
MA019–002–00–00
Doc. ver.: 5.13

C166/ST10 v7.5

C CROSS–COMPILER
USER’S GUIDE

A publication of

TASKING

Documentation Department

Copyright  2001 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes no
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION 1-1

1.1 Introduction 1-3.

1.2 Installation for Windows 1-3.

1.2.1 Setting the Environment 1-4.

1.3 Installation for Linux 1-5.

1.3.1 RPM Installation 1-5.

1.3.2 Tar.gz Installation 1-6.

1.3.3 Setting the Environment 1-7.

1.4 Installation for UNIX Hosts 1-8.

1.4.1 Setting the Environment 1-10.

1.5 Licensing TASKING Products 1-11.

1.5.1 Obtaining License Information 1-11.

1.5.2 Installing Node-Locked Licenses 1-12.

1.5.3 Installing Floating Licenses 1-13.

1.5.4 Starting the License Daemon 1-15.

1.5.5 Setting Up the License Daemon to Run Automatically 1-16.

1.5.6 Modifying the License File Location 1-17.

1.5.7 How to Determine the Hostid 1-19.

1.5.8 How to Determine the Hostname 1-19.

OVERVIEW 2-1

2.1 Introduction to C C166/ST10 Cross-Compiler 2-3.

2.2 Product Definition 2-4.

2.3 General Implementation 2-5.

2.3.1 Compiler Phases 2-5.

2.3.2 Frontend Optimizations 2-7.

2.4 Compiler Structure 2-10.

2.5 Environment Variables 2-13.

2.6 Sample Session 2-14.

2.6.1 Using EDE 2-14.

2.6.2 Using the Control Program 2-22.

2.6.3 Using the Separate Programs 2-24.

2.6.4 Using a Makefile 2-26.

2.6.5 Serial I/O Modules 2-27.

Table of ContentsVI
C
O
N
T
E
N
T
S

LANGUAGE IMPLEMENTATION 3-1

3.1 Introduction 3-3.

3.2 Accessing Memory 3-5.

3.2.1 Memory Models 3-6.

3.2.1.1 Tiny Memory Model 3-6.

3.2.1.2 Small Memory Model 3-8.

3.2.1.3 Medium Memory Model 3-13.

3.2.1.4 Large Memory Model 3-15.

3.2.1.5 _MODEL 3-16.

3.2.1.6 Efficiency in Large Data Models (Medium/Large) 3-17.

3.2.1.7 Near, Xnear, Far, Huge and Shuge 3-20.

3.2.1.8 System, Iram and Bita 3-23.

3.2.2 Section Allocation 3-26.

3.2.3 Code Memory Fragmentation 3-32.

3.2.4 Constant Romdata Section Allocation 3-33.

3.2.5 The _at() Attribute 3-36.

3.2.6 The _atbit() Attribute 3-38.

3.2.7 Inline C Functions 3-38.

3.2.8 Using Packed Structures 3-39.

3.3 Task Scope 3-41.

3.4 Data Types 3-45.

3.4.1 ANSI C Type Conversions 3-46.

3.4.2 Character Arithmetic 3-49.

3.4.3 The Bit Type 3-50.

3.4.4 The Bitword Type 3-51.

3.4.5 Special Function Registers 3-52.

3.5 Function Parameters 3-54.

3.5.1 Static Approach of Function Automatics 3-56.

3.6 Register Variables 3-57.

3.7 Initialized Variables 3-59.

3.7.1 Automatic Initializations 3-59.

3.7.2 Static Initializations 3-59.

3.8 Non-Initialized Variables 3-60.

3.9 Strings 3-61.

Table of Contents VII

• • • • • • • •

3.10 Inline Assembly 3-62.

3.11 Interrupt 3-65.

3.12 Extensions for the ext2 Architectures 3-66.

3.13 Switch Statement 3-74.

3.14 Register Usage 3-75.

3.15 Floating Point Interfacing 3-76.

3.15.1 Introduction Software Floating Point Usage 3-76.

3.15.2 The IEEE-754 Format 3-76.

3.15.3 Storage in Memory 3-78.

3.15.4 Single Precision Usage 3-79.

3.15.4.1 Float Base Expression Subroutines 3-79.

3.15.4.2 Float Conversion Subroutines 3-80.

3.15.4.3 Register Usage Single Precision 3-80.

3.15.5 Double Precision Usage 3-81.

3.15.5.1 Double Base Expression Subroutines 3-81.

3.15.5.2 Double Conversion Subroutines 3-82.

3.15.5.3 Double Support Subroutines 3-83.

3.15.5.4 Register Usage Double Precision 3-84.

3.15.6 Float/Double Usage for Assembly Programmers 3-84.

3.15.7 Floating Point Trapping 3-85.

3.15.8 Handling Floating Point Traps in a C Application 3-87.

3.16 Intrinsic Functions 3-94.

3.16.1 User Defined Intrinsics 3-116.

3.16.2 Implementing Other _CoXXX Intrinsics Using the

_CoXXX Intrinsic Functions 3-120.

3.17 Code Memory Banking 3-122.

3.18 MISRA C 3-127.

3.19 Migration from Old Siemens CC166 3-129.

3.20 PEC Support 3-135.

3.21 Portable C Code 3-137.

3.22 How to Program Smart with c166 3-137.

Table of ContentsVIII
C
O
N
T
E
N
T
S

COMPILER USE 4-1

4.1 Control Program 4-3.

4.2 Compiler 4-6.

4.3 Detailed Description of the C-166 options 4-10.

4.4 Include Files 4-80.

4.5 Pragmas 4-83.

4.6 Alias 4-91.

4.7 Compiler Limits 4-93.

COMPILER DIAGNOSTICS 5-1

5.1 Introduction 5-3.

5.2 Return Values 5-4.

5.3 Errors and Warnings 5-6.

LIBRARIES 6-1

6.1 Introduction 6-3.

6.2 Small, Medium and Large I/O Formatters 6-5.

6.3 Single Precision Floating Point 6-6.

6.4 User Stack Model 6-7.

6.5 CAN Support 6-8.

6.6 Header Files 6-8.

6.7 C Library Interface Description 6-10.

6.8 Creating your own C Library 6-71.

RUN-TIME ENVIRONMENT 7-1

7.1 Startup Code 7-3.

7.2 Stack Size 7-8.

7.3 Heap Size 7-9.

7.4 Assembly Language Interfacing 7-10.

Table of Contents IX

• • • • • • • •

FLEXIBLE LICENSE MANAGER (FLEXlm) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-7.

3 License Administration Tools A-8.

3.1 lmcksum A-10.

3.2 lmdiag (Windows only) A-11.

3.3 lmdown A-12.

3.4 lmgrd A-13.

3.5 lmhostid A-15.

3.6 lmremove A-16.

3.7 lmreread A-17.

3.8 lmstat A-18.

3.9 lmswitchr (Windows only) A-20.

3.10 lmver A-21.

3.11 License Administration Tools for Windows A-22.

3.11.1 LMTOOLS for Windows A-22.

3.11.2 FLEXlm License Manager for Windows A-23.

4 The Daemon Log File A-25.

4.1 Informational Messages A-26.

4.2 Configuration Problem Messages A-29.

4.3 Daemon Software Error Messages A-31.

5 FLEXlm License Errors A-33.

6 Frequently Asked Questions (FAQs) A-37.

6.1 License File Questions A-37.

6.2 FLEXlm Version A-37.

6.3 Windows Questions A-38.

6.4 TASKING Questions A-39.

6.5 Using FLEXlm for Floating Licenses A-41.

Table of ContentsX
C
O
N
T
E
N
T
S

MISRA C B-1

USING CROSSVIEW PRO FOR

EVALUATION BOARDS C-1

USING KONTRON DEBUGGERS D-1

USING HITEX HITOP E-1

1 Using telemon 80C166 E-3.

2 Using telemon 80C16A E-4.

3 Using telemon 80C167 E-5.

USING PLS FAST-VIEW66 F-1

CPU FUNCTIONAL PROBLEMS G-1

1 Introduction G-3.

2 CPU Functional Problem Bypasses G-4.

USER STACK MODEL LIBRARY SUPPORT H-1

1 Introduction H-3.

2 Function Call and Return H-4.

2.1 Direct Intra-segment Function Call and Return H-4.

2.2 Indirect Intra-segment Function Call and Return H-5.

2.3 Direct Inter-segment Function Call and Return H-6.

2.4 Indirect Inter-segment Function Call and Return H-8.

2.5 Inter-segment Call and Return Table Stub Functions H-10. .

2.6 Intra-segment Call and Return Stub Functions H-12.

Table of Contents XI

• • • • • • • •

3 Using the Extended Instruction Set H-13.

3.1 Introduction H-13.

3.2 Direct Inter-segment Function Call and Return H-14.

3.3 Indirect Inter-segment Function Call and Return H-15.

INDEX

Table of ContentsXII
C
O
N
T
E
N
T
S

Manual Purpose and Structure XIII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING C166/ST10 C
Cross-Compiler. It assumes that you are familiar with the C language.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Software Installation

Describes the installation of the C Cross-Compiler for the C166/ST10.

2. Overview

Provides an overview of the TASKING C166/ST10 toolchain and gives

you some familiarity with the different parts of it and their relationship.

A sample session explains how to build a C166/ST10 application from

your C file.

3. Language Implementation

Concentrates on the approach of the C166/ST10 architecture and

describes the language implementation. The C language itself is not

described in this document. We recommend: "The C Programming

Language" (second edition) by B. Kernighan and D. Ritchie (1988,

Prentice Hall).

4. Compiler Use

Deals with control program and C compiler invocation, command line

options and pragmas.

5. Compiler Diagnostics

Describes the exit status and error/warning messages of the compiler.

6. Libraries

Contains the library functions supported by the compiler, and describes

their interface and 'header' files.

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

7. Run-time Environment

Describes the run-time environment for a C application. It deals with

items like assembly language interfacing, C startup code and

stack/heap size.

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

B. MISRA C

Supported and unsupported MISRA C rules.

C. Using CrossView Pro for Evaluation Boards

Describes how to use CrossView Pro evaluation boards.

D. Using Kontron Debuggers

Describes how to use Kontron debuggers.

E. Using Hitex HiTOP

Describes how to use the Hitex HITOP execution environment.

F. Using pls fast-view66

Describes how to use the pls fast-view66 debugger.

G. CPU Functional Problems

Describes how the C166/ST10 toolchain can bypass some functional

problems of the CPU.

H. User Stack Model Library Support

Describes the special coding methods used in the libraries and

C166/ST10 C compiler to support a special stack frame.

INDEX

Manual Purpose and Structure XV

• • • • • • • •

RELATED PUBLICATIONS

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ANSI X3.159-1989 standard [ANSI]

• C166/ST10 Cross-Assembler, Linker/Locator, Utilities User's Guide

[TASKING, MA019-000-00-00]

• C166/ST10 C++ Compiler User's Guide [TASKING, MA019-012-00-00]

• C166/ST10 CrossView Pro Debugger User's Guide

[TASKING, MA019-041-00-00]

• C166 User's Manual [Infineon Technologies]

• C167 User's Manual [Infineon Technologies]

• ST10 Family Programming Manual [STMicroelectronics]

• C166S v2.0 / Super10 User's Manual

[Infineon Technologies / STMicroelectronics]

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XVII

• • • • • • • •

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

SOFTWARE
INSTALLATION

C
H

A
P

T
E

R

Chapter 11–2
IN
S
T
A
L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter describes how you can install the TASKING C Cross-Compiler

for the C166/ST10 on Windows 95/98/NT/2000, Linux and several UNIX

hosts.

1.2 INSTALLATION FOR WINDOWS

Step 1

Start Windows 95/98/NT/2000, if you have not already done so.

Step 2

Insert the CD-ROM into the CD-ROM drive.

If the TASKING Welcome dialog box appears, skip to Step 5. Otherwise,

continue from Step 3.

Step 3

Select the Start button and select the Run... menu item.

Step 4

On the command line type:

d:\setup

(substitute the correct drive letter for your CD-ROM drive) and press the

<Return> or <Enter> key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product and click on Install .

Step 6

Follow the instructions that appear on your screen.

You can find your serial number on the Certificate of Authenticity or

Product Update Form, delivered with the product.

Chapter 11–4
IN
S
T
A
L
L
A
T
IO
N

Step 7

License the software product as explained in section 1.5, Licensing
TASKING Products.

1.2.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment

variables to make invocation of the tools easier, when you invoke the tools

from a command prompt. When you are using EDE all settings are

configurable from within EDE. A list of all environment variables used by

the toolchain is present in the section Environment Variables in the

chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed, when you invoke the tools from a command prompt. If you

installed the software under c:\c166 , you can include the executable

directory c:\c166\bin in your search path.

In EDE, select the EDE | Directories... menu item. Add one or more

executable directory paths to the Executable Files Path field.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files. The compiler uses the

environment variable C166INC to search for include files. An example of

setting this variable is given below (this is only needed when you invoke

the tools from a command prompt).

See also the section Include Files in the chapter Compiler Use.

Example Windows Command Prompt

Enter the following line when you use a Command Prompt window.

set C166INC=c:\c166\include

Example Windows 95/98

Add the following line to your autoexec.bat file.

set C166INC=c:\c166\include

Software Installation 1–5

• • • • • • • •

Example Windows NT / 2000

1. Open the System Properties dialog.

You can do this by double-clicking on the System icon in the Control

Panel (Start | Settings | Control Panel) or right-click on the My
Computer icon on your desktop and select Properties .

2. Select the Environment tab.

3. In the Variable edit field enter:

C166INC

4. In the Value edit field enter:

c:\c166\include

5. Click on the Set button, then click OK.

1.3 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package and as a

gzipped tar file. For each product the following files are present:

SWproduct –version –RPMrelease .i386.rpm
SWproduct –version .tar.gz

Both files contain exactly the same information. When your Linux

distribution supports RPM packages, you can install the .rpm file.

Otherwise, you can install the product from the .tar.gz file.

1.3.1 RPM INSTALLATION

Step 1

In most situations you have to be "root" to install RPM packages, so either

login as "root", or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

Chapter 11–6
IN
S
T
A
L
L
A
T
IO
N

Step 3

Go to the directory on which the CD-ROM is mounted:

cd /cdrom

Step 4

To install or upgrade all products at once, issue the following command:

rpm –U SW*.rpm

This will install or upgrade all products in the default installation directory

/usr/local . Every RPM package will create a single directory in the

installation directory.

The RPM packages are 'relocatable', so it is possible to select a different

installation directory with the --prefix option. For instance when you

want to install the products in /opt , use the following command:

rpm –U ––prefix /opt SW*.rpm

For Red Hat 6.0 users: The --prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to

RPM verion 3.0.3 or higher, or use the .tar.gz file installation described

in the next section if you want to install in a non-standard directory.

1.3.2 TAR.GZ INSTALLATION

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

Step 3

Go to the directory on which the CD-ROM is mounted:

cd /cdrom

Software Installation 1–7

• • • • • • • •

Step 4

To install the products from the .tar.gz files in the directory

/usr/local , issue the following command for each product:

tar xzf SW product –version .tar.gz –C /usr/local

Every .tar.gz file creates a single directory in the directory where it is

extracted.

1.3.3 SETTING THE ENVIRONMENT

After you have installed the software, you can set some of the

environment variables to make invocation of the tools easier (when

invoking the tools from the command line). A list of all environment

variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files.

Chapter 11–8
IN
S
T
A
L
L
A
T
IO
N

1.4 INSTALLATION FOR UNIX HOSTS

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as root or use the su command.

Step 2

If you are a first time user decide where you want to install the product

(By default it will be installed in /usr/local).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount

the CD-ROM on a directory, for example /cdrom . Be sure to use a ISO

9660 file system with Rock Ridge extensions enabled. See the UNIX

manual pages about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory

where the contents of the tape can be copied to. Consider the created

directory as a temporary workspace that can be deleted after installation

has succeeded. For example:

mkdir /tmp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is

mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace

using the following commands:

cd /tmp/instdir
tar xvf /dev/ tape

where tape is the name of your tape device.

If you have received a tape with more than one product, use the

non-rewinding device for installing the products.

Software Installation 1–9

• • • • • • • •

Step 5

Run the installation script:

sh install

and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local . On certain sites you may want to select another

location.

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it; otherwise the product will not work on

those hosts. See section 1.5, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the

final message will be:

Installation of SW xxxxxx xxxx . xxxx completed.

Step 6

For tape install: remove the temporary installation directory with the

following commands:

cd /tmp
rm –rf instdir

Step 7

If you purchased a protected TASKING product, license the software

product as explained in section 1.5, Licensing TASKING Products.

Chapter 11–10
IN
S
T
A
L
L
A
T
IO
N

Step 8

Logout.

1.4.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment

variables to make invocation of the tools easier. A list of all environment

variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files.

Software Installation 1–11

• • • • • • • •

1.5 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the licensing

information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

See the Flexible License Manager (FLEXlm) appendix for detailed

information on FLEXlm.

1.5.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License

Information Form" containing the license information for your software

product. If you have not received such a form follow the steps below to

obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the

computer where you will be using the product. See section 1.5.7, How to
Determine the Hostid.

Chapter 11–12
IN
S
T
A
L
L
A
T
IO
N

2. When you order a TASKING product, provide the hostid to your local

TASKING sales representative. The License Information Form which

contains your license key information will be sent to you with the software

product.

Floating license

1. If you need a floating license, you must determine the hostid and

hostname of the computer where you want to use the license manager.

Also decide how many users will be using the product. See section 1.5.7,

How to Determine the Hostid and section 1.5.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and

number of users to your local TASKING sales representative. The License

Information Form which contains your license key information will be sent

to you with the software product.

1.5.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described in section 1.2, Installation for Windows.

Step 2

Create a file called "license.dat " in the c:\flexlm directory, using an

ASCII editor and insert the license information contained in the "License

Information Form" in this file. This file is called the "license file". If the

directory c:\flexlm does not exist, create the directory.

If you wish to install the license file in a different directory, see section

1.5.6, Modifying the License File Location.

If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 1.5.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

Software Installation 1–13

• • • • • • • •

See the Flexible License Manager (FLEXlm) appendix for more information

on FLEXlm.

1.5.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described earlier in this chapter on the computer or workstation where

you will use the software product.

As a result of this installation two additional files for FLEXlm will be

present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

Step 2

If you already have installed FLEXlm v6.1 or higher for Windows or v2.4

or higher for UNIX (for example as part of another product) you can skip

this step and continue with step 3. Otherwise, install SW000098, the

Flexible License Manager (FLEXlm), on the license server where you want

to use the license manager.

The installation of the license manager on Windows also sets up the

license daemon to run automatically whenever a license server reboots.

On UNIX you have to perform the steps as described in section 1.5.5,

Setting Up the License Deaemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon (see step 1).

Chapter 11–14
IN
S
T
A
L
L
A
T
IO
N

Step 4

Insert the license information contained in the "License Information Form"

in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in

directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section

1.5.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII

editor. You can use the license file license.dat from the toolchain's

flexlm subdirectory as a template.

If you already have a license file, add the license information to the

existing license file. If the SERVER lines in the license file are the same as

the SERVER lines in the License Information Form, you do not need to add

this same information again. If the SERVER lines are not the same, you

must use another license file. See section 1.5.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software

product the location of the license file must be known. If it differs from

the default location (c:\flexlm\license.dat for Windows,

/usr/local/flexlm/licenses/license.dat for UNIX), then you

must set the environment variable LM_LICENSE_FILE. See section 1.5.6,

Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started

(see section section 1.5.4). Or, if it is already running you must notify the

license manager that the license file has changed by entering the

command (located in the flexlm bin directory):

lmreread

On Windows you can also use the graphical FLEXlm Tools (lmtools): Start

lmtools (if you have used the defaults this can be done by selecting

Start | Programs | TASKING FLEXlm | FLEXlm Tools), fill in the

current license file location if this field is empty, click on the Reread
button and then on OK. Another option is to reboot your PC.

Software Installation 1–15

• • • • • • • •

The software product and license file are now properly installed.

Where to go from here?

The license manager (daemon) must always be up and running. Read

section 1.5.4 on how to start the daemon and read section 1.5.5 for

information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING

product.

See the Flexible License Manager (FLEXlm) appendix for detailed

information on FLEXlm.

1.5.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start

the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXlm | FLEXlm License Manager).

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXlm installation directory (default

/usr/local/flexlm):

cd /usr/local/flexlm

3. For C shell users, start the license daemon by typing the following:

bin/lmgrd –2 –p –c licenses/license.dat >>& \
 /var/tmp/license.log &

Chapter 11–16
IN
S
T
A
L
L
A
T
IO
N

Or, for Bourne shell users, start the license daemon by typing the

following:

bin/lmgrd –2 –p –c licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the

lmdown and lmremove license administration tools to the license

administrator. You omit these options if you want. Refer to the usage of

lmgrd in the Flexible License Manager (FLEXlm) appendix for more

information.

1.5.5 SETTING UP THE LICENSE DAEMON TO RUN

AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a

license server reboots, follow the instructions below that are approrpiate

for your platform. steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXlm | FLEXlm License Manager).

2. In the Setup tab, enable the Start Server at Power–Up check box.

3. Close the program by clicking on the OK button. If a question appears,

answer Yes to save your settings.

UNIX

In performing any of the procedures below, keep in mind the following:

• Before you edit any system file, make a backup copy.

HP-UX

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/rc.config.d create a file named rc.lmgrd with

the following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/sbin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

Software Installation 1–17

• • • • • • • •

After the -c option, you have to specify the correct location of the license

file.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file /etc/rc.local . Replace

FLEXLMDIR by the FLEXlm installation directory (default

/usr/local/flexlm):

FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.lmgrd with the

following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

3. Make it exacutable:

chmod u+x rc.lmgrd

4. Create an 'S' link in the /etc/rc3.d directory to this file and create 'K'

links in the other /etc/rc?.d directories:

ln /etc/init.d/rc.lmgrd /etc/rc3.d/S numrc.lmgrd
ln /etc/init.d/rc.lmgrd /etc/rc?.d/K numrc.lmgrd

num must be an approriate sequence number. Refer to you operating

system documentation for more information.

1.5.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

Chapter 11–18
IN
S
T
A
L
L
A
T
IO
N

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE. Do this in

autoexec.bat (Windows 95/98), from the Control Panel –> System
| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX also ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the Flexible License Manager (FLEXlm) appendix for detailed

information.

Software Installation 1–19

• • • • • • • •

1.5.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the

methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

HP–UX lanscan
(use the station address
without the leading ’0x’)

0000F0050185

SunOS/Solaris hostid 170a3472

Windows tkhostid

(or use lmhostid)

0800200055327

Table 1-1: Determine the hostid

If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXlm.

1.5.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

HP–UX hostname

SunOS/Solaris hostname

Windows 95/98 Go to the Control Panel, open ”Network”, click on
”Identification”. Look for ”Computer name”.

Windows NT Go to the Control Panel, open ”Network”. In the
”Identification” tab look for ”Computer Name”.

Table 1-2: Determine the hostname

Chapter 11–20
IN
S
T
A
L
L
A
T
IO
N

2

OVERVIEW
C

H
A

P
T

E
R

Chapter 22–2
O
V
E
R
V
IE
W

2

C
H

A
P

T
E

R

Overview 2–3

• • • • • • • •

2.1 INTRODUCTION TO C C166/ST10

CROSS-COMPILER

This manual provides a functional description of the TASKING C

C166/ST10 Cross-Compiler. This manual uses c166 (the name of the

binary) as the shorthand notation for 'TASKING C C166/ST10

Cross-Compiler'.

TASKING offers a complete toolchain for the Infineon C166 and

STMicroelectronics ST10 microcontroller families and their derivatives.

These derivatives can be based on C166/ST10x166 architectures (256K

memory, 18-bit addresses), C167/ST10x167/ST10x262 extended

architectures (16M memory, 24 bit addresses) and C166S v2.0 / Super10

extended architectures. This manual uses '80166' as the shorthand notation

for these microcontroller families. The toolchain contains a C++ compiler,

a C compiler, a control program, a macro preprocessor, an assembler, a

linker/locator, a library manager, a program builder, a disassembler, a

debugger and output format utilities.

The c166 is not a general C compiler adapted for use with the C166/ST10

architecture, but instead it is dedicated to the microcontroller architecture

of the C166/ST10 architecture. This means that you can access all special

features of the C166/ST10 architecture in C: 16K page architecture (with

full pointer support), bit-addressable memory, (extended) special function

registers (I/O ports), interrupt support, scalable vector tables, (local)

register banks and a number of built-in (intrinsic) functions to utilize

special C166/ST10 architecture instructions. And yet no compromise is

made to the ANSI standard. It is a fast, single pass, optimizing compiler

that generates extremely fast and compact code.

The c166 generates assembly source code using the Infineon assembly

language specification, and must be assembled with the TASKING

C166/ST10 Cross-Assembler. This manual uses a166 as the shorthand

notation for 'TASKING C166/ST10 Cross-Assembler'.

The object file generated by a166 can be linked with other objects and

libraries using the TASKING l166 linker/locator. This manual uses l166 as

the shorthand notation for 'TASKING l166 linker/locator'. With the link

stage of l166 you can link objects and libraries to one object. You can

locate assembler objects, linked objects and libraries to a complete

application by using the locate stage of l166.

Chapter 22–4
O
V
E
R
V
IE
W

The C166/ST10 toolchain also accepts C++ source files. C++ source files or

sources using C++ language features must be preprocessed by cp166. The

output generated by cp166 is C166/ST10 C, which can be translated with

the C compiler c166.

The C++ compiler is not part of the C compiler package. You can order it

separately from TASKING. The C++ compiler package includes the C

compiler as well.

With the TASKING cc166 control program you can invoke the various

components of the C166/ST10 toolchain with one call. This manual uses

cc166 as the shorthand notation for 'TASKING cc166 control program'.

You can debug the software written in C, C++ and/or assembly with the

TASKING CrossView Pro high-level language debugger. This manual uses

XVW166 as the shorthand notation for 'TASKING CrossView Pro high-level

language debugger'. A list of supported platforms and emulators is

available from TASKING.

You can also use other debugging environments supporting the IEEE-695

format (e.g. Kontron, Hitex, Krohn & Stiller, Lauterbach, etc.).

2.2 PRODUCT DEFINITION

Name:

TASKING C C166/ST10 Family Cross-Compiler (c166)

Ordering Code:

TK019-002

Target Assembler:

TASKING C166/ST10 Cross-Assembler

Target Debugger:

TASKING C166/ST10 CrossView Pro debugger

Overview 2–5

• • • • • • • •

Target Processors:

All C166/ST10x166 derivatives. Special function registers can be accessed

by means of a user-definable 'sfr-file' (register definition files).

All C167 and derivatives (e.g. SAB C165) support is enabled with the '-x'

option, extending addresses to 24 bits instead of 18 bits and enabling the

extended instruction set of the C167. Extended special function registers

are supported using the 'esfr' and 'esfrbit' data types.

All libraries are also present in an extended (ext) version.

All C166S v2.0/Super10 and derivatives support is enabled with the '-x2'

option. All libraries are also present in an extended (ext2) version.

All enhanced C166S v2.0/Super10 and derivatives support is enabled with

the '-x22' option. The ext2 libraries can be used.

2.3 GENERAL IMPLEMENTATION

This section describes the different phases of the compiler and the target

independent optimizations.

2.3.1 COMPILER PHASES

During the compilation of a C program, a number of phases can be

identified. These phases are divided into two groups, referred to as

frontend and backend.

frontend:

The preprocessor phase:

File inclusion and macro substitution are done by the preprocessor

before parsing of the C program starts. The syntax of the macro

preprocessor is independent of the C syntax, but also described in the

ANSI X3.159-1989 standard.

The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs

a syntactic and semantic analysis of the program, and generates an

intermediate representation of the program.

Chapter 22–6
O
V
E
R
V
IE
W

The frontend optimization phase:

This phase performs target processor independent optimizations by

transforming the intermediate code. The next section discusses

frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means

another transformation of the intermediate code and actions like

register allocation techniques for variables, expression evaluation and

the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

The code generator phase:

This phase converts the intermediate code to an internal instruction

code representing the C166/ST10 assembly instructions.

The peephole optimizer phase:

This phase uses pattern matching techniques to perform peephole

optimizations on the internal code (e.g. deleting obsolete moves). It

also performs pipeline optimizations, replacing NOP instructions with

other instructions which do not interfere with the pipeline effects of the

processor. Another task of the peephole optimizer is to convert JMPR

instructions to JMPA instructions (or to reverse the condition of

conditional bit jump instructions), if the destination label is not within

the REL range (-128 to 127 words). Finally, the peephole optimizer

translates the internal instruction code into assembly code for a166.

The generated assembly does not contain any macros.

The instruction reordering phase:

This phase is only enabled for the ext2 architectures. It tries to reorder

the instructions in order to keep the pipeline from stalling as much as

possible. During this phase no instructins will be added or removed.

Overview 2–7

• • • • • • • •

All phases (of both frontend and backend) are combined into one

program: c166. The compiler does not use any intermediate file for

communication between the different phases of compilation. The backend

part is not called for each C statement, but is started after a complete C

function has been processed by the frontend (in memory), thus allowing

more optimization. The compiler only requires one pass over the input

file, resulting in relatively fast compilation.

2.3.2 FRONTEND OPTIMIZATIONS

The following optimizations are performed on the intermediate code. They

are independent of the target processor and the code generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x–3)
is transformed into x + (1–3) , which can be folded.

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.

Such useless expressions may be introduced by macros in C (#define), or

by the compiler itself.

Logical expression optimization

Expressions involving '&&', '||' and '!' are interpreted and translated into a

series of conditional jumps.

Loop rotation

With for and while loops, the expression is evaluated once at the 'top'

and then at the 'bottom' of the loop. This optimization does not save code,

but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as

the deletion of redundant case labels or even the deletion of the switch.

Chapter 22–8
O
V
E
R
V
IE
W

Control flow optimization

By reversing jump conditions and moving code, the number of jump

instructions is minimized. This reduces both the code size and the

execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately

followed by an unconditional jump may be replaced by a jump to the

destination label of the second jump. These situations frequently occur

with nested control structures. This optimization does not save code, but

speeds up execution.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one

conditional jump with the jump condition reversed. This reduces both the

code size and the execution time.

Register coloring

Optimize register allocation within a C function. The compiler tries to keep

as much local variables as possible in registers.

Constant/value propagation

A reference to a variable with a known contents is replaced by those

contents.

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)

expression. Such a "common" expression may be temporarily saved to

avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without

affecting the program. However, the compiler generates a warning

message, because the unreachable code may be the result of a coding

error.

Overview 2–9

• • • • • • • •

Sharing of string literals and floating point constants

The ANSI X3.159-1989 standard permits string literals to be put in ROM

memory. Strings in ROM cannot be modified, so the compiler overlays

identical strings (within the same module) and let them share the same

space, thus saving ROM space. Likewise, identical floating point constants

are overlaid and allocated only once.

