the addresses of strings,
also in ROM only:

char * const messages[] = {"hello”,”alarm”,”exit”};

ANSI string concatenation is supported: adjacent strings are concatenated —
only when they appear as primary expressions — to a single new one. The
result may not be longer than the maximum string length (509 characters).

Language Implementation

The Standard states that identical string literals need not be distinct, i.e.
may share the same memory. To save ROM space, ¢166 overlays identical
strings within the same module.

Allocation of string constants

By default the compiler allocates string constants in the memory model’s
default memory space. You can overrule this with #pragma stringmem:

#pragma stringmem memory-space

Where memory-space is one of:

Memory Space String Location
_hear near ROM

_Xnear xnear ROM

_far far ROM

_shuge shuge ROM

_huge huge ROM

default memory model default

The ’default’ argument allocates strings in the memory model’s default
memory space. In the small memory model this also means that the
-0e/-OE option is effective. See also section 3.2.5 Constant Romdata
Section Allocation.

The following example illustrates the use of the pragma:

#pragma stringmem _huge /* allocate strings in _huge memory */
_huge char * txt = "textl”;

This results in the following code:

3-71

3-72

STR_IR NB

STR_IR NB_ENTRY
DSPTR

STR_IR_NB

STR_ID NB
STR_ID_NB_ENTRY
_txt LABEL
DS
PUBLIC
STR_ID NB

STR_3_HC
23 DB
STR_3_HC

C166_INIT
DW
DPPTR
DW
C166_ INIT

SECTION PDAT WORD PUBLIC
LABEL BYTE

3

ENDS

SECTION LDAT WORD PUBLIC
LABEL BYTE

WORD

4

_txt

ENDS

SECTION HDAT WORD PUBLIC

"CINITROM’

"CINITIRAM’

" CHUGEROM'

074h,065h,078h,074h,031h,00h

ENDS

SECTION PDAT WORD GLOBAL
06h

"CINITROM’

STR_ID NB ENTRY,STR IR NB_ENTRY

04h
ENDS

Chapter 3

The pragma can appear anywhere in the source and remains in effect until
the pragma is used again to set a different memory space.

Language Implementation 3-73

3.11 INLINE ASSEMBLY

€166 supports an inline assembly facility by means of the following
pragmas:

#pragma asm Insert the following (non preprocessor lines) as
assembly language source code into the output
file. The inserted lines are not checked for their
syntax.

#pragma asm_noflush Same as asm, except that the peephole
optimizer does not flush the code buffer and
assumes register contents remain valid.

#pragma endasm Switch back to the C language.

You should realize that using these pragmas results into non portable and
hard to ’simulate’ code. Therefore, usage of these pragmas should be
minimal.

C Variable Interface for Pragma asm

The pragma asm and endasm synopsis of the pragmas is as follows:
#pragma asm [(pseudo_reg[=varnamel|, pseudo_regl=varnamel| ...)]
#pragma endasm [(varname=pseudo _reg|, varname=pseudo_reg] ...)|

The arguments of the pragmas are:

varname name of a C variable of type char or int, signed or unsigned,

pseudo _reg a pseudo register name with the synopsis:

@[w | b |ilnum
w word register RO-R15
b byte register RLO-7, RHO-7

i indirect address register RO-R3, some addressing
modes only support these registers

3-74

Chapter 3

num a user defined number of the pseudo register. This
number is not related to the register that is substituted
by the compiler. The number must be in the range
0-15.

When no w, b, or i is given a word register is used.

Examples:
@l word register pseudo
@w?2 word register pseudo

@b3 byte register pseudo
@i4 word register pseudo

When a pseudo reg is listed without assignment of a varname, the
compiler will reserve a scratch register. When in the pragma endasm a
pseudo_reg is listed that is not listed in the pragma asm, it will also be
reserved as a scratch register.

Example:

#pragma asm(@wl=varl, @b2=var2, @i3=var3, @4)
EXTERN XVAL:WORD, BVAL:BYTE, YVAL:WORD

MOV @4, @wl ; £ill temporary register

MOV XVAL, @4 ; save in some memory location
MOV BVAL, @b2 ; save in some memory location
MOV @i3, #2 ; small instruction (Rn, #data4)
MOV @wl, YVAL ; get some memory location

#pragma endasm(retval=@wl)

The compiler will take care that the requested registers are free to be used
and that their original content is saved and restored if needed. When the
compiler is not capable of allocating registers for the listed pseudos an
error message will be issued. The number of pseudos that can be allocated
for inline assembly depend on the complexity and size of the C code part
of the function.

Defining inline assembly functions can be done by using the pragma asm
interface in an inline C function.

% See section 3.17.1, User Defined Intrinsics in this chapter.

Language Implementation 3-75

Example:

_inline int swap_add(int a, int b)
{
int rv;
#pragma asm (@l=a, €@2=b, @3)
MOV @3, @1
MOV @1, @2
MOV @2, @3
ADD @3, @1
#pragma endasm (rv=@3)
return rv;

}

Known restriction: The #pragma asm may cause an inline assembly to
be optimized away by the ¢166 flow optimizations. For example:

void example(void)

{
goto the_end;

#pragma asm

entry:
; assembly statements here will not be emitted by cl66
; because it is considered ‘‘not reachable’’, even when
; the assembly starts with a label.

#pragma endasm

the end: ;

}

Workaround for this restriction: Replace C statements which seems to
make the inline assembly not reachable by an assembly equivalent inside
the #pragma asm:

void workaround(void)
{
#pragma asm
jmp the end
entry:
; assembly statements here will be emitted by cl166
the_end:
#pragma endasm

}

% See also section 7.4, Assembly Language Interfacing in the chapter
Run—time Environment.

3-76 Chapter 3

=

@ The '"MODULE SUMMARY” of ¢166, reporting code size and data size of
the module, is no longer valid if code or data has been added using inline
assembly.

3.12 INTERRUPT

¢166 supports both the "Infineon Task Concept’ and the "Flat Interrupt
Concept’. These two concepts are explained in the chapter Software
Concept of the "TASKING Cross—Assembler, Linker/Locator, Utilities User’s
Manual’. We strongly recommend reading this section first! See also section
3.3 Task Scope in this chapter.

In the Task Concept a Task is initiated via an interrupt or software trap.
The ’reset task’ is the task which defines main. The system startup file
(’start.asm’ in assembly code) delivered with the compiler, initializes the
processor and each task and finally calls main (). In the Flat Interrupt
concept an interrupt is an entry point in the code. The system startup code
is such an entry point.

You can tell the compiler that a C function is an interrupt function with the
keyword _interrupt. For example:

_interrupt(0x22) void
timer(void)

{
}

The interrupt number -1 is reserved for a so-called symbolic interrupt. This
means that ¢166 does not assign an interrupt number to this C function.
The interrupt function can be bound to any interrupt number in the locate
stage of 1166 by the INTERRUPT control.

¢166 generates an interrupt frame inheriting the user stack pointer from
the previous task, switching context to a new register bank, saving DPP
registers and MDC, MDH and MDL registers. When the -Oh command line
option is set (default) the compiler optimizes the interrupt frame so that it
only contains the parts needed to save resources used by the interrupt
function. You can also tell the compiler to omit the whole interrupt frame
via the following pragma:

#pragma noframe

This allows you to make your own interrupt frame.

Language Implementation 3-77

With the _using keyword you can tell the compiler to generate a new
register bank for the interrupt function. For example:

_interrupt(0x28) _using(ADCONV_RB) void
ad_conv_complete(void)

This way you can define several interrupt functions in one module with
each function having its own register bank. Or you can share a register
bank between several interrupt functions which have the same interrupt
level and thus can never interrupt each other. When several interrupt
functions in a source module are ’using’ a register bank with the same
name, the compiler uses the same register bank for these functions. 1166
will "overlay’ register banks with equal names.

All interrupt functions without the _using keyword use a register bank
with a name derived from the module name. This means that all interrupt
functions in one C source file which do not have the using keyword use
the same register bank and therefore they should have the same interrupt
level. Different interrupt levels can be used, but in this case #pragma
regdef is needed to instruct the compiler to use non-overlapping register
sets.

With #pragma regdef you can define the register set that the compiler
uses for code generation. The pragma affects all functions after the
pragma, until #pragma regdef is used again to define another register
set. When #pragma regdef is used without an argument, or with
argument 0, the REGDEF assembler directives used for interrupt functions
will be omitted, even when the using() qualifier is used. In this case
the compiler does not generate code to switch to another global register
bank.

You can use the -r command line option to name the register bank of a
module. With an optional flag the register bank can be declared ‘common’.
When a register bank definition is supplied with the -r option, this register
set is used until the next #pragma regdef in the source.

When the -r option is used without any arguments, the REGDEF directive
for this module will be omitted. This does not affect the REGDEF
directives originating from the using() qualifier. Interrupt functions that
do not have the using() qualifier use the module’s REGDEEF. Since this
REGDEEF is omitted, no code will be generated in the interrupt frame to
switch register banks.

3-78 Chapter 3

=

% See the description of the —r option for more details.

3.13 EXTENSIONS FOR THE XC16x/Super10
ARCHITECTURES

The XC16x/Superl0 architectures support fast register bank switching
using local register banks. You can make use of this feature using the
_localbank keyword. This keyword can only be applied on interrupt
functions.

_localbank (num)
Where num can be one of the following:

-2 Use local register bank 1 but assume the hardware
automatically swithches the register bank upon interrupt.

-1 Use local register bank 0 but assume the hardware
automatically swithches the register bank upon interrupt.

0: Use global register bank as usual.

1: Use local register bank 0 and emit instruction in interrupt
frame to select the correct local register bank.

2: Use local register bank 1 and emit instruction in interrupt
frame to select the correct local register bank.

Only the localbank (0) qualifier can be used in conjunction with the
' _using’ qualifier. The correct registerbank will not be selected when
#pragma noframe is entered before the interrupt function.

Since local register banks are not memory mapped, the compiler can not
copy the userstack pointer (R0) to the new register bank. Therefore each
local register bank will have its own userstack area:

Cl66_USO: will be used together with register bank 0
Cl66_USl: will be used together with register bank 1

The compiler estimates the size of each seperate stack based upon the
code inside interrupt functions only. Userstack space occupied by
functions which are called from the interrupt function are not taken into
account.

Language Implementation 3-79

The estimated user stack size can be adjusted using a new function
qualifier:

_stacksize (num)

Where num specifies the userstack adjustment in bytes. A positive number
increases the compiler estimates by num bytes, a negative value decreases
it. If the sum of the compiler estimation and the stack adjustment is
negative, a warning will be generated and the value will be truncated. The
value of num must be even.

The _stacksize qualifier can only be used in combination with the local
register banks (for example: localbank (0) is NOT allowed) and
interrupt functions.

User stacksize estimations will not be performed if #pragma nocustack
was used. Of course it is still possible to adjust the size of the generated
userstack sections at locate time using the SECSIZE control.

The complete definition of an interrupt function could look like this:

/

Define an interrupt function using local register

bank 0 assuming the hardware automatically selects

local bank 0 upon interrupt. Increase the by the

compiler estimated user stacksize by 40 bytes. The
* userstack will be allocated in section: C166_USO
*/

void _interrupt(0x10) _localbank(-1) _stacksize(+40)

ISR(void)

{

* Ok Gk F F

return;

}

Another feature of the ext2 architectures is the scalable interrupt vector
table. The compiler uses this feature by trying to inline as much code as
possible inside the interrupt vector table. Small interrupt functions can be
located inside the vector table completely. This will improve interrupt
latency. The size of an entry in the interrrupt vector table can be supplied
to the compiler by the command line option:

—inum

Where num can be one of the following:

3-80

- No scaling

w N - o
[

(4 bytes/entry)
— 2x the normal size (8 bytes/entry)
4x the normal size (16 bytes/entry)
8x the normal size (32 bytes/entry)

Chapter 3

When either option is supplied to the compiler, it will try to reorder and
move code from the interrupt frame to the interrupt vector table. Where
possible the context switch will be done just before the JMPS instruction
which jumps to the ISR. By doing this, the execution time of the JMPS

instruction will be hidden by the context switch.

the compiler will put all sections that have to be inlined in a special
section called:"C166_INT” with class:"C166_VECTAB”. An example of an

inlined interrupt function is shown below:

Ne Ne Ne Ne N~

Cl66_ INT SECTION CODE WORD PUBLIC
3 PROC TASK SCALEDVE_ TASK INTNO
SCALEDVE INUM = 010h SCALING 3 INLINE

PUSH CP

SCXT MDC,#010h

PUSH DPPO

MOV DPPO,#PAG ?BASE_DPPO
PUSH DPP2

MOV DPP2,#PAG ?BASE_DPPO0
PUSH MDH

MOV SCALEDVE_RB,RO

MOV CP,#SCALEDVE_RB

=3

~e

~e

Ne Ne ~e ~o

~e ~e

~e

Ne Ne Ne <~

BN NS NN

4

khhkkhkhkkhkhkhkkhkhkhhkhhkhkhkhkhhkhhkhhkhkhkhhhkhhkhkhkhkkhkk kkhhkkhkkhkkikkkk*,*x*%
* Section which will be located at vector position

* 0x10 by the locator, the scaling
* (32bytes/entry available in vector table)

hhkhhkhkkhkkhkhhhhkhkhhhhhkhdhhhhhkhhdhhhhkhdhdhhdkhdhdhhhdddhdhdhdhkhddkx*x

'Cl66_VECTAB’

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

;: (Context switch right before JMPS)

JMPS SEG _ISR1, ISRl
RETV

3 ENDP

C166_ INT ENDS

RO Sk Sk b Sk S S ok S

* Start of ISR
kkhkkhkkkhkkhkkhkhkikkhkkhkkhkkikk*

~Ne Ne ~e

4

~e ~eo

4

.
I
.
4

4

bytes

32 bytes

Language Implementation 3-81

SCALEDVE 1 PR SECTION CODE
_ISR1 PROC TASK ISR
PUSH MDL

kkhkhkhhkkkhkhhhkkkhkhkhhrkkhk*k

* User code goes here
kkkkhkkkkkhkhkkkkhkhkikkkkk*x

Ne Ne ~e

POP MDL
POP MDH
POP DPP2
POP DPPO
POP MDC
POP CP
RETI

_ISR1 ENDP

A faster way to trasfer control to an interrupt function is to make use of
cached interrupts. To support this, the hardware of the ext2 architectures
bypasses the interrupt vector table at all. In this case, the compiler can not
inline any code of the interrupt fuction in the vector table. Therefore the
_cached keyword has to be used on these interrupt functions. The
following code fragment gives an example of the use of the cached
function qualifier:

void _interrupt (0x10) localbank(-1) _cached
ISR(void)
{

return;

}

@ The _cached function qualifier will basically overrule the —-i commandline
option causing none of the code to be located inside the interrupt vector
table.

3-82 Chapter 3

=

Examples:

1. The C module is called ’intrpt.c’ (present in the examples/c directory).
The example illustrates how to tell the compiler to omit the interrupt frame
code. The C source and the generated code (large) is listed below:

#pragma global
bit b; /* interrupt handler sets a global bitvariable */
#pragma public

#pragma noframe /* minimal interrupt frame */
/* even no GPR’s needed, so */
#pragma regdef 0 /* omit regdef definition */

interrupt (0x30) wvoid
£0)
{
#pragma asm
NOP ; you can make your own entry code here
#pragma endasm
b =1;
#pragma asm
NOP ; you can make your own exit code here
#pragma endasm

}

INTRPT 1 BI SECTION BIT BIT PUBLIC ’'CBITS’
INTRPT 1 BI ENTRY LABEL BIT
_b DBIT
GLOBAL b
INTRPT 1 BI ENDS

INTRPT_2_PR SECTION CODE WORD PUBLIC ’'CPROGRAM’

£ PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
NOP ; you can make your own entry code here
BSET _b
NOP ; you can make your own exit code here
BCLR IEN
RETI

£ ENDP

INTRPT 2_PR ENDS

2. The C module is called ’intrpt.c’ (present in the examples directory). The
example illustrates the use of #pragma regdef and shows the code the
compiler emits as interrupt frame using large memory model (DPPO and
DPP2 saving). The user stack pointer must be inherited and the multiply
registers must be saved. The C source and the generated code is listed
below:

Language Implementation

#pragma regdef 6 /* MINIMIZE REGISTER USAGE to RO-R5 */
int stackparm ext_ func(int); /* stack parameter passing: NOT
R12-R15 */

interrupt (0x30) wvoid

£()

{
int i; /* allocate on user stack: NOT R6-R9 */
i = ext_func(3);

}

INTRPT_1_PR SECTION CODE WORD PUBLIC ’'CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 2

MOV DPP3:INTRPT_RB,R0

SCXT CP,#DPP3:INTRPT_RB

SCXT MDC,#00h

PUSH DPPO
PUSH DPP2
MOV DPP2,#PAG C166_DGROUP
PUSH MDL
PUSH MDH

SUB RO,#02h
MOV R4,#03h
MOV [-RO],R4
CALLS SEG _ext_func,_ext_ func
ADD RO,#02h

MOV [RO],R4
ADD RO,#02h
POP MDH
POP MDL
POP DPP2
POP DPPO
POP MDC
POP CP
BCLR IEN
RETI

£ ENDP

INTRPT 1 PR ENDS

INTRPT RB REGDEF RO-R5

Instead of using #pragma regdef 6 you can also use the command line

option -r6. When you use the —-r command line option, you can also

specify the register bank name to be used and whether this register bank

should be COMMON or not.
Specifying -r6,MYBANK,c results into:

MYBANK REGDEF RO-R5 COMMON = MYBANK RB

3-83

3-84

Chapter 3

It is very useful to share the register bank of interrupt functions, which are
at the same interrupt priority level, so they cannot be active
simultaneously. This approach saves internal RAM space, which is a
scarce resource.

The C module is called ’intrpt.c’ (present in the examples directory). The
examples illustrates the using keyword. The C code and the generated
code (large memory model) is listed below:

int 1i;

interrupt (0x30) using (INTRPT RB) void
£()

{
i+=2;
}
ASSUME DPP3:SYSTEM
INTRPT 1 NB SECTION DATA WORD PUBLIC 'CNEAR’
ASSUME DPP2:INTRPT_1_NB
INTRPT_1_NB_ENTRY LABEL BYTE
i LABEL WORD
DS 2
PUBLIC i

INTRPT 1 NB ENDS

INTRPT 2 PR SECTION CODE WORD PUBLIC ’'CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 0

MoV DPP3:INTRPT_RB,R0O

SCXT CP,#DPP3:INTRPT RB

PUSH DPP2

MOV DPP2,#PAG C166_DGROUP

MOV R4,#02h

ADD _i,R4
POP DPP2
POP CP
BCLR IEN
RETI

£ ENDP

INTRPT 2 PR ENDS

C166_BSS SECTION DATA WORD GLOBAL 'CINITROM’
DW 06h
DPPTR INTRPT 1 NB_ ENTRY
DW 02h
C166_BSS ENDS
C166_DGROUP DGROUP INTRPT 1 NB
INTRPT RB REGDEF RO-R15
REGDEF RO-R15

END

Language Implementation 3-85

3.14 SWITCH STATEMENT

¢166 supports two ways of code generation for a switch statement: a jump
chain or a jump table. A jump chain is comparable with an
if/else—if/else—if/else construction. If all of the following conditions are
true, a jump table is emitted:

1. type is not long (char, int, bitfield only)
2. at least five case labels are present

3. total number of ’gaps’ between the case labels (when sorted) does not
exceed the number of case labels.

It is obvious (especially with large switch statements) that the jump table
approach executes faster than the jump chain approach. If speed is
needed (e.g. an interrupt function) it might be acceptable to use a jump
table, even if the number of gaps between the (sorted) case labels exceeds
the number of case labels itself. Therefore the second and third
requirement can be overruled by using:

#pragma switch force table
and restored using;:
#pragma switch smart

which is the default situation. The command line equivalents are -Os
(switch_force_table) and —OS (default, switch_smart).

The location of jump tables in the small memory model can be controlled
by using

#pragma switch_ tabmem far

which places jump tables in class 'CFARROM’.
#pragma switch tabmem near

which places jump tables in class 'CNEARROM’.
#pragma switch tabmem default

which places jump tables on the default location, which is
controlled by the -Oe/-OE command line option. This is the
default.

3-86 Chapter 3

% See section 3.2.5 Constant Romdata Section Allocation for details.

3.15 REGISTER USAGE

¢166 uses the general purpose registers (GPRs) of the C166/ST10 as

follows:
Register Usage
RO User Stack Pointer (USP)

R1-R5, R10, R11

General registers (codegen, temporary results,
C return values)

R6-R9 C register variables and saved register
parameters
R12-R15 Fast C parameter passing and C register

variables

Table 3-14: General purpose registers

¢166 uses the following registers for C function return types:

Return type

Register(s)

bit

PSW.6 (USRO0)

char RL4

short/int R4

long R4-R5 (R4 low word, R5 high word)

float R4-R5

double user stack and R4

structure user stack and R4 (pointer to stack block)

near pointer

R4

far pointer

R4-R5 (R4 page offset, R5 page number)

huge pointer

R4-R5 (R4 segment offset, R5 segment number)

shuge pointer

R4-R5 (R4 segment offset, R5 segment number)

Table 3-15: Register usage for function return types

Language Implementation 3-87

3.16 FLOATING POINT INTERFACING

3.16.1 INTRODUCTION SOFTWARE FLOATING POINT
USAGE

Section 3.16 describes the usage of floating point numbers. This includes
storage format, trap handling and usage in assembly programs.

3.16.2 THE IEEE-754 FORMAT

Floating point numbers are stored in IEEE-754 format. This manual
explains its format only briefly. For a more detailed version you are
referred to the IEEE-754 standard, published by the Institute of Electrical
and Electronic Engineers, Inc.

Basic single precision format

The basic single precision format is like this:

Seeeeeeeemmmmmmm ‘ mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

You can convert this to an understandable number with the formula:

value = (—1)° - (1 + %) . e-127

An example:

0x40490fdb
s =0
e = 0x80 = 128
m = 0x490fdb = 4788187
. _1,0. 4788187\ 1 _ 4 . Lo =
value = (-1) (1 + 8388608) 2 1-(1+0.5707964) -2 3.14159274

3-88 Chapter 3

-

Special case single precision 0.0

0.0 is stored as:

s000000000000000 0000000000000000

Seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Notice that there is a +0.0 and a —0.0.

Special case single precision NaN (Not a Number)

Generated when the result of an expression is undefined e.g. 0.0 / 0.0.

NaN is stored as:

s111111111111111 1111111111111111
seeeeeeeemmmmmmm MMMMMMMMMMMMMMMM
s = sign, e = exponent, m = mantissa

According to the IEEE standard not all mantissa bits have to be set for a
number to be handled as NaN.

Special case single precision INF (Infinity)

Generated when the result of an expression is larger than can be stored,
e.g. 1.0e30f * 1.0e30f.

INF is stored as:

$111111110000000 0000000000000000

Seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Sign defines +INF or —INF.

Basic double precision format

Double precision numbers are stored comparable with single precision
numbers.

Language Implementation

Basic format double precision number:

s = sign, e = exponent,

m = mantissa

The formula for double precision floating point numbers is:

value = (—1)° - (

m e—
1 +ﬁ> . 2 1023

3.16.3 STORAGE IN MEMORY

Floating—point numbers are stored in IEEE754-format. Single precisions

(float) and double precision (double) are stored in memory as shown

below:
Address +0 +1 +2 +3 +4 +5 +6 +7
Single | emmmmmmm | Seeeeeee | MMmMMMMMM | MMMMMMMM | «oeeeeee | ceeeenee | coeenene | eoneennn
Double
s = sign, e = exponent, m = mantissa, . = not used

Single precisions numbers can be stored in a register pair. In this case the

format is:

First register

Second register

Seeeeeeeemmmmmmm

mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Double precisions numbers are never stored in registers.

3-89

3-90

=

3.16.4 SINGLE PRECISION USAGE

Chapter 3

Floats can be stored in memory and in registers. The floating point library
subroutines pass operands and return value through registers.

3.16.4.1 FLOAT BASE EXPRESSION SUBROUTINES

Operands, return value
The first operand is stored in R4/R5 in IEEE-754 format:

R4

R5

Seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e =

exponent, m = mantissa

The second operand is stored in R10/R11:

R10 R11
seeeeeeeemmmmmmm IMMMMMMMMMMMMIMmmn
s = sign, e = exponent, m = mantissa

The result is stored in R4/R5 again:

R4

R5

Seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Available float base expression subroutines

Subroutine | Operation Operands Result
__adfar float addition R4R5, R10R11 | R4R5
__cmfér float comparison R4R5, R10R11 | R4
__dvfar float division R4R5, R10R11 | R4R5
__mlf4r float multiplication R4R5, R10R11 | R4R5
__sbfar float subtraction R4R5, R10R11 | R4R5

Table 3-16: Float base expression subroutines

Language Implementation

3.16.4.2 FLOAT CONVERSION SUBROUTINES

Operands, return value

The single precision operand or return value is stored in R4/R5:

R4 R5
Seeeeeeeemmmmmmm mmmmmmmmmmmmpmmmm
s = sign, e = exponent, m = mantissa

Available float conversion subroutines
Subroutine | Operation Operands Result
__cff48r ™1 |float to double conversion R4R5 [R10+#%]
__cff84r double to float conversion [R10+#%] R4R5
__cfid2r float to signed int conversion R4R5 R4
_ cfi44r float to signed long conversion R4R5 R5R4 *2
__cfud2r float to unsigned int conversion R4R5 R4
__cfuddr float to unsigned long conversion R4R5 R5R4 *2
__cif24r signed int to float conversion R4 R4R5
__cif44r signed long to float conversion R5R4 *2 | R4R5
__cuf24r unsigned int to float conversion R4 R4R5
__cufdar unsigned long to float conversion R5R4 *2 | R4R5

Table 3-17: Float conversion subroutines

@ *1= Return value on the user stack
*2=R5R4 means that the most significant word is stored in RS.

There is no negation subroutine. Its functionality can be achieved by
"BMOVN R4.15, R4.15”.

3.16.4.3 REGISTER USAGE SINGLE PRECISION

The only registers destroyed by the single precision subroutines are R1-R5
and R10-R11.

3-91

3-92 Chapter 3

=

3.16.5 DOUBLE PRECISION USAGE

Double precision numbers are stored in memory. The floating point library
passes operands and return values on the user stack.

3.16.5.1 DOUBLE BASE EXPRESSION SUBROUTINES

Operands, return value

The first operand is stored in IEEE-754 format on the user stack and
referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]

s = sign, e = exponent, m = mantissa

The second operand on the user stack is referred to by R11:

[R11+#0] [R11+#2] [R11+#4] [R11+#6]

s = sign, e = exponent, m = mantissa

The result is stored in the user stack area referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]

s = sign, e = exponent, m = mantissa

Available double base expression subroutines

Subroutine | Operation Operands Result
__adfgr double addition [R10+#*], [R11+#*] [R10+#*]
__cmf8r double comparison [R10+#*], [R11+#*] R4
__avf8r double division [R10+#*], [R11+#*] [R10+#*]
__mif8r double multiplication [R10+#%], [R11+#%] [R10+#%]
__ngf8r double negation [R10+#%] [R10+#%]
__sbf8r double addition [R10+#*], [R11+#*] [R10+#*]

Table 3-18: Double base expression subroutines

Language Implementation 3-93

3.16.5.2 DOUBLE CONVERSION SUBROUTINES

Operands, return value

The double precision operand or return value is referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]
s = sign, e = exponent, m = mantissa

Available double conversion subroutines
Subroutine Operation Operands | Result
__cffagr ™ float to double conversion R4R5 [R10+#%]
__cff84r double to float conversion [R10+#%] R4R5
__cfig2r double to signed int conversion [R10+#%] R4
__cfigar double to signed long conversion [R10+#%] R5R4 *2
__cfu82r double to unsigned int conversion [R10+#%] R4
__cfusar double to unsigned long conversion | [R10+#*] R5R4 *2
__cifegr ™1 signed int to double conversion R4 [R10+#%]
__cif4gr ™1 signed long to double conversion R5R4 *2 [R10+#]
__cufegr ™ unsigned int to double conversion R4 [R10+#%]
__cuf4sr ™ unsigned long to double conversion | R5R4 *2 [R10+#%]

Table 3-19: Double conversion subroutines

@ *1' Return value on the user stack
*2 R5R4 means that the most significant word is stored in R5.

3-94

=

3.16.5.3 DOUBLE SUPPORT SUBROUTINES

Chapter 3

Doubles can be stored anywhere in memory (near/far/huge/shuge) but

the floating point library expects them to be on the user stack. This is why
some library subroutines were implemented for fast copying of doubles to
and from user stack.

__load8n, _load8f and __ load8h copy doubles from near, far or
(s)huge area to the user stack space allocated by these routines

themselves. These routines change the user stack pointer and return a
register pointer to the user stack.

__store8n, store8f and _ store8h copy doubles from the user
stack to near, far, huge or shuge. These routines do not free the user stack
space allocated by _ load8x.

__1d0f8r and _ 1d1£8r allocate user stack similar to _ load8x and
copy the value 0.0 or 1.0 to this area.

Available double support subroutines

Subroutine | Operation Operands Result
__loadsf copy double to user stack R5R4 *1 R10
(far)
__load8h copy double to user stack R5R4 *1 R10
(huge/shuge)
__load8n copy double to user stack R4 R10
(near)
__ldofsr create 0.0 on alloacted user | None R10
stack
_ ld1fsr create 1.0 on allocated user | None R10
stack
__store8f copy double from user stack | R10, R5R4 *1 None, destroys
to far R10
__store8h copy double from user stack | R10, R5R4 *1 None, destroys
to huge/shuge R10
__store8n copy double from user stack | R10, R4 None, destroys
to near R10

Table 3-20: Double support subroutines

@ *IR5R4 means that the most significant word is stored in R5.

Language Implementation

3.16.5.4 REGISTER USAGE DOUBLE PRECISION

The only registers destroyed by the normal double precision subroutines
are R1-R5. The input operands [R10+#% and [R11+#* are destroyed. R10

and R11 keep their value though, except for routines converting to double.

Usually load8x and _ store8x are also called. load8x changes
RO-R5 and R10, _ store8x changes R1-R5 and R10. The subroutines
__1dxf8r change RO-R5 and R10.

3.16.6 FLOAT/DOUBLE USAGE FOR ASSEMBLY

PROGRAMMERS

Example of float usage for assembly programmers

; Create functionality of C expression:

2

PI:

fltl += (float) 4 * PI;
MOV R4, #4

CALLA cc_UC, _ cif24r
MOV R10, PI

MOV R11, (PI+2)

CALLA cc_UC, _ mlfér
MOV R10, _fltl
MOV R11, (_£f1ltl+2)

CALLA cc_UC, _ adfiér
Mov _fltl, R4
MoV (_f1lt1l+2), RS

DW 04049h, O0OFDBh

; Registers not destroyed

~e

Ne Ne ~e ~e

~e ~e =

in

R4 contains int 4
convert int 4 to float 4.0 (R4R5)

R4R5: 4.0
R10R11l: PI
multiplication, result stored in R4R5

R4R5: 4.0 * PI

R10R11: copy of _fltl

addition, result stored in R4R5
; save result

3.141592654 (IEEE754-format)

this code fragment: RO, R6-R9, R12-R15

3-95

3-96 Chapter 3

=

Example of double usage for assembly programmers

; Create functionality of C expression:
; dbll += (double) 4 * PI;

MOV R4, #4 ; R4 contains int 4
allol: CALLA cc_UC, _ cif28r ; convert int 4 to double 4.0
i i ([R10+#+*])
MOV R11, RI10 ; copy pointer to 4.0 to R1l1
MOV R4, #PI ; pointer to PI (source address)
allo2: CALLA cc_UC, _ load8n ; copy PI to new allocated stack
i i ([R10+#%*])
; ; [R10+#*]: PI (user stack)
; ; [R11+#*]: 4.0 (user stack)
CALLA cc_UC, _ mlf8r ; multiplication, result stored
; ; in [R10+#*]

MOV R11, R10 ; copy pointer to 4.0 * PI to R11l
MOV R4, # dbll ;
allo3: CALLA cc_UC, _ load8n ; copy _dbll to new allocated stack
7 7 ([R10+#%*])
; [R10+#*]: copy of _dbl (user stack)
; [R11+#*]: 4.0 * PI (user stack)
CALLA cc_UC, _ adf8r ; addition, result stored in [R10+#%*]

MOV R4, # dbll ; destination address in R4
CALLA cc_UC, _ store8n ; copy result to _dbll
ADD RO, #24 ; restore stack
; ; stack allocated by lines allo*.
PI: DW 04009h, 021FBh ; 3.141592654 (IEEE754-format)

DW 05452h, 04550h ;

; Registers not destroyed in this code fragment: RO, R6-R9,
; R12-R15.

3.16.7 FLOATING POINT TRAPPING

Two sets of floating point libraries are delivered with the compiler, one
with a floating point trapping mechanism and one without a floating point
trapping mechanism (the chapter Libraries explains the naming
conventions).

The floating point libraries with a trapping mechanism call a trapping
routine which is in module trap.obj. You can replace this routine with your
own trapping routine, or link your own trap routine to your application.
Default, the trapping routine as delivered with the floating point libraries
will never return. The infinite loop on a public label called

_ FPTRAPLOOP is easy to find in a debug session. See the listing of the
trap handler in figure 3-6 of section 3.16.8, Handling Floating Point Traps
in a C Application.

Language Implementation

A floating point routine calls the trap routine if an error condition occurs.
The type of error is specified by a trap code which is passed via register
R1 to the trap routine. The result of a floating point operation is not
undefined in an error situation. On error the result will be a special
floating point number, such as infinite, not a number etc., except when a
floating point underflow or overflow occurs.

The following table lists all the trap codes and the corresponding error
description and result:

Error Description Trap code Result
float/(unsigned) integer
Integer overflow 3 0x7FFF or 0x8000
(integer result)
OxFFFF or 0x0000
(unsigned integer result)
Floating overflow 4 +INF or -INF
(float result)
Floating underflow 5 0.0 (float result)
Divide by zero 7 +INF or -INF or NaN
(float result)
Undefined float 9 NaN (float result)
Conversion error 10 0 (integer result)
INF Infinite which is the largest absolute floating point number.

NaN Not a Number, special notation for undefined floating point number.

Table 3-21: Trap Codes

3-97

3-98 Chapter 3

=

3.16.8 HANDLING FLOATING POINT TRAPSINAC
APPLICATION

This section explains how program execution can be continued after a
floating point trap. And how floating point trap codes are passed from the
floating point trap handler to a C application.

Only the floating point libraries which perform floating point trapping
contain a floating point trap stub. This floating point trap stub loops
infinitely, which is very helpful when you want to find a bug in your
application. But when it is expected or allowed or even wanted that
floating point operations generate results that are out of range, then
program execution must continue after entering the floating point trap
handler.

It is not possible to simply return from the floating point trap handler,
because the floating point accumulator(s) contain a value which is out of
range. In the same floating point operation or else in a next floating point
operation there will be another call to the floating point trap handler,
because the value in the floating point accumulator(s) remain out of range.
This results in a succession of floating point traps.

It is impossible to assign a value to the floating point accumulator(s) which
is in range and then continue program execution. If you try to assign a
value to the floating point accumulators the result will always be
undefined.

Interpretation of the error condition in the floating point trap handler and
then continuing the floating point operation will result in most cases in a
new error condition or unpredictable result. So, this is not a good solution
to handle floating point error situations.

It is better to stop immediately the floating point operation which causes
the floating point trap, by returning back to your application and there
decide what to do with the floating point error condition. Therefore, you
have to predefine an environment in your application to return to. Simply
jumping back is not possible because the system-stack and user—stack are
then corrupted. The floating point trap code must also be returned to the
application to examine the cause of the trap.

An environment to return to in an application can be saved with the C
library function setjmp. The C library function longjmp can be used in
the floating point trap handler to return immediately to this saved
environment. The longjmp restores the stack pointers, jumps back and
passes the trap code to be processed.

Language Implementation 3-99

The C listing below shows how to save an environment with setjmp. The
assembly listing of the floating point trap handler below shows how
longjmp is used to return to the saved environment.

There are several ways to write a C function which handles floating point
traps using setjmp and longjmp. Always keep in mind that the longjmp
function restores the environment saved by the most recent invocation of
the setjmp function. And the environment must be saved before the
longjmp function is called by the floating point trap handler, else
program execution will be undefined.

3-100

Chapter 3

/*
* Example program which handles floating point traps by printing
* the floating point trap code on stdout. See also floating point
* trap handler in module trap.asm
*/

#include <stdio.h>

#include <setjmp.h>

/* Floating point environment buffer declared in trap handler */
extern jmp_buf _FP_ENV;

void
main(void)
{
int exception;
/*
* Do not use floating point operations before this if
* statement, because there is no environment saved to jump to.
*

The trap handler loops infinite when a floating
point operation is called from this point which traps!

*

*/
/*

*

When the setjmp function has saved the environment it returns

* zero into the exception variable, so the floating point
* operations are executed. But if a floating point trap occurs,
* the trap handler calls the function longjmp.
* The longjmp function restores the environment and returns the
* trap code in the exception variable. The trap code is a
* non-zero value, so the else part of this if statement will be
* executed on a floating point trap.
*/
if(!(exception = setjmp(_FP_ENV)))
{
/*
* Insert your floating point operations here.
*/
} else
{

/* The exception code is a non-zero value. */
printf(”Floating point exception: %d\n”, exception);

* When there is a floating point operation after this if

* statement and it generates a floating point trap. Then the

* program execution also continues in the else part of this if
statement, because the environment buffer was saved to it !

}
Figure 3-6: Example floating point trap handling (C listing)

Language Implementation 3-101

The floating point trap handler described by the assembly listing in figure
3-7 is archived in the floating point libraries.

$case
$genonly
;**

.k
r

; * MODULE : trap.asm

. %

’

;* APPLICATION : Floating point library 80166

.k

r

;* DESCRIPTION : Floating point trap handler which uses longjmp to

P * return to a previous saved environment or loops

t¥ infinite when no environment is save to return to.
.k

r

;* INPUT : Register R1 contains the trap code

. %

’

P * Trap code R1,0ld R1,IEEE Description

R EIOVFL 3 ; Integer overflow

Hd EFOVFL 4 4 ; Float overflow

Had EFUNFL 5 8 ; Float underflow

A EFDIVZ 7 2 ; Float division by zero

;* EFUND/EFINVOP 9 1 ; Float invalid operation
R ECONV 10 32 ; Conversion error

;* ESTKUN 11 ; Floating point stack underflow
Hd ESTKOV 12 ; Floating point stack overflow

;* EFINEXCT 16 ;

;*

;* ANALIST : Guus Jansman

.k
I

;* Copyright 1991-2002 Altium BV

%
r
;**

$INCLUDE(head.asm)

@IF(@NES(@MODEL,”TINY”) & @NES(@MODEL,”SMALL”))

ASSUME DPP2:_ FP_ENV ; near data addressed via DPP2
@ENDI
PUBLIC __ fptrap8 ; public declaration trapping routine

; for double precision.

PUBLIC _ fptrap4 ; public declaration trapping routine
; for single precision.

PUBLIC _ FP_ENV ; public declaration floating point
environment buffer

PUBLIC __ FPTRAPLOOP ; public declaration trap loop

@IF(@EQS(@MODEL,”TINY”) | QEQS(@MODEL,”MEDIUM”))
EXTERN _longjmp:NEAR

@ELSE

EXTERN _longjmp:FAR

3-102

Chapter 3

@ENDI

_ FPCODE SECTION CODE WORD PUBLIC 'CPROGRAM’

;**
;* floating point trap handler
;**
@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”MEDIUM”))

___fptrap8 PROC NEAR

@ELSE

__fptrap8 PROC FAR

@ENDI

_ fptrap4: ; entry floating point trapping routine for single

; precision operations.

: There is no environment to return to, when the longjump return
; address is not set in the floating point jump buffer.

mov R12, (__FP_ENV) ;if(_FP_ENV.return_address == NULL)
@IF(@NES(@MODEL,”TINY”) & @NES(@MODEL,”MEDIUM”))

or R12, (__FP ENV+2) ;
@ENDI

jmpr cc_7, _ FPTRAPLOOP ; goto infinite loop
@ JMPRACACHE

@QIF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”SMALL"))

mov R12, #_FP_ENV ; R12 passes environment address
; buffer to longjmp
mov R13, fptrap ; R13 passes trap code to longjmp
@IF(@FPEXC_OP)
mov R14, fpexcop ; Rl4 passes exception operation
@ENDI
@ELSE

mov R12, #POF (__FP_ENV) ; R12-R13 passes environment address
mov R13, #PAG (__FP_ENV) ; buffer to longjmp

mov R14, fptrap ; R14 passes trap code to longjmp
@IF(QFPEXC_OP)

mov R15, fpexcop ; R15 passes exception operation
@ENDI
@ENDI

; restore environment loaded in the environment buffer _FP_ENV and
; return the trap code by calling longjmp
QIF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”MEDIUM”))
jmpa cc_UC, _longjmp
@ELSE
@_STBUS1(_longjmp)
@ENDI

; loop infinite if no environment set to return to.
__ FPTRAPLOOP:

jmpa CC_UC, _ FPTRAPLOOP

RETV ; virtual return

Language Implementation 3-103

_ fptrap8 ENDP

__FPCODE ENDS

;**

;* data section for floating point environment buffer which is

;* cleared at startup with C166_BSS. jmp_buf _FP_ENV;
;**
@IF(@EQS(@MODEL, "TINY”) | @EQS(@MODEL, "”SMALL”))

__ FP_ENV_BUF SECTION LDAT WORD PUBLIC 'CNEAR’

@ELSE
__ FP_ENV_BUF SECTION DATA WORD PUBLIC ’'CNEAR’
@ENDI
__FP_ENV LABEL WORD
DS 16 ; sizeof(jmp_buf)

__FP_ENV_BUF ENDS

@IF(@EQS(@MODEL, "TINY”))
C166_BSS SECTION LDAT WORD GLOBAL ‘CINITROM’

DW 05h ; init code 05, linear data
DW __FP_ENV ; start address buffer
DW 16 ; number of bytes to clear
Cl166_BSS ENDS
@ENDI

@IF(@EQS(@MODEL, "SMALL"))
C166_BSS SECTION PDAT WORD GLOBAL 'CINITROM’

DW 06h ; init code 06, paged data
DPPTR __ FP_ENV ; start address buffer
DW 16 ; number of bytes to clear
Cl66_BSS ENDS
@ENDI
@IF(@NES(@MODEL, ”TINY”) & @NES(@MODEL, "“SMALL"”))
C166_DGROUP DGROUP __FP_ENV_BUF ; add to default data group
Cl166_BSS SECTION DATA WORD GLOBAL ’'CINITROM’
DW 06h ; init code 06, paged data
DPPTR __ FP_ENV ; start address buffer
DW 16 ; number of bytes to clear
Cl166_BSS ENDS
@ENDI
@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”SMALL"))
REGDEF R1, R12-R13
@ELSE
REGDEF R1, R12-R14
@ENDI
END

Figure 3-7: Floating point trap bandling (assembly-listing)

3-104

Chapter 3

The floating point trap handler checks if an environment is set in
__FP_ENV to return to. When the return address contains a NULL pointer
it is supposed that there is no environment set and the trap handler
continues looping infinitely. When a return address is set, the address of
the jump buffer FP_ENV and the trap code are passed to longjmp.
Calling the longjmp function at the end of the trap handler restores the
environment saved in _ FP ENV.

The data section containing the floating point jump buffer FP ENV is
cleared at startup. The initialization codes for it are stored in the C166_BSS
sections.

There are two entry points available in the floating point trap handler, one
for double precision floating point functions causing a trap, and one for
single precision floating point functions causing a trap. This default trap
handler is precision independent, but if you want to write a trap handler
for each precision you need these two entry points.

You can use your own floating point trap handler by linking the object
module, overruling the floating point trap handler of the floating point

library. Or you can replace the floating point trap object module in the

floating point library with the object module of your own floating point
trap handler.

Language Implementation 3-105

3.16.9 IEEE-754 COMPLIANT ERROR HANDLING

When using the floating point libraries without trapping, the routines
continue calculation with erroneous input values. This behavior is not
conforming to the IEEE-754 standard, but does deliver the highest speed
because the input value checking is omitted.

If your application requires IEEE-754 compliant handling of erroneous
input values, the trapping version of the floating point libraries should be
used. But if you do not want to handle the error conditions with a trap
routine, but just continue calculation conform to IEEE-754, you can
provide an empty trap function. You can add the following trap handling
code to your application to achieve this:

#include <setjmp.h>

#pragma noclear
jmp buf FP ENV;

void _fptrap8(void) /* double precision */
{
}

void fptrap4(void) /* single precision */
{
}

3-106 Chapter 3

=

3.17 INTRINSIC FUNCTIONS

When you want to use specific C166/ST10 instructions that have no
equivalence in C, you normally must write (inline) assembly to perform
these tasks. However, €166 offers a way of handling this in C. The c166
has a number of built-in functions that are implemented as intrinsic
functions. The advantage of this approach is that the same C source can be
compiled by a standard ANSI C compiler for simulator purposes. See
section 3.21, Portable C Code for details.

Because the ANSI specification states that public C names starting with an
underscore are implementation defined, all intrinsic functions names have
a leading underscore.

Several of the intrinsic functions have restricted operand types. There are
two possible restricted types. The first is called ICE which denotes that the
operand must be a Integral Constant Expression rather than any type of
integral expression, this is because the BMOV instruction et al do not
support otherwise. The second is called BITADDR which means that the
operand must be a bit addressable integer (i.e. bitword, bitaddressable sfr
or bitaddressable esfr) object.

€166 has the following intrinsic functions:

_CoABS
void CoABS(void);

Use the CoABS instruction to change the MAC accumulator’s contents to its
absolute value. Only available when the MAC instruction set is enabled
with the compiler option -xd, -x2 or -x22.

Returns nothing.

_COABS();
CoOABS

Language Implementation 3-107

_CoADD
void CoADD(long x);

Use the CoADD instruction to add a 32-bit value to the MAC accumulator.
Only available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns nothing.

_CoADD(argl);
CoADD R12, R13

_CoADD?2
void CoADD2(long x);

Use the CoADD?2 instruction to add a 32-bit value, multiplied by two, to
the MAC accumulator. Only available when the MAC instruction set is
enabled with the compiler option -xd, -x2 or -x22.

Returns nothing.

_CoADD2(argl);
CoADD2 R12, R13

_CoASHR
void CoASHR(unsigned int count);

Use the CoASHR instruction to (arithmetic) shift right the contents of the
MAC accumulator count times. Only available when the MAC instruction
set is enabled with the compiler option -xd, -x2 or —x22.

The CoASHR instruction has a maximum value for count. Check your CPU
manual for the CoASHR behaviour for large arguments.

Returns nothing.

_COASHR(2);
CoASHR #02h

3-108

=

Chapter 3

_CoCMP

unsigned int CoCMP(long x);

Inline code is generated by the C compiler to compare the MAC
accumulator contents with a 32-bit value. The returned value is a copy of
the MSW register. Only available when the MAC instruction set is enabled
with the compiler option -xd, -x2 or -x22.

Returns copy of MSW register.

isequal = CoCMP(argl) & 0x0200;
CoCMP R12, R13

COSTORE R4, MSW

AND R4, #0200h

_CoLOAD

void CoLOAD(long x);

Use the CoLOAD instruction to copy a 32-bit value to the MAC
accumulator. Only available when the MAC instruction set is enabled with
the compiler option =xd, -x2 or -x22.

Returns nothing.

_CoLOAD(argl);
CoLOAD R12, R13

_CoLOAD2

void CoLOAD2(long x);

Use the CoLOAD?2 instruction to copy a 32-bit value, multiplied by two, to
the MAC accumulator. Only available when the MAC instruction set is
enabled with the compiler option -xd, —=x2 or -x22.

Returns nothing.

_CoLOAD2(argl);
CoLOAD2 R12, RI13

Language Implementation 3-109

_CoMAC
void CoMAC(int x, int y);

Use the CoMAC instruction to add the multiplication result of two signed
16-bit values to the MAC accumulator. Only available when the MAC
instruction set is enabled with the compiler option —xd. Note that the MP
flag influences the result (it is highly recommended to keep the MP flag
cleared).

Returns nothing.

_CoMAC(argl, arg2);
CoMAC R12, R13

_CoMACsu
void CoMACsu(int x, unsigned int y);

Use the CoOMACsu instruction to add the multiplication result of a signed
16-bit value with an unsigned 16-bit value to the MAC accumulator. Only
available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns nothing.

_CoMACsu(argl, arg2);
CoMACsu R12, R13

_CoMACu
void CoMACu(unsigned int x, unsigned int y);

Use the CoMACu instruction to add the multiplication result of two
unsigned 16-bit values to the MAC accumulator. Only available when the
MAC instruction set is enabled with the compiler option -xd, -x2 or -x22.

Returns nothing.

_CoMACu(argl, arg2);
CoMACu R12, R13

3-110 Chapter 3

=

_CoMAC _min
void CoMAC min(int x, int y);

Use the COMAC- instruction to subtract the multiplication result of two
signed 16-bit values from the MAC accumulator. Only available when the
MAC instruction set is enabled with the compiler option =xd, -x2 or -x22.
Note that the MP flag influences the result (it is highly recommended to
keep the MP flag cleared).

Returns nothing.

_CoMAC_min(argl, arg2);
CoMAC- R12, R13

_CoMACsu_min
void CoMACsu min(int x, unsigned int y);

Use the COMACsu- instruction to subtract the mulatiplication result of a
signed 16-bit value with an unsigned 16-bit value from the MAC
accumulator. Only available when the MAC instruction set is enabled with
the compiler option -xd, -x2 or -x22.

Returns nothing.

_CoMACsu_min(argl, arg2);
CoMACsu- R1l2, R13

_CoMACu_min
void CoMACu min(unsigned int x, unsigned int y);

Use the CoMACu- instruction to subtract the multiplication result of two
unsigned 16-bit values from the MAC accumulator. Only available when
the MAC instruction set is enabled with the compiler option -xd, -x2 or
-x22.

Returns nothing.

_CoMACu_min(argl, arg2);
CoMACu—- R12, R13

Language Implementation 3-111

_CoMAX
void CoMAX(long x);

Use the CoMAX instruction to change the MAC accumulator’s contents if its
value is lower than the argument’s value. Only available when the MAC
instruction set is enabled with the compiler option -xd, -x2 or -x22.

Returns nothing.

_CoMAX(argl);
CoMAX R12, R13

_CoMIN
void CoMIN(long x);

Use the CoMIN instruction to change the MAC accumulator’s contents if its
value is higher than the argument’s value. Only available when the MAC
instruction set is enabled with the compiler option -xd, =x2 or —x22.

Returns nothing.

_CoMIN(argl);
CoMIN R12, R13

_CoMUL
void CoMUL(int x, int y);

Use the CoMUL instruction to store the multiplication result of two signed
16-bit values in the MAC accumulator. Only available when the MAC
instruction set is enabled with the compiler option -xd, —=x2 or -x22. Note
that the MP flag influences the result (it is highly recommended to keep the
MP flag cleared).

Returns nothing.

_CoMUL(argl, arg2);
CoMUL R12, R13

3-112 Chapter 3

_CoMULsu
void CoMULsu(int x, unsigned int y);

Use the CoMULsu instruction to store the multiplication result of a signed
16-bit value with an unsigned 16-bit value in the MAC accumulator. Only
available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns nothing.

_CoMULsu(argl, arg2);
CoMULsu R12, R13

_CoMULu
void _CoMULu(unsigned int x, unsigned int y);

Use the CoMULu instruction to store the multiplication result of two
unsigned 16-bit values in the MAC accumulator. Only available when the
MAC instruction set is enabled with the compiler option =xd, -x2 or -x22.

Returns nothing.

