MA019-002-00-00
Doc. ver.: 5.13

C166/ST10 v7.5

C CROSS-COMPILER
USER'S GUIDE

al TASKING [

A publication of
TASKING
Documentation Department

Copyright 0 2001 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
HP and HP-UX are trademarks of Hewlett—Packard Co.
Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com
WWW: http://www.tasking.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes 1o
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

SOFTWARE INSTALLATION 1-1
1.1 Introduction 1-3
1.2 Installation for Windows 1-3
1.2.1 Setting the Environment 1-4
1.3 Installation for Linux 1-5
13.1 RPM Installation i 1-5
1.3.2 Tar.gz Installation 1-6
133 Setting the Environment 1-7
1.4 Installation for UNIX Hosts 1-8
1.4.1 Setting the Environment 1-10
1.5 Licensing TASKING Products 1-11
1.5.1 Obtaining License Information 1-11
1.5.2 Installing Node-Locked Licenses 1-12
153 Installing Floating Licenses 1-13
1.5.4 Starting the License Daemon 1-15
155 Setting Up the License Daemon to Run Automatically . 1-16
1.5.6 Modifying the License File Location 1-17
157 How to Determine the Hostid 1-19
1.5.8 How to Determine the Hostname 1-19

OVERVIEW 2-1
2.1 Introduction to C C166/ST10 Cross—Compiler 2-3
2.2 Product Definition 2-4
2.3 General Implementation 2-5
23.1 Compiler Phases o il 2-5
232 Frontend Optimizations 2-7
2.4 Compiler Structure 2-10
2.5 Environment Variables 2-13
2.6 Sample Session 2-14
2.6.1 Using EDE 2-14
2.6.2 Using the Control Program 2-22
2,63 Using the Separate Programs 2-24
2.6.4 Using a Makefile 2-26
2.6.5 Serial I/O Modules 2-27

\Y|

-

Table of Contents

LANGUAGE IMPLEMENTATION 3-1
3.1 Introduction 3-3
3.2 Accessing MEmMOLYo 3-5
3.2.1 Memory Models 3-6
3.2.1.1 Tiny Memory Model 3-6
3.2.1.2 Small Memory Model 3-8
3213 Medium Memory Model 3-13
3.2.1.4 Large Memory Model 3-15
3215 CMODEL ... oo 3-16
3.2.1.6 Efficiency in Large Data Models (Medium/Large) 3-17
3.2.1.7 Near, Xnear, Far, Huge and Shuge 3-20
3.2.1.8 System, Iram and Bita 3-23
3.2.2 Section Allocation 3-26
3.2.3 Code Memory Fragmentation 3-32
3.2.4 Constant Romdata Section Allocation 3-33
3.25 The at() Attribute 3-36
3.2.6 The atbit() Attribute 3-38
3.2.7 Inline C Functions oo iiiaion.. 3-38
3.2.8 Using Packed Structures 3-39
33 Task SCOpe o 3-41
3.4 Data TYPES oo e et e 3-45
3.4.1 ANSI C Type Conversions 3-46
3.4.2 Character Arithmetic 3-49
3.4.3 The Bit Type 3-50
3.4.4 The Bitword Type 3-51
3.4.5 Special Function Registers 3-52
3.5 Function Parametersuvuiinao.. 3-54
351 Static Approach of Function Automatics 3-56
3.6 Register Variables 3-57
3.7 Initialized Variables 3-59
3.7.1 Automatic Initializations, 3-59
3.7.2 Static Initializations 3-59
3.8 Non-Initialized Variables 3-60
3.9 SUINGS oottt 3-61

Table of Contents

3.10
3.11
3.12
3.13
3.14
3.15
3.15.1
3.15.2
3.153
3.15.4
3.15.4.1
3.15.4.2
3.15.4.3
3.15.5
3.15.5.1
3.155.2
3.155.3
3.155.4
3.15.6
3.15.7
3.15.8
3.16
3.16.1
3.16.2

3.17
3.18
3.19
3.20
3.21
3.22

Inline Assembly 3-62
INEITUPL oot e e e 3-65
Extensions for the ext2 Architectures 3-66
Switch Statement i 3-74
Register Usage 3-75
Floating Point Interfacing 3-76
Introduction Software Floating Point Usage 3-76
The IEEE-754 Format 3-76
Storage in MemMory i 3-78
Single Precision Usagec.ocivii.. 3-79
Float Base Expression Subroutines 3-79
Float Conversion Subroutines 3-80
Register Usage Single Precision 3-80
Double Precision Usage 3-81
Double Base Expression Subroutines 3-81
Double Conversion Subroutines 3-82
Double Support Subroutines 3-83
Register Usage Double Precision 3-84
Float/Double Usage for Assembly Programmers 3-84
Floating Point Trapping 3-85
Handling Floating Point Traps in a C Application 3-87
Intrinsic Functions 3-94
User Defined Intrinsics 3-116
Implementing Other _CoXXX Intrinsics Using the

_CoXXX Intrinsic Functions 3-120
Code Memory Banking 3-122
MISRA C . oo 3-127
Migration from Old Siemens CC166 3-129
PEC SUPPOIT . ..ot 3-135
Portable CCode i, 3-137

How to Program Smart with ¢166 3-137

i

Vil

.

Table of Contents

COMPILER USE 4-1
4.1 Control Program i, 4-3
4.2 Compiler 4-6
43 Detailed Description of the C-166 options 4-10
4.4 Include Files i 4-80
4.5 Pragmast 4-83
4.6 ALIAS ..o 4-91
4.7 Compiler LIMits, 4-93

COMPILER DIAGNOSTICS 5-1
5.1 Introduction 5-3
5.2 Return Values i 5-4
53 Errors and Warnings 5-6

LIBRARIES 6-1
6.1 Introduction i 6-3
6.2 Small, Medium and Large I/O Formatters 6-5
6.3 Single Precision Floating Point 6-6
6.4 User Stack Model oo i, 6-7
6.5 CAN SUPPOIT oot 6-8
6.6 Header Files i ... 6-8
6.7 C Library Interface Description 6-10
6.8 Creating your own C Library 6-71

RUN-TIME ENVIRONMENT 7-1
7.1 Startup Code 7-3
7.2 Stack Size 7-8
7.3 Heap Size 7-9
7.4 Assembly Language Interfacing 7-10

Table of Contents

FLEXIBLE LICENSE MANAGER (FLEXIm) A-1
1 Introduction A-3
2 License Administration A-3
2.1 OVEIVIEW ..ot A-3
2.2 Providing For Uninterrupted FLEXIm Operation A-5
23 Daemon Options File A-7
3 License Administration Tools A-8
3.1 Imcksum ... A-10
3.2 Imdiag (Windows only) A-11
3.3 Imdown A-12
3.4 Imgrd A-13
3.5 Imhostid A-15
3.6 IMremove A-16
3.7 Imreread A-17
3.8 Imstat A-18
3.9 Imswitchr (Windows only) A-20
3.10 Imver ... A-21
3.11 License Administration Tools for Windows A-22
3.11.1 LMTOOLS for Windowscvuuuin.. A-22
3.11.2 FLEXIm License Manager for Windows A-23
4 The Daemon Log File A-25
4.1 Informational Messages A-26
4.2 Configuration Problem Messages A-29
4.3 Daemon Software Error Messages A-31
5 FLEXIm License Errors A-33
6 Frequently Asked Questions (FAQS) A-37
6.1 License File Questions A-37
6.2 FLEXIm Version A-37
6.3 Windows QUeStonsccouiniioi... A-38
6.4 TASKING QUESHONS ..o \v o A-39

6.5 Using FLEXIm for Floating Licenses A-41

Table of Contents

MISRA C B-1
USING CROSSVIEW PRO FOR
EVALUATION BOARDS C-1
USING KONTRON DEBUGGERS D-1
USING HITEX HITOP E-1
Using telemon 80C166, E-3
2 Using telemon 80C16A E-4
Using telemon 80C167, E-5
USING PLS FAST-VIEWG66 F-1
CPU FUNCTIONAL PROBLEMS G-1
Introduction G-3
2 CPU Functional Problem Bypasses G4
USER STACK MODEL LIBRARY SUPPORT H-1
1 Introduction H-3
2 Function Call and Return H-4
2.1 Direct Intra-—segment Function Call and Return H-4
2.2 Indirect Intra-segment Function Call and Return H-5
2.3 Direct Inter-segment Function Call and Return H-6
2.4 Indirect Inter-segment Function Call and Return H-8
2.5 Inter-segment Call and Return Table Stub Functions .. H-10
2.6 Intra-segment Call and Return Stub Functions H-12

Table of Contents

3.1
3.2
3.3

INDEX

Using the Extended Instruction Set H-13
Introduction i H-13
Direct Inter-segment Function Call and Return H-14
Indirect Inter-segment Function Call and Return H-15

Xl

X

CONTENTS

Table of Contents

Manual Purpose and Structure XII

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING C166/ST10 C
Cross—Compiler. It assumes that you are familiar with the C language.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

1. Software Installation
Describes the installation of the C Cross—Compiler for the C166/ST10.

2. Overview
Provides an overview of the TASKING C166/ST10 toolchain and gives
you some familiarity with the different parts of it and their relationship.
A sample session explains how to build a C166/ST10 application from
your C file.

3. Language Implementation
Concentrates on the approach of the C166/ST10 architecture and
describes the language implementation. The C language itself is not
described in this document. We recommend: "The C Programming
Language” (second edition) by B. Kernighan and D. Ritchie (1988,
Prentice Hall).

4. Compiler Use
Deals with control program and C compiler invocation, command line
options and pragmas.

5. Compiler Diagnostics
Describes the exit status and error/warning messages of the compiler.

6. Libraries
Contains the library functions supported by the compiler, and describes
their interface and "header’ files.

XV

=

Manual Purpose and Structure

7. Run-time Environment
Describes the run—time environment for a C application. It deals with
items like assembly language interfacing, C startup code and
stack/heap size.

APPENDICES

A. Flexible License Manager (FLEXIm)
Contains a description of the Flexible License Manager.

B. MISRA C
Supportecand unsupported MISRA C rules

C. Using CrossView Pro for Evaluation Boards
Describes how to use CrossView Pro evaluation boards.

D. Using Kontron Debuggers
Describes how to use Kontron debuggers.

E. Using Hitex HiTOP
Describes how to use the Hitex HITOP execution environment.

F. Using pls fast-view66
Describes how to use the pls fast-view66 debugger.

G. CPU Functional Problems
Describes how the C166/ST10 toolchain can bypass some functional
problems of the CPU.

H. User Stack Model Library Support
Describes the special coding methods used in the libraries and
C166/ST10 C compiler to support a special stack frame.

INDEX

Manual Purpose and Structure

RELATED PUBLICATIONS

e The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)
e ANSI X3.159-1989 standard [ANSI]

e (C166/ST10 Cross—Assembler, Linker/Locator, Utilities User’s Guide
[TASKING, MA019-000-00-00]

* C166/ST10 C++ Compiler User’s Guide [TASKING, MA019-012-00-00]

e C166/ST10 CrossView Pro Debugger User’s Guide
[TASKING, MA019-041-00-00]

* (C166 User’s Manual [Infineon Technologies]
e (167 User’s Manual [Infineon Technologies]
e ST10 Family Programming Manual [STMicroelectronics|

e C166S v2.0 / Superl0 User’s Manual
[Infineon Technologies / STMicroelectronics|

XV

XVI Manual Purpose and Structure

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{} Items shown inside curly braces enclose a list from which
you must choose an item.

[] Items shown inside square brackets enclose items that are
optional.

| The vertical bar separates items in a list. It can be read as
OR.

italics Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete
command line which you can enter.

For example
command| option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XVl

@z This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

@j This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XVII

MANUAL STRUCTURE

Manual Purpose and Structure

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

1.1 INTRODUCTION

This chapter describes how you can install the TASKING C Cross—Compiler
for the C166/ST10 on Windows 95/98/NT/2000, Linux and several UNIX
hosts.

1.2 INSTALLATION FOR WINDOWS

Step 1
Start Windows 95/98/NT/2000, if you have not already done so.

Step 2
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Welcome dialog box appears, skip to Step 5. Otherwise,
continue from Step 3.

Step 3
Select the Start button and select the Run... menu item.

Step 4
On the command line type:
d:\setup

(substitute the correct drive letter for your CD-ROM drive) and press the
<Return> or <Enter> key or click on the OKbutton.

The TASKING Welcome dialog box appears.

Step 5

Select a product and click on Install

Step 6

Follow the instructions that appear on your screen.

@ You can find your serial number on the Certificate of Authenticity or
Product Update Form, delivered with the product.

1-4 Chapter 1

=

Step 7

License the software product as explained in section 1.5, Licensing
TASKING Products.

1.2.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment
variables to make invocation of the tools easier, when you invoke the tools
from a command prompt. When you are using EDE all settings are
configurable from within EDE. A list of all environment variables used by
the toolchain is present in the section Environment Variables in the
chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed, when you invoke the tools from a command prompt. If you
installed the software under ¢:\c166 |, you can include the executable
directory c:\c166\bin in your search path.

@2 In EDE, select the EDE | Directories... menu item. Add one or more
executable directory paths to the Executable Files Path field.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files. The compiler uses the
environment variable C166INC to search for include files. An example of
setting this variable is given below (this is only needed when you invoke
the tools from a command prompt).

@3 See also the section Include Files in the chapter Compiler Use.

Example Windows Command Prompt
Enter the following line when you use a Command Prompt window.
set C166INC=c:\c166\include
Example Windows 95/98
Add the following line to your autoexec.bat file.

set C166INC=c:\c166\include

Software Installation

Example Windows NT / 2000
1. Open the System Properties dialog.

You can do this by double-clicking on the System icon in the Control
Panel (Start | Settings | Control Panel) or right—click on the My
Computer icon on your desktop and select Properties

2. Select the Environment tab.

3. In the Variable edit field enter:
C166INC

4. In the Value edit field enter:
c:\c166\include

5. Click on the Set button, then click OK

1.3 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package and as a
gzipped tar file. For each product the following files are present:

SWoroduct —version —RPMrelease .i386.rpm
SWoroduct —version .tar.gz

Both files contain exactly the same information. When your Linux
distribution supports RPM packages, you can install the .rpm file.
Otherwise, you can install the product from the .tar.gz file.

1.3.1 RPM INSTALLATION

Step 1

In most situations you have to be "root” to install RPM packages, so either
login as "root”, or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom . See the Linux manual pages about mount
for details.

1-5

1-6 Chapter 1

=

Step 3
Go to the directory on which the CD-ROM is mounted:

cd /cdrom
Step 4
To install or upgrade all products at once, issue the following command:
rpm —U SW*.rpm

This will install or upgrade all products in the default installation directory
Jusr/local . Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable’; so it is possible to select a different
installation directory with the ——prefix option. For instance when you
want to install the products in /opt , use the following command:

rpm —U —prefix /opt SW*.rpm

@ For Red Hat 6.0 users: The ——prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the .tar.gz file installation described
in the next section if you want to install in a non-standard directory.

1.3.2 TAR.GZ INSTALLATION

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom . See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:

cd /cdrom

Software Installation

Step 4

To install the products from the .tar.gz files in the directory
Jusr/local , issue the following command for each product:

tar xzf SW product —version .tar.gz —C /usr/local

Every .tar.gz file creates a single directory in the directory where it is
extracted.

1.3.3 SETTING THE ENVIRONMENT

After you have installed the software, you can set some of the
environment variables to make invocation of the tools easier (when
invoking the tools from the command line). A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

1-8

Chapter 1

1.4 INSTALLATION FOR UNIX HOSTS

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as root or use the su command.

Step 2

If you are a first time user decide where you want to install the product
(By default it will be installed in /usr/local).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example /cdrom . Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manual pages about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

mkdir /tmp/instdir

Step 4

&

For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tmp/instdir
tar xvf /dev/ tape

where tape is the name of your tape device.

If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

Software Installation

Step 5

Run the installation script:
sh install
and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is / usr/local . On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.5, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

** WARNING ***
SWkxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> |nstallation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installation of SW XXXXXX XXXX . XxXxx completed.

Step 6
For tape install: remove the temporary installation directory with the
following commands:

cd /tmp
rm —rf instdir

Step 7

If you purchased a protected TASKING product, license the software
product as explained in section 1.5, Licensing TASKING Products.

1-10 Chapter 1

=

Step 8
Logout.

1.4.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment
variables to make invocation of the tools easier. A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

Software Installation

1.5 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the licensing
information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

1.5.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License
Information Form” containing the license information for your software
product. If you have not received such a form follow the steps below to
obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the
computer where you will be using the product. See section 1.5.7, How to
Determine the Hostid.

1-11

1-12

=

Chapter 1

2. When you order a TASKING product, provide the hostid to your local
TASKING sales representative. The License Information Form which
contains your license key information will be sent to you with the software
product.

Floating license

1. If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 1.5.7,
How to Determine the Hostid and section 1.5.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The License
Information Form which contains your license key information will be sent
to you with the software product.

1.5.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described in section 1.2, Installation for Windows.

Step 2

Create a file called "license.dat 7 in the c:\flexim directory, using an
ASCII editor and insert the license information contained in the "License
Information Form” in this file. This file is called the "license file”. If the
directory c:\flexiIm does not exist, create the directory.

@ If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

@ If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.5.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

Software Installation

See the Flexible License Manager (FLEXIm) appendix for more information
on FLEXIm.

1.5.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described earlier in this chapter on the computer or workstation where
you will use the software product.

As a result of this installation two additional files for FLEXIm will be
present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).
license.dat A template license file.

Step 2

If you already have installed FLEXIm v6.1 or higher for Windows or v2.4
or higher for UNIX (for example as part of another product) you can skip
this step and continue with step 3. Otherwise, install SW000098, the
Flexible License Manager (FLEXIm), on the license server where you want
to use the license manager.

The installation of the license manager on Windows also sets up the
license daemon to run automatically whenever a license server reboots.
On UNIX you have to perform the steps as described in section 1.5.5,
Setting Up the License Deaemon to Run Automatically.

@ It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXIm has already been installed as part of a non—TASKING product
you have to make sure that the bin directory of the FLEXIm product
contains a copy of the Tasking daemon (see step 1).

1-13

1-14

=

Chapter 1

Step 4

&

&

Insert the license information contained in the "License Information Form”
in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in
directory c:\flexim for Windows and in
{usr/local/flexim/licenses for UNIX.

If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII
editor. You can use the license file license.dat from the toolchain’s
flexim subdirectory as a template.

If you already have a license file, add the license information to the
existing license file. If the SERVER lines in the license file are the same as
the SERVER lines in the License Information Form, you do not need to add
this same information again. If the SERVER lines are not the same, you
must use another license file. See section 1.5.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software
product the location of the license file must be known. If it differs from
the default location (c:\flexim\license.dat for Windows,
/usr/local/flexim/licenses/license.dat for UNIX), then you
must set the environment variable LM_LICENSE_FILE. See section 1.5.06,
Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started
(see section section 1.5.4). Or, if it is already running you must notify the
license manager that the license file has changed by entering the
command (located in the flexIm bin directory):

Imreread

On Windows you can also use the graphical FLEXIm Tools (Imtools): Start
Imtools (if you have used the defaults this can be done by selecting

Start | Programs | TASKING FLEXIm | FLEXIm Tools), fill in the
current license file location if this field is empty, click on the Reread
button and then on OK Another option is to reboot your PC.

Software Installation

The software product and license file are now properly installed.

Where to go from bere?

The license manager (daemon) must always be up and running. Read
section 1.5.4 on how to start the daemon and read section 1.5.5 for
information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING
product.

@]j See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

1.5.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start
the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXIm | FLEXIm License Manager).

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OKbutton.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXIm installation directory (default
Jusr/local/flexIm):

cd /ust/local/flexim
3. For C shell users, start the license daemon by typing the following:

bin/lmgrd —2 —p —c licenses/license.dat >>& \
/var/tmpllicense.log &

1-15

1-16

Chapter 1

Or, for Bourne shell users, start the license daemon by typing the
following:

bin/Imgrd —2 —p —c licensesl/license.dat >>\
Ivar/tmpl/license.log 2>&1 &

In these two commands, the -2 and —p options restrict the use of the
Imdown and Imremove license administration tools to the license
administrator. You omit these options if you want. Refer to the usage of
Imgrd in the Flexible License Manager (FLEXIm) appendix for more
information.

1.5.5 SETTING UP THE LICENSE DAEMON TO RUN
AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a
license server reboots, follow the instructions below that are approrpiate
for your platform. steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXIm | FLEXIm License Manager).

2. In the Setup tab, enable the Start Server at Power-Up check box.

3. Close the program by clicking on the OKbutton. If a question appears,
answer Yes to save your settings.

UNIX
In performing any of the procedures below, keep in mind the following:

* Before you edit any system file, make a backup copy.