Common Tail Merging

Common pieces of code at the end of case labels and if-else constructions

are replaced by a jump to single instance of the shared code. This will

reduce code size.

Chapter 22–10
O
V
E
R
V
IE
W

2.4 COMPILER STRUCTURE

If you want to build a C-166 application you need to invoke the following

programs:

• The C compiler (c166), which generates an assembly source file

from the file with suffix .c . The suffix of this file is .src , which is

the default for a166. However, you can direct the output to stdout

with the -n option, or to another file with the -o option. C source

lines can be intermixed with the generated assembly statements by

means of the -s option. High level language debugging information

can be generated with the -g option. You should not use the -g

option, when inspecting the generated assembly source code,

because it contains a lot of 'unreadable' high level language debug

directives. c166 makes only one pass on every file. This pass

checks the syntax, generates the code and performs a code

optimization.

• The a166 cross-assembler which processes the generated assembly

source file into a relocatable object file with suffix .obj . A full

assembly listing with suffix .lst is available after this stage.

• The l166 link stage which links the generated relocatable object

files and C-libraries. The result is a relocatable link file with suffix

.lno . A linker task map file with suffix .lnl is available after this

stage.

• The l166 locate stage which locates the generated relocatable object

files (from assembler or link stage). The result is a loadable file with

suffix .out . A full application map file with suffix .map is available

after this stage.

• The ieee166 program which formats an a.out type file into a

CrossView Pro load file.

The next figure explains the relationship between the different parts of the

TASKING C166/ST10 toolchain:

Overview 2–11

• • • • • • • •

assembly source file
.asm

macro preprocessor
m166

assembly file
.src

assembler
a166

relocatable object

linker
link stage

l166

linker l166
locate stage

linked object
module .lno

absolute object
module a.out

IEEE Formatter
ieee166

archiver
ar166

C compiler
c166

C source file
.c

error list file .erl

object library
.lib

module .obj

Motorola S Formatter Intel Hex Formatter
srec166 ihex166

Motorola S–records IEEE–695 load module.abs Intel Hex–records

CrossView Pro

xfw166

C166/ST10
execution

environment

Invocation file

Invocation file

Invocation file

list file

print file

map file .map

.lnl

.lst

list file .mpl

Invocation file

error list file .mpe

control program
cc166

error list file .err

C++ compiler
cp166

C++ source file
.cc

.ic

Debugger

global storage optimizer
gso166

.gso

.sif

.sif

Figure 2-1: C166/ST10 development flow

Chapter 22–12
O
V
E
R
V
IE
W

The control program cc166 can be used to build an absolute loadable file

starting with an input file of any stage. C++ source programs are compiled

by the C++ compiler. With a C source file as input, cc166 calls c166, a166

and l166 with the appropriate command line arguments.

It is advised to use CC166 when compiling C++ source programs because

of the complex nature of C++ compilation.

The global storage optimizer gso166 is a program to optimize allocation

of objects in memory spaces.

The macro preprocessor m166 is a program to preprocess assembly files

(suffix .asm).

The ihex166 program formats the a.out file into an Intel Hex format file.

You can load this output file into an EPROM programmer.

The srec166 program formats the a.out file into a Motorola S Format for

EPROM programmers.

The ar166 program is a librarian facility. You can use this program to

create and maintain object libraries.

A utility to disassemble absolute object files and relocatable object files is

d166.

A utility to display the contents of an object file is dmp166.

The mk166 program builder uses a set of dependency rules in a 'makefile'

to build only the parts of an application which are out of date

For a full description of all available utilities, see chapter Utilities chapter

12, "Utilities"in the C166/ST10 Cross-Assembler, Linker/Locator, Utilities
User's Guide.

The name of the C166/ST10 CrossView Pro Debugger is xfw166. For more

information check the C166/ST10 CrossView Pro Debugger User's Guide.
This manual uses xvw166 as the general executable name.

Overview 2–13

• • • • • • • •

2.5 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the C166/ST10 toolchain.

Environment
Variable

Description

A166INC Specifies an alternative path for STDNAMES files
for the assembler a166.

C166INC Specifies an alternative path for #include files for the
C compiler c166.

CC166BIN When this variable is set, the control program
cc166 , prepends the directory specified by this
variable to the names of the tools invoked.

CC166OPT Specifies extra options and/or arguments to each
invocation of cc166 . The control program processes
the arguments from this variable before the
command line arguments.

LINK166 Specifies extra options and/or arguments to each
invocation of the link stage of l166.

LM_LICENSE_FILE Identifies the location of the license data file. Only
needed for hosts that need the FLEXlm license
manager.

LOCATE166 Specifies extra options and/or arguments to each
invocation of the locate stage of l166.

M166INC Specifies an alternative path for include files for the
macro preprocessor m166.

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by c166, cc166 ,
a166, m166, l166, ar166.

Table 2-1: Environment variables

Chapter 22–14
O
V
E
R
V
IE
W

2.6 SAMPLE SESSION

The following example illustrates the use of c166 in conjunction with the

a166/l166 package and the control program cc166. User command input

is denoted by bold text.

The subdirectory sieve in the examples subdirectory contains a demo

program for the C166/ST10 toolchain.

In order to debug your programs, you will have to compile, assemble, link

and locate them for debugging using the TASKING C166/ST10 tools. You

can do this with one call to the control program or you can use EDE, the

Embedded Development Environment (which uses a project file and a

makefile) or you can call the makefile from the command line.

2.6.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

MS-Windows oriented Integrated Development Environment you can use

with your TASKING toolchain to design and develop your application.

To use EDE on the sieve demo program in the subdirectory sieve in the

examples subdirectory of the C166/ST10 product tree follow the steps

below. This procedure is outlined as a guide for you to build your own

executables for debugging.

How to Start EDE

You can launch EDE by double-clicking on the appropriate icon in the

program group created by the installation program. Or you can launch

EDE by double-clicking on the EDE shortcut on your desktop.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Overview 2–15

• • • • • • • •

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do

the following:

1. Access the EDE menu and select the Select Toolchain... menu item.

This opens the Select Toolchain dialog.

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and press OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. Access the Project menu and select Open... .

2. Select the project file to open and then click OK. For the sieve demo

program select the file sieve.pjt in the subdirectory sieve in the

examples subdirectory of the C166/ST10 product tree. If you have used

the defaults, the file sieve.pjt is in the directory

c:\c166\examples\sieve .

Chapter 22–16
O
V
E
R
V
IE
W

How to Load/Open Files

The next two steps are not needed for the demo program because the file

sieve.c is already open. To load the file you want to look at.

1. In the Project menu click on Load files... .

This opens the Choose Project Files to Edit dialog.

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then press the OK button.

This launches the file(s) so you can edit it (them).

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

select a command to be executed as foreground or background process.

1. Access the EDE menu and select the Build Options... menu item.

Overview 2–17

• • • • • • • •

This opens the Build Options dialog.

Chapter 22–18
O
V
E
R
V
IE
W

If you set the Show command line options at the bottom of a
tool tab check box EDE shows the command line equivalent of the

selected tool option. You can also click on the arrow button (left of the OK
button) in a tool options dialog.

2. Make your changes and press the OK button.

3. Select the EDE | Directories menu item and check the directory paths

for programs, include files and libraries. You can add your own directories

here, separated by semicolons.

Overview 2–19

• • • • • • • •

4. Access the EDE menu and select the Scan All Dependencies menu

item.

5. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages.

1. In the Window menu select the Output menu item.

You can see which commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

cc166 –c –g –I. –O3 –DMEASURE_TIME –DPRINT sieve.c

cc166 –c –g –I. –O3 –DMEASURE_TIME –DPRINT c:\c166\examples\time\time.c

c:\tmp\mk2794a.tmp:

sieve.obj

time.obj

sieve.ilo

cc166 –cf –ieee –o sieve.abs –f c:\tmp\mk2794a.tmp

C166/ST10 program builder v x. y r z SN00000000–bid (c) year TASKING, Inc.

Chapter 22–20
O
V
E
R
V
IE
W

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug. To do

this:

1. Click on File in the menu bar and select the Load Symbolic Debug
Info... item. This opens up the Load Symbolic Debug Info dialog

box.

2. Click Load .

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.

To open this window,

1. Click on View in the menu bar and select the Source–>Source lines
item.

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

2. Click on Run in the menu bar and select the Program Reset item.

3. Again click on Run in the menu bar and now select the Animate item.

The program seive.abs is now stepping through the high level language

statements. Using the Accelerator bar or the menu bar you can set

breakpoints, monitor data, display registers, simulate I/O and much more.

See the CrossView Pro Debugger User's Guide for more information.

Overview 2–21

• • • • • • • •

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. Access the Project menu and select Project Space | New... .

2. Give your project space a name and then click OK.

3. Click on the Add new project to project space button.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify

the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

• If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new

filename and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Enter one or more file patterns separated

by semicolons. The button next to the Pattern field contains some

predefined patterns. Next click OK.

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Add the applicable files by

double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. Click Project | Load Files to open files you want on your EDE

desktop.

Chapter 22–22
O
V
E
R
V
IE
W

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

2.6.2 USING THE CONTROL PROGRAM

A detailed description of the process using the sample program sieve.c
is described below for the C166/ST10. This procedure is outlined as a

guide for you to build your own executables for debugging.

1. Make the subdirectory seive of the examples directory the current

working directory.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

control program cc166:

cc166 –g –ieee –o sieve.abs sieve.c

The -g option instructs the compiler to generate symbolic debugging

information. If you want to debug your program with the CrossView Pro

high level language debugger, this option must be on.

The -ieee option specifies that the output file must be formatted in the

IEEE Std. 695 format. The -o sieve.abs option specifies the output

filename to be sieve.abs . The result of the command are the files

sieve.abs which can be loaded and executed by CrossView Pro and

sieve.map containing the locate map of the application.

You can specify the -DMEASURE_TIME option if you want to build the

sieve benchmark program for time measurement. Note that this is done in

the makefile which can be processed by mk166.

Now you have created all the files necessary for debugging with

CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,

link stage, locate stage and formatter, you can use the -v option or -v0

option. The -v0 option only displays the invocations without executing

them. The -v option also executes them:

cc166 –g –ieee –o sieve.abs sieve.c –v0

Overview 2–23

• • • • • • • •

The control program shows the following command invocations without

executing them (UNIX output):

C166/ST10 control program v x. y r z SN00000000–bid (c) year TASKING, Inc.

+ c166 sieve.c –o /tmp/cc5882c.src –e –g

+ a166 /tmp/cc5882c.src TO sieve.obj NOPR

+ l166 LNK TO /tmp/cc5882d.lno sieve.obj 166/c166s.lib 166/fp166s.lib

 166/rt166s.lib NOWA

+ l166 LOC TO /tmp/cc5882e.out /tmp/cc5882d.lno PR(sieve)

+ ieee166 /tmp/cc5882e.out sieve.abs

The -e option specifies to remove the output file if compiler errors occur.

The NOPR control suppresses the list file generation of the assembler. The

TO control has the same function as the -o option of the compiler, and

specifies the output filename. The PR control of the locate stage specifies

the basename of the map file.

As you can see, the tools use temporary files for intermediate results. If

you want to keep the intermediate files you can use the -tmp option. The

following command makes this clear.

cc166 –g –ieee –o sieve.abs sieve.c –v0 –tmp

This command produces the following output:

C166/ST10 control program v a. b r c SN00000000–bid (c) year TASKING, Inc.

+ c166 sieve.c –o sieve.src –e –g

+ a166 sieve.src TO sieve.obj NOPR

+ l166 LNK TO sieve.lno sieve.obj 166/c166s.lib 166/fp166s.lib

 166/rt166s.lib NOWA

+ l166 LOC TO sieve.out sieve.lno PR(sieve)

+ ieee166 sieve.out sieve.abs

As you can see, if you use the -tmp option, the assembly source files and

linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately

using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the

correct options and controls.

Chapter 22–24
O
V
E
R
V
IE
W

2.6.3 USING THE SEPARATE PROGRAMS

If you want to call each tool separately instead of using the control

program you can issue the following commands (steps 3-7 replace step 3

of the previous section).

3. Compile the module:

c166 –s –g –t sieve.c

The -s option puts the C source text as comments into the output

assembly source file sieve.src . The other options are the same as

explained by the invocation of the control program.

4. Assemble the module:

a166 sieve

The suffix .src is default and may therefore be omitted. The assembler

produces a relocatable object file called sieve.obj and a list file called

sieve.lst .

If you want to build a complete C166/ST10 executable application, the

module containing the C function main() is treated like a reset task and

therefore must be linked with the C startup code. When the Task Concept

is followed, all tasks should be linked with a library, that contains, among

run-time routines, functions such as printf() . When the Flat Interrupt

Concept is followed the C startup code and the library is linked in the

locate stage and the link stage is skipped. In this example we are using the

Task Concept.

The C startup code is delivered in each run-time library for the memory

model of the library and in assembly source code, because this file usually

must be adapted to the target environment. The library is delivered for all

memory models supported. In this case, we are using the small model,

because this is the default memory model of c166. See the next chapter

for detailed information on memory models.

The libraries are organised in 4 basic library sets: one set for the

C166/ST10x166 architecture (subdirectory 166), one set for the Gold

architecture (subdirectory goldp), one set for the

C167/ST10x167/ST10x262 architecture (subdirectory ext) and one set for

the C166S v2.0 / Super 10 architectures (subdirectory ext2).

Overview 2–25

• • • • • • • •

These 4 basic library sets are additionally organized in 2 variants: one

standard variant (not available for the Gold architecture) and one variant

with all silicon bug workarounds enabled. The subdirectories for this last

variant are followed by the character 'p' (subdirectories 166p , extp ,

ext2p and goldp).

All 7 library sets (4 basic, 2 variants, -1 for Gold architecture) are also

available for the User Stack Model. All subdirectories for this extra variant

are preceeded with the character 'u'.

It depends on the hardware environment you are using, which library set

must be used. By default the compiler assumes the C166/ST10x166

architechture without any silicon bug workarounds enabled. Therefore, the

library set in the subdirectory 166 is used.

5. Link the module by typing:

PC:

l166 link sieve.obj 166\c166s.lib 166\rt166s.lib to
sieve.lno

UNIX:

l166 link sieve.obj 166/c166s.lib 166/rt166s.lib to
sieve.lno

By default the linker searches the lib directory for libraries. This way it

finds the c166s.lib and rt166s.lib libraries. The cstart.obj C startup

code is extracted from the rt166s.lib library because the compiler generates

a reference to this module when the main() function is defined.

The result of this command is the linked task object module sieve.lno .

When you use the PRINT control the file sieve.lnl is created,

containing information about the linking stage: memory map, symbol

table, register map. However, this is slowing down the process of linking

and therefore turned off by default.

6. Locate the module by typing:

l166 locate sieve to sieve.out nocc

The result of this command is the absolute output file sieve.out and the

file sieve.map containing the locate map of the application. The nocc

control disables the checking on definition of class ranges, used to locate

all parts of the application in user defined memory ranges.

Chapter 22–26
O
V
E
R
V
IE
W

In order to load this application into the CrossView Pro debugger, the

output file must be formatted into IEEE Std. 695 format.

7. Format the output file by typing:

ieee166 sieve.out sieve.abs

The file sieve.abs can be loaded and executed by CrossView Pro.

2.6.4 USING A MAKEFILE

The examples directory contains several subdirectories with example

programs. Each subdirectory contains a makefile which can be

processed by mk166 to build the example.

The examples directory also contains a makefile for building all

examples. For building all examples, add the bin directory of the installed

product to the search path and type:

mk166

For building one example program, make the directory containing the

example the current working directory. Build the example by typing:

mk166

When the example has already been built before, only the parts which are

out of date are rebuilt.

For more information see also the readme.txt files in the subdirectories

of the examples.

To see which commands are invoked by mk166 without actually

executing them, type:

mk166 –n

All examples are by default built for the C166/ST10x166. The C examples

are built in the small memory model by default. For screen I/O the C

examples use the simulated I/O feature of CrossView Pro. By defining

macros on the command line you can control the way the examples are

build. A macro is defined by <macroname>=<replacement>. The

following macros can be defined:

Overview 2–27

• • • • • • • •

Macro Description

EXT= Translate with all derivative extensions on. I.e. translate
for the C167.

LARGE= Translate all C examples in the large memory model.

SERIO= Translate all examples for using serial I/O

PORT=1 Use serial port S1 on the C166/ST10 instead of S0.

V= Set verbose mode of the control program. If set it shows
the invocations of the separate tools.

Table 2-2: Makefile macros

Example:

mk166 V= EXT= LARGE=

When you want to re-translate the examples with other settings you

should first clean up the results of a previous translation. This can be done

by:

mk166 clean

You can also use this when you just want to clean up the example

directories.

2.6.5 SERIAL I/O MODULES

All examples which produce output use File System Simulation (default) or

serial I/O (see section Using a Makefile in this chapter for more

information). CrossView Pro users can see the CrossView Pro Debugger
User's Guide for more information about File System Simulation.

For serial I/O the files serio.c and serio.h are included. The header

file contains prototypes for the functions and definitions of registers used

to setup and perform the serial communication, depending on the port.

When you compile serio.c with -DSER_PORT_1 serial port 1 of the

processor is used. Otherwise serial port 0 is used. The module serio.c
defines four functions you can use in your application:

void init_serio(void)

This function has to be called before any serial communication is done.

This functions initializes all communication parameters. The default

configuration is 9600 baud, 8 data bits and 1 stop bit.

Chapter 22–28
O
V
E
R
V
IE
W

int getch(void)

Reads one character from the serial channel.

int kbhit(void)

Returns 1 if a character is available, otherwise 0.

int putch(int c)

Write a character to the serial channel. Return character written.

The module also defines the _ioread() and _iowrite() functions,

called by the I/O functions in the C library.

You can find the files serio.c and serio.h in the subdirectory io in the

examples directory. This directory also contains a makefile and a C

source file for testing the I/O.

3

LANGUAGE
IMPLEMENTATION

C
H

A
P

T
E

R

Chapter 33–2
L
A
N
G
U
A
G
E

3

C
H

A
P

T
E

R

Language Implementation 3–3

• • • • • • • •

3.1 INTRODUCTION

The TASKING C C166/ST10 cross-compiler offers a new approach to

high-level language programming for the C166/ST10 family. It conforms to

the ANSI standard, but allows the user to control the I/O registers, bit

memory, interrupts and data page architecture of the C166/ST10 in C. This

chapter describes the language implementation in relation to the 80C166

architecture.

The extensions to the C language in c166 are:

_bit

You can use data type _bit for the type definition of scalars and for the

return type of functions.

_bitword

You can declare word variables in the bit-addressable area as fp. You can

access individual bits using the intrinsic functions _getbit() and

_putbit() .

_sfrbit / _esfrbit

Data types for the declaration of specific, absolute bits in special function

registers or special absolute bits in the SFR address space.

_sfr / _esfr

Data types for the declaration of Special Function Registers.

_xsfr

Data type for the declaration of Special Function Registers not residing in

SFR memory but do reside in internal RAM. An example of these SFRs are

PEC source and destination pointers. The compiler will use a 'mem'

addressing mode for this data type whereas for an object of type _sfr a

'reg' or 'mem' addressing mode may be used.

These SFRs are not bitaddressable.

_at

You can specify a variable to be at an absolute address.

Chapter 33–4
L
A
N
G
U
A
G
E

_atbit

You can specify a variable to be at a bit offset within a _bitword or

bitaddressable _sfr variable.

_inline

Used for defining inline functions.

_usm / _nousm

With these function qualifiers you can force that a function is called using

the user stack model calling convention or using the generic CALL/RET

calling convention.

_bita

You can tell the compiler that a struct must be located in bitaddressable

memory by using the _bita memory qualifier.

memory-specific pointers

c166 allows you to define pointers which point to a specific target

memory. These types of pointers are very efficient and require only 2 or 4

bytes memory space.

special types

Apart from a memory category (extern, static, ...) you can specify a storage

type in each declaration. This way you obtain a memory

model-independent addressing of variables in several address ranges of

the C166/ST10 (_near , _far , _huge , _shuge , _system , _iram).

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the

C++ language (_interrupt keyword). You may also specify the register

bank to be used (_using keyword).

intrinsic functions

A number of pre-declared functions can be used to generate inline

assembly code at the location of the intrinsic (built-in) function call. This

avoids the overhead which is normally used to do parameter passing and

context saving before executing the called function.

Language Implementation 3–5

• • • • • • • •

3.2 ACCESSING MEMORY

The C166/ST10 is available for two different address ranges. One version

allows to access memory up to 256 KB via an 18 bit address, and the other

version allows to access 16 MB using a 24 bit address. The processor does

not use a linear addressing method (as the Motorola 68000 family), but

uses a segmented approach of its memory (as the Intel 8086 family).

Therefore, the difference in address range is only visible in the amount of

bits in the segment/page registers.

The approach of data memory differs with the approach of code memory.

Code memory is accessed in segments of 64K using a 16 bit offset and a 2

bit (or 8 bit) segment number. Because there is no translation done on this

2 bit (or 8 bit) segment number, code memory access is 'almost' linear.

However, data memory is accessed within 16 KB pages. The 16 bit address

is translated into an 18 bit (or 24 bit) address via one of four data page

pointers, specified with bit 14 and 15. So, the 18 bit (or 24 bit) address is

made out of the 14 bit page offset and the 4 bit (or 10 bit) contents of the

selected DPP. c166 and a166 support both versions of address range. In

the rest of this document we use the 24 bit addressing scheme in our

examples. Read 18 bit instead of 24 bit for the 256K versions of the

C166/ST10 architechtures.

c166 has two methods of gaining greater control over how your program

uses memory. These methods can be used together. First you can specify

the 'memory model' for the program. The compiler allows you to choose

from a number of different approaches. In the section Memory Models
more detailed information is present. Second, you can use one of the

keywords _near , _system , _iram , _far , _huge and _shuge in your

program. Note that although these keywords are also used by other C

compilers (for the 8086 family), they are not part of the standard C

language. C is meant as a portable language.

In practice the majority of the C code of a complete application will be

standard C (without using any language extension). This part of the

application can be compiled without any modification, using the memory

model which fits best to the requirements of the system (code size,

amount of external RAM etc.). Therefore, c166 has a number of features

optimizing data access on standard C in all memory models. Note that a

special section is present called Efficiency in Large Data Models.

Only a small part of the application will use language extensions. These

parts often deal with items such as:

- I/O, using the (extended) special function registers

Chapter 33–6
L
A
N
G
U
A
G
E

- high execution speed needed

- high code density needed

- access to non-default memory required (e.g. far/huge/shuge data)

- bit type needed

- C interrupt functions

3.2.1 MEMORY MODELS

c166 supports four memory models: tiny, small, medium and large. You

can select one of these models with the -M option. If you do not specify a

memory model on the command line, c166 uses the small memory model

by default. The memory models with their characteristics are represented

in the following table:

Model DPP
usage

$SEGMENTED
control

CPU
segmented
mode

normal
data
size

code
size

far/
huge/
shuge
data
allowed

near
data
allowed

tiny linear no no <64K <64K no n.a.

small linear no yes <64K >64K yes n.a.

medium paged yes yes >64K <64K yes yes

large paged yes yes >64K >64K yes yes

n.a. = not applicable

Table 3-1: Memory models

The memory models can be described as follows:

3.2.1.1 TINY MEMORY MODEL

This memory model is the only model where the processor does not run

in segmented mode, limiting the sum of code and data space to 64K. The

DPP registers always contain their startup values thus allowing linear 64K

access of data. This results in relatively high code density and execution

speed. On interrupt the C166/ST10 does not have to save the CS register

and an extra port (Port 4) is available, because address lines A16 - A17 (or

A16 - A23) are not used. The usage of the _far , _huge and _shuge
keywords is not allowed. The tiny memory model is meant for very small

(even single-chip) applications.

Language Implementation 3–7

• • • • • • • •

Map example

256K

64K

0

normal data

code

Figure 3-1: Tiny memory map example

Item Usage Comments

CPU non–segmented only model which runs non–segmented.

code < 64K limited to first segment of 64K.

normal data < 64K limited to first segment of 64K.
Thus: (code + normal data) < 64K.

far data not allowed –

huge data not allowed –

shuge data not allowed –

Table 3-2: Tiny memory model

Chapter 33–8
L
A
N
G
U
A
G
E

3.2.1.2 SMALL MEMORY MODEL

The small memory model is probably the most used memory model. It

allows you to have a total code size up to 16M, up to 64K of fast

accessible 'normal user data' in three different memory configurations and

the possibility to access far/huge data, if more than 64K of data is needed.

The compiler does not assume the CSP register to contain something valid.

Each call results in a far inter-segment code access, unless the _near
keyword is used explicitly in the function prototype. We therefore

recommend using the _near keyword with static functions when using

the small or large model, since static functions are always in the same

code section as their caller functions. This model allows code access in all

segments up to 16M.

The small memory model supports 64K of 'normal user data' via fixed DPP

values, specified at locate time. This results in high code density and

execution speed. Note that the ROM data of an application (e.g. strings,

floating point constants, jump tables, etc.) must also be allocated in this

area of 64K of 'normal user data'. There are three memory configurations

possible for this 64K of 'normal user data':

I (default)

The four DPP registers are assumed to contain their system startup value

(0-3), providing one linear data area of 64K in the first segment

(0-0FFFFh).

II Addresses Linear

DPP3 contains page number 3, allowing access to SYSTEM (extended) sfr

registers and bitaddressable memory. DPP0 - DPP2 provide a linear data

area of 48K anywhere in memory. You must specify the

'base-page-number' of this area at locate time via the ADDRESSES(

LINEAR(address)) locator control.

III SND

DPP3 contains page number 3, allowing access to SYSTEM (extended) sfr

registers and bitaddressable memory. DPP0, DPP1 and DPP2 contain the

page number of a data area of 16K anywhere in memory. These page

numbers are specified at locate time via the SND locator control. When

you use this configuration, the size of a single 'normal data' object is

limited to 16K.

Language Implementation 3–9

• • • • • • • •

In variant I and II, the paging principle is not really used, so the size of a

single 'normal data' object (e.g. array) can be greater than 16K (one page).

If you use the small memory model (default of c166), the compiler uses

the section type 'LDAT' for normal user data. This means that a non-paged

section (unless SND is used of course) must be allocated by the locator in

either:

I first segment of 64K (default)

II linear area of 48K specified with ADDRESSES LINEAR

or in page 3

III one of the three possible areas of 16K specified with SND

or in page 3

If you need more than 64K of data (or if you need a huge data object),

you can use the _far /_huge keywords in the declaration of these

variables.

Small model memory map examples

Example I Default

Example II Using locate control:

AD LINEAR(page 8)

Example III Using locate control:

SND(DPP0(10), DPP1(12), DPP2(7))

'normal data' sections can contain both RAM data and ROM data.

Chapter 33–10
L
A
N
G
U
A
G
E

Map example I Map example II

256K

64K

0

normal data

code

page 3

page 2

page 1

page 0

far data /
huge data /

DPP0

DPP1

DPP2

DPP3

256K

64K

0

normal data

code

page 3

page 10

page 9

page 8 DPP0

DPP1

DPP2

DPP3

code

normal data

code

code

shuge data

far data /
huge data /
shuge data

Map example III

256K

64K

0

code

page 3

page 10

page 12

page 7

DPP1

DPP0

DPP2

DPP3

code

code

normal data

code

normal data

normal data

far data /
huge data /
shuge data

normal data

Figure 3-2: Small memory map examples

Language Implementation 3–11

• • • • • • • •

Item Usage Comments

CPU segmented –

code >64K allows code anywhere in 256K/16M.

normal data < 64K 64Kb of fast accessible user data using
direct MEM addressing mode. Except for
map III (SND control), the size of a single
user data object is not limited to 16K (16 bit
address arithmetic). Also contains ROM
data.

far data allowed
(optional)

supports far data (paged) access anywhere
in 256K/16M. The size of a single far object
is limited to 16K. Far data access is less
fast than normal data access.

huge data allowed
(optional)

supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (32 bit address
arithmetic). Huge data access is less fast
than far data access.
Size of one struct < 64K.
Array of struct/any type > 64K

shuge data allowed supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-3: Small memory model

ROM data (e.g. strings, floating point constants, jump tables, etc.) is also

present in LDAT sections and thus needs some space in the 64K of 'normal

user data'. We recommend using page 3 for (external) ROM, allowing this

ROM data (and code sections) to be allocated in this page and yet use

DPP3 for SYSTEM (sfr) access. This means that the other three pages can

be used for (external) RAM.

Chapter 33–12
L
A
N
G
U
A
G
E

In the small model far/huge/shuge data access causes the compiler to emit

code which, temporarily, overrules DPP0 with the page number of the far

data. The DPP0 register is restored afterwards. DPP2 is sometimes used for

far/near copy actions. During a task switch (interrupt) DPP0 and DPP2 are

preserved and the correct page number is assigned to these DPP registers

before activating the C code of this task, because a far access might be

interrupted. When using the C167 (-x option), a more elegant solution is

possible, using the special prefix instructions, which are treated by the

processor as a prefix for a number of so called 'atomic instructions': thus

uninterruptable.

If the C167 cannot be used, this method for far data access produces extra

code and results into slow execution. Therefore accessing far data must be

an exception within the application. The majority of the execution time of

the application should be dealing with normal data, otherwise it is better

to use the large model, allowing more efficient usage of far data.

Far data is allocated in 'PDAT' sections, telling the assembler/linker/locator

that a 'paged section' (must be checked to be in-page) is needed, which

can be anywhere in memory. Huge data is allocated in 'HDAT' sections,

specifying that a 'non-paged' (no checking for 16K) is needed, which can

be anywhere in memory. Shuge data is allocated in 'SDAT' sections, which

have the same properties as HDAT sections. The difference is that address

calculations on shuge data is done in 16 bit rather than in 32 bit as with

huge data. This implies that no shuge object can exceed 64K.

The following scheme is used for the data section types:

Section
type

NON–SEGMENTED DATA
(tiny/small)

SEGMENTED DATA
(medium/large)

 meaning location meaning location

DATA paged (<16K) 1st segment: <64K paged (16K) anywhere

LDAT linear(<64K) tiny: 1st segment: <64K
small: method I, II or III

– –

PDAT paged (<16K) anywhere – –

HDAT non–paged anywhere non–paged anywhere

SDAT – – non–paged anywhere

Table 3-4: Small memory data section types

LDAT and PDAT section types are not allowed in segmented data mode.

The only section type allowed in a DGROUP is the DATA type (not

HDAT).