_CoMULu(argl, arg2);
CoMULu R12, R13

_COoNEG
void CoNEG(void);

Use the CoNEG instruction to change the MAC accumulator’s contents to
its negated value. Only available when the MAC instruction set is enabled
with the compiler option -xd, -x2 or -x22.

Returns nothing.

_CONEG();
CONEG

Language Implementation

_CoNOP
void _CoNOP(void);

A CoNOP instruction is generated. Only available when the MAC
instruction set is enabled with the compiler option -xd, -=x2 or —x22.

Returns nothing.

_CONOP();
CONOP [RO]

_CoRND
void CoRND(void);

Use the CoRND semi-instruction to change the MAC accumulator’s
contents to its rounded value. Only available when the MAC instruction set
is enabled with the compiler option -xd, -x2 or -x22.

Returns nothing.

_CORND() ;
CORND

_CoSHL
void CoSHL(unsigned int count);

Use the CoSHL instruction to shift left the contents of the MAC
accumulator count times. Only available when the MAC instruction set is
enabled with the compiler option -xd, —-x2 or -x22.

The CoSHL instruction has a maximum value for count. Check your CPU
manual for the CoSHL behaviour for large arguments.

Returns nothing.

_CoSHL(2);
CoSHL #02h

3-113

3-114 Chapter 3

_CoSHR
void CoSHR(unsigned int count);

Use the CoSHR instruction to (logical) shift right the contents of the MAC
accumulator count times. Only available when the MAC instruction set is
enabled with the compiler option -xd, -x2 or -x22.

The CoSHR instruction has a maximum value for count. Check your CPU
manual for the CoSHR behaviour for large arguments.

Returns nothing.

_COSHR(2);
CoSHR #02h

_CoSTORE
long CoSTORE(void);

Use the CoSTORE instruction to retrieve the 32-bit value, stored in the
MAC accumulator MAH and MAL. Only available when the MAC
instruction set is enabled with the compiler option -xd, -x2 or -x22.

Returns 32-bit value from MAH and MAL.

X = _COSTORE();
CoSTORE R13, MAH
CoSTORE R12, MAL

_CoSTOREMAH
int COSTOREMAH(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAH.
Only available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns 16-bit value from MAH

X = COSTOREMAH();
COSTORE R12, MAH

Language Implementation

_CoSTOREMAL
int COSTOREMAL(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAL.
Only available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns 16-bit value from MAL

X = COSTOREMAL();
COSTORE R12, MAL

_CoSTOREMAS
int CoSTOREMAS(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAS.
Only available when the MAC instruction set is enabled with the compiler
option -xd, =x2 or -x22.

Returns 16-bit value from MAS

X = COSTOREMAS();
COSTORE R12, MAS

_CoSTOREMSW
int COSTOREMSW(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MSW.
Only available when the MAC instruction set is enabled with the compiler
option -xd, -x2 or -x22.

Returns 16-bit value from MSW.

X = COSTOREMSW();
COSTORE R12, MSW

3-115

3-116 Chapter 3

_CoSUB
void CoSUB(long x);

Use the CoSUB instruction to subtract a 32-bit value from the MAC
accumulator. Only available when the MAC instruction set is enabled with
the compiler option -xd, -x2 or -x22.

Returns nothing.

_CoSUB(argl);
CoSUB R12, R13

_CoSUB2
void CoSUB2(long x);

Use the CoSUB?2 instruction to subtract a 32-bit value, multiplied by two,
from the MAC accumulator. Only available when the MAC instruction set is
enabled with the compiler option -xd, —-x2 or -x22.

Returns nothing.

_CoSUB2(argl);
CoSUB2 R12, R13

_rol

unsigned int _rol(unsigned int operand,
unsigned int count);

Use the ROL instruction to rotate (left) operand count times.
Returns the result.

sj = rol(ri, 4);
MOV R5,R9
ROL R5,#04h
MOV _sj,R5

Language Implementation 3-117

_ror

unsigned int _ror(unsigned int operand,
unsigned int count);

Use the ROR instruction to rotate (right) operand count times.
Returns the result.
sj = ror(si, pi);
MOV R4, _si

ROR R4,R12
MOV _sj,R4

_testclear

bit testclear(_bit semaphore);

Read and clear semaphore using the JBC instruction.

Returns 0 if semaphore was not cleared by the JBC instruction, 1
otherwise.

if (_testclear(b))

BSET USRO
JBC b, 7
BCLR USRO

JNB USRO,_ 3
{ /* success: semaphore ’'b’ was free (1)
* and now used for our critical region
* (set to 0). Note that the code of this
* action may be longer than 127 words
*/
g()i:
CALLA cc_UC,_g
b=1; /* end critical actions: free
* semaphore */
BSET _b

3-118 Chapter 3

=

_testset
_bit testset(_bit semaphore);

Read and set semaphore using the JNBS instruction.

Returns 0 if semaphore was not set by the JNBS instruction, 1
otherwise.

if (_testset(b))

BSET USRO
JNBS _b,_8
BCLR USRO
_8:
JNB USRO,_5
{ /* success: semaphore ‘b’ was free (0)
* and now used for our critical region
* (set to 1). Note that the code of this
* action may be longer than 127 words
*/
g()i
CALLA cc_UC,_g
b =0; /* end critical actions: free
* semaphore */
BCLR _b
}
5:

_bfld
void _bfld(BITADDR operand, ICE mask, ICE value);

Use the BFLDL/BFLDH instructions to assign the constant value to the
bit-field indicated by the constant mask of the bitaddressable operand.

_bfld(bw, 0x7f, 1);
BFLDL _bw,#07Fh,#01h

_bfld(soconN, 0x7£00, 0x100);
BFLDH SOCON,#07Fh,#01h

_bfld(bw, 0x03c0, 0x80);
BFLDH _bw,#03h,#00h
BFLDL _bw,#0COh,#080h

Language Implementation

_getbit
_bit getbit(BITADDR operand, ICE bitoffset);

Returns the bit at bitoffset (range 0 — 15) of the bitaddressable
operand for usage in bit expressions.

b = getbit(PO, 0);
BMOV _b,P0.0

IEN = getbit(bwarray[2], 4);
BMOV IEN,_ bwarray+4.4

_putbit

void putbit(_bit value, BITADDR operand,
ICE bitoffset);

Assign value to the bit at bitoffset (range 0 — 15) of the bitaddressable
operand.

_putbit(1, PO, 3);
BSET PO0.3
_putbit(si, PO, 2);
MOV R4, si
BMOVN P0.2,%
_putbit(_getbit(PO, 0), PO, 1);
BMOV P0.1,P0.0

_int166
void intl66(ICE intno);

Execute the C166/ST10 software interrupt specified by the interrupt
number ntno via the software trap (TRAP) instruction. _int166(0); emits
an SRST (Software Reset) instruction.

_intl66(4);
TRAP #04h

_intl66(0);
SRST

3-119

3-120 Chapter 3

idle
void _idle(void);

Use IDLE instruction to enter the idle mode. In this mode the CPU is
powered down while the peripherals remain running.

Returns nothing.

if(save_power)
MOV R5,_save_power
JMPR cc_Z,_ 12
_idle(); /* wait until peripheral interrupt
* or external interrupt occurs.
*/
IDLE
_12:

_nop
void nop(void);

A NOP instruction is generated, before and behind the nop instruction the
peephole is flushed. Code generation for _nop() is exactly the same as the
following inline assembly.

#pragma asm
nop ; inline nop instruction
#pragma endasm

Returns nothing.

value = PO; /* read from port PO */
MOV R12,PO

_nop(); /* delay for one cycle */
NOP

Pl = value; /* write to port Pl */

MOV P1,R12

Language Implementation

_prior
unsigned int prior(unsigned int value);

Use PRIOR instruction to prioritize value.

Returns number of single bit shifts required to normalize value so
that its MSB is set to one.

register int value;
extern int leading zeros;

leading _zeros = _prior(value);
PRIOR R4,R12
MOV _leading_zeros,R4

_pwrdn
void pwrdn(void);

Use PWRDN instruction to enter the power down mode. In this mode, all
peripherals and the CPU are powered down until an external reset occurs.

Returns nothing.

if(standby_mode)
MOV R4,_standby mode
JMPR cc_Z,_13

_pwrdn(); /* CPU is powered down until
* an external interrupt occurs.
*/
PWRDN
_13:
_srvwdt

void srvwdt(void);

Use SRVWDT instruction to service the watchdog timer.

Returns nothing.

3-121

3-122

Chapter 3

_srvwdt(); /* service watchdog before
* it overflows.
*/
SRVWDT
_diswdt

void _diswdt(void);

Use DISWDT instruction to disable the watchdog timer.
Returns nothing.

_diswdt(); /* disable watchdog timer */
DISWDT

_einit
void _einit(void);

Use EINIT instruction to end the initialization.
Returns nothing.

_einit(); /* end of initialization */
EINIT

_atomic
void _atomic(ICE number);

Use ATOMIC instruction to let interrupts be disabled for a specified
number of instructions (number=[1..4]).

Returns nothing.

_atomic(3); /* next 3 instructions are
* not interrupted.
*/
ATOMIC #03h

Language Implementation 3-123

_mul32
long mul32(int x, int y);

Use MUL instruction to perform a 16-bit by 16-bit signed multiplication
and returning a signed 32-bit result. The overflow bit V is set by the CPU
when the result cannot be represented in an int data type.

Returns the result when no overflow occurs.
_mulu32

unsigned long mulu32(unsigned int x,
unsigned int y);

Use MULU instruction to perform a 16-bit by 16-bit unsigned
multiplication and returning a unsigned 32-bit result. The overflow bit V is
set by the CPU when the result cannot be represented in an int data type.

Returns the result when no overflow occurs.
_div32
int div32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed division and
returning a signed 16-bit result. The overflow bit V is set by the CPU
when the result cannot be represented in an int data type or when the
divisor y was zero.

Returns the result when no overflow occurs.
_divu32

unsigned int _divu32(unsigned long x,
unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned division
and returning an unsigned 16-bit result. The overflow bit V is set by the
CPU when the result cannot be represented in an int data type or when
the divisor y was zero.

Returns the result when no overflow occurs.

3-124 Chapter 3

=

_mod32
int mod32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed modulo and
returning a signed 16-bit result. The overflow bit V is set by the CPU
when the quotient cannot be represented in an int data type or when the
divisor y was zero.

Returns the result when no overflow occurs.

_modu32

unsigned int modu32(unsigned long x,
unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned modulo
and returning a unsigned 16-bit result. The overflow bit V is set by the
CPU when the quotient cannot be represented in an int data type or when
the divisor y was zero.

Returns the result when no overflow occurs.

int muldiv32(int argl, int arg2, int divisor);

long m32;
int d32;

if (m32 = mul32(argl, arg2), V)
MOV R8,R12
MUL R8,R13
MOV R9,MDH
MOV R8,MDL
JNB VvV, 14
errno = OVERFLOW;
MOV R4,#01h
MOV _errno,R4
_14:

if(d32 = _div32(m32, divisor), V)
MOV R15,R14
MOV MDH,R9
MOV MDL,R8
DIVL RI15

Language Implementation 3-125

MoV R15,MDL
JNB v,_15
errno = OVERFLOW;
MoV R4,#01h
MOV _errno,R4
_15:

return(d32);
MOV R4 ,R15

_pag
unsigned int pag(void * p);

Inline code is generated by the C compiler to get the page number of
pointer p. Not available in tiny model.

Returns a 10-bit page number.

pag_hp = _pag(harray);
MOV R4 ,#SOF _harray
MOV R5,#SEG _harray
MOV R12,R5
SHL R12,#02h
BMOV R12.0,R4.14
BMOV R12.1,R4.15

_pof

unsigned int pof(void * p);
Inline code is generated by the C compiler to get the page offset of
pointer p. Not available in tiny model.
Returns a 14-bit page offset.

pof hp = pof(harray);
MOV R4,#SOF _harray
MOV R5,#SEG _harray

MOV R13,R4
AND R13,#03FFFh

3-126

_seg

Chapter 3

unsigned int _seg(void * p);

Inline code is generated by the C compiler to get the segment number of
pointer p. Not available in tiny model.

Returns

MOV
MOV
MOV
SHR

_sof

an 8-bit segment number.
seg_fp = _seg(farray);
R4,#POF _farray

R5,#PAG _farray
R14,R5
R14,#02h

unsigned int _sof(void * p);

Inline code is generated by the C compiler to get the segment offset of
pointer p. Not available in tiny model.

Returns

MOV
MOV
MOV
SHL
OR

_mkfp

a 16-bit segment offset.
sof fp = _sof(farray);
R4,#POF _farray

R5,#PAG _farray
R15,R5

R15,#0Eh

R15,R4

void far * mkfp(unsigned int pof,

unsigned int pag);

Inline code is generated by the C compiler to make a far pointer from a
page offset pof and page number pag. The arguments pag and pof are
expected to be in a valid range.

Returns

a far pointer.

Language Implementation

fp = _mkfp(pof_hp, pag_hp);
MOV R4,R13
MOV R5,R12

MOV _fp,R4
MOV (_fp+2),R5
_mkbp

void huge * mkhp(unsigned int sof,
unsigned int seg);

Inline code is generated by the C compiler to make a huge pointer from a
segment offset sof and segment number seg. The arguments sof and
seg are expected to be in a valid range.

Returns a huge pointer.

hp = mkhp(sof fp, seg fp);
MOV R5,R14

MOV _hp,R4
MOV (_hp+2),R5
_mksp

void shuge * mksp(unsigned int sof,
unsigned int seg);

Inline code is generated by the C compiler to make a shuge pointer from a
segment offset sof and segment number seg. The arguments sof and
seg are expected to be in a valid range.

Returns an shuge pointer.

Example:

The file builtin.c in the ¢ subdirectory of the examples directory is a
C source file demonstrating the ¢166 intrinsic functions. Compile the file
using the —s option to inspect generated code.

3-127

3-128

=

Chapter 3

3.17.1 USER DEFINED INTRINSICS

It is possible to create user defined intrinsics. To do this you have to create
a file called:

icall.h

the compiler tries to find this file in the same way as normal include files
(#include icall.h”) are searched. See section 4.4, Include Files.

In this file you can specify the prototypes of the user defined intrinsics. An
intrinsic function can be defined by using the intrinsic keyword, for
example:

_intrinsic float intrinsic_func(int*,long);

The intrinsic keyword will only be recognized within this specific
header file. It is not allowed to use preprocessor directives within this file.
If this intrinsic function is called at C-level, for example:

f=intrinsic_func(&i,1l);

The compiler forces all parameters to be kept in registers, except for the
parameters of type struct/union and double. Those exceptions are
passed on to the user stack. Finally, the compiler generates a macro
preprocessor call:

@intrinsic_func(R8,R6,R7)

When a parameter is passed on to the user stack the stack offset of the
parameter is filled in at the appropriate position, for example:

intrinsic void i func(double);
will result in:
@i _func(8)

indicating that the double parameter is located at stack offset 8.
Parameters of the type char and bit will be passed to the macro call as
16-bit registers. Each bit parameter will be passed in Rx.0. An
unsigned/signed char will be resp. zero or sign extended. The same
applies to bitfield variables. The name of the macro call will always be
equal to the name of the intrinsic function at C-level. The parameters will
be evaluated in two groups:

Language Implementation 3-129

1. parameters passed in registers
2. parameters passed on stack (only doubles and structs/unions)

The parameter order within these groups will not differ from the order at
C-level. The parameters passed on the user stack will be passed (and
evaluated) to the macro after the parameters that are passed in registers.
For example:

_intrinsic void i_func(double, struct a, int, struct b);
will generate the following macro call:

@i func(R12, 16, 8, 0)

| +-- struct b (offset 0)

N
I
+

$———— struct a (offset 8)
F—————— double (offset 16)
int

The macro call parameter assignments will be included in the output file
as comment, similar to the following:

Macro call parameter assignments:

; il = R12

; 11 = R13R14

; dl = offset 16

; func(ifunc(i2), d2) = offset 8
; d2 = offset 0
@function(R12,R13,R14,16,8,0)

If a parameter occupies more than one register, all registers will be passed
separately to the macro. See the example above, where parameter '11’ has
type 'long int’. This parameter is passed in R13/R14 at position 2 and 3
in the parameter list. If there are more registers needed then available
(max. 13) an error will be generated:

E 745: no registers left for expression

3-130

=

Chapter 3

The following registers are not used for parameter passing:

- RO: cannot be used —> User stack pointer

- R4: cannot be used —> Used for return values/scratch
- Rs: cannot be used —> Used for return values/scratch
— USRO: cannot be used —> Used for return values/scratch

The return value of the macro call must conform with the C166 calling
convention:

Return type Register(s)

bit PSW.6 (USRO0)

char RL4

short/int R4

long R4-R5

float R4-R5

double (double accu on user stack)
near pointer R4

far pointer R4-R5

huge pointer R4-R5

shuge pointer R4-R5

structure (structure on user stack)

Table 3-22: Register usage for C return types

The compiler assumes no registers to be destroyed in any case, except for
the registers to pass the return value. (R4/R5/USRO may also be used as a
scratch register. You do not need to save/restore these registers).

When an intrinsic function returns a double precision floating point value
or a struct/union, the compiler assumes this value at the top stack entry on
return. Note that other stack space must be completely released.

The compiler will take care of copying this value to the stack location
reserved for the return value, and for releasing the top stack entry. The
stack space for the return value will also be reserved by the compiler
before the intrinsic function is called. A typical code example is:

Language Implementation

; test.c
SUB
SUB
MOV
MOV
CALLS
MOV
CALLS
ADD

30 r = double_func(f);
RO,#08h ; stackspace for return value
RO, #08h ; stackspace for parameter
R12,R0O
R4,#_f
SEG _ load8n,_ load8n ; load parameter on userstack
R4,R12

SEG _ store8n,__store8n
RO, #08h

Macro call parameter assignments:

f = offset 0

@double_func(0)

MOV
MoV
ADD
CALLS
ADD
MOV
ADD
ADD
MOV
MOV
CALLS
ADD

R10,R0
R4,R0

R4,#010h

SEG _ store8n,__ store8n
RO,#08h

R4,R0

R4,#08h

RO, #08h

R10,R4

R4,# r

SEG _ store8n,__store8n
RO, #08h

i
7
7

store parameter
release space allocated by _ load8n

intrinsic macro call
load source address

load destination address
store return value
release space for double return value

pointer to return value
release parameter stackspace

destination address
store
release return value

For clarity, this example was compiled using -OJ (disabling the peephole).
Normally the ADDs and SUBs on RO are combined.

Intrinsic functions with a variable argument list are not allowed. If this
occurs, the compiler generates an error:

E 771: variable argumentlist not allowed with

intrinsic function:

"%S()"

There are three points that should be considered when you create an
intrinsic function:

1. Special care must be taken when pointers are passed to a user defined
intrinsic. When default pointers are used, the size will differ when an
application is compiled in an other memory model. It is therefore
advisable to specify the memory the pointer refers to and thus the pointer
will always have the same size.

2. Itis not possible to define pointers to intrinsic functions.

3. Internal intrinsic functions cannot be redefined.

3-131

3-132 Chapter 3

=

Include a macro preprocessor file

In order to include a macro preprocessor include file you can use the
following pragma:

#pragma m166include “include—file”

This pragma generates a $INCLUDE control in the output file. For
example:

#pragma ml66include “myinclude.inc”
will generate:

$INCLUDE (myinclude.inc)
On error, the following message will be generated:

E 744: bad #pragma ml66include syntax

3.17.2 IMPLEMENTING OTHER _COXXX INTRINSICS
USING THE _COXXX INTRINSIC FUNCTIONS

Many CoXXX instructions are automatically generated if a special sequence
is recognized.

Examples

_COoLOAD(argl);
_CoABS();

generates the CoABS opl, op2 instruction.

_CoMUL(argl, arg2);
_CORND() ;

generates the CoMUL opl, op2, rnd instruction.

_CoSUB(argl);
_CONEG();

generates the CoSUBR opl, op2 instruction.

Note that the MP flag influences the result (it is highly recommended to
keep the MP flag cleared).

Language Implementation 3-133

The CoXxXXus instructions are identical to the CoXXXsu variants with
exchanged operands. For example, CoMACus opl, op2, rnd is identical
to CoMACsu op2, opl, rnd.

The “missing” _CoXXX intrinsics can be defined as inline functions. For
example:

_inline void _CoMUL rnd(int x, int y)
{
_COMUL(%,Y) ;
_CORND();
}

3-134 Chapter 3

=

3.18 CODE MEMORY BANKING

€166 supports code memory banking. With this technique you can extend
your code memory beyond 16 MB. This technique is only useful in the
small and large memory model (code > 64Kb). You can specify parts (of
any size) of the 16 MB of memory to use (EPROM) memory that is not
addressable with a normal 24-bit address. The parts of this extra memory
are called 'memory banks’.

You can use code memory banking in C by using the function qualifier:
_bank(number)
where, number is any number in the range 1 to 255.

This function qualifier uses the same syntax rules as the other function
qualifiers _interrupt (number) and stackparm. A function qualifier
is allowed in both the function prototype (for the caller) and the function
body itself:

int _bank(l) func_bl(char *, long); /* prototype */

int _bank(2)

func_b2(int parm) /* function body */
{

}

You can also use a function qualifier when you declare function pointers.
The following line of C code declares a table called ’fptable’ of 6 function
pointers, all containing addresses of functions which are located in bank 3
and expecting their parameters (2 int types) via the user stack and
returning a long;:

long _stackparm _bank(3) (*fptable[6])(int, int);

Although banked interrupt functions are allowed you should not use them
because they are not called as a banked function from the interrupt vector.
It is recommended to make a non-banked interrupt function and call a
banked function from that interrupt function.

The default situation assumes that a function is in a non-banked portion
of memory (in fact _bank(0)). Valid bank numbers are 1 to 255.

Language Implementation 3-135

When calling a banked function, from either non-banked memory or from
a function having a different bank number, a call to a run—time library
function is emitted by the C compiler instead of a regular function call.
This run-time library function switches the code memory banks and calls
the appropriate banked function indirectly. The code memory bank
number and the inter-segment address of the banked function are passed,
to the run—time library bank switch function called _ banksw. The general
purpose registers R3, R4 and R5 are used for passing these parameters.
The code memory bank number of the banked function is passed in
register RL3.

The current code bank number must also be passed to __ banksw,
because it might be needed to restore the code bank of the caller.
Therefore the current code bank number is passed in register RH3. When
RH3 is set to zero, the code bank does not need to be restored after the
banked function returns. The contents of register R3 need to be saved on
the user stack by the calling function, because saving it in the code bank
switch function would cause a conflict with pre—calculated offsets for C
function parameters and automatics. The inter-segment address of the
banked function is passed in registers R4 and R5.

Code memory banking is only supported for inter-segment function calls
(memory models small and large). Therefore, the near keyword is not
allowed with a banked function.

The following C listing displays a call to a banked function which is
located in code bank 1 and called by a non-banked function. The code
generated by the compiler is displayed below.

int _bank(1l) func_bl(char *, long);
int x;
char *p;

long 1;

void main(void)

{

x = func bl(p, 1);

3-136

Chapter 3

MOV R12,_p ; pass character pointer

MOV R13,_1 ; pass long value

MOV R14, (_1+2) ;

MOV R4,#SOF _func_bl ; pass inter—-segment address of

MOV R5,#SEG _func_bl ; banked function.

MOV R3,#0001H ; pass code bank number and no
; restore of current bank at
; return

MOV [-RO],R3 ; save code bank number(s)

; on the user stack
CALLS SEG _ banksw, __ banksw

; call code bank switch function
ADD RO, #2 ; Remove code bank number(s)

; from the user stack
MOV X,R4 ; return result from banked

; function

The default/startup situation assumes that a function is in a non-banked
portion of code memory. The bank switch function and all other library
functions must be located in non-banked memory, so library functions can
be shared by both banked and non-banked functions.

The bank switch function may not introduce a conflict with the register
usage and user stack usage implementation of C function parameter
passing and C register variables. See section 3.15, Register Usage for details.
The registers which are used for fast C parameter passing (R12-R15) may
not be used by the code bank switch function and also the registers which
are used for C register variables (R6-R9) may not be altered without saving
them at entry and restoring them at return of the bank switch function.
Register R1-R5, R10 and R11 are free for use. However, registers R4 and R5
may contain a return value from the banked function. The user stack
pointer (RO) may not be changed, otherwise compiler pre-calculated
offsets are affected. Keep these restrictions in mind when writing your
own bank switch function. The bank switch function is a run—time library
function and not a C function !

The compiler emits a special class reflecting the bank number for the code
section of a banked function (e.g. class 'BANK1’). You can use these class
names with the locator OVERLAY control.

Language Implementation 3-137

The bank switch function depends on the hardware implementation of the
code banking mechanism. There are many possible hardware
implementations for code memory banking (e.g. paged, segmented etc.),
this makes it impossible to write a uniform bank switch function which
can be appended to the run-time library functions. Therefore a bank
switch function for simulating code banking on directly accessible memory
is delivered in the library. This allows to test your application on an
evaluation board without having the real hardware implementation
available. Finally you can use the skeleton of the delivered assembly bank
switch function to write your own bank switch function, supporting your
hardware implementation.

The delivered simulation routine assumes the following situation:

The different code banks are located in physical memory but they are
treated as if they are located in virtual c.q. banked memory. The code
banking is simulated by copying the page the banked code is located in to
a reserved page where the code is executed from. In fact the code bank
number is treated as a page number. So, a code bank is limited to the size
of one page (16Kb). One page is reserved for execution of banked code.
This page cannot be used for other code or data, because it contains the
currently active code page. All the code banks are overlaid in this physical
code page with the locator OVERLAY control.

The following listing shows the assembly code for simulating code
banking. The number of code banks is restricted to the number of pages
which are available for code banking. The physical page the code banks
are overlaid in and executed from is defined by the equate CODE_PAGE.
The default value of CODE_PAGE is page 15. The following locator control
can be used:

OVERLAY (’‘BANK4’, 'BANK5’ (RANGEP(15)))

This control instructs the locator to overlay the classes BANK4 and BANKS
in page 15. Remember that, when using our simulation code, the code
from bank 4 must be located in page 4 and the code from bank 5 must be
located in page 5. You can use the regular CLASSES control to achieve this.
See the description of the OVERLAY locator control in the assembler
manual for a detailed example.

3-138

Chapter 3

The actual bank switch is performed by _ pgbk. In the simulation
approach, the code bank number (passed via RL3) corresponds to the
page number where the banked function is present. This page must be
activated, which means copied to the physical page defined by
CODE_PAGE. Now you can actually call the banked function, indirectly,
using the run—time library function _ icall. The inter-segment address
of the banked function is passed in registers R4 and RS to __icall.

The code bank number of the currently active code bank is pushed on the
user stack and afterwards removed from it by the function calling the bank
switch function. It is not possible to save the current code bank number
on the user stack at function entry of the bank switch function, because
this affects the user stack pointer, introducing a conflict with precalculated
offsets for C function parameters and automatics. When code execution
returns from the banked function, this code bank number is read from the
user stack and, when needed, the previous code bank is reactivated by
calling __ pgbk again. This allows you to call a banked function from a
banked function in a different code bank.

You can use the skeleton bankswh.asm, in the bank subdirectory of the
examples directory, as a starting point to implement your hardware
implementation of bank switching. In this case, you only have to replace
the code from __ pgbk with your own code, actually performing the
hardware bank switch. It is obvious that your hardware bank switch
approach is not limited to the size of a page.

To accomodate user stack model qualified functions (with the _usm
keyword), the compiler calls the _ ubanksw run-time library routine. This
routine works exactly the same as the banksw routine, but it uses
__uicall instead of __icall to implement the indirect function call.

Restriction: When a banked function (e.g. f1) calls a non-banked
function (e.g. f2) which on its turn calls a banked function in another bank
(e.g. 3), the original bank is not restored when returning from the
non-banked function (f2).

Language Implementation 3-139

3.19 C CODE CHECKING: MISRA C

The C programming language is a standard for high level language
programming in embedded systems, yet it is considered somewhat
unsuitable for programming safety—-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules,
TASKING MISRA C code checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is
intended to be suitable for embedded automotive systems. It consists of a
set of 127 rules, defined in the document "Guidelines for the Use of the C
Language in Vehicle Based Software” published by "Motor Industry
Research Association” (MISRA).

Every MISRA C rule is classified as being either required’” or ’advisory’.
Required rules are mandatory requirements placed on the programmer.
Advisory rules are requirements placed on the programmer that should
normally be followed. However, they do not have the mandatory status of
required rules.

Implementation issues

The MISRA C implementation in the compiler supports most of the 127
rules. Some MISRA C rules address documentation, run—-time behavior, or
other issues that cannot be checked by static source code inspection.
Therefore, some rules are not implemented. These unsupported rules are
visible in the C Compiler | MISRA C | MISRA C Rules entry of the
Project Options dialog in EDE, but cannot be selected (grayed out).

During compilation of the code, violations of the enabled MISRA C rules
are indicated with error messages and the build process is halted. For
example,

E 209: MISRA C rule 9 violation: comments shall not be nested.

You can change the level of error messages from errors to warnings on the
required MISRA C rules and the advisory MISRA C rules, with the following
C compiler command line options:

-misrac-required-warnings

-misrac—advisory-warnings

3-140

=

&

Chapter 3

Note that not all MISRA C violations will be reported when other errors are
detected in the input source. For instance, when there is a syntax error, all
semantic checks will be skipped, including some of the MISRA C checks.
Also note that some checks cannot be performed when the optimizations
are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project,
the TASKING C166/ST10 Linker/Locator can generate a MISRA C Quality
Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use
this in your company’s quality assurance system to provide proof that
company rules for best practice programming have been applied in the
particular project.

If the MISRA C error level is set to "'warnings’, then the MISRA C rules are
marked as checked.

Apply MISRA C code checking to your application

i+

1. From the Project menu, select Project Options...
The Project Options dialog box appears.
2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration. Select a predefined configuration for
conformance with the required rules in the MISRA C guidelines.

It is also possible to have a project team work with a MISRA C
configuration common to the whole project. In this case the MISRA C
configuration can be read from an external settings file.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

From the command line MISRA C can be enabled by the following
compiler option:

-misracn,n,...

where 7 specifies the rule(s) which must be checked.

See Appendix A, MISRA C for the supported and unsupported MISRA C
rules.

Language Implementation 3-141

3.20 PEC SUPPORT

€166 supports the initialization of the PEC source and destination pointers
using a (int) cast in C. The following example shows how to allocate a
PEC-addressable section for a buffer in the first 64K segment:

#include <regl66.h>

#if _MODEL == ’1’ || _MODEL == 'm’

#pragma align fb=c /* declare PECADDRESSABLE data section for
'far’ data */

#pragma class fb=firstsegment /* assign a special class name to

this section */
char _far buffer[100]; /* explicitly ' far’, otherwise
allocated in default data group */
#pragma default attributes /* restore default section
attributes for ’_far’ data */
#else
char buffer[100];
#endif
void
£0)
{
DSTPO0 = (int)buffer; /* when you use the c++ compiler,
use a long cast instead of an
integer: DSTPO = (long)buffer; */
}

If large model (-Ml) is used, the following code is generated:

PEC1_1 FB SECTION DATA PECADDRESSABLE PUBLIC ’'firstsegment’
PEC1 1 FB ENTRY LABEL BYTE
_buffer LABEL BYTE
Ds 100
PUBLIC _buffer
PEC1_1_FB ENDS

PUBLIC _f
PEC1 2 PR SECTION CODE WORD PUBLIC ‘CPROGRAM’
£ PROC FAR

MOV R4 ,#SOF (_buffer)
MOV DSTPO,R4
RETS

£ ENDP

PEC1 2 PR ENDS

The following example shows how to allocate a PEC-addressable section
for a buffer in the SYSTEM page (page 3, 16K). The SYSTEM page is in the
PEC-addressable range (segment 0). Therefore, it is not needed to declare
the buffer data section PECADDRASSABLE with #pragma align sb=c.

3-142

Chapter 3

#include <regl66.h>

char _system buffer[100]; /* explicitly ’_system’,
allocated in system page */
£()
{
DSTPO0 = (int)buffer;
}

If large model (-Ml) is used, the following code is generated:

ASSUME DPP3:SYSTEM
PEC1_1 SB SECTION DATA WORD PUBLIC 'CSYSTEM'
PEC1_1_SB_ENTRY LABEL BYTE
_buffer LABEL BYTE

DS 100

PUBLIC _buffer

PEC1 1 SB ENDS

PUBLIC _f
PEC1_2 PR SECTION CODE WORD PUBLIC ‘CPROGRAM’
£ PROC FAR

MOV R4 ,#SOF _buffer
MOV DSTPO,R4
RETS

_f ENDP

PEC1 2 PR ENDS

Cl166_SGROUP DGROUP PECl_1_ SB,SYSTEM

The XC16x/Superl0 architecture supports a PECSEGx register for each PEC
channel. The upper eight bits of this register are used as the segement
number for SCRPx. The lower eight bits are used as the segment number
for DSTPx. This allows PEC transfers between any kind of memory or
register, not necessarily in segment zero. So, if you want to use any kind
of segment, you should not use the PECADDRESSABLE sections. The
following example shows how to initialize a Super10 PEC buffer.

#include <regsuperlObo.h>
_shuge int buffer[1000];

£0)
{
PECSEG0 &= 0xFF00;

PECSEGO |= seg(buffer);
DSTPO = sof(buffer);

Language Implementation

3.21 PORTABLE C CODE

&

If you are developing C code for the C166/ST10 using ¢166, you might
want to test the code on the host you are working on, using a C compiler
for that host. Therefore, the include file ¢166.h is delivered with the
compiler, which must be included in your C programs.

This header file checks if the predefined macro C166 is defined (c166
only). If not, all C166/ST10 language extensions (read keywords) are
redefined to ANSI C equivalents. Furthermore an adapted prototype of
each C166/ST10 intrinsic function is present, because these functions are
not known by another ANSI compiler. If you use these functions, you
should write them in C, performing the same job as the C166/ST10
processor and link these functions with your application for simulation
purposes.

If you want to isolate all functions using ¢166 language extensions in
separate modules, you can use the —A option (disable language
extensions) to check if €166 keywords are still present.

You can enable/disable groups of language extensions separately. See the
description of the —A option in the next chapter for more information.

3.22 HOW TO PROGRAM SMART WITH C166

If you want to get the best code out of €166, the following guidelines
should be kept in mind:

Always include the appropriate header file before using a standard C
library function. This is very important with variable argument list
functions, such as printf()!

Note that you do not have to edit all the ’old style’ function bodies of your
application into 'new style’ ANSI function bodies. You only have to add a
full prototype declaration before any function is called and before any
function definition.

The following example shows how to migrate from old style programs to
new style without editing the function bodies of the program. The
advantage of this method is, that if *prototyping’ is not possible (because
the C program must be translated with a non—ANSI compiler), the program
does not have to be changed:

3-143

3-144

Chapter 3

#ifdef prototyping

#define FD(x) x /* full function prototype */

#else

#define FD(x) () /* return type only: no arguments */
#endif

char* cg_var FD((char *, int));
void main FD((void));

void
main()

{

char *p;

p = cg_var("text”, 2);

}

char *

cg _var(name, offset)
char *name;

int offset;

{

return (name + offset);

}

If *prototyping’ is enabled the function call to cg_var is using the full
prototype and the function body of cg_var is treated like a 'new style’
function, using the full prototype.

Try to use the "unsigned’ type modifier as much as possible, because it
takes less code to convert an unsigned variable to a long variable than a
signed variable.

Do NOT use the —=A option. This option is implemented as strict ANSI
conformance checking, disabling language extensions and character
arithmetic code generation. This option may decrease code density and
execution speed.

In most of the cases it is safe to use the -Oa option, which results in better
code density. However, you have to check your application on ’aliases’. If
this option is not used (default), c166 ’forgets’ all register contents bound
to C variables if an indirect write operation (e.g. MOV [R4],R5) is
performed.

See section 3.2.1.7, Efficiency in Large Data Models (Medium/Large/Huge).

Use the =Om option (default) and non-protected library if multiply and
divide instructions do not have to be protected against interrupts. This
results in better code density and faster execution.

Language Implementation 3-145

6. Use the intrinsic functions, if special C166/ST10 instructions are needed.

7. If you want to overrule the ¢166 register allocation of C variables, you
must use the register storage class specifier in the declaration of this (local)
variable, because ¢166 might allocate other C variables into the CPU
registers, than the variables you prefer to be in registers.

8. Avoid static initialized bit variables (which must have the value ’1’ after
startup), because this takes a lot of ROM space and is very time consuming
during system startup.

9. Use the -t option, to inspect the size of the code generated. This is useful,
when ’experimenting’ with compiler options.

10. Use the —Of optimization option to prefer speed instead of code density
(-OF is default).

11. Use the —=Ox optimization option to enable extra inlining of C library
functions when you prefer speed instead of code density.

3-146 Chapter 3

LANGUAGE

COMPILER USE

al TASKING [

d31dVHO

Compiler Use

4.1 CONTROL PROGRAM

The control program cc166 is provided to facilitate the invocation of the
various components of the C166/ST10 toolchain. The control program
accepts source files, options and controls on the command line in random
order.

The invocation syntax of the control program is:
cc166 [[option)... [control)... [file]... ...

Options are preceded by a =" (minus sign). Controls are reserved words.
The input file can have any extension as explained below.

@ When you use a UNIX shell (Bourne shell, C-shell), arguments containing
special characters (such as ’()’ and '?") must be enclosed with ” ” or
escaped. The -? option (in the C—shell) becomes: ”"-?" or —\?.

The control program recognizes the following argument types:

* Arguments starting with a "=’ character are options. Some options
are interpreted by cc166 itself; the remaining options are passed to
those programs in the toolchain that accept the option.

* Arguments which are known by ¢c166 as a control are passed to
those programs in the toolchain that accept the control.

e Arguments with a .cc, .cxx or .cpp suffix are interpreted as C++
source programs and are passed to the C++ compiler.

* Arguments with a .c suffix are interpreted as C source programs
and are passed to the compiler.

* Arguments with a .asm suffix are interpreted as assembly source
files which are preprocessed and passed to the assembler.

* Arguments with a .src suffix are interpreted as preprocessed
assembly source files. They are directly passed to the assembler.

e Arguments with a .1ib suffix are interpreted as library file and
passed to the link stage of 1166 when the —cf option is not
specified. When the —cf is specified, the libraries are passed to the
locate stage.

* Arguments with a .i1l1i suffix are interpreted as linker invocation
files and are passed to the link stage of 1166 with a leading '@’ sign.

* Arguments with a .ilo suffix are interpreted as locator invocation

files and are passed to the locate stage of 1166 with a leading ’@’
sign.

Chapter 4

* Arguments with a .out suffix are interpretes as input files for the
Motorola S formatter, IEEE formatter or Intel Hex formatter. Specify
the formatter respectively with the options -srec, —ieee or -ihex.

* Everything else is considered an object file and is passed to the
linker.

Normally, €c166 tries to compile and assemble all files specified, and link
and locate them into one output file. There are however, options to
suppress the assembler, linker or locator stage. The control program
produces unique filenames for intermediate steps in the compilation
process. These files are removed afterwards. If the compiler and assembler
are called in one phase, the control program prevents preprocessing of the
generated assembly file. Normally assembly input files are preprocessed
first.

The following options are interpreted by the control program cc166:

Option Description

-? Display invocation syntax

-V Display version header and stop

-Waarg Pass argument directly to the assembler

-Wecearg Pass argument directly to the compiler

-Weceparg Pass argument directly to the C++ compiler
-Wfarg Pass argument directly to the object formatter
-Wilarg Pass argument directly to the linker

-Wmarg Pass argument directly to the macro preprocessor
-Woarg Pass argument directly to the locator

-Wplarg Pass argument directly to the C++ pre-linker
-C++ Force .c files to C++ mode

-C Do not link: stop at . obj

-cc Compile C++ files to .c and stop

-cf Skip the linking phase; call the locator directly

-cl Do not locate: stop at . 1no

-cm Always also invokes the C++ muncher

-cp Always also invokes the C++ pre-linker

-cprep Use C preprocessor instead of macro preprocessor

-cs Do not assemble: stop at .src

Compiler Use

i+

-libfmtiovariant
-libmac
-noc++
-nolib
-nostl
-nostlo
-o file
-srec
-tmp
-trap
-notrap
-v

-v0

-WC++

Option Description

~f file Read arguments from file (*-” denotes standard input)
-gs Pass -cl to ieee166, set compatibility mode to 1
-ieee Produce an IEEE-695 output file

-ihex Produce an Intel hex output file

-lib directory Specify the location of user-built libraries

-libcan Link CAN library

Link MEDIUM or LARGE printf()/scan() library variants
Link MAC optimized runtime library

Force C++ files to C mode

Do not link with the standard libraries

Do not link the STLport library

Do not link the STLport extension library
Specify the output file

Produce an S-record output file

Keep intermediate files

Use a floating point library with trap handler.
Use a floating point library without trap handler.
Verbose option: show commands invoked
Same as -v, but commands are not started
Enable C and assembler warnings for C++ files

Table 4-1: Control program options

For more detailed information about the control program ¢c166, refer to
section ¢c166 in Chapter Utilities of the Cross-Assembler Linker/Locator,

Utilities User’s Manual.

4-5

4-6

4.2 COMPILER

Chapter 4

The invocation syntax of the C166 compiler is:

c166 [[option) ... [file] ..] ...

The input file must have the extension .c or .i. Options are preceded by
a =’ (minus sign). Options cannot be combined after a single '-". After you
have successfully compiled your C sources, the compiler has generated
assembly files, with the extension .src (the default for a166).

When you use a UNIX shell (Bourne shell, C-shell), arguments containing
special characters (such as ’()’ and '?") must be enclosed with ” ” or
escaped. The -? option (in the C—shell) becomes: ”"-?" or —\?.

A summary of the options is given below. A more detailed description is

given in the next section.

-R{cl|co|al}mem=new

-S
-Tsize

Option Description

-? Display invocation syntax

-Alflag...] Enable/disable specific language extensions

-Bfflag...] Control CPU problem bypasses

-Dmacro[=def] Define preprocessor macro

-E[ml|cli|p|x] Preprocess only

-F[flag...] Control floating point

-Ggroupname Use groupname to group near data sections
(~-Mm, -MI or -Mh only)

-Hfile Include file before starting compilation

-Idirectory Look in directory for include files

-M{t|s|m|l|h} Select memory model: tiny, small, medium,
large or huge

-Oflag... Control optimization

-P[d] Use user stack model stack frame (calling

convention) (to be used with special stack
frame C library if 'd’ is not specified)

Change class name, combine type or align
type of section for mem

Static allocation of automatics

Use size as threshold before allocating data in
default data group (-Mm/-MI/-Mh only)

Compiler Use

Option

Description

-T[size),size2

-Umacro

-V

-e

-err

-exit

-f file
-g[bifll|s]
-gso
-gso-=file.gso
-iscale

-mmem=size

-mmem=[sizel,n

-misracn,n,...

-misrac—advisory-warnings

-misrac-required-warnings

-n

-o file

-r[namel,c][,regdef]

—si]
-t

-u
-w[humber]

—-wstrict

In addition to the previous option, you can also
specify a threshold for intiialized data.
Default:infinite

Remove preprocessor macro

Display version header only

Remove output file if compiler errors occur
Send diagnostics to error list file (. err)
Alternative exit values

Read options from file

Enable symbolic debug information
Enable GSO (acquire phase)

Enable GSO (allocation phase)

Specify scaling of interrupt vector table
(needs -x2):

0 - for no scaling (default)

1 - for x2

2 - for x4

3 - for x8

Specify memory size

Specify maximum section size for mem and in
addition a threshold n for switching to a new
section

Enable individual MISRA C checks

Generate warnings for advisory MISRA C rules
Generate warnings for required MISRA C rules
Send output to standard output

Specify name of output file

Omit REGDEF or specify number (nr) of GPR
registers, the name of the register bank and ¢
for common

Merge C-source code with assembly output

Display module summary and write section
information in output file

Treat all ‘char’ variables as unsigned
Suppress one or all warning messages
Suppress warning messages 183,196 and 216

4-7

4-8

Chapter 4

Option Description

-x[1]2[22/d]

Allow all or some functions of the extended

architectures (to be used with ext or ext2

library sets)
-zpragma

Identical to '#pragma pragma’ in the C source

Table 4-2: Compiler options (alphabetical)

Define preprocessor macro

Description Options
Include options

Read options from file -f file
Include file before starting compilation -Hfile

Look in directory for include files -Idirectory
Preprocess options

Preprocess only -E[m|c|i|p|x]

-Dmacro[=def]

(~-Mm, -MI or -Mh only)

Change class name, combine type or align
type of section for mem

Static allocation of automatics

Use size as threshold before allocating data in
default data group (-Mm/-MI/-Mh only)

In addition to the previous option, you can also
specify a threshold for intiialized data.
Default:infinite

Specify memory size

Specify maximum section size for mem and in
addition a threshold n for switching to a new
section.

Remove preprocessor macro -Umacro
Allocation control options
Use groupname to group near data sections -Ggroupname

-R{cl|co|al}mem=new

-S
-Tsize

-T[sizel,size2

-mmem=size

-mmem-=[sizel,n

Code generation options

Control CPU problem bypasses
Control floating point

Select memory model: tiny, small, medium,

large or huge

-Blflag...]
-Flflag...]
-M({t|s|m|i|h}

Compiler Use

Description Options
Control optimization -Oflag...
Use user stack model stack frame (calling -P[d]
convention) (to be used with special stack

frame C library if 'd’ is not specified)

Enable GSO (acquire phase) -gso

Enable GSO (allocation phase)

Specify scaling of interrupt vector table
(needs -x2):

0 - for no scaling (default)

1 - for x2

2 - for x4

3 - for x8

Omit REGDEF or specify number (nr) of GPR
registers, the name of the register bank and C
for common

-gso=file.gso
-iscale

-r[namel,c][,regdef]

Allow all or some functions of the extended -x[1]2]|22|d]
architectures (to be used with ext or ext2

library sets)

Identical to '#pragma pragma’ in the C source | -zpragma
Language control options

Enable/disable specific language extensions -Afflag...]
Treat all ‘char’ variables as unsigned -u

Output file options

Remove output file if compiler errors occur -e

Send output to standard output -n

Specify name of output file -o file
Merge C-source code with assembly output -s[i]
Diagnostic options

Display invocation syntax -?

Display version header only -V

Send diagnostics to error list file (. err) -err
Alternative exit values -exit
Enable symbolic debug information -g[b|f|l|s]
Enable individual MISRA C checks -misracn,n,...

Generate warnings for advisory MISRA C rules

-misrac—advisory-warnings

4-9

4-10

Chapter 4

Description

Options

Generate warnings for required MISRA C rules

Display module summary and write section
information in output file

Suppress one or all warning messages

Suppress warning messages 183, 196 and
216

-misrac-required-warnings

-t

-w[humber]

-wstrict

Table 4-3: Compiler options (functional)

4.3 DETAILED DESCRIPTION OF THE COMPILER

OPTIONS

Option letters are listed below. Each option (except —-o; see description of
the —o option) is applied to every source file. If the same option is used
more than once, the first (most left) occurrence is used. The placement of
command line options is of no importance except for the -I and -0
options. For those options having a file argument (-0 and -f), the filename
may not start immediately after the option. There must be a tab or space in
between. All other option arguments must start immediately after the
option. Source files are processed in the same order as they appear on the

command line (left-to-right).

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Compiler Use

-?

Option:

-?

Description:

Display an explanation of options at stdout.

Example:
clé66 -?

4-12

=

Chapter 4

-A

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Language.

In the Language extensions box, select Enable all extensions or select
Custom extensions and enable or disable one or more language
extensions.

~Alflags]

Arguments:

Optionally one or more language extension flags.

Default:

-Al

Description:

Control language extensions. Without the -A option all ¢166 language
extensions are enabled. —A without any flags, specifies strict ANSI mode;
all language extensions are disabled. This is equivalent with
-ACDFIKLMPSTUVWX and -AO0.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. Note that the usage
of these options might have effect on code density and code execution
performance. The following flags are allowed:

¢ Default. Perform character arithmetic. ¢166 generates code using 8-bit
character arithmetic as long as the result of the expression is exactly
the same as if it was evaluated using integer arithmetic. See also section
3.4.2 Character Arithmetic.

C Disable character arithmetic.

d Default. Define storage for uninitialized constant rom data, instead of
implicit zero initialization. The compiler generates a 'DS 1’ for 'const
char i[1];.

D Uninitialized constant rom data is implicitly zero. The compiler
generates a 'DB 1’ for 'const char i[1];’.

Compiler Use

ko

Default. 14-bit arithmetic is used for far pointer comparison instead of
long 32-bit arithmetic. Only the page offset is compared. Far pointers
do not cross page boundaries and if the objects pointing to are not
members of the same aggregate or (union) object, the result is
undefined. When far pointers are compared to NULL, 32-bit arithmetic
is needed !

32-bit arithmetic is used for far pointer comparison.

Default. Inlining of a selected group C-library functions is allowed.
This option works together with the extra inlining optimization option
-Ox. Note: It is not possible to take the address of an inline function,
which is not conform to the ANSI-C standard.

Disable inlining of C-library functions, to conform to strict ANSI-C
mode.

Default. The keywords _atbit, bank, bit, bitword, esfr, esfrbit,
far, huge, interrupt, iram, near, sfr, sfrbit, stackparm,
system and using are recognized as C language extensions. See
chapter 3 Language Implementation for the explanation of these
language extensions.

Disable all keywords which are an extension of the C language.

Default. 500 significant characters are allowed in an identifier instead of
the minimum ANSI-C translation limit of 31 significant characters. Note:
more significant characters are truncated without any notice.

Conform to the minimum ANSI-C translation limit of 31 significant
characters. This makes it possible to translate your code with any
ANSI-C conforming C-compiler. Note: more significant characters are
truncated without any notice.

Default. When a 32 bit value is divided by a 16 bits divisor and only 16
bits of the result are being used, then the operation can be done by a
DIVL or DIVLU instruction, depending on the signed/unsigned setting
of the operands. The same applies for the modulo operator. When
there are chances for overflow and the (truncated) result must still be
conform ANSI, then it is better to switch this option off. Example:

long m32
short ml6, divisor;

mlé
m32

m32 / divisor;
(short) (m32 / ml6);

4-13

4-14

M

Chapter 4

See also the intrinsic functions _div32, divu32, mod32 and
_modu32 in section 3.17.

Perform divide/modulo operation always in 32 bits using run—time
library calls.

Default. Allow C++ style comments in C source code. For example:
// e.g this is a C++ comment line.

Do not allow C++ style comments in C source code, to conform to
strict ANSI-C.

Default. STDC__ is defined as ’0’. The decimal constant ’0’, intended
to indicate a non—-conforming implementation. When one of the
language extensions are enabled __STDC__ should be defined as ’0’.

__STDC__ is defined as ’1’. In strict ANSI-C mode (-A) _STDC__is
defined as '1".

Default. Do not promote old-style function parameters when prototype
checking.

Perform default argument promotions on old-style function parameters
for a strict ANSI-C implementation. char type arguments are promoted
to int type and float type arguments are then promoted to double

type.

Default. Use type unsigned char for 0x80-0xff. The type of an octal
or hexadecimal constant, not suffixed with 'L’ or I, is the first of the
corresponding list in which its value can be represented:

Character arithmetic enabled -Ac:

char, unsigned char, int, unsigned int, long,
unsigned long

Character arithmetic disabled =AC (strict ANSI-C):
int, unsigned int, long, unsigned long

Do not use type unsigned char for 0x80-0xff. The type of an octal
or hexadecimal constant, not suffixed with 'L’ or ', is the first of the
corresponding list in which its value can be represented:

Compiler Use

0

1

Character arithmetic enabled -Ac:

char, int, unsigned int, long, unsigned long
Character arithmetic disabled =AC (strict ANSI-C):

int, unsigned int, long, unsigned long

Allow type cast of an lvalue object with incomplete type void and
Ivalue cast which does not change the type and memory of an lvalue
object.

Example:

void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

Default. A cast may not yield an lvalue, to conform strict ANSI-C mode.