HP-UX

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/rc.config.d create a file named rc.Imgrd ~ with
the following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default /usr/local/flexim):

#l/sbin/sh
FLEXLMDIR bin/lmgrd =2 —p —C FLEXLMDIRlicensesl/license.dat >>\

Ivar/tmpl/license.log 2>&1 &

Software Installation 1-17

After the —c option, you have to specify the correct location of the license
file.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file /etc/rc.local . Replace
FLEXIMDIR by the FLEXIm installation directory (default
[usr/local/flexim):

FLEXLMDIR bin/lmgrd —2 —p — FLEXLMDIRlicenses/license.dat >> \
Ivar/tmpllicense.log 2>&1 &

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.Imgrd ~ with the
following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR bin/lmgrd -2 —p —C FLEXLMDIRlicenses/license.dat >> \
Ivar/tmpl/license.log 2>&1 &
3. Make it exacutable:

chmod u+x rc.Imgrd

4. Create an 'S’ link in the /etc/rc3.d directory to this file and create 'K’
links in the other /etc/rc?.d directories:
In /etc/init.d/rc.Imgrd /etc/rc3.d/S nunrc.Imgrd
In /etc/init.d/rc.Imgrd /etc/rc?.d/K nunrc.Imgrd

num must be an approriate sequence number. Refer to you operating
system documentation for more information.

1.5.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:
c:\flexim\license.dat
On UNIX this is:

lusr/local/flexIm/licenses/license.dat

1-18

Chapter 1

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE. Do this in
autoexec.bat (Windows 95/98), from the Control Panel —> System

| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (fpath) with a ’;’ (on UNIX also ’"):

Example Windows:
set LM_LICENSE_FILE=c:\flexim\license.dat;c:\license.txt
Example UNIX:

setenv LM_LICENSE_FILE
lusr/local/flexim/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the Flexible License Manager (FLEXIm) appendix for detailed
information.

Software Installation

1.5.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

HP-UX lanscan 0000F0050185
(use the station address
without the leading '0x’)

SunOS/Solaris | hostid 170a3472

Windows tkhostid 0800200055327
(or use Imhostid)

Table 1-1: Determine the bostid
@ If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also
on every product CD that includes FLEXIm.

1.5.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

HP-UX hostname

SunOS/Solaris | hostname

Windows 95/98 | Go to the Control Panel, open "Network”, click on
"Identification”. Look for "Computer name”.

Windows NT Go to the Control Panel, open "Network”. In the
"ldentification” tab look for "Computer Name”.

Table 1-2: Determine the hostname

1-19

1-20

Chapter 1

NOILVTIVLSNI

OVERVIEW

al TASKING [

d31dVHO

Overview

2.1 INTRODUCTION TO C C166/ST10
CROSS-COMPILER

This manual provides a functional description of the TASKING C
C166/ST10 Cross—Compiler. This manual uses ¢166 (the name of the
binary) as the shorthand notation for "TASKING C C166/ST10
Cross—Compiler’.

TASKING offers a complete toolchain for the Infineon C166 and
STMicroelectronics ST10 microcontroller families and their derivatives.
These derivatives can be based on C166/ST10x166 architectures (256K
memory, 18-bit addresses), C167/ST10x167/ST10x262 extended
architectures (16M memory, 24 bit addresses) and C166S v2.0 / Super10
extended architectures. This manual uses ’80166° as the shorthand notation
for these microcontroller families. The toolchain contains a C++ compiler,
a C compiler, a control program, a macro preprocessor, an assembler, a
linker/locator, a library manager, a program builder, a disassembler, a
debugger and output format utilities.

The €166 is not a general C compiler adapted for use with the C166/ST10
architecture, but instead it is dedicated to the microcontroller architecture
of the C166/ST10 architecture. This means that you can access all special
features of the C166/ST10 architecture in C: 16K page architecture (with
full pointer support), bit-addressable memory, (extended) special function
registers (I/O ports), interrupt support, scalable vector tables, (local)
register banks and a number of built-in (intrinsic) functions to utilize
special C166/ST10 architecture instructions. And yet no compromise is
made to the ANSI standard. It is a fast, single pass, optimizing compiler
that generates extremely fast and compact code.

The ¢166 generates assembly source code using the Infineon assembly
language specification, and must be assembled with the TASKING
C166/ST10 Cross—Assembler. This manual uses al66 as the shorthand
notation for "TASKING C166/ST10 Cross—Assembler’.

The object file generated by al66 can be linked with other objects and
libraries using the TASKING 1166 linker/locator. This manual uses 1166 as
the shorthand notation for "TASKING 1166 linker/locator’. With the link
stage of 1166 you can link objects and libraries to one object. You can
locate assembler objects, linked objects and libraries to a complete
application by using the locate stage of 1166.

2-4

Chapter 2

The C166/ST10 toolchain also accepts C++ source files. C++ source files or
sources using C++ language features must be preprocessed by cp166. The
output generated by ¢p166 is C166/ST10 C, which can be translated with
the C compiler ¢166.

The C++ compiler is not part of the C compiler package. You can order it
separately from TASKING. The C++ compiler package includes the C
compiler as well.

With the TASKING ¢c166 control program you can invoke the various
components of the C166/ST10 toolchain with one call. This manual uses
cc166 as the shorthand notation for "TASKING ¢c166 control program’.

You can debug the software written in C, C++ and/or assembly with the
TASKING CrossView Pro high-level language debugger. This manual uses
XVW166 as the shorthand notation for "TASKING CrossView Pro high-level
language debugger’. A list of supported platforms and emulators is
available from TASKING.

You can also use other debugging environments supporting the IEEE-695
format (e.g. Kontron, Hitex, Krohn & Stiller, Lauterbach, etc.).

2.2 PRODUCT DEFINITION

Name:

TASKING C C166/ST10 Family Cross—Compiler (c166)

Ordering Code:

TK019-002

Target Assembler:

TASKING C166/ST10 Cross—Assembler

Target Debugger:

TASKING C166/ST10 CrossView Pro debugger

Overview

Target Processors:

All C166/ST10x166 derivatives. Special function registers can be accessed
by means of a user—definable ’sfr-file’ (register definition files).

All_C167 and derivatives (e.g. SAB C165) support is enabled with the '-x’
option, extending addresses to 24 bits instead of 18 bits and enabling the
extended instruction set of the C167. Extended special function registers
are supported using the ’esfr’ and ’esfrbit’ data types.

All libraries are also present in an extended (ext) version.

All C166S v2.0/Superl0 and derivatives support is enabled with the *-x2’
option. All libraries are also present in an extended (ext2) version.

All enhanced C166S v2.0/SuperlQ and derivatives support is enabled with
the '=x22’ option. The ext2 libraries can be used.

2.3 GENERAL IMPLEMENTATION

This section describes the different phases of the compiler and the target
independent optimizations.

2.3.1 COMPILER PHASES

During the compilation of a C program, a number of phases can be
identified. These phases are divided into two groups, referred to as
Sfrontend and backend.

frontend:

The preprocessor phase:

File inclusion and macro substitution are done by the preprocessor
before parsing of the C program starts. The syntax of the macro
preprocessor is independent of the C syntax, but also described in the
ANSI X3.159-1989 standard.

The scanner phase:
The scanner converts the preprocessor output to a stream of tokens.
The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs
a syntactic and semantic analysis of the program, and generates an
intermediate representation of the program.

2-5

2-6 Chapter 2

=

The frontend optimization phase:

This phase performs target processor independent optimizations by
transforming the intermediate code. The next section discusses
frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means
another transformation of the intermediate code and actions like
register allocation techniques for variables, expression evaluation and
the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

The code generator phase:

This phase converts the intermediate code to an internal instruction
code representing the C166/ST10 assembly instructions.

The peephole optimizer phase:

This phase uses pattern matching techniques to perform peephole
optimizations on the internal code (e.g. deleting obsolete moves). It
also performs pipeline optimizations, replacing NOP instructions with
other instructions which do not interfere with the pipeline effects of the
processor. Another task of the peephole optimizer is to convert JMPR
instructions to JMPA instructions (or to reverse the condition of
conditional bit jump instructions), if the destination label is not within
the REL range (=128 to 127 words). Finally, the peephole optimizer
translates the internal instruction code into assembly code for a166.
The generated assembly does not contain any macros.

The instruction reordering phase:

This phase is only enabled for the ext2 architectures. It tries to reorder
the instructions in order to keep the pipeline from stalling as much as
possible. During this phase no instructins will be added or removed.

Overview

All phases (of both frontend and backend) are combined into one
program: ¢166. The compiler does not use any intermediate file for
communication between the different phases of compilation. The backend
part is not called for each C statement, but is started after a complete C
function has been processed by the frontend (in memory), thus allowing
more optimization. The compiler only requires one pass over the input
file, resulting in relatively fast compilation.

2.3.2 FRONTEND OPTIMIZATIONS

The following optimizations are performed on the intermediate code. They
are independent of the target processor and the code generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x-3)
is transformed into X + (1-3) , which can be folded.

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.
Such useless expressions may be introduced by macros in C (#define), or
by the compiler itself.

Logical expression optimization

Expressions involving '&&’, | |” and "V are interpreted and translated into a
series of conditional jumps.

Loop rotation

With for and while loops, the expression is evaluated once at the 'top’
and then at the 'bottom’ of the loop. This optimization does not save code,
but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as
the deletion of redundant case labels or even the deletion of the switch.

2-7

2-8 Chapter 2

=

Control flow optimization

By reversing jump conditions and moving code, the number of jump
instructions is minimized. This reduces both the code size and the
execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately
followed by an unconditional jump may be replaced by a jump to the
destination label of the second jump. These situations frequently occur
with nested control structures. This optimization does not save code, but
speeds up execution.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the
code size and the execution time.

Register coloring
Optimize register allocation within a C function. The compiler tries to keep
as much local variables as possible in registers.

Constant/value propagation
A reference to a variable with a known contents is replaced by those
contents.

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)
expression. Such a “common” expression may be temporarily saved to
avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without
affecting the program. However, the compiler generates a warning

message, because the unreachable code may be the result of a coding
error.

Overview

Sharing of string literals and floating point constants

The ANSI X3.159-1989 standard permits string literals to be put in ROM
memory. Strings in ROM cannot be modified, so the compiler overlays
identical strings (within the same module) and let them share the same
space, thus saving ROM space. Likewise, identical floating point constants
are overlaid and allocated only once.

Common Tail Merging

Common pieces of code at the end of case labels and if-else constructions
are replaced by a jump to single instance of the shared code. This will
reduce code size.

2-9

2-10

=

Chapter 2

2.4 COMPILER STRUCTURE

If you want to build a C-166 application you need to invoke the following
programs:

The C compiler (c166), which generates an assembly source file
from the file with suffix .c . The suffix of this file is .src , which is
the default for a166. However, you can direct the output to stdout
with the -n option, or to another file with the —o option. C source
lines can be intermixed with the generated assembly statements by
means of the -=s option. High level language debugging information
can be generated with the -g option. You should not use the -g
option, when inspecting the generated assembly source code,
because it contains a lot of 'unreadable’ high level language debug
directives. €166 makes only one pass on every file. This pass
checks the syntax, generates the code and performs a code
optimization.

The al66 cross—assembler which processes the generated assembly
source file into a relocatable object file with suffix .obj . A full
assembly listing with suffix .Ist is available after this stage.

The 1166 link stage which links the generated relocatable object
files and C-libraries. The result is a relocatable link file with suffix
Ino . A linker task map file with suffix .Inl is available after this
stage.

The 1166 locate stage which locates the generated relocatable object
files (from assembler or link stage). The result is a loadable file with
suffix .out . A full application map file with suffix .map is available
after this stage.

The ieeel66 program which formats an a.out type file into a
CrossView Pro load file.

The next figure explains the relationship between the different parts of the
TASKING C166/ST10 toolchain:

Overview

C++ source file
.cc
|

C++ compiler

cpl66 .ic

C source file

.C Invocation file

,—| | |
C compiler

assembly source file

error list file .err
.sif

,,__ sif

global storage optimizer
gso0166

error list file .erl

archiver
arl66

T
object library

relocatable object
module .obj

|

lib

linker 1166
link stage

linked object
module .Ino

control program
ccl66

||
linker 1166
locate stage

.gso c166 .aslm
| macro preprocessor
m166
— listfile .mpl
assembly file error list file .mpe
.src o
| ——— Invocation file
assembler
al66
I C_ listfile .st

Invocation file

1

| C_ printfile .Inl

Invocation file

—

[T mapfile .map

absolute object
moduleI a.out

Motorola S Formatter
srecl66

IEEE Formatter
ieeel66

Intel Hex Formatter
ihex166

Motorola S-records

IEEE-695 load module.abs

Intel Hex—records

CrossView Pro
Debugger
xfw166

C166/ST10

execution

environment

Figure 2-1: C166/ST10 development flow

2-11

2-12

Chapter 2

The control program ¢c166 can be used to build an absolute loadable file
starting with an input file of any stage. C++ source programs are compiled
by the C++ compiler. With a C source file as input, c¢c166 calls ¢166, a166
and 1166 with the appropriate command line arguments.

It is advised to use CC166 when compiling C++ source programs because
of the complex nature of C++ compilation.

The global storage optimizer gso166 is a program to optimize allocation
of objects in memory spaces.

The macro preprocessor m166 is a program to preprocess assembly files
(suffix .asm).

The ihex166 program formats the a.out file into an Intel Hex format file.
You can load this output file into an EPROM programmer.

The srec166 program formats the a.out file into a Motorola S Format for
EPROM programmers.

The ar166 program is a librarian facility. You can use this program to
create and maintain object libraries.

A utility to disassemble absolute object files and relocatable object files is
d166.

A utility to display the contents of an object file is dmp166.

The mk166 program builder uses a set of dependency rules in a 'makefile’
to build only the parts of an application which are out of date

For a full description of all available utilities, see chapter Utilities chapter
12, "Utilities”in the C166/ST10 Cross—Assembler, Linker/Locator, Utilities
User’s Guide.

The name of the C166/ST10 CrossView Pro Debugger is xfw166. For more
information check the C7166/ST10 CrossView Pro Debugger User’s Guide.
This manual uses xvw166 as the general executable name.

Overview

2.5 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the C166/ST10 toolchain.

Environment Description

Variable

A166INC Specifies an alternative path for STDNAMES files
for the assembler a166.

C166INC Specifies an alternative path for #include files for the
C compiler c166.

CC166BIN When this variable is set, the control program
ccl66, prepends the directory specified by this
variable to the names of the tools invoked.

CC1660PT Specifies extra options and/or arguments to each
invocation of cc166. The control program processes
the arguments from this variable before the
command line arguments.

LINK166 Specifies extra options and/or arguments to each

invocation of the link stage of 1166.

LM_LICENSE_FILE

Identifies the location of the license data file. Only
needed for hosts that need the FLEXIm license
manager.

LOCATE166 Specifies extra options and/or arguments to each
invocation of the locate stage of 1166.

M166INC Specifies an alternative path for include files for the
macro preprocessor m166.

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs

can create temporary files. Used by c166, cc166,
al66, m166, 1166, arl66.

Table 2-1: Environment variables

2-13

2-14 Chapter 2

-

2.6 SAMPLE SESSION

The following example illustrates the use of ¢166 in conjunction with the
al166/1166 package and the control program ¢c166. User command input
is denoted by bold text.

The subdirectory sieve in the examples subdirectory contains a demo
program for the C166/ST10 toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING C166/ST10 tools. You
can do this with one call to the control program or you can use EDE, the
Embedded Development Environment (which uses a project file and a
makefile) or you can call the makefile from the command line.

2.6.1 USING EDE

EDE stands for "Embedded Development Environment” and is the
MS-Windows oriented Integrated Development Environment you can use
with your TASKING toolchain to design and develop your application.

To use EDE on the sieve demo program in the subdirectory sieve in the
examples subdirectory of the C166/ST10 product tree follow the steps
below. This procedure is outlined as a guide for you to build your own
executables for debugging.

How to Start EDE

You can launch EDE by double—clicking on the appropriate icon in the
program group created by the installation program. Or you can launch
EDE by double-clicking on the EDE shortcut on your desktop.

Elﬂ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

5] TASKING EDE [Toolchain | MEE

File Edt Seaich Project Text Document Customize Tools Window Help EDE

IR R- RN L= a— Y

3

¢RI BEREDE D

Compile Buld FAebuld Debug Orvling Manuals

Overview

How to Select a Toolchain

1.

EDE supports all the TASKING toolchains. When you first start EDE, the
correct toolchain of the product you purchased is selected and displayed
in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do
the following:

Access the EDEmenu and select the Select Toolchain... menu item.
This opens the Select Toolchain dialog.
Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and press OK

Select Toolchain

Product Folder:
|ehearget

Toolchain:: Cancel

TASEIMG <toolchain: <version:

Browsze. .

Scan Dizk...

Delete

3§13

¥ Display 'Toolchain switched to ... message

If no toolchains are present, use the Browse... or Scan Disk...

button to search for a toolchain directory. Use the Browse... button if
you know the installation directory of another TASKING product. Use the
Scan Disk... button to search for all TASKING products present on a
specific drive. Then return to step 2.

How to Open an Existing Project

1.

2.

Follow these steps to open an existing project:
Access the Project menu and select Open...

Select the project file to open and then click OK For the sieve demo
program select the file sieve.pjt in the subdirectory sieve in the
examples subdirectory of the C166/ST10 product tree. If you have used
the defaults, the file sieve.pjt is in the directory
c:\cl66\examples\sieve

2-16 Chapter 2

5

How to Load/Open Files

The next two steps are not needed for the demo program because the file
sieve.c is already open. To load the file you want to look at.

1. In the Project menu click on Load files...
This opens the Choose Project Files to Edit dialog.

2. Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ctrl> or <Shift> key while you click on
a file. With the <Ctrl> key you can make single selections and with the
<Shift> key you can select everything from the first selected file to the
file you click on. Then press the OKbutton.

Choose Project Files to Edit

Praoject Files: 1 af & selectad

C:Mtargetiexampleshdemotiwelcome. bt oK
-t 1y leshdemo'readme. bt

npleshdemotdemn. o
C:Mbarg mplest.demohaddone. azm
C:Mbargetierampleshdemot,.. . Slibherchstart. asm

Canicel

Help

Irvert

Flef I B

Clear

This launches the file(s) so you can edit it (them).

Houw to Build the Demo Application
The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
select a command to be executed as foreground or background process.

1. Access the EDEmenu and select the Build Options... menu item.

Overview

Manuals 3

v Expert Maode
Project Optionz. ..
CPU Configuration...
Buz Configuration. ..
C++ Compiler Options
C Compiler Optiong
MISRAA C Compiler Dptions
Aszembler Options
Macro Preprocesszor
Linker/Locator Optiohg...
Crossiiew Pro Options...

[! Save/Restore Optiong. ..

Directories...
Scan Dependencies DEMO.C
Scan all Dependencies

r v v v v

Select Toolchain...

Technical Support 3
About EDE...

This opens the Build Options dialog.

Build Options 1]

Buld | Mic |

W Usze TASKING build and eror parzer settings

W Save file(z] before starting & command

™ Scan dependencies before starting a build

¥ Stop buid process on emor
[~ Keep temporary files that are generated during a build

™ Usze external makefile (instead of 'demo.mak') :

[~ Use additional make options:

[utput directann(instead of preject drectan]|:

ak I Cancel Defaults

2-18

OVERVIEW

Chapter 2

Build Options

If you set the Show command line options at the bottom of a

tooltab check box EDE shows the command line equivalent of the
selected tool option. You can also click on the arrow button (left of the OK
button) in a tool options dialog.

. Make your changes and press the OKbutton.

. Select the EDE | Directories menu item and check the directory paths

for programs, include files and libraries. You can add your own directories
here, separated by semicolons.

Overview

“Y'ou can uze thiz dialog to specify which directories to search for binary, include and
library files. Tao specify more than one directary, separate them with a semicolon ;).

Executable Files Path:

Ic:\target\bin Configure...

Include Files Path:

Ic:\target\include;c:\myinc Configure...

Library Files Path:
Ic:\target\lib Configure...

utput directan(instead of praject directany|

| HiE

I Browse.

Cancel | Defaults |

4. Access the EDEmenu and select the Scan All Dependencies menu
item.

5. Click on the Execute 'Make’ command button. The following button is
the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated
messages.

1. In the Window menu select the Output menu item.

You can see which commands (and corresponding output captured) which
have been executed by the build process in the Build tab:

ccl66 —c —g —I. -O3 -DMEASURE_TIME —-DPRINT sieve.c

ccl66 —c —g —I. -O3 —-DMEASURE_TIME —DPRINT c:\c166\examples\time\time.c
c:\tmp\mk2794a.tmp:

sieve.obj

time.obj

sieve.ilo

ccl66 —cf —ieee —o sieve.abs —f c:\tmp\mk2794a.tmp

C166/ST10 program builder v X.yr z SN0O0000000-bid (c) year TASKING, Inc.

2-20

=

Chapter 2

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

Click on the Debug application button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Load an Application

2.