Language Implementation 3–13

• • • • • • • •

3.2.1.3 MEDIUM MEMORY MODEL

The compiler assumes that the CSP register contains the initial value of 0,

which allows code access in the first 64K segment. The four DPP registers

do not contain the system startup values. The DPP registers are used to

access the 16M of data in 16K pages. Because the paging principle is used

with 14 bit address arithmetic, data objects (e.g. arrays) cannot be greater

than 16K (one page), unless the _huge or _shuge keyword is used. The

_huge keyword tells the compiler to generate 24 bit address arithmetic.

The _shuge keyword tells the compiler to generate 16 bit address

arithmetic. Because paging is used, the processor must run in segmented

mode. Exceptional access to code beyond 64K is possible declaring a huge

function. However, it is not allowed for such a huge function to call any

standard C (or run-time) library function, or any other 'near function' in

the first segment. In section 3.2.1.6 some details are present about

efficiency in large data models.

Map example

256K

64K

0

normal data

code

huge data /

near data

normal data

shuge data

xnear data
user stack

Figure 3-3: Medium memory map example

Chapter 33–14
L
A
N
G
U
A
G
E

Item Usage Comments

CPU segmented –

code <64K limited to first segment of 64K.

xnear data <16K 16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

normal data >64K paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K.

near data <16K 16K (per task) of fast accessible user data
anywhere in 256K/16M via ’default data
group’. Automatically utilized by c166 !
The keywords _near , _system and _iram
also allow explicit user manipulation.

huge data allowed supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24 bit address
arithmetic). Huge data access is less fast
than normal data access.
Size of one struct < 64K.
Array of struct/any type > 64K

shuge data allowed supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-5: Medium memory model

Language Implementation 3–15

• • • • • • • •

3.2.1.4 LARGE MEMORY MODEL

The compiler does not assume the CSP register to contain something valid.

Each call results in a far inter-segment code access (unless the _near
keyword is used explicitly in the function prototype). Therefore this model

allows code access in all segments up to 16M. As in the medium model, all

data accesses are far. The four DPP registers do not contain the system

startup values. The DPP registers are used to access the 16M of data in 16K

pages. Because the paging principle is used with 14 bit address arithmetic,

data objects (e.g. arrays) cannot be greater than 16K (one page), unless the

_huge or _shuge keyword is used. The _huge keyword tells the compiler

to generate 24 bit address arithmetic. The _shuge keyword tells the

compiler to generate 16 bit address arithmetic. Of course the processor

must run in segmented mode. In section 3.2.1.6, Efficiency in Large Data
Models (Medium/Large) some details are present about efficiency in large

data models.

Map example

256K

0

normal data

code

near data

code

huge data /
shuge data

xnear data
user stack

Figure 3-4: Large memory map example

Chapter 33–16
L
A
N
G
U
A
G
E

Item Usage Comments

CPU segmented –

code >64K allows code anywhere in 256K/16M.

normal data >64K paged data access anywhere in 256K/16M.
The size of a single data object is limited to
16K.

xnear data <16K 16K (per task) of fast accessible user data
anywhere in 256K/16M via DPP1. This
memory space shares DPP1 with the user
stack, hence xnear data + user stack < 16K.
Use the _xnear keyword.

near data <16K 16K (per task) of fast accessible user data
anywhere in 256K/16M via ’default data
group’. Automatically utilized by c166 !
The keywords _near , _system and _iram
also allow explicit user manipulation.

huge data allowed supports huge data access anywhere in
256K/16M. The size of a single huge object
is not limited to 16K (24 bit address
arithmetic). Huge data access is less fast
than normal data access.
Size of one struct < 64K.
Array of struct/any type > 64K

shuge data allowed supports shuge data access anywhere in
256K/16M. The size of a single shuge object
is limited to 64K (16 bit address arithmetic).
Shuge data access is as fast as huge data,
but arithmetic on shuge addresses is faster.

Table 3-6: Large memory model

3.2.1.5 _MODEL

c166 introduces the predefined preprocessor symbol _MODEL. The value

of this symbol represents the memory model selected. This can be very

helpful in making conditional C code in one source module, used for

different applications in different memory models. See also the section

Portable C Code, explaining the include file c166.h .

Language Implementation 3–17

• • • • • • • •

The value of _MODEL is:

tiny model 't'

small model 's'

medium model 'm'

large model 'l'

Example:

#if _MODEL == ’m’ || _MODEL == ’l’ /* medium or
 large model */
...
#endif

3.2.1.6 EFFICIENCY IN LARGE DATA MODELS

(MEDIUM/LARGE)

For programs compiled with the medium and large memory model, the

compiler creates default data sections (member of the default data group)

and additional far/huge/shuge data sections for each module. Since

accessing data outside the default data page is slower than accessing data

within the default data page, programs will run faster if as many of their

variables as possible are declared in such a way that they are allocated in

the default data page. There are a number of ways to control the

allocation of data:

1. All initialized static/public RAM data will be allocated in these default

data sections unless the _far /_huge /_shuge keyword is explicitly used

in the declaration or the -T option is used for specifying a certain

threshold value for this data.

All non-initialized static/public RAM data having a size below a

certain 'threshold' value will be allocated in these default data sections

unless the _far /_huge /_shuge keyword is used explicitly in the

declaration.

Strings, floating point constants and jump tables are allocated in ROM and

can never be in the default data sections.

Chapter 33–18
L
A
N
G
U
A
G
E

The default data sections are member of a special DGROUP group which

is (of course) limited to 16K. It is possible to have a DGROUP area (of

max 16K) per task. DPP2 is ASSUMED to contain the page number of this

group, which is assigned at system startup. During a context switch

(interrupt) DPP2, and the scratch register DPP0, are saved, assigned new

values and restored afterwards. However, you can also share the default

data group area with the default data groups of each task (interrupt).

The sections of the DGROUP must be declared as a COMMON section:

same name, same size and same contents. In that case the total size of the

default data group area of the whole application is limited to 16K. This

results in the following DPP-usage:

DPP0 far pointer dereferencing, external far variables

DPP1 user stack (R0 user stack pointer) / xnear data space

DPP2 default data group (C166_DGROUP)

DPP3 SYSTEM (sfr access, bit-addressable access,

iram access and system access)

The threshold value is user definable via the -T option. The default value

is 256 for non-initialized static/public RAM data. The major advantage of

this approach is that better performance is achieved with existing C source

code. However, addresses of these variables are still treated 'far' (4 bytes),

for usage with (default far) pointers.

2. The introduction of the _near keyword.

Near forces allocation in the default data group. It also allows better

pointer arithmetic, because a pointer to near (2 bytes instead of 4 bytes) is

supported. And last but not least near public/external references are

supported, assuming DPP2 is used with an external near variable. Of

course a near address can be converted to a far address.

3. The introduction of the _system keyword.

System forces allocation in the system data group. The system data group

C166_SGROUP is always located in the system page (page 3). It also

allows better pointer arithmetic, because a pointer to system (2 bytes

instead of 4 bytes) is supported. Public/external references are supported,

assuming DPP3 is used with an external system variable. Of course a

system address can be converted to a far address.

Language Implementation 3–19

• • • • • • • •

4. The introduction of the _xnear keyword.

The _xnear keyword forces data to be allocated in the data group

'C166_XGROUP'. Variables in the 'xnear' memory space have the same

properties as 'near' variables. The C166_XGROUP contains variables in the

xnear data space and the user stack. The size of xnear data and the user

stack size cannot exceed 16Kb. Objects in the xnear data space are

accessed through DPP1.

5. C supports so�called 'tentative declarations', which means that a

declaration such as 'int i ;' remains tentative during the module until

'defining occurrence' is given (e.g. via 'int i=5; '). If such does not

happen, it is, for example, allowed to declare this variable to be external

at the end of the module! Because this programming style is not very

common (probably only needed for generated C source), the compiler

option -Ot is available, to assign 'defining occurrence' immediately to

every tentative declaration, allowing more data to be optimized. This

option is default on, using the medium/large model (lazy programmers

often 'forget' the static attribute of public non-initialized variables which

are only used in one module).

If the tentative property described above is really used in a C program, a

double definition error will occur. In this case the option must be turned

off (-OT) for this module (or the module must be edited of course).

Using -OT results in more code and slower execution.

If the cumulated size of all C166_DGROUP sections of a task exceeds 16K,

there are four possibilities to solve it (to be tried in this order):

1. Declare 'near' variables as 'xnear' / 'system' variables.

2. Declare variables to be 'far' explicitly (using the _far keyword).

3. Decrease the 'threshold' values (-T option), so more variables are

allocated in far data sections. If the threshold value is 0, only 'near'

variables will be allocated in the default data sections.

4. Decrease the number of 'near' variables.

Chapter 33–20
L
A
N
G
U
A
G
E

5. Use this possibility only if the other solutions cannot be used!

Use the -Ggroupname option, to specify the group to be used by the

compiler. So, for example, one set of C modules can allocate their default

data in the first data group and all other modules allocate their default data

in a second data group. If the -G option is used, the C compiler emits

code at each public (not static) function entry point to preserve the current

DPP2 value and assign the page number of the new correct data group to

DPP2. At function exit the original DPP2 value is restored. This seems

rather expensive, but the gain of code size by using DPP2 can be more

than the loss introduced by these instructions.

This is the last alternative and certainly not recommended, because it

might introduce some dangerous, hard to find side-effects, as described

below in separate notes.

If you use this option, it is your own responsibility to declare 'extern near'

variables within the same group! Therefore the compiler emits warnings

for 'extern near' declarations if you use the -G option.

Be sure that functions called by this module do NOT use their own default

data. Some C library functions might use default data too!

3.2.1.7 NEAR, XNEAR, FAR, HUGE AND SHUGE

As described before, a limitation of a predefined memory model is that,

when you change memory models, all data and code address sizes are

subject to change. Therefore c166 lets you override the default addressing

convention for a given memory model and access near, far, huge or shuge

objects using special declarations. This is done with the _near , _far ,

_huge or _shuge keyword. These special type modifiers can be used with

a standard memory model (except tiny) to overcome addressing limitations

for particular items (either data or code) without changing the addressing

conventions for the program as a whole.

The _near , _xnear , _far , _huge and _shuge keywords are not allowed

with automatics and parameters (unless used as a target of a pointer of

course).

The following explains how the usage of these keywords affects the

addressing of code, data or pointers to code or data in all models:

Language Implementation 3–21

• • • • • • • •

tiny

In this model all normal data is implicitly _near , because the processor

does not run in segmented mode. A linear 16 bit (64K) data area is

achieved. The _far , _huge and _shuge keywords are not possible (and

not allowed).

small

In this model all normal data is implicitly near. Address arithmetic is

performed on 16 bit addresses (linear address space assumed). Therefore

objects may be greater than 16K, unless the SND locator control is used,

which introduces gaps in the address space of normal data. Besides 64K of

normal data (including ROM data), far data is supported. Far data may be

anywhere in memory, not assumed to be in the linear data area. You can

reference far data using a 24 bit address. Address arithmetic is performed

on 14 bit (page offset only). Therefore, individual data items (e.g. arrays)

cannot exceed 16K (page) and cannot cross page boundaries if declared

_far . If you use far objects greater than 16K, you must declare them

_huge or _shuge . Huge data may be anywhere in memory and you can

also reference it using a 24 bit address. However, address arithmetic is

done using the complete address (24 bit). Shuge data may also be

anywhere in memory and you can also reference it using a 24 bit address.

However, address arithmetic is done using a 16 bit address.

All function calls are assumed to be _huge (maybe in another code

segment of 64K). However, an intra-segment call is supported via a _near
function (the keyword _near must be present in the function prototype).

In fact you could declare (and define) all static functions as near functions,

because they are always allocated in the same code section as the

functions they are called by. You cannot apply the _far keyword to

functions.

medium

In this model 'near data' means data allocated into a special page for fast

access. See section 3.2.1.6, Efficiency in Large Data Models
(Medium/Large) for more details on the 'default data group'. Address

arithmetic on near and far data is always 14 bit. As in the small model,

huge and shuge data access is supported.

This model also supports 'xnear' data. This dta is allocated together with

the user stack in DPP1. The access to this memory space is just as fast as

to 'near' data. Address arithmetic on 'xnear' data is done in 14 bits. See

section 3.2.1.6, Efficiency in Large Data Models (Medium/Large) for more

details on the 'C166_XGROUP' data group.

Chapter 33–22
L
A
N
G
U
A
G
E

All function calls are assumed to be in the same (first) segment of 64K.

However, an inter-segment call is supported via a huge function (the

keyword _huge must be present in the function prototype). The _huge
function may not call any standard C library function, run-time library or

any normal _near function in another segment. You cannot apply the

_far keyword to functions.

large

In this model 'near data' means data allocated into a special page for fast

access. See section 3.2.1.6, Efficiency in Large Data Models
(Medium/Large) for more details on the 'default data group'. Address

arithmetic on near and far data is always 14 bit. As in the small and

medium model, huge and shuge data access is supported.

This model also supports 'xnear' data. This dta is allocated together with

the user stack in DPP1. The access to this memory space is just as fast as

to 'near' data. Address arithmetic on 'xnear' data is done in 14 bits. See

section 3.2.1.6, Efficiency in Large Data Models (Medium/Large) for more

details on the 'C166_XGROUP' data group.

All function calls are assumed to be _huge (in another code segment of

64K), unless you use the _near keyword in the function prototype. In fact

you could declare (and define) all static functions as near functions,

because they are always allocated in the same code section as the

functions they are called by.

The _near , _xnear , _far , _huge and _shuge keywords modify either

objects or pointers to objects. When using them to declare data or code

(or pointers to data or code), the following rules must be kept in mind:

• The keyword always modifies the object or pointer immediately to

its right. In complex declarations such as

 char _far * _near p;

think of the _far keyword and the item to its right as being a

single unit. In this case, p is a pointer to a far char, and therefore

contains a 24 bit far address.

• If the item immediately to the right of the keyword is an identifier,

the keyword determines the storage type of the item: whether it

must be allocated in the default data section or a separate data

section. In this case the pointer p is explicitly declared to be

allocated in normal data (if tiny/small model is used) or in the

default data group (if medium/large model is used).

Language Implementation 3–23

• • • • • • • •

• If the item immediately to the right of the keyword is a pointer (a '*'

(star)), the keyword determines the logical type: whether the

pointer will hold a _near address (2 bytes), a _far address (4

bytes), a _huge address (4 bytes) or an _shuge address (4 bytes).

For example,

 char _far * _near p;

allocates p as a _far pointer to an item of type char. The pointer p
itself is allocated in near data.

• The memory model used determines the default logical type of a

pointer. In:

 int *p;

p is a far pointer when you use the medium or large model,

otherwise a near pointer. The storage type of p itself is near in tiny

and small, and, depending on the threshold value, probably also

near in medium and large.

• You cannot apply the _far keyword to functions.

3.2.1.8 SYSTEM, IRAM AND BITA

As described before, c166 lets you override the default addressing

convention for a given memory model and access near, far, huge or shuge

objects using special declarations. But also special declarations are

supported by c166 to access data objects in the SYSTEM page, like

internal RAM data, overall system data or bitaddressable memory. This is

done with the keywords _system , _iram and _bita . These special type

modifiers can be used in all memory models to overcome addressing

'limitations' for particular near data items.

The _system , _iram and _bita keywords are not allowed with

automatics, functions and constants unless used as a target of a pointer.

_system

Objects declared with the keyword _system are allocated in system data

sections (see paragraph Section Allocation). The system data sections are

member of the special group C166_SGROUP which is limited to the size of

the SYSTEM page (16K-SFRs). DPP3 is ASSUMED to contain the page

number of this group which is equal to the SYSTEM page number (page 3)

and is assigned at system startup.

Chapter 33–24
L
A
N
G
U
A
G
E

_iram

Objects declared with the keyword _iram are allocated in

IRAMADDRESSABLE data sections (see paragraph Section Allocation). The

locator places IRAMADDRESSABLE sections in the internal RAM of the

C166/ST10.

Addressing of _iram objects is exactly the same as addressing _system
objects because the internal RAM is located in the SYSTEM page. Both

_iram and _system are addressed via the SYSTEM data page pointer

DPP3 which is assigned to the system page at system startup.

The _iram sections are limited to 1024 bytes internal RAM for the C166

and 2048 bytes internal RAM for the C165/C167. By default the _iram
section size is limited by the compiler to 1024 bytes. When compiled with

the -x[ifmp] command line option this limit is 2048 bytes. But you can

always set your own _iram sections size limit with the -m mem=size
compiler option (e.g. -mIR=512). See for more information the section

Detailed Description of the C-166 Options.

_bita

When using bit fields in structures that are located in bitaddressable

memory the compiler can take advantage of the bit and bit field

instructions of the processor. You can tell the compiler that a struct must

be located in bitaddressable memory by using the _bita memory

qualifier.

Example:

_bita struct {
 unsigned bf1:1;
 unsigned pit:2;
 unsigned bf2:1;
} s;

The compiler will allocate the struct in a bitaddressable section. For nested

structures and unions _bita can only be applied to the outer level. When

_bita is used for structure members the compiler ignores this.

Example:

struct m {
 int m1:2;
 int m2:3;
} mm;

Language Implementation 3–25

• • • • • • • •

struct n {
 _bita struct m n1; // _bita ignored
 struct m n2;
} nn;

Even with the _bita keyword structures will be word aligned. Also the

structure members are aligned as they would be without the _bita
qualifier; i.e., byte addressable members (signed /unsigned char) are

byte aligned and word addressable members (such as int and pointers)

are word aligned.

The _bita keyword can also be applied to global or static variables of

type char, int and long. In bitaddressable memory chars will be word

aligned. When accessing single bits in these variables like:

_bita int w;

w |= 0x4000;
if (w & (1 << 10))
{
 w &= 0xFFEF;
}

then the compiler will use bit instructions:

 BSET _w.14
 JNB _w.10,_3
 BCLR _w.4
_3:

For non-static local variables the _bita keyword is not allowed. Most

local variables will be placed in registers automatically, making them

bitaddressable anyway. See also the pragmas autobita and autobitastruct

in section Pragmas.

Chapter 33–26
L
A
N
G
U
A
G
E

3.2.2 SECTION ALLOCATION

Unlike some other microcontrollers, the C166/ST10 microcontroller does

not have different memory spaces with the same address. This means that

a non-automatic object can be referred to solely by its starting address,

because the address represents a unique memory location. There is also

no difference in assembly code accessing internal RAM, external RAM,

internal ROM or external ROM (within the same page/segment).

The processor, however, distinguishes memory access in execution speed.

Code access to internal ROM is faster than access to external ROM. Data

access to internal RAM is faster than access to external RAM. So, a piece of

assembly code executes faster if the code is allocated in internal ROM

instead of external ROM. And the same piece of code gets an even higher

execution speed if the data structures accessed are allocated in internal

RAM instead of external RAM.

In C-166 the code generator does not have to know if internal or external

RAM is accessed, because the same code can be generated. Execution

speed is in fact a matter of allocating sections in internal memory instead

of external memory. The allocation of sections is done by the locator stage

of l166, and can be manipulated by specifying a memory range for each

'class' of sections.

c166 allows you to control the class, align type and combine type of a

section with a command line option (e.g. -RclNB=NEARRAM changes the

class of non-initialized near data to 'NEARRAM' for this module). The

disadvantage of this method is that the changed attributes are used for the

complete C module.

However, using pragmas, c166 allows more flexibility of storage

specification within a C module. In this approach it is possible to declare

for example only a few C variables of a module to be allocated in a special

section which must be PEC-addressable and the rest in normal data

sections. Or only one function of the module in internal ROM and the rest

in external ROM.

Language Implementation 3–27

• • • • • • • •

Naming convention

c166 uses a naming convention for the generated sections. In general the

following modifications are applied to a filename:

- whitespace and dots are converted to underscores

- filenames are converted to uppercase.

- if a filename starts with a digit, the first digit is replaced by an

underscore.

Everything after (and including) the last dot is stripped from the filename.

Thus, the filename: "long file.name.c " will result in the following

string to be used as a basis for the section name (in the text below refered

to as "module"):

”LONG_FILE_NAME”

The length of a filename is unlimited. Furthermore, the section naming is

divided into three catagories as described below:

I Non-initialized Data Sections/Normal Sections/Romdata Sections

For non-initialized data sections, normal sections and romdata sections the

section name is generated as follows:

module_number_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

number is a unique number.

mem is a memory abbreviation code as shown in the next table.

You may change the section attributes of this category.

c166 uses the following table for its defaults (e.g. compiling mod.c):

Description mem type align combine class example

–Mm/
–Ml

–Mt/
–Ms

type type section name

bits BI BIT BIT BIT PUBLIC CBITS MOD_1_BI

strings/floating
point constants1

CO DATA LDAT WORD PUBLIC CROM MOD_2_CO

bitwords BA DATA LDAT WORD PUBLIC CBITWORDS MOD_3_BA

Chapter 33–28
L
A
N
G
U
A
G
E

exampleclasscombinealigntypememDescription

section nametypetype–Mt/
–Ms

–Mm/
–Ml

near data NB DATA LDAT WORD PUBLIC CNEAR MOD_4_NB

xnear data XN DATA –– WORD PUBLIC CUSTACK MOD_15_XN

far data FB DATA PDAT WORD PUBLIC CFAR MOD_5_FB

huge data HB HDAT HDAT WORD PUBLIC CHUGE MOD_6_HB

shuge data XB SDAT SDAT WORD PUBLIC CSHUGE MOD_7_XB

functions PR CODE CODE WORD PUBLIC CPROGRAM MOD_8_PR

near romdata NC DATA LDAT WORD PUBLIC CNEAR2 MOD_9_NC

xnear romdata XR DATA –– WORD PUBLIC CUSTACK MOD_16_XR

far romdata FC DATA PDAT WORD PUBLIC CFARROM MOD_10_FC

huge romdata HC HDAT HDAT WORD PUBLIC CHUGEROM MOD_11_HC

shuge romdata XC SDAT SDAT WORD PUBLIC CSHUGEROM MOD_12_XC

system data SB DATA DATA WORD PUBLIC CSYSTEM MOD_12_SB

internal ram
data

IR DATA LDAT IRAM–
ADDRES–
SABLE

PUBLIC CIRAM MOD_14_IR

1 See also section 3.2.4, Constant Romdata Section Allocation, for small model only.
2 CNEARROM when tiny/small model is used.

Table 3-7: Section names (non-initialized data, normal and romdata)

When using the medium or large model, near data, xnear data or system

data always remain a member of the default data group or system data

group. So for these memory areas, it is not possible to change all section

attributes.

II Initialized Ramdata Sections

For initialized data the section name is generated as follows:

module_IR_mem
module_ID_mem
module_ER_mem
module_ED_mem

where,

module is the module name in uppercase (without suffix) of the .c
file

mem is a memory abbreviation code as used by non-initialized

ramdata sections (SB, IR, BI, BA, NB, FB, HB or XB).

Language Implementation 3–29

• • • • • • • •

You can NOT change the section attributes of this category.

c166 uses the following table for its defaults:

Description type align– combine class example

–Mm/
–Ml

–Mt/
–Ms

type type section
name

iramdata (ROM copy) DATA LDAT (t)
PDAT (s)

WORD PUBLIC CINITROM MOD_IR_NB

iramdata (RAM space) DATA LDAT WORD PUBLIC CINITIRAM MOD_ID_NB

eramdata (ROM copy) DATA LDAT (t)
PDAT (s)

WORD PUBLIC CINITROM MOD_ER_NB

eramdata (RAM space) DATA LDAT WORD PUBLIC CINITERAM MOD_ED_NB

Table 3-8: Section names (initialized romdata)

III Specials

The following special section names exist:

C166_INIT init table for initialized RAM

C166_BSS clear table for non-initialized RAM

C166_US user stack

C166_US0 user stack for local register bank 0.

C166_US1 user stack for local register bank 1.

C166_INT scalable interrupt vector table.

?C166_HEAP heap section for memory allocation

(linker or locator generated)

?INTVECT interrupt vector table (locator generated)

You can NOT change the section attributes of this category.

Chapter 33–30
L
A
N
G
U
A
G
E

c166 uses the following table for its defaults:

Description type align– combine class (fixed)

–Mm /
–Ml

–Mt /
–Ms

type type section
name

user stack DATA LDAT WORD GLBUSRSTACK CUSTACK C166_US

user stack DATA LDAT WORD GLBUSRSTACK CUSTACK C166_US0

user stack DATA LDAT WORD GLBUSRSTACK CUSTACK C166_US1

init table DATA LDAT (t)
PDAT (s)

WORD GLOBAL CINITROM C166_INIT

clear table DATA LDAT (t)
PDAT (s)

WORD GLOBAL CINITROM C166_BSS

heap HDAT LDAT WORD PUBLIC ?CHEAP ?C166_HEAP

vector table CODE CODE WORD PUBLIC C166_VECTAB C166_INT

Table 3-9: Section names (specials)

You can only change the section attributes of non-initialized data sections,

normal sections and romdata sections (category I), using the mem code

listed in the table.

You can tell the compiler to use other class names, combine types and

align types instead of the defaults listed above by means of the following

pragmas. Each pragma, has an equivalent command line option that can

be used if the complete module must use the changed attributes.

#pragma class mem=name /* use name as class for
 section of area mem */
#pragma combine mem=ctype /* use ctype as combine type
 for section of area mem */
#pragma align mem=atype /* use atype as align type
 for section of area mem */
#pragma default_attributes /* use default attributes as
 listed above */

atype is one of the following align types:

B Byte alignment

W Word alignment

P Page alignment

S Segment alignment

C PEC addressable

I IRAM addressable

Language Implementation 3–31

• • • • • • • •

ctype is one of the following combine types:

L private ('Local')

P Public

C Common

G Global

S Sysstack

U Usrstack

A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Examples:

1. The C module is called 'test.c'. The example illustrates how to allocate one

array in a special section with the class 'SLOWRAM' and the rest of the

data in data section with default attributes. The generated code is listed

below:

C:

#pragma class nb=SLOWRAM
int array[1000];

#pragma default_attributes
int j;

Generated code:

TEST_1_NB SECTION LDAT WORD PUBLIC ’SLOWRAM’
TEST_1_NB_ENTRY LABEL BYTE
_array LABEL WORD
 DS 2000
 PUBLIC _array
TEST_1_NB ENDS

TEST_2_NB SECTION LDAT WORD PUBLIC ’CNEAR’
TEST_2_NB_ENTRY LABEL BYTE
_j LABEL WORD
 DS 2
 PUBLIC _j
TEST_2_NB ENDS

2. The C module is called 'test.c'. The example illustrates how to allocate one

C variable on a fixed memory location (address 8000H) and the rest of the

data in a data section with default attributes. As described in the 'TASKING

C166/ST10 Cross-Assembler, User's Guide', AT is considered as an

additional align-type and implies the default combine type PRIVATE.

Chapter 33–32
L
A
N
G
U
A
G
E

C:

#pragma combine nb=A32768
volatile int cntrl_reg;
 /* e.g. an I/O register of peripheral chip */

#pragma default_attributes
int i;

Generated code:

TEST_1_NB SECTION LDAT WORD AT 08000h ’CNEAR’
TEST_1_NB_ENTRY LABEL BYTE
_cntrl_reg LABEL WORD
 DS 2
 PUBLIC _cntrl_reg
TEST_1_NB ENDS

TEST_2_NB SECTION LDAT WORD PUBLIC ’CNEAR’
TEST_2_NB_ENTRY LABEL BYTE
_i LABEL WORD
 DS 2
 PUBLIC _i
TEST_2_NB ENDS

3.2.3 CODE MEMORY FRAGMENTATION

By default the compiler uses one section per module that contains the

code. You can change this behavior with the following pragmas:

#pragma fragment
#pragma fragment resume
#pragma fragment continue

The #pragma fragment causes the compiler to generate each single

function in its own section. The compiler will continue to do so until it

encounters either #pragma fragment resume or #pragma fragment

continue.

In case of #pragma fragment resume the compiler will resume code

generation in the last active section (with the same attributes) before

#pragma fragment.

In case of #pragma fragment continue the compiler will start a new

continuous code.

Language Implementation 3–33

• • • • • • • •

These pragmas are especially useful in combination with the smart linking

feature of the linker/locator. When you use smart linking, the linker will

only link sections that are referenced. Thus if each function has its own

section, only functions that are actually called (referenced) are linked

rather than all functions in an .obj file at once.

Example:

void func1(void) { } /* Code section 1 */

#pragma fragment
void func2(void) { } /* Code section 2 */
void func3(void) { } /* Code section 3 */

#pragma fragment resume
void func4(void) { } /* Resume in code section 1 */

#pragma fragment
void func5(void) { } /* Code section 4 */

#pragma fragment continue
void func6(void) { } /* Continue in code section 5 */
void _near func7(void) { } /* Code section 5 */

#pragma fragment resume /* No effect: Code section 5 */
void func8(void) { }
#pragma fragment continue /* No effect */

#pragma fragment
_near void func9(void) { } /* Code section 6 */

#pragma fragment resume
void main(void) /* Resume in code section 5 */
{
 func9();
 func7();
 return;
}

3.2.4 CONSTANT ROMDATA SECTION ALLOCATION

In the small memory model c166 default allocates all constant romdata for

strings, floating point constants, initialization of aggregates and jump tables

in normal data (near in small memory model), which is limited to 4 pages

of 16K. When you do not want to sacrifice a normal data page for ROM,

you should use the -Oe option of c166.

When the -Oe option is enabled the following changes are in effect for

the small memory model:

Chapter 33–34
L
A
N
G
U
A
G
E

• c166 allocates string and floating point constants in a far romdata

section (PDAT). During startup this data is copied from far ROM to

near RAM like initialized ramdata. The code generated for accessing

these constants is not changed. This means no change in execution

speed. The disadvantage is that the memory for these constants is

allocated twice: once in far ROM and once in near RAM. The ROM

sections have class 'CINITROM' and the RAM sections have the class

'CINITERAM' or 'CINITIRAM', depending on the #pragma

eramdata/iramdata.

• constant data for initialization of automatic aggregates and jump

tables is allocated in far ROM. c166 generates different code for

accessing this data as far data, which implies a minor draw-back in

code execution performance.

When you use the const keyword for normal data, this data is placed in

near ROM, even with the -Oe option.

To move jump tables separately from string and floating point constants to

various locations, you can use the following pragmas:

#pragma switch_tabmem_far

For the small memory model, jump tables are placed in far ROM. The

location of string and floating point constants is still controlled by the

-Oe/-OE option as described above. The ROM section where the jump

tables are placed have class 'CFARROM'. The code generated for accessing

the jump table in far ROM is slightly slower compared to the situation

where jump tables reside in near ROM.

#pragma switch_tabmem_near

For the small memory model, jump tables are placed in near ROM. The

location of string and floating point constants is still controlled by the -Oe

/ -OE option as described above. The ROM section where the jump tables

are placed have class 'CNEARROM'.