Default. Allow propagation of const initializers. This optimization
makes the following code possible:

const int one = 1;
int array [] = { one };

Disable propagation of const initializers.

Default. Do not check for assignments of a constant string to a
non-constant string pointer. With this option the following example
produces no warning;:

char *p;
void main(void) { p = "hello”; }

Conform to ANSI-C by checking for assignments of a constant string to
a non—constant string pointer. The example above produces warning
W130: "operands of =" are pointers to different types”.

Same as ~ACDFIKLMPSTUVWX (disable all).

Same as -~AcdfiklmpstuVwx (default).

Example:

To disable character arithmetic and C++ comments enter:

cl66 —ACP test.c

4-16 Chapter 4

-
-B

Option:

From the Project menu, select Project Options...

Expand the Application entry, expand the Processor entry and select
CPU Problem Bypasses and Checks. Enable or disable one or more
bypasses.

~Blflags]

Arguments:

Optionally one or more CPU functional problem bypass flags.

Default:
-Babdefhijklmnou

Description:

Enable/disable bypass for certain CPU functional problems. Without the -B
option the default is -Babdefhijklmnou (all bypasses off).

Flags which are controlled by a letter, can be switched on with the
uppercase letter and switched off with the lowercase letter. The following
flags are allowed:

a Default. Do not protect DIVx/MDI[LH] sequences by an ATOMIC
instruction.

A Protect DIVx/MD|LH] sequences by an ATOMIC instruction. The DIVx
instruction and a read from MDL/MDH are not interruptable because
the will be generated within the same atomic sequence. This is a
bypass for the LONDON1751 CPU functional problem. Refer to
Appendix C, CPU Functional Problems for details.

b Default. Do not place two NOP instructions after each instruction
which does a byte write. This option is equivalent to the pragma
nofix_byte_write.

B Place two NOP instructions after each instruction which does a byte
write. These instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB,
NEGB, ORB, SUBB, SUBCB, XORB. This is a bypass for CPU problem
S1, as described in Appendix C, CPU Functional Problems. This option
is equivalent to the pragma fix_byte_write.

Compiler Use

ko

Default. Assume hardware environment is present, where there is no
need to protect the execution of divide instructions against interrupts.
Emit inline code (DIV) instead of a run-time library call.

This option emits code to protect signed divide operations against
interrupts. The protection will be generated inline using ATOMIC
instructions. This is a bypass for the CPU problem 13, as described in
Appendix C, CPU Functional Problems. Use the protected version of
the library (1ib\[u]extp*.1lib or 1ib\[u]ext2p*.1lib).

Default. Never extend EXTEND sequence with one instruction.

EXTEND sequences are extended with one instruction when addressing
mode Rn, [Rm + #datalé6] is the last instruction of the EXTEND
sequence.

This is a bypass for the CPU.3 problem, as described in Appendix C,
CPU Functional Problems.

Default. Do not prevent the generation of MOVB [Rn],mem
instructions.

Disable the generation of MOVB [Rn],mem instructions when even
‘const’ objects are accessed. This is a bypass for the CPU.16 problem as
described in Appendix C, CPU Functional Problems.

Default. Do not prevent the generation of Label C: JMPR cc.XxxX,
Label A instructions.

Disable the generation of Label C: JMPR cc.xx, .Label A
instructions. This is a bypass for the BUS.18 problem as described in
Appendix C, CPU Functional Problems.

Default. Do not place BFLDH PSW,#0F0h,#0F0h before RETI in
interrupt functions

Place the instruction BFLDH PSW,#0F0h,#0F0h before RETI in
interrupt functions.

This is a bypass for the CPU problem 17 as described in Appendix C,
CPU Functional Problems.

Default. Do not place ATOMIC #2 before a JMPS instruction. Do not
delete the return addresses from the system stack in interrupt functions.

4-18

-

&

J

Chapter 4

Place ATOMIC #2 before a JMPS instruction. The JMPS instructions in
the interrupt vector table will be replaced by CALLS instructions (linker
/ locator control: FIXSTBUS1). The compiler generates an ADD SP, #04
instruction to delete the return address (generated by CALLS) from the
system stack. This is a bypass for the ST _BUS.1 problem as described in
Appendix C, CPU Functional Problems.

The instruction to delete the return address from the system stack is part of
the interrupt frame. If #pragma noframe was used, this instruction will
not be generated, you have to do it manually.

k

K

Default. Do not protect BELDH/BFLDL instructions by an ATOMIC
instruction.

Protect BELDH/BFLDL instructions by an ATOMIC instruction. This is a
bypass for the CPU.21 CPU functional problem. Refer to Appendix C,
CPU Functional Problems for details.

Default. Do not protect JMPI/CALLI instructions by an ATOMIC
instruction.

Protect JMPI/CALLI instructions by an ATOMIC instruction. This is a
bypass for the LONDON1 CPU functional problem. Refer to Appendix
C, CPU Functional Problems for details.

Default. Assume hardware environment is present, where there is no
need to protect the execution of multiply instructions and divide
instructions against interrupts. Emit inline code (MUL, DIV, DIVU, DIVL,
DIVLU) instead of a run—time library call. You must use the
non-protected version of the library.

This option emits code to protect multiply/divide operations against
interrupts. The protection will be generated inline using ATOMIC
instructions. Use the protected version of the library
(lib\extp*.1lib).

This is a bypass for many CPU problems, among which are problem 7,
problem 13, problem 17, CPU.2, CPU.11 and CPU.18. as described in
Appendix C, CPU Functional Problems.

Default. Do not avoid pipeline conflict after CoOSTORE instruction.

Avoid pipeline conflict after COSTORE instruction. This is a bypass for
the Kfm_ BR03 CPU functrional problem as described in Appendix C,
CPU Functional Problems.

Compiler Use

o Default. Do not prevent the generation of MOV(B) Rn, [Rm+#datal6]
instructions.

O Disable generation of MOV(B) Rn, [Rm+#datal6] instructions. The
generation of this instruction is not disabled in some of the intrinsic
functions since the source operand always refers to internal RAM here.

This a bypass for the CPUIR006 functional problem, as described in
Appendix C, CPU Functional Problems.

u Default. Assume hardware environment is present, where there is no

need to protect the execution of multiply instructions against interrupts.

Emit inline code (MUL/MULU) instead of a run—time library call. You
must use the non-protected version of the libraries (Lib\ext*.1ib).

U This option emits code to protect multiply operations against interrupts.

The protection will be generated inline using ATOMIC instructions. Use
the protected version of the libraries (1ib\extp*.1ib).

This is a bypass for CPU problems CPU.11 and problem 17.

Zc166sv1div
Do not generate unprotected division instructions. This is a bypass for
the CR105893 functional problem.

Zno_c166svldiv
Default. Allow generation of unprotected division instructions.

Zc166svlext
Do not jump from extend sequences. This is a bypass for the CR107092
functional problem.

Zno_c166svlext
Default. Jump from extend sequences.

Zc166sv1jbc
Do not use JBC and JNBS instructions, unless the first operand is a
GPR. This is a bypass for the CR105981 functional problem.

Zno_Zc166sv1jbc
Default. Always use JBC and JNBS instructions.

Zc166svltrap
Insert a NOP before a TRAP instruction. This is a bypass for the
CR105619 functional problem.

4-20

Chapter 4

Zno_c166svltrap
Default. Do not insert a NOP before a TRAP instruction.

Zcpu_jmpra_cache
Fix broken program flow after not taken JMPR/JMPA instruction. This is
a bypass for the CR108400 functional problem.

Zno_cpu_jmpra_cache
Default. Do not fix broken program flow after not taken JMPR/JMPA
instruction.

Zcpu_reti_int
Fix lost interrupt while executing RETT instruction. This is a bypass for
the CR108342 functional problem.

Zno_cpu_reti_int
Default. Do not lost interrupt while executing RETT instruction.

Zinsert_div_mdl
Insert NOP instructions between DIV and the read of MDL. This is a
bypass for the CR108309 functional problem.

Zno_insert_div_mdl
Default. Do not insert NOP instructions between DIV and the read of
MDL.

Zinsert_mdlh_muldiv
Insert NOP instruction between write to MDL/MDH and DIVx/MULx
instruction. This is a bypass for the CR108904 functional problem.

Zno_insert_mdlh_muldiv
Default. Do not insert NOP instruction between write to MDL/MDH
and DIVx/MULX instruction.

% See Appendix C, CPU Functional Problems for more details.

Compiler Use 4-21

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Preprocessing.

In the Define user macro box, click on an empty Macro field and enter
a macro name. Optionally, click in the Definition field and enter a
definition.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given (=’ is
absent), ’1’ is assumed. Any number of symbols can be defined. The
definition can be tested by the preprocessor with #if, #ifdef and #ifndef,
for conditional compilations. If the command line is getting longer than
the limit of the operating system used, you can use the -f option.

Example:

The following command defines the symbol NORAM as 1 and defines the
symbol PI as 3.1416.

cl66 —-DNORAM -DPI=3.1416 test.c

%—U

4-22 Chapter 4

-
“E

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing.
Enable the Store preprocessor output (<file>.i) check box.

~E[m|c|i|p|x

Description:

Run the preprocessor of the compiler only and send the output to stdout.
When you use the —E option, use the —o option to separate the output
from the header produced by the compiler.

An overview of the flags is given below.

m - generate dependencies for make

¢ - do not strip comments

i - keep #include directives

p - do not generate #line source position info
x - disable macro expansion

The m flag overrules all other flags.

Examples:

The following command preprocesses the file test.c and sends the
output to the file preout.

cl66 —-E —o preout test.c

The following command generates dependency rules for the file test.c
which can be used by mk166 (the C166/ST10 'make’ utility).

cl66 —-Em test.c

test.obj : test.c

Compiler Use 4-23

-e

Option:
@? EDE always removes the output file on errors.

B

Description:

Remove the output file when an error has occurred. With this option the
'make’ utility always does the proper productions.

Example:
cl66 —-e test.c

4-24 Chapter 4

-err

Option:
@? In EDE this option is not useful.

h-@ —-€rr

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the test.err instead of stderr, enter:

cl66 —err test.c

Compiler Use

-exit

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Diagnostics.

Enable the Exit with error status even if only warnings were
generated check box.

—-exit

Description:

Use alternative exit values in case warnings are reported. In case warnings
are reported, the compiler returns an exit value as if there were errors
reported.

4-25

4-26 Chapter 4

-
-F

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Floating Point.
Enable or disable floating point options.

~F|flags

Arguments:

Optionally a floating point control flag.

Default:
-Fs

Description:

Control floating point. The flags which are controlled by a letter can be
switched on with the lowercase letter and switched off with the uppercase
letter. =F used without flags is the same as using =Fs. Currently the
following flags are implemented.

c Enables the use of float constants.
C Default This flag is ignored when -Fs is set.
s Forces using single precision. Implies —=Fc.

S Default

Compiler Use 4-27

-f

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous.
Add the option to the Additional options field.

£ file

Arguments:

»

A filename for command line processing. The filename
denote standard input.

may be used to

Description:

Use file for command line processing. To get around the limits on the size
of the command line, it is possible to use command files. These command
files contain the options that could not be part of the real command line.
Command files can also be generated on the fly, for example by the make
utility.

More than one —f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command
file.

2. To include whitespace in the argument, surround the argument with either
single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we
have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the
opposite quote around the argument. Thus, if a argument should
contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such
a way that each embedded quote is surrounded by the opposite type
of quote.

4-28

Chapter 4

Example:

"This has a single quote ’ embedded”

or
'This has a double quote ” embedded’
or
'This has a double quote ” and \
a single quote ’'”’ embedded”

Some operating systems impose limits on the length of lines within a
text file. To circumvent this limitation it is possible to use continuation
lines. These lines end with a backslash and newline. In a quoted
argument, continuation lines will be appended without stripping any
whitespace on the next line. For non—quoted arguments, all whitespace
on the next line will be stripped.

Example:

"This is a continuation \
line”
—-> "This is a continuation line”

control(filel (mode, type),\
file2(type))
->
control(filel(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file myemds contains the following lines:

—-err
test.c

The command line can now be:

cl66 —f mycmds

Compiler Use

-G

Option:

From the Project menu, select Project Options...

Expand the Application entry and select Memory Model.

Select the Medium or Large memory model.

Expand the C Compiler entry and select Allocation of Variable.
Enter a name in the Near data group name field.

-Ggroupname

Arguments:

The name for a group of near data sections.

Description:

With this option you can specify a name for a group of near data sections.

This option can only be used in the medium and large memory model.

See sections 3.2.1.7 Efficiency in Large Data Models (Medium/Lavge/Huge)
and 3.12 Interrupt for more details.

4-29

4-30 Chapter 4

’/
-9

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Miscellaneous.

Enable the Generate high level language debug infomation check box.
Optionally, enable one or more of the other check boxes.

—gb |£]1]s]

Description:

Add directives to the output files, incorporating symbolic information to
facilitate high level debugging. Note: using =g may turn off some peephole
optimizations.

With —gb ’bit’ type information and pointer behavior description is omitted
for compatibility with old IEEE-695 consuming tools.

With -gf high level language type information is also emitted for types
which are not referenced by variables. Therefore, this suboption is not
recommended.

With -gl you disable lifetime information for all types.

With —gs user stack adjustment information is omitted for compatibility
with old IEEE-695 consuming tools. If you use —gs it is also recommended
to invoke ieeel166 with the —c1 option. This combination gives the best
compatibility with old IEEE-695 consuming tools. When you invoke the
control program ¢c166 with —gs this will also set —c1 on invocation of
ieeel606.

Examples:
To add symbolic debug information to the output files, enter:
cl66 —g test.c

To add symbolic debug information to the output files but disable lifetime
information for all types, enter:

cl66 —gl test.c

Compiler Use

-gso

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous.
Add the option to the Additional options field.

~gs0
-gso=file.gso
Arguments:
The name of a .gso file with object allocation information for the final
build.
Description:

Enable the global storage optimizer. Please refer to section gso166 in
Chapter Utilities of the Cross—-Assembler, Linker/locator, Utilities User’s
Manual for more details.

Examples:
cl66 module.c —gso

Generates the file module.sif (Source Information File) with information
on all global objects.

cl66 module.c —-gso=module.gso

Generates module.c with the global objects allocated as specified in the
module.gso file.

4-31

4-32 Chapter 4

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Preprocessing.

Enter one or more filenames in the Include these files before source
field, separated by semicolons.

~Hjile

Arguments:

The name of an include file.

Description:
Include file before compiling the C source. This is the same as specifying
#include “file” at the first line of your C source.

Example:
cl66 —-Hstdio.h test.c

%-1

Compiler Use

-i
Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Miscellaneous.

Select a scaling factor in the Interrupt vector scale box. Note that this
item is only available for XC16x/Superl0 architectures (ext2).

—iscale

Arguments:

Specify scaling of the interrupt vector table.

Description:

The XC16x/Superl0 architectures (ext2) allows a scalable interrupt vector
table. This option can be used to specify the scaling factor:

Scale | Factor Size
0 x1 4 bytes / vector
(no scaling)
1 x2 8 bytes / vector
x4 16 bytes / vector
3 x8 32 bytes / vector

Table 4-4: Scaling factor

Depending on the size of an interrupt vector table entry, the compiler will
try to place as much code from an interrupt function inside the vector
table as possible.

@ This option can only be used in conjunction with the =x2 option.

Example:
cl66 —-x2 —-i3 test.c

Selects the XC16x/Superl10 architectures (ext2) and specifies that each
interrupt vector table entry is 32 bytes in size.

4-34

=

Chapter 4

Option:

From the Project menu, select Directories...
Add one or more directory paths to the Include Files Path field.

=Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not
have an absolute pathname to look in directory. Thus, #include files
whose names are enclosed in ”” are searched for first in the directory of
the file containing the #include line, then in directories named in I
options in left-to—-right order. If the include file is still not found, the
compiler searches in a directory specified with the environment variable
C166INC. C166INC may contain more than one directory. Finally, the
directory . ./include relative to the directory where the compiler binary
is located is searched. This is the standard include directory supplied with
the compiler package.

For #include files whose names are in <>, the directory of the file
containing the #include line is not searched. However, the directories
named in -I options (and the one in C166INC and the relative path) are
still searched.

Example:

cl66 -I/proj/include test.c

% Section 4.4 Include Files.

Compiler Use

Option:

From the Project menu, select Project Options...

Expand the Application entry and select Memory Model.

In the Memory model box, select a memory model.

-Mrmodel

Arguments:

The memory model to be used, where model is one of:

t tiny (cpu in non-segmented mode)
s small
m medium
1 large
h huge
Default:

-Ms

Description:

Select the memory model to be used.

Example:
cl66 —-M1 test.c

% Section 3.2.1 Memory Models.

4-36 Chapter 4

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous.
Add the option to the Additional options field.

—-nmnems=size
or

—-mvnem=|[size|,threshold

Arguments:

A memory space with a memory size. mem can be one of:

mem | Description Default size
limit (bytes)

Bl bits 2048 (bits)

co strings / floating none

point

BA bitwords 256

NB near data none

FB far data none

XB shuge data none

HB huge data none

PR functions 65536

SB system data 16384

IR internal ramdata 2048

Table 4-5: Memory spaces

A threshold value. The default is no threshold.

Description:

Specify the memory size (limits) to be used by the compiler for checking
static memory allocations of the module being processed. If the =t option
is used the size allocated by the module is reported, when ¢166 completes
compilation.

Compiler Use 4-37

When a section is equal or larger than the threshold size, the compiler will
switch to a new selection with the identical attributes and class for
subsequent allocations. The threshold size is memory dependent. A size of
zero means no threshold and this is the default. Specifying a threshold size
is particularly useful when compiling very big modules or when there are
too many initiialized variables in a single module.

Example:

-mPR=0,4000

is suitable for compiling modules with more than 64Kb code without
getting too many sections.
Likewise:

-mFB=0,4000

allows more than 16Kb of initialized far data in a single module by
switching to a new section after approximately 4Kb. However, it will result
in numbered sections with different names, so it might be necessary to
adapt the linker/locator invocation when locator controls refer to a
particular section by name.

4-38 Chapter 4

-misrac

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select MISRA C.

Select a MISRA C configuration. Optionally, in the MISRA C Rules entry,
specify the individual rules.

-misracn,n,....

Arguments:
The MISRA C rules to be checked.

Description:

With this option, the MISRA C rules to be checked can be specified. Refer

to Appendix A MISRA C for a list of supported and unsupported MISRA C
rules.

Example:

cl66 —misrac9 test.c

Will generate an error in case ’test.c’ contains nested comments.

Compiler Use

-misrac-advisory-warnings /
-misrac-required-warnings

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select MISRA C.

Select Generate warnings instead of errors for required rules and/or
Generate warnings instead of errors for advisory rules.

-misrac-advisory-warnings
-misrac-required-warnings
Description:

With this option, you can change the error level for messages on the
required and advisory MISRA C rules to warnings. The default messages
are errors. Refer to Appendix A, MISRA C for a list of MISRA C rules.

Example:

cl66 -misrac9 -misrac-required-warnings test.c

Will generate a warning in case ’test.c’ contains nested comments.

4-39

4-40 Chapter 4

Option:
-n

Description:

Do not create output files but send the output to stdout.

This option is for example useful to quickly inspect the output or to
redirect the output to other tools.

Example:
cl66 —n test.c

The compiler sends the output (normally test.src) to stdout and does
not create the file test.src.

Compiler Use

-0

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select an optimization level in the Optimization box.

If you select Custom optimization in the Optimization box, you can
enable or disable individual optimizations in the Custom setting of
optimizations list.

~Oftags

Arguments:

One or more optimization flags.

Default:

-01

Description:

Control optimization. By default ¢166 performs as much code
optimizations as possible (same as -O1).

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. These options are
described together. An overview of the flags is given below.

a - relax alias checking

b - no clearing of non-initialized static and
public variables

- common subexpression elimination

— data flow, constant/copy propagation

— allocate (constant) romdata in PDAT instead
of LDAT (only with -Ms)

— optimize for speed (increases code size)

enable expression recognition

optimize interrupt frame

j - peephole optimization

k - register contents tracing

1 - fast loops (increases code size)

m - instruction reordering

o an

X e
|

4-41

4-42

N

NOP removal

code order rearranging

control flow optimization

use far pointer when converting to/from long
optimize allocation of register variables

— use jump table for switch statement

turn tentative into defining occurrence

— use user stack for interrupt

- data flow analysis peephole (DFAP)

- relax alias checking: assume no cross type aliasing
— inline the intrinsic version of some C library functions

MgedEmonaT OB
|

Example:
cl66 —OAcdFhkLnprstVw test.c

Chapter 4

Compiler Use

-Onumber

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select an optimization level in the Optimization box.

-Onumber

Arguments:

A number in the range 0 - 3.

Default:
-01

Description:
Control optimization. You can specify a single number in the range 0 - 3,
to enable or disable optimization. The options are a combination of the
other optimization flags:

-00 - same as “-OABCDEFGHJKLMNOPQRSTUVWX (no optimization)
-01 - same as ~OABcdEFghjkLmnopQrS*UVwX (default)
-02 - same as ~OaBcdEFghjkLmnopQrS*UVwX (size)
-03 - same as -OaBcdEfghjklmnopQrS*UvVwx (speed)
* =t for -Mm/-Ml/-Mh, T for -Mt/-Ms

Example:

To optimize for code size, enter:

cl6e6 -02 test.c

4-43

4-44 Chapter 4

-Oa / -OA

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Relax all alias checking.

-Oa / -OA

Pragma:

noalias / alias

Default:
-0OA

Description:

With -Oa you relax alias checking. If you specify this option, c166 will
not erase remembered register contents of user variables if a write
operation is done via an indirect (calculated) address. You must be sure
this is not done in your C code (check pointers!) before turning on this
option.

With =OA you specify strict alias checking. If you specify this option, the

compiler erases all register contents of user variables when a write
operation is done via an indirect (calculated) address.

Example:

An example is given in section 4.6 Alias in this chapter.

% Pragmas noalias and alias in section 4.5, Pragmas.

Compiler Use

-Ob / -OB

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Allocation of Variables.
Enable or disable the Perform ’clearing’ of of non-initialized
static/public variables check box.

-Ob / -OB

Default:
-OB

Description:

With =Ob the compiler performs no ’clearing’ of non-initialized static and
public variables.

With =OB the compiler performs ’clearing’ of non-initialized static and
public variables.

% Section 3.9 Non-Initialized Variables.
Pragma noclear and clear in section 4.5, Pragmas.

4-45

4-46 Chapter 4

f
-Oc / -0C

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Common Subexpression Elimination (CSE).

-Oc / -0OC

Default:
-Oc

Description:

With =Oc you enable CSE (common subexpression elimination). With this
option specified, the compiler tries to detect common subexpressions
within the C code. The common expressions are evaluated only once, and
their result is temporarily held in registers or on the user stack.

With =OC you disable CSE (common subexpression elimination). With this
option specified, the compiler will not try to search for common
expressions.

Example:
/*
* Compile with -OC -00,
* Compile with -Oc -00, common subexpressions are found

* and temporarily saved.
*/

char x, y, a, b, ¢, d;

void
main(void)
{
x = (a*b) - (c *d);
y = (a * b) + (¢ * d);/*(a*b) and (c*d) are common */
}

% Pragmas cse resume and cse suspend in section 4.5, Pragmas.

Compiler Use

-0d / -OD

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Constant and copy propagation.

~0d / -OD

Default:
-0d

Description:

With —Od you enable constant and copy propagation. With this option, the
compiler tries to find assignments of constant values to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the constant value.

With —OD you disable constant and copy propagation.

Example:

/*

* Compile with -OD -00, ’'i’ is actually assigned to 'j’
* Compile with -0d -00, 15 is assigned to ’j’, ’'i’ was
* propagated

*/

int i;
int j;
void

main(void)

{

|
-
o

~

4-47

4-48 Chapter 4

f
-Oe / -OE

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Allocation of Variables.
Enable or disable the Allocate constant ROM data in near memory
check box.

-Oe / -OE

Default:
-OE

Description:

With —Oe you enable allocation of constant romdata 'CROM’ in paged data
sections (PDAT). This option is explained in section 3.2.5 Constant
Romdata Section Allocation.

With —OE standard allocation of constant romdata 'CROM’ in linear data
sections (LDAT) is done.

These options only affect the code generation and section allocation in the
small memory model.

% Section 3.2.5 Constant Romdata Section Allocation.
Pragmas switch_tabmem far, switch tabmem near and
switch tabmem default in section 4.5, Pragmas.

Compiler Use

-Of / -OF

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Favor code size above execution speed.

~Of / -OF

Pragma:

speed / size

Default:
-OF

Description:
With —Of you produce fast code. Favour execution speed above code
density. Note that this option may increase code size.

With =OF you produce small code. Favour code density above execution
speed. If -OF is specified, ¢166 calls a run—time library routine for a
number of operations.

% Pragmas speed and size in section 4.5, Pragmas.

4-49

4-50 Chapter 4

-
-Og / -OG

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Code recognition to generate optimal code for
expressions.

-Og / -0G

Default:
_Og

Description:

With —=Og you enable expression recognition. Expressions for which very
efficient code can be generated are recognized and optimal code is
emitted.

With -OG you disable expression recognition. Handle expressions that
could be recognized using the —Og option as generic cases.

Compiler Use

-Oh / -OH

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Optimization of interrupt frame code for C
interrupt functions.

-Oh / -OH

Default:
-Oh

Description:

With =Oh you enable optimization of interrupt frame code for C interrupt
functions.

With =Oh you disable optimization of interrupt frame code for C interrupt
functions.

% Section 3.12 Interrupt in chapter Language Implementation.

4-51

4-52 Chapter 4

-0j / -0J

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Peephole optimizer (remove redundant code).

~0j /-0J
Default:
_0]’
Description:
With =0j you enable peephole optimization. Remove redundant code.

With =OJ you disable peephole optimization.

% Optimization option NOP removal -On.

Compiler Use

-Ok / -OK

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Trace contents of registers for reuse without

reloading.

Ok / -OK

Default:
-Ok

Description:

With =Ok you trace the contents of registers and try to reuse the registers

without reloading.

With =OK you disable register contents tracing.

Example:

/*
* Compile with
* Compile with
* one register
*/

int a, c;

-0OK -00
-0k -00, register contents tracing,
is reused

void f(register int b)
{
a = 22;
if (b)
{
c = 22;
}

4-54 Chapter 4

’/
-0l / -OL

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Generate fast loops (increases code size).

-0l /-OL

Default:
-OL

Description:

With —Ol you enable fast loops. Duplicate the loop condition. Evaluate the
loop condition one time outside the loop, just before entering the loop,
and at the bottom of the loop. This saves one unconditional jump and
gives less code inside a loop.

With —OL you disable fast loops. The smallest code is generated for loops.

Example:
/*
* Compile with -OL -00
* Compile with -0l -00, compiler duplicates the loop
* condition, the unconditional jump is removed.
*/

int i;

void
main(void)

{

for(; i<10; i++)
{

do_something();

Compiler Use

-Om / -OM

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable the Instruction reordering check box.

-Om / -OM

Default:
-Om

Description:
With —Om you enable instruction reordering for ext2 targets.
With -=OM you disable instruction reordering for ext2 targets.

The -OM option overrules the pragmas reorder/noreorder in the
source. So, “OM always disables instruction reordering, no matter the
pragma settings in your source. With —Om active (default) you can control
the instruction reordering with the pragmas reorder/noreorder. If none
of these pragmas are present in your source, the default is reorder.

% Pragmas reorder and noreorder in section 4.5, Pragmas.

4-56 Chapter 4

-On / -ON

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable NOP removal by peephole optimizer.

-On / -ON

Default:
-On

Description:

With =On you enable NOP removal by peephole optimizer.

With =ON you disable NOP removal by peephole optimizer.

Compiler Use

-0Oo / -00

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Code order rearranging in flow optimization.

-0Oo0 / -00

Default:
-0o

Description:

With —Oo you enable code rearranging in flow optimization.. Try to move
(sub)expressions to get faster code. Some debuggers may have difficulties
with such options.

With =00 you disable code rearranging.

4-57

4-58 Chapter 4

-Op / -OP

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Extra flow optimization pass on intermediate
representation.

-Op / -OP

Default:
_Op

Description:

With =Op you enable control flow optimizations on the intermediate code
representation, such as jump chaining and conditional jump reversal.

With =OP you disable control flow optimizations.

Example:

/*
* Compile with -OP -00

* Compile with -Op -00, compiler finds first time ‘i’ is
* always < 10, the unconditional jump is removed.

*/

int 1i;

void
main(void)

{
for(i=0; i<10; i++)
{
do_something();
}

Compiler Use

-Oq / -0Q

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Convert pointer to/from long as far pointer.

~0q / -0Q
Default:
_OQ

Description:

With —Oq you treat casting a pointer to long equal to casting a pointer to a
far pointer.

With —OQ you treat casting a pointer to long equal to casting a pointer to
a huge pointer.

4-60 Chapter 4

f
-Or / -OR

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Automatic C register variable allocation.

-Or / -OR

Default:
-Or

Description:

With =Or you retrieve better code. Enable automatic C register variable
allocation, unless overruled by the -r#n#» option. If you do not want a
certain automatic to be allocated in a register (e.g. setjmp()/longjmp()
pair used), you can declare this variable to be volatile and yet still use the
-Or option!

With =OR you disable automatic C register variable allocation.

Compiler Use 4-61

-Os / -0S

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Use smart approach for switch statement (do not
force jump table).

-Os / -0S

Default:
-0S

Description:

With =Os you force the compiler to generate jump tables for switch
statements.

With =OS the compiler chooses the best switch method possible, jump
chain or jump table. So, with —OS a jump table can still be generated.

Example:

/*
* Compile with -0S, generate jump chain.
* Compile with -Os, generate jump table.

*/
int 1i;
void
main(void)
{
switch (1)
{
case 1: i=0;
case 2: i=1;
case 3: i=2;
default: i = 3;
}
}

% Section 3.14 Switch Statement.
Pragmas switch force_table and switch_smart in section 4.5,
Pragmas.

4-62 Chapter 4

-0t / -OT

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation of Variables.
Select an item from the Tentative declarations box.

-Ot / -OT

Default:

-Ot (medium and large model)
-OT (tiny and small model)

Description:

With -Ot the compiler turns tentative declarations (such as ’int 1i;’) into
defining occurrences (e.g. ’int i=0;’).

With —OT declarations remain tentative as long as possible.

% Section 3.2.1.7 Efficiency in Large Data Models.

Compiler Use

-Ou / -OU

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Use user stack for interrupt functions.

-Ou / -OU

Default:
-OU

Description:

With =Ou the compiler uses the user stack instead of the system stack for
task switch (interrupt).

With —OU the compiler uses the system stack for task switch (interrupt).

4-64

=

Chapter 4

-Ov / -0V

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable the Dataflow analysis peephole (DFAP) check box.

-Ov / -0V

Default:
-0V

Description:
With =Ov you enable the data flow analysis peephole (DFAP) optimizer.

With -OV you disable the data flow analysis peephole (DFAP) optimizer.

This optimizer uses data flow analysis in the peephole to optimize the
generated code. Unlike the normal peephole, DFAP has function scope
and can optimize when there are program flow changes involved.

@ Note that the use of DFAP may have a performance penalty on the
compiler itself. The DFAP optimizations are rather aggressive and can
make programs less debugable.

The -OV option overrules the pragmas dfap/nodfap in the source. So,
-0V (default) always disables the DFAP optimizer, no matter the pragma
settings in your source. With =Ov active you can control the DFAP
optimizer with the pragmas dfap/nodfap. If none of these pragmas are
present in your source, the default is dfap.

% Pragmas dfap and nodfap in section 4.5, Pragmas.

Compiler Use

-Ow / -OW

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select Custom optimization in the Optimization box.
Enable or disable Relax cross type alias checking.

_Ow / -OW

Default:
-Ow

Description:

With —Ow the compiler relaxes alias checking, assuming there are no
pointer aliases for different type. For example, when a pointer to an int is
dereferenced (written), it is reasonable to assume that this cannot have any
effect on char objects.

With =OW the compiler performs cross-type alias checking.

4-66 Chapter 4

f
-Ox / -0X

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Optimization.

Select Custom optimization in the Optimization box.

Enable or disable Inlining of some small C library functions.

-Ox / -OX

Default:
-0OX

Description:

With =Ox you enable extra inlining of C library functions. It is only
worthwhile to inline C library functions which are very small and
frequently used. Therefore, only the following C library functions are
inlined in small and tiny memory model. Inlining C library functions is not
conform the ANSI-C standard. Extra inlining will be disabled when
compiling with inlining allowed, see option —Ai/-Al. Remember that you
cannot take the address of an inline function and you cannot define one
of these functions yourself when —-Ox is active.

The next C library functions are inlined for tiny and small memory model:

strepy (), strlen(), strchr(), stremp(),
strcat(), memset(), memcpy()

With =OX you disable extra inlining of the C library functions mentioned
above.

Compiler Use 4-67

-0

Option:
-o file

Arguments:

An output filename. The filename may not start immediately after the
option. There must be a tab or space in between.

Default:

Module name with .src suffix.

Description:

Use file as output filename, instead of the module name with . src suffix.
Special care must be taken when using this option, the first —o option
found acts on the first file to compile, the second —o option acts on the
second file to compile, etc.

Example:
When specified:
cl66 filel.c file2.c -o file3.src -o file2.src

two files will be created, £ile3.src for the compiled file filel.c and
file2.src for the compiled file file2.c.

4-68 Chapter 4

-P

Option:

From the Project menu, select Project Options...
Expand the Application entry and select Memory Model.
Enable the Use user stack for return addresses check box.

-P(d]

Description:

Enable user stack model. See section 3.2.2, User Stack Model for details.
Requires linking with user stack model library unless -=Pd is specified.

% Appendix D, User Stack Model.

Compiler Use

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous.
Add the option to the Additional options field.

-R{cl | co | alymem=new

Pragma:

class / combine / align

Arguments:

mem is a two letter abbreviation indicating the memory area of a C
program. mem can be one of:

mem Description

Bl bits

Cco strings / floating point
BA bitwords

NB near data

FB far data

XB shuge data

HB huge data

PR functions

SB system data

IR internal ramdata

Table 4-6: Memory spaces

new is the new class name, combine type or align type for mem.

Description:

The compiler defaults to a section naming convention as described in the
section 3.2.3, Section Allocation. With this option you can change the class
name, combine type or align type of a compiler generated section for
mem.

4-70

i+

Chapter 4

In case a module must be loaded at a fixed address or a data section
needs a special place in memory, the =R option enables you to generate a
unique class name, combine type or align type with a section name. With
-Rclmem=new you can specify a new class name for mem (same as
pragma class). With -Rcomem=new you can specify a new combine type
for mem (same as pragma combine). With —Ralmem=new you can specify
a new align type for mem (same as pragma align). In this way the order
1166 allocates these sections can be specified in a locator command file.

Section 3.2.3, Section Allocation.
Pragmas align, class and combine in section 4.5, Pragmas.

Compiler Use 4-71

-r

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Miscellaneous.

Enter the register definition in the Register usage field.

Optionally, enter a register name in the Register bank name field. If the
bank must be ’common’ enable the Make register bank common check
box.

—r{namel,d]||regdef]

Pragma:
regdef

Arguments:

name is the name of the register bank for this module.
¢ is the common flag.

regdef is the register bank definition.

Description:

With the —r option you can specify the name of the register bank, and
optionally if this register bank must be ‘common’ (c¢) or not.

The regdef argument is specified as a comma separated list of register
ranges. A range is defined as:

Rx[-Ry]

When a register bank is declared common, the resulting range must
consist of consecutive registers, starting from RO. In all cases RO must be
present in the register definition. If not, the compiler adds this register and
generates a message. The register definition remains valid until the next
#pragma regdef in the source.

When only the name and optional common flag are used in the -r option,
a full register bank consisting of RO-R15 is the default.

4-72

&

Chapter 4

When the -r option is used without any arguments, the REGDEF directive
for this module will be omitted. Note that register banks originating from
the using() function qualifier will still be generated. Interrupt functions
that do not have the _using() qualifier use the module’s register bank.
Since this bank will be omitted, no code will be generated in the interrupt
frame to switch register banks.

With #pragma regdef the used register set can be redefined. A pragma
setting will remain active until the next #pragma regdef. The syntax for
regdef is the same as in the -r option. As an alternative the number of
registers, starting from RO may be specified.

When different register sets are used for different functions, the compiler
will combine the register sets for the same register bank.

When #pragma regdef is used without arguments, or with argument 0,
the REGDEF directive for interrupt functions will be omitted, even if the
_using() qualifier is used. In this case the compiler will not generate
code in the interrupt frame to switch global register banks.

When the register set that the compiler can use for code generation is
limited this can result in larger code. When the register set is too small the
compiler may not be able to generate code at all. In this case assertion
errors can be expected. This is a known restriction and the register set
should be increased prior to reporting the assertion error.

Examples:

—rmybank

This option declares a register bank with name "mybank”. Unless
otherwise specified with #pragma regdef, the register bank will consist
of RO-R15.

-r,r0,r3-r5,r10-ri15

This option causes all functions (non-interrupt and interrupt) to use the
registers from the given set.

Compiler Use 4-73

#pragma regdef r0,rl

void _interrupt(0x10) _using(SOMEBANK)
ISRO(void)

{

}

#pragma regdef r0,r2

void _interrupt(0x1ll) _using(SOMEBANK)
ISR1(void)

{

}

#pragma regdef r0,r3

#pragma regdef

void _interrupt(0x12) _using(OTHERBANK)
ISR2(void)

{

}

The functions TSR0 and ISR1 will use register bank SOMEBANK. Function
ISRO will only use registers RO and R1. Function ISR1 will only use
registers RO and R2. The compiler will combine the used register sets and
generates the following REGDEF directive:

SOMEBANK REGDEF RO-R2

Function ISR2 will only use the registers RO and R3. Since #pragma
regdef without arguments is used, the compiler will not generate a
REGDEF directive, nor will code be generated to perform a context switch.

—-rcomnbank,c,R0,R1,R2-R5
This option declares a common register bank with the name "comnbank”:

COMNBANK COMREG RO-R5

% Section 3.12, Interrupt.

Pragma regdef in section 4.5, Pragmas.

4-74 Chapter 4

-S

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Allocation of Variables.
Enable the Static allocation of automatics (instead of user stack)
check box.

B -s

Pragma:

static

Description:

All functions of the C module are compiled using static memory for
non-register function automatics. This option can be useful for non
recursive applications.

Section 3.6.1 Static Approach of Function Automatics
Pragmas automatic and static in section 4.5, Pragmas.

Compiler Use

-S

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Output.
Enable the Merge C source code with assembly output check box.

~s [i]

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

When the additional ’i’ sub option is specified, the C source of the include
files will also be merged.

Example:
cl66 —-s test.c

NAME TEST C
; test.c 1 int i;
; test.c 2
; test.c 3 int
; test.c 4 main(void)
; test.c 5 {
PUBLIC _main
TEST_1_PR SECTION CODE WORD PUBLIC ’'CPROGRAM’

_main PROC FAR

% Pragmas source and nosrouce in section 4.5, Pragmas.

4-75

4-76 Chapter 4

-T

Option:

From the Project menu, select Project Options...

Expand the Application entry and select Memory Model.

Select the Medium or Large memory model.

Expand the C Compiler entry and select Allocation of Variables.

Enter a size in the Threshold for automatic near data allocation field.

-Tsize
or

-T[size], size2

Arguments:
The maximum threshold size in bytes (size). Or the threshold size for
initialized variables (size2)

Default:
-T256

Description:

With this option you can specify a maximum size (threshold) for allocating
data in default data sections. This is useful when you want to limit the size
of the default data group. You can use this option in the medium and large
model only.

Initialized variables have an infinite threshold by default. Unless a
threshold is specified by a second argument to the —T option, they are
always allocated in the default far data sections.

Example:

To allocate values of maximum 128 bytes long in default far data sections,
enter:

cl66 -T128 —-Mm test.c

% Section 3.2.1.7 Efficiency in Large Data Models (Medium/Large/Huge).

Compiler Use 4-77

-t

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Output.
Enable the Display module summary check box.

i

Description:

With this option the C compiler produces totals (a module summary) on
stdout and writes section information in an output file.

Example:
clé6 -t test.c

MODULE SUMMARY

Code size (bytes) =
Constant size (bytes) =
Near data size (bytes)

Far data size (bytes) =
Huge data size (bytes)

Shuge data size (bytes) =
System data size (bytes) =
Internal ram data size (bytes)
Bit size (bits)

Bit addressable size (bytes)
User stack size (bytes) =
Register bank size (GPR’s) =

N OO OO OoOOOONO O

i

processed 13 lines at 1331 lines/min
total: tokens=34, symbols=226

4-78 Chapter 4

=
-U

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing.

Undefine one or more predefined macros by disabling the corresponding
check box.

-Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a
predefined ANSI standard macro. ANSI specifies the following predefined
symbols to exist, which cannot be removed:

_ FILE “current source filename”

__LINE__ current source line number (int type)

_ TIME “hh:mm:ss”

__DATE "Mmm dd yyyy”

_ STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.
Whenever language extensions are excepted, STDC__ is set
to 0 (zero).

When ¢166 is invoked, also the following predefined symbols exist:

_C166 value represents the version of the TASKING C166/ST10 C
compiler.

_MODEL memory model used (see section 3.2.1 Memory Models for
details)

These symbols can be turned off with the -U option.

Example:
cl66 -U_MODEL test.c

Compiler Use 4-79

ﬂ?'l)

4-80 Chapter 4

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Language.
Enable the Treat all ’char’ variables unsigned check box.

B -

Description:

Treat 'character’ type variables as "unsigned character’ variables. By default
char is the same as specifying signed char. With —u char is the same
as unsigned char.

Example:

With the following command char is treated as unsigned char:

cl66 —u test.c

Compiler Use

-V

Option:
-V

Description:

Display version information.
Example:
cl66 -V

TASKING C166/ST10 C compiler
Copyright years Altium BV

vx.yrz Build nnn
Serial# 00000000

4-81

4-82 Chapter 4

-W

Option:

From the Project menu, select Project Options...

Expand the C Compiler entry and select Diagnostics.

Enable one of the options Display all warnings, Suppress all
warnings, or Suppress only certain warnings and enter the numbers,
separated by commas, of the warnings you want to suppress.

~wlnum)
—-wstrict
Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. ~-wrnum only suppresses the given
warning. —wstrict suppresses extensive warnings 183, 196 and 216.

Example:

To suppress warning 135, enter:

cl66 filel.c —wl35

Compiler Use

-X

Option:

From the Project menu, select Project Options...

Expand the Application entry and select Processor.

From the Processor box, select a processor or select User Defined.

If you selected User Defined, expand the Processor entry, select User
Defined Processor and make your changes.

B -x1)2)22|q

Arguments:

Optional features:

d ST10 with support for the MAC co—processor

1

C166S v1.0 architecture

2 XC16x/Superl0 architecture
22 Enhanced Superl0 architecture

Description:

The -x option selects the processor architecture.

=X

(default) selects the standard C166 extended architecture as
used by the Infineon C16x and STMicroelectronics ST10.

Selects the standard ST10 extended architecture with MAC
co-processor support such as the ST10x272.

Enables support for the C166S v1.0 architecture.

Enables support for the XC16x/Superl0 architecture,
including support for the MAC co—processor.

Enables support for enhanced Superl10, such as the
Super10M345. This includes support for the MAC
co-processor. Furthermore, this option automatically enables
instruction reordering. If this is not wanted, use #pragma
noreorder to switch this feature off. (Or use the
-znoreorder command line option).

4-84 Chapter 4

=

Example:

To use an Infineon XC167, enter:

cl66 —-x2 file.c

% Pragma reorder in section 4.5, Pragmas.

Compiler Use

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous.
Add the option to the Additional options field.

o

Arguments:

A pragma as listed in section 4.5, Pragmas.

Description:

With this option you can give a pragma on the command line. This is the
same as specifying #pragma pragma’ in the C source. Dashes (—) on the
command line in the pragma are converted to spaces.

Example:
To issue a '#pragma autobita 2’ using the command line, enter:

cl66 —zautobita-2 file.c

The -’ between autobita and 2 is converted to a space.

% Section 4.5, Pragmas.

4-86 Chapter 4

=

4.4 INCLUDE FILES

You may specify include files in two ways: enclosed in <> or enclosed in
7. When an #include directive is seen, ¢166 uses the following algorithm
trying to open the include file:

IIRH)

1. If the filename is enclosed in ””, and it is not an absolute pathname (does
not begin with a "\’ for PC, or a '/’ for UNIX), the include file is searched
for in the directory of the file containing the #include line. For example,
in:

PC:

cl66 ..\..\source\test.c
UNIX:

cl66 ../../source/test.c

c166 first searches in the directory . .\source (../source for UNIX) for
include files.

If you compile a source file in the directory where the file is located (c166
test.c), the compiler searches for include files in the current directory.

@ This first step is not done for include files enclosed in <>.

2. Use the directories specified with the =I options, in a left-to-right order.
For example:

PC:

cl66 -I..\include message.c
UNIX:

cl66 -I../include message.c

3. Check if the environment variable C166INC exists. If it does, use the
contents as a directory specifier for include files. You can specify more
than one directory in the environment variable C166INC by using a
separator character. Instead of using -I as in the example above, you can
specify the same directory using C166INC:

Compiler Use 4-87

PC:

set C1l66INC=..\include
cl66 message.c

UNIX:
if using the Bourne shell (sh)

Cl66INC=../include
export Cl66INC
cl66 message.c

or if using the C—shell (csh)

setenv C1l66INC ../include
cl66 message.c

4. When an include file is not found with the rules mentioned above, the
compiler tries the subdirectory include, one directory higher than the
directory containing the ¢166 binary. For example:

PC:

c166.exe is installed in the directory C:\C166\BIN
The directory searched for the include file is C:\C166 \INCLUDE

UNIX:

c166 is installed in the directory /usr/local/c166/bin
The directory searched for the include file is
/usr/local/cl66/include

The compiler determines run—time which directory the binary is executed
from to find this include directory.

A directory name specified with the -I option or in CI66INC may or may
not be terminated with a directory separator, because ¢166 inserts this
separator, if omitted.

When you specify more than one directory to the environment variable
C166INC, you have to use one of the following separator characters:

PC:
s, space

€.g. set C1l66INC=..\include;\project\include

4-88 Chapter 4

UNIX:
s, Space

€.g. setenv Cl66INC ../include:/project/include

Compiler Use 4-89

4.5 PRAGMAS

According to ANSI (3.8.6) a preprocessing directive of the form:
#pragma pragma-token—-list new-line

causes the compiler to behave in an implementation—-defined manner. The
compiler ignores pragmas which are not mentioned in the list below.
Pragmas give directions to the code generator of the compiler. Besides the
pragmas there are two other possibilities to steer the code generation
process: command line options and keywords (e.g., near type variables)
in the C application itself. The compiler acknowledges these three groups
using the following rules:

Command line options can be overruled by keywords and pragmas.
Keywords can be overruled by pragmas. Hence, pragmas have the highest
priority.

This approach makes it possible to set a default optimization level for a
source module, which can be overridden temporarily within the source by
a pragma.

Most pragmas have a corresponding compiler option at the command line.
When no corresponding option is mentioned here, you can use the -z
option for this purpose. For example,

#pragma nocustack
can be specified at the command line by entering
—znocustack

When the pragma text consists of multiple tokens, they can be separated
on the command line with dashes. For example,

#pragma class mem=name
would become

—zclass—mem=name
¢166 supports the following pragmas:

alias

Default. Same as -OA option. Perform strict alias checking. See also
section 4.6 Alias.

4-90

Chapter 4

noalias

Same as -Oa option. Relax alias checking.

asm [args]

Insert the following (non preprocessor lines) as assembly language source
code into the output file. The inserted lines are not checked for their
syntax. The args are an interface to the C language. See section 3.11 Inline
Assembly for details.

asm_noflush

Same as asm, except that the peephole optimizer does not flush the code
buffer and assumes register contents remain valid.

endasm [args]

Switch back to the C language. With the args variables can be passed to
the C language. See section 3.11 Inline Assembly for details.

autobita threshold

Move chars, (long) ints and struct/unions which are smaller than or equal
to the threshold to bitaddressable memory. The declaration may not
contain any memory modifiers. The default threshold value is set to zero
bytes.

Pointers, arrays and function return values are not moved to bitaddressable
memory. Local variables are only moved to bitaddressable memory when
declared static or compiled with the -8 option. See also bita in section
3.2.1.9.

autobitastruct threshold

Move struct/unions which contain at least one bitfield with length 1 to
bitaddressable memory. This only applies for structs/unions which are
smaller than or equal to the specified threshold. The declaration may not
contain any memory modifiers. The default threshold value is set to 4
bytes.

Pointers, arrays and function return values are not moved to bitaddressable
memory. Local structs/unions are only moved to bitaddressable memory
when declared static or compiled with the =S option. See also bita in
section 3.2.1.9.

Compiler Use 4-91

automatic
Default. Use stack approach for non register function automatics. Support
recursion.

static

Use static memory for non register function automatics. Same as -8 option.
See section 3.6.1 Static Approach of Function Automatics.

align mem=atype

Same as -Ral option. Use atype as align type for section of area mem.

class mem=name

Same as =Rcl option. Use name as class for section of area mem.

combine mem=ctype

Same as =Rco option. Use ctype as combine type for section of area mem.

cse suspend
cse resume

When the CSE optimization is switched on (-Oc) then a sequence of

#pragma cse suspend
#pragma cse resume

has the effect that expressions in between are not part of the CSE
optimization. The pragmas have function scope and do not have any effect
unless the CSE optimization is switched on. The CSE optimization for
expressions can be switch off in a single function by placing

#pragma cse suspend
at the start of the functon body.

custack

Default. Generate a '‘C166_US’ section estimating the stack usage of a
module.

nocustack

Suppress the user stack estimation.

4-92

Chapter 4

clear

Default. Same as -OB option. Perform ’clearing’ of non-initialized
static/public variables. See section 3.9 Non-Initialized Variables for more
information.

noclear

Same as -Ob option. No ’clearing’ of non-initialized static/public variables.
See section 3.9 Non-Initialized Variables for more information.

default_attributes

Default. Use default section attributes. See the section 3.2.3 Section
Allocation for details.

save_attributes

Save the current section attributes. See the section 3.2.3 Section Allocation
for details about changing section attributes.

restore_attributes

Restore the last saved section attributes. A warning is issued when no
section attributes were saved. See the section 3.2.3 Section Allocation for
details about changing section attributes.

dfap
Default. Enable the data flow analysis peephole. The —-Ov option must be
active for this pragma to work.

nodfap
Disable the data flow analysis peephole.

eramdata

Allocate all non automatic initialized variables in both ROM and RAM. The
RAM data section has the class name 'CINITERAM’ (unless part of the
default data group where all sections must have the same class name).
Copy from ROM to RAM at startup (transparent for the user). See section
3.8 Initialized Variables for details.

Compiler Use

iramdata

Default. Allocate all non automatic initialized variables in both ROM and
RAM. The RAM data section has the class name "CINITIRAM’ (unless part
of the default data group where all sections must have the same class
name). Copy from ROM to RAM at startup (transparent for the user). See
section 3.8 Initialized Variables for details.

romdata

Allocate all non—automatic variables in ROM only. The ROM data section
can have the class names 'CROM’, "CNEARROM’, 'CFARROM’ or
"CHUGEROM’ (unless part of the default data group where all sections
must have the same class name). See section 3.8 Initialized Variables for
details.

Jix_byte_write

For all code following this pragma the compiler generates two NOP
instructions after each instruction which does a byte write. These
instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB, NEGB, ORB,
SUBB, SUBCB, XORB. This is a bypass for the erroneous byte forwarding
on internal RAM problem. This pragma is equivalent to the new command
line option -BB.

nofix_byte_write

Default. For all code following this pragma the compiler does not generate
two NOP instructions after each instruction which does a byte write. This
pragma is equivalent to the new command line option -Bb. By default the
generation of two extra NOP instructions after a byte write operation is
disabled.