You must tell CrossView Pro which program you want to debug. To do
this:

Click on File in the menu bar and select the Load Symbolic Debug

Info... item. This opens up the Load Symbolic Debug Info dialog
box.
Click Load .

How to View and Execute an Application

2.

3.

To view your source while debugging, the Source Window must be open.
To open this window,

Click on View in the menu bar and select the Source—>Source lines
item.

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

Click on Run in the menu bar and select the Program Reset item.
Again click on Run in the menu bar and now select the Animate item.

The program seive.abs is now stepping through the high level language
statements. Using the Accelerator bar or the menu bar you can set
breakpoints, monitor data, display registers, simulate I/O and much more.
See the CrossView Pro Debugger User’s Guide for more information.

Overview 2-21

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. Access the Project menu and select Project Space | New...

2. Give your project space a name and then click OK

3. Click on the Add new project to project space button.
4. Give your project a name and then click OK

The Project Properties dialog box then appears for you to identify
the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Project Properties [x]
2 <Default Settings> Ditectaories I tembers I Tools I Enars I Filters I
demo (1 Project) Project: C:Margethexampleshdematdemo. pit
By demo (0 Files)

| Files: = .IBTX 1

Add newfile [/ Add existing files
Scan existing files

* If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new
filename and click OK

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you
want to add to your project. Enter one or more file patterns separated
by semicolons. The button next to the Pattern field contains some
predefined patterns. Next click OK

e To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you
want to add to your project. Add the applicable files by
double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. Click Project | Load Files to open files you want on your EDE
desktop.

2-22 Chapter 2

=

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

2.6.2 USING THE CONTROL PROGRAM

A detailed description of the process using the sample program sieve.c
is described below for the C166/ST10. This procedure is outlined as a
guide for you to build your own executables for debugging.

1. Make the subdirectory seive of the examples directory the current
working directory.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
control program cc166:

ccl66 —g —ieee —o sieve.abs sieve.c

The —g option instructs the compiler to generate symbolic debugging
information. If you want to debug your program with the CrossView Pro
high level language debugger, this option must be on.

The -ieee option specifies that the output file must be formatted in the
IEEE Std. 695 format. The -o sieve.abs option specifies the output
filename to be sieve.abs . The result of the command are the files
sieve.abs which can be loaded and executed by CrossView Pro and
sieve.map containing the locate map of the application.

You can specify the -DMEASURE_TIME option if you want to build the
sieve benchmark program for time measurement. Note that this is done in
the makefile which can be processed by mk166.

Now you have created all the files necessary for debugging with
CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,
link stage, locate stage and formatter, you can use the =v option or =v0
option. The =v0 option only displays the invocations without executing
them. The -v option also executes them:

ccl66 —g —ieee —o sieve.abs sieve.c —v0

Overview 2-23

The control program shows the following command invocations without
executing them (UNIX output):

C166/ST10 control program v X.yr z SN0O0000000-bid (c) year TASKING, Inc.
+ c166 sieve.c —o /tmp/cc5882c.src —e —g
+ al66 /tmp/cc5882c.src TO sieve.obj NOPR
+1166 LNK TO /tmp/cc5882d.Ino sieve.obj 166/c166s.lib 166/fp166s.lib
166/rt166s.lib NOWA
+ 1166 LOC TO /tmp/cc5882e.out /tmp/cc5882d.Ino PR(sieve)
+ ieeel166 /tmp/cc5882e.out sieve.abs

The -e option specifies to remove the output file if compiler errors occur.
The NOPR control suppresses the list file generation of the assembler. The
TO control has the same function as the —o option of the compiler, and
specifies the output filename. The PR control of the locate stage specifies
the basename of the map file.

As you can see, the tools use temporary files for intermediate results. If
you want to keep the intermediate files you can use the -tmp option. The
following command makes this clear.

ccl66 —g —ieee —o sieve.abs sieve.c —v0 —tmp
This command produces the following output:

C166/ST10 control program v a. br ¢ SNO0000000-bid (c) year TASKING, Inc.
+ c166 sieve.c —0 sieve.src —e —g
+ al66 sieve.src TO sieve.obj NOPR
+ 1166 LNK TO sieve.Ino sieve.obj 166/c166s.lib 166/fp166s.lib
166/rt166s.lib NOWA
+1166 LOC TO sieve.out sieve.lno PR(sieve)
+ ieeel66 sieve.out sieve.abs

As you can see, if you use the -tmp option, the assembly source files and
linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls.

2-24

=

Chapter 2

2.6.3 USING THE SEPARATE PROGRAMS

4.

If you want to call each tool separately instead of using the control
program you can issue the following commands (steps 3—7 replace step 3
of the previous section).

Compile the module:
€166 —s —g —t sieve.c

The -s option puts the C source text as comments into the output
assembly source file sieve.src . The other options are the same as
explained by the invocation of the control program.

Assemble the module:
al66 sieve

The suffix .src is default and may therefore be omitted. The assembler
produces a relocatable object file called sieve.obj and a list file called
sieve.|st

If you want to build a complete C166/ST10 executable application, the
module containing the C function main() is treated like a reset task and
therefore must be linked with the C startup code. When the Task Concept
is followed, all tasks should be linked with a library, that contains, among
run—time routines, functions such as printf() . When the Flat Interrupt
Concept is followed the C startup code and the library is linked in the
locate stage and the link stage is skipped. In this example we are using the
Task Concept.

The C startup code is delivered in each run-time library for the memory
model of the library and in assembly source code, because this file usually
must be adapted to the target environment. The library is delivered for all
memory models supported. In this case, we are using the small model,
because this is the default memory model of ¢166. See the next chapter
for detailed information on memory models.

The libraries are organised in 4 basic library sets: one set for the
C166/ST10x166 architecture (subdirectory 166), one set for the Gold
architecture (subdirectory goldp), one set for the
C167/ST10x167/ST10x262 architecture (subdirectory ext) and one set for
the C166S v2.0 / Super 10 architectures (subdirectory ext2).

Overview 2-25

These 4 basic library sets are additionally organized in 2 variants: one
standard variant (not available for the Gold architecture) and one variant
with all silicon bug workarounds enabled. The subdirectories for this last
variant are followed by the character 'p’ (subdirectories 166p, extp ,
ext2p and goldp).

All 7 library sets (4 basic, 2 variants, —1 for Gold architecture) are also
available for the User Stack Model. All subdirectories for this extra variant
are preceeded with the character 'u’.

It depends on the hardware environment you are using, which library set
must be used. By default the compiler assumes the C166/ST10x166
architechture without any silicon bug workarounds enabled. Therefore, the
library set in the subdirectory 166 is used.

5. Link the module by typing:
PC:

1166 link sieve.obj 166\c166s.lib 166\rt166s.lib to
sieve.lno

UNIX:

1166 link sieve.obj 166/c166s.lib 166/rt166s.lib to
sieve.lno

By default the linker searches the lib directory for libraries. This way it
finds the ¢166s.lib and rt166s.lib libraries. The cstart.obj C startup
code is extracted from the rt166s.1ib library because the compiler generates
a reference to this module when the main() function is defined.

The result of this command is the linked task object module sieve.lno
When you use the PRINT control the file sieve.lnl is created,
containing information about the linking stage: memory map, symbol
table, register map. However, this is slowing down the process of linking
and therefore turned off by default.

6. Locate the module by typing:
|166 locate sieve to sieve.out nocc

The result of this command is the absolute output file sieve.out and the
file sieve.map containing the locate map of the application. The nocc
control disables the checking on definition of class ranges, used to locate
all parts of the application in user defined memory ranges.

2-26 Chapter 2

=

In order to load this application into the CrossView Pro debugger, the
output file must be formatted into IEEE Std. 695 format.

7. Format the output file by typing:
ieeel66 sieve.out sieve.abs

The file sieve.abs can be loaded and executed by CrossView Pro.

2.6.4 USING A MAKEFILE

The examples directory contains several subdirectories with example
programs. Each subdirectory contains a makefile ~ which can be
processed by mk166 to build the example.

The examples directory also contains a makefile for building all
examples. For building all examples, add the bin directory of the installed
product to the search path and type:

mk166

For building one example program, make the directory containing the
example the current working directory. Build the example by typing:

mk166

When the example has already been built before, only the parts which are
out of date are rebuilt.

For more information see also the readme.txt files in the subdirectories
of the examples.

To see which commands are invoked by mk166 without actually
executing them, type:

mk166 —n

All examples are by default built for the C166/ST10x166. The C examples
are built in the small memory model by default. For screen I/O the C
examples use the simulated I/O feature of CrossView Pro. By defining
macros on the command line you can control the way the examples are
build. A macro is defined by <macroname>=<replacement>. The
following macros can be defined:

Overview 2-27

Macro Description

EXT= Translate with all derivative extensions on. l.e. translate
for the C167.

LARGE= Translate all C examples in the large memory model.

SERIO= Translate all examples for using serial 1/0

PORT=1 Use serial port S1 on the C166/ST10 instead of SO.

V= Set verbose mode of the control program. If set it shows
the invocations of the separate tools.

Table 2-2: Makefile macros
Example:
mk166 V= EXT= LARGE=

When you want to re-translate the examples with other settings you
should first clean up the results of a previous translation. This can be done
by:

mk166 clean

You can also use this when you just want to clean up the example
directories.

2.6.5 SERIAL 1/O0 MODULES

All examples which produce output use File System Simulation (default) or
serial I/O (see section Using a Makefile in this chapter for more
information). CrossView Pro users can see the CrossView Pro Debugger
User’s Guide for more information about File System Simulation.

For serial I/0 the files serio.c and serio.h are included. The header
file contains prototypes for the functions and definitions of registers used
to setup and perform the serial communication, depending on the port.
When you compile serio.c with -DSER_PORT _1 serial port 1 of the
processor is used. Otherwise serial port 0 is used. The module serio.c
defines four functions you can use in your application:

void init_serio(void)

This function has to be called before any serial communication is done.
This functions initializes all communication parameters. The default
configuration is 9600 baud, 8 data bits and 1 stop bit.

2-28 Chapter 2

=

int getch(void)

Reads one character from the serial channel.
int kbbit(void)

Returns 1 if a character is available, otherwise 0.
int putch(int c)

Write a character to the serial channel. Return character written.

The module also defines the _ioread() and _iowrite() functions,
called by the I/O functions in the C library.

You can find the files serio.c and serio.h in the subdirectory io in the
examples directory. This directory also contains a makefile and a C
source file for testing the 1/0.

LANGUAGE
IMPLEMENTATION

al TASKING [

d31dVHO

Language Implementation

3.1 INTRODUCTION

The TASKING C C166/ST10 cross—compiler offers a new approach to
high-level language programming for the C166/ST10 family. It conforms to
the ANSI standard, but allows the user to control the 1I/O registers, bit
memory, interrupts and data page architecture of the C166/ST10 in C. This
chapter describes the language implementation in relation to the 80C166
architecture.

The extensions to the C language in ¢166 are:
_bit

You can use data type _bit for the type definition of scalars and for the
return type of functions.

_bitword
You can declare word variables in the bit-addressable area as fp. You can
access individual bits using the intrinsic functions _getbit() and
_putbit()

_sfrbit / _esfrbit

Data types for the declaration of specific, absolute bits in special function
registers or special absolute bits in the SFR address space.

_Sfr / _esfr

Data types for the declaration of Special Function Registers.

_xsfr

Data type for the declaration of Special Function Registers not residing in
SFR memory but do reside in internal RAM. An example of these SFRs are
PEC source and destination pointers. The compiler will use a 'mem’
addressing mode for this data type whereas for an object of type _sfr a
‘reg’ or ‘'mem’ addressing mode may be used.

@ These SFRs are not bitaddressable.

_at

You can specify a variable to be at an absolute address.

3-4

=

Chapter 3

_atbit
You can specify a variable to be at a bit offset within a _bitword or
bitaddressable _sfr variable.

_inline
Used for defining inline functions.

_usm / _nousm

With these function qualifiers you can force that a function is called using
the user stack model calling convention or using the generic CALL/RET
calling convention.

_bita

You can tell the compiler that a struct must be located in bitaddressable
memory by using the _bita memory qualifier.

memory-specific pointers

¢166 allows you to define pointers which point to a specific target
memory. These types of pointers are very efficient and require only 2 or 4
bytes memory space.

special types

Apart from a memory category (extern, static, ...) you can specify a storage
type in each declaration. This way you obtain a memory
model-independent addressing of variables in several address ranges of
the C166/ST10 (_near , _far , _huge, _shuge , _system , _iram).

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the
C++ language (_interrupt keyword). You may also specify the register
bank to be used (_using keyword).

intrinsic functions

A number of pre-declared functions can be used to generate inline
assembly code at the location of the intrinsic (built-in) function call. This
avoids the overhead which is normally used to do parameter passing and
context saving before executing the called function.

Language Implementation

3.2 ACCESSING MEMORY

The C166/ST10 is available for two different address ranges. One version
allows to access memory up to 256 KB via an 18 bit address, and the other
version allows to access 16 MB using a 24 bit address. The processor does
not use a linear addressing method (as the Motorola 68000 family), but
uses a segmented approach of its memory (as the Intel 8086 family).
Therefore, the difference in address range is only visible in the amount of
bits in the segment/page registers.

The approach of data memory differs with the approach of code memory.
Code memory is accessed in segments of 64K using a 16 bit offset and a 2
bit (or 8 bit) segment number. Because there is no translation done on this
2 bit (or 8 bit) segment number, code memory access is 'almost’ linear.
However, data memory is accessed within 16 KB pages. The 16 bit address
is translated into an 18 bit (or 24 bit) address via one of four data page
pointers, specified with bit 14 and 15. So, the 18 bit (or 24 bit) address is
made out of the 14 bit page offset and the 4 bit (or 10 bit) contents of the
selected DPP. ¢166 and al166 support both versions of address range. In
the rest of this document we use the 24 bit addressing scheme in our
examples. Read 18 bit instead of 24 bit for the 256K versions of the
C166/ST10 architechtures.

€166 has two methods of gaining greater control over how your program
uses memory. These methods can be used together. First you can specify
the 'memory model’ for the program. The compiler allows you to choose
from a number of different approaches. In the section Memory Models
more detailed information is present. Second, you can use one of the
keywords _near , _system , _iram , _far , _huge and _shuge in your
program. Note that although these keywords are also used by other C
compilers (for the 8086 family), they are not part of the standard C
language. C is meant as a portable language.

In practice the majority of the C code of a complete application will be
standard C (without using any language extension). This part of the
application can be compiled without any modification, using the memory
model which fits best to the requirements of the system (code size,
amount of external RAM etc.). Therefore, ¢166 has a number of features
optimizing data access on standard C in all memory models. Note that a
special section is present called Efficiency in Large Data Models.

Only a small part of the application will use language extensions. These
parts often deal with items such as:

- I/0, using the (extended) special function registers

3-6

3.2.1

- high execution speed needed

— high code density needed

Chapter 3

- access to non—-default memory required (e.g. far/huge/shuge data)

- bit type needed

- Cinterrupt functions

MEMORY MODELS

¢166 supports four memory models: tiny, small, medium and large. You
can select one of these models with the =M option. If you do not specify a
memory model on the command line, ¢166 uses the small memory model
by default. The memory models with their characteristics are represented
in the following table:

Model DPP $SEGMENTED | CPU normal code far/ near
usage | control segmented data size huge/ data
mode size shuge allowed
data
allowed
tiny linear no no <64K <64K no n.a.
small linear no yes <64K >64K yes n.a.
medium | paged | yes yes >64K <64K yes yes
large paged | yes yes >64K >64K yes yes

n.a. = not applicable

Table 3-1: Memory models

The memory models can be described as follows:

3.2.1.1 TINY MEMORY MODEL

This memory model is the only model where the processor does not run
in segmented mode, limiting the sum of code and data space to 64K. The
DPP registers always contain their startup values thus allowing linear 64K
access of data. This results in relatively high code density and execution
speed. On interrupt the C166/ST10 does not have to save the CS register
and an extra port (Port 4) is available, because address lines A16 — A17 (or
A16 — A23) are not used. The usage of the _far , _huge and _shuge
keywords is not allowed. The tiny memory model is meant for very small
(even single—chip) applications.

Language Implementation

Map example

256K
64K
normal data
code
0

Figure 3-1: Tiny memory map example

ltem Usage Comments
CPU non—segmented only model which runs non—-segmented.
code < 64K limited to first segment of 64K.
normal data < 64K limited to first segment of 64K.
Thus: (code + normal data) < 64K.
far data not allowed -
huge data not allowed -

shuge data not allowed -

Table 3-2: Tiny memory model

3-8 Chapter 3

=

3.2.1.2 SMALL MEMORY MODEL

The small memory model is probably the most used memory model. It
allows you to have a total code size up to 16M, up to 64K of fast
accessible 'normal user data’ in three different memory configurations and
the possibility to access far/huge data, if more than 64K of data is needed.

The compiler does not assume the CSP register to contain something valid.
Each call results in a far inter-segment code access, unless the _near
keyword is used explicitly in the function prototype. We therefore
recommend using the _near keyword with static functions when using
the small or large model, since static functions are always in the same
code section as their caller functions. This model allows code access in all
segments up to 16M.

The small memory model supports 64K of 'normal user data’ via fixed DPP
values, specified at locate time. This results in high code density and
execution speed. Note that the ROM data of an application (e.g. strings,
floating point constants, jump tables, etc.) must also be allocated in this
area of 64K of 'normal user data’. There are three memory configurations
possible for this 64K of 'normal user data’:

I (default)

The four DPP registers are assumed to contain their system startup value
(0-3), providing one linear data area of 64K in the first segment
(0-OFFFFh).

II Addresses Linear

DPP3 contains page number 3, allowing access to SYSTEM (extended) sfr
registers and bitaddressable memory. DPPO - DPP2 provide a linear data
area of 48K anywhere in memory. You must specify the
‘base—-page—-number’ of this area at locate time via the ADDRESSES(
LINEAR(address)) locator control.

III SND

DPP3 contains page number 3, allowing access to SYSTEM (extended) sfr
registers and bitaddressable memory. DPPO, DPP1 and DPP2 contain the
page number of a data area of 16K anywhere in memory. These page
numbers are specified at locate time via the SND locator control. When
you use this configuration, the size of a single 'normal data’ object is
limited to 16K.

Language Implementation 3-9

In variant I and II, the paging principle is not really used, so the size of a
single 'normal data’ object (e.g. array) can be greater than 16K (one page).

If you use the small memory model (default of ¢166), the compiler uses
the section type 'LDAT’ for normal user data. This means that a non—-paged
section (unless SND is used of course) must be allocated by the locator in
either:

I first segment of 64K (default)

I linear area of 48K specified with ADDRESSES LINEAR
or in page 3

111 one of the three possible areas of 16K specified with SND
or in page 3

If you need more than 64K of data (or if you need a huge data object),
you can use the _far /_huge keywords in the declaration of these
variables.

Small model memory map examples
Example I Default
Example I Using locate control:
AD LINEAR(page 8)
Example III Using locate control:

SND(DPP0(10), DPP1(12), DPP2(7))

@ ‘normal data’ sections can contain both RAM data and ROM data.

3-10

Map example I

256K

64K
page 3
page 2
page 1

far data/
huge data/
shuge data

code

normal data

page 0

code

Map example III

256K

page 12

page 10

page 7

64K
page 3

0

far data/
huge data/
shuge data

normal data

code

normal data

code

normal data

code

normal data

code

DPP3
DPP2
DPP1
DPPO

DPP1

DPPO

DPP2

DPP3

Map example II

256K

page 10
page 9
page 8

64K
page 3

Figure 3-2: Small memory map examples

Chapter 3

far data/
huge data/
shuge data
code
DPP2
normal data DPP1
DPPO
code
normal data DPP3
code

Language Implementation

Iltem

Usage

Comments

CPU

segmented

code

>64K

allows code anywhere in 256K/16M.

normal data

< 64K

64Kb of fast accessible user data using
direct MEM addressing mode. Except for
map Il (SND control), the size of a single
user data object is not limited to 16K (16 bit
address arithmetic). Also contains ROM
data.

far data

allowed
(optional)

supports far data (paged) access anywhere
in 256K/16M. The size of a single far object
is limited to 16K. Far data access is less
fast than normal data access.

huge data

allowed
(optional)

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (32 bhit address
arithmetic). Huge data access is less fast
than far data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-3: Small memory model

@ ROM data (e.g. strings, floating point constants, jump tables, etc.) is also

present in LDAT sections and thus needs some space in the 64K of 'normal
user data’. We recommend using page 3 for (external) ROM, allowing this
ROM data (and code sections) to be allocated in this page and yet use
DPP3 for SYSTEM (sfr) access. This means that the other three pages can

be used for (external) RAM.