#pragma switch_tabmem_default

This is the default. Use this pragma to return the control of the jump table

locations back to the -Oe / -OE command line option as described above.

The pragmas switch_tabmem_far, switch_tabmem_near and

switch_tabmem_default can be used anywhere in the source file. The

location of the jump table is affected by the last pragma before a switch

statement.

Language Implementation 3–35

• • • • • • • •

The pragmas can be passed through the command line by using the

-zpragma command line option.

The delivered small C libraries do not support constant romdata as far

data, because it is not commonly used. All C library functions are compiled

with the default option -OE, to allocate constant romdata 'CROM' in linear

data sections (LDAT). You have to re-compile the C-library functions

which contain constant romdata 'CROM' with the option -Oe if you do not

want near ROM. You can rebuild the small C libraries (c166s.lib and

c166ss.lib) using the makefiles in the library directories.

All library modules are re-compiled and the libraries are rebuilt by these

makefiles.

String constants are in:

_doprint.c, _doscan.c

The const keyword is in:

ctype.c

Floating point constants are in:

_fltpr.c, _getflt.c, _acos.c, _asin.c, _atan.c,
_atan2.c, _cos.c, _cosh.c, _exp.c, _floor.c,
_fmod.c, _ldexp.c, _log.c, _log10.c, _pow.c,
_satan.c, _sinh.c, _sinus.c, _sqrt.c, _strtod.c,
_tan.c, _tanh.c, fpnull.asm,
_asctime.c, _gmtime.c, _mktime.c, _strftm.c

Before running these makefile you should have rights to write to the

library files c166s.lib and c166ss.lib .

Restriction:

When the #pragma initeram or #pragma initiram is used, only the last

pragma in the source file affects the section attributes of the near ram data

sections for string and floating point constants.

Chapter 33–36
L
A
N
G
U
A
G
E

3.2.5 THE _AT() ATTRIBUTE

In c166 it is possible to locate a global variable at a specified address. This

can be done with the _at() attribute. The syntax is:

_at(address)

where, address is the location in memory of the variable.

In the tiny memory model, the address is limited to 64Kbytes. In all other

models, the address space of the used device is the limit.

The _at() attribute can only be used on non-initialized global variables.

Variables, which are declared constant, using the const modifier can be

initialized and they will be placed in a rom section. Depending on the

memory modifier, this will be near-, far-, huge- or shugerom.

If a variable meets the autobita or autobitastruct pragma requirements

and the _at() keyword is specified, the _at() attribute overrules the

autobita/autobitastruct pragmas.

The _at() attribute has no effect on variables which are declared extern.

In the segmented memory models, variables which have the _at()
attribute are not moved automatically to near memory. However, you can

explicitly specify an absolute variable to be near.

For near variables, the locator automatically assigns the correct page to the

correct DPP register. Note that all other relocatable variables in the

concerning page will also be moved. The dynamic assignments of DPP

registers can be overruled by the linker/locator controls. However, in case

of absolute variables, this will usually lead to errors because there is only

one valid DPP-register / page-number combination.

If two sections overlap, or if not all near sections can be located the

linker/locator will generate an error message.

The _at() attribute cannot be used with the _bit , _system , _bita ,

_sfr , _esfr , _xsfr and _iram memory modifiers.

Examples:

_near int i _at(0x29000);
_far const char ch _at(0x2A900) = 100;
int j, * k _at(0x2B002);
int * (* * fptr)(int, int) _at(0x12344);

Language Implementation 3–37

• • • • • • • •

This will generate the following sections, when compiled in the small

memory model:

TEST_1_NB SECTION LDAT WORD AT 029000h ’CNEAR’
TEST_1_NB_ENTRY LABEL BYTE
_i LABEL WORD
 DS 2
 PUBLIC _i
TEST_1_NB ENDS

TEST_2_FC SECTION PDAT BYTE AT 02A900h ’CFARROM’
TEST_2_FC_ENTRY
_ch LABEL BYTE
 DB 64h
 PUBLIC _ch
TEST_2_FC ENDS

TEST_3_NB SECTION LDAT WORD AT 02B002h ’CNEAR’
TEST_3_NB_ENTRY LABEL BYTE
_k LABEL WORD
 DS 2
 PUBLIC _k
TEST_3_NB ENDS

TEST_4_NB SECTION LDAT WORD AT 012344h ’CNEAR’
TEST_4_NB_ENTRY LABEL BYTE
_fptr LABEL WORD
 DS 2
 PUBLIC _fptr
TEST_4__NB ENDS

TEST_5_NB SECTION LDAT WORD PUBLIC ’CNEAR’
TEST_5_NB_ENTRY LABEL BYTE
_j LABEL WORD
 DS 2
 PUBLIC _j
TEST_5_NB ENDS

For example, in this case the linker/locator assigns a value of 0x0A to

DPP2. This is the same as using the SND(DPP2(10)) linker/locator control.

When specifying a near address, bits 14 and 15 implicitly specify the

DPP-register that will be used. DPP3 cannot be changed. This is because

DPP3 points to the memory that contains SFRs and bit addressable

memory.Therefore it is not possible to locate 'near' variables in the third

page of any segment, other than segment 0.

Chapter 33–38
L
A
N
G
U
A
G
E

3.2.6 THE _ATBIT() ATTRIBUTE

In c166 it is possible to define bit variables within a _bitword or

(bit-addressable) _sfr variable. This can be done with the _atbit()
attribute. The syntax is:

_atbit(name, offset)

where, name is the name of a _bitword or _sfr variable and offset
(range 0-15) is the bit-offset within the variable.

Examples:

_sfr P0;
_sfrbit P0_6 _atbit(P0, 6);

_bitword bw; /* bitaddressable word */
_bit myb _atbit(bw, 3);

Using the defined bit:

if (myb)
 myb = 0;

generates the same code as:

if (_getbit(bw, 3))
 _putbit(0, bw, 3);

The first example defines an _sfrbit within a (bit-addressable) _sfr
variable. The second example defines a bitaddress within a bitaddressable

word. For more information on SFR variables see the section Special
Function Registers. For more information on _bitword variables see the

section The Bitword Type.

The storage class of the defined bit is ignored. The storage class is

inherited from the _bitword variable instead.

3.2.7 INLINE C FUNCTIONS

With the _inline keyword, a C function can be defined to be inlined by

the compiler. An inline function must be defined in the same source file

before it is 'called'. When an inline function has to be called in several

source files, each file must include the definition of the inline function.

This is typically solved by defining the inline function in a header file.

Language Implementation 3–39

• • • • • • • •

Example:

_inline int
add(int a, int b)
{
 return(a + b);
}

void
main(void)
{
 int c = add(1, 2);
}

The pragmas asm and endasm are allowed in inline functions. This makes

it possible to define inline assembly functions. See also the section Inline
Assembly in this chapter.

3.2.8 USING PACKED STRUCTURES

When it is undesirable to have 'holes' between structure members, you can

use the _packed qualifier. Since the code that is generated after the

_packed qualifier is not efficient, use packed structures only when really

needed, for example for data exchange with 8-bit processors. Consider in

such case first other solutions like for example, mapping structures on

character arrays. Packed structures can not cross segement boundaries.

Example:

_packed struct
 {
 char c1; /* offset 0 */
 int i1; /* offset 1 */
 int i2; /* offset 3 */
 } s;

_packed int * ip1;

 void foo(void)
 {
 s.i1 = 3;
 ip1 = &s.i1;
 s.i2 = *ip1;
 }

Chapter 33–40
L
A
N
G
U
A
G
E

You can only access packed structure members by byte instructions!

Example:

_packed struct
 {
 char c1; /* offset 0 */
 int i1; /* offset 1 */
 int i2; /* offset 3 */
 } s;

 int * ip2;

 void foo(void)
 {
 ip2 = &s.i1; /* Incorrect! Use _packed pointer
 instead. */
 }

Language Implementation 3–41

• • • • • • • •

3.3 TASK SCOPE

c166 supports both the 'Task Concept' and the 'Flat Interrupt Concept'.

These two concepts are explained in the chapter Software Concept of the

'TASKING Cross-Assembler User's Guide'. We strongly recommend reading

this section first!

When the Task Concept is strictly followed the entry point of each task is

an interrupt function, either activated by hardware (interrupt) or by

software (TRAP instruction). Each task has only one entry point and no

code and data is shared. This implies that reentrancy of code does not

exist. See the section Interrupt in this chapter for more details about

interrupt functions.

In C the outermost level of scope is a public (non-static) variable. Via the

extern keyword this variable can be accessed in other C modules. This

scope level in C is treated by c166 as the task scope (public) in the Task

Concept. This means that all public/extern variables are not known

outside the task. This allows each task to have its own I/O channels and

administration (e.g. printf()), heap area (e.g. malloc()), floating point

stack and public data. The public/extern variables are solved at the link

stage of l166. In practice it is in a lot of cases possible to share code and

data between several tasks or interrupt functions. The following ways exist

to do this:

define code or data to be shared to 'COMMON'

In this case, the common section must be linked with each task needing

access to the shared data/code. The 'COMMON' section attribute tells the

locator to 'overlay' the section with another common section carrying the

same name. The module referencing the shared data of another C module

uses the normal keyword extern in the declaration. When using, a

prototype of the function is enough. Similar to the normal C rules, the

extern keyword may be omitted with functions. This approach is used by

the C library, where a number of standard C functions (such as strlen()
and isdigit()) are allocated in common sections. The ROM table used

by <ctype.h> functions is allocated in a common data section. Therefore,

the C library must be linked with each task.

The combine type of a section can be changed in two ways. Firstly a

command line option (-R), resulting in shared code and data of the

complete C module. Secondly via a pragma, allowing some data or code

of a C module to be shared and the rest not.

Chapter 33–42
L
A
N
G
U
A
G
E

Example:

C module is called test.c . The example illustrates how to declare a ROM

table (array) as 'shared among several tasks' and the rest of the C data in a

normal data section. The generated code is listed below.

#pragma save_attributes
#if _MODEL == ’l’ || _MODEL == ’m’
#pragma combine fc=C
#define FAR _far /* far common data */
#else
#pragma combine nc=C
#define FAR /* normal common data */
#endif

/*
 * COMMON data section in ROM, linked with
 * each task and overlaid by the locator:
 * shared data among all tasks.
 */
FAR const char table[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

#pragma restore_attributes
/*
 * public within task scope: each task can have
 * it’s own instance of the public variable i.
 */
int i; /* task scope */
/*
 * static within module scope: each module can have
 * it’s own instance of the static variable s.
 */
static int s; /* module scope */

TEST_1_NC SECTION LDAT WORD COMMON ’CNEARROM’
_table LABEL BYTE
 DB 00h,01h,02h,03h,04h
 DB 05h,06h,07h,08h,09h
 PUBLIC _table
TEST_1_NC ENDS

TEST_2_NB SECTION LDAT WORD PUBLIC ’CNEAR’
TEST_2_NB_ENTRY LABEL BYTE
_i LABEL WORD
 DS 2
 PUBLIC _i
_s LABEL WORD
 DS 2
TEST_2_NB ENDS

Language Implementation 3–43

• • • • • • • •

The same object module (containing the common section) must be linked

with all tasks using the shared data, because the module name is part of

the section name. Of course it is not possible for shared code to access

non automatic data which is not shared.

If the medium or large model is used, a shared 'near' data section will

cause all near data sections of all tasks to be allocated in the same page,

limiting the total near data area of the whole application to 16K. However,

it is still possible to have both shared (common) and non-shared (public)

near data sections of each task in this area.

If the feature of a 16K near data area for every task is needed, the shared

data must be explicitly declared _far (or _huge or _shuge) as done in

the example above.

use pragmas 'global' and 'public'

All public declarations in a source file following a pragma 'global' are

defined by c166 at the application (global) scope level in the Task

Concept. This means that externs referencing these public variables have

to be resolved at the locate stage of l166.

Example:

An application consists of two tasks TASK_A and TASK_B.

A module mod_a.c in TASK_A defines a variable which has to be

accessed in mod_b.c in TASK_B. The variable (gi) is defined in mod_a.c
as follows:

#pragma global
unsigned int gi;
#pragma public

The #pragma global promotes the scope of the variable gi from the

task scope (public) to the application scope (global).

In mod_b.c in TASK_B the variable is declared via:

extern unsigned int gi;

Chapter 33–44
L
A
N
G
U
A
G
E

When linking TASK_B.LNO, the linker will produce a warning about an

'unresolved external _gi'. However, you can tell the linker to check the

unresolved externals with the object file (mod_a.obj) or the task object

file (TASK_A.LNO), which should contain the corresponding global

definition using the CHECKGLOBALS(object_file) linker control. If the

corresponding global definition is found by the linker, no warning is

emitted, because the external is resolved at locate time when both TASK_A
and TASK_B are located. The linker and locator invocation may look like:

l166 LINK mod_a.obj TO TASK_A.LNO
l166 LINK mod_b.obj TO TASK_B.LNO ”CHECKGLOBALS(TASK_A.LNO)”
l166 LOCATE TASK_A.LNO TASK_B.LNO TO tasks.Out

define more than one interrupt function in one task

This is the easiest way to share code and data between interrupt functions.

It is in fact a step towards the Flat Interrupt concept. When a task has

more than one entry point (several interrupt functions) reentrancy of the

functions and data must be checked.

use the Flat Interrupt Concept

When the the Flat Interrupt Concept is used, the assembler objects are

directly input for the locator and the linker stage is skipped. The public

(Task) scope level of the Task Concept is promoted to the global

(application) scope level by using the PUBTOGLB (abbreviation PTOG)

locator control. The PTOG control can also be applied to a set of objects

files, which makes it possible to mix the Flat Interrupt Concept with the

Task Concept. When the PTOG is specified for an object file, all public

(task scope) variables and functions are promoted to the application scope

(global) as if they were defined after a pragma 'global'. See the section

l166 Controls of the 'TASKING Cross-Assembler User's Guide' for more

information about the l166 linker/locator controls.

Language Implementation 3–45

• • • • • • • •

3.4 DATA TYPES

All (ANSI C) types are supported. In addition to these types, the _sfr ,

_sfrbit , _esfr , _esfrbit , _bit , _xsfr and _bitword types are

added. Object size and ranges:

Data Type Size (bytes) Range

_bit 1 bit 0 or 1

_sfrbit 1 bit 0 or 1

_esfrbit 1 bit 0 or 1

signed char 1 –128 to +127

unsigned char 1 0 to 255U

_sfr 2 0 to 65535U

_esfr 2 0 to 65535U

_xsfr 2 0 to 65535U

signed short 2 –32768 to +32767

unsigned short 2 0 to 65535U

_bitword 2 0 to 65535U

signed int 2 –32768 to +32767

unsigned int 2 0 to 65535U

signed long 4 –2147483648 to +2147483647

unsigned long 4 0 to 4294967295UL

float 4 +/– 1,176E–38 to +/– 3,402E+38

double 8 +/– 2,225E–308 to +/– 1,797E+308

long double 8 +/– 2,225E–308 to +/– 1,797E+308

_near pointer 2 16 bits (64K) when using –Mt/–Ms
14 bits (16K) when using –Mm/–Ml
(default data group)

_xnear pointer 2 14 bits (16K) when using –Mm/–Ml.
Not allowed in non–segmented memory
models.

_far pointer 4 14 bits (16K) in any page (16M)

_huge pointer 4 24 bits (16M)

_shuge pointer 4 24 bits (16M), but arithmetic is done
16–bit wide

Table 3-10: Data types

Chapter 33–46
L
A
N
G
U
A
G
E

- c166 generates instructions using (8 bit) character arithmetic, when

it is correct to evaluate a character expression this way. This results

in a higher code density compared with integer arithmetic. A special

section Character Arithmetic provides details.

- The C166/ST10 convention is used, storing variables with the least

significant part at low memory address. Float and double are

implemented using IEEE single and double precision formats. See

section Floating Point Interfacing in this chapter for more details.

3.4.1 ANSI C TYPE CONVERSIONS

According to the ANSI C X3.159-1989 standard, a character, a short integer,

an integer bit field (either signed or unsigned), or an object of

enumeration type, may be used in an expression wherever an integer may

be used. If a signed int can represent all the values of the original type,

then the value is converted to signed int ; otherwise the value will be

converted to unsigned int . This process is called integral promotion.

Integral promotion is also performed on function pointers and function

parameters of integral types using the old-style declaration. To avoid

problems with implicit type conversions, you are advised to use function

prototypes.

Many operators cause conversions and yield result types in a similar way.

The effect is to bring operands into a common type, which is also the type

of the result. This pattern is called the usual arithmetic conversions.

Integral promotions are performed on both operands; then, if either

operand is unsigned long , the other is converted to unsigned
long .

Otherwise, if one operand is long and the other is unsigned int ,

the effect depends on whether a long can represent all values of an

unsigned int ; if so, the unsigned int operand is converted to

long ; if not, both are converted to unsigned long .

Otherwise, if one operand is long , the other is converted to long .

Otherwise, if either operand is unsigned int , the other is converted

to unsigned int .

Otherwise, both operands have type int .

See also the section Character Arithmetic.

Language Implementation 3–47

• • • • • • • •

Sometimes surprising results may occur, for example when unsigned char

is promoted to int. You can always use explicit casting to obtain the type

required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()
{
 b=~a;
 if (b == ~a)
 {
 /* This code is never reached because,
 * 0x0000 is compared to 0xFF00.
 * The compiler converts character ’a’ to
 * an int before applying the ~ operator
 */
 ...
 }

 c=a+1;
 while(c != a+1)
 {
 /* This loop never stops because,
 * 0x0000 is compared to 0x0100.
 * The compiler evaluates ’a+1’ as an
 * integer expression. As a side effect,
 * the comparison will also be an integer
 * operation
 */
 ...
 }
}

Chapter 33–48
L
A
N
G
U
A
G
E

To overcome this 'unwanted' behavior use an explicit cast:

static unsigned char a=0xFF, b, c;

void f()
{
 b=~a;
 if (b == (unsigned char)~a)
 {
 /* This code is always reached */
 ...
 }

 c=a+1;
 while(c != (unsigned char)(a+1))
 {
 /* This code is never reached */
 ...
 }
}

Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;
static long k, l, m;

/* In C the following rules apply:
 * int * int result: int
 * long * long result: long
 *
 * and NOT int * int result: long
 */

Language Implementation 3–49

• • • • • • • •

void f()
{
 h = i * j; /* int * int = int */
 k = l * m; /* long * long = long */

 l = i * j; /* int * int = int, afterwards
 * promoted (sign or zero
 * extended) to long
 */
 l = (long) i * j; /* long * long = long */
 l = (long)(i * j); /* int * int = int,
 * afterwards casted to long
 */
}

3.4.2 CHARACTER ARITHMETIC

c166 generates code using 8 bit character arithmetic as long as the result

of the expression is exactly the same as if it was evaluated using integer

arithmetic. This approach increases code density and execution speed

(when character typed variables are used of course).

In strict ANSI-C, character arithmetic does not exist: all character variables

are converted to integer before the operation is performed.

However, if the integer result is not used (e.g. by assigning it to a character

variable) the operation could have been evaluated using character

arithmetic, giving the same result. This is how c166 works.

There is one exception to this rule, dealing with the sizeof operator:

char a, b;
int i;

void
main()
{
 i = sizeof(’A’); /* –Ac: 1, –AC option: 2 */
 i = sizeof(a + b); /* –Ac: 1, –AC option: 2 */
}

You can enable/disable character arithmetic with the -Ac/-AC command

line option.

Chapter 33–50
L
A
N
G
U
A
G
E

3.4.3 THE BIT TYPE

The _bit type is subject to the following rules:

1. A bit type variable is always placed in bit-addressable RAM.

2. A bit type variable is always unsigned.

3. A bit type variable can be exchanged with all other type-variables. The

compiler generates the correct conversion.

4. Pointer to a bit-variable and array of bit is not allowed, because the

C166/ST10 has no instructions to indirectly access a bit variable.

5. Structure of bit is supported, with the restriction that no other type than bit

is member of this structure. Structure of bit is not allowed as parameter or

return value of a function.

6. A union of a bit structure and another type is not allowed. The bitword

type can be used for this purpose.

7. A bit type variable is not allowed as parameter. The allowed classes for bit

are: automatic, static, public or extern.

8. A function may have return type bit.

9. The sizeof of a bit type is 1.

10. Functions returning bit can not have huge/shuge/near keyword in its

prototype.

11. A bit typed expression is not allowed as switch expression.

The constants need a (bit) cast operator in order to enable bit operations

such as '&', '^'. Of course this is not needed with (compound)

assignments.

Language Implementation 3–51

• • • • • • • •

The following table shows which operators are allowed with bit type

variables:

Allowed is:

==, !=, <, <=, >, >=
&&, ||, !, ~
? :, CALL, RETURN
&, |, ^
&=, |=, ^=
conversions to/from char/int/long/float/double
bit structures (bit members only)
unary plus

Not allowed is:

++, –– (post/pre increment/decrement)
unary minus
indirection (array/pointer/address)
+, –, *, /, %, <<, >>
+=, –=, *=, /=, %=, <<=, >>=

3.4.4 THE BITWORD TYPE

You can declare word variables in the bit-addressable area as _bitword .

You can access individual bits using the intrinsic functions _getbit()
and _putbit() or declare the individual bits of this _bitword variable

using _atbit . A prototype for these functions is given in the include file

c166.h .

For example:

_bitword bw1, bw2; /* bitaddressable words */

if (_getbit(bw1, 3))
 _putbit(1, bw2, 7); /* set bit 7 of bw2 */

See also the section The _atbit() Attribute.

The _bitword type is subject to the following rules.

1. A bitword type variable is always unsigned.

2. A bitword type variable can be exchanged with all other type-variables.

The compiler generates the correct conversion.

Chapter 33–52
L
A
N
G
U
A
G
E

3. Pointer to a bitword variable and array of bitword is allowed.

4. Structure of bitword is supported, with the restriction that no other type

than bitword is member of this structure. Structure of bitword is not

allowed as parameter or return value of a function.

5. A bitword type variable is not allowed as automatic or parameter. The

allowed classes for bitword are: static, public or extern.

6. The sizeof of a bitword type is same as int.

7. A bitword typed expression is allowed as switch expression.

3.4.5 SPECIAL FUNCTION REGISTERS

c166 recognizes the keywords: _sfr and _sfrbit . If you specify the -x

or -xf option, you can access the extended special function register area

via the keywords _esfr and _esfrbit .

c166 also recognizes the keyword: _xsfr . The _xsfr keyword is used to

access special function registers outside the (E)SFR areas but within

internal RAM (DPP3). Variables declared as xsfr are not bitaddressble.

Example: PEC source and destination pointers (SRCPx/DSTPx).

c166 emits the name of the special function register in the assembly code.

A special include file named reg166.h is delivered with the package,

which contains all sfr, xsfr and sfrbit declarations of the C166/ST10x166,

using the same names as a166 in MOD166 mode. c166 does not perform

any check whether the name is correct or not, but passes the name to

a166. The assembler checks the validity of the name.

If the -x or -xf option is on, you can include the file reg167.h ,

reg165.h , etc., which contain all the sfr, esfr, xsfr, sfrbit and esfrbit

declarations for each of the C167 derivatives individually. The compiler

now emits $NOMOD166 and $STDNAMES(reg.def) controls. By default

a166 searches files supplied to the STDNAMES control in the etc
directory installed with the product. This way a166 finds the file reg.def
in that directory.

All reg*.h files consist of a number of parts, which are all included by

default. However, if you do not need every part in your source file, you

can omit each part by defining the appropriate macro before you include

this file. These 'control' macros are described in the reg*.h files.

Language Implementation 3–53

• • • • • • • •

REG163_NOPORT omit port I/O registers

REG163_NORS232 omit serial I/O registers

REG163_NOTIMER omit timer registers

REG163_NOADINT omit additional peripheral

REG163_NOEXTINT omit fast external interrupt

REG165_NOCPU omit cpu registers

REG165_NOPEC omit PEC registers

REG165_NOPORT omit port I/O registers

REG165_NORS232 omit serial I/O registers

REG165_NOTIMER omit timer registers

REG165_NOADINT omit additional peripheral

interrupt registers

REG165_NOEXTINT omit fast external interrupt registers

REG166_NOADC omit analog/digital registers

REG166_NOCAPCOM omit capture/compare registers

REG166_NOCPU omit cpu registers

REG166_NOPEC omit PEC registers

REG166_NOPORT omit port I/O registers

REG166_NORS232 omit serial I/O registers

REG166_NOTIMER omit timer registers

REG167_NOADC omit analog/digital registers

REG167_NOCAPCOM omit capture/compare registers

REG167_NOCPU omit cpu registers

REG167_NOPEC omit PEC registers

REG167_NOPORT omit port I/O registers

REG167_NORS232 omit serial I/O registers

You can make your own version of reg166.h , but in that case you must

supply the same names to a166 by using NOMOD166 and a STDNAMES

file.

c166 and a166 do not generate symbolic debugging information for

special function registers, because the register names should be known by

the debugger.

Because the special function registers are dealing with I/O, it is not correct

to optimize away the access to these registers. Therefore, c166 deals with

special function registers as if they were declared with the volatile
qualifier.

Chapter 33–54
L
A
N
G
U
A
G
E

_sfr var1; is treated like: volatile unsigned int var1;
_sfrbit var2; is treated like: volatile _bit var2;
_xsfr var3; is treated like: volatile unsigned int var3;

3.5 FUNCTION PARAMETERS

A lot of execution time of an application is spent transferring parameters

between functions. Therefore this is an area which is very interesting for

optimization. The conventional CPU approach for parameter passing is via

the stack, because C allows recursion and reentrancy (the stack sizes of

each task are accumulated by the locator stage of l166).

Because it is very important to optimize parameter passing, c166 uses a

resource which a RISC processor like the C166/ST10 has plenty of:

registers. The first parameters are placed in specific registers (R12- R15).

Very often the parameter computation can be done directly in the

appropriate register. In practice the bulk (80-90%) of the calls pass four or

fewer (word-sized) parameters.

A special keyword _stackparm is introduced as a 'function qualifier' (like

_interrupt) to tell the code generator to pass all parameters via the user

stack. This keyword is very convenient for interfacing with (existing)

assembly functions or when register usage must be minimized (e.g. -r6 is

used for a small C interrupt function calling another C function):

void stackparm assembly_function(char type,
 long size);

Register parameter passing is NOT done if one of the following conditions

is true:

• the 'dot arguments' of a function having a variable argument list

(ANSI notation of prototype declaration, using three dots, e.g.: void
f(char *, ...);)

• the called function has a prototype with the stackparm function

qualifier.

• the register parameters are already full or one of the parameters

cannot be passed in a register (explained below in more detail).

If a variable argument list function (e.g. printf()) is called without a

valid prototype (#include <stdio.h>) run-time errors occur due to

parameter transfer mismatches.

Language Implementation 3–55

• • • • • • • •

If a function prototype is used with a function call but NOT with the

function body (or vice versa), run-time errors may occur due to parameter

type mismatches.

A function that does not call any other function is called a 'leaf' function. If

a function is a leaf function and the C code does not calculate the address

of a parameter (via the & operator) the parameters of this function do not

have to be saved. Thus, the parameters of such a function are left in the

input registers. A lot of C library functions (such as strlen(), strcpy() etc.)

meet these requirements.

Non-leaf functions must save the parameter registers on the user stack at

function entry, as if they were pushed by the caller. However, the code

generator tries to use the register copies of these parameters as long as

possible. If automatic registers are available, these registers are used

instead of the user stack.

If a parameter does not fit (anymore) in the parameter registers or the

parameter is a float/double or a structure/union (not a pointer), it is

passed via the (more conventional) user stack. All next parameters are

passed via the stack to maintain correct stack offsets, even if one of these

next parameters would fit in the register area. The following examples

(small model) clarify this item:

Example 1:

void func1(long l1, int i, long l2, char *p);
/* R12–R13 R14 stack stack: not R15 */

better:

void func1(long l1, int i, char *p, long l2);
/* R12–R13 R14 R15 stack */

Example 2:

void func2(double d, double *p, int i);
/* stack stack stack */

better:

void func2(double *p, int i, double d);
/* R12 R13 stack */

Chapter 33–56
L
A
N
G
U
A
G
E

3.5.1 STATIC APPROACH OF FUNCTION AUTOMATICS

Function automatics (not parameters) which can not be allocated to a

register are present on the user stack. Compared to static variables these

stack variables have the following disadvantages:

• Access to these variables is only possible via an 'indirect register

plus offset' addressing mode. This addressing mode is supported in

the following two instructions only:

1) MOV Rn,[Rm+#d16]

2) MOV [Rm+#d16],Rn

This means that all arithmetic operations (add, and, cmp, or, subb

and xor) with a stack variable need an extra register move, before

the operation can be done. With static memory variables a register

move is not needed, because the operations mentioned above allow

the usage of the MEM operand.

• Heavy usage of instruction 1) is slowing down execution time,

because this instruction takes twice as much time as any other move

instruction or arithmetic operation (200ns instead of 100ns at

40MHz).

Therefore, code size and execution speed can be improved if the

non-register function automatics may be treated by the compiler as if they

were static and it is possible to allocate these 'automatic' variables in the

fast internal RAM of the 80C166 using a CLASSES or ADDRESSES(

SECTIONS) locator control. Of course, this is not possible with recursive

functions. Because function automatics do not have any interaction with

other functions (unlike parameters), it is not necessary to introduce a

special static model to support this optimization. It is even possible to

enable this optimization for only one function in a module.

The compiler supports two ways of specifying function automatics can be

treated in a static way:

1. command line option.

-S All functions of the C module are compiled using static

memory for non register function automatics. This option

may be useful for non recursive applications.

Language Implementation 3–57

• • • • • • • •

2. pragmas.

If only a few functions of the entire application are recursive, the

following pragmas can be used to enable (or disable) this optimization:

pragma static Use static memory for non register function

automatics.

pragma automatic Default (unless -S is used). Use stack approach

for non register function automatics. Support

recursion.

The usage of the -S option (or pragma static) does not change the

semantic behavior of c166 with automatics: explicit storage type specifiers

(far, near, huge, shuge) remain illegal and the initialization of an automatic

variable is done run-time (each time the function is entered).

3.6 REGISTER VARIABLES

Via the register keyword you are able to control which automatic

variable must be allocated to a CPU register by the code generator.

However, if the register keyword is NOT used, the front end phase of

c166 determines which C automatic variables might be allocated to a

register by the code-generator (unless the -OR option is specified to turn

this optimization off).

If a C function is a non-leaf function (i.e. calling another C function), four

registers (R6-R9) are available to support C register variables. However, if

the C function is a leaf function, not occupied registers of the parameter

register area (R12-R15) can be used for automatic registers too. These

registers do not have to be saved at entry and restored at exit. Thus, leaf

functions allow up to eight registers to be used for register automatics!