The pragmas fix_byte_write/ nofix_bytewrite and the -BB option only
have to be used for the steps of the SAB 88C166 (flash), which have the
"Erroneous Byte Forwarding for internal RAM locations”. Please refer to
the Infineon errata sheets of your CPU step for more information.

Jragment
Jragment resume
Jragment continue

Controls fragmentation of code memory. See section 3.2.4, Code Memory
Fragmentation for details.

4-94 Chapter 4

-

global_dead_store_elim
Default. Enable dead store elimination on global and local static variables.

no_global_dead_store_elim
Disable dead store elimination on global and local static variables.

Example:

void func (void)

{
enable=1;
while (!activity);
enable=0;
}
The first assignment will not be optimized away when this pragma was
used.

m166include ”include—file”
This pragma is intended to be used together with user defined intrinsics.
This pragma will generate a:

$INCLUDE(header.asm)

control in the output file. This header file can be used to include the
definition of macro (functions) emitted by the compiler when user defined

intrinsics are used.
Example:
#pragma ml66include "header.asm”

macro
Default. Perform macro expansion.

nomacro

Do not perform macro expansion.

noframe
Do not emit the interrupt frame code for C interrupt functions. See the
section 3.12 Interrupt for details.

Compiler Use

preserve_mulip
Make the MULIP bit available for use inside interrupt handlers by
saving/restoring PSW in interrupt function prologue/epilogue respectively.
public
Default. Public C variables have task scope. See section 3.3 Task Scope for
details.
global

Public C variables have application scope. See section 3.3 Task Scope for
details.

regdef [regdef]
See -r option and section 3.12 Interrupt for details.

reorder
Enable instruction reordering for the XC16x/Super10 architecture (-x2
option).

noreorder

Disable instruction reordering for the XC16x/Superl0 architecture.

savemac

Save MAC SFRs in an interruptframe. You must use this pragma together
with the -xd, -x2 or -x22 option.

@ This pragma will not save anything if used together with the noframe
pragma.
nosavemac
Do not save MAC SFRs in an interrupt frame. You must use this pragma
together with the -xd, -x2 or —x22 option
autosavemac

Save MAC registers in an interrupt frame only when needed. You must use
this pragma together with the -xd, -x2 or —x22 option. If you use this
pragma in conjuction with #pragma noframe, nothing will be saved.

4-96

Chapter 4

source

Same as -s option. Enable mixing C source with assembly code.

nosource

Default. Disable generation of C source within assembly code.

size

Default. Same as -OF option. Favour code density above execution speed.

speed

Same as -Of option. Favour execution speed above code density.

stringmem memory-space

Controls the allocation of string constants. See section 3.10 Strings for
details.

switch_force_table

Same as -Os option. Allow number of gaps to exceed number of case
labels and yet use a jump table. See section 3.14 Switch Statement for
more details.

switch_smart

Default. Same as —OS option. Try to use jump table if it is worthwhile. See
section 3.14 Switch Statement for more details.

switch_tabmem_far

Place jump tables for the small memory model in far ROM. The ROM
section where the jump tables are placed have class 'CFARROM’. See
section 3.2.5 Constant Romdata Section Allocation for details.

switch_tabmem_near

Place jump tables for the small memory model in near ROM. The ROM
section where the jump tables are placed have class 'CNEARROM’. See
section 3.2.5 Constant Romdata Section Allocation for details.

switch_tabmem_default

Default. Jump tables are located as specified by the -Oe/-OE option. See
section 3.2.5 Constant Romdata Section Allocation for details.

Compiler Use 4-97

volatile_union

Treat unions as if declared volatile, prohibiting certain optimizations
which clash with non—ANSI use of unions: Sometimes a union is used for
converting data by writing one member but reading back another.

novolatile_union

Default. Treat unions conform their definition.

4-98

=

4.6 ALIAS

Chapter 4

By default the compiler assumes that each pointer may point to any object
created in the program, so when any pointer is dereferenced, all register
contents are assumed to be invalid afterwards.

When it is known that aliasing problems do not occur in the written
C-source, alias checking may be relaxed (use the -Oa option or #pragma
alias). Note that the option -Oc must be on to use this option. Relaxing
alias checking may reduce code size.

Example 1:
int i;

void

func()

{
char * p;
char c;
char d;

if(i)

p = &c;
else

p = &d;

/*
/*

/*
/*
/*
/*

may write to ‘c’ or 'd’ */

-—> aliasing object ’‘c’ or ’'d’ */

'*p’ might have changed the value of 'c’,
so ’‘c’ may not be used from register

contents, but MUST be read from memory
——> alias checking MUST be ON in this case

*/
*/
*/
*/

Compiler Use

Example 2:
int i;
void
func(char *p)
{
char c;
char d;
c = 2;
d = 3;
p = 4; / cannot write to ’‘c’ or ’'d’, but to some other
object */
i=c; /* '*p’ cannot have changed the value of ’'c’, */
/* so 'c’ may be used from register contents */
/* ——> alias checking may be OFF in this case */
}
Example 3:
int array[2];
main()
{
array[0] = 1;
array[l] = -1;
array[0] = array[0] + array[l];
/* an interrupt might have changed the value */
/* of 'array’, so ’'array’ may not be used */
/* from register contents, but MUST be read */
/* from memory */
/* ——> alias checking MUST be ON in this case */

4-100 Chapter 4

=

4.7 COMPILER LIMITS

The ANSI C standard [1-2.2.4] defines a number of translation limits, which
a C compiler must support to conform to the standard. The standard states
that a compiler implementation should be able to translate and execute a
program that contains at least one instance of every one of the following
limits, (c166’s actual limits are given within parentheses):

Most of the actual compiler limits are determined by the amount of free
memory in the host system. In this case a "D’ (Dynamic) is given between
parentheses. Some limits are determined by the size of the internal
compiler parser stack. These limits are marked with a 'P’. Although the size
of this stack is 200, the actual limit can be lower and depends on the
structure of the translated program.

* 15 nesting levels of compound statements, iteration control
structures and selection control structures (P > 15)
* 8 nesting levels of conditional inclusion (50)

* 12 pointer, array, and function declarators (in any combinations)
modifying an arithmetic, a structure, a union, or an incomplete type
in a declaration (12)

* 31 nesting levels of parenthesized declarators within a full
declarator (P > 31)

* 32 nesting levels of parenthesized expressions within a full
expression (P > 32)

* 31 significant characters in an external identifier (full ANSI-C
mode),
500 significant characters in an external identifier (non ANSI-C
mode)

* 511 external identifiers in one translation unit (D)

* 127 identifiers with block scope declared in one block (D)

¢ 1024 macro identifiers simultaneously defined in one translation unit
D)

* 31 parameters in one function declaration (D)

* 31 arguments in one function call (D)

* 31 parameters in one macro definition (D)

* 31 arguments in one macro call (D)

* 509 characters in a logical source line (1500)

* 509 characters in a character string literal or wide string literal (after
concatenation) (1500)

Compiler Use 4-101

* 8 nesting levels for #included files (50)

e 257 case labels for a switch statement, excluding those for any
nested switch statements (D)

* 127 members in a single structure or union (D)
e 127 enumeration constants in a single enumeration (D)

e 15 levels of nested structure or union definitions in a single
struct-declaration-list (D)

As far as the compiler implementation uses fixed tables, they will be large
enough to meet the standards limits. However, most of the internal
structures and tables of the compiler are dynamic. Thus the actual
compiler limits are determined by the amount of free memory in the
system.

4-102

USAGE

Chapter 4

COMPILER
DIAGNOSTICS

al TASKING [

d31dVHO

Compiler Diagnostics

5.1 INTRODUCTION

¢166 has three classes of messages: user errors, warnings and internal
compiler errors.

Some user error messages carry extra information, which is displayed by
the compiler after the normal message. The messages with extra
information are marked with 'T" in the list below and never appear without
a previous error message and error number. The number of the
information message is not important, and therefore this number is not
displayed. A user error can also be fatal (marked as 'F’ in the list below),
which means that the compiler aborts compilation immediately after
displaying the error message and may generate a 'not complete’ output
file.

The error numbers and warning numbers are divided in two groups. The
frontend part of the compiler uses numbers in the range 0 to 499, whereas
the backend (code generator) part of the compiler uses numbers in the
range 500 and higher. Note that most error messages and warning
messages are produced by the frontend.

If a (non fatal) user error occurs during compilation, ¢166 displays the C
source line that contains the error, the error number and the error message
on the screen. If the error is generated by the code generator, the C source
line displayed always is the last line of the current C function, because
code generation is started when the end of the function is reached by the
front end. However, in this case, ¢166 displays the line number causing
the error before the error message. ¢166 always generates the error
number in the assembly output file, exactly matching the place where the
error occurred.

For example, the following program causes a code generator error

message:
bit b;
void
err()
{
b =1; /* OK */
b += 1; /* Not allowed */
}

test.c: 8: }
E 539: (line 7) ’'+=' not allowed on bit type

Chapter 5

The output file contains:

PUBLIC _err
TEST 1 PR SECTION CODE WORD PUBLIC ’'CPROGRAM’
_err PROC NEAR

BSET b

ERROR C166_ERROR_539
RET

_err ENDP

TEST 1 _PR ENDS

So, when a compilation is not successful, the generated output file is not
accepted by the assembler, thus preventing a corrupt application to be
made (see also the —e option).

Warning messages do not result in an erroneous assembly output file.
They are meant to draw your attention to assumptions of the compiler, for
a not correct situation. You can control warning messages with the
-w(number| option.

The last class of messages are the internal compiler errors. The following
format is used:

S number: assertion failed — please report

These errors are caused by failed internal consistency checks and should
never occur. However, if such a 'SYSTEM’ error appears, please report the
occurrence to TASKING, using a Problem Report form. Please include a
small C program causing the error.

5.2 RETURN VALUES

¢166 returns an exit status to the operating system environment for testing.

For example,
in a BATCH-file you can examine the exit status of the program executed
with ERRORLEVEL:

clée6 -s %1l.c
IF ERRORLEVEL 1 GOTO STOP_BATCH

Compiler Diagnostics

In a bourne shell script, the exit status can be found in the $? variable, for

example:
cl66 $*
case $? in
0) echo ok ;;
1|2|3) echo error ;;
esac

The exit status of €166 is one of the numbers of the following list:

Compilation successful, no errors

There were user errors, but terminated normally

A fatal error, or System error occurred, premature ending
Stopped due to user abort

N = O

W

or if the —exit commandline option was used:

Compilation successful, no errors/warnings

There were user errors/warnings, but terminated normally
A fatal error, or System error occurred, premature ending
Stopped due to user abort

W RO

5-5

5-6

=

5.3

Chapter 5

ERRORS AND WARNINGS

Errors start with an error type, followed by a number and a message. The
error type is indicated by a letter:

information
error

fatal error
system error
warning

g(ﬂ"ﬂt‘ﬂ"‘

Frontend

F

1 evaluation expired
Your product evaluation period has expired. Contact your local
TASKING office for the official product.

2 unrecognized option: ‘option’
The option you specified does not exist. Check the invocation syntax
for the correct option.

4 expected number more “#endif

The preprocessor part of the compiler found the'#if’, #ifdef or #ifndef
dirctive but did not find a corresponding ‘#endif in the same source
file. Check your source file that each "#if’, ‘#ifdef or #ifndef has a
corresponding #endif.

5 no source modules

You must specify at least one source file to compile.

6 cannot create “file”
The output file or temporary file could not be created. Check if you
have sufficient disk space and if you have write permissions in the
specified directory.

7 cannot open “file”
Check if the file you specified really exists. Maybe you misspelled the
name, or the file is in another directory.

8 attempt to overwrite input file "file”

The output file must have a different name than the input file.

Compiler Diagnostics

E

9 unterminated constant character or string

This error can occur when you specify a string without a closing
double—-quote (") or when you specify a character constant without a
closing single-quote (*). This error message is often preceded by one
or more E 19 error messages.

11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is
reached. Check for #include files that contain other #include files. Try
to split the nested files into simpler files.

12 memory allocation error
All free space has been used. Free up some memory by removing any
resident programs, divid the file into several smaller source files, break
expressions into smaller subexpressions or put in more memory.

13 prototype after forward call or old style declaration — ignored
Check that a prototype for each function is present before the actual
call.

14 7 inserted
An expression statement needs a semicolon. For example, after ++1i in
{ int i; ++i }.

15 missing filename after —o option

The -0 option must be followed by an output filename.

16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the
octal digit syntax. Also, a constant may not be too large to be
represented in the type to which it was assigned. For example,

int i = 0x1234567890; is too large to fit in an integer.

17 string too long
This error occurs if the maximum string size (1500) is reached. Reduce
the size of the string.

18 illegal character (Oxhexnumber)

The character with the hexadecimal ASCII value Oxbexnumber is not
allowed here. For example, the '# character, with hexadecimal value
0x23, to be used as a preprocessor command, may not be preceded by
non-white space characters. The following is an example of this error:

5-8

E

Chapter 5

char *s = #S ; // error

19 newline character in constant

The newline character can appear in a character constant or string
constant only when it is preceded by a backslash (\). To break a string
that is on two lines in the source file, do one of the following:

¢ End the first line with the line—continuation character, a backslash
V-

* Close the string on the first line with a double quotation mark, and
open the string on the next line with another quotation mark.

20 empty character constant
A character contant must contain exactly one character. Empty
character contants (*) are not allowed.

21 character constant overflow
A character contant must contain exactly one character. Note that an
escape sequence (for example, \t for tab) is converted to a single
character.

22 ’#define’ without valid identifier
You have to supply an identifier after a '#define’.

23 ffelse’ without #if
#else’ can only be used within a corresponding #if’, ‘#ifdef or '#ifndef
construct. Make sure that there is a #if’, *#ifdef or '#ifndef statement in
effect before this statement.

24 ‘#endif without matching #if

‘#endif appeared without a matching #if, #ifdef or #ifndef
preprocessor directive. Make sure that there is a matching *#endif’ for
each '#f, '#ifdef and '#ifndef statement.

25 missing or zero line number

‘#line’ requires a non-zero line number specification.

26 undefined control

A control line (line with a '#dentifier’) must contain one of the known
preprocessor directives.

Compiler Diagnostics

\

E

27 unexpected text after control

#ifdef’ and '#ifndef require only one identifier. Also, '#else’ and
‘#endif only have a newline. '#undef requires exactly one identifier.

28 empty program

The source file must contain at least one external definition. A source
file with nothing but comments is considered an empty program.

29 bad #include’ syntax

A *#include’ must be followed by a valid header name syntax. For
example, #include <stdio.h misses the closing >

30 include file "file” not found

Be sure you have specified an existing include file after a *#include’
directive. Make sure you have specified the correct path for the file.

31 end-of-file encountered inside comment

The compiler found the end of a file while scanning a comment.
Probably a comment was not terminated. Do not forget a closing
comment */” when using ANSI-C style comments.

32 argument mismatch for macro "name”

The number of arguments in invocation of a function-like macro must
agree with the number of parameters in the definition. Also, invocation
of a function-like macro requires a terminating ”)” token. The
following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */

#define B(b) 1
int j = B(1; /* error */

33 ’name” redefined

The given identifier was defined more than once, or a subsequent
declaration differed from a previous one. The following examples
generate this error:

int 1i;

char i; /* error */
main()

{

}

5-10

\

Chapter 5

main()
{

int j;

int j; /* error */
}

34 illegal redefinition of macro "name”
A macro can be redefined only if the body of the redefined macro is
exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line
and in the source with a '#define’ directive. It also can be caused by
macros imported from include files. To eliminate the warning, either
remove one of the definitions or use an #undef directive before the
second definition.

35 bad filename in *#line’
The string literal of a #line (if present) may not be a "wide—char” string.
So, #1ine 9999 L”t45.c” is not allowed.

36 ’debug’ facility not installed

‘#pragma debug’ is only allowed in the debug version of the compiler.

37 attempt to divide by zero
A divide or modulo by zero was found. Adjust the expression or test if
the second operand of a divide or modulo is zero.

38 non integral switch expression
A switch condition expression must evaluate to an integral value. So,
char *p = 0; switch (p) is not allowed.

39 unknown error number: number
This error may not occur. If it does, contact your local TASKING office
and provide them with the exact error message.

40 non-standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed
by a number or letter), it contains an illegal escape character. For
example, \c causes this warning.

Compiler Diagnostics

41 #elif without #f

The #elif directive did not appear within an #if, '#ifdef or #ifndef
construct. Make sure that there is a corresponding '#if’, ‘#ifdef or
‘#ifndef statement in effect before this statement.

42 syntax error, expecting parameter type/declaration/statement

A syntax error occurred in a parameter list a declaration or a statement.
This can have many causes, such as, errors in syntax of numbers, usage
of reserved words, operator errors, missing parameter types, missing
tokens.

43 unrecoverable syntax error, skipping to end of file
The compiler found an error from which it could not recover. This
error is in most cases preceded by another error. Usually, error E 42.

44 in initializer "name”

Informational message when checking for a proper constant initializer.

46 cannot hold that many operands

The value stack may not exceed 20 operands.

47 missing operator

An operator was expected in the expression.

48 missing right parenthesis

")’ was expected.

49 attempt to divide by zero — potential run—time error
An expression with a divide or modulo by zero was found. Adjust the
expression or test if the second operand of a divide or modulo is zero.
50 missing left parenthesis

' was expected.

51 cannot hold that many operators
The state stack may not exceed 20 operators.
52 missing operand

An operand was expected.

5-11

5-12

E

E

Chapter 5

53 missing identifier after *defined’ operator

An identifier is required in a #1f defined (identifier).

54 non scalar controlling expression
Iteration conditions and ’if’ conditions must have a scalar type (not a
struct, union or a pointer). For example, after static struct {int
i;} si = {0}; itis not allowed to specify while (si) ++si.ij.

55 operand has not integer type
The operand of a #if’ directive must evaluate to an integral constant.
So, #if 1. is not allowed.

56 ’<debugoption><level>' no associated action
This warning can only appear in the debug version of the compiler.
There is no associated debug action with the specified debug option
and level.

58 invalid warning number: number
The warning number you supplied to the -w option does not exist.
Replace it with the correct number.

59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

60 label "label” multiple defined

A label can be defined only once in the same function. The following
is an example of this error:

£()
{
labl:

labl: /* error */

}
61 type clash

The compiler found conflicting types. For example, a long is only
allowed on int or double, no specifiers are allowed with struct,
union or enum. The following is an example of this error:

unsigned signed int i; /* error */

Compiler Diagnostics

E

62 bad storage class for "name”

The storage class specifiers auto and register may not appear in
declaration specifiers of external definitions. Also, the only storage class
specifier allowed in a parameter declaration is register.

63 “name” redeclared
The specified identifier was already declared. The compiler uses the
second declaration. The following is an example of this error:

struct T { int i; };
struct T { long j; }; /* error */
64 incompatible redeclaration of "name”

The specified identifier was already declared. All declarations in the
same function or module that refer to the same object or function must
specify compatible types. The following is an example of this error:

£()
{
int i;
char i; /* error */

66 function "name”: variable "name” not used
A variable is declared which is never used. You can remove this
unused variable or you can use the =w66 option to suppress this
warning.

67 illegal suboption: option
The suboption is not valid for this option. Check the invocation syntax
for a list of all available suboptions.

68 function "name”: parameter "name” not used

A function parameter is declared which is never used. You can remove
this unused parameter or you can use the w68 option to suppress this
warning.

69 declaration contains more than one basic type specifier
Type specifiers may not be repeated. The following is an example of
this error:

int char i; /* error */

5-14

=

E

Chapter 5

70 ’break’ outside loop or switch
A break statement may only appear in a switch or a loop (do, for
or while). So, if (0) break; is not allowed.

71 illegal type specified

The type you specified is not allowed in this context. For example, you
cannot use the type void to declare a variable. The following is an
example of this error:

void 1i; /* error */

72 duplicate type modifier
Type qualifiers may not be repeated in a specifier list or qualifier list.
The following is an example of this warning:

{ long long i; } /* error */

73 object cannot be bound to multiple memories
Use only one memory attribute per object. For example, specifying
both rom and ram to the same object is not allowed.

74 declaration contains more than one class specifier
A declaration may contain at most one storage class specifier. So,
register auto i; is not allowed.

75 ’continue’ outside a loop
continue may only appear in a loop body (do, for or while). So,
switch (i) {default: continue;} is not allowed.

76 duplicate macro parameter "name”

The given identifier was used more than one in the formatl parameter
list of a macro definition. Each macro parameter must be uniquely
declared.

77 parameter list should be empty
An identifier list, not part of a function definition, must be empty. For
example, int £ (i, j, k); is not allowed on declaration level.
78 ’void’ should be the only parameter

Within a function protoype of a function that does not except any
arguments, void may be the only parameter. So, int £ (void,
int); is not allowed.

Compiler Diagnostics

E

79 constant expression expected

A constant expression may not contain a comma. Also, the bit field
width, an expression that defines an enum, array-bound constants and
switch case expressions must all be integral contstant expressions.

80 '# operator shall be followed by macro parameter

The '# operator must be followed by a macro argument.

81 '## operator shall not occur at beginning or end of a macro
The ## (token concatenation) operator is used to paste together
adjacent preprocessor tokens, so it cannot be used at the beginning or
end of a macro body.

86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed
by a ’x’ and a number) must fit in 8 bits storage. The number of bits
per character may not be greater than 8. The following is an example
of this warning:

char ¢ = ’'\xabc’; /* error */

87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

88 "name” redeclared with different linkage

The specified identifier was already declared. This warning is issued
when you try to redeclare an object with a different basic storage class,
and both objects are not declared extern or static. The following is an
example of this warning:

int 1i;
int i(); /* error E 64 and warning */
89 illegal bitfield declarator
A bit field may only be declared as an integer, not as a pointer or a
function for example. So, struct {int *a:1;} s; is not allowed.
90 #error message

The message is the descriptive text supplied in a #error’ preprocessor
directive.

5-16

=

\

Chapter 5

91 no prototype for function "name”

Each function should have a valid function prototype.

92 no prototype for indirect function call

Each function should have a valid function prototype.

94 hiding earlier one
Additional message which is preceded by error E 63. The second
declaration will be used.

95 protection error: message
Something went wrong with the protection key initialization. The
message could be: "Key is not present or printer is not correct.”, "Can’t
read key.”, ”Can’t initialize key.”, or "Can’t set key—model”.

96 syntax error in #define

#define id(requires a right-parenthesis).

97 ”...” incompatible with old-style prototype

If one function has a parameter type list and another function, with the
same name, is an old-style declaration, the parameter list may not have
ellipsis. The following is an example of this error:

int f(int, ...);
int £(); /* error, old-style */
98 function type cannot be inherited from a typedef
A typedef cannot be used for a function definition. The following is

an example of this error:

typedef int INTFEN();
INTFN f {return (0);} /* error */
99 conditional directives nested too deep
#f, #ifdef or #ifndef directives may not be nested deeper than 50
levels.
100 case or default label not inside switch

The case: or default: label may only appear inside a switch.

Compiler Diagnostics

101 vacuous declaration

Something is missing in the declaration. The declaration could be
empty or an incomplete statement was found. You must declare array
declarators and struct, union, or enum members. The following are
examples of this error:

int ; /* error */
static int a[2] = { }; /* error */

102 duplicate case or default label

Switch case values must be distinct after evaluation and there may be
at most one default: label inside a switch.

103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer —
pointer, or pointer — scalar. So, scalar — pointer is not allowed. The
following is an example of this error:

int 1i;
int *pi = &i;
ff(l - pi); /* error */

104 left operand of operator has not struct/union type

The first operand of a "> or '=>’ must have a struct or union type.

105 zero or negative array size — ignored

Array bound constants must be greater than zero. So, char a[0]; is
not allowed.

106 different constructors

Compatible function types with parameter type lists must agree in
number of parameters and in use of ellipsis. Also, the corresponding
parameters must have compatible types. This error is usually followed
by informational message I 111. The following is an example of this
error:

int f(int);
int f(int, int); /* error different
parameter list */

5-17

5-18

Chapter 5

107 different array sizes

Corresponding array parameters of compatible function types must
have the same size.This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int [][2]);
int f(int [][3]); /* error */
108 different types

Corresponding parameters must have compatible types and the type of
each prototype parameter must be compatible with the widened
definition parameter. This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type
in parameter list */

109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to
which it was assigned. See section Data Types for the valid range of a
floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.
A pointer to a function is allowed. The following are examples of this
error:

typedef int F(); F £(); /* error */
typedef int A[2]; A g(); /* error */

111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type
of parameters must match. This message is preceded by error E 106, E
107 or E 108.

112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must
include an identifier. Also, an identifier declared as a typedef name
cannot be a parameter name. The following are examples of this error:

Compiler Diagnostics

int f(int g, int) {return (g);} /* error */

typedef int int type;
int h(int_ type) {return (0);} /* error */
E 114 incomplete struct/union type
The struct or union type must be known before you can use it. The
following is an example of this error:

extern struct unknown sa, sb;
sa = sb; /* 'unknown'’ does not have a
defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115 label "name” undefined
A goto statement was found, but the specified label did not exist in
the same function or module. The following is an example of this error:

£1() { a: ; } /* W 116 */
f2() { goto a; } /* error, label ’'a:’ is
not defined in f2() */

W 116 label "name” not referenced

The given label was defined but never referenced. The reference of the
label must be within the same function or module. The following is an
example of this warning:

£f() { a: ; } /* 'a’ is not referenced */

E 117 ’name” undefined

The specified identifier was not defined. A variable’s type must be
specified in a declaration before it can be used. This error can also be
the result of a previous error. The following is an example of this

error:
unknown i; /* error, 'unknown’ undefined */
i=1; /* as a result, ’'i’ is also

undefined */

W 118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also
when converting a floating point value to an integer, the floating point
constant may not be too large. This warning is usually preceded by
error E 16 or E 109. The following is an example of this warning;:

5-20

Chapter 5

int i = 10E88; /* error and warning */

119 cannot take ’sizeof bitfield or void type

The size of a bit field or void type is not known. So, the size of it
cannot be taken.

120 cannot take 'sizeof’ function

The size of a function is not known. So, the size of it cannot be taken.

121 not a function declarator
This is not a valid function. This may be due to a previous error. The
following is an example of this error:

int £() return 0; /* missing '{ }' */

int g() { } /* error, ‘g’ is not a
formal parameter and
therefore, this is not a
valid function declaration */

122 unnamed formal parameter

The parameter must have a valid name.

123 function should return something

A return in a non-void function must have an expression.

124 array cannot hold functions

An array of functions is not allowed.

125 function cannot return anything

A return with an expression may not appear in a void function.

126 missing return (function "name”)

A non-void function with a non-empty function body must have a
return statement.

129 cannot initialize "name”

Declarators in the declarator list may not contain initializations. Also, an
extern declaration may have no initializer. The following are
examples of this error:

{ extern int i = 0; } /* error */
int £(i) int i=0; /* error */

Compiler Diagnostics 5-21

W 130 operands of operator are pointers to different types

Pointer operands of an operator or assignment (=), must have the
same type. For example, the following code generates this warning:

long *pl;
int *pi = 0;
pl = pi; /* warning */

E 131 bad operand type(s) of operator
The operator needs an operand of another type. The following is an
example of this error:
int *pi;
pi += 1.; /* error, pointer on left; needs
integral value on right */
W 132 value of variable "name” is undefined
This warning occurs if a variable is used before it is defined. For
example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */
E 133 illegal struct/union member type
A function cannot be a member of a struct or union. Also, bit fields
may only have type int or unsigned.
E 134 bitfield size out of range — set to 1

The bit field width may not be greater than the number of bits in the
type and may not be negative. The following example generates this
error:

struct i { unsigned i : 999; }; /* error */

W 135 statement not reached
The specified statement will never be executed. This is for example the
case when statements are present after a return.
E 138 illegal function call
You cannot perform a function call on an object that is not a function.
The following example generates this error:
int i, J;
jo=1i(); /* error, i is not a function */

5-22

Chapter 5

139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct, union or a
pointer) and also the operand of a (cast) must be a scalar. The
following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union

to something else */

140 type cannot be applied to a register/bit/bitfield object or
builtin/inline function

For example, the &’ operator (address) cannot be used on registers

and bit fields. So, func (&r6); and func(&bitf.a); are invalid.

141 operator requires modifiable lvalue

The operand of the '++’, or ' operator and the left operand of an
assignment or compound assignment (lvalue) must be modifiable. The
following is an example of this error:

const int i = 1;
i= 3; /* error, const cannot be
modified */
143 too many initializers
There may be no more initializers than there are objects. The
following is an example of this error:

static int a[l] = {1, 2}; /* error,
only one object can be initialized */
144 enumerator "name” value out of range
An enum constant exceeded the limit for an int. The following is an

example of this warning:

enum { A = INT MAX, B }; /* warning,
B does not fit in an int anymore */
145 requires enclosing curly braces
A complex initializer needs enclosing curly braces. For example, int
a[] = 2; is not valid, but int a[] = {2}; is.
146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

Compiler Diagnostics 5-23

W 147 argument #number: different levels of indirection

With prototypes, the types of arguments must be assignment
compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &i); /* warning, argument 2 */

W 148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual
argument was a struct or union., but they have different tags. The
tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
main()
{
struct { int i; } t;
f(t); /* t has other type than s */
}
E 149 object "name” has zero size
A struct or union may not have a member with an incomplete type.
The following is an example of this error:
struct { struct unknown m; } s; /* error */

W 150 argument #number: pointers to different types
With prototypes, the pointer types of arguments must be compatible.
The following example generates this warning:

int f(int¥*);
long *1;
£f(1); /* warning */

W 151 ignoring memory specifier
Memory specifiers for a struct, union or enum are ignored.
E 152 operands of operator are not pointing to the same memory
space

Be sure the operands point to the same memory space. This error
occurs, for example, when you try to assign a pointer to a pointer from
a different memory space.

5-24

Chapter 5

153 ’sizeof’ zero sized object

An implicit or explicit sizeof operation references an object with an
unkown size. This error is usually preceded by error E 119 or E 120,
cannot take ’'sizeof’.

154 argument #number: struct/union mismatch

With prototypes, only one of the prototyped function argument or the
actual argument was a struct or union. The types should match. The
following is an example of this error:

f(struct s); /* prototype */

main()

{
int i;
f(i); /* i is not a struct */

155 casting lvalue 'type’ to ‘type’ is not allowed

The operand of the '++’, or '— operator or the left operand of an
assignment or compound assignment (lvalue) may not be cast to
another type. The following is an example of this error:

int i = 3;
++(unsigned)i; /* error, cast expression
is not an lvalue */

157 "name” is not a formal parameter
If a declarator has an identifier list, only its identifiers may appear in
the declarator list. The following is an example of this error:

int £(i) int a; /* error */
158 right side of operator is not a member of the designated

struct/union

The second operand of ’.” or '=>’ must be a member of the designated
struct or union.
160 pointer mismatch at operator
Both operands of operator must be a valid pointer. The following

example generates this error:

int *pi = 44; /* right side not a pointer */

Compiler Diagnostics

E 161 aggregates around operator do not match
The contents of the structs, unions or arrays on both sides of the
operator must be the same. The following example causes this error:

struct {int a; int b;} s;
struct {int c; int d; int e;} t;
s = t; /* error */
E 162 operator requires an lvalue or function designator
The '&’ (address) operator requires an lvalue or function designator.
The following is an example of this error:
int i;
i=&(1=20);
W 163 operands of operator have different level of indirection
The types of pointers or addresses of the operator must be assignment
compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */

E 164 operands of operator may not have type 'pointer to void’
The operands of operator may not have operand (void *).
W 165 operands of operator are incompatible: pointer vs. pointer to
array

The types of pointers or addresses of the operator must be assignment
compatible. A pointer cannot be assigned to a pointer to array. The
following is an example of this warning:

main()
{
typedef int array[10];
array a;
array *ap = a; /* warning */

}

E 166 operator cannot make something out of nothing

Casting type void to something else is not allowed. The following
example generates this error:

5-25

5-26 Chapter 5

void f(void);

main()
{

int i;

i = (int)f(); /* error */
}

E 170 recursive expansion of inline function "name”

An _inline function may not be recursive. The following example
generates this error:

_inline int a (int i)

{
a(i); /* recursive call */
return i;

}

main()

{
a(l); /* error */

}

E 171 too much tail-recursion in inline function "name”

If the function level is greater than or equal to 40 this error is given.
The following example generates this error:

_inline void a ()
{

a();
}

main()
{
a();

}

W 172 adjacent strings have different types
When concatenating two strings, they must have the same type. The
following example generates this warning:

char b[] = L"”abc””def”; /* strings have
different types */

E 173 ’void’ function argument

A function may not have an argument with type void.

Compiler Diagnostics 5-27

E 174 not an address constant

A constant address was expected. Unlike a static variable, an automatic
variable does not have a fixed memory location and therefore, the
address of an automatic is not a constant. The following is an example
of this error:

int *a;
static int *b = a; /* error */
E 175 not an arithmetic constant

In a constant expression no assignment operators, no ++ operator, no
'— operator and no functions are allowed. The following is an
example of this error:

int a;
static int b = a++; /* error */
E 176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed
memory location and therefore, the address of an automatic is not a
constant. The following is an example of this error:

int a; /* automatic */
static int *b = &a; /* error */
W 177 static variable "name” not used
A static variable is declared which is never used. To eliminate this
warning remove the unused variable.
W 178 static function "name” not used
A static function is declared which is never called. To eliminate this
warning remove the unused function.
E 179 inline function "name” is not defined

Possibly only the prototype of the inline function was present, but the
actual inline function was not. The following is an example of this
error:

Chapter 5

_inline int a(void); /* prototype */
main()
{
int b;
b = a(); /* error */
}i

E 180 illegal target memory (memory) for pointer

The pointer may not point to memory. For example, a pointer to
bitaddressable memory is not allowed.
181 invalid cast to function
This error is generated when attempting to cast an object to a function
type as shown in the example below:
int i;
void main(void)
{
i+=(int*(int))i;
return;
}
182 argument #number: different types

With prototypes, the types of arguments must be compatible.

183 variable 'name’ possibly uninitialized

Possibly an initialization statement is not reached, while a function
should return something. The following is an example of this warning:

int a;

int f(void)

{
int i;
if (a)
{
i = 0; /* statement not reached */
}

return i; /* warning */

Compiler Diagnostics 5-29

W 184 empty pragma name in —z option - ignored
After the -z option you must specify an existing pragma. See the
description of the -z option for details.
I 185 (prototype synthesized at line number in "name”)
This is an informational message containing the source file position
where an old-style prototype was synthesized. This message is
preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.
E 186 array of type bit is not allowed

An array cannot contain bit type variables.

E 187 illegal structure definition
A structure can only be defined (initialized) if its members are known.
So, struct unknown s = { 0 }; is not allowed.
E 188 structure containing bit-type fields is forced into bitaddressable
area
This error occurs when you use a bitaddressable storage type for a
structure containing bit-type members.
E 189 pointer is forced to bitaddressable, pointer to bitaddressable is
illegal

A pointer to bitaddressable memory is not allowed.

W 190 ”long float” changed to "float”
In ANSI C floating point constants are treated having type double,
unless the constant has the suffix 'f. If you have specified an option to
use float constants, a long floating point constant such as 123.12f£1 is
changed to a float.

E 191 recursive struct/union definition
A struct or union cannot contain itself. The following example
generates this error:

struct s { struct s a; } b; /* error */

E 192 missing filename after —f option

The -f option requires a filename argument.

5-30

=

Chapter 5

E 194 cannot initialize typedef

You cannot assign a value to a typedef variable. So, typedef i=2; is
not allowed.

195 constant expression out of range — truncated

The resulting constant expression is too large to fit in the specified data
type. The value is truncated. The following example generates this
warning:

int 1 = 140000L; /* warning, value is too large
to fit in an int */

196 constant expression out of range due to signed/unsigned type
mismatch

The resulting constant expression is too large to fit in the specified data
type. The following example generates this warning:

int i = 40000U; /* the unsigned value is too large
to fit in a signed int */
/* unsigned int i = 40000U; is OK */

Note that this warning is formally correct, but not very useful is most
cases. Consider the following situation:

unsigned int a;
a = 0x1234u & ~0x00FFu;

When you compile this example with option —Au (default), this
warning appears. Here the type of the unary '~ operator is int.
Constant folding optimizes the expression to:

a = 0x1234u & O0XFF00; /* right operand is a
signed int */

Next, the right operand needs to be converted to an unsigned int in
order to compute the result of the bitwise AND. It is this conversion
that generates the warning, since the sign bit is differently interpreted
after the conversion.

In most cases you can safely switch off this warning (-w196 or
—wstrict).
197 unrecognized —w argument: argument

The -=w option only accepts a warning number or the text ’strict’ as an
argument. See the description of the —w option for details.

Compiler Diagnostics 5-31

W 198 trigraph sequence replaced

The character set of C source programs is contained within seven-bit
ASCII, but is a superset of the ISO 646-1983 Invariant Code Set. In
order to enable programs to be represented in the reduced set, all
occurrences of the following trigraph sequences are replaced by the
corresponding single character. This replacement occurs before any
other processing.

??= represents #
??/ represents \
??' represents °*
?2?(represents [
??) represents]
??! represents |
??< represents {
??> represents }
??— represents

The compiler issuses a warning when it performs a trigraph
replacement to inform that something occured which was probably not
expected to occur.

F 199 demonstration package limits exceeded
The demonstration package has certain limits which are not present in
the full version. Contact TASKING for a full version.

W 200 unknown pragma "name” — ignored
The compiler ignores pragmas that are not known. For example,
#pragma unknown.

W 201 name cannot have storage type — ignored

A register variable or an automatic/parameter cannot have a storage
type. To eliminate this warning, remove the storage type or place the
variable outside a function.

E 202 ‘’mame’ is declared with 'void’ parameter list

You cannot call a function with an argument when the function does
not accept any (void parameter list). The following is an example of
this error:

5-32 Chapter 5

int f(void); /* void parameter list */
main()
{
int i;
i=£f(1); /* error */
i=£(); /* OK */
}

E 203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree
with the protoype of the function. The following is an example of this

error:

int f(int); /* one parameter */

main()

{
int i;
i=£(i,1i); /* error, one too many */
i = £f(i); /* OK */

}

W 204 U suffix not allowed on floating constant — ignored

A floating point constant cannot have a 'U’ or "u’ suffix.

W 205 F suffix not allowed on integer constant — ignored

An integer constant cannot have a 'F’ or 'f suffix.

E 206 ’name’ named bit-field cannot have 0 width
A bit field must be an integral contstant expression with a value greater
than zero.

E 207 list of rule numbers expected after "—misrac” option.

A list of rule numbers is required after the -misrac option.

W 208 unsupported MISRA C rule number number.
Specified MISRA C rule number is not supported.

E 209 MISRA C rule number violation: rule
A specified MISRA C rule is violated.

Compiler Diagnostics

E 212 ’name”: missing static function definition

A function with a static prototype misses its definition.

W 213 invalid string/character constant in non-active part of source

This part of the source is skipped.

E 214 second occurence of #pragma asm or asm.noflush.
E 215 ’pragma endasm” without a "#pragma asm”
W 216 suggest parentheses around assignment used as truth value
In the example below W 216 will be generated because of a suspicious

assignment within an if condition.

int func(int a, int b, int c)

{
if (a=Db)
{
return c;
}
return a;
}

W 225 dereferencing void pointer
A void pointer cannot be dereferenced. The following is an example of
this warning:

volatile void * p;

void f(void)
{
*pi
return;

}

W 227 MISRA C rule number violation: rule
F 228 MISRA C rule number violation: rule
A specified MISRA C rule is violated.

5-33

5-34 Chapter 5

=

Backend
W 501 initializer was truncated
Some most significant bits are non-zero. Due to a cast, the most
significant bits are stripped off.
F 504 allocation of data-type exceeds limitK (memory: memory)

A memory overflow occurred. Use a larger memory model or specify a
larger storage type. data-type can be one of "data”, "automatic data” or
“code”. When memory is "program”; then try to split the module into
separate ones on function basis. It is usually sufficient to split the
module into two separate ones, each having about the half of the
program code of the original module. Program code of a single

function is limited to 64K.
E 519 no indirection allowed on bit type
Pointer to a bit variable and array of bit is not allowed, because the
80166 has no instructions to indirectly access a bit variable.
E 531 restriction: impossible to convert to ‘type’
The structure or union cannot be casted to types bit, char, int,
long, float or double.
E 539 operator not allowed on bit type
See section 3.4.3, The Bit Type, for a list of operators that are allowed
on type bit.
E 540 bit type parameter not allowed
A bit type variable is not allowed as parameter. The allowed classes
for bit are: static, public or extern. See also section 3.4.3, The Bit Type.
E 541 bit type switch expression not allowed
A bit typed expression is not allowed as switch expression. See also
section 3.4.3, The Bit Type.
E 542 argument number is not an integral constant expression

The argument of the specified intrinsic function must evaluate to an
integral value. See section 3.17, Intrinsic Functions, for the syntax of
the specified intrinsic function.

Compiler Diagnostics 5-35

W 543 ’extern near’ might be in other data group: check 'Ggroupname’
option is also used with module defining external

If you use the -G option, it is your own responsibility to declare
‘extern near’ variables within the same group. See also section 3.2.1.7,
Efficiency in Large Data Models.

E 544 semaphore must be bit object
The intrinsic functions _testset() and _testclear() must have a
bit type argument.

E 545 maximum interrupt number is 127

Use an interrupt number less than 128.

E 547 calling an interrupt routine, use ’_int166()’
An interrupt function cannot be called directly, you must use the
intrinsic function _int166().

E 549 argument number is not bitaddressable
The intrinsic functions getbit(), putbit() and bfld() require
a bitaddressable argument. See section 3.17, Intrinsic Functions, for the
syntax of these intrinsic functions.

E 550 assignment/parameter/return not allowed with bit-structure

Structure of bit is supported, with the restriction that no other type
than bit is member of this structure. Structure of bit is not allowed
as parameter or return value of a function.. See also section 3.4.3, The
Bit Type.

F 551 too many sections (> number)

A module can contain 255 sections at the most.

E 552 'memory_type’ is illegal memory for function: near or huge only
The specified storage type is not valid for this function. The storage
type of a function can be either near or huge. A function can also
have return type bit.

F 553 illegal memory model

See the compiler usage for valid arguments of the =M option.

F 554 illegal memory type specified

See the description of the —-m option for the correct syntax.

5-36

Chapter 5

555 invalid option option

The option must have a valid argument. See the description of the
option for the correct syntax.

556 illegal section qualifier in —-R option

See the description of the —-R option for the correct syntax.

557 illegal number in option

You must specify a valid number (decimal or hexdecimal) to the
option.

558 maximum number of GPR’s in a registerbank is 16 — ignored

If you specify a number of GPRs to the -r option or #pragma regdef
it must have a value in the range 6-16 (inclusive).

560 static initialization of sfr/sfrbit esfr/esfrbit is not allowed

For example, the construction sfr SYSCON = 2; is not allowed.

561 illegal storage class for sfr/sfrbit, esfr/esfrbit, xsfr

le]sfr/[e]sfrbit/xsfr is not allowed as static, extern, automatic, register or

parameter.

562 it is not allowed to change the align type for internal ram data
sections

Internal ram data sections are always IRAM addressable.

563 “function()”: 0 is invalid interrupt number, use "main()”

An interrupt number must be in the range 0 to 127 or -1.

564 section "nmame” may not be BYTE aligned

The sectoin must be word, page, segment or PEC aligned.

565 Illegal combine type

The combine type must be one of L (local), P (public), C (common), G
(global), S (Sysstack), U (Usrstack) or A address (absolute section AT
constant address).

566 Illegal align type

The combine type must be one of B (byte), W (word), P (page), S
(segment), C (PEC addressable) or I (IRAM addressable).

Compiler Diagnostics

E

568 more than 16K initialized data for 'name’: use ’shuge’ or use the
—m option
more than 64K initialized data for 'name’: use ’huge’ or use the
—-m option

Declare explicitiy initialized variables in shuge or huge memory when
the total size of those variables in a module exceeds 16K or 64K
respectively. An alternative is to omit the initializer and to initialize the
variable at run—time as far as needed. cstartx.asm clears variables
without explicit initializer automatically.

% —-m option

E

569 far/huge not allowed in tiny memory model

The far, huge and shuge keywords are not possible (and not
allowed) in the tuny memory model, because all normal data is
implicitly near.

570 allocation single data object exceeds 16K: use 'shuge’

allocation single data object exceeds 64K: use 'huge’
Variables greater than 16K or 64K must be declared shuge’ or "huge’
respectively.
571 ’memory’ is illegal memory for #pragma romdata:

near/far/huge only
You can only use the near, far, huge and shuge keywords on
romdata sections.
572 invalid option for this model: ‘optior’ — ignored
The -Ggroupname and -Tsize options are only allowed in the medium,
large or huge memory model.
573 conversion of long address to short address
This warning is issued when pointer conversion is needed, for
example, when you assign a huge pointer to a near pointer.
575 ¢166 language extension keyword used as identifier
A language extension keyword is a reserved word, and reserved words
cannot be used as an identifier.
577 —xchar is invalid suboption

See the description of the —x option for the correct syntax.

5-37

5-38

Chapter 5

579 ’offset’ must be a constant value between 0 and 15

The bit offset used in _atbit must be a constant value between 0 and

15 (the bit position in an integer).

580 REGDEEF is too small for register arguments/parameter of
"name”: use ‘stackparm’

The number of registers is too small for parameter passing. Pass the

arguments over the user stack. You can use the stackparm keyword

for this purpose.

582 REGDEF R0O-RS5 is minimum registerbank

If you specify a number of GPRs to the -r option or #pragma regdef

it must have a value in the range 6-16 (inclusive).

583 -Fchar is invalid suboption

See the description of the —F option for the correct syntax.

585 duplicate function qualifier - 'name (number)’ ignored

Only one function qualifier is allowed. The number within parentheses

indicates which of the qualifiers is ignored, 0 being the first occurrence.

586 duplicate function qualifier — 'name’

Only one function qualifier is allowed. The duplicate qualifier is

ignored.

587 ’number’ illegal interrupt/bank number (min to max) - ignored

An interrupt number must be in the range 0 to 127 or 1. A register

bank number must be in the range 1 to 255.

588 ’'mamel’ not allowed with 'name2’ or 'name3’ - ignored

This is an illegal function qualifier combination. Functon qualifier

namel is ignored.

589 interrupt function must have void result and void parameter list

A function declared with interrupt(n) may not accept any

arguments and may not return anything.

590 bank function qualifier allowed in small/large/huge model only
(code >64K)

The bank (n) function qualifier cannot be used in the tiny and medium
memory models. It is only allowed in the small, large or huge memory
model. See also section 3.18, Code Memory Banking.

Compiler Diagnostics 5-39

E 591 conflict in 'name’ attribute
The attributes of the current function qualifier declaration and the
previous function qualifier declaration are not the same.

E 592 different 'name number
The function prototype of an interrupt service routine must have the
same vector number and using numbers as in the function definition.
The same applies to the bank number of a banked function.

W 593 function qualifier used with non-function

A function qualifier can only be used on functions.

E 595 bank function qualifier not allowed with near function
Code memory banking is only useful in the small, large and huge
memory model (code > 64Kb).
W 596 #pragma switch force table (-Os) ignored: jump table would
exceed 16K
The jump table does not fit in 16K.
E 597 indirect near call to function "function()” from huge function is
not allowed

near call to run-time library function "function()” from huge
function is not allowed

A huge function may not call any standard C (or run-time) library
function, or any other 'near function’ in the first segment.
E 598 invalid number atomic instructions, atomic range is [1..4]
The _atomic intrinsic function only accepts a number in the range
[1..4].
W 599 nothing to restore, no section attributes are saved with #pragma
save_attributes
Pragma restore_ attributes was used without a previous pragma
save_attributes.
F 602 corrupt initialized variable: different size between initialized RAM
and ROM section

The initialized RAM and ROM sections must have the same size. This
may be due to a different level of indirection with an assignment.

5-40

Chapter 5

W 604 possible un-aligned access on byte-label 'name’

Characters are not aligned. Functions and pointers are always aligned.

605 _athit() only possible on objects, not on constant addresses
Use atbit() to define bit variables within a bitword or sfr
variable with a previously defined name.

606 _athit() only possible for bit/sfrbit objects

Only bit and sfrbit objects can be declared with _atbit().

607 _athit() only possible on bitword/sfr objects

_atbit() only accepts bitword or sfr objects as an argument.

608 specified object not BIT-addressable
The object specified to _atbit () must be a bitword or sfr object.
610 sfrbit object can only have _atbit() on sfr object

bit object can only have _atbit() on a bitword object
You cannot specify a sfrbit object with _atbit() on a bitword
object, and you cannot specify a bit object with _atbit() on a sfr
object.
611 missing #pragma endasm
You cannot specify a #pragma asm or asm_noflush when inline
assembly is already active. You have to use #pragma endasnm first.
612 missing #pragma asm
The #pragma endasm was found while inline assembly was not active.
Remove the pragma or insert a #pragma asm.
613 ’(missing in inline assembly pragma
Check the syntax of the pragma asm/endasm. ' was expected. See
section 3.11, Inline Assembly, for the correct syntax.
614) missing in inline assembly pragma

Check the syntax of the pragma asm/endasm. ’)’ was expected.

615 illegal character ‘character’ in inline assembly pragma

Check the syntax of the pragma asm/endasm. A '=" or '@ was
expected.

Compiler Diagnostics 5-41

E 616 illegal pseudo register in inline assembly pragma
A pseudo register name has the following synopsis: @w |b |ijrum. See
section 3.11, Inline Assembly, for more information.

E 617 pseudo register "@number” already defined
A pseudo register cannot be defined twice. Use another name or
number.

E 618 illegal variable name in inline assembly pragma
The variable name specified after a pragma asm/endasm is not a valid
identifier.

E 619 ’name” undefined in inline assembly pragma
A C variable with the name you specified to a pragma asm/endasm
does not exist. Check if you specified the correct variable name.

E 620 pseudo register "@number’ undefined

The pseudo register must first be defined after a pragma asm.

E 621 no registers anymore for "@name”

There were no free registers left to allocat this pseudo register.

E 622 improper use of "bita”/’bitword” in declaration of “name”
The bita keyword is only allowed on structures, unions and integral
types.

W 720 -OZ no longer supported

This version of the compiler no longer supports the =OZ option.

E 724 _at() requires a numerical address

You can only use an expression that evaluates to a numerical address.

E 725 _at() address out of range for this type of object

The absolute address is not present in the specified memory space.

E 726 _at() only valid for global variables

Only global variables can be placed on absolute addresses.

E 727 _at() only allowed on non-initialized variables

Absolute variables cannot be initialized.

5-42

\

mmmg

Chapter 5

728 _at() has no effect on external declaration

When declared extern the variable is not allocated by the compiler.

729 _at() cannot be used on struct / union members (ignored)

730 _at() cannot be used on bit, bita, system, sft, esfr, xsfr and iram
731 _at() this type of object must be word aligned

732 _at() address out of range for this memory model

The absolute address does not fit in the specified memory model. You
might want to use a larger memory model.

733 bad argument to #pragma cse, expect a number, "suspend” or
“resume”

See the description of pragma cse for more information.

734 #pragma cse suspend/resume has no effect outside function
body

Pragma cse suspend/resume has a function scope.

735 pointer conversion restricts arithmetic precision and alignment

When a huge pointer is converted to an shuge pointer, it may lead to
incorrect code when the (huge) object it points to crosses a segment
boundary. After the conversion, the compiler assumes that the object is
64Kb at most and won'’t cross a segment boundary. Both assumptions
may be wrong. A similar problem arises when converting a shuge or
huge pointer to a far pointer. Far objects are limited to 16Kb and never
cross a page boundary.

736 function “name” too big (should be <= 64Kb code)

Break the function into smaller ones.

737 function "name” doesn’t fit in section, try —-mPR=0,4000

See the description of the —m option for additional information.