3-11

3-12

Chapter 3

In the small model far/huge/shuge data access causes the compiler to emit
code which, temporarily, overrules DPPO with the page number of the far
data. The DPPO register is restored afterwards. DPP2 is sometimes used for
far/near copy actions. During a task switch (interrupt) DPPO and DPP2 are
preserved and the correct page number is assigned to these DPP registers
before activating the C code of this task, because a far access might be
interrupted. When using the C167 (-x option), a more elegant solution is
possible, using the special prefix instructions, which are treated by the
processor as a prefix for a number of so called ’atomic instructions’: thus
uninterruptable.

If the C167 cannot be used, this method for far data access produces extra
code and results into slow execution. Therefore accessing far data must be
an exception within the application. The majority of the execution time of
the application should be dealing with normal data, otherwise it is better
to use the large model, allowing more efficient usage of far data.

Far data is allocated in 'PDAT” sections, telling the assembler/linker/locator
that a 'paged section’ (must be checked to be in—page) is needed, which
can be anywhere in memory. Huge data is allocated in "THDAT’ sections,
specifying that a 'non—-paged’ (no checking for 16K) is needed, which can
be anywhere in memory. Shuge data is allocated in 'SDAT’ sections, which
have the same properties as HDAT sections. The difference is that address
calculations on shuge data is done in 16 bit rather than in 32 bit as with
huge data. This implies that no shuge object can exceed 64K.

The following scheme is used for the data section types:

Section NON-SEGMENTED DATA SEGMENTED DATA
type (tiny/small) (medium/large)

meaning location meaning location
DATA paged (<16K) | 1st segment: <64K paged (16K) | anywhere
LDAT linear(<64K) |tiny: 1st segment: <64K |- -

small: method I, Il or llI

PDAT paged (<16K) | anywhere - -

HDAT non—paged anywhere non—paged anywhere

SDAT - - non—paged anywhere

Table 3-4: Small memory data section types

LDAT and PDAT section types are not allowed in segmented data mode.
The only section type allowed in a DGROUP is the DATA type (not
HDAT).

Language Implementation 3-13

3.2.1.3 MEDIUM MEMORY MODEL

The compiler assumes that the CSP register contains the initial value of 0,
which allows code access in the first 64K segment. The four DPP registers
do not contain the system startup values. The DPP registers are used to
access the 16M of data in 16K pages. Because the paging principle is used
with 14 bit address arithmetic, data objects (e.g. arrays) cannot be greater
than 16K (one page), unless the _huge or _shuge keyword is used. The
_huge keyword tells the compiler to generate 24 bit address arithmetic.
The _shuge keyword tells the compiler to generate 16 bit address
arithmetic. Because paging is used, the processor must run in segmented
mode. Exceptional access to code beyond 64K is possible declaring a huge
function. However, it is not allowed for such a huge function to call any
standard C (or run—time) library function, or any other 'near function’ in
the first segment. In section 3.2.1.6 some details are present about
efficiency in large data models.

Map example

256K

huge data/
shuge data

normal data

near data

normal data
64K xnear Ea!a

code

0

Figure 3-3: Medium memory map example

3-14

Chapter 3

Iltem

Usage

Comments

CPU

segmented

code

<64K

limited to first segment of 64K.

xnear data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

normal data

>64K

paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K.

near data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via 'default data
group’. Automatically utilized by c166 !
The keywords _near , _system and _iram
also allow explicit user manipulation.

huge data

allowed

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24 bit address
arithmetic). Huge data access is less fast
than normal data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-5: Medium memory model

Language Implementation 3-15

3.2.1.4 LARGE MEMORY MODEL

The compiler does not assume the CSP register to contain something valid.
Each call results in a far inter-segment code access (unless the _near
keyword is used explicitly in the function prototype). Therefore this model
allows code access in all segments up to 16M. As in the medium model, all
data accesses are far. The four DPP registers do not contain the system
startup values. The DPP registers are used to access the 16M of data in 16K
pages. Because the paging principle is used with 14 bit address arithmetic,
data objects (e.g. arrays) cannot be greater than 16K (one page), unless the
_huge or _shuge keyword is used. The _huge keyword tells the compiler
to generate 24 bit address arithmetic. The _shuge keyword tells the
compiler to generate 16 bit address arithmetic. Of course the processor
must run in segmented mode. In section 3.2.1.6, Efficiency in Large Data
Models (Medium/Large) some details are present about efficiency in large
data models.

Map example

256K

huge data/
shuge data

code

near data

normal data

Xnear Eala

code

0

Figure 3-4: Large memory map example

3-16

Chapter 3

Iltem

Usage

Comments

CPU

segmented

code

>64K

allows code anywhere in 256K/16M.

normal data

>64K

paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K.

xnear data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

near data

<16K

16K (per task) of fast accessible user data
anywhere in 256K/16M via 'default data
group’. Automatically utilized by c166 !
The keywords _near , _system and _iram
also allow explicit user manipulation.

huge data

allowed

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24 bit address
arithmetic). Huge data access is less fast
than normal data access.

Size of one struct < 64K.

Array of struct/any type > 64K

shuge data

allowed

supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-6: Large memory model

3.2.1.5 MODEL

¢166 introduces the predefined preprocessor symbol MODEL. The value
of this symbol represents the memory model selected. This can be very
helpful in making conditional C code in one source module, used for
different applications in different memory models. See also the section
Portable C Code, explaining the include file c166.h .

Language Implementation 3-17

The value of MODEL is:

tiny model v

small model s’

medium model ‘m’

large model T
Example:

#if _MODEL =='m’ || _MODEL =="I" /* medium or
large model */

sendif

3.2.1.6 EFFICIENCY IN LARGE DATA MODELS
(MEDIUM/LARGE)

For programs compiled with the medium and large memory model, the
compiler creates default data sections (member of the default data group)
and additional far/huge/shuge data sections for each module. Since
accessing data outside the default data page is slower than accessing data
within the default data page, programs will run faster if as many of their
variables as possible are declared in such a way that they are allocated in
the default data page. There are a number of ways to control the
allocation of data:

1. All initialized static/public RAM data will be allocated in these default
data sections unless the _far /_huge /_shuge keyword is explicitly used
in the declaration or the =T option is used for specifying a certain
threshold value for this data.

All non-initialized static/public RAM data having a size below a
certain threshold’ value will be allocated in these default data sections
unless the _far /_huge /_shuge keyword is used explicitly in the
declaration.

Strings, floating point constants and jump tables are allocated in ROM and
can never be in the default data sections.

3-18

Chapter 3

The default data sections are member of a special DGROUP group which
is (of course) limited to 16K. It is possible to have a DGROUP area (of
max 16K) per task. DPP2 is ASSUMED to contain the page number of this
group, which is assigned at system startup. During a context switch
(interrupt) DPP2, and the scratch register DPPO, are saved, assigned new
values and restored afterwards. However, you can also share the default
data group area with the default data groups of each task (interrupt).

The sections of the DGROUP must be declared as a COMMON section:
same name, same size and same contents. In that case the total size of the
default data group area of the whole application is limited to 16K. This
results in the following DPP-usage:

DPPO far pointer dereferencing, external far variables
DPP1 user stack (RO user stack pointer) / xnear data space
DPP2 default data group (C166. DGROUP)
DPP3 SYSTEM (sfr access, bit-addressable access,

iram access and system access)

The threshold value is user definable via the =T option. The default value
is 256 for non-initialized static/public RAM data. The major advantage of
this approach is that better performance is achieved with existing C source
code. However, addresses of these variables are still treated ’far’ (4 bytes),
for usage with (default far) pointers.

. The introduction of the _near keyword.

Near forces allocation in the default data group. It also allows better
pointer arithmetic, because a pointer to near (2 bytes instead of 4 bytes) is
supported. And last but not least near public/external references are
supported, assuming DPP2 is used with an external near variable. Of
course a near address can be converted to a far address.

. The introduction of the _system keyword.

System forces allocation in the system data group. The system data group
C166_SGROUP is always located in the system page (page 3). It also
allows better pointer arithmetic, because a pointer to system (2 bytes
instead of 4 bytes) is supported. Public/external references are supported,
assuming DPP3 is used with an external system variable. Of course a
system address can be converted to a far address.

Language Implementation 3-19

4. The introduction of the _xnear keyword.
The _xnear keyword forces data to be allocated in the data group
'C166_XGROUP’. Variables in the 'xnear’ memory space have the same
properties as 'near’ variables. The C166_ XGROUP contains variables in the
xnear data space and the user stack. The size of xnear data and the user
stack size cannot exceed 16Kb. Objects in the xnear data space are
accessed through DPP1.

5. C supports so-called ’tentative declarations’, which means that a
declaration such as’inti ; remains tentative during the module until
‘defining occurrence’ is given (e.g. via ’int i=5;). If such does not
happen, it is, for example, allowed to declare this variable to be external
at the end of the module! Because this programming style is not very
common (probably only needed for generated C source), the compiler
option -0t is available, to assign 'defining occurrence’ immediately to
every tentative declaration, allowing more data to be optimized. This
option is default on, using the medium/large model (lazy programmers
often ’forget’ the static attribute of public non-initialized variables which
are only used in one module).

If the tentative property described above is really used in a C program, a
double definition error will occur. In this case the option must be turned
off (-OT) for this module (or the module must be edited of course).

@ Using —OT results in more code and slower execution.

If the cumulated size of all C166_ DGROUP sections of a task exceeds 10K,
there are four possibilities to solve it (to be tried in this order):

1. Declare 'near’ variables as 'xnear’ / ’system’ variables.
2. Declare variables to be ’far’ explicitly (using the _far keyword).

3. Decrease the ’'threshold’ values (-T option), so more variables are
allocated in far data sections. If the threshold value is 0, only 'near’
variables will be allocated in the default data sections.

4. Decrease the number of 'near’ variables.

3-20

=

5.

&
&

Chapter 3

Use this possibility only if the other solutions cannot be used!

Use the -Ggroupname option, to specify the group to be used by the
compiler. So, for example, one set of C modules can allocate their default
data in the first data group and all other modules allocate their default data
in a second data group. If the -G option is used, the C compiler emits
code at each public (not static) function entry point to preserve the current
DPP2 value and assign the page number of the new correct data group to
DPP2. At function exit the original DPP2 value is restored. This seems
rather expensive, but the gain of code size by using DPP2 can be more
than the loss introduced by these instructions.

This is the last alternative and certainly not recommended, because it
might introduce some dangerous, hard to find side—effects, as described
below in separate notes.

If you use this option, it is your own responsibility to declare ’extern near’
variables within the same group! Therefore the compiler emits warnings
for "extern near’ declarations if you use the =G option.

Be sure that functions called by this module do NOT use their own default
data. Some C library functions might use default data too!

3.2.1.7 NEAR, XNEAR, FAR, HUGE AND SHUGE

As described before, a limitation of a predefined memory model is that,
when you change memory models, all data and code address sizes are
subject to change. Therefore ¢166 lets you override the default addressing
convention for a given memory model and access near, far, huge or shuge
objects using special declarations. This is done with the _near , _far ,
_huge or _shuge keyword. These special type modifiers can be used with
a standard memory model (except tiny) to overcome addressing limitations
for particular items (either data or code) without changing the addressing
conventions for the program as a whole.

The _near , _xnear , far , _huge and _shuge keywords are not allowed
with automatics and parameters (unless used as a target of a pointer of
course).

The following explains how the usage of these keywords affects the
addressing of code, data or pointers to code or data in all models:

Language Implementation 3-21

tiny
In this model all normal data is implicitly _near , because the processor
does not run in segmented mode. A linear 16 bit (64K) data area is

achieved. The _far , _huge and _shuge keywords are not possible (and
not allowed).

small

In this model all normal data is implicitly near. Address arithmetic is
performed on 16 bit addresses (linear address space assumed). Therefore
objects may be greater than 16K, unless the SND locator control is used,
which introduces gaps in the address space of normal data. Besides 64K of
normal data (including ROM data), far data is supported. Far data may be
anywhere in memory, not assumed to be in the linear data area. You can
reference far data using a 24 bit address. Address arithmetic is performed
on 14 bit (page offset only). Therefore, individual data items (e.g. arrays)
cannot exceed 16K (page) and cannot cross page boundaries if declared
_far . If you use far objects greater than 16K, you must declare them
_huge or _shuge . Huge data may be anywhere in memory and you can
also reference it using a 24 bit address. However, address arithmetic is
done using the complete address (24 bit). Shuge data may also be
anywhere in memory and you can also reference it using a 24 bit address.
However, address arithmetic is done using a 16 bit address.

All function calls are assumed to be _huge (maybe in another code
segment of 64K). However, an intra—segment call is supported via a _near
function (the keyword _near must be present in the function prototype).
In fact you could declare (and define) all static functions as near functions,
because they are always allocated in the same code section as the
functions they are called by. You cannot apply the _far keyword to
functions.

medium

In this model 'near data’ means data allocated into a special page for fast
access. See section 3.2.1.6, Efficiency in Large Data Models
(Medium/Large) for more details on the 'default data group’. Address
arithmetic on near and far data is always 14 bit. As in the small model,
huge and shuge data access is supported.

This model also supports 'xnear’ data. This dta is allocated together with
the user stack in DPP1. The access to this memory space is just as fast as
to 'near’ data. Address arithmetic on "xnear’ data is done in 14 bits. See
section 3.2.1.6, Efficiency in Large Data Models (Medium/Large) for more
details on the 'C166_ XGROUP’ data group.

3-22 Chapter 3

All function calls are assumed to be in the same (first) segment of 64K.
However, an inter-segment call is supported via a huge function (the
keyword _huge must be present in the function prototype). The _huge
function may not call any standard C library function, run—-time library or
any normal _near function in another segment. You cannot apply the
_far keyword to functions.

large

In this model 'near data’ means data allocated into a special page for fast
access. See section 3.2.1.6, Efficiency in Large Data Models
(Medium/Large) for more details on the 'default data group’. Address
arithmetic on near and far data is always 14 bit. As in the small and
medium model, huge and shuge data access is supported.

This model also supports 'xnear’ data. This dta is allocated together with
the user stack in DPP1. The access to this memory space is just as fast as
to 'near’ data. Address arithmetic on "xnear’ data is done in 14 bits. See
section 3.2.1.6, Efficiency in Large Data Models (Medium/Large) for more
details on the ’*C166_ XGROUP’ data group.

All function calls are assumed to be _huge (in another code segment of
64K), unless you use the _near keyword in the function prototype. In fact
you could declare (and define) all static functions as near functions,
because they are always allocated in the same code section as the
functions they are called by.

The _near , _xnear , _far , _huge and _shuge keywords modify either
objects or pointers to objects. When using them to declare data or code
(or pointers to data or code), the following rules must be kept in mind:

e The keyword always modifies the object or pointer immediately to
its right. In complex declarations such as

char _far* _near p;

think of the _far keyword and the item to its right as being a
single unit. In this case, p is a pointer to a far char, and therefore
contains a 24 bit far address.

» If the item immediately to the right of the keyword is an identifier,
the keyword determines the storage type of the item: whether it
must be allocated in the default data section or a separate data
section. In this case the pointer p is explicitly declared to be
allocated in normal data (if tiny/small model is used) or in the
default data group (if medium/large model is used).

Language Implementation

If the item immediately to the right of the keyword is a pointer (a
(star)), the keyword determines the logical type: whether the
pointer will hold a _near address (2 bytes), a _far address (4
bytes), a _huge address (4 bytes) or an _shuge address (4 bytes).
For example,

char _far * _near p;

allocates p as a _far pointer to an item of type char. The pointer p
itself is allocated in near data.

The memory model used determines the default logical type of a
pointer. In:
int *p;

p is a far pointer when you use the medium or large model,
otherwise a near pointer. The storage type of p itself is near in tiny
and small, and, depending on the threshold value, probably also
near in medium and large.

You cannot apply the _far keyword to functions.

3.2.1.8 SYSTEM, IRAM AND BITA

As described before, €166 lets you override the default addressing
convention for a given memory model and access near, far, huge or shuge
objects using special declarations. But also special declarations are
supported by €166 to access data objects in the SYSTEM page, like
internal RAM data, overall system data or bitaddressable memory. This is
done with the keywords _system , _iram and _bita . These special type
modifiers can be used in all memory models to overcome addressing
‘limitations’ for particular near data items.

The _system , _iram and _bita keywords are not allowed with
automatics, functions and constants unless used as a target of a pointer.

_system

Objects declared with the keyword _system are allocated in system data
sections (see paragraph Section Allocation). The system data sections are
member of the special group C166_ SGROUP which is limited to the size of
the SYSTEM page (16K-SFRs). DPP3 is ASSUMED to contain the page
number of this group which is equal to the SYSTEM page number (page 3)
and is assigned at system startup.

3-23

3-24 Chapter 3

=

_iram

Objects declared with the keyword _iram are allocated in
IRAMADDRESSABLE data sections (see paragraph Section Allocation). The
locator places IRAMADDRESSABLE sections in the internal RAM of the
C166/ST10.

Addressing of _iram objects is exactly the same as addressing _system
objects because the internal RAM is located in the SYSTEM page. Both
_iram and _system are addressed via the SYSTEM data page pointer
DPP3 which is assigned to the system page at system startup.

The _iram sections are limited to 1024 bytes internal RAM for the C166
and 2048 bytes internal RAM for the C165/C167. By default the _iram
section size is limited by the compiler to 1024 bytes. When compiled with
the —x[ifmp] command line option this limit is 2048 bytes. But you can
always set your own _iram sections size limit with the -m mem=size
compiler option (e.g. -mIR=512). See for more information the section
Detailed Description of the C-166 Options.

_bita

When using bit fields in structures that are located in bitaddressable
memory the compiler can take advantage of the bit and bit field
instructions of the processor. You can tell the compiler that a struct must
be located in bitaddressable memory by using the _bita memory
qualifier.

Example:

_bita struct {

unsigned bfl:1;
unsigned pit:2;
unsigned bf2:1;
}s;

The compiler will allocate the struct in a bitaddressable section. For nested
structures and unions _bita can only be applied to the outer level. When
_bita is used for structure members the compiler ignores this.

Example:

struct m {
int m1:2;
int m2:3;
} mm;

Language Implementation

struct n {
_bita struct m n1; // _bita ignored
struct m n2;

}nn;

@ Even with the _bita keyword structures will be word aligned. Also the

structure members are aligned as they would be without the _bita
qualifier; i.e., byte addressable members (signed /unsigned char) are
byte aligned and word addressable members (such as int and pointers)
are word aligned.

The _bita keyword can also be applied to global or static variables of
type char, int and long. In bitaddressable memory chars will be word
aligned. When accessing single bits in these variables like:

_bita int w;

w |= 0x4000;
if (W& (1 << 10))
{

w &= OXFFEF;
}

then the compiler will use bit instructions:

BSET w.14
JNB _w.10, 3
BCLR w.4

3:

For non-static local variables the _bita keyword is not allowed. Most
local variables will be placed in registers automatically, making them
bitaddressable anyway. See also the pragmas autobita and autobitastruct
in section Pragmas.

3-25

3-26 Chapter 3

=

3.2.2 SECTION ALLOCATION

Unlike some other microcontrollers, the C166/ST10 microcontroller does
not have different memory spaces with the same address. This means that
a non—automatic object can be referred to solely by its starting address,
because the address represents a unique memory location. There is also
no difference in assembly code accessing internal RAM, external RAM,
internal ROM or external ROM (within the same page/segment).

The processor, however, distinguishes memory access in execution speed.
Code access to internal ROM is faster than access to external ROM. Data
access to internal RAM is faster than access to external RAM. So, a piece of
assembly code executes faster if the code is allocated in internal ROM
instead of external ROM. And the same piece of code gets an even higher
execution speed if the data structures accessed are allocated in internal
RAM instead of external RAM.

In C-166 the code generator does not have to know if internal or external
RAM is accessed, because the same code can be generated. Execution
speed is in fact a matter of allocating sections in internal memory instead
of external memory. The allocation of sections is done by the locator stage
of 1166, and can be manipulated by specifying a memory range for each
‘class’ of sections.

¢166 allows you to control the class, align type and combine type of a
section with a command line option (e.g. ~RcINB=NEARRAM changes the
class of non-initialized near data to 'NEARRAM’ for this module). The
disadvantage of this method is that the changed attributes are used for the
complete C module.

However, using pragmas, ¢166 allows more flexibility of storage
specification within a C module. In this approach it is possible to declare
for example only a few C variables of a module to be allocated in a special
section which must be PEC-addressable and the rest in normal data
sections. Or only one function of the module in internal ROM and the rest
in external ROM.

Language Implementation 3-27

Naming convention

c166 uses a naming convention for the generated sections. In general the
following modifications are applied to a filename:
— whitespace and dots are converted to underscores
- filenames are converted to uppercase.
- if a filename starts with a digit, the first digit is replaced by an
underscore.