The code generator of c166 uses a 'saved by callee' strategy. This means

that a function which needs one or more registers for register variables,

must save the contents of these registers and restore before returning to

the caller. The major advantage of this approach is, that only registers

which are really used by the function are saved. If the function does not

have any register variable, the registers of the caller function remain valid

without being saved.

The code generator prefers to assign the register character type automatics

to R6 or R7 (using RL6/RL7) and the other types to the rest in the order of

their declaration.

Chapter 33–58
L
A
N
G
U
A
G
E

A declaration like (f() being a non-leaf function):

void f()
{
 register int i;
 register char c;
 register long l;

 func();

would have been allocated by the code generator in the following

registers:

i ==> R9

c ==> RL6

l ==> R7-R8

If f() would have been a leaf function, the register automatics would

have been allocated in the following registers:

i ==> R15

c ==> R14

l ==> R12-R13

All basic data types which are allowed as automatic variable are

supported, except float/double/bit: char, int, long, near/far/huge/shuge

pointer. Of course _sfr, _sfrbit, _xsfr and _bitword are not possible.

If register usage must be minimized (e.g. interrupt function/module),

specify -r6 on the command line (R0-R5 used in REGDEF). When the

-rnumber option is used, the automatic register allocation scheme of c166

is adjusted to meet the requirements of the user.

Language Implementation 3–59

• • • • • • • •

3.7 INITIALIZED VARIABLES

There are two types of initialized variables, which depend on the class of

the variable: static or automatic . The implementation is described in

the following sections.

3.7.1 AUTOMATIC INITIALIZATIONS

Automatic initialized variables are initialized (run-time) each time a C

function is entered. Normally, this is done by generating code which

assigns the value to the automatic variable.

In the old (K & R) language definition it was not allowed to initialize an

automatic aggregate type (e.g. an array or structure), but only integral

types. The ANSI standard also allows run-time initialization of automatic

aggregate types. To support this feature, c166 generates code to copy the

initialization constants from ROM to RAM each time the function is

entered.

3.7.2 STATIC INITIALIZATIONS

There is a lot of existing C source which use static initializations. Static

initialized variables normally use the same amount of space in both ROM

and RAM. This is because the initializers are stored in ROM and copied to

RAM at start-up. In the task philosophy of c166, this ROM to RAM copy

has to be performed at 'startup' for each task.

c166 takes care of a mechanism, which is completely transparent for the

user. It performs initialization per task from system startup code, using

compiler generated tables.

Static initialized variables use the same amount of space in both ROM and

RAM. The only exception is an initialized variable residing in ROM, by

means of either the #pragma romdata or the const storage type qualifier.

For normal initialized RAM variables, you can specify the class name

('CINITIRAM' or 'CINITERAM') to be used with #pragma iramdata or

#pragma eramdata. You can use the CLASSES locator control to affect the

location of these variables. See the paragraph Section Allocation for details

on section names and section attributes.

Chapter 33–60
L
A
N
G
U
A
G
E

Example (using small model):

const char b = ’b’; /* 1 byte in ROM */
#pragma iramdata /* default, may be omitted, unless pragma
 romdata/eramdata was used before */
int i = 100; /* 2 bytes in ROM, 2 bytes in IRAM */
char a = ’a’; /* 1 byte in ROM, 1 byte in IRAM */
char *p = ”ABCD”; /* 5 bytes in ROM (for ”ABCD”) */
 /* 2 bytes in ROM, 2 bytes in IRAM
 (for p)*/

#pragma romdata /* Needed for ROM only allocation */
int j = 100; /* 2 bytes in ROM */
char *q = ”WXYZ”; /* 5 bytes in ROM (for ”WXYZ”) */
 /* 2 bytes in ROM (for p) */

c166 treats romdata variables as if they were declared with the const
storage type qualifier.

3.8 NON-INITIALIZED VARIABLES

In some cases there is a need to keep variables unchanged even if power

is turned off. In these systems some of the RAM is implemented in

EEPROM or in a battery-powered memory device. In a simulator

environment, clearing non-initialized variables might not be wanted too.

To avoid the 'clearing' of non-initialized variables at startup, one of the

following things should be performed:

1. Define (allocate) these variables in a special C module and compile this

module using the -Ob option. c166 will omit these data sections, when

building the C166_BSS section.

2. Define (allocate) these variables between #pragma noclear and

#pragma clear. c166 will omit these data sections, when building the

C166_BSS section.

#pragma noclear before or in a function, applies to all static variables

and return values (structs) of the function.

3. Use inline assembly to allocate the special variables in a special data

section (NOT used by other C variables).

4. Make a separate assembly module, containing the allocation of these

variables in a special data section.

Language Implementation 3–61

• • • • • • • •

It is not possible to remove the 'clearing code' from the startup file,

because other C modules (and the C libraries) depend on it too.

3.9 STRINGS

In this section the word 'string' means the separate occurrence of a string

in a C program. So variables initialized with strings are just initialized

character arrays and are not considered as 'strings'. See the section

Initialized Variables for more information on this topic.

Strings have static storage. The ANSI X3.159-1989 standard permits string

literals to be put in ROM. Because there is no difference in accessing ROM

or RAM, c166 allocates strings in ROM only. This approach also saves

RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, c166 offers the possibility to allocate a static

initialized variable in ROM only, when declared with the const qualifier or

after a #pragma romdata. This enables the initialization of a (const)

character array in ROM:

const char romhelp[] = ”help”;
/* allocation of 5 bytes in ROM only */

Or a pointer array in ROM only, initialized with the addresses of strings,

also in ROM only:

char * const messages[] = {”hello”,”alarm”,”exit”};

ANSI string concatenation is supported: adjacent strings are concatenated -

only when they appear as primary expressions - to a single new one. The

result may not be longer than the maximum string length (509 characters).

The Standard states that identical string literals need not be distinct, i.e.

may share the same memory. To save ROM space, c166 overlays identical

strings within the same module.

Chapter 33–62
L
A
N
G
U
A
G
E

3.10 INLINE ASSEMBLY

c166 supports an inline assembly facility by means of the following

pragmas:

#pragma asm Insert the following (non preprocessor lines) as

assembly language source code into the output

file. The inserted lines are not checked for their

syntax.

#pragma asm_noflush Same as asm, except that the peephole

optimizer does not flush the code buffer and

assumes register contents remain valid.

#pragma endasm Switch back to the C language.

You should realize that using these pragmas results into non portable and

hard to 'simulate' code. Therefore, usage of these pragmas should be

minimal.

C Variable Interface for Pragma asm

The pragma asm and endasm synopsis of the pragmas is as follows:

#pragma asm [(pseudo_reg[=varname][, pseudo_reg[=varname]] ...)]

#pragma endasm [(varname=pseudo_reg[, varname=pseudo_reg] ...)]

The arguments of the pragmas are:

varname name of a C variable of type char or int, signed or unsigned,

pseudo_reg a pseudo register name with the synopsis:

@[w|b|i]num

w word register R0-R15

b byte register RL0-7, RH0-7

i indirect address register R0-R3, some addressing

modes only support these registers

Language Implementation 3–63

• • • • • • • •

num a user defined number of the pseudo register. This

number is not related to the register that is substituted

by the compiler. The number must be in the range

0-15.

When no w, b, or i is given a word register is used.

Examples:

@1 word register pseudo

@w2 word register pseudo

@b3 byte register pseudo

@i4 word register pseudo

When a pseudo_reg is listed without assignment of a varname, the

compiler will reserve a scratch register. When in the pragma endasm a

pseudo_reg is listed that is not listed in the pragma asm, it will also be

reserved as a scratch register.

Example:

#pragma asm(@w1=var1, @b2=var2, @i3=var3, @4)
 EXTERN XVAL:WORD, BVAL:BYTE, YVAL:WORD
 MOV @4, @w1 ; fill temporary register
 MOV XVAL, @4 ; save in some memory location
 MOV BVAL, @b2 ; save in some memory location
 MOV @i3, #2 ; small instruction (Rn, #data4)
 MOV @w1, YVAL ; get some memory location
#pragma endasm(retval=@w1)

The compiler will take care that the requested registers are free to be used

and that their original content is saved and restored if needed. When the

compiler is not capable of allocating registers for the listed pseudos an

error message will be issued. The number of pseudos that can be allocated

for inline assembly depend on the complexity and size of the C code part

of the function.

Defining inline assembly functions can be done by using the pragma asm

interface in an inline C function.

See the section User Defined Intrinsics in this chapter.

Chapter 33–64
L
A
N
G
U
A
G
E

Example:

_inline int swap_add(int a, int b)
{
 int rv;
#pragma asm (@1=a, @2=b, @3)
 MOV @3, @1
 MOV @1, @2
 MOV @2, @3
 ADD @3, @1
#pragma endasm (rv=@3)
 return rv;
}

Known restriction: The new implementation of the pragma asm may

cause an inline assembly to be optimized away by the c166 flow

optimizations. For example:

void example(void)
{
 goto the_end;
#pragma asm
entry:
 ; assembly statements here will not be emitted by c166
 ; because it is considered ‘‘not reachable’’, even when
 ; the assembly starts with a label.
#pragma endasm
the_end: ;
}

Workaround for this restriction: Replace C statements which seems to

make the inline assembly not reachable by an assembly equivalent inside

the #pragma asm:

void workaround(void)
{
#pragma asm
 jmp the_end
entry:
 ; assembly statements here will be emitted by c166
the_end:
#pragma endasm
}

See also the section Assembly Language Interfacing in the chapter

Run-time Environment.

Language Implementation 3–65

• • • • • • • •

The 'MODULE SUMMARY' of c166, reporting code size and data size of

the module, is no longer valid if code or data has been added using inline

assembly.

3.11 INTERRUPT

c166 supports both the 'Infineon Task Concept' and the 'Flat Interrupt

Concept'. These two concepts are explained in the chapter Software
Concept of the 'TASKING Cross-Assembler, Linker/Locator, Utilities User's

Guide'. We strongly recommend reading this section first! See also the

section Task Scope in this chapter.

In the Task Concept a Task is initiated via an interrupt or software trap.

The 'reset task' is the task which defines main. The system startup file

('cstart.asm' in assembly code) delivered with the compiler, initializes the

processor and each task and finally calls main() . In the Flat Interrupt

concept an interrupt is an entry point in the code. The system startup code

is such an entry point.

You can tell the compiler that a C function is an interrupt function with the

keyword _interrupt . For example:

A task is initiated via an interrupt or a software trap. You can tell the

compiler that a C function is an interrupt function with the keyword

_interrupt . For example:

_interrupt(0x22) void
timer(void)
{
 ...
}

The interrupt number -1 is reserved for a so�called symbolic interrupt. This

means that c166 does not assign an interrupt number to this C function.

The interrupt function can be bound to any interrupt number in the locate

stage of l166 by the INTERRUPT control.

c166 generates an interrupt frame inheriting the user stack pointer from

the previous task, switching context to a new register bank, saving DPP

registers and MDC, MDH and MDL registers. When the -Oh command line

option is set (default) the compiler optimizes the interrupt frame so that it

only contains the parts needed to save resources used by the interrupt

function. You can also tell the compiler to omit the whole interrupt frame

via the following pragma:

Chapter 33–66
L
A
N
G
U
A
G
E

#pragma noframe

This allows you to make your own interrupt frame.

With the _using keyword you can tell the compiler to generate a new

register bank for the interrupt function. For example:

_interrupt(0x28) _using(ADCONV_RB) void
ad_conv_complete(void)
{
 ...
}

This way you can define several interrupt functions in one module with

each function having its own register bank. Or you can share a register

bank between several interrupt functions which have the same interrupt

level and thus can never interrupt each other. When several interrupt

functions in a source module are 'using' a register bank with the same

name, the compiler uses the same register bank for these functions. l166

will 'overlay' register banks with equal names.

All interrupt functions without the _using keyword use a register bank

with a name derived from the module name. This means that all interrupt

functions in one C source file which do not have the _using keyword use

the same register bank and therefore they should have the same interrupt

level.

When the pragma 'regdef' or the -r command line option is used, it affects

all register banks in the module. With this pragma and option you can

specify the number of registers in the register bank. When this number is

set to 0 the compiler will not generate a register bank, even when the

_using keyword is used.

3.12 EXTENSIONS FOR THE EXT2 ARCHITECTURES

The C166S v2.0 / SUPER10 architectures support fast register bank

switching using local register banks. You can make use of this feature

using the _localbank keyword. This keyword can only be applied on

interrupt functions.

_localbank (num)

Where num can be one of the following:

Language Implementation 3–67

• • • • • • • •

-2: Use local register bank 1 but assume the hardware

automatically swithches the register bank upon interrupt.

-1: Use local register bank 0 but assume the hardware

automatically swithches the register bank upon interrupt.

0: Use global register bank as usual.

1: Use local register bank 0 and emit instruction in interrupt

frame to select the correct local register bank.

2: Use local register bank 1 and emit instruction in interrupt

frame to select the correct local register bank.

Only the _localbank (0) qualifier can be used in conjunction with the

’_using’ qualifier. The correct registerbank will not be selected when

#pragma noframe is entered before the interrupt function.

Since local register banks are not memory mapped, the compiler can not

copy the userstack pointer (R0) to the new register bank. Therefore each

local register bank will have its own userstack area:

C166_US0: will be used together with register bank 0

C166_US1: will be used together with register bank 1

The compiler estimates the size of each seperate stack based upon the

code inside interrupt functions only. Userstack space occupied by

functions which are called from the interrupt function are not taken into

account.

The estimated userstack size can be adjusted using a new function

qualifier:

_stacksize (num)

Where num specifies the userstack adjustment in bytes. A positive number

increases the compiler estimates by num bytes, a negative value decreases

it. If the sum of the compiler estimation and the stack adjustment is

negative, a warning will be generated and the value will be truncated. The

value of num must be even.

The _stacksize qualifier can only be used in combination with the local

register banks (for example: _localbank (0) is NOT allowed) and

interrupt functions.

Chapter 33–68
L
A
N
G
U
A
G
E

User stacksize estimations will not be performed if #pragma nocustack
was used. Of course it is still possible to adjust the size of the generated

userstack sections at locate time using the SECSIZE control.

The complete definition of an interrupt function could look like this:

/*
 * Define an interrupt function using local register
 * bank 0 assuming the hardware automatically selects
 * local bank 0 upon interrupt. Increase the by the
 * compiler estimated user stacksize by 40 bytes. The
 * userstack will be allocated in section: C166_US0
 */
void _interrupt(0x10) _localbank(–1) _stacksize(+40)
ISR(void)
{
 return;
}

Another feature of the ext2 architectures is the scalable interrupt vector

table. The compiler uses this feature by trying to inline as much code as

possible inside the interrupt vector table. Small interrupt functions can be

located inside the vector table completely. This will improve interrupt

latency. The size of an entry in the interrrupt vector table can be supplied

to the compiler by the command line option:

–i<num>

Where num can be one of the following:

0–No scaling (4 bytes/entry)
1–2x the normal size (8 bytes/entry)
2–4x the normal size (16 bytes/entry)
3–8x the normal size (32 bytes/entry)

When either option is supplied to the compiler, it will try to reorder and

move code from the interrupt frame to the interrupt vector table. Where

possible the context switch will be done just before the JMPS instruction

which jumps to the ISR. By doing this, the execution time of the JMPS

instruction will be hidden by the context switch.

the compiler will put all sections that have to be inlined in a special

section called:"C166_INT" with class:"C166_VECTAB". An example of an

inlined interrupt function is shown below:

Language Implementation 3–69

• • • • • • • •

; **
; * Section which will be located at vector position
; * 0x10 by the locator, the scaling = 3
; * (32bytes/entry available in vector table)
; **

C166_INT SECTION CODE WORD PUBLIC ’C166_VECTAB’
_3 PROC TASK SCALEDVE_TASK INTNO
 SCALEDVE_INUM = 010h SCALING 3 INLINE

 PUSH CP ;; 2 bytes
 SCXT MDC,#010h ;; 4 bytes
 PUSH DPP0 ;; 2 bytes
 MOV DPP0,#PAG ?BASE_DPP0 ;; 4 bytes
 PUSH DPP2 ;; 2 bytes
 MOV DPP2,#PAG ?BASE_DPP0 ;; 4 bytes
 PUSH MDH ;; 2 bytes
 MOV SCALEDVE_RB,R0 ;; 4 bytes
 MOV CP,#SCALEDVE_RB ;; 4 bytes
 ;; (Context switch right before JMPS)
 JMPS SEG _ISR1,_ISR1 ;; 4 bytes
 RETV ;; ––––––––+
_3 ENDP ;; 32 bytes
C166_INT ENDS

; *********************
; * Start of ISR
; *********************

 SCALEDVE_1_PR SECTION CODE
_ISR1 PROC TASK ISR
 PUSH MDL

; *********************
; * User code goes here
; *********************

 POP MDL
 POP MDH
 POP DPP2
 POP DPP0
 POP MDC
 POP CP
 RETI
_ISR1 ENDP

Chapter 33–70
L
A
N
G
U
A
G
E

A faster way to trasfer control to an interrupt function is to make use of

cached interrupts. To support this, the hardware of the ext2 architectures

bypasses the interrupt vector table at all. In this case, the compiler can not

inline any code of the interrupt fuction in the vector table. Therefore the

_cached keyword has to be used on these interrupt functions. The

following code fragment gives an example of the use of the _cached
function qualifier:

void _interrupt (0x10) _localbank(–1) _cached
 ISR(void)
{
 return;
}

The _cached function qualifier will basically overrule the -i commandline

option causing none of the code to be located inside the interrupt vector

table.

Language Implementation 3–71

• • • • • • • •

Examples:

1. The C module is called 'intrpt.c' (present in the examples/c directory).

The example illustrates how to tell the compiler to omit the interrupt frame

code. The C source and the generated code (large) is listed below:

#pragma global
bit b; /* interrupt handler sets a global bitvariable */
#pragma public

#pragma noframe /* minimal interrupt frame */
 /* even no GPR’s needed, so */
#pragma regdef 0 /* omit regdef definition */

interrupt (0x30) void
f()
{
#pragma asm
 NOP ; you can make your own entry code here
#pragma endasm
 b = 1;
#pragma asm
 NOP ; you can make your own exit code here
#pragma endasm
}

INTRPT_1_BI SECTION BIT BIT PUBLIC ’CBITS’
INTRPT_1_BI_ENTRY LABEL BIT
_b DBIT
 GLOBAL _b
INTRPT_1_BI ENDS

INTRPT_2_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
 NOP ; you can make your own entry code here
 BSET _b
 NOP ; you can make your own exit code here
 BCLR IEN
 RETI
_f ENDP
INTRPT_2_PR ENDS

2. The C module is called 'intrpt.c' (present in the examples directory). The

example illustrates the use of '#pragma regdef' and shows the code the

compiler emits as interrupt frame using large memory model (DPP0 and

DPP2 saving). The user stack pointer must be inherited and the multiply

registers must be saved. The C source and the generated code is listed

below:

Chapter 33–72
L
A
N
G
U
A
G
E

#pragma regdef 6 /* MINIMIZE REGISTER USAGE to R0–R5 */

int stackparm ext_func(int); /* stack parameter passing: NOT
R12–R15 */

interrupt (0x30) void
f()
{
 int i; /* allocate on user stack: NOT R6–R9 */

 i = ext_func(3);
}

INTRPT_1_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 2
 MOV DPP3:INTRPT_RB,R0
 SCXT CP,#DPP3:INTRPT_RB
 SCXT MDC,#00h
 PUSH DPP0
 PUSH DPP2
 MOV DPP2,#PAG C166_DGROUP
 PUSH MDL
 PUSH MDH
 SUB R0,#02h
 MOV R4,#03h
 MOV [–R0],R4
 CALLS SEG _ext_func,_ext_func
 ADD R0,#02h
 MOV [R0],R4
 ADD R0,#02h
 POP MDH
 POP MDL
 POP DPP2
 POP DPP0
 POP MDC
 POP CP
 BCLR IEN
 RETI
_f ENDP
INTRPT_1_PR ENDS

INTRPT_RB REGDEF R0–R5

Instead of using #pragma regdef 6 you can also use the command line

option -r6. When you use the -r command line option, you can also

specify the register bank name to be used and whether this register bank

should be COMMON or not.

Specifying -r6,MYBANK,c results into:

MYBANK REGDEF R0–R5 COMMON = MYBANK_RB

Language Implementation 3–73

• • • • • • • •

It is very useful to share the register bank of interrupt functions, which are

at the same interrupt priority level, so they cannot be active

simultaneously. This approach saves internal RAM space, which is a

scarce resource.

3. The C module is called 'intrpt.c' (present in the examples directory). The

examples illustrates the using keyword. The C code and the generated

code (large memory model) is listed below:

int i;

interrupt (0x30) using (INTRPT_RB) void
f()
{
 i+=2;
}

 ASSUME DPP3:SYSTEM
INTRPT_1_NB SECTION DATA WORD PUBLIC ’CNEAR’
 ASSUME DPP2:INTRPT_1_NB
INTRPT_1_NB_ENTRY LABEL BYTE
_i LABEL WORD
 DS 2
 PUBLIC _i
INTRPT_1_NB ENDS

INTRPT_2_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_f PROC TASK INTRPT_TASK INTNO INTRPT_INUM = 030h
; Stack: 0
 MOV DPP3:INTRPT_RB,R0
 SCXT CP,#DPP3:INTRPT_RB
 PUSH DPP2
 MOV DPP2,#PAG C166_DGROUP
 MOV R4,#02h
 ADD _i,R4
 POP DPP2
 POP CP
 BCLR IEN
 RETI
_f ENDP
INTRPT_2_PR ENDS

C166_BSS SECTION DATA WORD GLOBAL ’CINITROM’
 DW 06h
 DPPTR INTRPT_1_NB_ENTRY
 DW 02h
C166_BSS ENDS

C166_DGROUP DGROUP INTRPT_1_NB
INTRPT_RB REGDEF R0–R15
 REGDEF R0–R15
 END

Chapter 33–74
L
A
N
G
U
A
G
E

3.13 SWITCH STATEMENT

c166 supports two ways of code generation for a switch statement: a jump

chain or a jump table. A jump chain is comparable with an

if/else-if/else-if/else construction. If all of the following conditions are

true, a jump table is emitted:

1. type is not long (char, int, bitfield only)

2. at least five case labels are present

3. total number of 'gaps' between the case labels (when sorted) does not

exceed the number of case labels.

It is obvious (especially with large switch statements) that the jump table

approach executes faster than the jump chain approach. If speed is

needed (e.g. an interrupt function) it might be acceptable to use a jump

table, even if the number of gaps between the (sorted) case labels exceeds

the number of case labels itself. Therefore the second and third

requirement can be overruled by using:

#pragma switch_force_table

and restored using:

#pragma switch_smart

which is the default situation. The command line equivalents are -Os

(switch_force_table) and -OS (default, switch_smart).

The location of jump tables in the small memory model can be controlled

by using

#pragma switch_tabmem_far

which places jump tables in class 'CFARROM'.

#pragma switch_tabmem_near

which places jump tables in class 'CNEARROM'.

#pragma switch_tabmem_default

which places jump tables on the default location, which is

controlled by the -Oe/-OE command line option. This is the

default.

Language Implementation 3–75

• • • • • • • •

See section 3.2.4 Constant Romdata Section Allocation for details.

3.14 REGISTER USAGE

c166 uses the general purpose registers (GPRs) of the C166/ST10 as

follows:

Register Usage

R0 User Stack Pointer (USP)

R1–R5, R10, R11 General registers (codegen, temporary results,
C return values)

R6–R9 C register variables and saved register
parameters

R12–R15 Fast C parameter passing and C register
variables

Table 3-11: General purpose registers

c166 uses the following registers for C function return types:

Return type Register(s)

bit PSW.6 (USR0)

char RL4

short/int R4

long R4–R5 (R4 low word, R5 high word)

float R4–R5

double user stack and R4

structure R4 or R4–R5 (near or far address)

near pointer R4

far pointer R4–R5 (R4 page offset, R5 page number)

huge pointer R4–R5 (R4 segment offset, R5 segment number)

shuge pointer R4–R5 (R4 segment offset, R5 segment number)

Table 3-12: Register usage for function return types

Chapter 33–76
L
A
N
G
U
A
G
E

3.15 FLOATING POINT INTERFACING

3.15.1 INTRODUCTION SOFTWARE FLOATING POINT

USAGE

Section 3.15 describes the usage of floating point numbers. This includes

storage format, trap handling and usage in assembly programs.

3.15.2 THE IEEE-754 FORMAT

Floating point numbers are stored in IEEE-754 format. This manual

explains its format only briefly. For a more detailed version you are

referred to the IEEE-754 standard, published by the Institute of Electrical

and Electronic Engineers, Inc.

Basic single precision format

The basic single precision format is like this:

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

You can convert this to an understandable number with the formula:

value � (-1)s � �1� m

223
� � 2e�127

An example:

0x40490fdb
s = 0
e = 0x80 = 128
m = 0x490fdb = 4788187

value � (–1) 0 � �1 � 4788187
8388608

� � 21 � 1 � (1 � 0.5707964) � 2 � 3.14159274

Language Implementation 3–77

• • • • • • • •

Special case single precision 0.0

0.0 is stored as:

s000000000000000 0000000000000000

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Notice that there is a +0.0 and a -0.0.

Special case single precision NaN (Not a Number)

Generated when the result of an expression is undefined e.g. 0.0 / 0.0.

NaN is stored as:

s111111111111111 1111111111111111

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

According to the IEEE standard not all mantissa bits have to be set for a

number to be handled as NaN.

Special case single precision INF (Infinity)

Generated when the result of an expression is larger than can be stored,

e.g. 1.0e30f * 1.0e30f.

INF is stored as:

s111111110000000 0000000000000000

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Sign defines +INF or -INF.

Basic double precision format

Double precision numbers are stored comparable with single precision

numbers.

Chapter 33–78
L
A
N
G
U
A
G
E

Basic format double precision number:

seeeeeeeeeeemmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm

 s = sign, e = exponent, m = mantissa

The formula for double precision floating point numbers is:

value � (-1)s � �1� m

252
� � 2e�1023

3.15.3 STORAGE IN MEMORY

Floating-point numbers are stored in IEEE754-format. Single precisions

(float) and double precision (double) are stored in memory as shown

below:

Address +0 +1 +2 +3 +4 +5 +6 +7

Single emmmmmmmseeeeeee mmmmmmmmmmmmmmmm........

Double eeeemmmm seeeeeee mm

 s = sign, e = exponent, m = mantissa, . = not used

Single precisions numbers can be stored in a register pair. In this case the

format is:

First register Second register

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Double precisions numbers are never stored in registers.

Language Implementation 3–79

• • • • • • • •

3.15.4 SINGLE PRECISION USAGE

Floats can be stored in memory and in registers. The floating point library

subroutines pass operands and return value through registers.

3.15.4.1 FLOAT BASE EXPRESSION SUBROUTINES

Operands, return value

The first operand is stored in R4/R5 in IEEE-754 format:

R4 R5

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

The second operand is stored in R10/R11:

R10 R11

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

The result is stored in R4/R5 again:

R4 R5

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Available float base expression subroutines

Subroutine Operation Operands Result

__adf4r float addition R4R5, R10R11 R4R5

__cmf4r float comparison R4R5, R10R11 R4

__dvf4r float division R4R5, R10R11 R4R5

__mlf4r float multiplication R4R5, R10R11 R4R5

__sbf4r float subtraction R4R5, R10R11 R4R5

Table 3-13: Float base expression subroutines

Chapter 33–80
L
A
N
G
U
A
G
E

3.15.4.2 FLOAT CONVERSION SUBROUTINES

Operands, return value

The single precision operand or return value is stored in R4/R5:

R4 R5

seeeeeeeemmmmmmm mmmmmmmmmmmmmmmm

s = sign, e = exponent, m = mantissa

Available float conversion subroutines

Subroutine Operation Operands Result

__cff48r *1 float to double conversion R4R5 [R10+#*]

__cff84r double to float conversion [R10+#*] R4R5

__cfi42r float to signed int conversion R4R5 R4

__cfi44r float to signed long conversion R4R5 R5R4 *2

__cfu42r float to unsigned int conversion R4R5 R4

__cfu44r float to unsigned long conversion R4R5 R5R4 *2

__cif24r signed int to float conversion R4 R4R5

__cif44r signed long to float conversion R5R4 *2 R4R5

__cuf24r unsigned int to float conversion R4 R4R5

__cuf44r unsigned long to float conversion R5R4 *2 R4R5

Table 3-14: Float conversion subroutines

*1= Return value on the user stack
*2=R5R4 means that the most significant word is stored in R5.

There is no negation subroutine. Its functionality can be achieved by

"BMOVN R4.15, R4.15 ".

3.15.4.3 REGISTER USAGE SINGLE PRECISION

The only registers destroyed by the single precision subroutines are R1-R5

and R10-R11.

Language Implementation 3–81

• • • • • • • •

3.15.5 DOUBLE PRECISION USAGE

Double precision numbers are stored in memory. The floating point library

passes operands and return values on the user stack.

3.15.5.1 DOUBLE BASE EXPRESSION SUBROUTINES

Operands, return value

The first operand is stored in IEEE-754 format on the user stack and

referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]

seeeeeeeeeeemmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm

 s = sign, e = exponent, m = mantissa

The second operand on the user stack is referred to by R11:

[R11+#0] [R11+#2] [R11+#4] [R11+#6]

seeeeeeeeeeemmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm

 s = sign, e = exponent, m = mantissa

The result is stored in the user stack area referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]

seeeeeeeeeeemmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm

 s = sign, e = exponent, m = mantissa

Available double base expression subroutines

Subroutine Operation Operands Result

__adf8r double addition [R10+#*], [R11+#*] [R10+#*]

__cmf8r double comparison [R10+#*], [R11+#*] R4

__dvf8r double division [R10+#*], [R11+#*] [R10+#*]

__mlf8r double multiplication [R10+#*], [R11+#*] [R10+#*]

__ngf8r double negation [R10+#*] [R10+#*]

__sbf8r double addition [R10+#*], [R11+#*] [R10+#*]

Table 3-15: Double base expression subroutines

Chapter 33–82
L
A
N
G
U
A
G
E

3.15.5.2 DOUBLE CONVERSION SUBROUTINES

Operands, return value

The double precision operand or return value is referred to by R10:

[R10+#0] [R10+#2] [R10+#4] [R10+#6]

seeeeeeeeeeemmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmm

 s = sign, e = exponent, m = mantissa

Available double conversion subroutines

Subroutine Operation Operands Result

__cff48r *1 float to double conversion R4R5 [R10+#*]

__cff84r double to float conversion [R10+#*] R4R5

__cfi82r double to signed int conversion [R10+#*] R4

__cfi84r double to signed long conversion [R10+#*] R5R4 *2

__cfu82r double to unsigned int conversion [R10+#*] R4

__cfu84r double to unsigned long conversion [R10+#*] R5R4 *2

__cif28r *1 signed int to double conversion R4 [R10+#*]

__cif48r *1 signed long to double conversion R5R4 *2 [R10+#*]

__cuf28r *1 unsigned int to double conversion R4 [R10+#*]

__cuf48r *1 unsigned long to double conversion R5R4 *2 [R10+#*]

Table 3-16: Double conversion subroutines

*1 Return value on the user stack
*2 R5R4 means that the most significant word is stored in R5.