739 ormask: Oxhexnumber does not fit into andmask: Oxhexnumber
When the set bits in the ormask do not overlap the set bits in the
andmask, these bits might be unintentionally set.

740 —schar is invalid suboption

Only ’i’ can be used as a suboption. See the description of the -s
option for additional information.

Compiler Diagnostics 5-43

E 744 bad #pragma m166include syntax

An error occured when defining a macro—processor include file.

E 745 no registers left for expression
There were no free registers left to pass expression to a user defined
intrinsic.

E 750 _atbit() not possible on type: "name”

You cannot use: struct / union members, tags, labels, parameters or
inline function locals as a base symbol to define bits in.

E 752 _localbank qualifier only allowed with interrupt functions
You can only use the _localbank function qualifier in combination
with the _interrupt function qualifier.

W 753 ’name’ not allowed with 'namel’, 'name2’ or 'name3’ — ignored
For example, the localbank function qualifier cannot be used in
combination with stackparm, bank or using - ignored.

E 754 mame function qualifier can only be used in combination with

-x2
The localebank and stacksize qualifiers can only be used with the
C166S V2.0 / Superl0 architecture.

E 758 stacksize qualifier only allowed with interrupt functions using a

local register bank

For example the following is not allowed:
void _interrupt(0x10) _localbank(0) _stacksize(20) ISR(void);
Because _localbank(0) indicates a global register bank.

W 759 stacksize must be even — ignored

The value of the stacksize function qualifier must be even.

W 760 negative stack size adjustment exceeds user stack size
estimation, truncated

Suppose the compiler estimates that the occupied stack space for an
interrupt function is 12 bytes. If * _stacksize(—14)’ is added to
the function definition, this warning is generated and the value of the
_stacksize qualifier will be adjusted to —12.

5-44

Chapter 5

W 761 keyword 'name’ only allowed in combination with —-x2 —

ignored
The used keyword is only valid for the C166S V2.0 / Superl0
architecture and will be ignored if this chip is not selected. (Use -x2)
762 option —i can only be used in combination with -x2 - ignored
763 _cached qualifier only allowed with interrupt functions

764 #pragma name only allowed in small memory model with
extended instruction set

766 initialized ramdata sections don’t support section attributes

771 variable argument list not allowed with intrinsic function:
"name()”

775 obsolete option -Ff/-FF — floating point library is reentrant by
default

The -Ff / =FF option is no longer needed,

781 _at () has no effect on zero sized. object: "%s”
e.g. int a[] _at (0x1234);

785 _xnear only allowed in medium/large/huge memory model

In the medium/large/huge memory model, the _xnear keyword allows
you to allocate variables in DPP1 which shares this page with the user
stack. In the tiny/small memory model the user stack is located in
_near memory where normal data is also located. Hence this memory
space is already shared. Therefore there is no need for an _xnear
memory space in the tiny/small memory model.

787 bad argument in —-gso option : argument

The syntax of the —gso option is —gso=file.gso where file.gso is the
name of a .gso file.

788 GSO file not generated by 'gso166’

Missing $GSO166 directive in the .gso file.

Compiler Diagnostics 5-45

E 789 GSO file memory model mismatch
$MODEL(modelname) in the .gso file does not match the compiler
memory model.
E 790 - E 849 Reserved for gsol66 errors.
E 000 from gso166 maps on compiler error E 790;
E 001 from gso166 maps on compiler error E 791;

etc.

F 850 cannot find object object in GSO file
The name of a global object cannot be found in the .gso file for
automatic storage assignment.

W 851 -T option cannot be used in conjunction with —gso
When you use gs0166 for building the application, gso166 will assign
storage to global objects. However, with the =Tsize option the compiler
is not allowed to allocate global objects in _near memory that exceed
the specified size.

W 852 pragma name cannot be used in conjunction with —gso
You cannot use pragmas that control the storage of global objects in
conjunction with gs0166.

W 860 pragma name has no effect inside a function - ignored
You cannot use this pragma inside a function body, use the pragma
before or after a function.

W 861 illegal memory space in pragma name — ignored
See section 3.10 Strings for a list of all available memory spaces with
#pragma stringmem.

W 862 bad argument to pragma name — ignored
See section 3.10 Strings for a list of all available arguments of #pragma
stringmem.

W 864 _atbit() has no effect on external declaration

Do not use _atbit() on external declarations of a bit object. Use _atbit()
on the definition instead.

5-46

Chapter 5

865 object: 'name’ containing bit-type fields is forced into
bitaddressable area

This error occurs when you use a storage type for a structure with

bit-type members.

866 pointer: 'name’ is forced to bitaddressable, pointer to
bitaddressable is illegal

A pointer to bitaddressable memory is not allowed.

876 cannot initialize _atbit() object, initialize base object ‘name’
instead

Global bits declared with the _atbit() attribute cannot be initialized.

Initialization should be done on the base object instead.

877 cannot generate code for multiple architectures

You specified more than one processor architecture to the —x option,
for example -x12. Specify only one processor architecture.

W 878 obsolete option name; replacement option —x1 activated

The silicon bug workaround controls c166sv1sp, c166svlsp2 and
c166sv1sp are no longer used. Specify the extend1 processor
architecture (-x1) instead to activate all three silicon bug workarounds.

W 879 obsolete option name ignored

The specified option is no longer in use. It may disappear in a future
version of the compiler, resulting in a command line syntax error.

W 880 class 'object-name’ is always aligned

The object can never be located at an odd address. Despite this, the
compiler sometimes generates code to access the object as if it were
unaligned. This will lead to an unneccessary increase of code size.
Therefore, you should remove the noalign qualifier when this
warning is generated. Whether or not the compiler generates unaligned
proof code is undefined in this case.

Sample warnings:

automatic/parameter ’‘p’ is always aligned
return value of ’'func’ is always aligned

Compiler Diagnostics 5-47

E 881 register Rn is outside REGDEF definition and is needed for code
generation

This error may occure when the size of the register bank has been
decreased with #pragma regdef or the —-r command line option and
a specific register outside the defined register bank is needed for code
generation. The need for a specific register may arise in situations as
listed below:

1. function return—values (R4-R5)
2. when handling function parameters (R12-R15)
3. run-time and floating—point library calls

Situation 1. should never cause an error because a minimum register
bank always includes R4-R5. You can avoid situation 2. by using the
_stackparm function qualifier. This will force all parameters on the
user stack. In all other situations the size of the register bank needs to
be increased.

F 882 common register bank can consist of one range only and must
start with RO
Adjust the register bank definition accordingly. See the -r option for
the correct syntax.
F 883 illegal register bank definition: regdef
See the -r option for the correct syntax.
W 884 common register bank can consist of one range only and must
start with RO — extended
Adjust the register bank definition accordingly. See the -r option for
the correct syntax.
W 885 RO not included in register bank definition — forced

The compiler adds register RO to the register bank definition.

W 886 illegal register bank definition: regdef
The illegal register bank definition is ignored. See the -r option for the
correct syntax.

W 887 option -xc is deprecated — implied by default

The —x option is always on by default.

5-48 Chapter 5

=

W 888 struct/union member cannot have an explicit memory specifier
— ignored

An individual struct/union member cannot be allocated in a specific

memory space. It is only possible to allocate a complete struct/union in
a particular memory space.

For the example below, the warning will be generated:

struct s

{
_huge int member;

bi
The correct way to add the memory specifier is:

struct s

{

int member;

}i

_huge struct s st_huge; /* struct s in _huge memory */
_near struct s st_near; /* struct s in _near memory */

LIBRARIES

al TASKING [

d31dVHO

Libraries

6.1 INTRODUCTION

€166 comes with libraries per memory model and with header files
containing the appropriate prototype of the library functions. The library
functions are also shipped in source code (C or assembly).

Four sets of libraries are delivered to meet specific requirements for the
various C16x/ST10, XC16x/Superl0 microcontroller architectures. These
sets are located in separate directories:

ext

extp

ext2

ext2p

The extended libraries are needed for the C16x/ST10 and
similar architectures. These architectures feature the extended
instruction set, extended special function registers, 24-bit
addressing and extended PEC pointers. Use these libraries in
conjunction with the compiler option =x or -x1.

The protected libraries provide a software workaround for
CPU functional problems. Use these libraries in conjunction
with the compiler options =x or =x1 and -B.

The extended 2 libraries are needed for the XC16x/Superl0
and similar architectures. These architectures feature jump
prediction, scalable and relocatable interrupt vector table,
local register banks and instruction reordering. Use these
libraries in conjunction with the compiler option -x2.

The protected libraries provide a software workaround for
CPU functional problems. Use these libraries in conjunction
with the compiler options -x2 and -B.

Another four sets of libraries are delivered to meet specific User Stack
Model requirements for the various microcontroller architectures. These
libraries must be used in conjunction with the additional compiler option
-P. These sets are located in separate directories:

uext

uextp

uext2

uext2p

The User Stack Model variant of the extended non—protected
libraries.

The User Stack Model variant of the extended protected
libraries.

The User Stack Model variant of the extended XC16x/Superl0
architectures non—protected libraries.

The User Stack Model variant of the extended XC16x/Superl0
architectures protected libraries.

6-3

6-4

Chapter 6

Each library set contains the following libraries:

c166?[s].lib C library. The optional [s] stands for single precision floating
point (all floating point arithmetic is in single precision
instead of ANSI double precision).

fp1667[t).lib
Floating point library. The optional [t] stands for trapping
floating point (using boundary checking and the floating
point trap mechanism).

t1662[s][m].lib
Run-time library. The optional [s] stands for single precision
floating point. The optional [m] stands for MAC optimized
(use MAC instructions in some basic operations for
optimization).

The question mark '?" in these library names must be replaced by a letter
representing the selected memory model:

tiny
small
medium
large
huge

:TH—BMH

All C library functions are described in the section C Library Interface
Description. These functions are only called by explicit function calls in
your application program. However, some compiler generated code
contain calls to run—time library functions that would use too much code
when generated as inline code. The name of a run-time library function
always contains two leading underscores. For example, to perform a long
(32 bit) signed division, the function __sdil is called.

Because ¢166 generates assembly code (and not object code) it adds a
leading underscore to the names of (public) C variables to distinguish
these symbols from 80166 registers. So if you use a function with a leading
underscore, the assembly label for this function contains two leading
underscores. This function name could cause a name conflict (double
defined) with one of the run—-time library functions. Therefore, you should
avoid names starting with an underscore. Note that ANSI states that it is
not portable to use names starting with an underscore for public C
variables and functions, because results are implementation defined.

Libraries

The code sections of the C166 library have the class 'CLIBRARY,
'SHAREDCLIB’, 'RTLIBRARY’ or 'SHAREDRTLIB’ allowing the library to be
allocated in a special memory area via the CLASSES control of 1166.

6.2 SMALL, MEDIUM AND LARGE 1/0 FORMATTERS

The C library contains the SMALL I/O formatter version of the printf() and
scanf() functions and their variants like sprintf(), fprintf(), etc. This SMALL
version does not contain the required functionality to handle precision
specifiers and floating point I/O which can specified in the format
argument of these functions.

The following extra libraries are included to support easy switching
between the three I/O formatter versions:

MEDIUM 1/O formatter library no floating point I/O supported
precision specifiers supported fmtio?m.1lib.

LARGE I/O formatter library floating point I/O supported precision
specifiers supported fmtio?1[s].1lib.

The question mark ’? in these library names must be replaced by a
character representing the selected memory model:

tiny
small
medium
large
huge

:-»—-er—r

These 1/O formatter libraries are included in all library sets. You can use
the control program options -libfmtiom and -libfmtiol to select the
MEDIUM and LARGE I/O formatter libraries.

@ If no cc166 -libfmtio* option is specified on the commandline, then the
SMALL printf()/scanf() formatter variant is linked from the C library.

@? In EDE you can select an I/O formatter library as follows:
From the Project menu, select Project Options... Expand the C
Compiler entry and select Libraries. Select a Printf() and scanf() I/O
formatters option.

6-5

6-6

=

Chapter 6

6.3 SINGLE PRECISION FLOATING POINT

o)

In ANSI C all mathematical functions (<math.h>), are based on double
arguments and double return type. So, even if you are using only float
variables in your code, the language definition dictates promotion to
double, when using the math functions or floating point formatters
(printf () and scanf()). The result is more code and less execution
speed. In fact the ANSI approach introduces a performance penalty.

To improve the code size and execution speed, the compiler supports the
option =F to force single precision floating point usage. If you use -F, a
float variable passed as an argument is no longer promoted to double
when calling a variable argument function or an old style K&R function,
and the type double is treated as float. It is obvious that this affects the
whole application (including libraries). Therefore special single precision
versions of the floating point libraries are now delivered with the package.
When using -F, these libraries must be used. It is not possible to mix C
modules created with the =F option and C modules which are using the
regular ANSI approach.

For compatibility with the old -F option, the =Fc option is introduced.
This option only treats floating point constants (having no suffix) as float
instead of double.

In EDE you can set floating point options as follows:

From the Project menu, select Project Options... Expand the C
Compiler entry and select Floating Point. Enable or disable floating
point options.

6.4 CAN SUPPORT

+

The Infineon CAN protocol driver software routines including pre-built
CAN libraries are supplied with the 32-bit Windows 95/98/NT version of
this product. The file ap292201.pdf describes the usage of these
libraries. This file is located in the doc/pdf directory.

See section 6.7, CAN Library Interface Description, for a description of the
CAN library routines.

The can166?.Lib CAN libraries are available for all memory models in the
ext, extp, uext and uextp library sets. These libraries can be rebuilt
using the corresponding makefiles.

Libraries

6.5 HEADER FILES

The following header files are delivered with the C compiler:
<assert.h> assert

<c166.h> Special file for portability between ¢166 and other C
compilers. Contains macros to enable or disable the usage of
TASKING C166/ST10 language extensions.

<can_ext.h>
CAN libraries function prototypes: check busoff 16x,
check mo_16x, check mol15_16x, def mo_16x, init_can_16x,
ld_modata_16x, rd_modata_16x, rd_ mol5_16x, send_mo_16x

<canr_16x.h>
Definitions of CAN module control registers. No C functions.

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,
tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<fentl.h> open. Also contains definitions of flags used by _open().

<float.h> isinf, isinff, isnan, isnanf. Constants related to floating point
arithmetic.

<fss.h> Definitions for file system simulation.

<is0646.h>
Alternative spellings. No C functions.

<limits.h> Limits and sizes of integral types. No C functions.
<locale.h> localeconv, setlocale. Delivered as skeletons.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, hypot, hypotf, hypotl, Idexp, log, log10, modf, pow,
sin, sinh, sqrt, tan, tanh

<reg*“.h> Special function register declarations for all supported
derivatives.

<setyjmp.h> longjmp, setjmp

6-8

<stdarg.h>
<signal.h>
<stddef.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>

<unistd.h>

Chapter 6

va_arg, va_end, va_start
raise, signal. Functions are delivered as skeletons.
offsetof. Definition of special types.

clearerr, close, fclose, feof, ferror, fflush, fgetc, fgetpos,
fgets, fopen, fprintf, fputc, fputs, fread, freopen, fscanf, fseek,
fsetpos, ftell, fwrite, getc, getchar, gets, Iseek, open, perror,
printf, putc, putchar, puts, read, remove, rename, rewind,
scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam,
ungetc, viprintf, vprintf, vsprintf, unlink, write

abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit,
fcalloc, ffree, fmalloc, frealloc, free, getenv, hcalloc, hfree,
hmalloc, hrealloc, labs, 1div, malloc, mblen, mbstowcs,
mbtowc, ncalloc, nfree, nmalloc, nrealloc, gsort, rand,
realloc, scalloc, sfree, smalloc, srand, srealloc, strtod, strtol,
strtoul, westombs, wctomb

memchr, memcmp, memcpffb, memcpffw, memcpthb,
memcpfhw, memcpfnb, memcpfnw, memcpfsb, memcpfsw,
memcphfb, memcphfw, memcphhb, memcphhw,
memcphnb, memcphnw, memcphsb, memcphsw, memcpnfb,
memcpnfw, memcpnhb, memcpnhw, memcpnnb,
memcpnnw, memcpnsh, memcpnsw, memcpsfb, memcpsfw,
memcpshb, memcpshw, memcpsnb, memcpsnw, memcpssb,
memcpssw, memcpy, memmove, memset, strcat, _fstrcat,
_hstrcat, _sstreat, strchr, _fstrchr, _hstrchr, _sstrchr, stremp,
_fstremp, hstremp, _sstremp, strcol, strepy, fstrepy,
_hstrepy, _sstrepy, strespn, _fstrespn, _hstrespn, _sstrespn,
strerror, strlen, fstrlen, hstrlen, _sstrlen, strncat, _fstrncat,
_hstrncat, _sstrncat, strncmp, _fstrncmp, _hstrnemp,
_sstrnemp, strnepy, _fstrnepy, _hstrnepy, _sstrncpy, strpbrk,
_fstrpbrk, hstrpbrk, sstrpbrk, strrchr, fstrrchr, hstrrchr,
_sstrrchr, strspn, _fstrspn, _hstrspn, _sstrspn, strstr, _fstrstr,
_hstrstr, _sstrstr, strtok, _fstrtok, hstrtok, _sstrtok, strxfrm

asctime, clock, ctime, difftime, gmtime, localtime, mktime,
_stime, strftime, time, _tzset

Non—-ANSI C header file with prototypes for standard POSIX
I/O functions. access, chdir, close, getcwd, Iseek, read, stat,
Istat, fstat, unlink, write.

Libraries

<vt100.h>

<wchar.h>

<wctype.h>

VT100 Terminal Emulation escape sequences for use with the
CrossView Pro FSS feature.

fwprintf, wprintf, swprintf, vfwprintf, vwprintf, vswprintf,
fwscanf, wscanf, swscanf, fgetwc, fgetws, fputwc, fputws,
fwide, getwc, getwchar, putwc, putwchar, ungetwc, wcstod,
wcstol, westoul, wescpy, wesncpy, wescat, wesncat, wesemp,
wcscoll, wesnemp, wesxfrm, weschr, wesespn, wespbrk,
wcsrchr, wesspn, wesstr, westok, weslen, wmemchr,
wmememp, wmemcpy, wmemmove, wmemset, wcesftime,
btowc, wctob, mbsinit, mbrlen, mbrtowc, wcrtomb,
mbsrtowcs, wcsrtombs

iswalnum, iswalpha, iswentrl, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower,
towupper, wctype, iswctype, wctrans, towctrans

6-9

6-10 Chapter 6

=

6.6 C LIBRARY INTERFACE DESCRIPTION

@ Library functions that take void pointers as parameters imply default
memory. So, in that case explicit memory qualifiers, such as _huge, are
not allowed.

_close

#include <stdio.h>
int close(int fd);

Low level file close function. _close is used by the functions close and
fclose. The given file descriptor should be properly closed, any buffer is
already flushed.

_fstrcat

#include <string.h>
char far * fstrcat(char far *s, const char far *ct);

Concatenates far string ct to far string s, including the trailing NULL
character.

Returns s

_fstrcbhr

#include <string.h>
char far * fstrchr(const char far *cs, int c);

Returns a far pointer to the first occurrence of character ¢ in the
string c¢s. If not found, NULL is returned.

Libraries

_fstrcmp

#include <string.h>
int fstrcmp(const char far *cs,
const char far *ct);

Compares far string cs to far string ct.

Returns <0 ifcs < ct,
0 ifcs == ct
>0 if cs > ct.

_fstrcpy

#include <string.h>
char far * fstrcpy(char far *s, const char far *ct

Copies far string ct into the far string s, including the trailing NULL
character.

Returns s
_fstrcspn

#include <string.h>
size t fstrcspn(const char far *cs,
const char far *ct);

Returns the length of the prefix in far string cs, consisting of
characters not in the far string ct.

_fstrien

#include <string.h>
size t fstrlen(const char far *cs);

Returns the length of the far string in ¢s, not counting the NULL
character.

6-11

6-12 Chapter 6

=

_fstrucat

#include <string.h>

char far *_fstrncat(char far *s,
const char far *ct,
size_t n);

Concatenates far string ct to far string s, at most n characters are copied.
Add a trailing NULL character.

Returns s

_fstruncmp

#include <string.h>

int fstrncmp(const char far *cs,
const char far *ct,
size_ t n);

Compares at most n bytes of far string cs to far string ct.

Returns <0ifes < ct,
0 ifcs == ct
>0 ifcs > ct

_fstrucpy

#include <string.h>

char far * fstrncpy(char far *s,
const char far *ct,
size t n);

Copies far string ct onto the far string s, at most n characters are copied.
Add a trailing NULL character if the string is smaller than n characters.

Returns s

Libraries 6-13

_fstrpbrk

#include <string.h>
char far * fstrpbrk(const char far *cs,
const char far *ct);

Returns a far pointer to the first occurrence in cs of any character out
of far string ct. If none are found, NULL is returned.

_fstrrchr

#include <string.h>
char far * fstrrchr(const char far *cs, int c);

Returns a far pointer to the last occurrence of ¢ in the far string cs. If
not found, NULL is returned.

_fstrspn

#include <string.h>
size_t fstrspn(const char far *cs,
const char far *ct);

Returns the length of the prefix in far string cs, consisting of
characters in the far string ct.

_fstrstr

#include <string.h>
char far *_ fstrstr(const char far *cs,
const char far *ct);

Returns a far pointer to the first occurrence of far string ct in the far
string ¢s. Returns NULL if not found.

6-14 Chapter 6

-

_fstrtok

#include <string.h>
char far * fstrtok(char far *s, const char far *ct);

Search the far string s for tokens delimited by characters from far string
ct. It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

_bstrcat

#include <string.h>
char huge * hstrcat(char huge *s,
const char huge *ct);

Concatenates huge string ct to huge string s, including the trailing NULL
character.

Returns s

_bstrchr

#include <string.h>
char huge * hstrchr(const char huge *cs, int c);

Returns a huge pointer to the first occurrence of character ¢ in the
string c¢s. If not found, NULL is returned.

_bstrcmp

#include <string.h>
int hstrcmp(const char huge *cs,
const char huge *ct);

Compares huge string cs to huge string ct.

Returns <0 ifcs < ct,
0 ifcs == ct
>0 if cs > ct.

Libraries

_bstrcpy

#include <string.h>
char huge * hstrcpy(char huge *s,
const char huge *ct);

Copies huge string ct into the huge string s, including the trailing NULL
character.

Returns s

_bstrcspn

#include <string.h>
size_t hstrcspn(const char huge *cs,
const char huge *ct);

Returns the length of the prefix in huge string cs, consisting of
characters not in the huge string ct.

_bstrlen

#include <string.h>
size t hstrlen(const char huge *cs);

Returns the length of the huge string in ¢s, not counting the NULL
character.

_bstrucat

#include <string.h>

char huge * hstrncat(char huge *s,
const char huge *ct,
size t n);

Concatenates huge string ct to huge string s, at most n characters are
copied. Add a trailing NULL character.

Returns s

6-16 Chapter 6

_bstrncmp

#include <string.h>

int _hstrncmp(const char huge *cs,
const char huge *ct,
size_t n);

Compares at most n bytes of huge string cs to huge string ct.

Returns <0ifes < ct,
0 ifcs == ct
>0 if cs > ct.

_bstrncpy

#include <string.h>

char huge * hstrncpy(char huge *s,
const char huge *ct,
size t n);

Copies huge string ct onto the huge string s, at most n characters are
copied. Add a trailing NULL character if the string is smaller than n
characters.

Returns s

_bstrpbrk

#include <string.h>
char huge * hstrpbrk(const char huge *cs,
const char huge *ct);

Returns a huge pointer to the first occurrence in c¢s of any character
out of huge string ct. If none are found, NULL is returned.

_bstrrchr

#include <string.h>
char huge * hstrrchr(const char huge *cs, int c);

Returns a huge pointer to the last occurrence of ¢ in the huge string
cs. If not found, NULL is returned.

Libraries

_bstrspn

#include <string.h>
size_t _hstrspn(const char huge *cs,
const char huge *ct);

Returns the length of the prefix in huge string cs, consisting of
characters in the huge string ct.

_bstrstr

#include <string.h>
char huge * hstrstr(const char huge *cs,
const char huge *ct);

Returns a huge pointer to the first occurrence of huge string ct in the
huge string ¢s. Returns NULL if not found.

_bstrtok

#include <string.h>
char huge * hstrtok(char huge *s,
const char huge *ct);

Search the huge string s for tokens delimited by characters from huge
string ct. It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

_Iseek

#include <stdio.h>
off t 1lseek(int fd, off t offset, int whence);

Low level file positioning function. Iseek is used by all file positioning
functions (fgetpos, fseek, fsetpos, ftell, rewind).

6-17

6-18 Chapter 6

-

_open

#include <stdio.h>
int open(const char *name, int flags);

Low level file open function. _open is used by the functions fopen and
freopen. The given file should be properly opened.

_read

#include <stdio.h>
size t
_read(int fd, char *buffer, size t size);

Low level block input function. It reads a block of characters from the
given stream. This function interfaces to CrossView Pro’s I/O Simulation
feature.

Returns the number of characters read.
_stime

#include <time.h>
void _stime(time t *s);

Sets the current calendar time.

Returns nothing.

_sstrcat

#include <string.h>
char shuge * sstrcat(char shuge *s,
const char shuge *ct);

Concatenates shuge string ct to shuge string s, including the trailing NULL
character.

Returns s

Libraries

_sstrchr

#include <string.h>
char shuge * sstrchr(const char shuge *cs,

Returns
string ¢s. If not found, NULL is returned.
_sstrcmp
#include <string.h>
int sstrcmp(const char shuge *cs,
const char shuge *ct);
Compares shuge string cs to shuge string ct.

Returns <0ifecs < ct,
0 ifecs == ct,
>0 if cs > ct.

_sstrcpy

#include <string.h>
char shuge * sstrcpy(char shuge *s,
const char shuge *ct);

Copies shuge string ct into the shuge string s, including the trailing NULL

character.

Returns s

_Sstrcspn

#include <string.h>
size t _sstrcspn(const char shuge *cs,
const char shuge *ct);

Returns

characters not in the shuge string ct.

a shuge pointer to the first occurrence of character ¢ in the

the length of the prefix in shuge string cs, consisting of

6-20 Chapter 6

_sstrien

#include <string.h>
size_t _sstrlen(const char shuge *cs);

Returns the length of the shuge string in cs, not counting the NULL
character.

_Sstrncat

#include <string.h>

char shuge * sstrncat(char shuge *s,
const char shuge *ct,
size t n);

Concatenates shuge string ct to shuge string s, at most n characters are

copied. Add a trailing NULL character.

Returns s

_Sstrucmpp

#include <string.h>

int sstrncmp(const char shuge *cs,
const char shuge *ct,
size t n);

Compares at most n bytes of shuge string cs to shuge string ct.

Returns <0ifecs < ct,
0 ifecs == ct,
>0 if cs > ct.

Libraries 6-21

_Sstrucpy

#include <string.h>

char shuge * sstrncpy(char shuge *s,
const char shuge *ct,
size_t n);

Copies shuge string ct onto the shuge string s, at most n characters are
copied. Add a trailing NULL character if the string is smaller than n
characters.

Returns s

_sstrpbrk

#include <string.h>
char shuge * sstrpbrk(const char shuge *cs,
const char shuge *ct);

Returns a shuge pointer to the first occurrence in ¢s of any character
out of shuge string ct. If none are found, NULL is returned.

_sstrrchr

#include <string.h>
char shuge *_ sstrrchr(const char shuge *cs, int c);

Returns a shuge pointer to the last occurrence of ¢ in the shuge string
cs. If not found, NULL is returned.

_Sstrspn

#include <string.h>
size t sstrspn(const char shuge *cs,
const char shuge *ct);

Returns the length of the prefix in shuge string cs, consisting of
characters in the shuge string ct.

6-22 Chapter 6

=

_Sstrstr

#include <string.h>
char shuge * sstrstr(const char shuge *cs,
const char shuge *ct);

Returns a shuge pointer to the first occurrence of shuge string ct in
the shuge string cs. Returns NULL if not found.

_sstrtok

#include <string.h>
char shuge * sstrtok(char shuge *s,
const char shuge *ct);

Search the shuge string s for tokens delimited by characters from shuge
string ct. It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

_tolower

#include <ctype.h>
int tolower(int c);

Converts c to a lowercase character, does not check if ¢ really is an
uppercase character.

Returns the converted character.

_toupper

#include <ctype.h>
int toupper(int c);

Converts ¢ to an uppercase character, does not check if ¢ really is a
lowercase character.

Returns the converted character.

Libraries 6-23

_tzset

#include <time.h>
int _tzset(const char *s);

Converts the widely used time zone format string pointed to by s to tzone
format. That string takes the form ESTOSEDT, where the number in the
middle counts the hours West of UTC.

Returns one if successful, or zero on error.
_unlink

#include <stdio.h>
int unlink(const char *name);

Low level file remove function. unlink is used by the function remove.
_wrile
#include <stdio.h>
size t

_write(int fd, char *buffer, size t count);

Low level block ouput function. It writes a block of characters to the given
stream. This function interfaces to CrossView Pro’s I/O Simulation feature.

Returns the number of characters correctly written.

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally.

Returns nothing.

6-24 Chapter 6

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the
permissions of a file on the host. mode specifies the type of access and is a
bit pattern constructed by a logical OR of the following values:

R OK Checks read permission.

W_OK Checks write permission.

X OK Checks execute (search) permission.
F OK Checks to see if the file exists.

Returns zero if successful,
-1 on error.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos~1(x) of x in the range [0, T1,
x O[-1, 1.

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:
Mon Jan 21 16:15:14 1993\n\0

Returns the time in string form.

Libraries 6-25

asin

#include <math.h>
double asin(double x);

Returns the arcsine sin~1(x) of x in the range [-TV/2, /2],
x O[-1, 1.

assert

#include <assert.h>
assert(expr);

When compiled with NDEBUG, this is an empty macro. When compiled
without NDEBUG defined, it checks if ’expr’ is true or false. If it is false,
then a line like:

"Assertion failed: expression, file filename, line num”
is printed.
Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan~1(x) of x in the range [-1V/2, T/2]. x O [-1,
1).

atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan~!(y/x) in the range [-TT, T1.

6-26 Chapter 6
atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.
Returns zero, if program terminates normally.
non-zero, if the registration cannot be made.
atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the integer value.

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the long value.

Libraries

bsearch

#include <stdlib.h>

void *bsearch(const void *key,
const void *base, size_t n,
size_t size, int (*cmp)
(const void *, const void *));

This function searches in an array of n members, for the object pointed to
by ptr. The initial base of the array is given by base. The size of each
member is specified by size. The given array must be sorted in ascending
order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL
when not found.

btowc

#include <wchar.h>
wint t btowc(int c);

Determines whether ¢ constitutes a valid single-byte character in the initial
shift state.

Returns WEOF if ¢ has the value EOF or if (unsigned char)c does
not constitute a valid single-byte character in the initial shift
state. Otherwise, it returns the wide character representation
of that character.

calloc

#include <stdlib.h>
void *calloc(size t nobj, size t size);

The allocated space is filled with zeros. The maximum space that can be
allocated can be changed by customizing the heap size (see section 7.3,
Heap Size). By default no heap is allocated.

Returns a pointer to space in external memory for nobj items of
size bytes length.
NULL if there is not enough space left.

6-27

6-28 Chapter 6

ceil
#include <math.h>
double ceil(double x);
Returns the smallest integer not less than x, as a double.
chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the
current directory on the host to the directory indicated by path.

Returns zero if successful,
-1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.

Returns nothing.

clock

#include <time.h>
clock_t clock(void);

To perform real-time clock support, you must customize this function. See
the file time.c in the examples\time directory demonstrating an
implementation of this low-level time function.

Returns the processor time used. To determine the time used in
seconds, the value returned must be divided by the value of
the macro CLOCKS_PER_SEC, as defined in time.h If the
processor time used is not available or its value cannot be
represented, the function returns the value (clock t)-1.

Libraries 6-29

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.
This function calls _close.

Returns zero if successful,
-1 on error.

cos

#include <math.h>
double cos(double x);

Returns the cosine of x.

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x.

ctime

#include <time.h>
char *ctime(const time t *tp);

Converts the calender time *tp into local time, in string form. This
function is the same as:

asctime(localtime(tp));

Returns the local time in string form.

6-30 Chapter 6

-

difftime

#include <time.h>
double difftime(time_t time2, time t timel);

Computes the difference between calendar times.

Returns the result of time2 - timel in seconds.
div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.
Returns a structure containing the quotient and remainder of num
divided by denom.
exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()’ returns with status
as the return value.

Returns zero, on successful termination.
exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function eX.

Libraries 6-31

Jabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x. | x|

Jealloc

#include <stdlib.h>
void far *fcalloc(size_t nobj, size t size);

Far variant of "calloc()”. See section 7.3, Heap Size.
Jclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,
frees any automatically allocated buffer, then closes the stream.

Returns zero if the stream is successfully closed, or EOF on error.
Jeof

#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is
set.

ferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non—zero value if the error indicator for stream is set.

6-32 Chapter 6

5

Jflush

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If
stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

ffree

#include <stdlib.h>
void ffree(void _far *p);

Deallocates the space pointed to by p. p Must point to space earlier
allocated by a call to "fcalloc()”, "fmalloc()” or frealloc()”. Otherwise the
behavior is undefined.

Returns nothing

Sfgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream.

Returns the read character, or EOF on error.

Jgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos t *ptr);

Stores the current value of the file position indicator for the stream pointed
to by stream in the object pointed to by ptr. The type fpos_t is
suitable for recording such values.

Returns zero if successful,
a non-zero value on error.

Libraries

Sgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n—1 characters from the given stream into the
array s until a newline is found.

Returns s, or NULL on EOF or error.

Jgetwc

#include <wchar.h>
wint t fgetwc(FILE *stream);

Reads one wide character from the given stream.

Returns the read wide character, or WEOF on error.

Jgetws

#include <wchar.h>
wchar t *fgetws(wchar t *s, int n, FILE *stream);

Reads at most the next n—1 wide characters from the given stream into

the array s until a newline is found.

Returns s, or NULL on end-of-file or error.

Sloor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x, as a double.

Jmalloc

#include <stdlib.h>
void far *fmalloc(size t size);

Far variant of "malloc()”. See section 7.3, Heap Size.

6-33

6-34 Chapter 6

5

Jmod

#include <math.h>
double fmod(double x, double y);

Returns the floating—point remainder of x/y, with the same sign as x.
If y is zero, the result is implementation—-defined.

Sfopen

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.
fopen needs a heap size of at least 512 bytes.

You can specify the following values for mode:

r read; open text file for reading

w write; create text file for writing; if the file already exists its
contents is discarded

a append; open existing text file or create new text file for
writing at end of file

”»)

r+ open text file for update; reading and writing

"W+ create text file for update; previous contents if any is
discarded

"a+” append; open or create text file for update, writes at end of

file

The update mode (with a '+’) allows reading and writing of the same file.
In this mode the function fflush must be called between a read and a write
or vice versa. By including the letter ”b” after the initial letter, you can
indicate that the file is a binary file. E.g. "rb” means read binary, "w+b”
means create binary file for update. The filename is limited to

FILENAME MAX characters. At most FOPEN_MAX files may be open at
once.

Libraries

Jprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ..

Performs a formatted write to the given stream.
% See also "printf()” and ”_write()”.
Jputc

#include <stdio.h>
int fputc(int ¢, FILE *stream);

Puts one character onto the given stream.

% See also ”_write()”.

Returns EOF on error.
Sfputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream. The terminating NULL character is not

written.
% See also ”_write()”.
Returns 0 if successful, or EOF on error.
Jputwc

#include <wchar.h>
wint t fputwc(int c, FILE *stream);

Puts one wide character onto the given stream.

Returns the wide character written or WEOF on error.

6-35

6-36 Chapter 6

SJputws

#include <wchar.h>
int fputws(const wchar t *s, FILE *stream);

Writes the wide string to a stream. The terminating NULL wide character
is not written.

Returns 0 if successful, or EOF on error.

Jread

#include <stdio.h>
size t fread(void *ptr, size t size,
size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array
pointed to by ptr.

% See also ”_read()”.

Returns the number of successfully read objects.

Jrealloc

#include <stdlib.h>
void far *frealloc(void _far *p, size t size);

Far variant of "realloc()”. See section 7.3, Heap Size.

Sfree

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

»»

allocated by a call to "calloc()”, "malloc()” or "realloc()”. Otherwise the
behavior is undefined.

% See also "calloc()”, "malloc()” and realloc()”.

Returns nothing

Libraries

Jreopen

#include <stdio.h>
FILE *freopen(const char *filename,
const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function
is normally used to change the files associated with stdin, stdout, or stderr.

% See also "fopen()”.

Returns stream, or NULL on error.
Sfrexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is
returned, and a power of 2, which is stored in *exp. If x is zero, both
parts of the result are zero. For example: frexp(4.0, &var) results in
0.5-23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

Sscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream.

% See also "scanf()” and ”_read()”.

Returns the number of items converted successfully.

6-37

6-38 Chapter 6

5

Jseek

#include <stdio.h>
int fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream. A subsequent read or write will
access data beginning at the new position. For a binary file, the position is
set to of £set characters from origin, which may be SEEK SET for the
beginning of the file, SEEK_CUR for the current position in the file, or
SEEK_END for the end-of-file. For a text stream, of fset must be zero, or
a value returned by ftell. In this case origin must be SEEK SET.

Returns zero if successful,
a non-zero value on error.

Jsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos t *ptr);

Positions stream at the position recorded by fgetpos in *ptr.

Returns zero if successful,
a non-zero value on error.

Sstat

#include <unistd.h>
int fstat(int fd, struct stat * buf);

This function is identical to stat (), except that it uses a file descriptor
instead of a name.

Returns zero if successful,
-1 on error.

Libraries 6-39

Jtell
#include <stdio.h>
long ftell(FILE *stream);
Returns the current file position for stream, or
-1L on error.
SJwide

#include <wchar.h>
int fwide(FILE *stream, int mode);

Determines the orientation of the stream. If mode is greater than zero, the
function first attempts to make the stream wide oriented. If mode is less
than zero, the function first attempts to make the stream byte oriented.
Otherwise, mode is zero and the function does not alter the orientation of

the stream.

Returns a value greater than zero if, after the call, the stream has wide
orientation, a value less than zero if the stream has byte
orientation, or zero if the stream has no orientation.

Jwprintf

#include <wchar.h>
int fwprintf(FILE *stream,
const wchar t *format, ...);

Writes output to the given stream under control of the wide string
pointed to by format that specifies how subsequent arguments are
converted for output.

% See also "printf()”.

Returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

6-40 Chapter 6

Jwrite

#include <stdio.h>

size_t fwrite(const void *ptr,
size t size, size_t nobj,
FILE *stream);

Writes nobj members of size bytes to the given stream from the array
pointed to by ptr.

Returns the number of successfully written objects.

Jwscanf

#include <wchar.h>
int fwscanf(FILE *stream,
const wchar t *format, ...);

Reads input from the given stream, under control of the wide string
pointed to by format that specifies the admissible input sequences and
how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input.

% See also "scanf()”.

Returns the number of input items assigned or EOF on error.
getc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream.

% See also ”_read()”.

Returns the character read or EOF on error.

Libraries 6-41

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.
% See also ”_read()”.
Returns the character read or EOF on error.

getcwd

#include <unistd.h>
char * getcwd(char * buf, size t size);

Use the file system simulation feature of CrossView Pro to retrieve the
current directory on the host.

Returns the directory name if successful,
NULL on error.

getenv

#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with name, or NULL if no
string exists.

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The
newline is replaced by a NULL-character.

% See also ”_read()”.

Returns a pointer to the read string or NULL on error.

6-42 Chapter 6

5

getwc

#include <wchar.h>
wint t getwc(FILE *stream);

Reads one wide character out of the given stream.
Returns the wide character read, or WEOF on error.

getwchar

#include <wchar.h>
wint t getwchar(void);

Reads one wide character from standard input.
Returns the wide character read, or WEOF on error.

gmtime

#include <time.h>
struct tm *gmtime(const time t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not
available.

bcalloc

#include <stdlib.h>
void _huge *hcalloc(unsigned long nobj,
unsigned long size);

Huge variant of "calloc()”. See section 7.3, Heap Size.

Libraries

bfree

#include <stdlib.h>
void hfree(void _huge *p);

Deallocates the space pointed to by p. p Must point to space earlier
allocated by a call to "hcalloc()”, "hmalloc()” or "hrealloc()”. Otherwise the

behavior is undefined.

Returns nothing

bmalloc

#include <stdlib.h>
void huge *hmalloc(unsigned long size);

Huge variant of "malloc()”. See section 7.3, Heap Size.
brealloc
#include <stdlib.h>

void huge *hrealloc(void huge *p,
unsigned long size);

Huge variant of "realloc()”. See section 7.3, Heap Size.

bypot

#include <math.h>
double hypot(double x, double y);

Returns the hypotenuse for the given values, as a double.

bypotf

#include <math.h>
float hypotf(float x, float y);

Returns the hypotenuse for the given values, as a float.

6-43

6-44 Chapter 6

=

bypotl

#include <math.h>
long double hypotl(long double x, long double y);

Returns the hypotenuse for the given values, as a long double.
isalnum

#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when ¢ is an alphabetic character or a
number (JA-Z][a-2][0-9]).

isalpba

#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character

([A-Z][a-z]).
isascii

#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is
a non—ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non—zero value when c is a control character.

Libraries

isdigit

#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0-9]).
isgraph

#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.
isinf

#include <float.h>
int isinf(double d);

IEEE-754-1985 recommended function. Test the given variable on being
an infinite (IEEE-754) value.

Returns zero if the variable is not +—infinite, else non-zero.
isinff

#include <float.h>
int isinff(float f);

IEEE-754-1985 Recommended function. Test the given variable on being
an infinite (IEEE-754) value.

Returns zero if the variable is not +-infinite, else non-zero.

islower

#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a-z]).

6-45

6-46 Chapter 6

-

isnan

#include <float.h>
int isnan(double d);

IEEE-754-1985 recommended function. Test the given variable on being a
NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.
isnanf

#include <float.h>
int isnanf(float f);

IEEE-754-1985 Recommended function. Test the given variable on being a
NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.
isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.
ispunct

#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when ¢ is a punctuation character (such as
0T ete).

isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

Libraries 6-47

isupper

#include <ctype.h>
int isupper(wint t wc);

Returns a non-zero value when c is an uppercase character (JA-Z)).

iswalnum

#include <wctype.h>
int iswalnum(wint_t wc);

Returns a non-zero value when wc is an alphabetic wide character or
a number ([A-Z][a—z][0-9]).

iswalpba

#include <wctype.h>
int iswalpha(wint t wc);

Returns a non-zero value when we is an alphabetic wide character

([A-Z][a~2)).

iswcntrl

#include <wctype.h>
int iswentrl(wint t wec);

Returns a non-zero value when we is a control wide character.
iswctype

#include <wctype.h>
int iswctype(wint_t wc, wctype t desc);

Returns a non—zero value (true) if and only if the value of the wide
character we has the property described by desc.

For example, the function iswalnum(wc) is the same as specifying:

iswctype(wc, wctype(”alnum”))

6-48 Chapter 6

-

iswdigit

#include <wctype.h>
int iswdigit(wint_t wc);

Returns a non-zero value when we is a numeric character ([0-9)).
iswgraph

#include <wctype.h>
int iswgraph(wint t wc);

Returns a non-zero value when wc is printable, but not a space.

iswlower

#include <wctype.h>
int iswlower(wint t wc);

Returns a non-zero value when wc is a lowercase wide character

([a=z]).
iswprint

#include <wctype.h>
int iswprint(wint t wc);

Returns a non-zero value when wc is printable, including spaces.
iswpunct

#include <wctype.h>
int iswpunct(wint t wc);

Returns a non-zero value when wc is a punctuation wide character
(such as ', ’), ", etc).

Libraries 6-49

iswspace

#include <wctype.h>
int iswspace(wint_t wc);

Returns a non-zero value when wc is a white-space wide character
(space, tab, vertical tab, formfeed, linefeed, carriage return).

iswupper

#include <wctype.h>
int iswupper(wint t wc);

Returns a non-zero value when wc is an uppercase wide character

(A-Z).
iswxdigit

#include <wctype.h>
int iswxdigit(wint_t wc);

Returns a non-zero value when wc is a hexadecimal digit

((0-9][A-F][a—f]).
isxdigit

#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit

((0-9][A-Ffa~f)).

labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

6-50 Chapter 6

-

ldexp

#include <math.h>
double ldexp(double x, int n);

Returns the result of: x-2n,
Idiv

#include <stdlib.h>
ldiv_t 1div(long num, long denom);

Both arguments are long integers. The returned quotient and remainder
are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

localeconv

#include <locale.h>
struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities according to the rules
of the current locale.

Returns a pointer to the filled-in object.

localtime

#include <time.h>
struct tm *localtime(const time t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

Libraries
log
#include <math.h>
double log(double x);
Returns the natural logarithm 1n(x), x>0.
log10

#include <math.h>
double logl0(double x);

Returns the base 10 logarithm 1ogl0(x), x>0.
longjmp

#include <setjmp.h>
void longjmp(jmp buf env, int val);

Restores the environment previously saved with a call to setjmp(). The
function calling the corresponding call to setjimp() may not be terminated
yet. The value of val may not be zero.

Returns nothing.

Istat

#include <unistd.h>
int lstat(const char * name, struct stat * buf);

This function is identical to stat (), except in the case of a symbolic link,
where the link itself is ’stat’—ed, not the file that it refers to.

Returns zero if successful,
-1 on error.

6-51

6-52 Chapter 6

5

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be
allocated can be changed by customizing the heap size (see section 7.3,
Heap Size). By default no heap is allocated.

Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

mblen

#include <stdlib.h>
int mblen(const char *s, size t n);

Determines the number of bytes comprising the multi-byte character
pointed to by s, if s is not a null pointer. Except that the shift state is not
affected. At most n characters will be examined, starting at the character
pointed to by s.

Returns the number of bytes, or 0 if s points to the null character, or
-1 if the bytes do not form a valid multi-byte character.

mbrlen

#include <wchar.h>
size t mbrlen(const char *s, size t n,
mbstate t *ps);

Is equivalent to the call:
mbrtowc (NULL, s, n, ps != NULL ? ps : &internal)

where internal is the mbstate_t object for the mbrlen function,
except that the expression designated by ps is evaluated only once.

Returns a value between zero and n, inclusive, (size t) (-2), or
(size_t)(-1).

Libraries

mbrtowc

#include <wchar.h>
size_t mbrtowc(wchar t *pwc, const char *s,
size_t n, mbstate t *ps);

Inspects at most n bytes beginning with the byte pointed to by s to
determine the number of bytes needed to complete the next multi-byte
character (including any shift sequences). If the function determines that
the next multi-byte character is complete and valid, it determines the
value of the corresponding wide character and then, if pwe is not a NULL
pointer, stores that value in the object pointed to by pwe. If the
corresponding wide character is the NULL wide character, the resulting
state described is the initial conversion state.

Returns the number of bytes, or 0 if s points to the null character, or
(size_ t) (-2) if the bytes form an incomplete (but
potentionally valid) multi-byte character, or (size t)(-1)
if the bytes do not form a valid multi-byte character.

mbsinit

#include <wchar.h>
int mbsinit(const mbstate t *ps);

Determines whether the pointed-to mbstate t object describes an initial
conversion state, if ps is not a NUL pointer.

Returns non-zero if ps is a NULL pointer or if the pointed-to object
describes an initial conversion state. Otherwise, it returns
Zero.

6-53

6-54 Chapter 6

5

mbsrtowcs

#include <wchar.h>
size_t mbsrtowcs(wchar_t *dst, const char **src,
size_t len, mbstate t *ps);

Converts a sequence of multi-byte characters that begins in the conversion
state described by the object pointed to by ps, from the array indirectly
pointed to by src into a sequence of corresponding wide characters. This
function then stores the converted characters into the array pointed to by
dst, stopping when len wide characters have been stored, or when a
sequence of bytes is encountered that does not form a valid multi-byte
character, or if a null wide character is stored.

Returns the number of multi-byte characters successfully converted
(not including the terminating null character, if any), or
(size_t)-1 if an invalid multi-byte character is
encountered.

mbstowcs

#include <stdlib.h>
size t mbstowcs(wchar t *pwcs,
const char *s, size t n);

Converts a sequence of multi-byte characters that begins in the initial shift
state from the array pointed to by s, into a sequence of corresponding
wide characters and stores these wide characters into the array pointed to
by pwcs, stopping after n wide characters are stored or a null wide
character is stored.

Returns the number of array elements modified (not including a
terminating null wide character, if any), or (size_t)-1 if an
invalid multi-byte character is encountered.

Libraries

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc,
const char *s, size t n);

Determines the number of bytes that comprise the multi-byte character
pointed to by s. It then determines the value of the wide character that
corresponds to that multi-byte character. If the multi-byte character is
valid and pwc is not a null pointer, the mbtowc function stores the value
of the wide character in the object pointed to by pwe. At most n bytes will
be examined, starting at the byte pointed to by s.

Returns the number of bytes, or 0 if s points to the null wide
character, or -1 if the bytes do not form a valid multi-byte
character.

memchr

#include <string.h>
void *memchr(const void *cs, int c, size t n);

Checks the first n bytes of ¢s on the occurrence of character c.

Returns NULL when not found, otherwise a pointer to the found
character is returned.

memcmp

#include <string.h>
int memcmp(const void *cs,
const void *ct, size t n);

Compares the first n bytes of cs with the contents of ct.

Returns avalue<0if cs < ct,
0if cs == ct,
or a value >0 if cs > ct.

6-55

6-56 Chapter 6

-

memcpffb

#include <string.h>
void memcpffb(void far *dest,
void far *src, size t n);

Copies n bytes from far data pointed by src to far data pointed by dest.
No care is taken if the two objects overlap and page boundaries are not
checked. (0 < n <= 16384)

Returns nothing

memcpffw

#include <string.h>
void memcpffw(void far *dest,
void far *src, size t n);

Copies n words from far data pointed by src to far data pointed by dest.
No care is taken if the two objects overlap and page boundaries are not
checked. (0 <n <=8192)

Returns nothing

memcpfbb

#include <string.h>
void memcpfhb(void huge *dest,
void far *src, size_t n);

Copies n bytes from far data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=16384)

Returns nothing

Libraries 6-57

memcpfbw

#include <string.h>
void memcpfhw(void huge *dest,
void far *src, size t n);

Copies n words from far data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=8192)

Returns nothing

memcpfnb

#include <string.h>
void memcpfnb(void near *dest,
void far *src, size_t n);

Copies n bytes from far data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap and page boundaries are
not checked. (0 <n <= 16384)

Returns nothing

memcpfnw

#include <string.h>
void memcpfnw(void near *dest,
void far *src, size t n);

Copies n words from far data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap and page boundaries are
not checked. (0 <n <=8192)

Returns nothing

6-58 Chapter 6

-

memcpfsb

#include <string.h>
void memcpfsb(void shuge *dest,
void far *src, size t n);

Copies n bytes from far data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=16384)

Returns nothing
memcpfsw

#include <string.h>
void memcpfsw(void shuge *dest,
void far *src, size_t n);

Copies n words from far data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=8192)

Returns nothing
memcphfb

#include <string.h>
void memcphfb(void far *dest,
void huge *src, size t n);

Copies n bytes from huge data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=16384)

Returns nothing

Libraries 6-59

memcphfw

#include <string.h>
void memcphfw(void far *dest,
void huge *src, size t n);

Copies n words from huge data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for far data.