Everything after (and including) the last dot is stripped from the filename.
Thus, the filename: "long file.name.c ” will result in the following
string to be used as a basis for the section name (in the text below refered
to as "module”):

"LONG_FILE_NAME”"

The length of a filename is unlimited. Furthermore, the section naming is
divided into three catagories as described below:

I Non-initialized Data Sections/Normal Sections /Romdata Sections

For non-initialized data sections, normal sections and romdata sections the
section name is generated as follows:

module_number_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

number is a unique number.

mem is a memory abbreviation code as shown in the next table.

You may change the section attributes of this category.

¢166 uses the following table for its defaults (e.g. compiling mod.c):

Description mem | type align combine class example
—Mm/ Mt/ type type section name
—-Ml -Ms

bits BI BIT BIT BIT PUBLIC CBITS MOD_1_BI

strings/floating CcO DATA LDAT WORD PUBLIC CROM MOD_2_CO

point constants?

bitwords BA DATA LDAT WORD PUBLIC CBITWORDS MOD_3_BA

3-28

Chapter 3

Description mem | type align combine class example

—Mm/ —Mt/ type type section name

-MI —Ms
near data NB DATA LDAT WORD PUBLIC CNEAR MOD_4_NB
xnear data XN DATA — WORD PUBLIC CUSTACK MOD_15_XN
far data FB DATA PDAT WORD PUBLIC CFAR MOD_5_FB
huge data HB HDAT HDAT WORD PUBLIC CHUGE MOD_6_HB
shuge data XB SDAT SDAT WORD PUBLIC CSHUGE MOD_7_XB
functions PR CODE CODE WORD PUBLIC CPROGRAM MOD_8_PR
near romdata NC DATA LDAT WORD PUBLIC CNEAR? MOD_9_NC
xnear romdata XR DATA — WORD PUBLIC CUSTACK MOD_16_XR
far romdata FC DATA PDAT WORD PUBLIC CFARROM MOD_10_FC
huge romdata HC HDAT HDAT WORD PUBLIC CHUGEROM MOD_11_HC
shuge romdata XC SDAT SDAT WORD PUBLIC CSHUGEROM | MOD_12_XC
system data SB DATA DATA WORD PUBLIC CSYSTEM MOD_12_SB
internal ram IR DATA LDAT IRAM— PUBLIC CIRAM MOD_14_IR
data ADDRES-

SABLE

&

1 See also section 3.2.4, Constant Romdata Section Allocation, for small model only.
2 CNEARROM when tiny/small model is used.

Table 3-7: Section names (non-initialized data, normal and romdata)

When using the medium or large model, near data, xnear data or system
data always remain a member of the default data group or system data

group. So for these memory areas, it is not possible to change all section
attributes.

II Initialized Ramdata Sections

For initialized data the section name is generated as follows:

module IR mem

module_ 1D _mem
module ER_mem
module_ED_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

mem is a memory abbreviation code as used by non-initialized

ramdata sections (SB, IR, BI, BA, NB, FB, HB or XB).

Language Implementation

You can NOT change the section attributes of this category.

c166 uses the following table for its defaults:

Description type align— | combine | class example
—Mm/ | =Mt/ type type section
—MlI —Ms name
iramdata (ROM copy) DATA | LDAT (t) | WORD | PUBLIC | CINITROM | MOD_IR_NB
PDAT (s)
iramdata (RAM space) | DATA | LDAT WORD | PUBLIC CINITIRAM | MOD_ID_NB
eramdata (ROM copy) | DATA | LDAT (f) | WORD | PUBLIC | CINITROM |MOD_ER_NB
PDAT (s)
eramdata (RAM space) | DATA | LDAT WORD | PUBLIC CINITERAM | MOD_ED_NB

Table 3-8: Section names (initialized romdata)

IIT Specials

The following special section names exist:

C166_INIT
C166_BSS
C166_US
C166_USO
C166_US1
C166_INT

?C166_HEAP

INTVECT

init table for initialized RAM

clear table for non-initialized RAM
user stack
user stack for local register bank 0.
user stack for local register bank 1.

scalable interrupt vector table.
heap section for memory allocation
(linker or locator generated)

interrupt vector table (locator generated)

You can NOT change the section attributes of this category.

3-29

3-30 Chapter 3

=

¢166 uses the following table for its defaults:

Description | type align— | combine class (fixed)
-Mm/ | -Mt/ type type section
—Ml —Ms name
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_US
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_USO
user stack DATA LDAT WORD | GLBUSRSTACK CUSTACK C166_US1
init table DATA LDAT (1) WORD | GLOBAL CINITROM C166_INIT
PDAT (s)
clear table DATA LDAT (1) WORD | GLOBAL CINITROM C166_BSS
PDAT (s)
heap HDAT LDAT WORD | PUBLIC ?CHEAP ?C166_HEAP
vector table CODE CODE WORD | PUBLIC C166_VECTAB | C166_INT

Table 3-9: Section names (specials)

You can only change the section attributes of non-initialized data sections,
normal sections and romdata sections (category I), using the mem code
listed in the table.

You can tell the compiler to use other class names, combine types and
align types instead of the defaults listed above by means of the following
pragmas. Each pragma, has an equivalent command line option that can
be used if the complete module must use the changed attributes.

#pragma class memname [* use name as class for

section of area ment/
#pragma combine memctype [* use ctype as combine type

for section of area ment/
#pragma align mematype /¥ use atype as align type

for section of area ment/

#pragma default_attributes /* use default attributes as
listed above */

atype is one of the following align types:

Byte alignment
Word alignment
Page alignment
Segment alignment
PEC addressable
IRAM addressable

—TOvTcw

Language Implementation

ctype is one of the following combine types:

L private ('Local’)

P Public

C Common

G Global

S Sysstack

U Usrstack

A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Examples:

1. The C module is called 'test.c’. The example illustrates how to allocate one
array in a special section with the class 'SLOWRAM’ and the rest of the
data in data section with default attributes. The generated code is listed
below:

C:

#pragma class nb=SLOWRAM
int array[1000];

#pragma default_attributes
intj;

Generated code:

TEST_1_NB SECTION LDAT WORD PUBLIC 'SLOWRAM’
TEST_1 _NB_ENTRY LABEL BYTE
_array LABEL WORD
DS 2000
PUBLIC _array
TEST_1 _NB ENDS

TEST 2 NB SECTION LDAT WORD PUBLIC 'CNEAR’
TEST 2_NB_ENTRY LABEL BYTE
_j LABEL WORD
DS 2
PUBLIC _j
TEST 2 NB ENDS

2. The C module is called 'test.c’. The example illustrates how to allocate one
C variable on a fixed memory location (address 8000H) and the rest of the
data in a data section with default attributes. As described in the "TASKING
C166/ST10 Cross—Assembler, User’s Guide’, AT is considered as an
additional align—-type and implies the default combine type PRIVATE.

3-31

3-32

Chapter 3

#pragma combine nb=A32768
volatile int cntrl_reg;
/* e.g. an 1/O register of peripheral chip */

#pragma default_attributes
inti;

Generated code:

TEST_1_NB SECTION LDAT WORD AT 08000h 'CNEAR’
TEST_1_NB_ENTRY LABEL BYTE
_cntrl_reg LABEL WORD
DS 2
PUBLIC _cntrl_reg
TEST_1_NB ENDS

TEST 2 NB SECTION LDAT WORD PUBLIC 'CNEAR’
TEST 2 NB_ENTRY LABEL BYTE
_i LABEL WORD
DS 2
PUBLIC _i
TEST 2 NB ENDS

3.2.3 CODE MEMORY FRAGMENTATION

By default the compiler uses one section per module that contains the
code. You can change this behavior with the following pragmas:

#pragma fragment
#pragma fragment resume
#pragma fragment continue

The #pragma fragment causes the compiler to generate each single
function in its own section. The compiler will continue to do so until it
encounters either #pragma fragment resume or #pragma fragment
continue.

In case of #pragma fragment resume the compiler will resume code
generation in the last active section (with the same attributes) before
#pragma fragment.

In case of #pragma fragment continue the compiler will start a new
continuous code.

Language Implementation 3-33

These pragmas are especially useful in combination with the smart linking
feature of the linker/locator. When you use smart linking, the linker will
only link sections that are referenced. Thus if each function has its own
section, only functions that are actually called (referenced) are linked
rather than all functions in an .obj file at once.

Example:
void funcl(void) { } /* Code section 1 */
#pragma fragment
void func2(void) { } /* Code section 2 */
void func3(void) {} /* Code section 3 */

#pragma fragment resume
void func4(void) {} /* Resume in code section 1 */

#pragma fragment
void func5(void) { } /* Code section 4 */

#pragma fragment continue
void funcé(void) { } /* Continue in code section 5 */
void _near func7(void) {} /* Code section 5 */

#pragma fragment resume /* No effect: Code section 5 */
void func8(void) { }
#pragma fragment continue /* No effect */

#pragma fragment
_near void func9(void) {} /* Code section 6 */

#pragma fragment resume
void main(void) /* Resume in code section 5 */
{

func9();

func7();

return;

}

3.2.4 CONSTANT ROMDATA SECTION ALLOCATION

In the small memory model €166 default allocates all constant romdata for
strings, floating point constants, initialization of aggregates and jump tables
in normal data (near in small memory model), which is limited to 4 pages
of 16K. When you do not want to sacrifice a normal data page for ROM,
you should use the =Oe option of ¢166.

When the -Oe option is enabled the following changes are in effect for
the small memory model:

3-34

Chapter 3

e ¢166 allocates string and floating point constants in a far romdata
section (PDAT). During startup this data is copied from far ROM to
near RAM like initialized ramdata. The code generated for accessing
these constants is not changed. This means no change in execution
speed. The disadvantage is that the memory for these constants is
allocated twice: once in far ROM and once in near RAM. The ROM
sections have class 'CINITROM’ and the RAM sections have the class
"CINITERAM’ or 'CINITIRAM’, depending on the #pragma
eramdata/iramdata.

e constant data for initialization of automatic aggregates and jump
tables is allocated in far ROM. ¢166 generates different code for
accessing this data as far data, which implies a minor draw-back in
code execution performance.

When you use the const keyword for normal data, this data is placed in
near ROM, even with the —-Oe option.

To move jump tables separately from string and floating point constants to
various locations, you can use the following pragmas:

#pragma switch_tabmem_far

For the small memory model, jump tables are placed in far ROM. The
location of string and floating point constants is still controlled by the
-Oe/-OE option as described above. The ROM section where the jump
tables are placed have class 'CFARROM’. The code generated for accessing
the jump table in far ROM is slightly slower compared to the situation
where jump tables reside in near ROM.

#pragma switch_tabmem_near

For the small memory model, jump tables are placed in near ROM. The
location of string and floating point constants is still controlled by the —-Oe
/ =OE option as described above. The ROM section where the jump tables
are placed have class 'CNEARROM'.

#pragma switch_tabmem_default

This is the default. Use this pragma to return the control of the jump table
locations back to the -Oe / -OE command line option as described above.

The pragmas switch_tabmem_far, switch_tabmem_near and
switch_tabmem_default can be used anywhere in the source file. The
location of the jump table is affected by the last pragma before a switch
statement.

Language Implementation 3-35

The pragmas can be passed through the command line by using the
-zpragma command line option.

The delivered small C libraries do not support constant romdata as far
data, because it is not commonly used. All C library functions are compiled
with the default option -OE, to allocate constant romdata 'CROM’ in linear
data sections (LDAT). You have to re-compile the C-library functions
which contain constant romdata 'CROM’ with the option —Oe if you do not
want near ROM. You can rebuild the small C libraries (c166s.lib and
clé6ss.lib) using the makefiles in the library directories.

All library modules are re-compiled and the libraries are rebuilt by these
makefiles.

String constants are in:
_doprint.c, _doscan.c

The const keyword is in:
Ctype.c

Floating point constants are in:

_fltpr.c, _getflt.c, _acos.c, _asin.c, _atan.c,
_atan2.c, _cos.c, _cosh.c, _exp.c, _floor.c,
_fmod.c, _ldexp.c, _log.c, _logl0.c, pow.c,
_satan.c, _sinh.c, _sinus.c, _sqrt.c, _strtod.c,
_tan.c, _tanh.c, fpnull.asm,

_asctime.c, _gmtime.c, _mktime.c, _strftm.c

Before running these makefile you should have rights to write to the
library files ¢166s.lib and c166ss.lib

Restriction:

When the #pragma initeram or #pragma initiram is used, only the last
pragma in the source file affects the section attributes of the near ram data
sections for string and floating point constants.

3-36 Chapter 3

=

3.2.5 THE _AT() ATTRIBUTE

In €166 it is possible to locate a global variable at a specified address. This
can be done with the _at() attribute. The syntax is:

_at(address)
where, address is the location in memory of the variable.

In the tiny memory model, the address is limited to 64Kbytes. In all other
models, the address space of the used device is the limit.

The _at() attribute can only be used on non-initialized global variables.
Variables, which are declared constant, using the const modifier can be
initialized and they will be placed in a rom section. Depending on the
memory modifier, this will be near—, far-, huge— or shugerom.

If a variable meets the autobita or autobitastruct pragma requirements
and the _at() keyword is specified, the _at() attribute overrules the
autobita/autobitastruct pragmas.

The _at() attribute has no effect on variables which are declared extern.

In the segmented memory models, variables which have the _at()
attribute are not moved automatically to near memory. However, you can
explicitly specify an absolute variable to be near.

For near variables, the locator automatically assigns the correct page to the
correct DPP register. Note that all other relocatable variables in the
concerning page will also be moved. The dynamic assignments of DPP
registers can be overruled by the linker/locator controls. However, in case
of absolute variables, this will usually lead to errors because there is only
one valid DPP-register / page-number combination.

If two sections overlap, or if not all near sections can be located the
linker/locator will generate an error message.

The _at() attribute cannot be used with the _bit , _system , bita ,
_sfr , _esfr , _xsfr and _iram memory modifiers.

Examples:

_hear inti_at(0x29000);

_far const char ch _at(0x2A900) = 100;
int j, * k _at(0x2B002);

int * (* * fptr)(int, int) _at(0x12344);

Language Implementation 3-37

This will generate the following sections, when compiled in the small
memory model:

TEST 1 _NB SECTION LDAT WORD AT 029000h 'CNEAR’
TEST 1 _NB_ENTRY LABEL BYTE
_i LABEL WORD
DS 2
PUBLIC _i
TEST 1 _NB ENDS

TEST _2_FC SECTION PDAT BYTE AT 02A900h 'CFARROM’
TEST _2_FC_ENTRY
_ch LABELBYTE
DB 64h
PUBLIC _ch
TEST_2_FC ENDS

TEST_3_NB SECTION LDAT WORD AT 02B002h 'CNEAR'’
TEST_3_NB_ENTRY LABEL BYTE
_k LABEL WORD
DS 2
PUBLIC _k
TEST_3_NB ENDS

TEST_4_NB SECTION LDAT WORD AT 012344h 'CNEAR’
TEST_4_NB_ENTRY LABEL BYTE
_fptr LABEL WORD
DS 2
PUBLIC _fptr
TEST 4__NB ENDS

TEST 5 NB SECTION LDAT WORD PUBLIC 'CNEAR’
TEST 5 NB_ENTRY LABEL BYTE
_j LABEL WORD
DS 2
PUBLIC _j
TEST_5_NB ENDS

For example, in this case the linker/locator assigns a value of 0x0A to
DPP2. This is the same as using the SND(DPP2(10)) linker/locator control.

When specifying a near address, bits 14 and 15 implicitly specify the
DPP-register that will be used. DPP3 cannot be changed. This is because
DPP3 points to the memory that contains SFRs and bit addressable
memory.Therefore it is not possible to locate 'near’ variables in the third
page of any segment, other than segment 0.

3-38 Chapter 3

=

3.2.6 THE _ATBIT() ATTRIBUTE

In €166 it is possible to define bit variables within a _bitword or
(bit-addressable) _sfr variable. This can be done with the _atbit()
attribute. The syntax is:

_atbit(name, offset)

where, name is the name of a _bitword or _sfr variable and offset
(range 0-15) is the bit-offset within the variable.

Examples:
_sfr PO;
_sfrbit PO_6 _athit(PO, 6);
_bitword bw; /* bitaddressable word */

_bit myb _atbit(bw, 3);
Using the defined bit:

if (myb)
myb = 0;

generates the same code as:

if (_getbit(bw, 3))
_putbit(0, bw, 3);

The first example defines an _sfrbit ~ within a (bit-addressable) _sfr
variable. The second example defines a bitaddress within a bitaddressable
word. For more information on SFR variables see the section Special
Function Registers. For more information on _bitword variables see the
section The Bitword Type.

The storage class of the defined bit is ignored. The storage class is
inherited from the _bitword variable instead.

3.2.7 INLINE C FUNCTIONS

With the _inline keyword, a C function can be defined to be inlined by
the compiler. An inline function must be defined in the same source file
before it is ’called’. When an inline function has to be called in several
source files, each file must include the definition of the inline function.
This is typically solved by defining the inline function in a header file.

Language Implementation 3-39

Example:
_inline int
add(inta, intb)
{

}

void
main(void)

return(a+b);

intc =add(1,2);
}

The pragmas asm and endasm are allowed in inline functions. This makes
it possible to define inline assembly functions. See also the section Inline
Assembly in this chapter.

3.2.8 USING PACKED STRUCTURES

When it is undesirable to have ’holes’ between structure members, you can
use the _packed qualifier. Since the code that is generated after the
_packed qualifier is not efficient, use packed structures only when really
needed, for example for data exchange with 8-bit processors. Consider in
such case first other solutions like for example, mapping structures on
character arrays. Packed structures can not cross segement boundaries.

Example:

_packed struct

{

char «cl; /*offset0 */

int il; /*offset1*

int i2; /*offset 3 */
}s;

_packed int * ip1;

void foo(void)

{
sS.il=3;
ipl = &s.il;
s.i2 = *ip1;

}

3-40 Chapter 3

-

You can only access packed structure members by byte instructions!
Example:

_packed struct

{

char «cl; /*offset0 */
int il; /*offsetl*
int i2; /*offset 3 */

}s;

int * ip2;

void foo(void)

ip2 = &s.il; /* Incorrect! Use _packed pointer
instead. */

Language Implementation 3-41

3.3 TASK SCOPE

¢166 supports both the "Task Concept’ and the "Flat Interrupt Concept’.
These two concepts are explained in the chapter Software Concept of the
"TASKING Cross—Assembler User’s Guide’. We strongly recommend reading
this section first!

When the Task Concept is strictly followed the entry point of each task is
an interrupt function, either activated by hardware (interrupt) or by
software (TRAP instruction). Each task has only one entry point and no
code and data is shared. This implies that reentrancy of code does not
exist. See the section Interrupt in this chapter for more details about
interrupt functions.

In C the outermost level of scope is a public (non-static) variable. Via the
extern keyword this variable can be accessed in other C modules. This
scope level in C is treated by €166 as the task scope (public) in the Task
Concept. This means that all public/extern variables are not known
outside the task. This allows each task to have its own I/O channels and
administration (e.g. printf()), heap area (e.g. malloc()), floating point
stack and public data. The public/extern variables are solved at the link
stage of 1166. In practice it is in a lot of cases possible to share code and
data between several tasks or interrupt functions. The following ways exist
to do this:

define code or data to be shared to ' COMMON’

In this case, the common section must be linked with each task needing
access to the shared data/code. The '"COMMON’ section attribute tells the
locator to 'overlay’ the section with another common section carrying the
same name. The module referencing the shared data of another C module
uses the normal keyword extern in the declaration. When using, a
prototype of the function is enough. Similar to the normal C rules, the
extern keyword may be omitted with functions. This approach is used by
the C library, where a number of standard C functions (such as strlen()
and isdigit()) are allocated in common sections. The ROM table used
by <ctype.h> functions is allocated in a common data section. Therefore,
the C library must be linked with each task.

The combine type of a section can be changed in two ways. Firstly a
command line option (-R), resulting in shared code and data of the
complete C module. Secondly via a pragma, allowing some data or code
of a C module to be shared and the rest not.

3-42 Chapter 3

-

Example:

C module is called test.c . The example illustrates how to declare a ROM
table (array) as 'shared among several tasks’ and the rest of the C data in a
normal data section. The generated code is listed below.

#pragma save_attributes

#if _MODEL =="I' || _MODEL =="m’
#pragma combine fc=C

#define FAR _far /* far common data */
#else

#pragma combine nc=C

#define FAR /* normal common data */
#endif

/*

* COMMON data section in ROM, linked with

* each task and overlaid by the locator:

* shared data among all tasks.

*/

FAR const char table[10]={0, 1,2, 3,4,5,6,7,8,9};

#pragma restore_attributes

/*

* public within task scope: each task can have
* it's own instance of the public variable i.

*

inti; /*task scope */

/*

* static within module scope: each module can have
* it's own instance of the static variable s.