Language Implementation 3–83

• • • • • • • •

3.15.5.3 DOUBLE SUPPORT SUBROUTINES

Doubles can be stored anywhere in memory (near/far/huge/shuge) but

the floating point library expects them to be on the user stack. This is why

some library subroutines were implemented for fast copying of doubles to

and from user stack.

__load8n , __load8f and __load8h copy doubles from near, far or

(s)huge area to the user stack space allocated by these routines

themselves. These routines change the user stack pointer and return a

register pointer to the user stack.

__store8n , __store8f and __store8h copy doubles from the user

stack to near, far, huge or shuge. These routines do not free the user stack

space allocated by __load8 x .

__ld0f8r and __ld1f8r allocate user stack similar to __load8 x and

copy the value 0.0 or 1.0 to this area.

Available double support subroutines

Subroutine Operation Operands Result

__load8f copy double to user stack
(far)

R5R4 *1 R10

__load8h copy double to user stack
(huge/shuge)

R5R4 *1 R10

__load8n copy double to user stack
(near)

R4 R10

__ld0f8r create 0.0 on alloacted user
stack

None R10

__ld1f8r create 1.0 on allocated user
stack

None R10

__store8f copy double from user stack
to far

R10, R5R4 *1 None, destroys
R10

__store8h copy double from user stack
to huge/shuge

R10, R5R4 *1 None, destroys
R10

__store8n copy double from user stack
to near

R10, R4 None, destroys
R10

Table 3-17: Double support subroutines

*1R5R4 means that the most significant word is stored in R5.

Chapter 33–84
L
A
N
G
U
A
G
E

3.15.5.4 REGISTER USAGE DOUBLE PRECISION

The only registers destroyed by the normal double precision subroutines

are R1-R5. The input operands [R10+#*] and [R11+#*] are destroyed. R10

and R11 keep their value though, except for routines converting to double.

Usually __load8 x and __store8 x are also called. __load8 x changes

R0-R5 and R10, __store8 x changes R1-R5 and R10. The subroutines

__ld xf8r change R0-R5 and R10.

3.15.6 FLOAT/DOUBLE USAGE FOR ASSEMBLY

PROGRAMMERS

Example of float usage for assembly programmers

; Create functionality of C expression:
; flt1 += (float) 4 * PI;
 MOV R4, #4 ; R4 contains int 4
 CALLA cc_UC, __cif24r ; convert int 4 to float 4.0 (R4R5)
 MOV R10, PI ;
 MOV R11, (PI+2) ;
; ; R4R5: 4.0
; ; R10R11: PI
 CALLA cc_UC, __mlf4r ; multiplication, result stored in R4R5
 MOV R10, _flt1 ;
 MOV R11, (_flt1+2) ;
; ; R4R5: 4.0 * PI
; ; R10R11: copy of _flt1
 CALLA cc_UC, __adf4r ; addition, result stored in R4R5
 MOV _flt1, R4 ;
 MOV (_flt1+2), R5 ; save result

PI: DW 04049h, 00FDBh ; 3.141592654 (IEEE754–format)

; Registers not destroyed in this code fragment: R0, R6–R9, R12–R15

Language Implementation 3–85

• • • • • • • •

Example of double usage for assembly programmers

; Create functionality of C expression:
; dbl1 += (double) 4 * PI;
 MOV R4, #4 ; R4 contains int 4
allo1: CALLA cc_UC, __cif28r ; convert int 4 to double 4.0
; ; ([R10+#*])
 MOV R11, R10 ; copy pointer to 4.0 to R11
 MOV R4, #PI ; pointer to PI (source address)
allo2: CALLA cc_UC, __load8n ; copy PI to new allocated stack
; ; ([R10+#*])
; ; [R10+#*]: PI (user stack)
; ; [R11+#*]: 4.0 (user stack)
 CALLA cc_UC, __mlf8r ; multiplication, result stored
; ; in [R10+#*]
 MOV R11, R10 ; copy pointer to 4.0 * PI to R11
 MOV R4, #_dbl1 ;
allo3: CALLA cc_UC, __load8n ; copy _dbl1 to new allocated stack
; ; ([R10+#*])
; ; [R10+#*]: copy of _dbl (user stack)
; ; [R11+#*]: 4.0 * PI (user stack)
 CALLA cc_UC, __adf8r ; addition, result stored in [R10+#*]
 MOV R4, #_dbl1 ; destination address in R4
 CALLA cc_UC, __store8n ; copy result to _dbl1
 ADD R0, #24 ; restore stack
; ; stack allocated by lines allo*.

PI: DW 04009h, 021FBh ; 3.141592654 (IEEE754–format)
 DW 05452h, 04550h ;

; Registers not destroyed in this code fragment: R0, R6–R9,
; R12–R15.

3.15.7 FLOATING POINT TRAPPING

Two sets of floating point libraries are delivered with the compiler, one

with a floating point trapping mechanism and one without a floating point

trapping mechanism (the chapter Libraries explains the naming

conventions).

The floating point libraries with a trapping mechanism call a trapping

routine which is in module trap.obj. You can replace this routine with your

own trapping routine, or link your own trap routine to your application.

Default, the trapping routine as delivered with the floating point libraries

will never return. The infinite loop on a public label called

__FPTRAPLOOP is easy to find in a debug session. See the listing of the

trap handler in figure 3-5 of section 3.15.8, Handling Floating Point Traps
in a C Application.

Chapter 33–86
L
A
N
G
U
A
G
E

A floating point routine calls the trap routine if an error condition occurs.

The type of error is specified by a trap code which is passed via register

R1 to the trap routine. The result of a floating point operation is not

undefined in an error situation. On error the result will be a special

floating point number, such as infinite, not a number etc., except when a

floating point underflow or overflow occurs.

The following table lists all the trap codes and the corresponding error

description and result:

Error Description Trap code Result
float/(unsigned) integer

Integer overflow 3 0x7FFF or 0x8000
(integer result)
0xFFFF or 0x0000
(unsigned integer result)

Floating overflow 4 +INF or –INF
(float result)

Floating underflow 5 0.0 (float result)

Divide by zero 7 +INF or –INF or NaN
(float result)

Undefined float 9 NaN (float result)

Conversion error 10 0 (integer result)

INF Infinite which is the largest absolute floating point number.
NaN Not a Number, special notation for undefined floating point number.

Table 3-18: Trap Codes

Language Implementation 3–87

• • • • • • • •

3.15.8 HANDLING FLOATING POINT TRAPS IN A C

APPLICATION

This section explains how program execution can be continued after a

floating point trap. And how floating point trap codes are passed from the

floating point trap handler to a C application.

Only the floating point libraries which perform floating point trapping

contain a floating point trap stub. This floating point trap stub loops

infinitely, which is very helpful when you want to find a bug in your

application. But when it is expected or allowed or even wanted that

floating point operations generate results that are out of range, then

program execution must continue after entering the floating point trap

handler.

It is not possible to simply return from the floating point trap handler,

because the floating point accumulator(s) contain a value which is out of

range. In the same floating point operation or else in a next floating point

operation there will be another call to the floating point trap handler,

because the value in the floating point accumulator(s) remain out of range.

This results in a succession of floating point traps.

It is impossible to assign a value to the floating point accumulator(s) which

is in range and then continue program execution. If you try to assign a

value to the floating point accumulators the result will always be

undefined.

Interpretation of the error condition in the floating point trap handler and

then continuing the floating point operation will result in most cases in a

new error condition or unpredictable result. So, this is not a good solution

to handle floating point error situations.

It is better to stop immediately the floating point operation which causes

the floating point trap, by returning back to your application and there

decide what to do with the floating point error condition. Therefore, you

have to predefine an environment in your application to return to. Simply

jumping back is not possible because the system-stack and user-stack are

then corrupted. The floating point trap code must also be returned to the

application to examine the cause of the trap.

An environment to return to in an application can be saved with the C

library function setjmp . The C library function longjmp can be used in

the floating point trap handler to return immediately to this saved

environment. The longjmp restores the stack pointers, jumps back and

passes the trap code to be processed.

Chapter 33–88
L
A
N
G
U
A
G
E

The C listing below shows how to save an environment with setjmp . The

assembly listing of the floating point trap handler below shows how

longjmp is used to return to the saved environment.

There are several ways to write a C function which handles floating point

traps using setjmp and longjmp . Always keep in mind that the longjmp
function restores the environment saved by the most recent invocation of

the setjmp function. And the environment must be saved before the

longjmp function is called by the floating point trap handler, else

program execution will be undefined.

Language Implementation 3–89

• • • • • • • •

/*
 * Example program which handles floating point traps by printing
 * the floating point trap code on stdout. See, also floating point
 * trap handler in module trap.asm
 */
#include <stdio.h>
#include <setjmp.h>

/* Floating point environment buffer declared in trap handler */
extern jmp_buf _FP_ENV;

void
main(void)
{
 int exception;

 /*
 * Do not use floating point operations before this if
 * statement, because there is no environment saved to jump to.
 * The trap handler loops infinite when a floating
 * point operation is called from this point which traps!
 */
 /*
 * When the setjmp function has saved the environment it returns
 * zero into the exception variable, so the floating point
 * operations are executed. But if a floating point trap occurs,
 * the trap handler calls the function longjmp.
 * The longjmp function restores the environment and returns the
 * trap code in the exception variable. The trap code is a
 * non–zero value, so the else part of this if statement will be
 * executed on a floating point trap.
 */
 if(!(exception = setjmp(_FP_ENV)))
 {
 /*
 * Insert your floating point operations here.
 */
 } else
 {
 /* The exception code is a non–zero value. */
 printf(”Floating point exception: %d\n”, exception);
 }

 /*
 * When there is a floating point operation after this if
 * statement and it generates a floating point trap. Then the
 * program execution also continues in the else part of this if
 * statement, because the environment buffer was saved to it !
 */
}

Figure 3-5: Example floating point trap handling (C listing)

Chapter 33–90
L
A
N
G
U
A
G
E

The floating point trap handler described by the assembly listing in figure

3-6 is archived in the floating point libraries.

$case
$genonly
;**
;*
;* MODULE : trap.asm
;*
;* APPLICATION : Floating point library 80166
;*
;* DESCRIPTION : Floating point trap handler which uses longjmp to
;* return to a previous saved environment or loops
:* infinite when no environment is save to return to.
;*
;* INPUT : Register R1 contains the trap code
;*
;* Trap code R1,old R1,IEEE Description
;* EIOVFL 3 ; Integer overflow
;* EFOVFL 4 4 ; Float overflow
;* EFUNFL 5 8 ; Float underflow
;* EFDIVZ 7 2 ; Float division by zero
;* EFUND/EFINVOP 9 1 ; Float invalid operation
;* ECONV 10 32 ; Conversion error
;* ESTKUN 11 ; Floating point stack underflow
;* ESTKOV 12 ; Floating point stack overflow
;* EFINEXCT 16 ;
;*
;* ANALIST : Guus Jansman
;*
;* COPYRIGHTS : Tasking B.V., Amersfoort 2000
;*
;**
$INCLUDE(head.asm)

@IF(@NES(@MODEL,”TINY”) & @NES(@MODEL,”SMALL”))
ASSUME DPP2:__FP_ENV ; near data addressed via DPP2
@ENDI

PUBLIC __fptrap8 ; public declaration trapping routine
 ; for double precision.

PUBLIC __fptrap4 ; public declaration trapping routine
 ; for single precision.

PUBLIC __FP_ENV ; public declaration floating point
 ; environment buffer

PUBLIC __FPTRAPLOOP ; public declaration trap loop

@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”MEDIUM”))
EXTERN _longjmp:NEAR
@ELSE
EXTERN _longjmp:FAR

Language Implementation 3–91

• • • • • • • •

@ENDI

__FPCODE SECTION CODE WORD PUBLIC ’CPROGRAM’

;**

;* floating point trap handler
;**

@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”MEDIUM”))
__fptrap8 PROC NEAR
@ELSE
__fptrap8 PROC FAR
@ENDI
__fptrap4: ; entry floating point trapping routine for single
 ; precision operations.

 : There is no environment to return to, when the longjump return

 ; address is not set in the floating point jump buffer.
 mov R12, (__FP_ENV) ;if(_FP_ENV.return_address == NULL)
@IF(@NES(@MODEL,”TINY”) & @NES(@MODEL,”MEDIUM”))
 or R12, (__FP_ENV+2);
@ENDI
 jmpr cc_Z, __FPTRAPLOOP ; goto infinite loop

@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”SMALL”))
 mov R12, #__FP_ENV ; R12 passes environment address
 ; buffer to longjmp
 mov R13, fptrap ; R13 passes trap code to longjmp
@IF(@FPEXC_OP)
 mov R14, fpexcop ; R14 passes exception operation
@ENDI
@ELSE
 mov R12, #POF (__FP_ENV) ; R12–R13 passes environment address
 mov R13, #PAG (__FP_ENV) ; buffer to longjmp
 mov R14, fptrap ; R14 passes trap code to longjmp
@IF(@FPEXC_OP)
 mov R15, fpexcop ; R15 passes exception operation
@ENDI
@ENDI

; restore environment loaded in the environment buffer _FP_ENV and
; return the trap code by calling longjmp
@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”MEDIUM”))
 jmpa cc_UC, _longjmp
@ELSE
 @_STBUS1(_longjmp)
@ENDI

 ; loop infinite if no environment set to return to.
__FPTRAPLOOP:
 jmpa CC_UC, __FPTRAPLOOP

Chapter 33–92
L
A
N
G
U
A
G
E

 RETV ; virtual return

__fptrap8 ENDP

__FPCODE ENDS

;**
;* data section for floating point environment buffer which is
cleared
;* at startup with C166_BSS. jmp_buf _FP_ENV;
;**
@IF(@EQS(@MODEL, ”TINY”) | @EQS(@MODEL, ”SMALL”))
__FP_ENV_BUF SECTION LDAT WORD PUBLIC ’CNEAR’
@ELSE
__FP_ENV_BUF SECTION DATA WORD PUBLIC ’CNEAR’
@ENDI
__FP_ENV LABEL WORD
 DS 16 ; sizeof(jmp_buf)
__FP_ENV_BUF ENDS

@IF(@EQS(@MODEL, ”TINY”))
C166_BSS SECTION LDAT WORD GLOBAL ’CINITROM’
 DW 05h ; init code 05, linear data
 DW __FP_ENV ; start address buffer
 DW 16 ; number of bytes to clear
C166_BSS ENDS
@ENDI
@IF(@EQS(@MODEL, ”SMALL”))
C166_BSS SECTION PDAT WORD GLOBAL ’CINITROM’
 DW 06h ; init code 06, paged data
 DPPTR __FP_ENV ; start address buffer
 DW 16 ; number of bytes to clear
C166_BSS ENDS
@ENDI
@IF(@NES(@MODEL, ”TINY”) & @NES(@MODEL, ”SMALL”))
C166_DGROUP DGROUP __FP_ENV_BUF ; add to default data group
C166_BSS SECTION DATA WORD GLOBAL ’CINITROM’
 DW 06h ; init code 06, paged data
 DPPTR __FP_ENV ; start address buffer
 DW 16 ; number of bytes to clear
C166_BSS ENDS
@ENDI

@IF(@EQS(@MODEL,”TINY”) | @EQS(@MODEL,”SMALL”))
 REGDEF R1, R12–R13
@ELSE
 REGDEF R1, R12–R14
@ENDI

 END

Language Implementation 3–93

• • • • • • • •

Figure 3-6: Floating point trap handling (assembly-listing)

The floating point trap handler checks if an environment is set in

__FP_ENV to return to. When the return address contains a NULL pointer

it is supposed that there is no environment set and the trap handler

continues looping infinitely. When a return address is set, the address of

the jump buffer __FP_ENV and the trap code are passed to longjmp .

Calling the longjmp function at the end of the trap handler restores the

environment saved in __FP_ENV.

The data section containing the floating point jump buffer __FP_ENV is

cleared at startup. The initialization codes for it are stored in the C166_BSS

sections.

There are two entry points available in the floating point trap handler, one

for double precision floating point functions causing a trap, and one for

single precision floating point functions causing a trap. This default trap

handler is precision independent, but if you want to write a trap handler

for each precision you need these two entry points.

You can use your own floating point trap handler by linking the object

module, overruling the floating point trap handler of the floating point

library. Or you can replace the floating point trap object module in the

floating point library with the object module of your own floating point

trap handler.

Chapter 33–94
L
A
N
G
U
A
G
E

3.16 INTRINSIC FUNCTIONS

When you want to use specific C166/ST10 instructions that have no

equivalence in C, you normally must write (inline) assembly to perform

these tasks. However, c166 offers a way of handling this in C. The c166

has a number of built-in functions that are implemented as intrinsic

functions. The advantage of this approach is that the same C source can be

compiled by a standard ANSI C compiler for simulator purposes. See the

section Portable C Code for details.

Because the ANSI specification states that public C names starting with an

underscore are implementation defined, all intrinsic functions names have

a leading underscore.

Several of the intrinsic functions have restricted operand types. There are

two possible restricted types. The first is called ICE which denotes that the

operand must be a Integral Constant Expression rather than any type of

integral expression, this is because the BMOV instruction et al do not

support otherwise. The second is called BITADDR which means that the

operand must be a bit addressable integer (i.e. bitword, bitaddressable sfr

or bitaddressable esfr) object.

c166 has the following intrinsic functions:

_CoABS

void _CoABS(void);

Use the CoABS instruction to change the MAC accumulator's contents to its

absolute value. Only available when the MAC instruction set is enabled

with the compiler option -xd.

Returns nothing.

_CoABS();
CoABS

Language Implementation 3–95

• • • • • • • •

_CoADD

void _CoADD(long x);

Use the CoADD instruction to add a 32-bit value to the MAC accumulator.

Only available when the MAC instruction set is enabled with the compiler

options -xd.

Returns nothing.

_CoADD(arg1);
CoADD R12, R13

_CoADD2

void _CoADD2(long x);

Use the CoADD2 instruction to add a 32-bit value, multiplied by two, to

the MAC accumulator. Only available when the MAC instruction set is

enabled with the compiler option -xd.

Returns nothing.

_CoADD2(arg1);
CoADD2 R12, R13

_CoASHR

void _CoASHR(unsigned int count);

Use the CoASHR instruction to (arithmetic) shift right the contents of the

MAC accumulator count times. Only available when the MAC instruction

set is enabled with the compiler option -xd.

The CoASHR instruction has a maximum value for count. Check your CPU

manual for the CoASHR behaviour for large arguments.

Returns nothing.

_CoASHR(2);
CoASHR #02h

Chapter 33–96
L
A
N
G
U
A
G
E

_CoCMP

unsigned int _CoCMP(long x);

Inline code is generated by the C compiler to compare the MAC

accumulator contents with a 32-bit value. The returned value is a copy of

the MSW register. Only available when the MAC instruction set is enabled

with the compiler option -xd.

Returns copy of MSW register.

isequal = _CoCMP(arg1) & 0x0200;
CoCMP R12, R13
CoSTORE R4, MSW
AND R4, #0200h

_CoLOAD

void _CoLOAD(long x);

Use the CoLOAD instruction to copy a 32-bit value to the MAC

accumulator. Only available when the MAC instruction set is enabled with

the compiler option -xd.

Returns nothing.

_CoLOAD(arg1);
CoLOAD R12, R13

_CoLOAD2

void _CoLOAD2(long x);

Use the CoLOAD2 instruction to copy a 32-bit value, multiplied by two, to

the MAC accumulator. Only available when the MAC instruction set is

enabled with the compiler option -xd.

Returns nothing.

_CoLOAD2(arg1);
CoLOAD2 R12, R13

Language Implementation 3–97

• • • • • • • •

_CoMAC

void _CoMAC(int x, int y);

Use the CoMAC instruction to add the multiplication result of two signed

16-bit values to the MAC accumulator. Only available when the MAC

instruction set is enabled with the compiler option -xd. Note that the MP
flag influences the result (it is highly recommended to keep the MP flag

cleared).

Returns nothing.

_CoMAC(arg1, arg2);
CoMAC R12, R13

_CoMACsu

void _CoMACsu(int x, unsigned int y);

Use the CoMACsu instruction to add the multiplication result of a signed

16-bit value with an unsigned 16-bit value to the MAC accumulator. Only

available when the MAC instruction set is enabled with the compiler

option -xd.

Returns nothing.

_CoMACsu(arg1, arg2);
CoMACsu R12, R13

_CoMACu

void _CoMACu(unsigned int x, unsigned int y);

Use the CoMACu instruction to add the multiplication result of two

unsigned 16-bit values to the MAC accumulator. Only available when the

MAC instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoMACu(arg1, arg2);
CoMACu R12, R13

Chapter 33–98
L
A
N
G
U
A
G
E

_CoMAC_min

void _CoMAC_min(int x, int y);

Use the CoMAC- instruction to subtract the multiplication result of two

signed 16-bit values from the MAC accumulator. Only available when the

MAC instruction set is enabled with the compiler option -xd. Note that the

MP flag influences the result (it is highly recommended to keep the MP flag

cleared).

Returns nothing.

_CoMAC_min(arg1, arg2);
CoMAC– R12, R13

_CoMACsu_min

void _CoMACsu_min(int x, unsigned int y);

Use the CoMACsu- instruction to subtract the mulatiplication result of a

signed 16-bit value with an unsigned 16-bit value from the MAC

accumulator. Only available when the MAC instruction set is enabled with

the compiler option -xd.

Returns nothing.

_CoMACsu_min(arg1, arg2);
CoMACsu– R12, R13

_CoMACu_min

void _CoMACu_min(unsigned int x, unsigned int y);

Use the CoMACu- instruction to subtract the multiplication result of two

unsigned 16-bit values from the MAC accumulator. Only available when

the MAC instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoMACu_min(arg1, arg2);
CoMACu– R12, R13

Language Implementation 3–99

• • • • • • • •

_CoMAX

void _CoMAX(long x);

Use the CoMAX instruction to change the MAC accumulator's contents if its

value is lower than the argument's value. Only available when the MAC

instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoMAX(arg1);
CoMAX R12, R13

_CoMIN

void _CoMIN(long x);

Use the CoMIN instruction to change the MAC accumulator's contents if its

value is higher than the argument's value. Only available when the MAC

instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoMIN(arg1);
CoMIN R12, R13

_CoMUL

void _CoMUL(int x, int y);

Use the CoMUL instruction to store the multiplication result of two signed

16-bit values in the MAC accumulator. Only available when the MAC

instruction set is enabled with the compiler option -xd. Note that the MP
flag influences the result (it is highly recommended to keep the MP flag

cleared).

Returns nothing.

_CoMUL(arg1, arg2);
CoMUL R12, R13

Chapter 33–100
L
A
N
G
U
A
G
E

_CoMULsu

void _CoMULsu(int x, unsigned int y);

Use the CoMULsu instruction to store the multiplication result of a signed

16-bit value with an unsigned 16-bit value in the MAC accumulator. Only

available when the MAC instruction set is enabled with the compiler

option -xd.

Returns nothing.

_CoMULsu(arg1, arg2);
CoMULsu R12, R13

_CoMULu

void _CoMULu(unsigned int x, unsigned int y);

Use the CoMULu instruction to store the multiplication result of two

unsigned 16-bit values in the MAC accumulator. Only available when the

MAC instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoMULu(arg1, arg2);
CoMULu R12, R13

_CoNEG

void _CoNEG(void);

Use the CoNEG instruction to change the MAC accumulator's contents to

its negated value. Only available when the MAC instruction set is enabled

with the compiler option -xd.

Returns nothing.

_CoNEG();
CoNEG

Language Implementation 3–101

• • • • • • • •

_CoNOP

void _CoNOP(void);

A CoNOP instruction is generated. Only available when the MAC

instruction set is enabled with the compiler option -xd.

Returns nothing.

_CoNOP();
CoNOP [R0]

_CoRND

void _CoRND(void);

Use the CoRND semi-instruction to change the MAC accumulator's

contents to its rounded value. Only available when the MAC instruction set

is enabled with the compiler option -xd.

Returns nothing.

_CoRND();
CoRND

_CoSHL

void _CoSHL(unsigned int count);

Use the CoSHL instruction to shift left the contents of the MAC

accumulator count times. Only available when the MAC instruction set is

enabled with the compiler option -xd.

The CoSHL instruction has a maximum value for count. Check your CPU

manual for the CoSHL behaviour for large arguments.

Returns nothing.

_CoSHL(2);
CoSHL #02h

Chapter 33–102
L
A
N
G
U
A
G
E

_CoSHR

void _CoSHR(unsigned int count);

Use the CoSHR instruction to (logical) shift right the contents of the MAC

accumulator count times. Only available when the MAC instruction set is

enabled with the compiler option -xd.

The CoSHR instruction has a maximum value for count. Check your CPU

manual for the CoSHR behaviour for large arguments.

Returns nothing.

_CoSHR(2);
CoSHR #02h

_CoSTORE

long _CoSTORE(void);

Use the CoSTORE instruction to retrieve the 32-bit value, stored in the

MAC accumulator MAH and MAL. Only available when the MAC

instruction set is enabled with the compiler option -xd.

Returns 32-bit value from MAH and MAL.

x = _CoSTORE();
CoSTORE R13, MAH
CoSTORE R12, MAL

_CoSTOREMAH

int _CoSTOREMAH(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAH.

Only available when the MAC instruction set is enabled with the compiler

option -xd.

Returns 16-bit value from MAH

x = _CoSTOREMAH();
CoSTORE R12, MAH

Language Implementation 3–103

• • • • • • • •

_CoSTOREMAL

int _CoSTOREMAL(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAL.

Only available when the MAC instruction set is enabled with the compiler

option -xd.

Returns 16-bit value from MAL

x = _CoSTOREMAL();
CoSTORE R12, MAL

_CoSTOREMAS

int _CoSTOREMAS(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAS.

Only available when the MAC instruction set is enabled with the compiler

option -xd.

Returns 16-bit value from MAS

x = _CoSTOREMAS();
CoSTORE R12, MAS

_CoSTOREMSW

int _CoSTOREMSW(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MSW.

Only available when the MAC instruction set is enabled with the compiler

option -xd.

Returns 16-bit value from MSW.

x = _CoSTOREMSW();
CoSTORE R12, MSW

Chapter 33–104
L
A
N
G
U
A
G
E

_CoSUB

void _CoSUB(long x);

Use the CoSUB instruction to subtract a 32-bit value from the MAC

accumulator. Only available when the MAC instruction set is enabled with

the compiler options -xd.

Returns nothing.

_CoSUB(arg1);
CoSUB R12, R13

_CoSUB2

void _CoSUB2(long x);

Use the CoSUB2 instruction to subtract a 32-bit value, multiplied by two,

from the MAC accumulator. Only available when the MAC instruction set is

enabled with the compiler option -xd.

Returns nothing.

_CoSUB2(arg1);
CoSUB2 R12, R13

_rol

unsigned int _rol(unsigned int operand ,
 unsigned int count);

Use the ROL instruction to rotate (left) operand count times.

Returns the result.

 sj = _rol(ri, 4);

MOV R5,R9

ROL R5,#04h

MOV _sj,R5

Language Implementation 3–105

• • • • • • • •

_ror

unsigned int _ror(unsigned int operand ,
 unsigned int count);

Use the ROR instruction to rotate (right) operand count times.

Returns the result.

 sj = _ror(si, pi);

MOV R4,_si

ROR R4,R12

MOV _sj,R4

_testclear

_bit _testclear(_bit semaphore);

Read and clear semaphore using the JBC instruction.

Returns 0 if semaphore was not cleared by the JBC instruction, 1

otherwise.

 if (_testclear(b))

 BSET USR0

 JBC _b,_7

 BCLR USR0

_7:

 JNB USR0,_3

 { /* success: semaphore ’b’ was free (1)

 * and now used for our critical region

 * (set to 0). Note that the code of this

 * action may be longer than 127 words

 */

 g();

 CALLA cc_UC,_g

 b = 1; /* end critical actions: free

 * semaphore */

 BSET _b

 }

_3:

Chapter 33–106
L
A
N
G
U
A
G
E

_testset

_bit _testset(_bit semaphore);

Read and set semaphore using the JNBS instruction.

Returns 0 if semaphore was not set by the JNBS instruction, 1

otherwise.

 if (_testset(b))

 BSET USR0

 JNBS _b,_8

 BCLR USR0

_8:

 JNB USR0,_5

 { /* success: semaphore ’b’ was free (0)

 * and now used for our critical region

 * (set to 1). Note that the code of this

 * action may be longer than 127 words

 */

 g();

 CALLA cc_UC,_g

 b = 0; /* end critical actions: free

 * semaphore */

 BCLR _b

 }

_5:

_bfld

void _bfld(BITADDR operand , ICE mask, ICE value);

Use the BFLDL/BFLDH instructions to assign the constant value to the

bit-field indicated by the constant mask of the bitaddressable operand.

 _bfld(bw, 0x7f, 1);

BFLDL _bw,#07Fh,#01h

 _bfld(S0CON, 0x7f00, 0x100);

BFLDH S0CON,#07Fh,#01h

 _bfld(bw, 0x03c0, 0x80);

BFLDH _bw,#03h,#00h

BFLDL _bw,#0C0h,#080h

Language Implementation 3–107

• • • • • • • •

_getbit

_bit _getbit(BITADDR operand , ICE bitoffset);

Returns the bit at bitoffset (range 0 - 15) of the bitaddressable

operand for usage in bit expressions.

 b = _getbit(P0, 0);

BMOV _b,P0.0

 IEN = _getbit(bwarray[2], 4);

BMOV IEN,_bwarray+4.4

_putbit

void _putbit(_bit value , BITADDR operand ,
 ICE bitoffset);

Assign value to the bit at bitoffset (range 0 - 15) of the bitaddressable

operand.

 _putbit(1, P0, 3);

BSET P0.3

 _putbit(si, P0, 2);

MOV R4,_si

BMOVN P0.2,Z

 _putbit(_getbit(P0, 0), P0, 1);

BMOV P0.1,P0.0

_int166

void _int166(ICE intno);

Execute the C166/ST10 software interrupt specified by the interrupt

number intno via the software trap (TRAP) instruction. _int166(0); emits

an SRST (Software Reset) instruction.

 _int166(4);

TRAP #04h

 _int166(0);

SRST

Chapter 33–108
L
A
N
G
U
A
G
E

_idle

void _idle(void);

Use IDLE instruction to enter the idle mode. In this mode the CPU is

powered down while the peripherals remain running.