(0<n<=8192)

Returns nothing

memcphhbb

#include <string.h>
void memcphhb(void huge *dest,
void huge *src, size t n);

Copies n bytes from huge data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap.
(0 <n<=065535)

Returns nothing
memcphbhw

#include <string.h>
void memcphhw(void huge *dest,
void huge *src, size t n);

Copies n words from huge data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap.
(0 <n<=065535)

Returns nothing

6-60 Chapter 6

-

memcphnb

#include <string.h>
void memcphnb(void near *dest,
void huge *src, size t n);

Copies n bytes from huge data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for near data. (0 <n <= 16384)

Returns nothing

memcphnw

#include <string.h>
void memcphnw(void near *dest,
void huge *src, size t n);

Copies n words from huge data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for near data. (0 <n <=8192)

Returns nothing

memcphsb

#include <string.h>
void memcphsb(void shuge *dest,
void huge *src, size t n);

Copies n bytes from huge data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=065535)

Returns nothing

Libraries 6-61

memcphsw

#include <string.h>
void memcphsw(void shuge *dest,
void huge *src, size t n);

Copies n words from huge data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap.
(0 <n<=065535)

Returns nothing
memcpnfb

#include <string.h>
void memcpnfb(void far *dest,
void near *src, size t n);

Copies n bytes from near data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=16384)

Returns nothing
memcpnfw

#include <string.h>
void memcpnfw(void far *dest,
void near *src, size t n);

Copies n words from near data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=8192)

Returns nothing

6-62 Chapter 6

-

memcpnbb

#include <string.h>
void memcpnhb(void huge *dest,
void near *src, size t n);

Copies n bytes from near data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for near data. (0 <n <= 16384)

Returns nothing

memcpnbw

#include <string.h>
void memcpnhw(void huge *dest,
void near *src, size t n);

Copies n words from near data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for huge data but not checked for near data. (0 <n <=8192)

Returns nothing

memcpnnb

#include <string.h>
void memcpnnb(void near *dest,
void near *src, size t n);

Copies n bytes from near data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap and page boundaries are
not checked. (0 <n <= 16384)

Returns nothing

Libraries 6-63

memcpnnw

#include <string.h>
void memcpnnw(void near *dest,
void near *src, size t n);

Copies n words from near data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap and page boundaries are
not checked. (0 < n <=8192)

Returns nothing

memcpnsb

#include <string.h>
void memcpnsb(void shuge *dest,
void near *src, size t n);

Copies n bytes from near data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not for near data. (0 < n <= 16384)

Returns nothing

memcpnsw

#include <string.h>
void memcpnsw(void shuge *dest,
void near *src, size t n);

Copies n words from near data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not for near data. (0 < n <= 8192)

Returns nothing

6-64 Chapter 6

-

memcpsfb

#include <string.h>
void memcpsfb(void far *dest,
void shuge *src, size t n);

Copies n bytes from shuge data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not checked for far data. (0 <n <= 16384)

Returns nothing
memcpsfw

#include <string.h>
void memcpsfw(void far *dest,
void shuge *src, size t n);

Copies n words from shuge data pointed by src to far data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not checked for far data. (0 <n <=8192)

Returns nothing

memcpshb

#include <string.h>
void memcpshb(void huge *dest,
void shuge *src, size_t n);

Copies n bytes from shuge data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=16384)

Returns nothing

Libraries 6-65

memcpshw

#include <string.h>
void memcpshw(void huge *dest,
void shuge *src, size t n);

Copies n words from shuge data pointed by src to huge data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=8192)

Returns nothing
memcpsnb

#include <string.h>
void memcpsnb(void near *dest,
void shuge *src, size t n);

Copies n bytes from shuge data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not for near data.

(0<n<=16384)

Returns nothing
memcpsnw

#include <string.h>
void memcpsnw(void near *dest,
void shuge *src, size t n);

Copies n words from shuge data pointed by src to near data pointed by
dest. No care is taken if the two objects overlap. Page boundaries are
checked for shuge data but not for near data.

(0<n<=8192)

Returns nothing

6-66 Chapter 6

-

memcpssb

#include <string.h>
void memcpssb(void shuge *dest,
void shuge *src, size t n);

Copies n bytes from shuge data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=16384)

Returns nothing

memcpssw

#include <string.h>
void memcpssw(void shuge *dest,
void shuge *src, size t n);

Copies n words from shuge data pointed by src to shuge data pointed by
dest. No care is taken if the two objects overlap.
(0<n<=8192)

Returns nothing
memcpy

#include <string.h>
void *memcpy(void *s, const void *ct, size t n);

Copies n characters from ct to s. No care is taken if the two objects
overlap.

Returns s

memmove

#include <string.h>
void *memmove(void *s, const void *ct, size t n);

Copies n characters from ct to s. Overlapping objects will be handled
correctly.

Returns s

Libraries 6-67

memset

#include <string.h>
void *memset(void *s, int c, size t n);

Fills the first n bytes of s with character c.
Returns s

mktime

#include <time.h>
time t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time in seconds, or —1 if it cannot be
represented.

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x. It
stores the integral part in *ip.

Returns the fractional part.

ncalloc

#include <stdlib.h>
void near *ncalloc(size t nobj, size t size);

Near variant of "calloc()”. See section 7.3, Heap Size.

6-68 Chapter 6

-

nfree

#include <stdlib.h>
void nfree(void near *p);

Deallocates the space pointed to by p. p Must point to space earlier
allocated by a call to "ncalloc()”, "nmalloc()” or "nrealloc()”. Otherwise the
behavior is undefined.

Returns nothing

nmalloc

#include <stdlib.h>
void near *nmalloc(size t size);

Near variant of "malloc()”. See section 7.3, Heap Size.
nrealloc

#include <stdlib.h>
void near *nrealloc(void near *p, size t size);

Near variant of "realloc()”. See section 7.3, Heap Size.

offsetof

#include <stddef.h>
int offsetof(type, member);

Be aware, offsetof() for bit structures/unions may give unpredictable
results. Also the offsetof() of a bitfield is undefined.

Returns the offset for the given member in an object of type.

Libraries

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls _open.

% See also "fopen()”.

Returns the file descriptor if successful (a non-negative integer), or
-1 on error.

perror

#include <stdio.h>
void perror(const char *s);

Prints s and an implementation—-defined error message corresponding to
the integer errno, as if by:

fprintf(stderr, "%s: %s\n", s, “error message”);

The contents of the error message are the same as those returned by the
strerror function with the argument errno.

% See also the ”strerror()” function.

Returns nothing.
pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0, or if x<0 and y is not an integer.

Returns the result of x raised to the power of y: xv.

6-69

6-70 Chapter 6

=

printf

#include <stdio.h>
int printf(const char *format, ...);

Performs a formatted write to the standard output stream.

% See also ”_write()”.

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion
specifiers. Each conversion specifier should be preceded by a "%’
character. The conversion specifier should be build in order :
— Flags (in any order):
- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

space
a negative number is preceded with a sign, positive numbers
with a space.

0 specifies padding to the field width with zeros (only for
numbers).
specifies an alternate output form. For o, the first digit will be

zero. For x or X, "0x” and "0X” will be prefixed to the
number. For e, E, f, g, G, the output always contains a
decimal point, trailing zeros are not removed.

— A number specifying a minimum field width. The converted
argument is printed in a field with at least the length specified here.
If the converted argument has fewer characters than specified, it will
be padded at the left side (or at the right when the flag =" was
specified) with spaces. Padding to numeric fields will be done with
zeros when the flag '0’ is also specified (only when padding left).
Instead of a numeric value, also ’*’ may be specified, the value is
then taken from the next argument, which is assumed to be of type
int.

— A period. This separates the minimum field width from the
precision.

Libraries

- A number specifying the maximum length of a string to be printed.
Or the number of digits printed after the decimal point (only for
floating point conversions). Or the minimum number of digits to be
printed for an integer conversion. Instead of a numeric value, also
’*’ may be specified, the value is then taken from the next
argument, which is assumed to be of type int.

- A length modifier ’h’, ’I’ or 'L’. ’h’ indicates that the argument is to
be treated as a short or unsigned short number. "I’ should be used if
the argument is a long integer. 'L’ indicates that the argument is a
long double.

Flags, length specifier, period, precision and length modifier are optional,
the conversion character is not. The conversion character must be one of
the following, if a character following '%’ is not in the list, the behavior is

undefined:
Character Printed as
d,i int, signed decimal
o] int, unsigned octal
X, X int, unsigned hexadecimal in lowercase or uppercase
respectively
u int, unsigned decimal
c int, single character (converted to unsigned char)
S char *, the characters from the string are printed until
a NULL character is found. When the given precision
is met before, printing will also stop
f double
e E double
g,G double
n int *, the number of characters written so far is written
into the argument. This should be a pointer to an
integer in default memory. No value is printed.

6-71

6-72

Chapter 6

Character Printed as

p pointer; printed as a hexadecimal number, prefixed
with: <near>, <far> or <huge>.

For the different pointer types the following formats

are used:
<near> 0000
<far> PPPP:0000
<huge> SS:0000
where:
0 s offset
P is page

S is segment

% No argument is converted, a ‘%’ is printed.

Table 6-1: Printf conversion characters

The ’p’ conversion character can be used to print pointers. In the tiny and
small memory models, pointers will be printed as near pointers by default.
In the medium and large memory models, pointers will be printed as far
pointers by default. By specifying one of the length modifiers 'h’, 'I' or °L’,
a pointer will always be printed as near, far or huge respectively.

Because of the large overhead of the printf() function on small programs,
three different versions of the formatter (_doprint.c) are delivered. The
LARGE version is able to print everything as specified above. The
MEDIUM version has no floating point formatting. When a floating point
conversion character is found, errno is filled with the correct error
number, printf stops immediately. The SMALL version does not print
floating point, and does not accept flags, width specifier, period and
precision. This formatter is considerably smaller in code size than the
MEDIUM or LARGE version.

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream.

% See also ”_write()”.

Returns EOF on error.

Libraries 6-73

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

% See also ”_write()”.

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

% See also ”_write()”.

Returns NULL if successful, or EOF on error.

putwc

#include <wchar.h>
wint t putwc(wchar t c, FILE *stream);

Puts one wide character onto the given stream.

Returns the wide character written, or WEOF on error.

putwchar

#include <wchar.h>
wint t putwchar(wchar t c);

Puts one wide character onto standard output.

Returns the wide character written, or WEOF on error.

6-74 Chapter 6

=

qsort

#include <stdlib.h>
void gsort(void *base, size_ t n,
size t size, int (*cmp)
(const void *, const void *));

This function sorts an array of n members. The initial base of the array is
given by base. The size of each member is specified by size. The given
array is sorted in ascending order, according to the results of the function
pointed to by cmp.

@ This function is recursive, and therefore may need an increased user stack
section!

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the program.

% See also “signal()”.

Returns zero if successful, or a non—-zero value if unsuccessful.

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to
RAND MAX.

read

#include <unistd.h>
size t read(int fd, char * buffer, size t count);

Reads a sequence of characters from a file. This function calls _read.

% See also ”_read()”.

Libraries 6-75

realloc

#include <stdlib.h>
void *realloc(void *p, size t size);

Reallocates the space for the object pointed to by p. The contents of the
object will be the same as before calling realloc(). The maximum space
that can be allocated can be changed by customizing the heap size (see
section 7.3, Heap Size). By default no heap is allocated.

Returns NULL and *p is not changed, if there is not enough space for
the new allocation. Otherwise a pointer to the newly
allocated space for the object is returned.

remove

#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or
a non-zero value, if the attempt fails.

rename

#include <stdio.h>
int rename(const char *oldname,
const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or
a non-zero value, if the attempt fails.

6-76 Chapter 6

rewind

#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the
beginning of the file. This function is equivalent to:

(void) fseek(stream, OL, SEEK_SET);
clearerr(stream);

Returns nothing.

scalloc

#include <stdlib.h>
void _shuge *scalloc(size t nobj, size t size);

Shuge variant of “calloc()”. See section 7.3, Heap Size.
scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

% See also ”_read()”.

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default
memory) of the type which is specified in the format string.

The format string may contain :

— Blanks or tabs, which are skipped.

— Normal characters (not ’%’), which should be matched exactly in the
input stream.

— Conversion specifications, starting with a %’ character.
Conversion specifications should be build as follows (in order) :

- A meaning that no assignment is done for this field.

Libraries

- A number specifying the maximum field width.

- The conversion characters d, i, n, o, u and x may be preceded by
'h’ if the argument is a pointer to short rather than int, or by 'I’
(letter ell) if the argument is a pointer to long. The conversion
characters e, £, and g may be preceded by I’ if a pointer double
rather than float is in the argument list, and by 'L’ if a pointer to a
long double.

— A conversion specifier. ¥, maximum field width and length modifier
are optional, the conversion character is not. The conversion
character must be one of the following, if a character following %’
is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a
character following *%’ is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading O is
entered) or hexadecimal (leading "0x” or "0X”), or just

decimal.

0 int, unsigned octal.

u int, unsigned decimal.

X int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

S char *, a string of non white space characters. The

argument should point to an array of characters,
large enough to hold the string and a terminating

NULL character.
f float
e E float
g, G float
n int *, the number of characters written so far is written

into the argument. No scanning is done.

6-77

6-78

Chapter 6

Character

Scanned as

p

pointer; interpreted as a hexadecimal number, must
be prefixed with: <near>, <far> or <huge>.

For the different pointer types the following formats
are expected:

<near> 0000

<far> PPPP:0000

<huge> SS:0000
where:

0 s offset

P is page

S is segment

Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the |’
character in the set of scanning characters.

Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying [*]...] includes the ']’
character in the set.

%

Literal %’, no assignment is done.

Table 6-2: Scanf conversion characters

The ’p’ conversion character can be used to read pointers. In the tiny and
small memory models, pointers will be read as near pointers by default. In
the medium and large memory models, pointers will be read as far
pointers by default. By specifying one of the length modifiers ’h’, ’I’ or ’L’,
a pointer will always be read as near, far or huge respectively.

Two different version of the formatter (_doscan.c) are delivered. The
LARGE version is able to scan everything as specified above. The SMALL
version has no floating point scanning. When a floating point conversion
character is found, errno is filled with the correct error number, scanf
stops immediately.

Therefore the default formatter installed in the C library is the SMALL

version.

Libraries

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream, if buf is NULL.
Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, IOFBF, BUFSIZ)

Returns nothing.

% See also "setvbuf()”.

setyimp

#include <setjmp.h>
int setjmp(jmp buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjmp(). Calling the function
"longjmp()” using the saved env restores the current
environment and jumps to this place with a non—zero return
value.

% See also "longjmp()”.

setlocale

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the
category and locale arguments.

Returns the string associated with the specified category for the
new locale if the selection can be honored.
null pointer if the selection cannot be honored.

6-79

6-80 Chapter 6

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
int mode, size t size);

Controls buffering for the stream; this function must be called before
reading or writing. mode can have the following values:

_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

Returns zero if successful or a non-zero value for an error.
% See also "setbuf()”.
sfree

#include <stdlib.h>
void sfree(void _shuge *p);

Deallocates the space pointed to by p. p Must point to space earlier

allocated by a call to "scalloc()”, "smalloc()” or "srealloc()”. Otherwise the
behavior is undefined.

Returns nothing

Libraries 6-81

signal

#include <signal.h>
void (*signal(int sig, void (*handler) (int)))(int);

Determines how subsequent signals will be handled. If handler is
SIG_DFL, the default behavior is used; if handler is SIG_IGN, the signal
is ignored; otherwise, the function pointed to by handler will be called,
with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort

SIGFPE arithmetic error, e.g. zero divide or overflow
SIGILL illegal function image, e.g. illegal instruction
SIGINT interactive attention, e.g. interrupt

SIGSEGV illegal storage access, e.g. access outside
memory limits
SIGTERM termination request sent to this program

When a signal sig subsequenly occurs, the signal is restored to its default
behavior; then the signal-handler function is called, as if by

(*handler) (sig). If the handler returns, the execution will resume
where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or
SIG_ERR if an error occurs.

sin

#include <math.h>
double sin(double x);

Returns the sine of x.
sinb

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x.

6-82 Chapter 6

-

smalloc

#include <stdlib.h>
void _shuge *smalloc(size_t size);

Shuge variant of "malloc()”. See section 7.3, Heap Size.
sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.

% See also "printf()”.
sqrt

#include <math.h>
double sqrt(double x);

Returns the square root of x. Vx, where x = 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random
numbers to be returned by subsequent calls to srand(). When srand is
called with the same seed value, the sequence of pseudo-random
numbers generated by rand() will be repeated.

Returns pseudo random numbers.

srealloc

#include <stdlib.h>
void _shuge *srealloc(void _shuge *p, size t size);

Shuge variant of "realloc()”. See section 7.3, Heap Size.

Libraries

sscanf

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string.

% See also "scanf()”.

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on
the host platform.

Returns zero if successful,
-1 on error.

Strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s, including the trailing NULL character.

Returns s

strchr

#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character ¢ in the string
cs. If not found, NULL is returned.

6-83

6-84

Chapter 6

strcmp

#include <string.h>

int strcmp(const char *cs, const char *ct);

Compares string cs to string ct.

Returns <0 ifecs < ct,
0 ifcs == ct
>0 if cs > ct.
strcoll

#include <string.h>

int strcoll(const char *cs, const char *ct);

Compares string cs to string ct. The comparison is based on strings
interpreted as appropriate to the program’s locale.

Returns <0ifes < ct,
0 ifes = ct,

>0 if cs > ct.

strcpy

#include <string.h>

char *strcpy(char *s, const char *ct);

Copies string ct into the string s, including the trailing NULL character.
Returns s

strcspn

#include <string.h>
size t strcspn(const char *cs, const char *ct);
Returns

the length of the prefix in string cs, consisting of characters
not in string ct.

Libraries 6-85

strerror

#include <string.h>
char *strerror(size t n);

Returns pointer to implementation—defined string corresponding to
error n.

strftime

#include <time.h>

size t strftime(char *s, size t maxsize,
const char *format,
const struct tm *timeptr);

Formats date and time information from the structure *timeptr into s
according to the specified format format. format is analogous to a
printf format. Each %c is replaced as described below:

%a abbreviated weekday name
%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation
%d day of the month (01-31)
%H hour, 24-hour clock (00-23)
%1 hour, 12-hour clock (01-12)
%j day of the year (001-366)
%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM
%S second (00-59)

%U week number of the year, Sunday as first day of the
week (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year, Monday as first day of the
week (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

6-86 Chapter 6

%Z time zone name, if any
%% %

Ordinary characters (including the terminating \0’) are copied into s. No
more than maxsize characters are placed into s.

Returns the number of characters (\0’ not included), or
zero if more than maxsize characters where produced.

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in ¢s, not counting the NULL
character.

Strncat

#include <string.h>
char *strncat(char *s, const char *ct, size t n);

Concatenates string ct to string s, at most n characters are copied. Add a
trailing NULL character.

Returns s

strncmp

#include <string.h>
int strncmp(const char *cs,
const char *ct, size t n);

Compares at most n bytes of string cs to string ct.

Returns <0ifecs < ct,
0 ifecs == ct,
>0 if cs > ct.

Libraries 6-87

strucpy

#include <string.h>
char *strncpy(char *s, const char *ct, size t n);

Copies string ct onto the string s, at most n characters are copied. Adds a
trailing NULL character if the string is smaller than n characters.

Returns s

strpbrk

#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in c¢s of any character out of
string ct. If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs, int c);

Returns a pointer to the last occurrence of ¢ in the string cs. If not
found, NULL is returned.

strspn

#include <string.h>
size t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters
in the string ct.

strstr

#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs.
Returns NULL if not found.

6-88 Chapter 6

-

strtod

#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.
Initial white spaces are skipped. When endp is not a NULL pointer, after
this function is called, *endp will point to the first character not used by
the conversion.

Returns the read value.

strtok

#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct. It
terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.
Initial white spaces are skipped. Then a value is read using the given
base. When base is zero, the base is taken as defined for integer
constants. I.e. numbers starting with an 0’ are taken octal, numbers
starting with ’0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

Libraries 6-89

strtoul

#include <stdlib.h>
unsigned long strtoul(const char *s,
char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned
long integer. Initial white spaces are skipped. Then a value is read using
the given base. When base is zero, the base is taken as defined for
integer constants. I.e. numbers starting with an ’0’ are taken octal, numbers
starting with ’0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#include <string.h>
size t
strxfrm(char *ct, const char *cs, size t n);

Transforms the string pointed to by ¢s and places the resulting string into
the array pointed to by ct. No more than n characters are placed into the
resulting string pointed to by ct, including the terminating null character.

Returns the length of the transformed string.
swprintf

#include <wchar.h>
int swprintf(const wchar t *s, size t n,
const wchar t *format, ...);

Is equivalent to fwprintf, except that the output is written to an array of
wide characters (argument s). No more than n wide characters are written,
including a terminating null wide character.

Returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative
value if an encoding error occurred or if n or more wide
characters were requested to be written.

6-90

-

swscanf

#include <wchar.h>
int swscanf(const wchar t *s,
const wchar t *format, ...);

Chapter 6

Is equivalent to fwscanf, except that the input is obtained from a wide

string (argument s).

Returns the number of input items assigned or EOF on error.

tan

#include <math.h>
double tan(double x);

Returns the tangent of x.

tanb

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x.
time

#include <time.h>
time t time(time t *tp);

The return value is also assigned to *tp, if tp is not NULL.

Returns the current calendar time in seconds, or —1 if the time is not

available.

Libraries 6-91

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+” that will be automatically
removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be
created.

tmpnam

#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a
different name is created.

tmpnam(NULL) creates a string that is not the name of an existing file,
and returns a pointer to an internal static array. tmpnam(s) creates a
string and stores it in s and also returns it as the function value. s must
have room for at least I _tmpnam characters. At most TMP_MAX different
names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii

#include <ctype.h>
int toascii(int c);

Converts ¢ to an ascii value (strip highest bit). This is a non—ANSI
function.

Returns the converted value.

6-92 Chapter 6

-

tolower

#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

toupper

#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase
character, otherwise c¢ is returned.

towctrans

#include <wctype.h>
wint t towctrans(wint t wc, wctrans_t desc);

Returns the mapped value of we using the mapping described by
desc.

For example, the function tolower (wc) is the same as specifying:

towctrans(wc, wctrans(”tolower”))

towlower

#include <wctype.h>
wint t towlower(wint t wc);

Returns we converted to a lowercase wide character if it is an
uppercase wide character, otherwise wc is returned.

Libraries 6-93

towupper

#include <wctype.h>
wint t towupper(wint t wc);

Returns we converted to an uppercase wide character if it is a
lowercase wide character, otherwise wc is returned.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.
Returns EOF on error.

ungetwc

#include <wchar.h>
wint t ungetwc(wint t c, FILE *stream);

Pushes at the most one wide character back onto the input stream.

Returns the wide character pushed back, or WEOF on error.
unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This
function calls _unlink.

Returns zero if file is successfully removed, or
a non-zero value, if the attempt fails.

6-94 Chapter 6

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.
It's return type has the type of the given argument type. A
next call to this macro will return the value of the next
argument.

va_end

#include <stdarg.h>
va _end(va list ap);

This macro must be called after the arguments have been processed. It
should be called before the function using the macro ’va_start’ is
terminated (ANSI specification).

va_start

#include <stdarg.h>
va_start(va list ap, lastarg);

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_1list cannot
contain any bit type variables. Also the given argument lastarg must be
the last non bit type argument in the list.

vfprintf

#include <stdio.h>
int vfprintf(FILE *stream,
const char *format, va_ list arg);

Is equivalent to vprintf, but writes to the given stream.

% See also "vprintf()” and ”_write()”.

Libraries 6-95

vprintf

#include <stdio.h>
int vprintf(const char *format, va list arg);

Does a formatted write to standard output. Instead of a variable argument
list as for printf(), this function expects a pointer to the list.

% See also "printf()” and ”_write()”.

vsprintf

#include <stdio.h>
int vsprintf(char *s, const char *format,
va_list arg);

Does a formatted write to a string. Instead of a variable argument list as for
printf(), this function expects a pointer to the list.

% See also "printf()” and ”_write()”.
vfwprintf

#include <wchar.h>
int vfwprintf(FILE *stream,
const wchar t *format, va list arg);

Is equivalent to fwprintf, except that instead of a variable argument list
this function expects a pointer to the list.

Returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

6-96 Chapter 6

-

vswprintf

#include <wchar.h>
int vswprintf(const wchar t *s, size t n,
const wchar t *format, va list arg);

Is equivalent to swprintf, except that instead of a variable argument list
this function expects a pointer to the list.

Returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative
value if an encoding error occurred or if n or more wide
characters were requested to be written.

vwprintf

#include <wchar.h>
int vwprintf(const wchar t *format, va list arg);

Is equivalent to wprint£, except that instead of a variable argument list
this function expects a pointer to the list.

Returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

wcrtomb

#include <wchar.h>
size_t wcrtomb(char *s, wchar t wc, mbstate t *ps);

Determines the number of bytes needed to represent the multi-byte
character that corresponds to the wide character given by we (including
any shift sequences). It stores the multi-byte character representation in
the array pointed to by s (if s is not a null pointer). At most
MB_CUR_MAX characters are stored. If we is a null wide character, a null
byte is stored, preceded by any shift sequence needed to restore the initial
shift state; the resulting state described is the initial conversion state.

Returns the number of bytes, or (size t)-1 if the value of we does
not correspond to a valid wide character.

Libraries 6-97

wcscat

#include <wchar.h>
wchar_t *wcscat(wchar t *sl, const wchar_ t #*s2);

Concatenates a copy of wide string s2 to string s1, including the trailing
null wide character. The initial wide character of s2 overwrites the null
wide character at the end of s1.

Returns sl

wcschr

#include <wchar.h>
wchar t *wcschr(const wchar_t *s, wchar t c);

Returns a pointer to the first occurrence of wide character ¢ in the
wide string s. If not found, NULL is returned.

wcscmp

#include <wchar.h>
int wcscmp(const wchar t *sl, const wchar t *s2);

Compares wide string s1 to wide string s2.

Returns <0 ifsl < s2,
0 if sl == s2,
>0 ifsl > s2.

wcscoll

#include <wchar.h>
int wecscoll(const wchar t *sl, const wchar t *s2);

Compares wide string s1 to wide string s2. The comparison is based on
wide strings interpreted as appropriate to the program’s locale.

Returns <0 ifsl < s2,
0 if sl == s2,
>0 ifsl > s2.

6-98

-

Chapter 6

wcescpy

#include <wchar.h>
wchar_t *wcscpy(wchar t *sl, const wchar_ t #*s2);

Copies wide string s2 intto wide string s1. including the trailing null wide
character.

Returns sl

wcscspn

#include <wchar.h>
size_t wcscspn(const wchar t *sl, const wchar t *s2);

Returns the length of the maximum initial segment of wide string s1
which consists entirely of wide characters not from wide
string s2.

wcsftime

#include <wchar.h>

size t wcsftime(wchar t *s, size t maxsize,
const wchar t *format,
const struct tm *timeptr);

This function is equivalent to the strftime function, except that:
- The argument s points to the initial element of an array of wide
characters into which the generated output is to be placed.

- The argument maxsize indicates the limiting number of wide
characters.

— The argument format is a wide string and the conversion specifiers
are replaced by corresponding sequences of wide characters.

Returns the number of wide characters (\0’ not included), or
zero if more than maxsize wide characters where produced.

Libraries
wcslen
#include <wchar.h>
size t wcslen(const wchar t *s);
Returns the length of the wide string in s, not counting the null wide
character.
wcsncat

#include <wchar.h>
wchar t *wcsncat(wchar t *sl, const wchar t *s2,
size t n);

Concatenates at most n wide characters from wide string s2 to wide string
s1. A terminating null wide character is always appended to the result.

Returns sl

wcsnemp

#include <wchar.h>
int wcsncmp(const wchar t *sl, const wchar t *s2,
size t n);

Compares at most n wide characters of wide string s1 to wide string s2.
Returns <0 ifsl < s2,

0 if s1 == s2,
>0 ifsl > s2.

wcesncpy

#include <wchar.h>
wchar_t *wcsncpy(wchar_t *sl, const wchar t *s2,
size t n);

Copies at most n characters of wide string s2 onto the wide string s1.
Adds trailing null characters if the string is smaller than n wide characters.

Returns sl

6-99

6-100 Chapter 6

=

wcspbrk

#include <wchar.h>
wchar_t *wcspbrk(const wchar_ t *s1,
const wchar t *s2);

Returns a pointer to the first occurrence in s1 of any wide character
out of wide string s2. If none are found, NULL is returned.

wcsrchr

#include <wchar.h>
wchar t *wcsrchr(const wchar t *s, wchar t c);

Returns a pointer to the last occurrence of ¢ in the wide string s. If
not found, NULL is returned.

wcsrtombs

#include <wchar.h>
size_t wcsrtombs(char *dst, const wchar t **src,
size t len, mbstate t *ps);

Converts a sequence of wide characters from the array indirectly pointed
to by src into a sequence of corresponding multi-byte characters that
begins in the conversion state described by the object pointed to by ps.
This function then stores these multi-byte characters into the array pointed
to by dst, stopping if a multi-byte character would exceed the limit of
len total bytes, or when a wide character is reached that does not
correspond to a valid multi-byte character, or if a null character is stored.

Returns the number of bytes modified (not including a terminating
null character, if any), or (size_t)-1 if a wide character is
encountered that does not correspond to a valid multi-byte
character.

Libraries

wcesspn

#include <wchar.h>
size_t wcsspn(const wchar t *sl, const wchar t *s2);

Returns the length of the maximum initial segment of wide string s1
which consists entirely of wide characters from wide string
s2.

wcsstr

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *sl,
const wchar_ t *s2);

Returns a pointer to the first occurrence of wide string s2 in the wide
string s1. Returns NULL if not found.

wcstod

#include <wchar.h>
double wcstod(const wchar t *nptr,
wchar t **endptr);

Converts the initial portion of the wide string pointed to by nptr to
double. Initial white spaces are skipped. A pointer to the final wide string
is stored in the object pointed to by endptr, provided that endptr is not
a null pointer.

Returns the converted value, or zero if no conversion could be
performed.

6-101

6-102 Chapter 6

=

wcstok

#include <wchar.h>
wchar_t *wcstok(wchar t *sl, const wchar_t *s2,
wchar t **ptr);

Searches the wide string s1 for tokens delimited by wide characters from
wide string s2. It terminates the token with a null character.

Returns a pointer to the first wide character of a token.
A subsequent call with s1 == NULL will return the next
token in the string.

wcstol

#include <wchar.h>
long int wcstol(const wchar t *nptr,
wchar t **endptr, int base);

Converts the initial portion of the wide string pointed to by nptr to long
int. Initial white spaces are skipped. Then a value is read using the given
base. When base is zero, the base is taken as defined for integer
constants. I.e. numbers starting with an 0’ are taken octal, numbers
starting with '0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. A pointer to the final wide string is stored in the object pointed to
by endptr, provided that endptr is not a null pointer.

Returns the converted value, or zero if no conversion could be
performed.

Libraries

wcstombs

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_ t *pwcs,
size_t n);

Converts a sequence of wide characters from the array pointed to by
pwcs, into a sequence of multi-byte characters that begins in the initial
shift state and stores these multi-byte characters into the array pointed to
by s, stopping if a multi-byte character would exceed the limit of n total
bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating
null character, if any), or (size_t)-1 if a wide character is
encountered that does not correspond to a valid multi-byte
character.

wcstoul

#include <wchar.h>
unsigned long int wcstoul(const wchar t *nptr,
wchar t **endptr, int base);

Same as westol, except that it converts the initial portion of the wide
string to unsigned long int.

Returns the converted value, or zero if no conversion could be
performed.

wesxfrm

#include <wchar.h>
size t wcsxfrm(wchar t *sl, const wchar t *s2,
size t n);

Transforms the wide string pointed to by s2 and places the resulting string
into the array pointed to by s1. No more than n wide characters are
placed into the resulting array pointed to by s1, including the terminating
null wide character.

Returns the length of the transformed wide string.

6-103

6-104 Chapter 6

=

wctob

#include <wchar.h>
int wctob(wint t c);

Determines whether ¢ corresponds to a member of the extended character
set whose multi-byte character representation is a single byte when in the
initial shift state.

Returns EOF if ¢ does not correspond to a multi-byte character with
length one in the initial shift state. Otherwise, it returns the
single-byte representation of that character as an unsigned
char converted to an int.

wctomb

#include <stdlib.h>
int wctomb(char *s, wchar t wchar);

Determines the number of bytes needed to represent the multi-byte
character corresponding to the wide character whose value is wchar
(including any change in the shift state). It stores the multi-byte character
representation in the array pointed to by s (if s is not a null pointer). At
most MB_CUR_MAX characters are stored. If the value of wchar is zero,
the wctomb function is left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not
correspond to a valid multi-byte character.

wctrans

#include <wctype.h>
wctrans_t wctrans(const char *property);

Constructs a value with type wetrans_t that describes a mapping
between wide characters identified by the string argument property.
Valid strings are: tolower or toupper.

% See also "towctrans()”.

Returns a non-zero value that is valid as the second argument to the
towctrans function, if property identifies a valid mapping
of wide characters; otherwise, it returns zero.

Libraries

wctype

#include <wctype.h>
wctype t wctype(const char *property);

Constructs a value with type wetype_t that describes a class of wide
characters identified by the string argument property. Valid strings are:
alnum, alpha, cntrl, digit, graph, lower, print, punct, space,
upper or xdigit.

% See also "iswctype()”.

Returns a non-zero value that is valid as the second argument to the
iswctype function, if property identifies a valid class of
wide characters; otherwise, it returns zero.

wmemchr

#include <wchar.h>
wchar t *wmemchr(const wchar t *s,
wchar t ¢, size t n);

Checks the first n wide characters of s on the occurrence of wide
character c.

Returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

wmemcmp

#include <wchar.h>
int wmemcmp(const wchar t *sl,
const wchar t *s2, size t n);

Compares the first n wide characters of s1 to the first n wide characters of
s2.

Returns <0 ifsl < s2,
0 if s1 == s2,
>0 ifsl > s2.

6-105

6-106 Chapter 6

=

wmemcpy

#include <wchar.h>
wchar_t *wmemcpy(wchar_ t *sl1,
const wchar t *s2, size t n);

Copies n wide characters from s2 to s1. Does not check for memory
overlapping.

Returns sl

wmemmove

#include <wchar.h>
wchar t *wmemmove(wchar t *sl,
const wchar t *s2, size t n);

Copies n wide characters from s2 to s1. Overlapping objects will be
handled correctly.

Returns sl

wmemset

#include <wchar.h>
wchar t *wmemset(wchar t *s, wchar t c, size t n);

Fills the first n wide characters of s with the value of c.

Returns s
wprintf

#include <wchar.h>
int wprintf(const wchar t *format, ...);

Is equivalent to fwprintf, except that the output is written to stdout
instead of a stream.

Returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

Libraries 6-107

wscanf

#include <wchar.h>
int wscanf(const wchar t *format, ...);

Is equivalent to fwscanf, except that the input is obtained from stdin.

Returns the number of input items assigned or EOF on error.
write

#include <unistd.h>
size t write(int fd, char * buffer, size t count);

Write a sequence of characters to a file. This function calls _write.

% See also ”_write()”.

6-108 Chapter 6

=

6.7 CAN LIBRARY INTERFACE DESCRIPTION

check_busoff_16x

#include <can_ext.h>
unsigned char check busoff 16x(void);

Check if a bus off situation has occurred and recover from bus off.

Returns one if CAN controller was in bus off state, zero otherwise.

check_mo_16x

#include <can_ext.h>
unsigned char check mo 16x(unsigned char nr);

Check for new data in a message object.

Returns one if the specified message object contains new date, zero
otherwise.

check_mol5_16x

#include <can_ext.h>
unsigned char check mol5 16x(void);

Check for new data or remote frame in message object 15.

Returns one if message object 15 contains new data, zero otherwise.

def mo_16x

#include <can_ext.h>

void def mo 16x(unsigned char nr, unsigned char xtd,
unsigned long id, unsigned char dir,
unsigned char dlc, unsigned char txie,
unsigned char rxie);

Define a message object in the CAN module.

Returns nothing.

Libraries

init_can_16x

#include <can_ext.h>

void init_can_16x(unsigned int baud_rate,
unsigned char eie,
unsigned char sie,
unsigned char ie);

Initialization of the CAN module.

Returns nothing.

ld_modata_16x

#include <can_ext.h>
void 1ld modata 16x(unsigned char nr,
unsigned char * upl data ptr);

Load the data bytes of a message object.

Returns nothing.

rd_modata_16x

#include <can_ext.h>
void rd modata 16x(unsigned char nr,
unsigned char * downl data ptr);

Read the data bytes of a message object.

Returns nothing.

rd_mol5_16x

#include <can_ext.h>

void rd mol5 16x(unsigned char * mol5 db ptr,
unsigned long * mol5 id ptr,
unsigned char * mol5 dlc_ptr);

Read the contents of message object 15.

Returns nothing.

6-109

6-110 Chapter 6
send_mo_16x

#include <can_ext.h>
void send mo_16x(unsigned char nr);

Send message object.

Returns nothing.

Libraries 6-111

6.8 CREATING YOUR OWN C LIBRARY

There are several reasons why it is desired to have a specially adapted

C library. Therefore all C sources of all library functions are delivered with
the compiler. These files are placed in the directory 1ib\src (Windows)
or 1lib/src (UNIX).

When creating your own library, the order of the objects in the library file
is very important. To know the exact order in which the objects should be
placed in the library, make a list of the order in which the delivered
libraries are made by using the command ’'ar166 t cl66m.lib’,for
example.

The easiest method to create your own library is to make a copy of the
existing library (use the library in the same memory model you want to
create) and replace the existing objects in it by your own made objects
with the command 'ar166 crv libname objectname ...’ . This way
the order of the objects in the library will be maintained. At link time you
only have to link the newly made library to your application instead of a
delivered library.

You can rebuild your library with mk166. To use the correct makefile, first
make sure you are in the directory of the library you want to rebuild:
lib\src\architecture\library (Windows) or
lib\src\architecture\library (UNIX). Use mk166 to rebuild your
library now. (You may want to make a backup copy of the original library
first.)

6-112

LIBRARIES

Chapter 6

RUN-TIME
ENVIRONMENT

al TASKING [

d31dVHO

Run-time Environment

7.1 STARTUP CODE

When linking (Task Concept) or locating (Flat Interrupt Concept) the
module containing main() which is an object module containing the C
startup code has to be linked to the application. This module, called
start.obj, is included in each C library with a system startup
configuration default for the library it is included in. The compiler
generates a reference to this module when it translates the definition of the
main() function. This reference causes the start.obj to be extracted
from the library by 1166.

This file specifies the run—time environment of your C166 application. The
file is delivered in assembly source (start.asm) in the directory
lib\src. The file start.asm includes the file cstartx.asm or
cstartx2.asm depending on the selected architecture. Modifications to
these files are not necessary since all parameters can be manipulated using
macro preprocessor symbols.

Startup code and EDE

When you use EDE, the startup code will be automatically generated and
included in the project. The contents of the EDE generated startup code is
largely defined by the options you set in EDE. When you want to use your
own startup code you can disable the generation of the startup code in
EDE:

1. From the Project menu, select Project Options...
The Project Options dialog appears.
2. Expand the Application entry and select Startup.

3. Disable the check box Generate system startup code and add it to
project.

4. Click OK.

5. Remove the file start.asm from the project and add your own startup
code.

If necessary you can specify EDE to generate the startup code in a
different file than start.asm:

1. From the Project menu, select Project Options...

The Project Options dialog appears.

Chapter 7

2. Expand the Application entry and select Startap.

3. Enable the check box Generate system startup code and add it to
project.

4. Specify the filename in the Startup code file name field.
5. Click OK.

After this multiple startup code files may be present in your project.
6. Manually remove the obsolete startup code files from the project.

You can control the contents of the generated startup code from the
Startup entry in the Project Options dialog. From the subentries under
Startup you can specify the registers and their settings that must be
known to the startup code: enable the Include in startup code check
box for the register settings you want to add to the startup code. EDE
automatically generates the register initializations in the startup code.

Startup code and the command line

When you are not using EDE, you must use m166 before al66 when a
new version of the object file has to be created:

ml66 start.asm DEFINE(MODEL, LARGE)
al6é6 start noprint

You must specify the memory model for the preprocessing phase.
Therefore you have to define the preprocessor symbol MODEL. You can
do this with the m166 command line control DEFINE by defining the
memory model you are using. When preprocessing the startup file,
MODEL is checked to select, skip or include certain pieces of code.

The new start.obj can be supplied to 1166 when linking the module
containing main (). 1166 will use this object instead of the object from the
library.

Preprocessor symbols used in startup code

There are a number of other preprocessor symbols used, which can be
enabled or disabled using the command line control DEFINE (Syntax:
DEFINE(identifier |, replacement])).

Run-time Environment

In the startup file the following preprocessor symbols are used (please also
review cstartx.asm or cstartx2.asm):

EX_AB

_EXT2

BIT_INIT

Must be enabled (set to 1) if the C library function exit () or
abort () is called by the application. Otherwise it must be
cleared (set to 0). Default cleared, because the total code
size is increased, due to assumptions about buffered file I/O,
which must be flushed at exit.

Must be enabled (set to 1) when a XC16x/Superl10
architecture (ext2) needs to be initialized. It must be cleared
(set to 0) when a C16x/ST10 architecture needs to be
initialized.

Must be enabled (set to 1) if initialized bit variables (bit b

= 1;) are used, so the initialization is done at startup.
Non-initialized bit variables are always set to 0. Default set to
0, because initialized bit variables are very seldom used and
rather expensive in both ROM space and execution time
during startup. Therefore, if possible, initialized bit variables
should be avoided.

NOBITCLEAR

EVA

CPU

_USRSTACK

When set, skips clearing of the bitaddressable RAM.

Must be enabled (set to 1) when using the ROM/RAM
monitor on evaluation boards as execution environment.
Needed to force the tiny model to execute with the CPU
segmentation enabled and to prevent the startup code to
clear the bit—addressable area, which contains monitor data.
It also starts the application with interrupts enabled and
provides CrossView Pro with information about the
configuration when the C167 is used. Default enabled.

Must be set when one of the following processoris used:
165-UTAH (165Utah), 167CS-40 (167CS40), SDA6000
(sda6000). Set the CPU symbol to the appropriate value
mentioned between brackets. If none of these derivatives is
used then _CPU does not need to be set.

Must be enabled (set to 1) to support the user stack model.
Default disabled. See section 3.2.2, User Stack Model for more
details.

7-5

7-6

Chapter 7

CALLINIT Can be set to a function to be called before main. This
function may not have any return value and may not have
any arguments. This function can be used, for example, to
initialize the serial port before main is called. This is useful
for building benchmark programs without making any
modifications to the original source.

CALLEINIT
Can be set to a function to be called before the EINIT
instruction is executed, but after register initialization. Like
the CALLINIT function, it may not have a return value or any
arguments.

CALL_USER
Can be set to an include file containing the main label
entry.

SSKENABLE

If set, intializes the system stack for XC16x/Superl0
architectures using a modifiable SYSSTACK system.

__SSKSIZE Determines the stack size in bytes on XC16x/Superl0
architectures.

__SSKSEG Determines the segment where the system stack is positioned
on XC16x/Super10 architectures.

In the startup file a code section named CSTART PR is declared. In this
code section the task procedure CSTART is declared, using interrupt
number 0, which is the power-on vector of the processor.

First the system is configured using a macro for each configuration item:
walit states, read/write signal delay, system clock output, segmentation
control, system stack size etc. You must specify these values using the
appropiate macros, depending on the specific needs of your target system.
Please review the appropriate startup file for an exact overview of
initialized registers and macros used.

The system stack registers (overflow, underflow and stack pointer) are
initialized using the predefined symbols ?SYSSTACK BOTTOM and
?SYSSTACK_TOP. The assembler, linker and locator treat predefined
symbols (all starting with a ’?’) in a special way. They give the assembler
programmer access to information which is normally not available before
the locate stage of the application.

Run-time Environment

After the context pointer register is set to the register bank of this task,
write output is enabled and the ’end-of-initialization’ instruction (EINIT) is
executed.

All bit addressable memory is cleared, because this guarantees all non
initialized bit variables of each task to have the value of 0.

The startup code also takes care of initialized static/public C variables of
each task, residing in the different RAM areas (not const or #pragma
romdata). All these initialized variables are allocated in both a ROM and
RAM section for each category (bit, near, far, huge). See section 3.8,
Initialized Variables, for more details. The startup code copies the initial
values of initialized C variables for the whole application (all tasks in the
Task Concept) from ROM to RAM using a table (in the global C166_INIT
section), which has been built by the compiler. The predefined symbol
?C166_INIT HEAD contains the start address of the table.

In ANSI-C all non-initialized static/public C variables must have the initial
value of 0. Non-initialized bit variables are already cleared by previous
code. Therefore, the startup code clears the non-initialized non-bit
variables of the whole application (all tasks in the Task Concept) using a
table (in the global C166_BSS section), which has been built by the
compiler (unless the =Ob option has been used). The predefined symbol
?C166_BSS HEAD contains the start address of the table. See section 3.9,
Non-Initialized Variables, for more information.

Finally, the DPP registers are initialized, depending on the memory model
used. DPPO to DPP2 are initialized accordingly. The predefined symbols
?BASE_DPPO to ’BASE_DPP2 are used to initialize DPP0O to DPP2.

Last but not least, the user stack pointer is initialized using the predefined
symbol PUSRSTACK TOP.

When everything described above has been executed, your C application
is called, using the public label _main, which has been generated by c166
for the C function main (). When the C application 'returns’, which is not
likely to happen in an embedded environment, you can specify if the
program uses the function exit(), abort() or atexit().

At the assembly label _ EXIT, the system stack pointer, the user stack
pointer and the floating point stack (if floats are used) are restored and the
program performs an endless loop setting the CPU in power down mode
(IDLE instruction).

7-7

7-8

-

Chapter 7

7.2 STACK SIZE

€166 maintains two types of stack: the system stack and the user stack.

The system stack is used for return addresses (CALL/RET instructions) and
can be accessed via PUSH/POP instructions (using the SP register).
Because the system stack is very small (internal memory for the
C166/ST10), €166 tries to avoid it as much as possible. Code generator
temporaries are pushed on the user stack. Via the —Ou option it is even
possible to let a task switch (interrupt) use the user stack instead of the
system stack. As described above, you must specify the size of the system
stack size in the system startup code (SYSCON register), which is the
system stack size for all tasks (the whole application).

For XC16x/Superl0 architectures, the system stack size is determined by
specifying a SYSSTACK section of the required size and using the SSKDEF
7 directive option. The locator can relocate this section. Use the
preprocessor macros SSKENABLE, SSKSEG and __ SSKSIZE to determine
the correct system stack.

From EDE you can set the system stack size in the Stack and Heap page
of the Linker/Locator entry in the Project | Project Options dialog.

If =P is used, the system stack is not used at all. See section 3.2.2, User
Stack Model for details.

The user stack is the so—called 'C stack’. ¢166 uses RO as "User Stack
Pointer’ and the [-R0]/[R0+] addressing modes perform push/pop
sequences. If data paging is used (medium and large memory model), the
user stack is limited to 16K (one page). In these models, 166 uses DPP1
as 'user-stack page number’. The locator combines the user stack areas of
each task to one global user stack area (with cumulated size). A context
switch inherits the user stack pointer (RO) value in the new register bank
and DPP1 remains unchanged.

c166 estimates the needed user stack size for each C module by adding
the stack sizes of each function to each other. This amount of bytes is
allocated in the data section called C166_US (see section 3.2.3, Section
Allocation). However, in most cases this is too big, because not all
functions are active simultaneously. In other cases, the size will be too
small, e.g. when recursive functions are present (note that gsort () is
implemented as a recursive function).

You can modify the user stack size using the SECSIZE control of the
locator.

Run-time Environment

double precision
return value

conventional
parameters

pushed register
parameters

pushed register framesize
automatics

conventional

. stacksize
automatics

temporary stack pointer
storage adjust
“— RO

T —
Figure 7-1: Stack diagram

Example:

1166 task tl.lno SECSIZE(C166_US(-50))
task t2.lno SECSIZE(C166_US(-10))
TO applic.out

7-9

7-10 Chapter 7

-

7.3 HEAP SIZE

The heap is only needed when dynamic memory management library
functions are used: malloc(), calloc(), free() and realloc(). The
heap is allocated by the linker for each task in a special (public) section
called ?C166_FHEAP or ?C166_NHEAP, both with the class name ?CHEAP
having a default size of 0 bytes. If you are using one of the memory
allocation functions listed above in a certain task, you must change the
heap size for that task using the HEAPSIZE control at link stage.

When the Flat Interrupt Concept is used the link stage is skipped and the
locator generates the ?C166_NHEAP and ?C166_FHEAP sections when it is
needed. You can use the HEAPSIZE control for changing the heap size at
locate stage. The dynamic memory management library functions are not
reentrant, because they use static data for the memory management. This
means that when the memory management functions are used, it is not
possible to interrupt them with an interrupt function which also uses the
memory management functions. If reentrancy is needed with memory
management functions, you should use the Task Concept where each
interrupt can have its own memory management.

In the tiny and small model the default memory allocation routines use the
?C166_NHEAP section, which has the section type "LDAT’ allowing a total
heap size up to 64K. Because paging is not used (except for the small SND
variant, a linear 16-bit pointer is returned), the maximum amount of
memory asked for is not limited to a page (16K).

In the medium and large model the ?C166_FHEAP section is used by the
default memory allocation routines. This section has the section type
'HDAT" allowing a total heap size greater then 64K. However, in these
models paging is used: a far pointer is returned. This means that you
cannot allocate (dynamically) a single buffer greater than one page (16K).
Of course you can allocate the whole heap in pieces of (approximately)
16K. In these models, you should use memory allocation with great care,
because the paging approach may introduce ’fragmentation’ of the heap.
For example, if you allocate two times 9K of memory, the second request
does not fit in the same page as the first 9K. So, 9K will be allocated in the
next page, introducing a gap of approximately 7K, which only will be
used for requests fitting in 7K.

In the huge memory model, the ?C166_FHEAP section is used by default.
In this model, a huge pointer is returned, allowing allocation of objects
larger than 64K (in fact, as large as the total heap).

Run-time Environment

It is possible to use various flavours of the memory allocation routines.
The following table shows the available variants and indicates in which
model these variants are used by default:

Routine variant Pointer type Used by default in Size

nmalloc _hear tiny, small < 64kB
ncalloc
nrealloc
nfree

fmalloc _far medium, large < 16kB
fcalloc
frealloc
ffree

smalloc _shuge < 64kB
scalloc
srealloc
sfree

hmalloc _huge huge < 16MB
hcalloc
hrealloc
hfree

Please note that the non-near variants of the memory allocation routines
all use the same heap stack ?2C166_FHEAP and are in the same source
module. Use of the fmalloc () routine will therefore automatically
include support for the smalloc () and hmalloc() routines.

7-11

7-12 Chapter 7

=

7.4 ASSEMBLY LANGUAGE INTERFACING

Assembly language functions can be called from C and vice versa. The
names used by ¢166 are case sensitive, so you must specify al66 to act
case sensitive too, using the $CASE control. ¢166 adds an underscore for
the name of public C variables, to distinguish these names from the
C166/ST10 registers. So, any names used or defined in C for the C166/ST10
must have a leading underscore in assembly code.

In section 3.15, Register Usage of the chapter Language Implementation,
the registers used for return values of functions are explained. Note that
RO is used as user stack pointer and must be used in the assembly function
accordingly. If fast parameter passing is used with this assembly function
or functions called by this assembly function, R12 to R15 can not be used
as scratch registers. Note that if you want to use one of the registers R6 to
R9, you must save it on the user stack at entry and restore at exit, because
this register might contain a C register variable of another C function.
Registers R1-R5, R10 and R11 are free.

In section 3.6, Function Parameters of the chapter Language
Implementation is described how parameter passing is supported by c166.
If you do not want parameter passing in registers (e.g. existing assembly
function expecting parameters on the user stack) you must use the
keyword stackparm (as function qualifier) in the full C prototype of the
assembly language function. The quickest (and most reliable) way to make
an assembly language function, which must conform to C for the
C166/ST10, is to make the body of this function in C, and compile this
module. If the assembly function must return something, specify the return
type in the ’assembler function’ using C syntax, and let it return something.
If parameters are used, force code generation for accessing these
parameters with a dummy statement (e.g. an assignment):

int stackparm
assem(char c, int i)

{

return(¢ + i);

}

Now compile this module, using the correct memory model. The compiler
makes the correct frame, and you can edit the generated assembly
module, to make the real assembly function inside this frame.