*

static int s; /* module scope */

TEST_1_NC SECTION LDAT WORD COMMON 'CNEARROM’
_table LABEL BYTE

DB 00h,01h,02h,03h,04h

DB 05h,06h,07h,08h,09h

PUBLIC _table
TEST_1_NC ENDS

TEST 2 NB SECTION LDAT WORD PUBLIC 'CNEAR’
TEST 2 NB_ENTRY LABEL BYTE
_i LABEL WORD
DS 2
PUBLIC i
_s LABEL WORD
DS 2
TEST 2_NB ENDS

Language Implementation

&

The same object module (containing the common section) must be linked
with all tasks using the shared data, because the module name is part of
the section name. Of course it is not possible for shared code to access
non automatic data which is not shared.

If the medium or large model is used, a shared 'near’ data section will
cause all near data sections of all tasks to be allocated in the same page,
limiting the total near data area of the whole application to 16K. However,
it is still possible to have both shared (common) and non-shared (public)
near data sections of each task in this area.

If the feature of a 16K near data area for every task is needed, the shared
data must be explicitly declared _far (or _huge or _shuge) as done in
the example above.

use pragmas ’‘global’ and public’

All public declarations in a source file following a pragma ’global’ are
defined by €166 at the application (global) scope level in the Task
Concept. This means that externs referencing these public variables have
to be resolved at the locate stage of 1166.

Example:

An application consists of two tasks TASK_Aand TASK_B

A module mod_a.c in TASK_Adefines a variable which has to be
accessed in mod_b.c in TASK_B The variable (gi) is defined in mod_a.c
as follows:

#pragma global
unsigned int gi;
#pragma public

The #pragma global ~ promotes the scope of the variable gi from the
task scope (public) to the application scope (global).

In mod_b.c in TASK_Bthe variable is declared via:

extern unsigned int gi;

3-43

3-44

Chapter 3

When linking TASK_B.LNO, the linker will produce a warning about an
‘unresolved external _gi’. However, you can tell the linker to check the
unresolved externals with the object file (mod_a.obj) or the task object
file (TASK_A.LNO), which should contain the corresponding global
definition using the CHECKGLOBALS(0object_file) linker control. If the
corresponding global definition is found by the linker, no warning is
emitted, because the external is resolved at locate time when both TASK_A
and TASK_Bare located. The linker and locator invocation may look like:

1166 LINK mod_a.obj TO TASK_A.LNO
1166 LINK mod_b.obj TO TASK_B.LNO "CHECKGLOBALS(TASK_A.LNO)
1166 LOCATE TASK_A.LNO TASK_B.LNO TO tasks.Out

define more than one interrupt function in one task

This is the easiest way to share code and data between interrupt functions.
It is in fact a step towards the Flat Interrupt concept. When a task has
more than one entry point (several interrupt functions) reentrancy of the
functions and data must be checked.

use the Flat Interrupt Concept

When the the Flat Interrupt Concept is used, the assembler objects are
directly input for the locator and the linker stage is skipped. The public
(Task) scope level of the Task Concept is promoted to the global
(application) scope level by using the PUBTOGLB (abbreviation PTOG)
locator control. The PTOG control can also be applied to a set of objects
files, which makes it possible to mix the Flat Interrupt Concept with the
Task Concept. When the PTOG is specified for an object file, all public
(task scope) variables and functions are promoted to the application scope
(global) as if they were defined after a pragma ’global’. See the section
1166 Controls of the "TASKING Cross—Assembler User’s Guide’ for more
information about the 1166 linker/locator controls.

Language Implementation 3-45

3.4 DATA TYPES

All (ANSI C) types are supported. In addition to these types, the _sfr |
_sfrbit | _esfr |, _esfrbit | _bit , _xsfr and _bitword types are

added. Object size and ranges:

Data Type Size (bytes) Range

_bit 1 bit Oorl

_sfrbit 1 bit Oorl

_esfrbit 1 bit Oorl

signed char 1 —128 to +127

unsigned char 1 0 to 255U

_sfr 2 0 to 65535U

_esfr 2 0 to 65535U

_xsfr 2 0 to 65535U

signed short 2 —32768 to +32767

unsigned short 2 0 to 65535U

_bitword 2 0 to 65535U

signed int 2 —32768 to +32767

unsigned int 2 0 to 65535U

signed long 4 —2147483648 to +2147483647

unsigned long 4 0 to 4294967295UL

float 4 +/-1,176E-38 to +/- 3,402E+38

double 8 +/- 2,225E-308 to +/— 1,797E+308

long double 8 +/- 2,225E-308 to +/— 1,797E+308

_near pointer 2 16 bits (64K) when using —Mt/—Ms
14 bits (16K) when using —Mm/-MlI
(default data group)

_Xnear pointer 2 14 bits (16K) when using —Mm/-Ml.
Not allowed in non—segmented memory
models.

_far pointer 14 bits (16K) in any page (16M)

_huge pointer 24 bits (16M)

_shuge pointer 24 bits (16M), but arithmetic is done
16-bit wide

Table 3-10: Data types

3-46

Chapter 3

— €166 generates instructions using (8 bit) character arithmetic, when
it is correct to evaluate a character expression this way. This results
in a higher code density compared with integer arithmetic. A special
section Character Arithmetic provides details.

— The C166/ST10 convention is used, storing variables with the least
significant part at low memory address. Float and double are
implemented using IEEE single and double precision formats. See
section Floating Point Interfacing in this chapter for more details.

3.4.1 ANSI C TYPE CONVERSIONS

According to the ANSI C X3.159-1989 standard, a character, a short integer,
an integer bit field (either signed or unsigned), or an object of
enumeration type, may be used in an expression wherever an integer may
be used. If a signed int can represent all the values of the original type,
then the value is converted to signed int ; otherwise the value will be
converted to unsigned int . This process is called integral promotion.

Integral promotion is also performed on function pointers and function
parameters of integral types using the old-style declaration. To avoid
problems with implicit type conversions, you are advised to use function
prototypes.

Many operators cause conversions and yield result types in a similar way.
The effect is to bring operands into a common type, which is also the type
of the result. This pattern is called the usual arithmetic conversions.

Integral promotions are performed on both operands; then, if either
operand is unsigned long , the other is converted to unsigned
long .

Otherwise, if one operand is long and the other is unsigned int |
the effect depends on whether a long can represent all values of an
unsigned int ; if so, the unsigned int operand is converted to
long ; if not, both are converted to unsigned long

Otherwise, if one operand is long , the other is converted to long .
Otherwise, if either operand is unsigned int , the other is converted
to unsigned int

Otherwise, both operands have type int

@]j See also the section Character Arithmeltic.

Language Implementation

&

Sometimes surprising results may occur, for example when unsigned char
is promoted to int. You can always use explicit casting to obtain the type
required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()

{

[* This code is never reached because,
* 0x0000 is compared to OxFFOO.

* The compiler converts character 'a’ to
* an int before applying the ~ operator
*/

}

c=a+l,;
while(c!=a+1)

/* This loop never stops because,

* 0x0000 is compared to 0x0100.

* The compiler evaluates 'a+1’ as an

* integer expression. As a side effect,

* the comparison will also be an integer
* operation

*

3-47

3-48 Chapter 3

-

To overcome this 'unwanted’ behavior use an explicit cast:

static unsigned char a=0xFF, b, c;

void f()
{
b=~a;
if (b == (unsigned char)~a)
/* This code is always reached */

}

c=a+l;
while(¢ != (unsigned char)(a+1))

/* This code is never reached */

}

Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;
static long k, I, m;

/* In C the following rules apply:

* int *int result: int

* long * long result: long

*

*and NOT int *int result: long

*

Language Implementation 3-49

void f()

{
h=i*j /*int *int =int */
k=1*m; /* long * long = long */
[=i*j; /* int * int = int, afterwards

* promoted (sign or zero
* extended) to long
*/
[= (long)i*j; /*long *long =long */
[= (long)(i * j); /* int * int = int,
* afterwards casted to long
*/

3.4.2 CHARACTER ARITHMETIC

¢c166 generates code using 8 bit character arithmetic as long as the result
of the expression is exactly the same as if it was evaluated using integer
arithmetic. This approach increases code density and execution speed
(when character typed variables are used of course).

In strict ANSI-C, character arithmetic does not exist: all character variables
are converted to integer before the operation is performed.

However, if the integer result is not used (e.g. by assigning it to a character
variable) the operation could have been evaluated using character
arithmetic, giving the same result. This is how ¢166 works.

There is one exception to this rule, dealing with the sizeof operator:

char a, b;
int i
void
main()

i =sizeof('A’); /*—Ac: 1, —AC option: 2 */
i=sizeof(a+b); /*—Ac: 1, —AC option: 2 */
}

You can enable/disable character arithmetic with the —Ac/-AC command
line option.

3-50

Chapter 3

3.4.3 THE BIT TYPE

10.

11.

The _bit type is subject to the following rules:
A bit type variable is always placed in bit-addressable RAM.
A bit type variable is always unsigned.

A bit type variable can be exchanged with all other type-variables. The
compiler generates the correct conversion.

Pointer to a bit-variable and array of bit is not allowed, because the
C166/ST10 has no instructions to indirectly access a bit variable.

Structure of bit is supported, with the restriction that no other type than bit
is member of this structure. Structure of bit is not allowed as parameter or
return value of a function.

A union of a bit structure and another type is not allowed. The bitword
type can be used for this purpose.

A bit type variable is not allowed as parameter. The allowed classes for bit
are: automatic, static, public or extern.

A function may have return type bit.
The sizeof of a bit type is 1.

Functions returning bit can not have huge/shuge/near keyword in its
prototype.

A bit typed expression is not allowed as switch expression.

The constants need a (bit) cast operator in order to enable bit operations
such as &, "*’. Of course this is not needed with (compound)
assignments.

Language Implementation

The following table shows which operators are allowed with bit type
variables:

Allowed is:
==, 1=, <, <=, >, >=
&&, ||, !, ~
?:, CALL, RETURN
& [, "
&:, |:, N=

conversions to/from char/int/long/float/double
bit structures (bit members only)
unary plus

Not allowed is:

++, — (post/pre increment/decrement)
unary minus

indirection (array/pointer/address)

+, — * 1, %, <<, >>

+=, —=, *:’ /:, %:, <<=, >>=

3.4.4 THE BITWORD TYPE

i+

1.

2.

You can declare word variables in the bit-addressable area as _bitword
You can access individual bits using the intrinsic functions _getbit()

and _putbit() or declare the individual bits of this _bitword variable
using _atbit . A prototype for these functions is given in the include file
c166.h .

For example:

_bitword bw1, bw2; /* bitaddressable words */

if (_getbit(bwl, 3))
_putbit(1, bw2, 7); /* set bit 7 of bw2 */

See also the section The _atbit() Attribute.
The _bitword type is subject to the following rules.
A bitword type variable is always unsigned.

A bitword type variable can be exchanged with all other type-variables.
The compiler generates the correct conversion.

3-51

3-52

Chapter 3

3. Pointer to a bitword variable and array of bitword is allowed.

4. Structure of bitword is supported, with the restriction that no other type
than bitword is member of this structure. Structure of bitword is not
allowed as parameter or return value of a function.

5. A bitword type variable is not allowed as automatic or parameter. The
allowed classes for bitword are: static, public or extern.

6. The sizeof of a bitword type is same as int.

7. A bitword typed expression is allowed as switch expression.

3.4.5 SPECIAL FUNCTION REGISTERS

c166 recognizes the keywords: _sfr and _sfrbit . If you specify the —x
or =xf option, you can access the extended special function register area
via the keywords _esfr and _esfrbit

c166 also recognizes the keyword: _xsfr . The _xsfr keyword is used to
access special function registers outside the (E)SFR areas but within
internal RAM (DPP3). Variables declared as xsfr are not bitaddressble.
Example: PEC source and destination pointers (SRCPx/DSTPx).

€166 emits the name of the special function register in the assembly code.
A special include file named reg166.h is delivered with the package,
which contains all sfr, xsfr and sfrbit declarations of the C166/ST10x166,
using the same names as a166 in MOD166 mode. ¢166 does not perform
any check whether the name is correct or not, but passes the name to
a166. The assembler checks the validity of the name.

If the =x or =xf option is on, you can include the file reg167.h |,
regl65.h | etc., which contain all the sfr, esfr, xsfr, sfrbit and esfrbit
declarations for each of the C167 derivatives individually. The compiler
now emits NOMOD166 and $STDNAMES(reg.def) controls. By default
a166 searches files supplied to the STDNAMES control in the etc
directory installed with the product. This way al166 finds the file reg.def
in that directory.

All reg*.h files consist of a number of parts, which are all included by
default. However, if you do not need every part in your source file, you
can omit each part by defining the appropriate macro before you include
this file. These ’control’ macros are described in the reg*.h files.

Language Implementation

REG163 NOPORT
REG163_NORS232
REG163_NOTIMER
REG163_NOADINT
REG163_NOEXTINT

REG165_NOCPU
REG165_NOPEC
REG165 NOPORT
REG165 NORS232
REG165 NOTIMER
REG165 NOADINT

REG165 NOEXTINT

REG166_NOADC
REG166_NOCAPCOM
REG166_NOCPU
REG166_NOPEC
REG166_NOPORT
REG166_NORS232
REG166_NOTIMER

REG167 NOADC
REG167 NOCAPCOM
REG167 NOCPU
REG167_NOPEC
REG167 NOPORT
REG167_NORS232

You can make your own version of reg166.h
supply the same names to a166 by using NOMOD166 and a STDNAMES

file.

€166 and a166 do not generate symbolic debugging information for
special function registers, because the register names should be known by

the debugger.

Because the special function registers are dealing with I/O, it is not correct
to optimize away the access to these registers. Therefore, ¢166 deals with
special function registers as if they were declared with the volatile

qualifier.

omit port I/O registers
omit serial I/O registers
omit timer registers

omit additional peripheral
omit fast external interrupt

omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

omit timer registers

omit additional peripheral

interrupt registers

omit fast external interrupt registers

omit analog/digital registers
omit capture/compare registers
omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

omit timer registers

omit analog/digital registers
omit capture/compare registers
omit cpu registers

omit PEC registers

omit port I/O registers

omit serial I/O registers

, but in that case you must

3-53

3-54 Chapter 3

_sfr varl, is treated like: volatile unsigned int varl,;
_sfrbit var2; is treated like: volatile _bit var2;
_xsfr var3; is treated like: volatile unsigned int var3;

3.5 FUNCTION PARAMETERS

A lot of execution time of an application is spent transferring parameters
between functions. Therefore this is an area which is very interesting for
optimization. The conventional CPU approach for parameter passing is via
the stack, because C allows recursion and reentrancy (the stack sizes of
each task are accumulated by the locator stage of 1166).

Because it is very important to optimize parameter passing, c166 uses a
resource which a RISC processor like the C166/ST10 has plenty of:
registers. The first parameters are placed in specific registers (R12— R15).
Very often the parameter computation can be done directly in the
appropriate register. In practice the bulk (80-90%) of the calls pass four or
fewer (word-sized) parameters.

A special keyword _stackparm is introduced as a ’function qualifier’ (like
_interrupt) to tell the code generator to pass all parameters via the user
stack. This keyword is very convenient for interfacing with (existing)
assembly functions or when register usage must be minimized (e.g. -6 is
used for a small C interrupt function calling another C function):

void stackparm assembly_function(char type,
long size);

Register parameter passing is NOT done if one of the following conditions
is true:

e the 'dot arguments’ of a function having a variable argument list
(ANSI notation of prototype declaration, using three dots, e.g.: void

f(char *, ...);)
e the called function has a prototype with the stackparm function
qualifier.

e the register parameters are already full or one of the parameters
cannot be passed in a register (explained below in more detail).

@ If a variable argument list function (e.g. printf()) is called without a
valid prototype (#include <stdio.h>) run-time errors occur due to
parameter transfer mismatches.

Language Implementation

&

If a function prototype is used with a function call but NOT with the
function body (or vice versa), run—time errors may occur due to parameter
type mismatches.

A function that does not call any other function is called a ’leaf’ function. If
a function is a leaf function and the C code does not calculate the address
of a parameter (via the & operator) the parameters of this function do not
have to be saved. Thus, the parameters of such a function are left in the
input registers. A lot of C library functions (such as strlen(), strcpy() etc.)
meet these requirements.

Non-leaf functions must save the parameter registers on the user stack at
function entry, as if they were pushed by the caller. However, the code
generator tries to use the register copies of these parameters as long as
possible. If automatic registers are available, these registers are used
instead of the user stack.

If a parameter does not fit (anymore) in the parameter registers or the
parameter is a float/double or a structure/union (not a pointer), it is
passed via the (more conventional) user stack. All next parameters are
passed via the stack to maintain correct stack offsets, even if one of these
next parameters would fit in the register area. The following examples
(small model) clarify this item:

Example 1:
void funcl(long I1, inti, long 12, char *p);
I* R12-R13 R14 stack stack: not R15 */
better:

void funcl(long I1, int i, char *p, long 12);

I* R12-R13 R14 R15 stack */
Example 2:
void func2(double d, double *p, inti);
I* stack stack stack */
better:

void func2(double *p, int i, double d);
1* R12 R13 stack */

3-55

3-56 Chapter 3

=

3.5.1 STATIC APPROACH OF FUNCTION AUTOMATICS

Function automatics (not parameters) which can not be allocated to a
register are present on the user stack. Compared to static variables these
stack variables have the following disadvantages:

e Access to these variables is only possible via an ’indirect register
plus offset” addressing mode. This addressing mode is supported in
the following two instructions only:

1) MOV Rn,[Rm+#d16)
2) MOV [Rm+#d16],Rn

This means that all arithmetic operations (add, and, cmp, or, subb
and xor) with a stack variable need an extra register move, before
the operation can be done. With static memory variables a register
move is not needed, because the operations mentioned above allow
the usage of the MEM operand.

e Heavy usage of instruction 1) is slowing down execution time,
because this instruction takes twice as much time as any other move
instruction or arithmetic operation (200ns instead of 100ns at
40MHz).

Therefore, code size and execution speed can be improved if the
non-register function automatics may be treated by the compiler as if they
were static and it is possible to allocate these ’automatic’ variables in the
fast internal RAM of the 80C166 using a CLASSES or ADDRESSES(
SECTIONS) locator control. Of course, this is not possible with recursive
functions. Because function automatics do not have any interaction with
other functions (unlike parameters), it is not necessary to introduce a
special static model to support this optimization. It is even possible to
enable this optimization for only one function in a module.

The compiler supports two ways of specifying function automatics can be
treated in a static way:

1. command line option.

-S All functions of the C module are compiled using static
memory for non register function automatics. This option
may be useful for non recursive applications.

Language Implementation 3-57

2. pragmas.

If only a few functions of the entire application are recursive, the
following pragmas can be used to enable (or disable) this optimization:

pragma static Use static memory for non register function
automatics.

pragma automatic Default (unless =8 is used). Use stack approach
for non register function automatics. Support
recursion.

The usage of the =S option (or pragma static) does not change the
semantic behavior of €166 with automatics: explicit storage type specifiers
(far, near, huge, shuge) remain illegal and the initialization of an automatic
variable is done run—time (each time the function is entered).

3.6 REGISTER VARIABLES

Via the register keyword you are able to control which automatic
variable must be allocated to a CPU register by the code generator.
However, if the register keyword is NOT used, the front end phase of
c166 determines which C automatic variables might be allocated to a
register by the code—generator (unless the —OR option is specified to turn
this optimization off).

If a C function is a non-leaf function (i.e. calling another C function), four
registers (R6-R9) are available to support C register variables. However, if
the C function is a leaf function, not occupied registers of the parameter
register area (R12-R15) can be used for automatic registers too. These
registers do not have to be saved at entry and restored at exit. Thus, leaf
functions allow up to eight registers to be used for register automatics!

The code generator of €166 uses a ’saved by callee’ strategy. This means
that a function which needs one or more registers for register variables,
must save the contents of these registers and restore before returning to
the caller. The major advantage of this approach is, that only registers
which are really used by the function are saved. If the function does not
have any register variable, the registers of the caller function remain valid
without being saved.

The code generator prefers to assign the register character type automatics
to R6 or R7 (using RL6/RL7) and the other types to the rest in the order of
their declaration.

Chapter 3

A declaration like (f() being a non-leaf function):

void f()

e
register int i;
register char c;
register long I;

would have been allocated by the code generator in the following
registers:

i ==> R9
c ==> RL6
]l ==> R7-R8

If f) would have been a leaf function, the register automatics would
have been allocated in the following registers:

i ==> RI15
¢ ==> RIl4
| ==> RI12-R13

All basic data types which are allowed as automatic variable are
supported, except float/double/bit: char, int, long, near/far/huge/shuge
pointer. Of course _sfr, sfrbit, xsfr and bitword are not possible.

If register usage must be minimized (e.g. interrupt function/module),
specify -r6 on the command line (RO-R5 used in REGDEF). When the
—rnumber option is used, the automatic register allocation scheme of c166
is adjusted to meet the requirements of the user.

Language Implementation 3-59

3.7 INITIALIZED VARIABLES

There are two types of initialized variables, which depend on the class of
the variable: static or automatic . The implementation is described in
the following sections.