Returns nothing.

 if(save_power)

 MOV R5,_save_power

 JMPR cc_Z,_12

 _idle(); /* wait until peripheral interrupt

 * or external interrupt occurs.

 */

 IDLE

_12:

_nop

void _nop(void);

A NOP instruction is generated, before and behind the nop instruction the

peephole is flushed. Code generation for _nop() is exactly the same as the

following inline assembly.

#pragma asm
 nop ; inline nop instruction
#pragma endasm

Returns nothing.

 value = P0; /* read from port P0 */

MOV R12,P0

 _nop(); /* delay for one cycle */

NOP

 P1 = value; /* write to port P1 */

MOV P1,R12

Language Implementation 3–109

• • • • • • • •

_prior

unsigned int _prior(unsigned int value);

Use PRIOR instruction to prioritize value.

Returns number of single bit shifts required to normalize value so
that its MSB is set to one.

 register int value;

 extern int leading_zeros;

 leading_zeros = _prior(value);

PRIOR R4,R12

MOV _leading_zeros,R4

_pwrdn

void _pwrdn(void);

Use PWRDN instruction to enter the power down mode. In this mode, all

peripherals and the CPU are powered down until an external reset occurs.

Returns nothing.

 if(standby_mode)

 MOV R4,_standby_mode

 JMPR cc_Z,_13

 _pwrdn(); /* CPU is powered down until

 * an external interrupt occurs.

 */

 PWRDN

_13:

_srvwdt

void _srvwdt(void);

Use SRVWDT instruction to service the watchdog timer.

Returns nothing.

Chapter 33–110
L
A
N
G
U
A
G
E

 _srvwdt(); /* service watchdog before

 * it overflows.

 */

SRVWDT

_diswdt

void _diswdt(void);

Use DISWDT instruction to disable the watchdog timer.

Returns nothing.

 _diswdt(); /* disable watchdog timer */

DISWDT

_einit

void _einit(void);

Use EINIT instruction to end the initialization.

Returns nothing.

 _einit(); /* end of initialization */

EINIT

_atomic

void _atomic(ICE number);

Use ATOMIC instruction to let interrupts be disabled for a specified

number of instructions (number=[1..4]). Only available when the extended

instruction set is enabled with the compiler option -x.

Returns nothing.

 _atomic(3); /* next 3 instructions are

 * not interrupted.

 */

ATOMIC #03h

Language Implementation 3–111

• • • • • • • •

_mul32

long _mul32(int x, int y);

Use MUL instruction to perform a 16-bit by 16-bit signed multiplication

and returning a signed 32-bit result. The overflow bit V is set by the CPU

when the result cannot be represented in a long data type.

Returns the result when no overflow occurs.

_mulu32

unsigned long _mulu32(unsigned int x,
 unsigned int y);

Use MULU instruction to perform a 16-bit by 16-bit unsigned

multiplication and returning a unsigned 32-bit result. The overflow bit V is

set by the CPU when the result cannot be represented in a long data type.

Returns the result when no overflow occurs.

_div32

int _div32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed division and

returning a signed 16-bit result. The overflow bit V is set by the CPU

when the result cannot be represented in an int data type or when the

divisor y was zero.

Returns the result when no overflow occurs.

_divu32

unsigned int _divu32(unsigned long x,
 unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned division

and returning an unsigned 16-bit result. The overflow bit V is set by the

CPU when the result cannot be represented in an int data type or when

the divisor y was zero.

Returns the result when no overflow occurs.

Chapter 33–112
L
A
N
G
U
A
G
E

_mod32

int _mod32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed modulo and

returning a signed 16-bit result. The overflow bit V is set by the CPU

when the quotient cannot be represented in an int data type or when the

divisor y was zero.

Returns the result when no overflow occurs.

_modu32

unsigned int _modu32(unsigned long x,
 unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned modulo

and returning a unsigned 16-bit result. The overflow bit V is set by the

CPU when the quotient cannot be represented in an int data type or when

the divisor y was zero.

Returns the result when no overflow occurs.

int muldiv32(int arg1, int arg2, int divisor);

 long m32;

 int d32;

 if (m32 = _mul32(arg1, arg2), V)

 MOV R8,R12

 MUL R8,R13

 MOV R9,MDH

 MOV R8,MDL

 JNB V,_14

 errno = OVERFLOW;

 MOV R4,#01h

 MOV _errno,R4

_14:

 if(d32 = _div32(m32, divisor), V)

 MOV R15,R14

 MOV MDH,R9

 MOV MDL,R8

 DIVL R15

Language Implementation 3–113

• • • • • • • •

 MOV R15,MDL

 JNB V,_15

 errno = OVERFLOW;

 MOV R4,#01h

 MOV _errno,R4

_15:

 return(d32);

 MOV R4,R15

_pag

unsigned int _pag(void * p);

Inline code is generated by the C compiler to get the page number of

pointer p. Not available in tiny model.

Returns a 4-bit (10-bit for C167) page number.

 pag_hp = _pag(harray);

MOV R4,#SOF _harray

MOV R5,#SEG _harray

MOV R12,R5

SHL R12,#02h

BMOV R12.0,R4.14

BMOV R12.1,R4.15

_pof

unsigned int _pof(void * p);

Inline code is generated by the C compiler to get the page offset of

pointer p. Not available in tiny model.

Returns a 14-bit page offset.

 pof_hp = _pof(harray);

MOV R4,#SOF _harray

MOV R5,#SEG _harray

MOV R13,R4

AND R13,#03FFFh

Chapter 33–114
L
A
N
G
U
A
G
E

_seg

unsigned int _seg(void * p);

Inline code is generated by the C compiler to get the segment number of

pointer p. Not available in tiny model.

Returns a 2-bit (8-bit for C167) segment number.

 seg_fp = _seg(farray);

MOV R4,#POF _farray

MOV R5,#PAG _farray

MOV R14,R5

SHR R14,#02h

_sof

unsigned int _sof(void * p);

Inline code is generated by the C compiler to get the segment offset of

pointer p. Not available in tiny model.

Returns a 16-bit segment offset.

 sof_fp = _sof(farray);

MOV R4,#POF _farray

MOV R5,#PAG _farray

MOV R15,R5

SHL R15,#0Eh

OR R15,R4

_mkfp

void _far * _mkfp(unsigned int pof,
 unsigned int pag);

Inline code is generated by the C compiler to make a far pointer from a

page offset pof and page number pag . The arguments pag and pof are

expected to be in a valid range.

Returns a far pointer.

Language Implementation 3–115

• • • • • • • •

 fp = _mkfp(pof_hp, pag_hp);

MOV R4,R13

MOV R5,R12

MOV _fp,R4

MOV (_fp+2),R5

_mkhp

void _huge * _mkhp(unsigned int sof,
 unsigned int seg);

Inline code is generated by the C compiler to make a huge pointer from a

segment offset sof and segment number seg . The arguments sof and

seg are expected to be in a valid range.

Returns a huge pointer.

 hp = _mkhp(sof_fp, seg_fp);

MOV R5,R14

MOV _hp,R4

MOV (_hp+2),R5

_mksp

void _shuge * _mksp(unsigned int sof,
 unsigned int seg);

Inline code is generated by the C compiler to make a shuge pointer from a

segment offset sof and segment number seg . The arguments sof and

seg are expected to be in a valid range.

Returns an shuge pointer.

Example:

The file builtin.c in the c subdirectory of the examples directory is a

C source file demonstrating the c166 intrinsic functions. Compile the file

using the -s option to inspect generated code.

Chapter 33–116
L
A
N
G
U
A
G
E

3.16.1 USER DEFINED INTRINSICS

It is possible to create user defined intrinsics. To do this you have to create

a file called:

icall.h

the compiler tries to find this file in the same way as normal include files

(#include "icall.h") are searched. See section Include Files.

In this file you can specify the prototypes of the user defined intrinsics. An

intrinsic function can be defined by using the _intrinsic keyword, for

example:

_intrinsic float intrinsic_func(int*,long);

The _intrinsic keyword will only be recognized within this specific

header file. It is not allowed to use preprocessor directives within this file.

If this intrinsic function is called at C-level, for example:

f=intrinsic_func(&i,l);

The compiler forces all parameters to be kept in registers, except for the

parameters of type struct/union and double . Those exceptions are

passed on to the user stack. Finally, the compiler generates a macro

preprocessor call:

@intrinsic_func(R8,R6,R7)

When a parameter is passed on to the user stack the stack offset of the

parameter is filled in at the appropriate position, for example:

_intrinsic void i_func(double);

will result in:

@i_func(8)

indicating that the double parameter is located at stack offset 8.

Parameters of the type char and bit will be passed to the macro call as

16-bit registers. Each bit parameter will be passed in Rx.0. An

unsigned/signed char will be resp. zero or sign extended. The same

applies to bitfield variables. The name of the macro call will always be

equal to the name of the intrinsic function at C-level. The parameters will

be evaluated in two groups:

Language Implementation 3–117

• • • • • • • •

1. parameters passed in registers

2. parameters passed on stack (only doubles and structs/unions)

The parameter order within these groups will not differ from the order at

C-level. The parameters passed on the user stack will be passed (and

evaluated) to the macro after the parameters that are passed in registers.

For example:

_intrinsic void i_func(double, struct a, int, struct b);

will generate the following macro call:

@i_func(R12, 16, 8, 0)

 ^ ^ ^ ^
 | | | +–– struct b (offset 0)
 | | |
 | | +––––– struct a (offset 8)
 | |
 | +–––––––– double (offset 16)
 +–––––––––––– int

The macro call parameter assignments will be included in the output file

as comment, similar to the following:

; Macro call parameter assignments:
;
; i1 = R12
; l1 = R13R14
; d1 = offset 16
; func(ifunc(i2), d2) = offset 8
; d2 = offset 0
;
@function(R12,R13,R14,16,8,0)

If a parameter occupies more than one register, all registers will be passed

separately to the macro. See the example above, where parameter 'l1' has

type 'long int '. This parameter is passed in R13/R14 at position 2 and 3

in the parameter list. If there are more registers needed then available

(max. 13) an error will be generated:

E 745: no registers left for expression

Chapter 33–118
L
A
N
G
U
A
G
E

The following registers are not used for parameter passing:

- R0: cannot be used --> User stack pointer

- R4: cannot be used --> Used for return values/scratch

- R5: cannot be used --> Used for return values/scratch

- USR0: cannot be used --> Used for return values/scratch

The return value of the macro call must conform with the C166 calling

convention:

Return type Register(s)

bit PSW.6 (USR0)

char RL4

short/int R4

long R4–R5

float R4–R5

double (double accu on user stack)

near pointer R4

far pointer R4–R5

huge pointer R4–R5

shuge pointer R4–R5

structure R4 or R4–R5 (near or far
address)

Table 3-19: Register usage for C return types

The compiler assumes no registers to be destroyed in any case, except for

the registers to pass the return value. (R4/R5/USR0 may also be used as a

scratch register. You do not need to save/restore these registers).

When an intrinsic function returns a double precision floating point value,

the compiler assumes this value at the top stack entry on return. Note that

other stack space must be completely released.

The compiler will take care of copying this value to the stack location

reserved for the return value, and for releasing the top stack entry. The

stack space for the return value will also be reserved by the compiler

before the intrinsic function is called. A typical code example is:

Language Implementation 3–119

• • • • • • • •

; test.c 30 r = double_func(f);

 SUB R0,#08h ; stackspace for return value

 SUB R0,#08h ; stackspace for parameter

 MOV R12,R0

 MOV R4,#_f

 CALLS SEG __load8n,__load8n ; load parameter on userstack

 MOV R4,R12

 CALLS SEG __store8n,__store8n ; store parameter

 ADD R0,#08h ; release space allocated by __load8n

; Macro call parameter assignments:

;

; f = offset 0

;

 @double_func(0) ; intrinsic macro call

 MOV R10,R0 ; load source address

 MOV R4,R0

 ADD R4,#010h ; load destination address

 CALLS SEG __store8n,__store8n ; store return value

 ADD R0,#08h ; release space for double return value

 MOV R4,R0

 ADD R4,#08h ; pointer to return value

 ADD R0,#08h ; release parameter stackspace

 MOV R10,R4

 MOV R4,#_r ; destination address

 CALLS SEG __store8n,__store8n ; store

 ADD R0,#08h ; release return value

For clarity, this example was compiled using -OJ (disabling the peephole).

Normally the ADDs and SUBs on R0 are combined.

Intrinsic functions with a variable argument list are not allowed if this

occurs, the compiler will generate an error:

E 771: variable argumentlist not allowed with
intrinsic function: ”%s()”

In order to include a macro preprocessor include file the following pragma

can be used:

#pragma m166include "include-file"

This pragma generates a $INCLUDE control in the output file. For

example:

#pragma m166include ”myinclude.inc”

will generate:

$INCLUDE(myinclude.inc)

Chapter 33–120
L
A
N
G
U
A
G
E

On error, the following message will be generated:

E 744: bad #pragma m166include syntax

There are three points that should be considered:

1. Special care must be taken when pointers are passed to a user defined

intrinsic. When default pointers are used, the size will differ when an

application is compiled in an other memory model. It is therefore

advisable to specify the memory the pointer refers to and thus the pointer

will always have the same size.

2. It is not possible to define pointers to intrinsic functions.

3. Internal intrinsic functions cannot be redefined.

3.16.2 IMPLEMENTING OTHER _COXXX INTRINSICS

USING THE _COXXX INTRINSIC FUNCTIONS

Many CoXXX instructions are automatically generated if a special sequence

is recognized.

Examples

_CoLOAD(arg1);
_CoABS();

generates the CoABS op1, op2 instruction.

_CoMUL(arg1, arg2);
_CoRND();

generates the CoMUL op1, op2, rnd instruction.

_CoSUB(arg1);
_CoNEG();

generates the CoSUBR op1, op2 instruction.

Note that the MP flag influences the result (it is highly recommended to

keep the MP flag cleared).

The CoXXXus instructions are identical to the CoXXXsu variants with

exchanged operands. For example, CoMACus op1, op2, rnd is identical

to CoMACsu op2, op1, rnd .

Language Implementation 3–121

• • • • • • • •

The �missing" _CoXXX intrinsics can be defined as inline functions. For

example:

_inline void _CoMUL_rnd(int x, int y)
 {
 _CoMUL(x,y);
 _CoRND();
 }

Chapter 33–122
L
A
N
G
U
A
G
E

3.17 CODE MEMORY BANKING

c166 supports code memory banking. With this technique you can extend

your code memory beyond 256Kb. This technique is only useful in the

small and large memory model (code > 64Kb). You can specify parts (of

any size) of the 256Kb of memory to use (EPROM) memory that is not

addressable with a normal 18-bit address. The parts of this extra memory

are called 'memory banks'.

You can use code memory banking in C by using the function qualifier:

bank(number)

where, number is any number in the range 1 to 255.

This function qualifier uses the same syntax rules as the other function

qualifiers interrupt(number) and stackparm . A function qualifier is

allowed in both the function prototype (for the caller) and the function

body itself:

int bank(1) func_b1(char *, long); /* prototype */

int bank(2)
func_b2(int parm) /* function body */
{
}

You can also use a function qualifier when you declare function pointers.

The following line of C code declares a table called 'fptable' of 6 function

pointers, all containing addresses of functions which are located in bank 3

and expecting their parameters (2 int types) via the user stack and

returning a long:

long stackparm bank(3) (*fptable[6])(int, int);

Although banked interrupt functions are allowed you should not use them

because they are not called as a banked function from the interrupt vector.

It is recommended to make a non-banked interrupt function and call a

banked function from that interrupt function.

The default situation assumes that a function is in a non-banked portion

of memory (in fact bank(0)). Valid bank numbers are 1 to 255.

Language Implementation 3–123

• • • • • • • •

When calling a banked function, from either non-banked memory or from

a function having a different bank number, a call to a run-time library

function is emitted by the C compiler instead of a regular function call.

This run-time library function switches the code memory banks and calls

the appropriate banked function indirectly. The code memory bank

number and the inter-segment address of the banked function are passed,

to the run-time library bank switch function called __banksw . The general

purpose registers R3, R4 and R5 are used for passing these parameters.

The code memory bank number of the banked function is passed in

register RL3.

The current code bank number must also be passed to __banksw ,

because it might be needed to restore the code bank of the caller.

Therefore the current code bank number is passed in register RH3. When

RH3 is set to zero, the code bank does not need to be restored after the

banked function returns. The contents of register R3 need to be saved on

the user stack by the calling function, because saving it in the code bank

switch function would cause a conflict with pre-calculated offsets for C

function parameters and automatics. The inter-segment address of the

banked function is passed in registers R4 and R5.

Code memory banking is only supported for inter-segment function calls

(memory models small and large). Therefore, the _near keyword is not

allowed with a banked function.

The following C listing displays a call to a banked function which is

located in code bank 1 and called by a non-banked function. The code

generated by the compiler is displayed below.

int bank(1) func_b1(char *, long);

int x;
char *p;
long l;

void main(void)
{
 ...

 x = func_b1(p, l);

 ...
}

Chapter 33–124
L
A
N
G
U
A
G
E

 .

 .
 MOV R12,_p ; pass character pointer

 MOV R13,_l ; pass long value

 MOV R14,(_l+2) ;

 MOV R4,#SOF _func_b1 ; pass inter–segment address of

 MOV R5,#SEG _func_b1 ; banked function.

 MOV R3,#0001H ; pass code bank number and no

 ; restore of current bank at

 ; return

 MOV [–R0],R3 ; save code bank number(s)

 ; on the user stack

 CALLS SEG __banksw, __banksw

 ; call code bank switch function

 ADD R0,#2 ; Remove code bank number(s)

 ; from the user stack

 MOV _x,R4 ; return result from banked

 ; function

 .

 .

The default/startup situation assumes that a function is in a non-banked

portion of code memory. The bank switch function and all other library

functions must be located in non-banked memory, so library functions can

be shared by both banked and non-banked functions.

The bank switch function may not introduce a conflict with the register

usage and user stack usage implementation of C function parameter

passing and C register variables. See section Register Usage for details. The

registers which are used for fast C parameter passing (R12-R15) may not

be used by the code bank switch function and also the registers which are

used for C register variables (R6-R9) may not be altered without saving

them at entry and restoring them at return of the bank switch function.

Register R1-R5, R10 and R11 are free for use. However, registers R4 and R5

may contain a return value from the banked function. The user stack

pointer (R0) may not be changed, otherwise compiler pre-calculated

offsets are affected. Keep these restrictions in mind when writing your

own bank switch function. The bank switch function is a run-time library

function and not a C function !

The compiler emits a special class reflecting the bank number for the code

section of a banked function (e.g. class 'BANK1'). You can use these class

names with the locator OVERLAY control.

Language Implementation 3–125

• • • • • • • •

The bank switch function depends on the hardware implementation of the

code banking mechanism. There are many possible hardware

implementations for code memory banking (e.g. paged, segmented etc.),

this makes it impossible to write a uniform bank switch function which

can be appended to the run-time library functions. Therefore a bank

switch function for simulating code banking on directly accessible memory

is delivered in the library. This allows to test your application on an

evaluation board without having the real hardware implementation

available. Finally you can use the skeleton of the delivered assembly bank

switch function to write your own bank switch function, supporting your

hardware implementation.

The delivered simulation routine assumes the following situation:

The different code banks are located in physical memory but they are

treated as if they are located in virtual c.q. banked memory. The code

banking is simulated by copying the page the banked code is located in to

a reserved page where the code is executed from. In fact the code bank

number is treated as a page number. So, a code bank is limited to the size

of one page (16Kb). One page is reserved for execution of banked code.

This page cannot be used for other code or data, because it contains the

currently active code page. All the code banks are overlaid in this physical

code page with the locator OVERLAY control.

The following listing shows the assembly code for simulating code

banking. The number of code banks is restricted to the number of pages

which are available for code banking. The physical page the code banks

are overlaid in and executed from is defined by the equate CODE_PAGE.

The default value of CODE_PAGE is page 15. The following locator control

can be used:

OVERLAY (’BANK4’, ’BANK5’ (RANGEP(15)))

This control instructs the locator to overlay the classes BANK4 and BANK5

in page 15. Remember that, when using our simulation code, the code

from bank 4 must be located in page 4 and the code from bank 5 must be

located in page 5. You can use the regular CLASSES control to achieve this.

See the description of the OVERLAY locator control in the assembler

manual for a detailed example.

Chapter 33–126
L
A
N
G
U
A
G
E

The actual bank switch is performed by __pgbk . In the simulation

approach, the code bank number (passed via RL3) corresponds to the

page number where the banked function is present. This page must be

activated, which means copied to the physical page defined by

CODE_PAGE. Now you can actually call the banked function, indirectly,

using the run-time library function __icall . The inter-segment address

of the banked function is passed in registers R4 and R5 to __icall .

The code bank number of the currently active code bank is pushed on the

user stack and afterwards removed from it by the function calling the bank

switch function. It is not possible to save the current code bank number

on the user stack at function entry of the bank switch function, because

this affects the user stack pointer, introducing a conflict with precalculated

offsets for C function parameters and automatics. When code execution

returns from the banked function, this code bank number is read from the

user stack and, when needed, the previous code bank is reactivated by

calling __pgbk again. This allows you to call a banked function from a

banked function in a different code bank.

You can use the skeleton bankswh.asm , in the bank subdirectory of the

examples directory, as a starting point to implement your hardware

implementation of bank switching. In this case, you only have to replace

the code from __pgbk with your own code, actually performing the

hardware bank switch. It is obvious that your hardware bank switch

approach is not limited to the size of a page.

Restriction: When a banked function (e.g. f1) calls a non-banked

function (e.g. f2) which on its turn calls a banked function in another bank

(e.g. f3), the original bank is not restored when returning from the

non-banked function (f2).

Language Implementation 3–127

• • • • • • • •

3.18 MISRA C

Based upon the 'MISRA guidelines for the application of C language

invehicle based software', the TASKING MISRA C technology offers

enhanced compiler error-checking that will guide the programmer in

writing better, more coherent and hence intrinsically safer applications.

Through this configurable system of enhanced C-language error checking,

the use of error-prone C-constructs can be prevented. A predefined

configuration for compliance with the 'required rules' described in the

MISRA guidelines is selectable through a single click in the EDE | MISRA
C Compiler Options menu. A custom set of applicable MISRA C rules

can be easily configured using the same menu. It is also possible to have a

project team work with a MISRA C configuration common to the whole

project. In this case the MISRA C configuration can be read from an

external settings file. This too, is easily selected through the EDE | MISRA
C Compiler Options menu. In order to provide proof that installed

company MISRA C requirements have in fact been adhered to throughout

the entire project, the C166 Linker/Locator can generate a MISRA C Quality

Assurance report. This report lists the various modules in the project with

the respective MISRA C settings under which these have been compiled.

Unfortunately it has not been possible to implement support for ALL 127

rules described in the MISRA guidelines. The reason for this is that a

number of rules are beyond the scope of what can be checked in a

C-compiler environment. These unsupported rules are visible in the EDE
| MISRA C Compiler Options menu dialog boxes, but cannot be

selected (greyed out).

MISRA is a registered trademark of MIRA held on behalf of the Motor

Industry Software Reliability Association.

Enabling MISRA C

From the command line MISRA C can be enabled by the following

compiler option:

–misrac n, n,...

where n specifies the rule(s) which must be checked.

Chapter 33–128
L
A
N
G
U
A
G
E

Error Messages

In case a MISRA C rule is violated, an error message will be generated

e.g.:

E 209: MISRA C rule 9 violation: comments shall not be nested.

See Appendix B for the supported and unsupported MISRA C rules.

Language Implementation 3–129

• • • • • • • •

3.19 MIGRATION FROM OLD SIEMENS CC166

This section is aimed at users of the Siemens CC166 compiler who are

going to use c166 (we use 'CC166' as a shorthand notation for the

'SIEMENS CC166 compiler'). It deals with incompatibilities between these

two implementations and describes how to migrate from CC166 to c166.

A number of the items described here are present in the C source file

migrate.c in the examples directory. It might be helpful to compile this

file (using the -s option) and inspect the generated code.

Principles of Operation

c166 compiles an ANSI C program into an assembler source file which

must be processed by the TASKING C166/ST10 assembler (a166). It is not

possible to use the SIEMENS ASM166 assembler to process this file,

because assembly language extensions and high level language directives

are generated, which are not supported by ASM166. Note, however, that

a166 is upwards compatible with ASM166, except that the macro

preprocessor is a separate program (m166), i.e. not integrated in the

assembler (as done with ASM166).

Unlike CC166, c166 does not emit or use macros in the generated

assembly file. CC166 uses a separate preprocessing program (PASS1) and

compiling program (PASS2) which are connected via an intermediate file.

c166 is not divided into separate programs. It also does not use any

intermediate file. However, during optimization, the intermediate

representation of a C function (in memory) is changed in several 'passes'.

If preprocessor output is needed, the -E option can be used (instead of

the P option of CC166). The suffix of the input file may be '.c' or '.i' and

must be specified (there is no default).

Output Files / Preprocessor Controls

Unlike CC166, c166 does not generate a source listing file. Therefore all

the CC166 command line options dealing with the list file (LIST, LI,

NOLIST, NOLI, PAGELENGTH, PL, TITLE, TT) are not available. It is

obvious that all the CC166 'preprocessor controls' ($PAGELENGTH,

$TITLE, $EJECT, $LIST and $NOLIST, where the '$' must be at the first

column of the C source) are also not accepted by c166.

The output file has the extension .src (CC166 uses .a66).

Chapter 33–130
L
A
N
G
U
A
G
E

c166 sends the error-lines and error-messages to the stderr (standard

error) device of the system. However, if the command line option -err is

specified, all error information is written to an error list file with the

extension .err . This option can be compared with the CC166 'ERL'

option.

Supercomments

CC166 generates so called supercomments (containing debug

information), unless the 'NOOMF' command line option is specified.

c166 also emits debug information, using the ?SYMB, ?FILE and ?LINE

assembler directives. However, this information is only generated if the -g

command line option is present. So, default no high level language debug

information is generated.

Memory models

c166 supports four memory models: tiny, small, medium and large. CC166

has three memory models: small, medium and large. The following

relationship between these models exist:

c166-tiny / CC166-small

The only model where the CPU runs in non-segmented mode

(segmentation disabled), not supporting code/data access beyond 64K.

Note that this is the CC166 default memory model, but not the default

memory model of c166.

c166-small/CC166-extended small

c166 also supports the so called 'extended small' model of CC166. See

the section Memory Models for more information. Note that this model

is the default memory model of c166.

c166-medium / CC166-medium

c166-large / CC166-large

These models are called 'large data' models. The medium and large

model approach of Infineon and TASKING are functional equivalent.

However, the usage of the DPP- registers is different:

Language Implementation 3–131

• • • • • • • •

 CC166 c166 comment

DPP0 scratch scratch e.g. far pointer
 dereferencing
DPP1 system user–stack
DPP2 copy DGROUP assumed with
 default data group
DPP3 user–stack system

See the section Efficiency in Large Data Models for more details regarding

the utilization of the DPP- registers.

Command line Options

The following table shows the c166 equivalent of the CC166 command

line option, if available:

CC166 c166 comment

TO file –o file
P –E
D –D
I path –I path
s –Mt Note other default memory
m –Mm models
l –Ml
NOOMF default Do not specify ”–g”
NOSRC default Do not specify ”–s”
ERL –err

Section allocation

CC166 uses the D option to control section attributes (for the whole C

module), by overruling the default values defined in 'stdmac.h'. For

example "DDCLASS=MY_RAM" changes the class name of a compiler

generated RAM data section to 'MY_RAM'. c166 uses the -R option. To get

the same result, we have to specify (small memory model):

"-RclNB=MY_RAM". However, c166 also supports section attribute

manipulation within a C module via the pragmas #pragma class ,

#pragma align , #pragma combine and #pragma
default_attributes .

See the paragraph Section Allocation for more details.

Chapter 33–132
L
A
N
G
U
A
G
E

bit Support

c166 also supports the _bit type and is less restrictive in the usage of bit

variables. In the section The Bit Type all rules for bit manipulation and

allowed operators are described.

sfr/sfrbit/xsfr/bitword Support

c166 also supports the keywords _sfr , _sfrbit , _xsfr and _bitword .

Note that sfr/sfrbit/xsfr registers are implicitly 'volatile'. Like CC166, c166

treats SFR registers unsigned.

However, c166 performs a very strict storage class checking for

sfr/sfrbit/xsfr declarations: auto matic, static , extern and register
are not allowed (because these CPU registers in fact have

'application-scope').

Note that static initialization of sfr/sfrbit/xsfr registers at system startup is

not possible (also not allowed with CC166). Unlike CC166, the sfr/sfrbit

declarations are not separated in different files. All C166/ST10 registers are

declared in the file reg166.h . If you need access to a sfr/sfrbit register,

you should include this file.

You can specify which part of this file must be skipped by defining special

macros. See the section Special Function Registers for details on this topic.

Like CC166, c166 allocates _bitword variables in bitaddressable memory

and treats these variables as 'unsigned int'. However, c166 uses intrinsic

functions to access a single bit of a bitword variable (or sfr if there is no

sfrbit register available). Note that these 'function calls' result in very

compact inline code, using the special bit instructions of the C166/ST10.

The following examples clarify how to migrate from the CC166 notation to

the c166 implementation:

1) if (sfrname.10) ==> if (_getbit(sfrname, 10))

2) sfrname.3 = 1; ==> _putbit(1, sfrname, 3);

3) sfrname.4 = sfrname.3; ==> _putbit(_getbit(sfrname, 3),

 sfrname, 4);

c166 uses another intrinsic function to support the BFLDL and BFLDH

instructions of the C166/ST10. As with CC166, these instructions can only

be used with sfr registers or bitword variables. The following example

shows how to migrate from CC166 to c166:

sfrname[0xf0] = 0x70; ==> _bfld(sfrname, 0xf0, 0x70);

Language Implementation 3–133

• • • • • • • •

Semaphore Operations

Like CC166, c166 supports semaphore operations with intrinsic functions:

_testset() and _testclear() . The approach is similar, but far less

restrictive:

1. The usage of these intrinsic functions is not limited to if and while
constructs, but the result may be used like a function returning _bit (thus

allowing negation of boolean result).

2. If these semaphore operations are used with control flow in C, c166

performs full range checking and automatic jump-reversal if the target

label is out of range (-128/+127 words).

c166 uses other names than the CC166 semaphore functions, because the

functionality of the return value is different. The following example shows

how to migrate from CC166 to c166:

if (tst_set_sem(bit_id)) ==> if (!_testset(bit_id))

if (tst_clr_sem(bit_id)) ==> if (!_testclear(bit_id))

PEC support

Infineon CC166 uses a macro which generates inline assembly for the

initialization of the PEC source and destination pointers. It is the

responsibility of the user to allocate the buffer in the first 64K segment:

#include ”pecc.h”

char buffer[100];

void
f()
{
 LOADPEC (DSTP0,buffer);
}

TASKING c166 supports the initialization of the PEC source and

destination pointers using a (int) cast in C. See the section PEC Support for

an example.