Run-time Environment

Inline assembly

A second method to create an interface to assembly is to use inline
assembly in C. Assembly lines in the C source must be introduced by a
‘#pragma asm’, the end is indicated by a '#pragma endasm’.

For example:

int
inline(char c, int i)
{

int j =1 - c;

if ((§>5)
{
#pragma asm
NOP ; do something in assembly
#pragma endasm
j = 0;
}

return (j);

}

If the inserted assembly code does not change any registers, like in the
example above, also #pragma asm_noflush’ may be used instead of
‘#pragma asm’. The advantage of this pragma is that the peephole buffer is
not flushed, so the compiler will emit a JMPR instructions instead of a
JMPA instruction for the condition above. Note that the inserted assembly
is NOT interpreted, so code size reported is only the code generated for C
statements. The disadvantage of the '#pragma asm_noflush’ is that the
distance checking for relative jumps becomes your responsibility !

Note that the compiler also does NOT recognize inline CALL instructions.
If a function does not call any other function from C, it is treated like a
‘leaf’ function, so parameter registers of this function are not saved on the
user stack at function entry. If a ’leaf function calls another function using
inline assembly, it is your responsibility to preserve the parameter registers
(if any) of this ’leaf’ function.

7-14 Chapter 7

S

Global constants in different modules

Proper interfacing often requires global constants in different modules,
which can be a problem when assembly and C modules are mixed. You
can work around this problem by using the C preprocessor on assembly
files before assembling. For example:

header.h:
/* comment */
#define CONSTANT 0x1

modulel.c:
#include "header.h”

int c=CONSTANT;

module2.asm:
#include "header.h”

MOV RO, CONSTANT

The assembler understands the C notation for hexadecimal numbers, so no
special conversions are needed for that. The modules are built using:

cl166 modulel.c —-o modulel.src
al66 modulel.src TO modulel.obj

and

cl66 —-E -o module2.src module2.asm
al66 module2.src TO module2.obj

When you use the control program, the default preprocessor for assembly
files is m166. You can change this default by using the —cprep option,
which forces the control program to use the C preprocessor instead. The
above files can thus be easily built with the following single command:

ccl66 modulel.c module2.asm —cprep -c

Please note that the C preprocessor will not replace anything between
#pragma asm and #pragma endasm in your C source.

XIAN3ddV

MISRA C

>

al TASKING [

XIAN3ddV

MISRA C

Supported and unsupported MISRA C rules

x means that the rule is not supported by the TASKING C compiler.
(R) is a required rule, (A) is an advisory rule.

1.

11.

12.

13.

14.

17.

19.
20.

®)

@A)

@A)
@A)

®)
®)

®)
®)

®)
(A)
®)

(&)

A

®)
(A)

®)

®)
)
®)
®)

The code shall conform to standard C, without language
extensions

Other languages should only be used with an interface
standard

Inline assembly is only allowed in dedicated C functions

Provision should be made for appropriate run—time
checking

Only use characters and escape sequences defined by ISO C

Character values shall be restricted to a subset of ISO
106460-1

Trigraphs shall not be used

Multibyte characters and wide string literals shall not be
used

Comments shall not be nested
Sections of code should not be ”commented out”

Identifiers shall not rely on significance of more than 31
characters

The same identifier shall not be used in multiple name
spaces

Specific-length typedefs should be used instead of the basic
types
Use ’unsigned char’ or ’signed char’ instead of plain ’char’

Floating point implementations should comply with a
standard

The bit representation of floating point numbers shall not be
used

"typedef” names shall not be reused
Numeric constants should be suffixed to indicate type
Octal constants (other than zero) shall not be used

All object and function identifiers shall be declared before
use

21.
22.
23.
24,
25.

26.

27.

28.
29.
30.
31

32.

33.

34.

35.

30.

37.

38.

39.

40.
41.

42,

®)
)
@A)
®)
®)

®)

A

GV
®)
®)
®)

®)

®)

®)

®)

(A)

®)

®)

®)

)
A

®)

Appendix A

Identifiers shall not hide identifiers in an outer scope
Declarations should be at function scope where possible

All declarations at file scope should be static where possible
Identifiers shall not have both internal and external linkage

Identifiers with external linkage shall have exactly one
definition

Multiple declarations for objects or functions shall be
compatible

External objects should not be declared in more than one
file

The "register” storage class specifier should not be used
The use of a tag shall agree with its declaration
All automatics shall be initialized before being used

Braces shall be used in the initialization of arrays and
structures

Only the first, or all enumeration constants may be
initialized

The right hand operand of && or | | shall not contain side
effects

The operands of a logical && or | | shall be primary
expressions

Assignment operators shall not be used in Boolean
expressions

Logical operators should not be confused with bitwise
operators

Bitwise operations shall not be performed on signed
integers

A shift count shall be between 0 and the operand width
minus 1

The unary minus shall not be applied to an unsigned
expression

"sizeof” should not be used on expressions with side effects

The implementation of integer division should be
documented

The comma operator shall only be used in a "for” condition

MISRA C

43.

44.
45.

46.

47.

48.
49.

50.

51.

52.
53.
54.
55.
56.
57.
58.

59.
60.
61.

62.
63.
64.
65.
66.

®)

@A)
®)

®)

A

A
A

®)

A

®)
®)
®)
(&)
®)
®)
®)

®)
)
®)

®)
)
®)
®)
A

Don’t use implicit conversions which may result in
information loss

Redundant explicit casts should not be used

Type casting from any type to or from pointers shall not be
used

The value of an expression shall be evaluation order
independent

No dependence should be placed on operator precedence
rules

Mixed arithmetic should use explicit casting

Tests of a (non-Boolean) value against 0 should be made
explicit

F.P. variables shall not be tested for exact equality or
inequality

Constant unsigned integer expressions should not
wrap-around

There shall be no unreachable code

All non—null statements shall have a side—effect

A null statement shall only occur on a line by itself
Labels should not be used

The ”goto” statement shall not be used

The ”continue” statement shall not be used

The "break” statement shall not be used (except in a
“switch”)

An "if” or loop body shall always be enclosed in braces
All ”if”, else if” constructs should contain a final "else”

Every non-empty “case” clause shall be terminated with a
"break”

All ”switch” statements should contain a final "default” case
A "switch” expression should not represent a Boolean case
Every ”switch” shall have at least one "case”

Floating point variables shall not be used as loop counters

A "for” should only contain expressions concerning loop
control

67.
68.
69.

70.

71.
72.

73.

74.

75.
76.

77.

78.
79.
80.
81.

82.
83.

84.
85.

86.
87.

88.

)
®)
®)

®)

®)
®)

®)

®)

®)
®)

®)

®)
®)
®)
(&)

(A)
®)

®)
(A)

A
®)

®)

Appendix A

Iterator variables should not be modified in a "for” loop
Functions shall always be declared at file scope

Functions with variable number of arguments shall not be
used

Functions shall not call themselves, either directly or
indirectly

Function prototypes shall be visible at the definition and call

The function prototype of the declaration shall match the
definition

Identifiers shall be given for all prototype parameters or for
none

Parameter identifiers shall be identical for
declaration/definition

Every function shall have an explicit return type

Functions with no parameters shall have a "void” parameter
list

An actual parameter type shall be compatible with the
prototype

The number of actual parameters shall match the prototype
The values returned by "void” functions shall not be used
Void expressions shall not be passed as function parameters

”const” should be used for reference parameters not
modified

A function should have a single point of exit

Every exit point shall have a "return” of the declared return
type
For "void” functions, “return” shall not have an expression

Function calls with no parameters should have empty
parentheses

If a function returns error information, it should be tested

#include shall only be preceded by other directives or
comments

Non-standard characters shall not occur in #include
directives

MISRA C

WooX W X

89.

90.

91.
92.
93.

94.

95.

96.

97.
98.

99.
100.

101.
102.
103.
104.
105.

1006.

107.
108.
109.
110.

111.

®)

®)

®)
@A)
A

®)

®)

®)

A
®)

®)
®)

(A)
(A)
®)
®)
®)

®)

®)
®)
®)
®)

®)

#include shall be followed by either <filename> or
"filename”

Plain macros shall only be used for
constants/qualifiers/specifiers

Macros shall not be #define’d and #undef'd within a block
#undef should not be used

A function should be used in preference to a function-like
macro

A function-like macro shall not be used without all
arguments

Macro arguments shall not contain pre—preprocessing
directives

Macro definitions/parameters should be enclosed in
parentheses

Don’t use undefined identifiers in pre—processing directives

A macro definition shall contain at most one # or ##
operator

All uses of the #pragma directive shall be documented

“defined” shall only be used in one of the two standard
forms

Pointer arithmetic should not be used

No more than 2 levels of pointer indirection should be used
No relational operators between pointers to different objects
Non-constant pointers to functions shall not be used

Functions assigned to the same pointer shall be of identical
type

Automatic address may not be assigned to a longer lived
object

The null pointer shall not be de-referenced
All struct/union members shall be fully specified
Overlapping variable storage shall not be used

Unions shall not be used to access the sub—parts of larger
types
Bit fields shall have type "unsigned int” or "signed int”

112.
113.
114.
115.
116.

117.
118.
119.
120.
121.
122.
123.
124.
125.
1206.
127.

®)
®)
®)
®)
®)

®)
®)
®)
®)
®)
®)
®)
®)
®)
®)
®)

Appendix A

Bit fields of type "signed int” shall be at least 2 bits long
All struct/union members shall be named

Reserved and standard library names shall not be redefined
Standard library function names shall not be reused

Production libraries shall comply with the MISRA C
restrictions

The validity of library function parameters shall be checked
Dynamic heap memory allocation shall not be used

The error indicator “errno” shall not be used

The macro "offsetof” shall not be used

<locale.h> and the ”setlocale” function shall not be used
The "setjmp” and "longjmp” functions shall not be used
The signal handling facilities of <signal.h> shall not be used
The <stdio.h> library shall not be used in production code
The functions atof/atoi/atol shall not be used

The functions abort/exit/getenv/system shall not be used

The time handling functions of library <time.h> shall not be
used

See also section 3.19, C Code Checking: MISRA C, in Chapter Language
Implementation.

DEBUG
ENVIRONMENT

al TASKING [

XIAN3ddV

Debug Environment

1 CROSSVIEW PRO AND EVALUATION BOARDS

When you use an evaluation board with CrossView Pro, a monitor will be
run from the memory where your application is loaded and running. You
should use the 1166 RESERVE MEMORY locator control to prevent the
locator from locating sections in the memory areas in use by the monitor.
For example:

RESERVE MEMORY(0FDOOh to OFD4Bh)

Please see the CrossView user’s manual which areas are in use by the
monitor that is used for your evaluation board.

In the start.asn file, the @EVA symbol must be enabled (set to 1).

When using a ROM monitor with a dual vector table, the vector table of
your application should be located at the memory location where the
monitor expects it to be. Use the 1166 VECTAB locator control to supply
the vector table start location to the locator. For example:

VECTAB(08000h)

Please refer to the CrossView user’s manual for the required vector table
location for the board and monitor that you use.

When using this dual vector table ROM monitor, you must also supply the
=sstartaddress option to the ieeel166 IEEE-695 object formatter. The
startaddress should be address where you located the vector table with the
VECTAB control. This address will be generated in the absolute file.
CrossView Pro will start execution at this address after a program reset.

B-4

=

Appendix B

2 KONTRON DEBUGGER

When using Kontron debuggers, the following operation remarks exist:

Use the TASKING ieeel66 converter program to generate an
IEEE-695 output file from the absolute (located) output file. The
Kontron KSEG95 filter program is needed to translate this
IEEE-695 file into Kontron object and symbol files.

You can use the compiler option —g to generate debug information
for use by Kontron debuggers. Versions of KSE695 previous to v4.3
(04) may require using the compiler option —-gb. The -gb option
prevents ¢166 from emitting ’bit’, ’bitfield’ and "80166 pointer
behavior’ high level language information.

The KSE695 command line option -t t -x . must be used when
converting IEEE-695 format to Kontron format.

—tt Specify TASKING ¢166 IEEE-695 format.

-x = Preserve filename and extension information found in the
IEEE-695 file.

Kontron debuggers supports all high level language debug
information generated by c¢166.

Kontron debuggers support debugging of TASKING a166 assembly
files at the source code level. You can use the Kontron LINE166
utility before preprocessing source with TASKING m166 or
assembling with a166.

The LINE166 utility has the following command line syntax:

LINE166 inputfile outputfile

where, inputfile is the file you would normally process with the TASKING
macro preprocessor or assembler and outputfile is the instrumented output
file. This output file is the file you must use for preprocessing/assembly.
The input and output filename must differ.

Debug Environment

Batch file when TASKING m166 used

To

or,

@ use asmfile without a file extension.

@echo off

rem RELINE1.BAT

linel66 %l.asm %1.a66

if errorlevel 1 goto end
ml66 %1.a66

if errorlevel 1 goto end
del %1.a66

alé6 %l.src debug

if errorlevel 1 goto end
del %1l.src

:end

Batch file when m166 not used

@echo off

rem RELINE2.BAT

linel66 %l.asm %1.a66

if errorlevel 1 goto end
alé6 %l.a66 debug

if errorlevel 1 goto end
del %1.a66

tend

use these batch files, simply enter either

relinel asmfile

reline2 asmfile

B-5

B-6

=

Appendix B

3 HITEX HITOP TELEMON 80C167

When using the Hitex telemon 80C167 execution environment, the
following operation remarks exist:

* The following resources are used by the monitor:

00000h
40000h
40200h
OFCEOh
OFAOOh

079FFh
401FFh
415FFh
OFCFFh
OFA3Fh

monitor code
monitor vector table
monitor data
register bank
system stack

You should use the 1166 RESERVE MEMORY locator control to prevent the
locator from locating sections in these regions.

For example:

RE(ME(
ME (
ME (
ME (

00000hTO 079FFh
40000hTO 401FFh
40200hTO 415FFh
OFCEOhTO OFCFFh

~ ~— ~— ~—
~ N~

)

cstart[x orl].asm uses SSKDEF 0 (256 words) by default and
initializes SP to the top of the system stack (OFBFF). So there is no conflict
with the system stack area of the monitor.

* In the start.asmn file, the @EVA symbol must be enabled (set to 1).

* The TASKING ieeel66 converter must be used to generate an
IEEE-695 output file from the absolute (located) output file. The Hitex
SP166TA filter program is needed to translate this IEEE-695 file into
Hitex format.

* Bit variables, bitword variables and bit fields are supported by HiTOP,
but not when using HiTOP with a telemon.

Debug Environment

4 PLS FAST-VIEW66

When using the fast-view66 debugger, the following operation remarks
exist:

* Use the —g compiler option to generate debug information for use
with fast-view60.

* Fast—viewG66 supports all C/C++ language debug information
generated by ¢166/cp166.

* You can use the absolute output file format (locator output file) for
download to the C166/ST10 target hardware.

Appendix B

1NJWNOHIANT DN83d

CPU FUNCTIONAL
PROBLEMS

al TASKING [

XIAN3ddV

CPU Functional Problems

1 INTRODUCTION

Infineon Components and STMicroelectronics regularly publishe
microcontroller errata sheets for reporting both functional problems and
deviations from the electrical and timing specifications.

For some of these functional problems in the microcontroller itself, the
TASKING C166 compiler provides workarounds. In fact these are software
workarounds for hardware problems.

This appendix lists a summary of functional problems which can be
bypassed by the compiler tool kit.

Please refer to the Infineon / STMicroelectronics errata sheets for the CPU
step you are using, to verify if you need to use one of these bypasses.

C-4 Appendix C

=

2 CPU FUNCTIONAL PROBLEM BYPASSES

BUS.18 -- JMPR at jump target address
Infineon / STMicroelectronics reference: BUS.18
Use compiler option:

-BH
Use libraries:
lib\[u]ext2p*.1lib

If a PEC transfer occurs immediately after a JMPR instruction the program
counter can have a wrong value. There are many other requirements
before this actually happens, among others the JMPR has to be reached by
a jump instruction.

CPU.3 -- MOV (B) Rn,[Rm+#datalG] as the last instruction in an extend
sequence

Infineon reference: CPU.3
Use compiler option:
-BE
Use libraries:
lib\[ulextp*.1lib

On older C167 derivatives the last instruction in an extend sequence will
use a DPP translation instead of the page or segment number supplied
with the extend instruction (EXTxx). This problem occurs only when the
last instruction of this extend instruction uses the addressing mode Rn,
[Rm+#datal6]. When you use the —-BE compiler option the compiler will
lengthen the extend sequence with one instruction when it generates an
instruction using this addressing mode.

CPU Functional Problems

CPU.11 -- Interrupted multiply

Infineon reference: CPU.11
Use compiler option:

-BU
Use libraries:

1ib\[u]166p*.1lib
lib\[u]extp*.1lib
lib\[u]ext2p*.1lib

This solution should be used where failures occur for interrupts during the
MUL and MULU instructions:

— TFor C166 derivatives, the compiler option -BU emits code using
run—time library calls for the multiply operations. In these run-time
library calls, the operations are protected against interrupts, so that
the problem cannot occur.

— For ext and ext2 derivatives, multiply operations are protected inline
using ATOMIC instructions. In some cases, an additional NOP might
be generated after the multiply instruction. When you want to use
the inline protection, you should use both the compiler options
-x[i] and -BU.

When using the -BU option you should also link libraries in which the
divide operations are protected. The libraries in the directories 1ib\166p,
lib\extp and lib\ext2p also have the divide protected against
interrupts, but can be used safely to bypass this CPU problem.

C-6 Appendix C

=

CPU.16 -- MOVB [Rn], mem

Infineon reference: CPU.16
Use compiler option:

-BF
Use libraries:

1ib\[u]166p*.1lib
lib\[u]extp*.1lib
1ib\[u]goldp*.1lib

When the MOVB|Rn|,mem instruction is executed, where (a) mem
specifies a direct 16-bit byte operand address in the internal ROM/Flash
memory, and (b) [Rn] points to an even byte address, while the contents of
the word which includes the byte addressed by mem is odd, or [Rn] points
to an odd byte address, while the contents of the word which includes the
bytes addressed by mem is even, the following problem occurs:

1. when [Rn] points to external memory or to the X-Peripheral (XRAM,
CAN, etc.) address space, the data value which is written back is always
00h.

2. when [Rn] points to the internal RAM or SFR/ESFR address space, (a)
the (correct) data value [mem] is written to [Rn]+1, i.e. to the odd byte
address of the selected word in case [Rn] points to an even byte
address, (b) the (correct) data value [mem|] is written to [Rn]-1, i.e. to
the even byte address of the selected word in case [Rn] points to an
odd byte address.

Since internal ROM/Flash/OTP data is referred to as ’const’ data, the
compiler will prevent generating the MOVB [Rn], mem instruction when
even 'const’ objects are accessed. The compiler is unaware of the exact
location of these objects which is determined at locate time.

CPU Functional Problems

CPU.18 / Problem 7 /| CPU.2 -- Interrupted multiply and divide
instructions

Infineon reference: CPU.18, Problem 7 and CPU.2
Use compiler option:

-BM
Use libraries:

1ib\[u]166p*.1lib
lib\[u]extp*.1lib
lib\[u]ext2p*.1lib

This solution should be used where failures occur for interrupts during the
MUL, MULU, DIV, DIVU, DIVL and DIVLU instructions:

— For C166 derivatives, the compiler option -BM emits code using
run—time library calls for the multiply and divide operations. In
these run—time library calls, the operations are protected against
interrupts, so that the problems cannot occur.

- For ext and ext2 derivatives, multiply and divide operations are
protected inline using ATOMIC instructions. In some cases, an
additional NOP might be generated after the multiply or divide
instruction. When you want to use the inline protection, you should
use both the compiler options —=x[i] and -BM.

-BM is a workaround for many MUL/DIV problems. Besides CPU.18 it
fixes problem 7, problem 13, problem 17, CPU.2 and CPU.11.

When using the =BM option you should also link libraries in which the
multiply and divide operations are protected.

C-8 Appendix C

-

CPU 1R006 -- CPU bangup with MOV (B) Rn,[Rm+#datal6]
Infineon reference: CPU1R006
Use compiler option:
-BO
Use libraries:
lib\[ulextp*.1lib

The opcode MOV (B) Rn, [Rm+#datal6] can cause the CPU to hang. The
problem is encountered under the following conditions:

* [Rm+#datal6) is used to address the source operand
* [Rm+#datal6] points to the program memory

¢ a hold cycle has to be generated by the ir ready signal at the
beginning of the operand fetch cycle

Since the compiler is unaware of the actual location the source operand
[Rm+#datal6] refers to, the generation of this addressing mode is
completely surpressed.

CPU.21 -- Incorrect result of BELDL/BFLDH after a write to internal
RAM

Infineon / STMicroelectronics reference: CPU.21
Use compiler option:

-BK
Use libraries:

lib\[ulextp*.1lib

The result of a BFLDL/BFLDH instruction may be incorrect after a write to
internal RAM. This only happens under very specific circumstances.

CPU Functional Problems

CR105893 -- Interrupted division corrupted by division in ISR
(interrupt service routine)

Infineon reference: CR105893

Use compiler option:
-BZc166sv1div

Use libraries:
lib\[u]extp*.1lib

In the first states of a division several internal control signals are set that
are used in later states of the division. If a division is interrupted and in
the interrupt service routine (ISR) another division is executed, it overrides
the old internal values. After the return the interrupted division proceeds
with the (probably wrong) internal states of the last division. The affected
internal signals are dividend sign, divisisor sign and mdl 0. The
first two bits represent the operand signs (=Bit 15). md1 0 is set if MDL is
OxFFFF.

Workaround:

Do not interrupt divisions, for example by using an ATOMIC sequence.

CR105981 -- JBC and JNBS with op1 a DPRAM operand (bit
addressable) do not work

&

Infineon reference: CR105981

Use compiler option:
-BZc166sv1jbc

Use libraries:
lib\[u]extp*.1lib

The DPRAM address (corresponding to opl) is written back with wrong
data. This happens even if the jump is not taken.

Note that these instructions work properly for GPR operands and SFR
operands.

Cc-10 Appendix C

Workaround:

Do not use JBC and JNBS instructions, unless the first operand is a
GPR.

CR105619 -- "Phantom interrupt” occurs if Software Trap is cancelled
Infineon reference: CR105619

Use compiler option:
-BZc166sv1trap

Use libraries:
lib\[ulextp*.1lib

The last regularly executed interrupt is injected again if a software trap is
canceled and at the same time a real interrupt occurs. A sequence where
this problem occurs is the following:

BMOV R13.1,0FD10h.1
TRAP #010h

Due to the previous operation the TRAP is canceled and at the same time
a real interrupt occurs. As a result of this, the last previously executed
interrupt is injected and then the real interrupt is injected too (if its priority
is high enough).

Conditions for canceling a software TRAP are:

e previous instruction changes SP (explicitly)
* previous instruction changes PSW (implicit or explicitly)
e OCDS/hardware triggers are generated on the TRAP instruction

@ Note that instructions modifying the PSW are almost all the instructions:
arithmetic/logical instructions, MOVs,..... For a detailed list of instructions
modifying PSW refer to the User Manual.

Workaround:

Do not cancel a software trap by inserting a NOP before a TRAP
instruction.

CPU Functional Problems

CR107092 -- Extended sequences not properly bandled with
conditional jumps

Infineon reference: CR107092

Use compiler option:
-BZc166svlext

Use libraries:
lib\[u]extp*.1lib

Affected are the instructions EXTR, EXTP, EXTPR, EXTS, EXTSR and
ATOMIC since the responsible code generates the control signals for all
these instructions, however, the effects will differ.

Example:
EXTR #1
JB DP1H.6, JMP_ TARGET ; taken jump
MOV MDC, #0000Fh
MOV MDH, MDL
CALL never_reached
JMP_TARGET:

MOV MDC, #0000Fh
MOV MDH, MDL

In this example the jump is correctly executed and taken. However, the
control signal for the extended register sequence is not reset. So, at
JMP_TARGET the extend sequence is still effective. This means that the
move instruction is extended and instead of writing to the SFR MDC
(FFOEh) the move instruction writes to address FI0Eh, an ESFR address.

The bug occurs with taken conditional jumps only, since they are
executed as two cycle commands and therefore re-injected in the pipeline.
If the jump is not taken or unconditional, the sequence above will work
properly, since these jumps are executed as single cycle commands! With
“extr #2” in the sequence above, the second move will be affected as well!
ATOMIC instructions seem to be a minor issue, since they do not create
invalid accesses; in this case the consequence of the bug is that the
ATOMIC sequence will be extended to the target instructions also.

Workaround:

Do not jump from extend sequences.

C-12 Appendix C

5

CR108309 -- MDL access immediately after a DIV causes wrong PSW
values

Infineon reference: CR108309

Use compiler option:
-BZinsert_div_mdl

Use libraries:

A workaround is not default enabled in the libraries. Rebuild the
libraries manually:

for C files: use compiler option -BZinsert_div_mdl
for .src files: use assembler control CHECKC166SV1DIVMDL
for .asm files: use m166 control DEF (FIX EXT1MDL)

If the MDL register is accessed immediately after a DIV instruction, the
PSW flags are set incorrectly. The problem only appears with DIVs
instructions when they are immediately followed by one instruction that
reads MDL, from type:

MOVs mem,reg
ADDs/SUBs/ORs/XORs mem,reg
ADDs/SUBs/ORs/XORs reg,mem
ADDs/SUBs/ORs/XORs reg,mem
CMPs reg.mem

CMPs reg, #datalé

The V flag can be wrongly calculated for signed divisions: the V flag is
only set if the most significant bit of the result is set (that is, if the result is
negative).

Workaround:
Insert a NOP instruction after DIV instructions:

DIVL RO
NOP
MOV R1, MDL

CPU Functional Problems

CR108342 -- Lost interrupt while executing RETI instruction

Infineon reference: CR108342

Use compiler option:
-BZcpu_reti_int

Use libraries:
no solution in libraries required

The bug occurs when two interrupts are trying to get into the CPU while a
RETI instruction is being executed. In this case it can happen that one
interrupt is lost (the first one, even if it has a higher priority). Furthermore,
the program flow after the ISR can be broken. Only the RETI instruction is
affected by this bug. This is because this instruction is specially managed.
The instruction following the RETT is internally marked as not
interruptable. This means that no interrupt will be served by the CPU
between the RETI and its following instruction. This bug is the
consequence of an error in how this special treatment is implemented in
the logic, specifically in the generation of the "not interruptable”
indication.

This workaround marks the instruction following the RETI as not
interruptable, (emulating what the hardware was supposed to do).

CR108400 -- Broken program flow after not taken JMPR /|JMPA
instruction

Infineon reference: CR108400
Use compiler option:

-BZcpu_jmpra_cache
Use libraries:

A workaround is not default enabled in the libraries. Rebuild the
libraries manually:

for C files: use compiler option -BZcpu_jmpra_cache
for .src files: use assembler control CHECKCPUJMPRACACHE
for .asm files: use m166 control DEF (FIX_ JMPRA CACHE)

C-14 Appendix C

This bug can occur in two situations:

1. If the instruction sequentially following a conditional JMPR and/or
JMPA is the target instruction of another previously executed JB, JNB,
JNBS, JMPR or JMPA, the program flow can be corrupted when the
JMPR/JMPA is not taken.

2. If a not-taken JMPR and/or JMPA is inside a loop or a sequence that is
executed more than once (caused by a CALL, RET, JMPI, JMPS or
TRAP).

The bug occurs because the instruction sequentially following the
not-taken jump is fetched from memory but the "identifier” corresponding
to this instruction is taken from the jump cache (since this instruction was
previously loaded in the jump cache). As a consequence, both instruction
an identifier do not match exactly.

CR108904 —-- DIV/MUL interrupted by PEC when the previous
instruction writes in MDL/MDH

Infineon reference: CR108904
Use compiler option:

-BZinsert_mdl_muldiv
Use libraries:

A workaround is not default enabled in the libraries. Rebuild the
libraries manually:

for C files: use compiler option -BZinsert_mdl_muldiv
for .src files: use assembler control CHECKC166SV1MULDIVMDLH
for .asm files: use m166 control DEF (FIX_ EXT1MDLMULDIV)

CPU Functional Problems

If the source pointer of PEC/DPEC/EPEC points to the SFR/ESFR area
(PD-bus), the read operation to this SFR/ESFR location is not performed
when the PEC/DPEC/EPEC interrupts a DIV/MUL instruction in its first
execution cycle AND the DIV/MUL instruction follows an instruction
writing into MDL/MDH. In this case, apart from the fact that the read
operation is not performed, the value that is written into the destination
pointer is always FFFFh (default value of the PD-bus).

The instruction sequences affected, are:

MOV mdh, Rw ; or any instruction that writes in
; MDH/MDL (1) using any addressing mode
; (also indirect addressing and bitaddr)

DIV Rw ; or DIVL/DIVLU/DIVU or MUL/MULU

(D) Writes into ESFR addresses (FOOCh and FOOEh instead of MDH (FEOCh)
and MDL (FEOEh)) cause the same problem.

Workaround:
There are two possible workarounds:

1. Insert a NOP instruction (or another instruction not writing into
MDL/MDH) between an instruction writing into MDL/MDH and a
DIV/MUL instruction.

2. Do not allow interruption of DIV/MUL by using ATOMIC.

Kfm_BRO3 -- Pipeline conflict after COSTORE

STMicroelectronics reference: Kfm BRO3
Use compiler option:

-BN
Use libraries:

lib\[ulextp*.1lib

After a CoSTORE instruction with any destiniation (E)SFR, the (E)SFR
cannot be read.

C-16 Appendix C

=

LONDON.1 -- Breakpoint before JMPI/CAL

Infineon / STMicroelectronics reference: LONDON1
Use compiler option:
-BL
Use libraries:
lib\[u]ext2p*.1lib
Description:
JMPI

When the program hits a breakpoint right before a JMPI instruction, the
first instruction injected in the pipeline will not be processed by the core.
This leads to a deny of all interrupts and OCE injection requests. The
problem may also occur when single stepping right before a JMPI
instruction.

CALLI

CALLI instruction is not working properly in some cases if it is followed by
an injected interrupt. This results in causing a fault in the stack pointer
management.

CPU Functional Problems

LONDON.1751 -- Write to core SFR while DIV[L][U] executes
Infineon / STMicroelectronics reference: LONDON 1751

Use compiler option:
-BA
Use libraries:
lib\[u]ext2p*.1lib
In the following situation:

DIVU R12
ADD R13, R14
MOV MSW, will destroy the division

MOV R13,MDH

rx

Problem 13 -- Interrupted signed division

Infineon reference: Problem 13
Use compiler option:

-BD (-BM can also be used)
Use libraries:

1ib\[u]166p*.1lib
lib\[u]extp*.1lib
lib\[u]ext2p*.1lib
lib\[u]goldp*.1lib

Signed divide operations may produce incorrect results when an interrupt
(PEC, standard interrupt or hardware trap) occurs during an execution of
the DIV or DIVL instuction. Note that this bug will not occur for unsigned
divisions. When the -BD option is used the compiler will disable
interrupts during a signed division. When the =BM option is used all
multiply and divide instructions will be protected against interrupts. This
bypasses several other CPU problems as well.

C-18 Appendix C

=

Problem 17 -- Interrupted multiply with RETI

Infineon reference: Problem 17
Use compiler option:

-BI
Use libraries:

no solution in libraries required

When a multiply instruction has been interrupted, it may be completed
incorrectly after return from interrupt if a higher priority interrupt or
hardware trap is generated while the RETI instruction is executed. This
problem does not occur with PEC transfers.

In this case the previously mentioned workaround can be used, but at the
price of an increased worst case interrupt response time.

To avoid having to use the previous workaround, the problem can be
bypassed by an adaption in the interrupt frame code (file intrpt.c in the
¢ subdirectory of the examples directory).

In this file the RETI instruction is preceded by a BFLDH PSW, #0FOh,
#0FOH instruction, when the compiler bypass option -BI is used. This will
cause an interrupted multiplication or division to be correctly completed
after RETI before a higher priority interrupt will be acknowledged.

CPU Functional Problems

Problem S1 -- Byte Write to FLASH EPROM

Infineon reference: Problem S1
Use compiler option:
-BB
Use libraries:
lib\[u]l66p*.1lib

This problem occurs on older steps of the FLASH EPROM version of the
CPU. With the -BB option the compiler generates two NOP instructions
after each instruction which does a byte write operation. These
instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB, NEGB, ORB,
SUBB, SUBCB, XORB. The pragma fix_byte_write and nofix_byte_write
can be used to switch this option on the fly in your source code. To
reduce the number of NOP instructions to be generated, you can use the
disassembler d166 to detect where erroneous sequences are generated for
the CPU.

% See the description of the disassembler in the Utilities chapter of the
C166/ST10 Assembler, Linker/Locator, Utilities User’s Manual for more
information.

C-20 Appendix C

=

ST _BUS.1 -- JMPS followed by PEC transfer

STMicroelectronics reference: ST _BUS.1
Use compiler option:

-BJ
Use libraries:

lib\[ulextp*.1lib

When a JMPS instruction is followed by a PEC transfer, the generated PEC
source address is false. This results in an incorrect PEC transfer.

The compiler prevents the JMPS instruction from interfering with the PEC
transfers by inserting an ATOMIC #2 instruction before a JMPS instruction.
This bypass option can only be used in combination with the extended
instuction set. Further more, all JMPS instructions in the interrupt vector
table are replaced by CALLS instructions. The compiler will generate an
ADD SP, #04h instruction in the interrupt frame to delete the return
address generated by the CALLS instruction from the system stack.

The assembler contains the $CHECKSTBUS1 control to check for this CPU
problem.

@ The instruction to delete the return address from the system stack is part of
the interrupt frame and will NOT be generated if #pragma noframe was
used.

USER STACK MODEL

al TASKING [

XIAN3ddV

User Stack Model

1 INTRODUCTION

This appendix describes the special coding methods used in the libraries
and C166/ST10 C compiler to support a special stack frame. This appendix
describes a user stack model approach, which is used in a special version
of the libraries.

If you use the =P option of ¢166, the compiler does not emit the regular
CALL/RET instructions, when calling a C function, but emits code using a
jumping mechanism, specifying the return address on the user stack. The
advantage of this approach is that the system stack is not used at all. The
price paid for this feature is a run—time execution speed performance
penalty. The special libraries needed to support this feature are included
in the C and C++ compiler packages.

There are two valid reasons to use this option (and libraries):
* RTOS

When using a RTOS kernel, it is often not allowed to use the system
stack area (in fact change SP), because this area is reserved for the
kernel. Therefore, the =P option must be used when using RTOS.

* Heavy recursion

When the system stack area is getting too small and it is not possible to
implement a circular system stack approach (using SOV/SUN exception
handlers), the =P option can be used. In this case the compiler uses the
user stack instead of the system stack. You must link the application
with the user stack model libraries.

Using =P does not mean that you have to use a RTOS. You can run the
application as a standalone application, without any kernel.

The calling convention is explained in more detail in the next chapters.

The push and pop instructions are only allowed during hardware task
switches. Nevertheless, with the C compiler option —On, it is possible to
use the user stack instead of the system stack for hardware task switches.
See the —=Ou option in section 4.3 Detailed Description of the Compiler
options in this manual.

Appendix D

The offset of structure components relative to the structure can be
determined from the symbolic debug information, also needed for high
level language debugging, generated by the C compiler when you use the
command line option -g. The syntax for structure symbolic debug
information is described in section 3.18 Structure Type of the document
”C166/ST10 Symbolic Debug Specification”.

The conventions for register and data page usage, as well as the calling
conventions for functions, are fully documented in chapter 3 Language
Implementation. Section 3.6 Function Parameters of chapter 3, describes
when parameters are passed via registers and when they are passed via
the user stack.

FUNCTION CALL AND RETURN

The next sections describe how function calls and function returns are
implemented in the libraries and in the C compiler to support a special
stack frame.

2.1 DIRECT INTRA-SEGMENT FUNCTION CALL AND

RETURN

A direct intra-—segment function call (near function call) is normally
performed with a CALLA instruction and returned with a RETN instruction.
But the direct intra-—segment function call must be performed without
using the system stack.

Therefore, the user stack is used to pass the return label to the near
function. Then the near function is invoked using an absolute
intra-—segment jump. At exit, the near function return is implemented using
an indirect jump on the contents of the user stack.

The following assembly listing displays the code the C compiler generates
for an absolute near function call. The near function called is named _£.
Rn is a register used by the C compiler for temporary results.

User Stack Model

min.
code state
size times

mov Rn, #SOF __ RETURN_LABEL 4 2

mov [-RO], Rn 2 2
jmpa Cc_uc, _f 4 4

__ RETURN_LABEL:

10 8

The assembly listing described below displays the code the C compiler
generates to return to the caller of the near function.
min.
code state

size times

mov R2, [RO+]

2 2
jmpi CC_UC, [R2] 2 4
retv ; virtual return 0 0
4 6

Temporary register R2 is used to pop the return address from the user
stack and to continue program execution at the return label via a indirect
jump on the contents of R2. The user stack pointer is updated by the
called function before it returns (see [RO+1). This is not the regular
method to handle the user stack pointer in a C function, but this saves one
instruction. Register R2 can be used, because it is always free for use at
function return. No parameters are returned via register R2.

2.2 INDIRECT INTRA-SEGMENT FUNCTION CALL AND
RETURN

An indirect intra—segment function call (indirect near function call) must
also be performed without using the system stack. The user stack is used
to pass the return label to the near function. The (offset) address of the
near function is determined at run—time. At exit, the near function returns
the same way as described above.

The following assembly listing displays the code the C compiler generates
for an indirect near function call. The near function called indirectly is in
the function pointer array named _£p. Rx contains the index value. Rn is a
register used by the C compiler for temporary results.

D-6

Appendix D

min.
code state
size times

mov Rn, #SOF _ RETURN_LABEL 4 2
mov [-RO], Rn 2 2
mov Rn, [Rx+# fp] 4 4
jmpi CC_UC, [Rn] 2 4
__ RETURN_LABEL:
12 12

It is obvious that the code, needed to return from a near function, is
always the same, because the function does not know whether it is called
directly or indirectly. See the previous section for the code the C compiler
generates to return from a near function.

2.3 DIRECT INTER-SEGMENT FUNCTION CALL AND
RETURN

A direct inter-segment function call (far function call) is normally
performed with a CALLS instruction and returned with a RETS instruction,
but now the system stack may not be used.

A direct inter-segment function can be invoked using a JMPS instruction,
but the called function does not know where to return to on exit.
Therefore, the user stack is used to pass the return label to the far
function. Not only the segment offset of the return label is passed but also
the segment number of the return label is passed, because the return label
can be located in any segment.

The following assembly listing displays the code the C compiler generates
for a far function call. The far function called is named £. Rn is a register
used by the C compiler for temporary results.
min.
code state

size times

mov Rn, #SOF _ RETURN_LABEL

4 2
mov [-RO], Rn 2 2
mov Rn, #SEG __ RETURN_LABEL 4 2
mov [-RO], Rn 2 2
jmps SEG _f, SOF _f 4 4
__ RETURN_LABEL:

add RO, #4 2 2

18 14

User Stack Model

The user stack pointer must be increased with four bytes, when code
execution continues at the return label, to remove the inter-segment
return address from the user stack.

It is very likely that in a regular C application functions of the same task
c.q. process are grouped together and therefore, also located in the same
segment. So, for a regular C application more intra-segment calls than
inter-segment calls are expected between functions. The execution speed
performance increases when it is possible to return immediate with an
intra-—segmented jump to the return label, instead of returning with an
inter-segmented jump to the return label. First is tested, at far function
return, if the code segment pointer CSP is already pointing to the segment
the return label is located in. An indirect intra—segment jump to the return
label can be performed if the segment number of the return label is equal
to CSP.

An indirect inter-segment jump on the contents of the user stack must be
performed, at far function return, when CSP is not equal to the segment
the return label is located in. But, there is no instruction available to do
this. A so—called return table stub function __ uiret is invoked, at far
function return, to set CSP. Setting CSP is performed by invoking a return
stub function in the segment the return label is located in. When the
return stub function is entered in the segment of the return label, an
indirect intra-segment jump to return label can be performed. See also
section 2.5, Inter-segment Call and Return Table Stub Functions and
section 2.6, Intra-segment Call and Return Stub Functions.

Testing CSP to check if it possible to return immediate with an
intra—segmented jump increases the code execution speed but decreases
the code density, because the CSP test is generated at each far function
return. For this reason it can be controlled with the compiler optimization
option. The compiler generates default compact code (default compiler
optimization is =OF). Fast code generation can be turned on with the
compiler option -Of. All the libraries are generated for fast code execution

(-oh!

The assembly listing described below displays the code the C compiler
generates for a far function to return to its caller, with compiler option ~Of
(fast code generation) and =OF (default: compact code generation).

Appendix D

—0of min.
code state
size times

mov R2, [RO]

2 2

cmp R2, CsSP 4 2

jmp cc_NE, _ LBL 2 4

mov R2, [RO+#02H] 4 4

jmpi CC_UC, [R2] 2 4

_ LBL: Jjmps SEG (_ uiret), SOF (_ uiret) 4 4
retv ; virtual return 0 0

. intra-segment return 18 16
inter-segment return 18 12

—OF (default) min.

code state
size times

mov R2, [RO]

2 2

jmps SEG (_ uiret), SOF (_ uiret) 4 4
retv ; virtual return 0 0
inter—-segment return 6 6

Temporary register R2 can be used to compare CSP, because register R2 is
free for use at function return. No parameters are returned via register R2.

2.4 INDIRECT INTER-SEGMENT FUNCTION CALL AND
RETURN

An indirect inter-segment function call (indirect far function call) is
normally performed with a run—time library function, and the far function
called indirect returns with a RETS instruction. The segment number and
segment offset are passed to this run—time library function to perform the
inter-segment call, but it uses the system stack which is not allowed in this
implementation of the library.

User Stack Model

The far function cannot be invoked with an inter-segment jump, because
the segment number and segment offset for the indirect call are
determined run-time. A calculated segmented jump is not present in the
instruction set. But the far function can be invoked with an indirect
intra—segment jump when the code segment pointer is set to the segment
the far function is located in. A so—called call table stub function
__uicall is used to set CSP. Setting CSP is done by jumping to the call
stub function located in the same segment as the far function. This call
stub function finally performs the indirect intra—segment jump to the far
function.

The segment number and segment offset of the indirect far function are
passed via register R4 and R5 to the stub functions. The segment number
is passed via register RS to the call table stub function and the segment
offset is passed trough via register R4 to the call stub function in the
segment the indirect far function is located in. It is possible to pass the
address of the indirect far function via general registers, because they are
never used for parameter passing in C functions and C library functions.
Remember that general registers are used for parameter passing in the run
time library functions, but run—time library functions are never called
indirectly! If you create an assembly function which is called indirectly,
then no parameters can be passed to it via registers R4 and R5!

The segment offset and the segment number of the return label are passed
via the user stack to the far function called indirectly. It is obvious that the
code, needed to return from a far function is always the same, because the
function does not know whether it is called directly or indirect. See
previous section for the code the C compiler generates to return from a far
function.

The next assembly listing displays the code the C compiler generates for
an indirect far function call, using the call table stub function _ uicall.
The far function called indirectly is in the function pointer array named
_fp. Rx contains the index value. Rn is a register used by the C compiler
for temporary results.

D-9

D-10

Appendix D

min.
code state
size times

mov Rn, #SOF _ RETURN_LABEL

4 2

mov [-RO], Rn 2 2

mov Rn, #SEG __ RETURN_LABEL 4 2

mov [-RO], Rn 2 2

mov R4, [Rx+# fp] 4 4

mov R5, [Rx+# fp+02H] 4 4

jmps SEG(_ uicall), SOF(_ uicall) 4 4

__RETURN_LABEL:

add RO, #4 2 2

26 22

The user stack must be lowered with four bytes, when code execution
continues at the return label, to remove the inter-segment return address
from the user stack.

It is possible to check CSP if it is already pointing to the segment the
indirect far function is located in. If so, an indirect intra-—segmented jump
can be performed immediate to the far function. But, it will not make
much difference in execution speed if CSP is tested or not, because an
indirect far call is not very frequently used in a regular C applications. And
the code size increases for each indirect far call. This all makes it
unprofitable to implement CSP testing for indirect far calls.

2.5 INTER-SEGMENT CALL AND RETURN TABLE STUB

FUNCTIONS

The call and return table stub functions are called uicall and
__uiret. The call table stub function is only invoked for indirect far
function calls and the return table stub function is only invoked at far
function return if the code segment pointer CSP is not equal to the
segment the return label is located in. These functions are invoked with a
segmented jump, so they can be located in any segment.

The inter-segment call table stub function is needed to invoke the call
stub function in the segment the indirect far function is located in. The
segment number is passed via register RS and used as offset for the jump
table to invoke the call stub function in the right segment, which causes
CSP to be loaded with the right segment number.

The assembly listing described below displays the code for the call table
stub function.

User Stack Model

min.
code state
size times

__uicall:
shl R5, #2 2 2
add R5, #SOF(table) 4 2
jmpi CC_UC, [R5] 2 4
table: Jjmps SEG(_ uicall 0), SOF(_ uicall 0) 4 4
jmps SEG(_ uicall 1), SOF(_ uicall 1) 4
jmps SEG(_ uicall 2), SOF(_ uicall 2) 4
jmps SEG(_ uicall 3), SOF(_ uicall 3) 4
retv 0 0
24 12

Register R5 can be used to calculate the indirect jump in the inter-segment
jump table, because there are no parameters passed to C functions via
register R5. If you create an assembly function or you use inline assembly
which is called indirectly, it may not use register R5 for parameter passing!

The return table stub function is needed to invoke the return stub function
in the segment the return label is located in. The segment number is
passed via register R2 and used as an offset for the jump table to invoke
the return stub function in the right segment, which causes CSP to be
loaded with the right segment number. The segment number of the return
label is also passed via the user stack, but register R2 is already loaded
with it for testing CSP at far function return. This makes reloading register
R2 with the segment number from the user stack superfluous. See section
2.3 Direct Inter-segment Function Call and Return.

The assembly listing described below displays the code for the return table
stub function.

min.
code state
size times

__uiret:
shl R2, #2 2 2
add R2, #SOF(table) 4 2
jmpi CC_UC, [R2] 2 4
table: Jmps SEG(_ uiret 0), SOF(_ uiret 0) 4 4
jmps SEG(_ uiret 1), SOF(_ uiret 1) 4
jmps SEG(_ _uiret_2), SOF(_ uiret_2) 4
jmps SEG(__uiret_3), SOF(_ uiret_3) 4
retv 0 0
24 12

D-12

Appendix D

Temporary register R2 can be used to calculate the indirect jump in the
inter-segment jump table, because register R2 is free for use at function
call and at function return. No parameters are passed via register R2 ! All
the library functions meet this requirement. If you create an assembly
function or if you use inline assembly which uses register R2 and it must
be preserved over a function call, then R2 must be saved on the user
stack.

2.6 INTRA-SEGMENT CALL AND RETURN STUB

FUNCTIONS

The intra—segment call stub function is called by the inter-segment call
table stub function, to set the code segment pointer CSP to the segment of
the indirect called far function. When the call stub function is entered in
the segment of the far function, an indirect intra-—segmented jump can be
performed to the segment offset the indirect far function is located at. The
segment offset of the indirect far function is passed to the call stub
function via register R4.

The intra—segment return stub function is called by the inter-segment
return table stub function to set the code segment pointer CSP to the
segment of the return label. When the return stub function is entered in
the segment of the return label, an indirect intra-—segmented jump can be
performed to the segment offset the return label is located at. The segment
offset of the return label is passed via the user stack to the return stub
function.

The assembly listing described below displays the stub code module for
the call and return stub function. The same stub code module is located in
all C166/ST10 segments. Only the entry names are different, they are
related to the segment they are located in. SEG specifies the segment
number, SEG can be 0 to 3 for the C166/ST10.

User Stack Model

min.
code state
size times

__ UICALLRET_SEG section code word common ’‘UICALLRET_ SEG’
__uiret_SEG proc far

mov R2, [RO+#02H] 4 4
jmpi cCC_UC, [R2] 2 4
retv 0 0

6 8

__uicall_ SEG:

jmpi CC_UC, [R4] 2 4
retv 0 0

2 4

__UICALLRET SEG ends

Register R4 can be used to pass the segment offset address of the indirect
far function, because there are no parameters passed to C functions via

register R4. If you create an assembly function or you use inline assembly
which is called indirectly, it may not use register R4 for parameter passing!

Temporary register R2 can be used to get the segment offset of the return
label from the user stack and to jump indirect to it, because register R2 is
free for use at function call and at function return. No parameters are
passed via register R2! All the library functions meet this requirement. If
you create an assembly function or you use inline assembly which uses
register R2 and it must be preserved over a function call, then R2 must be
saved on the user stack.

In the C166/ST10 C library are four stub code modules archived, for each
segment one. They have to be located in the right segments with a locator
control. For example, with:

ADDRESSES (SECTIONS (
__UICALLRET 0(SEGMENT 0
___UICALLRET 1(SEGMENT 1
__UICALLRET 2(SEGMENT 2
__UICALLRET 3(SEGMENT 3

))

Each stub code module needs its own class name, because it also must be
possible to locate the code stub modules in the right segments with the
locator control "CLASSES(..)”.

D-14 Appendix D

=

3 USING THE EXTENDED INSTRUCTION SET

3.1 INTRODUCTION

When an extended instruction set is available (e.g. C167) it is no longer
needed to avoid the system stack for indirect inter-segment jumps.
Because with the extended instruction ATOMIC the standard PEC
interrupts and class A hardware trap can be disabled for a specified
number of instructions.

To perform an indirect inter-segment jump the segment number and
segment offset are pushed on the system stack and a RETS instruction is
executed. Then the execution resumes at the inter—segment address
pushed on the system stack. To avoid that these instructions are
interrupted they are protected with an ATOMIC instruction.

The following assembly listing shows the code for an indirect
inter-segment jump using the ATOMIC instruction. Rseg and Rsof contain
the inter-segment address to jump to.

code can be read as :
mov CSP, Rseg
mov IP, Rsof

atomic #3 protect against interrupts

Ne Ne Ne e Ne e Ne o~

push Rseg (SP) <— (SP) — 2 ; ((SP)) <- Rseg
push Rsof (SP) <- (SP) — 2 ; ((SP)) <—- Rsof
rets (IP) <- ((SP)) ; (SP) <- (SP) + 2

(CSP)<— ((SP)) (SP) <— (SP) + 2

The advantage of using extended instructions to perform indirect
inter-segment jumps is that there are no jump stubs needed anymore. This
means that there are less user stack operations needed. However, a
disadvantage of using the extended instructions is that the interrupt
acknowledge performance decreases.

User Stack Model

3.2 DIRECT INTER-SEGMENT FUNCTION CALL AND
RETURN

Before an direct inter-segment jump can be performed to the far function,
the segment number and segment offset of the return label must be stored
on the user stack. The far function being invoked returns to its caller by
getting the return label from the user stack and then performing an
indirect inter-segment jump to the return label, as described in the
previous section.

The next assembly listing displays the code the C compiler generates for a
far function call when extended instructions are available.