3.7.1 AUTOMATIC INITIALIZATIONS

Automatic initialized variables are initialized (run-time) each time a C
function is entered. Normally, this is done by generating code which
assigns the value to the automatic variable.

In the old (K & R) language definition it was not allowed to initialize an
automatic aggregate type (e.g. an array or structure), but only integral
types. The ANSI standard also allows run—time initialization of automatic
aggregate types. To support this feature, ¢166 generates code to copy the
initialization constants from ROM to RAM each time the function is
entered.

3.7.2 STATIC INITIALIZATIONS

There is a lot of existing C source which use static initializations. Static
initialized variables normally use the same amount of space in both ROM
and RAM. This is because the initializers are stored in ROM and copied to
RAM at start-up. In the task philosophy of ¢166, this ROM to RAM copy
has to be performed at ’startup’ for each task.

¢166 takes care of a mechanism, which is completely transparent for the
user. It performs initialization per task from system startup code, using
compiler generated tables.

Static initialized variables use the same amount of space in both ROM and
RAM. The only exception is an initialized variable residing in ROM, by
means of either the #pragma romdata or the const storage type qualifier.
For normal initialized RAM variables, you can specify the class name
(CCINITIRAM’ or 'CINITERAM") to be used with #pragma iramdata or
#pragma eramdata. You can use the CLASSES locator control to affect the
location of these variables. See the paragraph Section Allocation for details
on section names and section attributes.

3-60 Chapter 3

=

Example (using small model):

const charb ="b’; /*1byte in ROM */
#pragma iramdata /* default, may be omitted, unless pragma
romdata/eramdata was used before */
int i =100; /* 2 bytes in ROM, 2 bytes in IRAM */
chara="a’; /* 1 byte in ROM, 1 byte in IRAM */
char *p = "ABCD"; /* 5 bytes in ROM (for "ABCD”) */
/* 2 bytes in ROM, 2 bytes in IRAM
(for p)*/

#pragma romdata /* Needed for ROM only allocation */
int j=100; /* 2 bytes in ROM */
char *q = "WXYZ"; /* 5 bytes in ROM (for "WXYZ") */

/* 2 bytes in ROM (for p) */

c166 treats romdata variables as if they were declared with the const
storage type qualifier.

3.8 NON-INITIALIZED VARIABLES

In some cases there is a need to keep variables unchanged even if power
is turned off. In these systems some of the RAM is implemented in
EEPROM or in a battery-powered memory device. In a simulator
environment, clearing non-initialized variables might not be wanted too.

To avoid the ’clearing’ of non-initialized variables at startup, one of the
following things should be performed:

1. Define (allocate) these variables in a special C module and compile this
module using the -Ob option. ¢166 will omit these data sections, when
building the C166_BSS section.

2. Define (allocate) these variables between #pragma noclear and
#pragma clear. c166 will omit these data sections, when building the
C166_BSS section.

@ #pragma noclear before or in a function, applies to all static variables
and return values (structs) of the function.

3. Use inline assembly to allocate the special variables in a special data
section (NOT used by other C variables).

4. Make a separate assembly module, containing the allocation of these
variables in a special data section.

Language Implementation 3-61

@ It is not possible to remove the ’clearing code’ from the startup file,
because other C modules (and the C libraries) depend on it too.

3.9 STRINGS

In this section the word ’string’ means the separate occurrence of a string
in a C program. So variables initialized with strings are just initialized
character arrays and are not considered as ’strings’. See the section
Initialized Variables for more information on this topic.

Strings have static storage. The ANSI X3.159-1989 standard permits string
literals to be put in ROM. Because there is no difference in accessing ROM
or RAM, €166 allocates strings in ROM only. This approach also saves
RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, €166 offers the possibility to allocate a static
initialized variable in ROM only, when declared with the const qualifier or
after a #pragma romdata. This enables the initialization of a (const)
character array in ROM:

const char romhelp[] = "help”;
/* allocation of 5 bytes in ROM only */

Or a pointer array in ROM only, initialized with the addresses of strings,
also in ROM only:

char * const messages|] = {"hello”,”alarm”,”exit"};
ANSI string concatenation is supported: adjacent strings are concatenated —
only when they appear as primary expressions — to a single new one. The
result may not be longer than the maximum string length (509 characters).

The Standard states that identical string literals need not be distinct, i.e.
may share the same memory. To save ROM space, ¢166 overlays identical
strings within the same module.

3-62 Chapter 3

=

3.10 INLINE ASSEMBLY

€166 supports an inline assembly facility by means of the following
pragmas:

#pragma asm Insert the following (non preprocessor lines) as
assembly language source code into the output
file. The inserted lines are not checked for their
syntax.

#pragma asm_noflush Same as asm, except that the peephole
optimizer does not flush the code buffer and
assumes register contents remain valid.

#pragma endasm Switch back to the C language.

You should realize that using these pragmas results into non portable and
hard to ’simulate’ code. Therefore, usage of these pragmas should be
minimal.

C Variable Interface for Pragma asm

The pragma asm and endasm synopsis of the pragmas is as follows:
#pragma asm [(pseudo_reg|=varnamel|, pseudo_regl=varnamel| ...)]
#pragma endasm [(varname=pseudo_reg|, varname=pseudo_reg] ...)|

The arguments of the pragmas are:

varname name of a C variable of type char or int, signed or unsigned,

pseudo _reg a pseudo register name with the synopsis:

@[w |b |ijnum
w word register RO-R15
b byte register RLO-7, RHO-7

i indirect address register RO-R3, some addressing
modes only support these registers

Language Implementation

num a user defined number of the pseudo register. This
number is not related to the register that is substituted
by the compiler. The number must be in the range

0-15.

When no w, b, or i is given a word register is used.

Examples:
@l word register pseudo
@w?2 word register pseudo

@b3 byte register pseudo

@i4 word register pseudo

When a pseudo reg is listed without assignment of a varname, the
compiler will reserve a scratch register. When in the pragma endasm a
pseudo_reg is listed that is not listed in the pragma asm, it will also be

reserved as a scratch register.
Example:

#pragma asm(@wl=varl, @b2=var2, @i3=var3, @4)
EXTERN XVAL:WORD, BVAL:BYTE, YVAL:WORD
MOV @4, @wl ;fill temporary register
MOV XVAL, @4 ; save in some memory location
MOV BVAL, @b2 ; save in some memory location
MOV @i3, #2 ; small instruction (Rn, #data4)
MOV @w1, YVAL ; get some memory location

#pragma endasm(retval=@w1)

The compiler will take care that the requested registers are free to be used
and that their original content is saved and restored if needed. When the
compiler is not capable of allocating registers for the listed pseudos an
error message will be issued. The number of pseudos that can be allocated
for inline assembly depend on the complexity and size of the C code part

of the function.

Defining inline assembly functions can be done by using the pragma asm

interface in an inline C function.

@]j See the section User Defined Intrinsics in this chapter.

3-63

3-64

Chapter 3

Example:

_inline int swap_add(int a, intb)

L
int rv;
#pragma asm (@1=a, @2=h, @3)
MOV @3, @1
MOV @1, @2
MOV @2, @3
ADD @3, @1
#pragma endasm (rv=@3)
return rv;
}

Known restriction: The new implementation of the pragma asm may
cause an inline assembly to be optimized away by the ¢166 flow
optimizations. For example:

void example(void)

goto the_end;

#pragma asm

entry:
; assembly statements here will not be emitted by c166
; because it is considered “not reachable”, even when
; the assembly starts with a label.

#pragma endasm

the_end: ;

}

Workaround for this restriction: Replace C statements which seems to
make the inline assembly not reachable by an assembly equivalent inside
the #pragma asm:

void workaround(void)
{
#pragma asm
jmp the_end
entry:
; assembly statements here will be emitted by c166
the_end:
#pragma endasm

@j See also the section Assembly Language Interfacing in the chapter
Run—time Environment.

Language Implementation 3-65

@ The '"MODULE SUMMARY” of ¢166, reporting code size and data size of
the module, is no longer valid if code or data has been added using inline
assembly.

3.11 INTERRUPT

¢166 supports both the "Infineon Task Concept’ and the "Flat Interrupt
Concept’. These two concepts are explained in the chapter Software
Concept of the "TASKING Cross—Assembler, Linker/Locator, Utilities User’s
Guide’. We strongly recommend reading this section first! See also the
section 7ask Scope in this chapter.

In the Task Concept a Task is initiated via an interrupt or software trap.
The ’reset task’ is the task which defines main. The system startup file
(estart.asm’ in assembly code) delivered with the compiler, initializes the
processor and each task and finally calls main() . In the Flat Interrupt
concept an interrupt is an entry point in the code. The system startup code
is such an entry point.

You can tell the compiler that a C function is an interrupt function with the
keyword _interrupt . For example:

A task is initiated via an interrupt or a software trap. You can tell the
compiler that a C function is an interrupt function with the keyword
_interrupt . For example:

_interrupt(0x22) void
timer(void)

{
}

The interrupt number -1 is reserved for a so-called symbolic interrupt. This
means that ¢166 does not assign an interrupt number to this C function.
The interrupt function can be bound to any interrupt number in the locate
stage of 1166 by the INTERRUPT control.

c166 generates an interrupt frame inheriting the user stack pointer from
the previous task, switching context to a new register bank, saving DPP
registers and MDC, MDH and MDL registers. When the -Oh command line
option is set (default) the compiler optimizes the interrupt frame so that it
only contains the parts needed to save resources used by the interrupt
function. You can also tell the compiler to omit the whole interrupt frame
via the following pragma:

3-66

=

Chapter 3

#pragma noframe
This allows you to make your own interrupt frame.

With the _using keyword you can tell the compiler to generate a new
register bank for the interrupt function. For example:

_interrupt(0x28) _using(ADCONV_RB) void
ad_conv_complete(void)

{
}

This way you can define several interrupt functions in one module with
each function having its own register bank. Or you can share a register
bank between several interrupt functions which have the same interrupt
level and thus can never interrupt each other. When several interrupt
functions in a source module are 'using’ a register bank with the same
name, the compiler uses the same register bank for these functions. 1166
will "overlay’ register banks with equal names.

All interrupt functions without the _using keyword use a register bank
with a name derived from the module name. This means that all interrupt
functions in one C source file which do not have the _using keyword use
the same register bank and therefore they should have the same interrupt
level.

When the pragma 'regdef or the —-r command line option is used, it affects
all register banks in the module. With this pragma and option you can
specify the number of registers in the register bank. When this number is
set to 0 the compiler will not generate a register bank, even when the
_using keyword is used.

3.12 EXTENSIONS FOR THE EXT2 ARCHITECTURES

The C166S v2.0 / SUPER10 architectures support fast register bank
switching using local register banks. You can make use of this feature
using the _localbank keyword. This keyword can only be applied on
interrupt functions.

_localbank (num)

Where num can be one of the following:

Language Implementation 3-67

-2 Use local register bank 1 but assume the hardware
automatically swithches the register bank upon interrupt.

-1 Use local register bank 0 but assume the hardware
automatically swithches the register bank upon interrupt.

0: Use global register bank as usual.

1: Use local register bank 0 and emit instruction in interrupt
frame to select the correct local register bank.

2: Use local register bank 1 and emit instruction in interrupt
frame to select the correct local register bank.

Only the _localbank (0) qualifier can be used in conjunction with the
"using’ qualifier. The correct registerbank will not be selected when
#pragma noframe is entered before the interrupt function.

Since local register banks are not memory mapped, the compiler can not
copy the userstack pointer (RO) to the new register bank. Therefore each
local register bank will have its own userstack area:

C166_USO: will be used together with register bank 0
C166_US1: will be used together with register bank 1

The compiler estimates the size of each seperate stack based upon the
code inside interrupt functions only. Userstack space occupied by
functions which are called from the interrupt function are not taken into
account.

The estimated userstack size can be adjusted using a new function
qualifier:

_stacksize (num)

Where num specifies the userstack adjustment in bytes. A positive number
increases the compiler estimates by num bytes, a negative value decreases
it. If the sum of the compiler estimation and the stack adjustment is
negative, a warning will be generated and the value will be truncated. The
value of hum must be even.

The _stacksize qualifier can only be used in combination with the local
register banks (for example: _localbank (0) is NOT allowed) and
interrupt functions.

3-68

Chapter 3

User stacksize estimations will not be performed if #pragma nocustack
was used. Of course it is still possible to adjust the size of the generated
userstack sections at locate time using the SECSIZE control.

The complete definition of an interrupt function could look like this:

/*

* Define an interrupt function using local register

* bank 0 assuming the hardware automatically selects
* local bank 0 upon interrupt. Increase the by the

* compiler estimated user stacksize by 40 bytes. The
* userstack will be allocated in section: C166_USO

*/

void _interrupt(0Ox10) _localbank(—1) _stacksize(+40)
ISR(void)

{

}

Another feature of the ext2 architectures is the scalable interrupt vector
table. The compiler uses this feature by trying to inline as much code as
possible inside the interrupt vector table. Small interrupt functions can be
located inside the vector table completely. This will improve interrupt
latency. The size of an entry in the interrrupt vector table can be supplied
to the compiler by the command line option:

return;

—i<num>
Where num can be one of the following:

0—No scaling (4 bytes/entry)
1-2x the normal size (8 bytes/entry)
2-4x the normal size (16 bytes/entry)
3-8x the normal size (32 bytes/entry)

When either option is supplied to the compiler, it will try to reorder and
move code from the interrupt frame to the interrupt vector table. Where
possible the context switch will be done just before the JMPS instruction
which jumps to the ISR. By doing this, the execution time of the JMPS
instruction will be hidden by the context switch.

the compiler will put all sections that have to be inlined in a special
section called:"C166_INT” with class:”"C166_VECTAB”. An example of an
inlined interrupt function is shown below:

Language Implementation

= kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhhkkkhhkhkhhkhkhhrxhkhhx

; * Section which will be located at vector position

; * 0x10 by the locator, the scaling = 3
; * (32bytes/entry available in vector table)

» kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkkkkx
)

C166_INT SECTION CODE WORD PUBLIC 'C166_VECTAB’

_3 PROC TASK SCALEDVE_TASK INTNO

SCALEDVE_INUM = 010h SCALING 3 INLINE

PUSH CP ;) 2 bytes
SCXT MDC,#010h ;; 4 bytes
PUSH DPPO 5 2 bytes
MOV DPPO,#PAG ?BASE_DPPO ;) 4 bytes
PUSH DPP2 . 2 bytes
MOV DPP2#PAG ?BASE_DPPO 5 4 bytes
PUSH MDH 5 2 bytes
MOV SCALEDVE_RB,RO 5 4 bytes
MOV CP#SCALEDVE_RB ;1 4 bytes
;; (Context switch right before JIMPS)
JMPS SEG _ISR1,_ISR1 ;; 4 bytes
RETV G —t
3 ENDP ;) 32 bytes

C166_INT ENDS

= kkkkkkkkkkkkkkhkkkkhkx
’

; * Start of ISR

*kkkhkkkkhx * *

SCALEDVE_1_PR SECTION CODE
_ISR1 PROC TASK ISR
PUSH MDL

» kkkkkkkkkkkkkkkkkkkkk

; * User code goes here

*
)

POP MDL
POP MDH
POP DPP2
POP DPPO
POP MDC
POP CP
RETI

_ISR1 ENDP

3-69

3-70

Chapter 3

A faster way to trasfer control to an interrupt function is to make use of
cached interrupts. To support this, the hardware of the ext2 architectures
bypasses the interrupt vector table at all. In this case, the compiler can not
inline any code of the interrupt fuction in the vector table. Therefore the
_cached keyword has to be used on these interrupt functions. The
following code fragment gives an example of the use of the _cached
function qualifier:

void _interrupt (0x10) _localbank(-1) _cached
ISR(void)
{

}

return;

The cached function qualifier will basically overrule the —i commandline
option causing none of the code to be located inside the interrupt vector
table.

Language Implementation

Examples:

1. The C module is called 'intrpt.c’ (present in the examples/c directory).
The example illustrates how to tell the compiler to omit the interrupt frame
code. The C source and the generated code (large) is listed below:

#pragma global
bit b; /* interrupt handler sets a global bitvariable */
#pragma public

#pragma noframe /* minimal interrupt frame ~ */
/* even no GPR’s needed, so */
#pragma regdef O /* omit regdef definition */

interrupt (0x30) void
f0O
{
#pragma asm
NOP ; you can make your own entry code here
#pragma endasm
b=1,
#pragma asm
NOP ; you can make your own exit code here
#pragma endasm

}

INTRPT_1_BI SECTION BIT BIT PUBLIC 'CBITS’
INTRPT_1_BI_ENTRY LABEL BIT
_b DBIT

GLOBAL _b

INTRPT_1_BI ENDS

INTRPT_2_PR SECTION CODE WORD PUBLIC 'CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
NOP ; you can make your own entry code here
BSET _b
NOP ; you can make your own exit code here
BCLR IEN
RETI
_f ENDP
INTRPT_2_PR ENDS

2. The C module is called ’intrpt.c’ (present in the examples directory). The
example illustrates the use of #pragma regdef and shows the code the
compiler emits as interrupt frame using large memory model (DPPO and
DPP2 saving). The user stack pointer must be inherited and the multiply
registers must be saved. The C source and the generated code is listed
below:

3-71

3-72

Chapter 3

#pragma regdef 6 /* MINIMIZE REGISTER USAGE to RO-R5 */

int stackparm ext_func(int); /* stack parameter passing: NOT
R12-R15 */

interrupt (0x30) void
fi

inti; /* allocate on user stack: NOT R6-R9 */

i=ext_func(3);

INTRPT_1_PR SECTION CODE WORD PUBLIC 'CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 2

MOV DPP3:IINTRPT_RB,R0

SCXT CP#DPP3:INTRPT_RB

SCXT MDC,#00h

PUSH DPPO

PUSH DPP2

MOV DPP2#PAG C166_DGROUP

PUSH MDL

PUSH MDH

SUB RO,#02h

MOV R4,#03h

MOV [-RO],R4

CALLS SEG _ext_func,_ext_func

ADD RO0,#02h

MOV [RO],R4

ADD RO,#02h

POP MDH

POP MDL

POP DPP2

POP DPPO

POP MDC

POP CP

BCLR IEN

RETI
f ENDP

INTRPT_1_PR ENDS

INTRPT_RB REGDEF RO-R5

Instead of using #pragma regdef 6 you can also use the command line

option -r6. When you use the -r command line option, you can also

specify the register bank name to be used and whether this register bank

should be COMMON or not.
Specifying -r6,MYBANK,c results into:
MYBANK REGDEF RO-R5 COMMON = MYBANK_RB

Language Implementation

It is very useful to share the register bank of interrupt functions, which are
at the same interrupt priority level, so they cannot be active
simultaneously. This approach saves internal RAM space, which is a
scarce resource.

3. The C module is called ’intrpt.c’ (present in the examples directory). The
examples illustrates the using keyword. The C code and the generated
code (large memory model) is listed below:

inti;

interrupt (0x30) using (INTRPT_RB) void
f0
{

i+=2;

ASSUME DPP3:SYSTEM
INTRPT_1_NB SECTION DATA WORD PUBLIC 'CNEAR’
ASSUME DPP2:INTRPT_1_NB
INTRPT_1_NB_ENTRY LABEL BYTE
_i LABEL WORD
DS 2
PUBLIC _i
INTRPT_1_NB ENDS

INTRPT_2_PR SECTION CODE WORD PUBLIC 'CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 0

MOV DPP3:INTRPT_RB,R0O

SCXT CP,#DPP3:INTRPT_RB

PUSH DPP2

MOV DPP2#PAG C166_DGROUP

MOV R4,#02h

ADD _i,R4

POP DPP2

POP CP

BCLR IEN

RETI
_f ENDP
INTRPT_2_PR ENDS

C166_BSS SECTION DATA WORD GLOBAL 'CINITROM’
DW 06h
DPPTR INTRPT_1_NB_ENTRY
DW 02h

C166_BSS ENDS

C166_DGROUP DGROUP INTRPT_1_NB
INTRPT_RB REGDEF RO-R15
REGDEF R0-R15
END

3-73

3-74 Chapter 3

=

3.13 SWITCH STATEMENT

¢166 supports two ways of code generation for a switch statement: a jump
chain or a jump table. A jump chain is comparable with an
if/else—if/else—if/else construction. If all of the following conditions are
true, a jump table is emitted:

1. type is not long (char, int, bitfield only)
2. at least five case labels are present

3. total number of ’gaps’ between the case labels (when sorted) does not
exceed the number of case labels.

It is obvious (especially with large switch statements) that the jump table
approach executes faster than the jump chain approach. If speed is
needed (e.g. an interrupt function) it might be acceptable to use a jump
table, even if the number of gaps between the (sorted) case labels exceeds
the number of case labels itself. Therefore the second and third
requirement can be overruled by using:

#pragma switch_force_table
and restored using:
#pragma switch_smart

which is the default situation. The command line equivalents are -Os
(switch_force table) and —OS (default, switch_smart).