The far function called is named _£f. Rsof and Rseg are registers used by
the C compiler for temporary results.

min.
code state
size times

mov Rsof, #SOF _ RETURN_LABEL 4 2

mov [-RO], Rsof 2 2

mov Rseg, #SEG _ RETURN_LABEL 4 2

mov [-RO], Rseg 2 2

jmps SEG _f, SOF _f 4 4

__ RETURN_LABEL: - -
16 12

The next assembly listing displays the code the C compiler generates for a
far function to return to its caller.

min.
code state
size times

mov Rseg, [RO+]
mov Rsof, [RO+]
atomic #3

push Rseg

push Rsof

rets

NNDNDDNDNDDN
BN NN

12 14

D-16 Appendix D

=

3.3 INDIRECT INTER-SEGMENT FUNCTION CALL AND
RETURN

Also now the segment number and segment offset of the return label must
be stored on the user stack before an indirect inter-segment jump can be
performed to the far function. The far function being invoked returns to its
caller by getting the return label from the user stack and then performing
an indirect inter-segment jump to the return label. The far function being
invoked is determined run-time. So, an indirect inter-segment jump is
needed. When segment number and segment offset of the far function
being called is determined run-time, the same mechanism as described in
section 3.2, can be used again to make the inter-segment jump.

The next assembly listing displays the code the C compiler generates for
an indirect far function call when extended instructions are available.

The far function called indirectly is in the function pointer array named
_fp. Rx contains the index value. Rseg and Rsof are registers used by
the C compiler for temporary results.
min.
code state
size times

mov Rsof, #SOF __ RETURN_LABEL 4 2
mov [-RO], Rsof 2 2
mov Rseg, #SEG _ RETURN_LABEL 4 2
mov [-RO], Rseg 2 2
mov Rsof, [Rx+# fp] 4 4
mov Rseg, [Rx+# fp+02H] 4 4
atomic #3 2 2
push Rseg 2 2
push Rsof 2 2
rets 2 4
__RETURN_LABEL: - -
28 26

It is obvious that the code, needed to return from a far function is always
the same, because the function does not know whether it is called directly
or indirectly. See section 3.2 for the code the C compiler generates to
return from a far function when extended instructions are available.

User Stack Model

4 MIXING USER STACK AND NON-USER STACK
FUNCTIONS

With the usm and nousm function qualifiers, the compiler is instructed
to generate a user stack model calling convention regardless of the usage
of the compiler option option =P (see section 3.2.2, User Stack Model).

To allow indirect calls to _usm or _nousm qualified functions, two
versions of the discussed run—time library routines are available.
__uicall and _ uiret are used to implement indirect calls and returns
from functions implementing the user stack model calling convention.
__icall is used for indirect calls for non—user stack model functions.

The run-time library routine _banksw is also available in the version
__ubanksw for banked user stack model functions.

Please note that __uiret is only used in the user stack model, so no
__iret routine is needed for non—user stack model functions. To
maintain backwards compatibility, _iret is a label at the start of the
__uiret routine.

Also note that the compiler will never emit a call to __uicall for the
extended instruction sets, because it will inline the indirect call as
explained in section 3.3 above.

Appendix D

D-18

T4AON MIVLS d3SN

INDEX

al TASKING [

X3ANI

Index

Symbols

?BASE_DPPn, 7-7
#define, 4-21
#include, 4-34, 4-86
#pragma, 4-89
alias, 4-89
align, 4-91
asm, 3-73, 4-90
asm_noflush, 3-73, 4-90
autobita, 4-90
automatic, 4-91
autosavemac, 4-95
class, 4-91
clear, 4-92
combine, 4-91
cse resume, 4-91
cse suspend, 4-91
custack, 4-91
default_attributes, 4-92
dfap, 4-92
endasm, 3-73, 4-90
eramdata, 3-68, 4-92
Sfix_byte_write, 4-93
Jfragment, 4-93
fragment continue, 4-93
fragment resume, 4-93
global, 4-95
global dead store_elim, 4-94
ramdata, 3-68, 4-93
ml1066include, 4-94
macro, 4-94
no_global_dead_store_elim, 4-94
noalias, 4-90
noclear, 4-92
nocustack, 4-91
nodfap, 4-92
nofix_byte write, 4-93
noframe, 3-76, 4-94
nomacro, 4-94
noreorder, 4-95
nosavemac, 4-95

nosource, 4-96
novolatile_union, 4-97
preserve_mulip, 4-95
public, 4-95
regdef, 4-95
reorder, 4-95
restore_attributes, 4-92
romdata, 3-68, 3-70, 4-93
save_attributes, 4-92
savemac, 4-95
size, 4-96
source, 4-96
speed, 4-96
static, 4-91
stringmem, 4-96
switch_force_table, 4-96
switch_smart, 4-96
switch_tabmem_default, 4-96
switch_tabmem_far, 4-96
switch_tabmem_near, 4-96
volatile union, 4-97

#undef, 4-78

-DMEASURE TIME, 2-25

-g option, D-4

—-OF option, D-7

—-Of option, D-7

—Ou option, D-3

-P option, D-3
__banksw, 3-135
_ DATE , 4-78
__FILE_, 4-78
__FP_ENV, 3-104
LINE, 4-78
__STDC__, 4-78
__TIME__, 4-78

_at attribute, 3-41
_atbit attribute, 3-43
_atomic, 3-122
_bfld, 3-118

_C166, 3-143, 4-78
_close, 6-10
_CoABS, 3-106

Index-3

Index-4 Index

=

_CoADD, 3-107 _fstrnepy, 6-12
_CoADD2, 3-107 _fstrpbrk, 6-13
_CoASHR, 3-107 _fstrrehr, 6-13
_CoCMP, 3-108 _fstrspn, 6-13
_CoLOAD, 3-108 _fstrstr, 6-13
_CoLOAD?2, 3-108 _fstrtok, 6-14
_CoMAC, 3-109 _getbit, 3-119
_CoMAC_min, 3-110 _hstrcat, 6-14
_CoMACsu, 3-109 _hstrchr, 6-14
_CoMACsu_min, 3-110 _hstremp, 6-14
_CoMACu, 3-109 _hstrepy, 6-15
_CoMACu_min, 3-110 _hstrespn, 6-15
_CoMAX, 3-111 _hstrlen, 6-15
_CoMIN, 3-111 _hstrncat, 6-15
_CoMUL, 3-111 _hstrncmp, 6-16
_CoMULsu, 3-112 _hstrnepy, 6-16
_CoMULu, 3-112 _hstrpbrk, 6-16
_CoNEG, 3-112 _hstrrchr, 6-16
_CoNOP, 3-113 _hstrspn, 6-17
_CoRND, 3-113 _hstrstr, 6-17
_CoSHL, 3-113 _hstrtok, 6-17
_CoSHR, 3-114 _idle, 3-120
_CoSTORE, 3-114 _inline, 3-44
_CoSTOREMAH, 3-114 _int166, 3-119
_CoSTOREMAL, 3-115 _Iseek, 6-17
_COSTOREMAS, 3-115 _mkfp, 3-126
_COSTOREMSW, 3-115 _mkhp, 3-127
_CoSUB, 3-116 _mksp, 3-127
_CoSUB2, 3-116 _mod32, 3-124
_CPU, 7-5 _MODEL, 3-18, 4-78
_diswdt, 3-122 “modu32, 3-124
_div32, 3-123 _mul32, 3-123
divu32, 3-123 “mulu32, 3-123
_einit, 3-122 _noalign, 3-45
_EXT2, 7-5 _nop, 3-120
_fstrcat, 6-10 _nousm function qualifier, 3-28
_fstrchr, 6-10 _open, 6-18
_fstremp, 6-11 _packed, 3-46
_fstrepy, 6-11 _pag, 3-125
_fstrespn, 6-11 _pof, 3-125
_fstrlen, 6-11 _prior, 3-121
_fstrncat, 6-12 _putbit, 3-119

_fstrnemp, 6-12 _pwrdn, 3-121

Index

_read, 6-18
_rol, 3-116
_ror, 3-117
_seg, 3-126
_sof, 3-126
_srvwdt, 3-121
_sstrcat, 6-18
_sstrchr, 6-19
_sstremp, 6-19
_sstrepy, 6-19
_sstrespn, 6-19
_sstrlen, 6-20
_sstrncat, 6-20
_sstrnemp, 6-20
_sstrnepy, 6-21
_sstrpbrk, 6-21
_sstrrchr, 6-21
_sstrspn, 6-21
_sstrstr, 6-22
_sstrtok, 6-22
_stime, 6-18
_testclear, 3-117
_testset, 3-118
_tolower, 6-22
_toupper, 6-22
_tzset, 6-23
_unlink, 6-23
_usm function qualifier, 3-28
_USRSTACK, 7-5
_write, 6-23
_xnear, 3-21
_xsfr keyword, 3-60

Numbers

80166 segments, D-12

A

al66, 2-9
abort, 6-23

abs, 6-24
access, 6-24
accessing memory, 3-5
acos, 6-24
address ranges, 3-5
addresses, locator control, D-13
addresses linear, 3-8
alias, 4-44, 4-89, 4-98
align, 4-91
align type, 3-30, 3-35, 4-69
ansi standard, 2-3, 3-3, 3-68, 3-70,
4-78
arl66, 2-11
asctime, 6-24
asin, 6-25
asm, 4-90
asm_noflush, 4-90
assembly functions, D-9, D-11, D-13
assembly language interfacing, 7-12
assembly source file, 2-9
assert, 6-25
assert.h, 6-7
assert, 6-25
atan, 6-25
atan2, 6-25
atexit, 6-26
atof, 6-26
atoi, 6-26
atol, 6-26
atomic instruction, D-14
autobita, 4-90
autobitastruct, 4-90
automatic, 4-91
automatic initializations, 3-68
autosavemac, 4-95

backend
compiler phase, 2-5
optimization, 2-5

bank, function qualifier, 3—134

Index-5

Index-6

bank switch, 3-136
benchmark, 2-25
bit, 3-53
bit type, 3-58
BIT INIT, 7-5
bita, 3-26
bitword, 3-53
bitword type, 3-59
bsearch, 6-27
btowc, 6-27
build, viewing results, 2-23
build an application, 2-24
command line, 2-24
control program, 2-24
EDE, 2-23
makefile, 2-29
separate programs, 2-26
built-in functions, 3-106
builtin.c, 3-127

C
inline functions, 3-44
language extensions, 3-3
C function return types, 3-86
C library, 64
creating your own, 6-111
interface description, 6-10
C startup code, 7-3
C166 stack, 7-9
c166.h, 3-143, 6-7
C166INC, 4-34, 4-86
cached interrupts, 3-81
call table stub function, D-9
inter-segment, D-10
intra-segment, D-12
CALL USER, 7-6
CALLEINIT, 7-6

CALLINIT, 7-6
calloc, 6-27

CAN, 6-6

CAN library, interface description,

6-108

can_ext.h, 6-7
check_busoff 16x, 6-108
check_mo_16x, 6-108
check_mol5 16x, 6-108
def mo_16x, 6-108
init_can_16x, 6-109
ld_modata_16x, 6-109
rd_mol5 16x, 6-109
rd_modata_106x, 6-109
send_mo_106x, 6-110

canr_16x.h, 6-7

Index

casting pointer to long, 4-59, 4-62

ccl66, 2-11, 4-3
ceil, 6-28

character arithmetic, 3-57, 4-12

chdir, 6-28
check busoff 16x, 6-108
check mo_16x, 6-108
check mol5 16x, 6-108
class, 3-30, 4-91
class name, 4-69
classes, locator control, D-13
clear, 4-92
clearerr, 6-28
clearing variables, 4-45
CLIBRARY, 6-5
clock, 6-28
close, 6-29
code checking, 3-139
code density, 4-49
-OF, D-7
code memory banking, 3-134

code memory fragmentation, 3-37

code rearranging, 4-57
combine, 4-91

combine type, 3-30, 3-35, 4-69

command file, 4-27
command line options

detailed compiler options, 4-10

Index

overview compiler options, 4—6

overview control program options,

4-4
command line processing, 4-27
comments, C++ style, 4-14
common, 3—-49

common subexpression elimination,

2-8, 4-46
common tail merging, 2-8
compile, 2-23
compiler, 4-6
compiler limits, 4-100
compiler options

-7, 4-11

-A, 4-12

-B, 4-16

-D, 4-21

-E, 4-22

-e, 4-23

-ery, 4-24
-exit, 4-25
-F, 4-206, 6-6
—f, 4-27

-Fc, 4-20, 6-6
-Fs, 4-26

-G, 4-29

-8 4-30

-gb, 4-30
~of, 4-30

-gl, 4-30

-gs, 4-30
-gso, 4-31
-H, 4-32

-1, 4-34

-1, 4-33

-M, 4-35
-m, 4-36
—misrac, 4-38

—-misrac-advisory-warnings, 4-39
—-misrac-required-warnings, 4-39

-n, 4-40
-0, 4-41, 4-43
-0, 4-67

-Oa / -OA, 4-44
-Ob / -OB, 4-45
-Oc / -0OC, 4-46
-Od / -OD, 4-47, 4-49
-Oe / -OE, 4-48
-Og / -0G, 4-50
-Obh / -OH, 4-51
-0j/ -0J, 4-52
-Ok / -OK, 4-53
-0l /-OL, 4-54
-Om / -OM, 4-55
-On / -ON, 4-56
-Oo / -0O0, 4-57
-Op / -OP, 4-58
-Oq / -0Q, 4-59
-Or/ -OR, 4-60
-Os/ -0S, 4-61
-0t/ -0OT, 4-62
-Ou / -OU, 4-63
-Ov / -0V, 4-64
-Ow | -OW, 4-65
-Ox / -0X, 4-66
-P, 3-28, 4-68
-Pd, 4-68

-7, 4-71

-Ral, 4-69

-Rcl, 4-69

-Rco, 4-69

=S, 4-74

-s, 4-75

-1, 4-76

-t, 4-77

-U, 4-78

-u, 4-80

-V, 4-81

—w, 4-82
—wstrict, 4-82
-x, 4-83

-z, 4-85
detailed description, 4-10
overview, 4—6
overview in functional ovder, 4-8

Index-7

compiler phases, 2—-4
backend, 2-5
code generator phase, 2-5
DFA peephole optimizer phase, 2—-6
instruction reorvdering phase, 2-6
optimization phase, 2-5
peephole optimizer phase, 2-6
Sfrontend, 2-5
optimization phase, 2-5
parser phase, 2-5
preprocessor phase, 2-5
scanner phase, 2-5
compiler structure, 2-9
conditional bit jump, 2-6
conditional jump reversal, 2—7, 4-58
const qualifier, 3-68
constant folding, 2-6
constant propagation, 4-47
constant romdata, 4-48
constant/value propagation, 2-8
context pointer register, 7-7
control flow optimization, 2-7, 4-58
control macros, 3-60
control program, 4-3
options overview, 4—4
conversions, ANSI C, 3-54
copy propagation, 4-47
cos, 6-29
cosh, 6-29
cpu functional problems, 4-16
creating a makefile, 2-20
cross—assembler, 2-9
CSE, 2-8, 4-46
cse resume, 4-91
cse suspend, 4-91
ctime, 6-29
ctype.h, 6-7
_tolower, 6-22
_toupper, 6-22
isalnum, 6-44
isalpha, 6-44
isascii, 6-44
iscntrl, 6-44

Index

isdigit, 6-45
isgraph, 6-45
islower, 6-45
isprint, 6-46
ispunct, 6-46
isspace, 6-46
isupper, 6-47
isxdigit, 6-49
toascii, 6-91
tolower, 6-92
toupper, 6-92
custack, 4-91

d166, 2-11

data allocation, 3-19

data flow analysis peephole (DFAP),

4-64

data sections
default, 3-20
initialized, 3-32
non-initialized, 3-31
normal, 3-31
ramdata, 3-32
romdata, 3-31
specials, 3-34

data types, 3-53-3-61
_bit, 3-53
_bitword, 3-53
_esfr, 3-53
_esfrbit, 3-53
_sfr, 3-53
_sfrbit, 3-53
_xsfr, 3-53
double, 3-53
Jar pointer, 3-53
float, 3-53
buge pointer, 3-53
long double, 3-53
near pointer, 3-53

Index

shuge pointer, 3-53
signed char, 3-53
signed int, 3-53
signed long, 3-53
signed short, 3-53
unsigned char, 3-53
unsigned int, 3-53
unsigned long, 3-53
unsigned short, 3-53
xnear pointer, 3-53
DAVE support, 2-31
dead code elimination, 2-8
debug environment, B-1
CrossView Pro, B-3
Hitex, B-6
Kontron, B-4
Dls fast-view66, B-7
debug information, 4-30
debugger, starting, 2—-30
def mo_16x, 6-108
default_attributes, 4-92
DEFINE, m166 control, 7-4
defining occurrence, 3-21
derivatives, 2—4
detailed option description, compiler,
4-10-4-85
development flow, 2-10
dfap, 4-92
difftime, 6-30
directory separator, 4-87

div, 6-30
dmp166, 2-11
double, 3-53

double precision, 3-92
double base expression subroutines,
3-92
double conversion subroutines, 3-93
double support subroutines, 3-94
DPP registers, 7-7
DPP usage, 3-20

EDE

build an application, 2-23
create a project, 2-18
create a project space, 2-17
rebuild an application, 2-24
specify development tool options,
2-21

starting, 2-15

efficiency in large data models,

3-19-3-22
endasm, 4-90
environment variables, C166INC, 4-34,
4-86

eramdata, 4-92

errno.h, 6-7

error level, 5-4

errors, 5-6
backend, 5-34
Sfrontend, 5-6

esfr, 3-53

esfrbit, 3-53

EVA, 7-5

EX AB, 7-5

example
using separvate programs, 2-26
using the control program, 2-24
using the makefile, 2-29

execution speed, 4-49

-Of. D-7, D-10
exit, 6-30
exit status, 5—4, 5-5
exp, 6-30

expression rearrangement, 2-7
expression recognition, 4-50
expression simplification, 2-7
extended features, 4-83
extended instruction set, D-14

Index-9

Index-10

=

extensions to C, 3-3
extern keyword, 3-49
external memory, 3-30

F

fabs, 6-31
far, 3-21
far function, D-6, D-7, D-9, D-10,
D-12, D-15
far pointer, 3-53
fast loops, 4-54
fast-view66, B-7
fcalloc, 6-31
fclose, 6-31
fentlh, 6-7
open, 6-69
feof, 6-31
ferror, 6-31
fflush, 6-32
ffree, 6-32
fgetc, 6-32
fgetpos, 6-32
fgets, 6-33
fgetwc, 6-33
fgetws, 6-33
file extensions, 2-12
file system simulation, 6-7
fix_byte write, 4-93
float, 3-53, 4-26
float.h, 6-7
isinf, 6-45
isinff, 6-45
isnan, 6-46
isnanf, 6-46
floating point
double precision, 3-92
double base expression subroutines,
3-92
double conversion subroutines,

3-93

Index

double support subroutines, 3-94
register usage, 3-95
IEEE-754, 3-87
interfacing, 3-87
single precision, 3-90, 6-6
float base expression subroutines,
3-90
float conversion subroutines, 3-91
register usage, 3-91
storage in memory, 3-89
trapping, 3-96
usage for assembly programmers,
3-95
floating point constants, 3—-19
floor, 6-33
fmalloc, 6-33
fmod, 6-34
fopen, 6-34
fprintf, 6-35
fputc, 6-35
fputs, 6-35
fputwc, 6-35
fputws, 6-36
fragment, 4-93
fragment continue, 4-93
fragment resume, 4-93
fread, 6-36
frealloc, 6-36
free, 6-36
freopen, 6-37
frexp, 6-37
frontend
compiler phase, 2-5
optimization, 2-5, 2-6
fscanf, 6-37
fseek, 6-38
fsetpos, 6-38
fss.h, 6-7
fstat, 6-38
ftell, 6-39
function, inline C, 3—-44
function automatics, 3—-64

Index

function call, D-4
direct inter-segment, D-6, D-15
direct intra-segment, D-4
indirect inter-segment, D-8, D-16
indirect intra-segment, D-5
indirect to _usm function, D-17
user stack function, D-17
function parameters, 3-63
function qualifier
_nousm, 3-28
_usm, 3-28
function return, D—4
functional problems, C-3
functions
built-in, 3-106
intrinsic, 3-106
fwide, 6-39
fwrintf, 6-39
fwrite, 6-40
fwscanf, 6-40

G

general purpose registers, 3-86
getc, 6-40

getchar, 6-41

getewd, 6-41

getenv, 6-41

gets, 641

getwc, 6-42

getwchar, 6-42

global, 3-51, 4-95

global storage optimizer, 4-31
global dead store_elim, 4-94
gmtime, 6—42

group name, 4-29

250166, 2-11

hcalloc, 6-42

HDAT, 3-12

header files, 6-7

heap, 7-10

heap size, 7-10

hfree, 6-43

Hitex HiTOP, telemon 80C167, B-6

hmalloc, 6-43

how to program smart with c166,
3-143

hrealloc, 6-43

huge, 3-21

huge model, 3-24

huge pointer, 3-53

hypot, 6-43

hypotf, 6-43

hypotl, 6-44

identifier, 4-13
IEEE-754

error handling, 3-105

Sfloating point format, 3-87
ieeel66, 2-9
ihex166, 2-11
include files, 4-86

default directory, 4-87
init_can_16x, 6-109
initialized variables, 3-68-3—-69
inline, C library functions, 4-66
inline assembly, 3-73
instruction reordering, 4-55
instruction set, extended, D-14
integral promotion, 3-54
internal memory, 3-30
interrupt, 3-76-3-78

[flat interrupt concept, 3-52
interrupt frame, 3-76
intrinsic functions, 3-106

_atomic, 3-122

_bfld, 3-118

_COABS, 3-106

Index-11

Index-12 Index

=

_CoADD, 3-107 _nop, 3-120
_CoADD2, 3-107 _pag, 3-125
_CoASHR, 3-107 _pof, 3-125
_CoCMP, 3-108 _prior, 3-121
_CoLOAD, 3-108 _putbit, 3-119
_CoLOAD2, 3-108 _pwrdn, 3-121
_CoMAC, 3-109 _vol, 3-116
_CoMAC _min, 3-110 _ror, 3-117
_CoMACsu, 3-109 _seg, 3-126
_CoMACsu_min, 3-110 _sof, 3-126
_CoMACu, 3-109 _srowdlt, 3-121
_CoMACu_min, 3-110 _testclear, 3-117
_CoMAX, 3-111 _lestset, 3-118
_CoMIN, 3-111 intrpt.c, 3-82
_CoMUL, 3-111 invocation
_CoMULsu, 3-112 compiler, 4-6
_CoMULu, 3-112 control program, 4-3
_CoNEG, 3-112 iram, 3-26
_CoNOP, 3-113 iramdata, 4-93
_CoRND, 3-113 isalnum, 6-44
_CoSHL, 3-113 isalpha, 6-44
_CoSHR, 3-114 isascii, 6-44
_CoSTORE, 3-114 iscntrl, 6-44
_CoSTOREMAH, 3-114 isdigit, 6-45
_CoSTOREMAL, 3-115 isgraph, 6-45
_CoSTOREMAS, 3-115 isinf, 6-45
_CoSTOREMSW, 3-115 isinff, 6-45
_CoSUB, 3-116 islower, 6-45
_CoSUB2, 3-116 isnan, 6-46
_diswdt, 3-122 isnanf, 6-46
_div32, 3-123 is0646.h, 6-7
_divu32, 3-123 isprint, 6-46
_einit, 3-122 ispunct, 6-46
_getbit, 3-119 isspace, 6-46
_idle, 3-120 isupper, 6-47
_int166, 3-119 iswalnum, 6-47
_mkfp, 3-126 iswalpha, 6-47
_mkbp, 3-127 iswentrl, 6-47
_mbksp, 3-127 iswctype, 6-47
_mod32, 3-124 iswdigit, 648
_modu32, 3-124 iswgraph, 6-48
_mul32, 3-123 iswlower, 6-48

_mulu32, 3-123 iswprint, 6-48

Index

iswpunct, 6-48
iswspace, 6-49
iswupper, 6-49
iswxdigit, 6-49
isxdigit, 6-49

J

jump chain, 3-85

jump chaining, 2-7, 4-58
jump table, 3-39, 3-85, 4-61
jump tables, 3-19

K

keyword
_bita, 3-26
_cached, 3-81
_far, 3-21
_bhuge, 3-21
_inline, 3-44
_interrupt, 3-76
_iram, 3-26
_localbank, 3-78
_near, 3-20
_noalign, 3-45
_packed, 3-46
_stackparm, 3-63
_stacksize, 3-79
_system, 3-26
_using, 3-77
_xnear, 3-21
register, 3—66
system, 3-20

L
1166

link stage, 2-9

locate stage, 2-9
labs, 6-49
language extensions, 4-12
large model, 3-24
Id_modata 16x, 6-109
LDAT, 3-9, 3-12
ldexp, 6-50
Idiv, 6-50
leaf function, 3-64, 7-13
libraries
C, 64
C (single precision floating point),
6-6
floating point, 3-96, 6-4
user stack model, 3-28
lifetime information, disable, 4-30
limits, compiler, 4-100
limits.h, 6-7
linear address space, 3-8
locale.h, 6-7
localeconv, 6-50
setlocale, 6-79
localeconv, 6-50
localtime, 6-50
locator control, D-13
log, 6-51
log10, 6-51
logical expression optimization, 2—7
long double, 3-53
longjmp, 6-51
loop rotation, 2—7

Istat, 6-51
m166, 2-11

m1l66include, 4-94
macro, 4-94
macros in C, 3-62
makefile
automatic creation of, 2-20

Index-13

Index-14

=

updating, 2-20
makefiles, 2-29
malloc, 6-52
math.h, 6-7

acos, 6-24

asin, 6-25

atan, 6-25

atan2, 6-25

ceil, 6-28

cos, 6-29

cosh, 6-29

exp, 6-30

fabs, 6-31

Sloor, 6-33

fmod, 6-34

frexp, 6-37

hypot, 6-43

bypotf, 6-43

bypotl, 6-44

ldexp, 6-50

log, 6-51

log10, 6-51

modf, 6-67

pow, 6-69

sin, 6-81

sinh, 6-81

sqrt, 6-82

tan, 6-90

tanh, 6-90
mblen, 6-52
mbrlen, 6-52
mbrtowc, 6-53
mbsinit, 6-53
mbsrtowcs, 6-54
mbstowcs, 6-54
mbtowc, 6-55

medium model, 3-23

memchr, 6-55
memcmp, 6-55
memcpffb, 6-56
memcpffw, 6-56
memcpfhb, 6-56
memcpthw, 6-57

memcpfnb, 6-57
memcpfnw, 6-57
memcpfsb, 6-58
memcpfsw, 6-58
memcphfb, 6-58
memcphfw, 6-59
memcphhb, 6-59
memcphhw, 6-59
memcphnb, 6-60
memcphnw, 6-60
memcphsb, 6-60
memcphsw, 6-61
memcpnfb, 6-61
memcpnfw, 6-61
memcpnhb, 6-62
memcpnhw, 6-62
memcpnnb, 6-62
memcpnnw, 6-63
memcpnsb, 6-63
memcpnsw, 6-63
memcpstb, 6-64
memcpsfw, 6-64
memcpshb, 6-64
memcpshw, 6-65
memcpsnb, 6-65
memcpsnw, 6-65
memcpssb, 6-66
memcpssw, 6—-66
memcpy, 6-66
memmove, 6-66

memory, accessing, 3-5
memory model, 3-6

buge, 3-17

large, 3-15

medium, 3-13

small, 3-8

tiny, 3-6
memory size, 4-36
memset, 6-67

MISRA C, 3-139, 4-38, 4-39

mk166, 2-11
mktime, 6-67

Index

MODEL (preprocessor symbol), 7-4

Index

modf, 6-67
module summary, 4-77

ncalloc, 6-67

near, 3-20

near function, D-5

near function call, D-4

near pointet, 3-53

near, xnear, far, huge and shuge,
3-22-3-27

nfree, 6-68

nmalloc, 6-68

no_global dead store_elim, 4-94

noalias, 4-90

NOBITCLEAR, 7-5

noclear, 4-92

nocustack, 4-91

nodfap, 4-92

nofix_byte write, 4-93

noframe, 4-94

nomacro, 4-94

non-initialized variables, 3—-69

nop removal, 4-56

noreorder, 4-95

nosavemac, 4-95

nosource, 4-96

novolatile_union, 4-97

o

offsetof, 6-68
open, 6-69
optimization, 4-41, 4-43
~OF, D-7
-Of, D-7
backend, 2-5
Sfrontend, 2-5, 2-6

optimization (frontend)
common subexpression elimination,
2-8
common lail merging, 2-8
conditional jump reversal, 2-7
constant folding, 2-6
constant/value propagation, 2-8
control flow optimization, 2-7
dead code elimination, 2-8
expression rearrangement, 2-7
expression simplification, 2-7
Jump chaining, 2-7
logical expression optimization, 2-7
loop rotation, 2-7
register coloring, 2-8
sharing of string literals and floating
point constants, 2-8
switch optimization, 2-7
options
control program, 4-4
detailed compiler options, 4-10
overview compiler options, 4-6
overview control program options,
4-4
output file, 4-67
overlay, 3-134, 3-136

P

packed structures, 3—-46
parser, 2-5
PDAT, 3-12
PEC support, 3-141
peephole optimization, 4-52
perror, 6-69
pointer, casting to long, 4-59
register
automatic register variable
allocation, 4-60
contents tracing, 4-53

Index-15

portable ¢ code, 3-143
pow, 6-69
pragma, 3-35, 4-89
alias, 4-89
align, 4-91
asm, 4-90
asm_noflush, 4-90
autobita, 4-90
autobitastruct, 4-90
automatic, 3-66, 4-91
autosavemac, 4-95
class, 4-91
clear, 4-92
combine, 4-91
cse resume, 4-91
cse suspend, 4-91
custack, 4-91
default_attributes, 4-92
dfap, 4-92
endasm, 4-90
eramdata, 4-92
Jix_byte write, 4-93
Jfragment, 4-93
Jfragment continue, 4-93
[fragment resume, 4-93
global, 4-95
global dead store_elim, 4-94
iramdata, 4-93
ml166include, 4-94
macro, 4-94
no_global _dead store_elim, 4-94
noalias, 4-90
noclear, 4-92
nocustack, 4-91
nodfap, 4-92
nofix_byte write, 4-93
noframe, 4-94
nomacro, 4-94
noreorder, 4-95
nosavemac, 4-95
nosource, 4-96
novolatile_ union, 4-97
on command line, 4-85

Index

preserve_mulip, 4-95
public, 4-95
regdef, 4-95
reorvder, 4-95
restore_attributes, 4-92
romdata, 4-93
save_attributes, 4-92
savemac, 4-95
size, 4-96
source, 4-96
speed, 4-96
static, 3-65, 4-91
stringmem, 4-96
switch_force_table, 4-96
switch_smart, 4-96
switch_tabmem_default, 4-96
switch_tabmem_far, 4-96
switch_tabmem_near, 4-96
volatile_ union, 4-97
predefined macros in C, 3-62
_C166, 3-62
_CPUTYPE, 3-62
_DOUBLE_FP, 3-62
_MODEL, 3-62
SINGILE_FP, 3-62
_USMLIB, 3-62
predefined symbols, 4-78, 7-6
_C166, 4-78
_MODEIL, 4-78
preprocessor symbols, 7-5
preserve_mulip, 4-95
printf, 6-70
private, 3-36
program development, 2-9
project, 2-13
add new files, 2-19
create, 2-18
project file, 2-13
project space, 2-13
create, 2-17
project space file, 2-13
public, 3-51, 4-95
pubtoglb, 3-52

Index

putc, 6-72
putchar, 6-73
puts, 6-73
putwc, 6-73
putwchar, 6-73

Q

gsort, 6-74
quality assurence report, 3-140

raise, 6-74

RAM data, 3-19

rand, 6-74

rd_mol5_16x, 6-109

rd_modata_16x, 6-109

read, 6-74

realloc, 6-68, 6-75

reg.def, 3-60

reg.h, 6-7

regdef, 4-95

register bank, 4-71

register coloring, 2—8

register definition file, 3-60

register keyword, 3-66

register usage, 3—-86

register variables, 3-66-3-67

registers, number of, 4-71

remove, 6-75

rename, 6-75

reorder, 4-95

restore_attributes, 4-92

return table stub function, D-7
inter-segment, D—-11
intra-segment, D-12

return values, 5-4

rewind, 6-76

romdata, 3-38, 4-93

RTLIBRARY, 6-5

S

SAB C167, D-14
save_attributes, 4-92
savemac, 4-95
scalloc, 6-76
scanf, 6-76
scanner, 2-5
SDAT, 3-12
section allocation, 3-30-3-48
code memory fragmentation, 3-37
constant romdata, 3-38, 4-48
send_mo_16x, 6-110
setbuf, 6-79
setjimp, 6-79
setjimp.h, 6-7
longjmp, 6-51
setjmp, 6-79
setlocale, 6-79
setvbuf, 6-80
sfr, 3-53
sfrbit, 3-53
sfree, 6-80
SHAREDCLIB, 6-5
SHAREDRTLIB, 6-5
sharing of string literals and floating
point constants, 2-8
shuge pointer, 3-53
SIGABRT, 6-81
SIGFPE, 6-81
SIGILL, 6-81
SIGINT, 6-81
signal, 6-81
signal.h, 6-8
raise, 6-74
signal, 6-81
signals, 6-81
signed
char, 3-53
int, 3-53
long, 3-53
short, 3-53
SIGSEGYV, 6-81

Index-17

Index-18

=

SIGTERM, 6-81
sin, 6-81
single precision, 3-90
Sfloat base expression subroutines,
3-90
float conversion subroutines, 3-91
sinh, 6-81
size, 4-96
small model, 3-23
smalloc, 6-82
snd, locator control, 3-8
source, 4-96
special function registers, 3-60
_esfr, 3-60
_esfrbit, 3-60
_sfr, 3-60
_sfrbit, 3-60
_xsfr, 3-60
speed, 4-96
sprintf, 6-82
sqrt, 6-82
srand, 6-82
srealloc, 6-82
srec166, 2-11
sscanf, 6-83
SSKENABLE, 7-6
SSKSEG, 7-6
SSKSIZE, 7-6
stack, 3-28, 3-63, 7-9, D-3, D—4, D-5,
D-6, D-11
stack size, 7-8
stackparm, 3-63, 7-12
standard ¢, 3-5
start.obj, 7-3
startup code, 7-3
stat, 6-83
static, 4-91
static approach of function automatics,
3-64-3-68
static initializations, 3—-68
static memory, 4-74
stdarg.h, 6-8
va_arg, 6-94

Index

va_end, 6-94
va_start, 6-94
stddef.h, 6-8
offsetof, 6-68
stdio.h, 6-8
_close, 6-10
_Iseek, 6-17
_open, 6-18
_read, 6-18
_unlink, 6-23
_write, 6-23
clearerr, 6-28
fclose, 6-31
feof, 6-31
Sferror, 6-31
Sflush, 6-32
fgetc, 6-32
fgetpos, 6-32
fgets, 6-33
fopen, 6-34
[fprintf, 6-35
fpuic, 6-35
[fputs, 6-35
fread, 6-36
freopen, 6-37
fscanf, 6-37
[seek, 6-38
[fsetpos, 6-38
ftell, 6-39
Sfwrite, 6-40
geltc, 6-40
getchar, 6-41
gets, 6-41
perror, 6-69
printf, 6-70
putc, 6-72
putchar, 6-73
puts, 6-73
remove, 6-75
rename, 6-75
rewind, 6-76
scanf, 6-76
setbuf, 6-79

Index

setvbuf, 6-80
sprintf, 6-82
sscanf, 6-83
tmpfile, 6-91
tmpnam, 6-91
ungeitc, 6-93
vfprintf, 6-94
vprintf, 6-95
vsprintf, 6-95
stdlib.h, 6-8
abort, 6-23
abs, 6-24
atexit, 6-26
atof, 6-26
atoi, 6-26
atol, 6-26
bsearch, 6-27
calloc, 6-27
div, 6-30
exit, 6-30
fealloc, 6-31
Jfree, 6-32
fmalloc, 6-33
Jfrealloc, 6-36
Sfree, 6-36
getenv, 6-41
bhcalloc, 6-42
bfree, 6-43
bmalloc, 6-43
brealloc, 6-43
labs, 6-49
Idiv, 6-50
malloc, 6-52
mblen, 6-52

mbstowcs, 6-54

mblowc, 6-55
ncalloc, 6-67
nfree, 6-68
nmalloc, 6-68
gsort, 6-74
rand, 6-74

realloc, 6-68, 6-75

scalloc, 6-76

sfree, 6-80
smalloc, 6-82
srand, 6-82
srealloc, 6-82
strtod, 6-88
strtol, 6-88
strtoul, 6-89
wcstombs, 6-103
wctomb, 6-104
stdnames, 3-61
strcat, 6-83
strchr, 6-83
strcmp, 6-84
strcoll, 6-84
strepy, 6-84
strespn, 6-84
strerror, 6-85
strftime, 6-85
string.h, 6-8
_[Strcat, 6-10
_fstrchy, 6-10
_fstremp, 6-11
_[Strepy, 6-11
_fstrespn, 6-11
_[Strlen, 6-11
_fstrucat, 6-12
_[Strncmp, 6-12
_fstrncpy, 6-12
_[Strpbrk, 6-13
_fstrrchy, 6-13
_[Strspn, 6-13
_fstrstr, 6-13
_[Striok, 6-14
_bstrcat, 6-14
_bstrchr, 6-14
_bstremp, 6-14
_bstrcpy, 6-15
_bstrespn, 6-15
_bstrlen, 6-15
_bstrncat, 6-15
_bstrncmp, 6-16
_bstrncpy, 6-16
_bstrpbrk, 6-16

Index-19

Index-20

=

_bstrrchr, 6-16
_bstrspn, 6-17
_bstrstr, 6-17
_bstrtok, 6-17
_sstrcat, 6-18
_sstrchr, 6-19
_sstremp, 6-19
_sstrcpy, 6-19
_sstrespn, 6-19
_sstrlen, 6-20
_sstrncat, 6-20
_sstrncmp, 6-20
_sstracpy, 6-21
_sstrpbrk, 6-21
_sstrrchr, 6-21
_sstrspn, 6-21
_sstrsty, 6-22
_sstriok, 6-22
memchr, 6-55
memcmp, 6-55
memcplfb, 6-56
memcpffw, 6-56
memcpfhb, 6-56
memcpfbw, 6-57
memcpfnb, 6-57
memcpfnw, 6-57
memcpfsb, 6-58
memcpfsw, 6-58
memcphfb, 6-58
memcphfw, 6-59
memcphhb, 6-59
memcphhw, 6-59
memcphnb, 6-60
memcphnw, 6-60
memcphsb, 6-60
memcphsw, 6-61
memcpnfb, 6-61
memcpnfw, 6-61
memcpnhbb, 6-62
memcpnbw, 6-62
memcpnnb, 6-62
memcpnnw, 6-63
memcpnsh, 6-03

memcpnsw, 6-63

memcpsfb, 6-64
memcpsfw, 6-64
memcpshb, 6-64

memcpshw, 6-65

memcpsnb, 6-65

memcpsnw, 6-65

memcpssb, 6-66
memcpssw, 6-66
memcpy, 6-66
memmove, 6-66
memset, 6-67
strcat, 6-83
strchr, 6-83
stremp, 6-84
strcoll, 6-84
strepy, 6-84
strcspn, 6-84
strerror, 6-85
strlen, 6-86
strncat, 6-86
struncmp, 6-86
strucpy, 6-87
strpbrk, 6-87
strrchr, 6-87
strspn, 6-87
strstr, 6-87
strtok, 6-88
strxfrm, 6-89
stringmem, 4-96

strings, 3-19, 3-70-3-72

strlen, 6-86
strncat, 6-86
strncmp, 6-86
strnepy, 6-87
strpbrk, 6-87
strrchr, 6-87
strspn, 6-87
strstr, 6-87
strtod, 6-88
strtok, 6-88
strtol, 6-88
strtoul, 6-89

Index

Index

structures, unaligned members, 3-46
strxfrm, 6-89
switch optimization, 2-7, 4-61
switch statement, 3-85-3-86
switch_force_table, 3-85, 4-96
switch_smart, 3-85, 4-96
switch_tabmem_default, 3-39, 4-96
switch_tabmem_far, 3-39, 3-85, 4-96
switch_tabmem_near, 3-39, 4-96
swprintf, 6-89
swscanf, 6-90
symbols, predefined, 4-78
system, 3-20, 3-26
system stack, 7-8, D—4, D-5, D-6,
D-14

Jor task switch, 4-63, 4-65

system stack registers, 7-6

T

tan, 6-90
tanh, 6-90
target processors, 2—4
task scope, 3-49-3-52
task switch, 4-63, 4-65
tentative declarations, 3-21, 4-62
threshold, 3-21, 4-76
time, 6-90
time.h, 6-8, 6-9
_stime, 6-18
_tzset, 6-23
asctime, 6-24
clock, 6-28
ctime, 6-29
difftime, 6-30
gmtime, 6-42
localtime, 6-50
mktime, 6-67
strftime, 6-85
time, 6-90
tiny model, 3-23
tmpfile, 6-91

tmpnam, 6-91
toascii, 6-91
tolower, 6-92
toupper, 6-92
towctrans, 6-92
towlower, 6-92
towupper, 6-93
trap, 3-97

trap routine, 3-97
trap.obj, 3-96

U

unaligned data, 3-45
ungetc, 6-93
ungetwc, 6-93
unistd.h, 6-8
access, 6-24
chdir, 6-28
close, 6-29
fstat, 6-38
getcwd, 6-41
Istat, 6-51
read, 6-74
stat, 6-83
unlink, 6-93
write, 6-107
unlink, 6-93
unsigned
char, 3-53
int, 3-53
long, 3-53
short, 3-53
updating makefile, 2-20
user defined intrinsics, 3-128
user stack, 3-64, 7-8, D-3, D—4, D-5,
D-6, D-11, D-12, D-14, D-15,
D-16
Sfor task switch, 4-63, 4-65
user stack model, 4-68, 4-74, D-17
special libvary, 3-28
user stack pointer, D-5, D-7

Index-21

Index-22

=

using, 3-77

v

va_arg, 6-94
va_end, 6-94
va_start, 6-94
variables
initialized, 3-68
non-initialized, 3-69
version information, 4-81
viprintf, 6-94
viwprintf, 6-95
volatile, 3-61
volatile union, 4-97
vprintf, 6-95
vsprintf, 6-95
vswprintf, 6-96
vwprintf, 6-96

W

warnings, 5-6
warnings (suppress), 4-82
wchar.h, 6-9
browe, 6-27
Jfeetwc, 6-33
[feetws, 6-33
Jputwe, 6-35
[putws, 6-36
Sfwide, 6-39
Swprintf, 6-39
Jwscanf, 6-40
getwe, 6-42
getwchar, 6-42
mbrilen, 6-52
mbriowc, 6-53
mbsinit, 6-53
mbsriowcs, 6-54
putwe, 6-73
putwchar, 6-73

Index

swprintf, 6-89
swscanf, 6-90
ungetwc, 6-93
vfwprintf, 6-95
vswprintf, 6-96
vwprintf, 6-96
wcertomb, 6-96
wcescat, 6-97
wceschr, 6-97
wesemp, 6-97
wcescoll, 6-97
wesepy, 6-98
wesespn, 6-98
wcsftime, 6-98
wcslen, 6-99
wcesncat, 6-99
wesnemp, 6-99
wesncpy, 6-99
wespbrk, 6-100
wcesrchr, 6-100
wcesrtombs, 6-100
wcesspn, 6-101
wesstr, 6-101
wcestod, 6-101
wcstok, 6-102
wcstol, 6-102
wcestoul, 6-103
wesxfrm, 6-103
wctob, 6-104
wmemchr, 6-105
wmemcmp, 6-105
wmemcpy, 6-106
wmemmove, 6-106
wmemset, 6-106
wprintf, 6-106
wscanf, 6-107
wcrtomb, 6-96
wcscat, 6-97
wcschr, 6-97
wcesemp, 6-97
wcscoll, 6-97
wcescpy, 6-98
wcesespn, 6-98

Index

wcsftime, 6-98
wcslen, 6-99
wcesncat, 6-99
wesnemp, 6-99
wesnepy, 6-99
wcespbrk, 6-100
wcsrchr, 6-100
wcsrtombs, 6-100
wcesspn, 6-101
wcesstr, 6-101
westod, 6-101
wcstok, 6-102
wcstol, 6-102
wcstombs, 6-103
wcstoul, 6-103
wcesxfrm, 6-103
wctob, 6-104
wctomb, 6-104
wctrans, 6-104
wctype, 6-105
wctype.h, 6-9
iswalnum, 6-47
iswalpha, 6-47
iswcntrl, 6-47
iswctype, 6-47
iswdigit, 6-48

iswgraph, 6-48
iswlower, 6-48
iswprint, 6-48
iswpunct, 6-48
iswspace, 6-49
iswupper, 6-49
iswxdigit, 6-49
towctrans, 6-92
towlower, 6-92
towupper, 6-93
wctrans, 6-104
wctype, 6-105
wmemchr, 6-105
wmemcmp, 6-105
wmemcpy, 6-106
wmemmove, 6-106
wmemset, 6-106
wprintf, 6-106
write, 6-107
wscanf, 6-107

X

xnear pointer, 3-53
xsfr, 3-53

Index-23

Index-24

INDEX

Index

	TABLE OF CONTENTS
	1. SOFTWARE INSTALLATION
	1.1 Introduction
	1.2 Software Installation
	1.2.1 Installation for Windows
	1.2.2 Installation for Linux
	1.2.3 Installation for UNIX Hosts

	1.3 Software Configuration
	1.3.1 Configuring the Embedded Development Environment
	1.3.2 Configuring the Command Line Environment

	1.4 Licensing TASKING Products
	1.4.1 Obtaining License Information
	1.4.2 Installing Node-Locked Licenses
	1.4.3 Installing Floating Licenses
	1.4.4 Modifying the License File Location
	1.4.5 How to Determine the Host ID
	1.4.6 How to Determine the Host Name

	2. OVERVIEW
	2.1 Introduction to C C166/ST10 Cross-Compiler
	2.2 General Implementation
	2.2.1 Compiler Phases
	2.2.2 Frontend Optimizations

	2.3 Program Development Flow
	2.4 Working With Projects in EDE
	2.5 Start EDE
	2.6 Using the Sample Projects
	2.7 Create a New Project Space with a Project
	2.8 Set Options for the Tools in the Toolchain
	2.9 Build your Application
	2.10 How to Build Your Application on the Command Line
	2.10.1 Using the Control Program
	2.10.2 Using the Separate Programs
	2.10.3 Using a Makefile

	2.11 Debugging your Application
	2.12 Using DAvE Projects with EDE

	3. LANGUAGE IMPLEMENTATION
	3.1 Introduction
	3.2 Accessing Memory
	3.2.1 Memory Models
	3.2.1.1 Tiny Memory Model
	3.2.1.2 Small Memory Model
	3.2.1.3 Medium Memory Model
	3.2.1.4 Large Memory Model
	3.2.1.5 Huge Memory Model
	3.2.1.6 _MODEL
	3.2.1.7 Efficiency in Large Data Models (Medium/Large/Huge)
	3.2.1.8 _Near, _Xnear, _Far, _Huge and _Shuge
	3.2.1.9 _System, _Iram and _Bita

	3.2.2 User Stack Model
	3.2.3 Section Allocation
	3.2.4 Code Memory Fragmentation
	3.2.5 Constant Romdata Section Allocation
	3.2.6 The _at() Attribute
	3.2.7 The _atbit() Attribute
	3.2.8 Inline C Functions: _inline
	3.2.9 Unaligned Data: _noalign
	3.2.10 Using Packed Structures: _packed

	3.3 Task Scope
	3.4 Data Types
	3.4.1 ANSI C Type Conversions
	3.4.2 Character Arithmetic
	3.4.3 The Bit Type
	3.4.4 The Bitword Type
	3.4.5 Special Function Registers

	3.5 Predefined Macros
	3.6 Function Parameters
	3.6.1 Static Approach of Function Automatics

	3.7 Register Variables
	3.8 Initialized Variables
	3.8.1 Automatic Initializations
	3.8.2 Static Initializations

	3.9 Non-Initialized Variables
	3.10 Strings
	3.11 Inline Assembly
	3.12 Interrupt
	3.13 Extensions for the XC16x/Super10 Architectures
	3.14 Switch Statement
	3.15 Register Usage
	3.16 Floating Point Interfacing
	3.16.1 Introduction Software Floating Point Usage
	3.16.2 The IEEE-754 Format
	3.16.3 Storage in Memory
	3.16.4 Single Precision Usage
	3.16.4.1 Float Base Expression Subroutines
	3.16.4.2 Float Conversion Subroutines
	3.16.4.3 Register Usage Single Precision

	3.16.5 Double Precision Usage
	3.16.5.1 Double Base Expression Subroutines
	3.16.5.2 Double Conversion Subroutines
	3.16.5.3 Double Support Subroutines
	3.16.5.4 Register Usage Double Precision

	3.16.6 Float/Double Usage for Assembly Programmers
	3.16.7 Floating Point Trapping
	3.16.8 Handling Floating Point Traps in a C Application
	3.16.9 IEEE-754 Compliant Error Handling

	3.17 Intrinsic Functions
	3.17.1 User Defined Intrinsics
	3.17.2 Implementing Other _CoXXX Intrinsics Using the _CoXXX Intrinsic Functions

	3.18 Code Memory Banking
	3.19 C Code Checking: MISRA C
	3.20 PEC Support
	3.21 Portable C Code
	3.22 How to Program Smart with c166

	4. COMPILER USE
	4.1 Control Program
	4.2 Compiler
	4.3 Detailed Description of the Compiler options
	-?
	-A
	-B
	-D
	-E
	-e
	-err
	-exit
	-F
	-f
	-G
	-g
	-gso
	-H
	-i
	-I
	-M
	-m
	-misrac
	-misrac-advisory-warnings / -misrac-required-warnings
	-n
	-O
	-Onumber
	-Oa / -OA
	-Ob / -OB
	-Oc / -OC
	-Od / -OD
	-Oe / -OE
	-Of / -OF
	-Og / -OG
	-Oh / -OH
	-Oj / -OJ
	-Ok / -OK
	-Ol / -OL
	-Om / -OM
	-On / -ON
	-Oo / -OO
	-Op / -OP
	-Oq / -OQ
	-Or / -OR
	-Os / -OS
	-Ot / -OT
	-Ou / -OU
	-Ov / -OV
	-Ow / -OW
	-Ox / -OX
	-o
	-P
	-R
	-r
	-S
	-s
	-T
	-t
	-U
	-u
	-V
	-w
	-x
	-z

	4.4 Include Files
	4.5 Pragmas
	4.6 Alias
	4.7 Compiler Limits

	5. COMPILER DIAGNOSTICS
	5.1 Introduction
	5.2 Return Values
	5.3 Errors and Warnings

	6. LIBRARIES
	6.1 Introduction
	6.2 Small, Medium and Large I/O Formatters
	6.3 Single Precision Floating Point
	6.4 CAN Support
	6.5 Header Files
	6.6 C Library Interface Description
	6.7 CAN Library Interface Description
	6.8 Creating your own C Library

	7. RUN-TIME ENVIRONMENT
	7.1 Startup Code
	7.2 Stack Size
	7.3 Heap Size
	7.4 Assembly Language Interfacing

	A. MISRA C
	B. DEBUG ENVIRONMENT
	1 CrossView Pro and Evaluation Boards
	2 Kontron Debugger
	3 Hitex HiTOP Telemon 80C167
	4 pls fast-view66

	C. CPU FUNCTIONAL PROBLEMS
	1 Introduction
	2 CPU Functional Problem Bypasses

	D. USER STACK MODEL
	1 Introduction
	2 Function Call and Return
	2.1 Direct Intra-segment Function Call and Return
	2.2 Indirect Intra-segment Function Call and Return
	2.3 Direct Inter-segment Function Call and Return
	2.4 Indirect Inter-segment Function Call and Return
	2.5 Inter-segment Call and Return Table Stub Functions
	2.6 Intra-segment Call and Return Stub Functions

	3 Using the Extended Instruction Set
	3.1 Introduction
	3.2 Direct Inter-segment Function Call and Return
	3.3 Indirect Inter-segment Function Call and Return

	4 Mixing User Stack and non-User Stack Functions

	INDEX