The location of jump tables in the small memory model can be controlled
by using

#pragma switch_tabmem_far

which places jump tables in class 'CFARROM’.
#pragma switch_tabmem_near

which places jump tables in class 'CNEARROM’.
#pragma switch_tabmem_default

which places jump tables on the default location, which is
controlled by the -Oe/~OE command line option. This is the
default.

Language Implementation

ﬂj See section 3.2.4 Constant Romdata Section Allocation for details.

3.14 REGISTER USAGE

¢166 uses the general purpose registers (GPRs) of the C166/ST10 as

follows:
Register Usage
RO User Stack Pointer (USP)

R1-R5, R10, R11 | General registers (codegen, temporary results,
C return values)

R6-R9 C register variables and saved register
parameters

R12-R15 Fast C parameter passing and C register
variables

Table 3-11: General purpose registers

¢166 uses the following registers for C function return types:

Return type Register(s)

bit PSW.6 (USRO)

char RL4

short/int R4

long R4-R5 (R4 low word, R5 high word)

float R4-R5

double user stack and R4

structure R4 or R4-R5 (near or far address)

near pointer R4

far pointer R4-R5 (R4 page offset, R5 page number)

huge pointer R4-R5 (R4 segment offset, R5 segment number)
shuge pointer R4-R5 (R4 segment offset, R5 segment number)

Table 3-12: Register usage for function return types

3-75

3-76

Chapter 3

3.15 FLOATING POINT INTERFACING

3.15.1 INTRODUCTION SOFTWARE FLOATING POINT
USAGE

Section 3.15 describes the usage of floating point numbers. This includes
storage format, trap handling and usage in assembly programs.

3.15.2 THE IEEE-754 FORMAT

Floating point numbers are stored in IEEE-754 format. This manual
explains its format only briefly. For a more detailed version you are
referred to the IEEE-754 standard, published by the Institute of Electrical
and Electronic Engineers, Inc.

Basic single precision format

The basic single precision format is like this:

seeeeeeeemmmmmmm ‘ mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

You can convert this to an understandable number with the formula:

value = (—1)* - (1 + %) . e-127

An example:

0x40490fdb
s=0
e =0x80 =128

m = 0x490fdb = 4788187

4788187
8388608

value = (-1) ©- (1 +) 21— 1.(1 +05707964) -2 = 3.14159274

Language Implementation

Special case single precision 0.0

0.0 is stored as:

s000000000000000 0000000000000000

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

Notice that there is a +0.0 and a —0.0.

Special case single precision NaN (Not a Number)

Generated when the result of an expression is undefined e.g. 0.0 / 0.0.

NaN is stored as:

s111111111111111 1111111111111111

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

According to the IEEE standard not all mantissa bits have to be set for a
number to be handled as NaN.

Special case single precision INF (Infinity)

Generated when the result of an expression is larger than can be stored,
e.g. 1.0e30f * 1.0e30f.

INF is stored as:

s111111110000000 0000000000000000

mmmmmmmmmmmmmmmm

seeeeeeeemmmmmmm

S = sign, e = exponent, m = mantissa

Sign defines +INF or —INF.

Basic double precision format

Double precision numbers are stored comparable with single precision
numbers.

3-77

3-78 Chapter 3

=

Basic format double precision number:

seeeeeeeeeeemmmm | mmmmmmmmmmmmmmmrJP mmmmmmmmmmmmmmm+ mmmmmmmmmmmmmmmiy

s = sign, e = exponent, m = mantissa

The formula for double precision floating point numbers is:

value = (—1)* - (1 + %) . De—1023

3.15.3 STORAGE IN MEMORY

Floating—point numbers are stored in IEEE754-format. Single precisions
(float) and double precision (double) are stored in memory as shown

below:
Address +0 +1 +2 S +4 D +6 +7
Single emmmmmmiy mmmmmmprimmmmmmmnM....... | e | |
Double eeeemmmm mmmmmmnmmmmmmnnmmmmmmnnmmmmmmnnmmmmmmnmmmmmmmmm
s = sign, e = exponent, m = mantissa, . = not used

Single precisions numbers can be stored in a register pair. In this case the

format is:
First register Second register
seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

Double precisions numbers are never stored in registers.

Language Implementation 3-79

3.15.4 SINGLE PRECISION USAGE

Floats can be stored in memory and in registers. The floating point library
subroutines pass operands and return value through registers.

3.15.4.1 FLOAT BASE EXPRESSION SUBROUTINES

Operands, return value
The first operand is stored in R4/R5 in IEEE-754 format:

R4 R5

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

The second operand is stored in R10/R11:

R10 R11

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

The result is stored in R4/R5 again:

R4 R5

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

S = sign, e = exponent, m = mantissa

Available float base expression subroutines

Subroutine | Operation Operands Result
__adfar float addition R4R5, R10R11 | R4R5
__cmfdr float comparison R4R5, R10R11 | R4

__dvfdr float division R4R5, R10R11 | R4R5
__mlifdr float multiplication R4R5, R10R11 | R4R5
__sbfdr float subtraction R4R5, R10R11 | R4R5

Table 3-13: Float base expression subroutines

3-80

3.15.4.2 FLOAT CONVERSION SUBROUTINES

Operands, return value

The single precision operand or return value is stored in R4/R5:

Chapter 3

R4 R5
seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm
S = sign, e = exponent, m = mantissa

Available float conversion subroutines
Subroutine | Operation Operands Result
__cff48r 1 | float to double conversion R4R5 [R10+#%]
__ cff84r double to float conversion [R10+#%] R4R5
__cfidzr float to signed int conversion R4R5 R4
__cfid4r float to signed long conversion R4R5 R5R4 *2
_ cfud2r float to unsigned int conversion R4R5 R4
__cfuddr float to unsigned long conversion R4R5 R5R4 "2
__cif24r signed int to float conversion R4 R4R5
__cifd4r signed long to float conversion R5R4 2 | R4R5
__cuf24r unsigned int to float conversion R4 R4R5
__cufd4r unsigned long to float conversion R5R4 2| R4R5

Table 3-14: Float conversion subroutines

@ *1= Return value on the user stack
*2=R5R4 means that the most significant word is stored in RS.

There is no negation subroutine. Its functionality can be achieved by
"BMOVN R4.15, R4.15 .

3.15.4.3 REGISTER USAGE SINGLE PRECISION

The only registers destroyed by the single precision subroutines are R1-R5

and R10-R11.

Language Implementation

3.15.5 DOUBLE PRECISION USAGE

Double precision numbers are stored in memory. The floating point library

passes operands and return values on the user stack.

3.15.5.1 DOUBLE BASE EXPRESSION SUBROUTINES

Operands, return value

The first operand is stored in IEEE-754 format on the user stack and
referred to by R10:

[R10+#0]

[R10+#2]

[R10+#4]

[R10+#6]

seeeeeeeeeeemmmm

mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmiy

N mmmmmmmmmmmmmmmr

h

S = sign, e = exponent, m = mantissa

The second operand on the user stack is referred to by R11:

[R11+#0]

[R11+#2]

[R11+#4]

[R11+#6]

seeeeeeeeeeemmmm

mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmi

N mmmmmmmmmmmmmmmi

H

S = sign, e = exponent, m = mantissa

The result is stored in the user stack area referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]
seeeeeeeeeeemmmm mmmmMmMmMmMMmMmn MmMmMMmmMMmMMmMMmMMN mmmmmmmmmmmmmmn
s = sign, e = exponent, m = mantissa

Available double base expression subroutines
Subroutine | Operation Operands Result
__adf8r double addition [R10+#*], [R11+#*] [R10+#*]
__cmf8r double comparison [R10+#*], [R11+#*] R4
__dvf8r double division [R10+#*], [R11+#*] [R10+#*]
_ mif8r double multiplication [R10+#%], [R11+#%] [R10+#%]
__ngf8r double negation [R10+#%] [R10+#%]
__sbf8r double addition [R10+#*], [R11+#*] [R10+#*]

Table 3-15: Double base expression subroutines

3-81

3-82

3.15.5.2 DOUBLE CONVERSION SUBROUTINES

Operands, return value

Chapter 3

The double precision operand or return value is referred to by R10:

h

[R10+#0] [R10+#2] [R10+#4] [R10+#6]
seeeeeeeceeemmmm mmmmmMmMMMmmmmmnh mmmmmmmmmmmmmmnh mmmmmmmmmmmmmm
S = sign, e = exponent, m = mantissa

Available double conversion subroutines
Subroutine Operation Operands | Result
__cffa8r "1 float to double conversion R4R5 [R10+#%]
__ cff84r double to float conversion [R10+#%] R4R5
__cfi82r double to signed int conversion [R10+#%] R4
__cfi84r double to signed long conversion [R10+#%] R5R4 "2
__cfu82r double to unsigned int conversion [R10+#%] R4
__cfu84r double to unsigned long conversion | [R10+#*] R5R4 "2
__cifegr "1 signed int to double conversion R4 [R10+#*]
__cif4gr 1 signed long to double conversion R5R4 "2 [R10+#*]
__cufegr 1 unsigned int to double conversion R4 [R10+#*]
__cuf4sr 1 unsigned long to double conversion | R5R4 "2 [R10+#*]

Table 3-16: Double conversion subroutines

@ *1' Return value on the user stack
*2 R5R4 means that the most significant word is stored in R5.

Language Implementation

3.15.5.3 DOUBLE SUPPORT SUBROUTINES

Doubles can be stored anywhere in memory (near/far/huge/shuge) but
the floating point library expects them to be on the user stack. This is why
some library subroutines were implemented for fast copying of doubles to
and from user stack.

__load8n , _ load8f and _ load8h copy doubles from near, far or
(s)huge area to the user stack space allocated by these routines
themselves. These routines change the user stack pointer and return a
register pointer to the user stack.

__store8n , _ store8f and __ store8h copy doubles from the user
stack to near, far, huge or shuge. These routines do not free the user stack
space allocated by __load8 x.

_1dof8r and __1d1f8r allocate user stack similar to __load8 x and
copy the value 0.0 or 1.0 to this area.

Available double support subroutines

Subroutine | Operation Operands Result
__loadsf copy double to user stack R5R4 *1 R10
(far)
__load8h copy double to user stack R5R4 *1 R10
(huge/shuge)
_ load8n copy double to user stack R4 R10
(near)
__|dof8r create 0.0 on alloacted user | None R10
stack
__ldaf8r create 1.0 on allocated user | None R10
stack
__store8f copy double from user stack | R10, R5R4 "1 None, destroys
to far R10
__store8h copy double from user stack | R10, R5R4 "1 None, destroys
to huge/shuge R10
__store8n copy double from user stack | R10, R4 None, destroys
to near R10

Table 3-17: Double support subroutines

@ *IRSR4 means that the most significant word is stored in R5.

3-83

3-84 Chapter 3

=

3.15.5.4 REGISTER USAGE DOUBLE PRECISION

The only registers destroyed by the normal double precision subroutines
are R1-R5. The input operands [R10+#% and [R11+#¥ are destroyed. R10
and R11 keep their value though, except for routines converting to double.

Usually _ load8 x and __store8 x are also called. _ load8 x changes
RO-R5 and R10, __store8 x changes R1-R5 and R10. The subroutines
_Id xf8r change RO-R5 and R10.

3.15.6 FLOAT/DOUBLE USAGE FOR ASSEMBLY
PROGRAMMERS

Example of float usage for assembly programmers

; Create functionality of C expression:
; flitl += (float) 4 * PI;
MOV R4, #4 ; R4 contains int 4
CALLA cc_UC, __ cif24r ; convert int 4 to float 4.0 (R4R5)
MOV R10, PI ;
MOV R11, (PlI+2)
; ; R4R5: 4.0
; ; R1I0R11: PI
CALLA cc_UC, _ mlfar ; multiplication, result stored in R4R5
MOV R10, _fitl ;
MOV R11, (fit1+2) ;
; ; R4R5: 4.0 * PI
; ; R1I0R11: copy of _flt1
CALLA cc_UC, __adf4r ; addition, result stored in R4R5
MOV _fit1, R4 :
MOV (_flt1+2), R5 ; save result

Pl: DW 04049h, 0OFDBh ; 3.141592654 (IEEE754—format)

; Registers not destroyed in this code fragment: RO, R6—R9, R12-R15

Language Implementation 3-85

Example of double usage for assembly programmers

; Create functionality of C expression:
; dbll += (double) 4 * PI;

MOV R4, #4 ; R4 contains int 4
allol: CALLA cc_UC, _ cif28r ; convert int 4 to double 4.0
; ; ([R10+#%])
MOV R11, R10 ; copy pointer to 4.0 to R11
MOV R4, #PI ; pointer to Pl (source address)
allo2: CALLA cc_UC, _ load8n ; copy PI to new allocated stack
; i ([R10+#%])

; ; [R10+#*]: PI (user stack)
; ; [R11+#*]: 4.0 (user stack)
CALLA cc_UC, _ mlf8r ; multiplication, result stored
; ;in [R10+#*]
MOV R11, R10 ; copy pointer to 4.0 * Pl to R11
MOV R4, #_dbll ;
allo3: CALLA cc_UC, _ load8n ; copy _dbll to new allocated stack
; 7 ([R10+#*])
; ; [R10+#*]: copy of _dbl (user stack)
; ; [R11+#*]: 4.0 * Pl (user stack)
CALLA cc_UC, __adf8r ; addition, result stored in [R10+#*]
MOV R4, #_dbll ; destination address in R4
CALLA cc_UC, __store8n ; copy result to _dbll
ADD RO, #24 ; restore stack
; ; stack allocated by lines allo*.

Pl: DW 04009h, 021FBh ; 3.141592654 (IEEE754—format)
DW 05452h, 04550h ;

; Registers not destroyed in this code fragment: RO, R6—R9,
; R12-R15.

3.15.7 FLOATING POINT TRAPPING

Two sets of floating point libraries are delivered with the compiler, one
with a floating point trapping mechanism and one without a floating point
trapping mechanism (the chapter Libraries explains the naming
conventions).

The floating point libraries with a trapping mechanism call a trapping
routine which is in module trap.obj. You can replace this routine with your
own trapping routine, or link your own trap routine to your application.
Default, the trapping routine as delivered with the floating point libraries
will never return. The infinite loop on a public label called

_ FPTRAPLOOP is easy to find in a debug session. See the listing of the
trap handler in figure 3-5 of section 3.15.8, Handling Floating Point Traps
in a C Application.

3-86

Chapter 3

A floating point routine calls the trap routine if an error condition occurs.
The type of error is specified by a trap code which is passed via register
R1 to the trap routine. The result of a floating point operation is not
undefined in an error situation. On error the result will be a special
floating point number, such as infinite, not a number etc., except when a
floating point underflow or overflow occurs.

The following table lists all the trap codes and the corresponding error
description and result:

Error Description Trap code Result
float/(unsigned) integer
Integer overflow 3 O0x7FFF or 0x8000

(integer result)
OxFFFF or 0x0000
(unsigned integer result)

Floating overflow 4 +INF or —INF
(float result)
Floating underflow 5 0.0 (float result)
Divide by zero 7 +INF or —INF or NaN
(float result)
Undefined float 9 NaN (float result)
Conversion error 10 0 (integer result)
INF Infinite which is the largest absolute floating point number.

NaN Not a Number, special notation for undefined floating point number.

Table 3-18: Trap Codes

Language Implementation 3-87

3.15.8 HANDLING FLOATING POINT TRAPSINAC
APPLICATION

This section explains how program execution can be continued after a
floating point trap. And how floating point trap codes are passed from the
floating point trap handler to a C application.

Only the floating point libraries which perform floating point trapping
contain a floating point trap stub. This floating point trap stub loops
infinitely, which is very helpful when you want to find a bug in your
application. But when it is expected or allowed or even wanted that
floating point operations generate results that are out of range, then
program execution must continue after entering the floating point trap
handler.

It is not possible to simply return from the floating point trap handler,
because the floating point accumulator(s) contain a value which is out of
range. In the same floating point operation or else in a next floating point
operation there will be another call to the floating point trap handler,
because the value in the floating point accumulator(s) remain out of range.
This results in a succession of floating point traps.

It is impossible to assign a value to the floating point accumulator(s) which
is in range and then continue program execution. If you try to assign a
value to the floating point accumulators the result will always be
undefined.

Interpretation of the error condition in the floating point trap handler and
then continuing the floating point operation will result in most cases in a
new error condition or unpredictable result. So, this is not a good solution
to handle floating point error situations.

It is better to stop immediately the floating point operation which causes
the floating point trap, by returning back to your application and there
decide what to do with the floating point error condition. Therefore, you
have to predefine an environment in your application to return to. Simply
jumping back is not possible because the system—stack and user—stack are
then corrupted. The floating point trap code must also be returned to the
application to examine the cause of the trap.

An environment to return to in an application can be saved with the C
library function setjimp . The C library function longjmp can be used in
the floating point trap handler to return immediately to this saved
environment. The longjmp restores the stack pointers, jumps back and
passes the trap code to be processed.

3-88 Chapter 3

The C listing below shows how to save an environment with setjmp . The
assembly listing of the floating point trap handler below shows how
longjmp is used to return to the saved environment.

There are several ways to write a C function which handles floating point
traps using setimp and longjmp . Always keep in mind that the longjmp
function restores the environment saved by the most recent invocation of
the setjimp function. And the environment must be saved before the
longjmp function is called by the floating point trap handler, else
program execution will be undefined.

Language Implementation

/*

* Example program which handles floating point traps by printing
* the floating point trap code on stdout. See, also floating point

* trap handler in module trap.asm

*

#include <stdio.h>

#include <setjmp.h>

/* Floating point environment buffer declared in trap handler */
extern jmp_buf _FP_ENV;

void
main(void)
{

int exception;

/*

* Do not use floating point operations before this if

* statement, because there is no environment saved to jump to.
* The trap handler loops infinite when a floating

* point operation is called from this point which traps!

*

/*/

* When the setjmp function has saved the environment it returns
* zero into the exception variable, so the floating point

* operations are executed. But if a floating point trap occurs,

* the trap handler calls the function longjmp.

* The longjmp function restores the environment and returns the
* trap code in the exception variable. The trap code is a

* non-zero value, so the else part of this if statement will be

* executed on a floating point trap.

*

if(!(exception = setjimp(_FP_ENV)))

/*
* Insert your floating point operations here.
*

} else

/* The exception code is a non—zero value. */
printf("Floating point exception: %d\n”, exception);

/*
* When there is a floating point operation after this if
* statement and it generates a floating point trap. Then the
* program execution also continues in the else part of this if
* statement, because the environment buffer was saved to it !
*
}

Figure 3-5: Example floating point trap handling (C listing)

3-89

3-90

Chapter 3

The floating point trap handler described by the assembly listing in figure

3-6 is archived in the floating point libraries.

$case
$genonly

1
-k

* MODULE :trap.asm
ok

;* APPLICATION : Floating point library 80166
ok

;* DESCRIPTION : Floating point trap handler which uses longjmp to

* return to a previous saved environment or loops
* infinite when no environment is save to return to.
3

;* INPUT : Register R1 contains the trap code

ok

;¥ Trapcode Rl,old R1,IEEE Description

;¥ EIOVFL 3 ; Integer overflow

* EFOVFL 4 4 ; Float overflow

¥ EFUNFL 5 8 ; Float underflow

¥ EFDIVZ 7 2 ; Float division by zero

;¥ EFUND/EFINVOP 9 1 ; Float invalid operation
¥ ECONV 10 32 ; Conversion error

* ESTKUN 11 ; Floating point stack underflow
¥ ESTKOV 12 ; Floating point stack overflow
¥ EFINEXCT 16 ;

s

;* ANALIST : Guus Jansman
ok

;* COPYRIGHTS : Tasking B.V., Amersfoort 2000
-k

1

$INCLUDE(head.asm)

@IF(@NES(@MODEL,"TINY”) & @NES(@MODEL,"SMALL"))
ASSUME DPP2:_ FP_ENV ; near data addressed via DPP2
@ENDI

PUBLIC __fptrap8 ; public declaration trapping routine
; for double precision.

PUBLIC __fptrap4 ; public declaration trapping routine
; for single precision.

PUBLIC __FP_ENV ; public declaration floating point
; environment buffer

PUBLIC __ FPTRAPLOOP ; public declaration trap loop

@IF(@EQS(@MODEL,"TINY”") | @EQS(@MODEL,"MEDIUM"))
EXTERN _longjmp:NEAR

@ELSE

EXTERN _longjmp:FAR

Language Implementation 3-91

@ENDI

_ FPCODE SECTION CODE WORD PUBLIC 'CPROGRAM’

i
*kkkkkkkkkk

;* floating point trap handler

1
*kkkkkkkkkk

@IF(@EQS(@MODEL,"TINY”") | @EQS(@MODEL,"MEDIUM”))
__fptrap8 PROC NEAR
@ELSE
__fptrap8 PROC FAR
@ENDI
__ fptrap