Assembly interface

The usage of registers is different. If existing assembly functions are used,

the _stackparm keyword must be used in prototype of the assembly

function to force usage of user stack for parameter passing.

Chapter 33–134
L
A
N
G
U
A
G
E

See the section Assembly Language Interfacing in chapter Run-time
Environment for all details.

Interrupt

The task concept of the C166/ST10 is supported by CC166 using three

macro definitions. The following table shows how to migrate from CC166

to c166:

TASK(n) ==> interrupt(n)

SYMTASK ==> interrupt(-1)

RESETTASK ==> not needed (just use main() and link

cstart.obj)

Miscellaneous

- The CC166 pragmas OMF/LABEL ON/OFF and the #pragma
$assembler-directive are not supported. c166 ignores unknown

pragmas.

- The CC166 #pragma INLINE { any assembler code } copies the text

between {..} to the output file. c166 supports inline assembly in a

similar way:

#pragma asm
any assembler code
#pragma endasm

See the section Inline Assembly for more information.

- unlike CC166, c166 supports floating point data types.

- unlike CC166, c166 supports static/public initialized RAM data.

Language Implementation 3–135

• • • • • • • •

3.20 PEC SUPPORT

c166 supports the initialization of the PEC source and destination pointers

using a (int) cast in C. The following example shows how to allocate a

PEC-addressable section for a buffer in the first 64K segment:

#include <reg166.h>

#if _MODEL == ’l’ || _MODEL == ’m’
#pragma align fb=c /* declare PECADDRESSABLE data section for
 ’far’ data */
#pragma class fb=firstsegment /* assign a special class name to
 this section */
char _far buffer[100]; /* explicitly ’_far’, otherwise
 allocated in default data group */
#pragma default_attributes /* restore default section
 attributes for ’_far’ data */
#else
char buffer[100];
#endif

void
f()
{
 DSTP0 = (int)buffer; /* when you use the c++ compiler,
 use a long cast instead of an
 integer: DSTP0 = (long)buffer; */
}

If large model (-Ml) is used, the following code is generated:

PEC1_1_FB SECTION DATA PECADDRESSABLE PUBLIC ’firstsegment’
PEC1_1_FB_ENTRY LABEL BYTE
_buffer LABEL BYTE
 DS 100
 PUBLIC _buffer
PEC1_1_FB ENDS

 PUBLIC _f
PEC1_2_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_f PROC FAR
 MOV R4,#SOF (_buffer)
 MOV DSTP0,R4
 RETS
_f ENDP
PEC1_2_PR ENDS

The following example shows how to allocate a PEC-addressable section

for a buffer in the SYSTEM page (page 3, 16K). The SYSTEM page is in the

PEC-addressable range (segment 0). Therefore, it is not needed to declare

the buffer data section PECADDRASSABLE with #pragma align sb=c .

Chapter 33–136
L
A
N
G
U
A
G
E

#include <reg166.h>

char _system buffer[100]; /* explicitly ’_system’,
 allocated in system page */
f()
{
 DSTP0 = (int)buffer;
}

If large model (-Ml) is used, the following code is generated:

 ASSUME DPP3:SYSTEM

PEC1_1_SB SECTION DATA WORD PUBLIC ’CSYSTEM’
PEC1_1_SB_ENTRY LABEL BYTE
_buffer LABEL BYTE
 DS 100
 PUBLIC _buffer
PEC1_1_SB ENDS

 PUBLIC _f
PEC1_2_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_f PROC FAR
 MOV R4,#SOF _buffer
 MOV DSTP0,R4
 RETS
_f ENDP
PEC1_2_PR ENDS

C166_SGROUP DGROUP PEC1_1_SB,SYSTEM

Language Implementation 3–137

• • • • • • • •

3.21 PORTABLE C CODE

If you are developing C code for the C166/ST10 using c166, you might

want to test the code on the host you are working on, using a C compiler

for that host. Therefore, the include file c166.h is delivered with the

compiler, which must be included in your C programs.

This header file checks if the predefined macro _C166 is defined (c166

only). If not, all C-166 language extensions (read keywords) are redefined

to ANSI C equivalents. Furthermore an adapted prototype of each C-166

intrinsic function is present, because these functions are not known by

another ANSI compiler. If you use these functions, you should write them

in C, performing the same job as the C166/ST10 processor and link these

functions with your application for simulation purposes.

If you want to isolate all functions using c166 language extensions in

separate modules, you can use the -A option (disable language

extensions) to check if c166 keywords are still present.

You can enable/disable groups of language extensions separately. See the

description of the -A option in the next chapter for more information.

3.22 HOW TO PROGRAM SMART WITH C166

If you want to get the best code out of c166, the following guidelines

should be kept in mind:

1. Always include the appropriate header file before using a standard C

library function. This is very important with variable argument list

functions, such as printf() !

Note that you do not have to edit all the 'old style' function bodies of your

application into 'new style' ANSI function bodies. You only have to add a

full prototype declaration before any function is called and before any

function definition.

The following example shows how to migrate from old style programs to

new style without editing the function bodies of the program. The

advantage of this method is, that if 'prototyping' is not possible (because

the C program must be translated with a non-ANSI compiler), the program

does not have to be changed:

Chapter 33–138
L
A
N
G
U
A
G
E

#ifdef prototyping
#define FD(x) x /* full function prototype */
#else
#define FD(x) () /* return type only: no arguments */
#endif

char* cg_var FD((char *, int));
void main FD((void));

void
main()
{
 char *p;

 p = cg_var(”text”, 2);
}

char *
cg_var(name, offset)
char *name;
int offset;
{
 return (name + offset);
}

If 'prototyping' is enabled the function call to cg_var is using the full

prototype and the function body of cg_var is treated like a 'new style'

function, using the full prototype.

2. Try to use the 'unsigned' type modifier as much as possible, because it

takes less code to convert an unsigned variable to a long variable than a

signed variable.

3. Do NOT use the -A option. This option is implemented as strict ANSI

conformance checking, disabling language extensions and character

arithmetic code generation. This option may decrease code density and

execution speed.

4. In most of the cases it is safe to use the -Oa option, which results in better

code density. However, you have to check your application on 'aliases'. If

this option is not used (default), c166 'forgets' all register contents bound

to C variables if an indirect write operation (e.g. MOV [R4],R5) is

performed.

See the section Efficiency in Large Data Models (Medium/Large).

5. Use the -Om option (default) and non-protected library if multiply and

divide instructions do not have to be protected against interrupts. This

results in better code density and faster execution.

Language Implementation 3–139

• • • • • • • •

6. Use the intrinsic functions, if special C166/ST10 instructions are needed.

7. If you want to overrule the c166 register allocation of C variables, you

must use the register storage class specifier in the declaration of this (local)

variable, because c166 might allocate other C variables into the CPU

registers, than the variables you prefer to be in registers.

8. Avoid static initialized bit variables (which must have the value '1' after

startup), because this takes a lot of ROM space and is very time consuming

during system startup.

9. Use the -t option, to inspect the size of the code generated. This is useful,

when 'experimenting' with compiler options.

10. Use the -Of optimization option to prefer speed instead of code density

(-OF is default).

11. Use the -Ox optimization option to enable extra inlining of C library

functions when you prefer speed instead of code density.

Chapter 33–140
L
A
N
G
U
A
G
E

4

COMPILER USE
C

H
A

P
T

E
R

Chapter 44–2
U
S
A
G
E

4

C
H

A
P

T
E

R

Compiler Use 4–3

• • • • • • • •

4.1 CONTROL PROGRAM

The control program cc166 is provided to facilitate the invocation of the

various components of the C166/ST10 toolchain. The control program

accepts source files, options and controls on the command line in random

order.

The invocation syntax of the control program is:

cc166 [[option]... [control]... [file]...]...

Options are preceded by a '-' (minus sign). Controls are reserved words.

The input file can have any extension as explained below.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options

are interpreted by cc166 itself; the remaining options are passed to

those programs in the toolchain that accept the option.

• Arguments which are known by cc166 as a control are passed to

those programs in the toolchain that accept the control.

• Arguments with a .cc , .cxx or .cpp suffix are interpreted as C++

source programs and are passed to the C++ compiler.

• Arguments with a .c suffix are interpreted as C source programs

and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as assembly source

files which are preprocessed and passed to the assembler.

• Arguments with a .src suffix are interpreted as preprocessed

assembly source files. They are directly passed to the assembler.

• Arguments with a .lib suffix are interpreted as library file and

passed to the link stage of l166 when the -cf option is not

specified. When the -cf is specified, the libraries are passed to the

locate stage.

• Arguments with a .ili suffix are interpreted as linker invocation

files and are passed to the link stage of l166 with a leading '@' sign.

• Arguments with a .ilo suffix are interpreted as locator invocation

files and are passed to the locate stage of l166 with a leading '@'

sign.

Chapter 44–4
U
S
A
G
E

• Arguments with a .out suffix are interpretes as input files for the

Motorola S formatter, IEEE formatter or Intel Hex formatter. Specify

the formatter respectively with the options -srec, -ieee or -ihex.

• Everything else is considered an object file and is passed to the

linker.

Normally, cc166 tries to compile and assemble all files specified, and link

and locate them into one output file. There are however, options to

suppress the assembler, linker or locator stage. The control program

produces unique filenames for intermediate steps in the compilation

process. These files are removed afterwards. If the compiler and assembler

are called in one phase, the control program prevents preprocessing of the

generated assembly file. Normally assembly input files are preprocessed

first.

The following options are interpreted by the control program cc166:

Option Description

–? Display invocation syntax

–V Display version header and stop

–Waarg Pass argument directly to the assembler

–Wcarg Pass argument directly to the compiler

–Wcparg Pass argument directly to the C++ compiler

–Wfarg Pass argument directly to the object formatter

–Wlarg Pass argument directly to the linker

–Wmarg Pass argument directly to the macro preprocessor

–Woarg Pass argument directly to the locator

–Wplarg Pass argument directly to the C++ pre–linker

–c++ Force .c files to C++ mode

–c Do not link: stop at .obj

–cc Compile C++ files to .c and stop

–cf Skip the linking phase; call the locator directly

–cl Do not locate: stop at .lno

–cm Always also invokes the C++ muncher

–cp Always also invokes the C++ pre–linker

–cs Do not assemble: stop at .src

–f file Read arguments from file (”–” denotes standard input)

Compiler Use 4–5

• • • • • • • •

DescriptionOption

–gs Pass –cl to ieee166, set compatibility mode to 1

–ieee Produce an IEEE–695 output file

–ihex Produce an Intel hex output file

–lib directory Specify the location of user–built libraries

–libcan Link CAN library

–libfmtio variant Link MEDIUM or LARGE printf()/scan() library variants

–libmac Link MAC optimized runtime library

–noc++ Force C++ files to C mode

–nolib Do not link with the standard libraries

–o file Specify the output file

–srec Produce an S–record output file

–tmp Keep intermediate files

–trap Use a floating point library with trap handler.

–notrap Use a floating point library without trap handler.

–v Verbose option: show commands invoked

–v0 Same as –v, but commands are not started

–wc++ Enable C and assembler warnings for C++ files

Table 4-1: Control program options

For more detailed information about the control program cc166, refer to

section cc166 in Chapter Utilities of the Cross-Assembler Linker/Locator,
Utilities User's Guide.

Chapter 44–6
U
S
A
G
E

4.2 COMPILER

The invocation syntax of the C166 compiler is:

c166 [[option] ... [file] ...] ...

The input file must have the extension .c or .i . Options are preceded by

a '-' (minus sign). Options cannot be combined after a single '-'. After you

have successfully compiled your C sources, the compiler has generated

assembly files, with the extension .src (the default for a166).

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

A summary of the options is given below. A more detailed description is

given in the next section.

Option Description

–? Display invocation syntax

–A[flag...] Enable/disable specific language extensions

–B[flag...] Control bypasses

–Dmacro[=def] Define preprocessor macro

–E[m|c|i|p|x] Preprocess only

–F[flag...] Control floating point

–Ggroupname Use groupname to group near data sections (–Mm
or –Ml only)

–Hfile Include file before starting compilation

–Idirectory Look in directory for include files

–M{t|s|m|l} Select memory model: tiny, small, medium or large

–Oflag... Control optimization

–P[d] Use user stack model stack frame (calling
convention) (to be used with special stack frame C
library if ’d’ is not specified)

–R{cl |co |al}mem=new Change class name, combine type or align type
of section for mem

–S Static allocation of automatics

–Tsize Use size as threshold before allocating data in
default data group (–Mm/–Ml only)

Compiler Use 4–7

• • • • • • • •

DescriptionOption

–T[size],size2 In addition to the previous option, you can also
specify a threshold for intiialized data.
Default:infinite

–Umacro Remove preprocessor macro

–V Display version header only

–csize Specify maximum user stack space for CSE
results (per function)

–e Remove output file if compiler errors occur

–err Send diagnostics to error list file (.err)

–exit Alternative exit values

–f file Read options from file

–g[b|f|l|s] Enable symbolic debug information

–gso Enable GSO (acquire phase)

–gso =file.gso Enable GSO (allocation phase)

–iscale Specify scaling of interrupt vector table
(needs –x2):

0 – for no scaling (default)
1 – for x2
2 – for x4
3 – for x8

–mmem=size Specify memory size

–mmem=[size],n Specify maximum section size for mem and in
addition a threshold n for switching to a new
section

–misrac n,n,... Enable individual MISRA C checks

–n Send output to standard output

–o file Specify name of output file

–r[nr[,name[,C]]] Omit REGDEF or specify number (nr) of GPR
registers, the name of the register bank and C for
common

–s[i] Merge C–source code with assembly output

–t Display module summary and write section
information in output file

–u Treat all ’char’ variables as unsigned

–w[number] Suppress one or all warning messages

–wstrict Suppress warning messages 183,196 and 216

Chapter 44–8
U
S
A
G
E

DescriptionOption

–x[2|22|d|i|f|m|p] Allow all or some functions of the extended
architectures (to be used with ext or ext2 library
sets)

–zpragma Identical to ’#pragma pragma’ in the C source

Table 4-2: Compiler options (alphabetical)

Description Options

Include options

Read options from file –f file

Include file before starting compilation –Hfile

Look in directory for include files –Idirectory

Preprocess options

Preprocess only –E[m|c|i|p|x]

Define preprocessor macro –Dmacro[=def]

Remove preprocessor macro –Umacro

Allocation control options

Use groupname to group near data sections (–Mm
or –Ml only)

–Ggroupname

Change class name, combine type or align type
of section for mem

–R{cl |co |al}mem=new

Static allocation of automatics –S

Use size as threshold before allocating data in
default data group (–Mm/–Ml only)

–Tsize

In addition to the previous option, you can also
specify a threshold for intiialized data.
Default:infinite

–T[size],size2

Specify memory size –mmem=size

Specify maximum section size for mem and in
addition a threshold n for switching to a new
section.

–mmem=[size],n

Code generation options

Control cpu bug bypasses –B[flag...]

Control floating point –F[flag...]

Select memory model: tiny, small, medium or large –M{t|s|m|l}

Control optimization –Oflag...

Compiler Use 4–9

• • • • • • • •

OptionsDescription

Use user stack model stack frame (calling
convention) (to be used with special stack frame C
library if ’d’ is not specified)

–P[d]

Specify maximum user stack space for CSE
results (per function)

–csize

Enable GSO (acquire phase) –gso

Enable GSO (allocation phase) –gso =file.gso

Specify scaling of interrupt vector table
(needs –x2):

0 – for no scaling (default)
1 – for x2
2 – for x4
3 – for x8

–iscale

Omit REGDEF or specify number (nr) of GPR
registers, the name of the register bank and C for
common

–r[nr[,name[,C]]]

Allow all or some functions of the extended
architectures (to be used with ext or ext2 library
sets)

–x[2|22|d|i|f|m|p]

Identical to ’#pragma pragma’ in the C source –zpragma

Language control options

Enable/disable specific language extensions –A[flag...]

Treat all ’char’ variables as unsigned –u

Output file options

Remove output file if compiler errors occur –e

Send output to standard output –n

Specify name of output file –o file

Merge C–source code with assembly output –s[i]

Diagnostic options

Display invocation syntax –?

Display version header only –V

Send diagnostics to error list file (.err) –err

Alternative exit values –exit

Enable symbolic debug information –g[b|f|l|s]

Enable individual MISRA C checks –misrac n,n,...

Chapter 44–10
U
S
A
G
E

OptionsDescription

Display module summary and write section
information in output file

–t

Suppress one or all warning messages –w[number]

Suppress warning messages 183, 196 and 216 –wstrict

Table 4-3: Compiler options (functional)

4.3 DETAILED DESCRIPTION OF THE C-166 OPTIONS

Option letters are listed below. Each option (except -o; see description of

the -o option) is applied to every source file. If the same option is used

more than once, the first (most left) occurrence is used. The placement of

command line options is of no importance except for the -I and -o

options. For those options having a file argument (-o and -f), the filename

may not start immediately after the option. There must be a tab or space in

between. All other option arguments must start immediately after the

option. Source files are processed in the same order as they appear on the

command line (left-to-right).

Compiler Use 4–11

• • • • • • • •

-?

Option:

-?

Description:

Display an explanation of options at stdout .

Example:

c166 –?

Chapter 44–12
U
S
A
G
E

-A

Option:

-A[flags]

Arguments:

Optionally one or more language extension flags.

Default:

-A1

Description:

Control language extensions. Without the -A option all c166 language

extensions are enabled. -A without any flags, specifies strict ANSI mode;

all language extensions are disabled. This is equivalent with

-ACDFIKLMPSTUVWX and -A0.

Flags which are controlled by a letter, can be switched on with the lower

case letter and switched off with the uppercase letter. Note that the usage

of these options might have effect on code density and code execution

performance. The following flags are allowed:

c Default. Perform character arithmetic. c166 generates code using 8-bit

character arithmetic as long as the result of the expression is exactly

the same as if it was evaluated using integer arithmetic. See also section

Character Arithmetic.

C Disable character arithmetic.

d Default. Define storage for uninitialized constant rom data, instead of

implicit zero initialization. The compiler generates a 'DS 1 ' for 'const
char i[1] ;'.

D Uninitialized constant rom data is implicitly zero. The compiler

generates a 'DB 1 ' for 'const char i[1]; '.

f Default. 14-bit arithmetic is used for far pointer comparison instead of

long 32-bit arithmetic. Only the page offset is compared. Far pointers

do not cross page boundaries and if the objects pointing to are not

members of the same aggregate or (union) object, the result is

undefined. When far pointers are compared to NULL, 32-bit arithmetic

is needed !

Compiler Use 4–13

• • • • • • • •

F 32-bit arithmetic is used for far pointer comparison.

i Default. Inlining of a selected group C-library functions is allowed.

This option works together with the extra inlining optimization option

-Ox. Note: It is not possible to take the address of an inline function,

which is not conform to the ANSI-C standard.

I Disable inlining of C-library functions, to conform to strict ANSI-C

mode.

k Default. The keywords _atbit , bank , bit , bitword , esfr , esfrbit ,

far , huge , interrupt , iram , near , sfr , sfrbit , stackparm ,

system and using are recognized as C language extensions. See the

chapter Language Implementation for the explanation of these

language extensions.

K Disable all keywords which are an extension of the C language.

l Default. 500 significant characters are allowed in an identifier instead of

the minimum ANSI-C translation limit of 31 significant characters. Note:

more significant characters are truncated without any notice.

L Conform to the minimum ANSI-C translation limit of 31 significant

characters. This makes it possible to translate your code with any

ANSI-C conforming C-compiler. Note: more significant characters are

truncated without any notice.

m Default. When a 32 bit value is divided by a 16 bits divisor and only 16

bits of the result are being used, then the operation can be done by a

DIVL or DIVLU instruction, depending on the signed/unsigned setting

of the operands. The same applies for the modulo operator. When

there are chances for overflow and the (truncated) result must still be

conform ANSI, then it is better to switch this option off. Example:

long m32

short m16, divisor;

m16 = m32 / divisor;

m32 = (short)(m32 / m16);

See also the intrinsic functions _div32 , _divu32 , _mod32 and

_modu32.

Chapter 44–14
U
S
A
G
E

M Perform divide/modulo operation always in 32 bits using run-time

library calls.

p Default. Allow C++ style comments in C source code. For example:

// e.g this is a C++ comment line.

P Do not allow C++ style comments in C source code, to conform to

strict ANSI-C.

s Default. __STDC__ is defined as '0'. The decimal constant '0', intended

to indicate a non-conforming implementation. When one of the

language extensions are enabled __STDC__ should be defined as '0'.

S __STDC__ is defined as '1'. In strict ANSI-C mode (-A) __STDC__ is

defined as '1'.

t Default. Do not promote old-style function parameters when prototype

checking.

T Perform default argument promotions on old-style function parameters

for a strict ANSI-C implementation. char type arguments are promoted

to int type and float type arguments are then promoted to double
type.

u Default. Use type unsigned char for 0x80-0xff. The type of an

unsuffixed octal or hexadecimal constant is the first of the

corresponding list in which its value can be represented:

Character arithmetic enabled -Ac:

char, unsigned char , int, unsigned int, long,
unsigned long

Character arithmetic disabled -AC (strict ANSI-C):

int, unsigned int, long, unsigned long

U Do not use type unsigned char for 0x80-0xff. The type of an

unsuffixed octal or hexadecimal constant is the first of the

corresponding list in which its value can be represented:

Character arithmetic enabled -Ac:

char, int, unsigned int, long, unsigned long

Compiler Use 4–15

• • • • • • • •

Character arithmetic disabled -AC (strict ANSI-C):

int, unsigned int, long, unsigned long

v Default. Allow type cast of an lvalue object with incomplete type void
and lvalue cast which does not change the type and memory of an

lvalue object.

Example:

void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

V A cast may not yield an lvalue, to conform strict ANSI-C mode.

w Default. Allow propagation of const initializers. This optimization

makes the following code possible:

const int one = 1;
int array [] = { one };

W Disable propagation of const initializers.

x Default. Do not check for assignments of a constant string to a

non-constant string pointer. With this option the following example

produces no warning:

char *p;
void main(void) { p = ”hello”; }

X Conform to ANSI-C by checking for assignments of a constant string to

a non-constant string pointer. The example above produces warning

W130: "operands of '=' are pointers to different types".

0 Same as -ACDFIKLMPSTUVWX (disable all).

1 Same as -AcdfiklmpstuVwx (default).

Example:

To disable character arithmetic and C++ comments enter:

c166 –ACP test.c

Chapter 44–16
U
S
A
G
E

-B

Option:

-B[flags]

Arguments:

Optionally one or more cpu functional problem bypass flags.

Default:

-Babdefhijlmou

Description:

Enable/disable bypass for certain CPU functional problems. Without the -B

option the default is -Babdefhijlmou (all bypasses off).

Flags which are controlled by a letter, can be switched on with the

uppercase letter and switched off with the lowercase letter. The following

flags are allowed:

a Default. Do not protect DIVx/MD[LH] sequences by an atomic

instruction.

A Protect DIVx/MD[LH] sequences by an atomic instruction. The DIVx

instruction and a read from MDL/MDH are not interruptable because

the will be generated within the same atomic sequence. This is a

bypass for the LONDON1751 CPU functional problem. Refer to

Appendix G, CPU Functional Problems for details.

b Default. Do not place two NOP instructions after each instruction

which does a byte write. This option is equivalent to the pragma

nofix_byte_write.

B Place two NOP instructions after each instruction which does a byte

write. These instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB,

NEGB, ORB, SUBB, SUBCB, XORB. This is a bypass for CPU problem

S1, as described in Appendix G, CPU Functional Problems. This option

is equivalent to the pragma fix_byte_write.

d Default. Assume hardware environment is present, where there is no

need to protect the execution of divide instructions against interrupts.

Emit inline code (DIV) instead of a run-time library call.

Compiler Use 4–17

• • • • • • • •

D For 8xC166 derivatives, this option emits code using run-time library

call for signed divide operations (which are protected against

interrupts) instead of inline code. For C167 derivatives the protection

will be generated inline using ATOMIC instructions. For inline

protection, this option must be used in combination with option -x[i].

This is a bypass for the CPU problem 13, as described in Appendix G,

CPU Functional Problems. Use the protected version of the library

(lib\[u]166p*.lib , lib\[u]extp*.lib or

lib\[u]ext2p*.lib).

e Default. Never extend EXTEND sequence with one instruction.

E EXTEND sequences are extended with one instruction when addressing

mode Rn,[Rm + #data16] is the last instruction of the EXTEND

sequence.

This is a bypass for the CPU.3 problem, as described in Appendix G,

CPU Functional Problems.

f Default. Do not prevent the generation of MOVB [Rn],mem
instructions.

F Disable the generation of MOVB [Rn],mem instructions when even

'const' objects are accessed. This is a bypass for the CPU.16 problem as

described in Appendix G, CPU Functional Problems.

h Default. Do not prevent the generation of Label_C: JMPR cc.xx,
Label_A instructions.

H Disable the generation of Label_C: JMPR cc.xx, .Label_A
instructions. This is a bypass for the BUS.18 problem as described in

Appendix G, CPU Functional Problems.

i Default. Do not place BFLDH PSW,#0F0h,#0F0h before RETI in
interrupt functions

I Place the instruction BFLDH PSW,#0F0h,#0F0h before RETI in
interrupt functions.

This is a bypass for the CPU problem 17 as described in Appendix G,

CPU Functional Problems.

j Default. Do not place ATOMIC #2 before a JMPS instruction. Do not

delete the return addresses from the system stack in interrupt functions.

Chapter 44–18
U
S
A
G
E

J Place ATOMIC #2 before a JMPS instruction. The JMPS instructions in

the interrupt vector table will be replaced by CALLS instructions (linker

/ locator control: FIXSTBUS1). The compiler generates an ADD SP, #04

instruction to delete the return address (generated by CALLS) from the

system stack. This is a bypass for the ST_BUS.1 problem as described in

Appendix G, CPU Functional Problems.

The instruction to delete the return address from the system stack is part of

the interrupt frame. If #pragma noframe was used, this instruction will

not be generated, you have to do it manually.

k Default. Do not protect BFLDH/BFLDL instructions by an ATOMIC

instruction.

K Protect BFLDH/BFLDL instructions by an ATOMIC instruction. This is a

bypass for the CPU.21 CPU functional problem. Refer to Appendix G,

CPU Functional Problems for details.

l Default. Do not protect JMPI/CALLI instructions by an ATOMIC

instruction.

L Protect JMPI/CALLI instructions by an ATOMIC instruction. This is a

bypass for the LONDON1 CPU functional problem. Refer to Appendix

G, CPU Functional Problems for details.

m Default. Assume hardware environment is present, where there is no

need to protect the execution of multiply instructions and divide

instructions against interrupts. Emit inline code (MUL, DIV, DIVU, DIVL,

DIVLU) instead of a run-time library call. You must use the

non-protected version of the library (lib\166*.lib).

M For 8xC166 derivatives, this option emits code using run-time library

call for multiply/divide operations (which are protected against

interrupts) instead of inline code. For C167 derivatives the protection

will be generated inline using ATOMIC instructions. For inline

protection, this option must be used in combination with option -x[i].

Use the protected version of the library (lib\166p*.lib or

lib\extp*.lib).

This is a bypass for many CPU problems, among which are problem 7,

problem 13, problem 17, CPU.2, CPU.11 and CPU.18. as described in

Appendix G, CPU Functional Problems.

n Default. Do not avoid pipeline conflict after CoSTORE instruction.

Compiler Use 4–19

• • • • • • • •

N Avoid pipeline conflict after CoSTORE instruction. This is a bypass for

the Kfm_BR03 CPU functrional problem as described in Appendix G,

CPU Functional Problems.

o Default. Do not prevent the generation of MOV(B) Rn, [Rm+#data16]

instructions.

O Disable generation of MOV(B) Rn, [Rm+#data16] instructions. The

generation of this instruction is not disabled in some of the intrinsic

functions since the source operand always refers to internal RAM here.

This a bypass for the CPU1R006 functional problem, as described in

Appendix G, CPU Functional Problems.

u Default. Assume hardware environment is present, where there is no

need to protect the execution of multiply instructions against interrupts.

Emit inline code (MUL/MULU) instead of a run-time library call. You

must use the non-protected version of the libraries (lib\166*.lib
or lib\ext*.lib).

U For 8xC166 derivatives, this option emits code using run-time library

calls for multiply operations (which are protected against interrupts)

instead of inline code. For C167 derivatives the protection will be

generated inline using ATOMIC instructions. For inline protection, this

option must be used in combination with option -x[i]. Use the

protected version of the libraries (lib\.66p*.lib or

lib\extp*.lib).

This is a bypass for CPU problems CPU.11 and problem 17.

Zc166sv1cp

Prevent pipeline problems after changing CP. This is a bypass for the

CR105840 (preliminary number) functional problem, as described in

Appendix

G, CPU Functional Problems.

Zno_c166sv1cp

Default. Do not prevent pipeline problems after changing CP.

Zc166sv1div

Do not generate unprotected division instructions. This is a bypass for

the CR105893 (preliminary number) functional problem.

Zno_c166sv1div

Default. Allow generation of unprotected division instructions.

Chapter 44–20
U
S
A
G
E

Zc166sv1sp

Prevent pipeline problems after changing SP. This is a bypass for the

CR105685 (preliminary number) functional problem.

Zno_c166sv1sp

Default. Do not prevent pipeline problems after changing SP.

See Appendix G, CPU Functional Problems for more details.

Compiler Use 4–21

• • • • • • • •

-c

Option:

-csize

Default:

The compiler determines internally how much user stack CSE space is

needed.

Arguments:

The maximum amount of user stack CSE space which may be used by a

function.

Description:

With this option you can specify the maximum amount of user stack CSE

space which may be used by a function. When no CSEs are found within a

function, no space will be allocated for it. When you do not want the

compiler to allocate user stack CSE space at all, specify a size of 0. This

way, the compiler will check for CSE values and tries to place them in

registers only.

-Oc/-OC

Pragma cse size in section Pragmas

Chapter 44–22
U
S
A
G
E

-D

Option:

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is

absent), '1' is assumed. Any number of symbols can be defined. The

definition can be tested by the preprocessor with #if, #ifdef and #ifndef,

for conditional compilations. If the command line is getting longer than

the limit of the operating system used, you can use the -f option.

Example:

The following command defines the symbol NORAM as 1 and defines the

symbol PI as 3.1416 .

c166 –DNORAM –DPI=3.1416 test.c

-U

Compiler Use 4–23

• • • • • • • •

-E

Option:

-E[m|c|i|p|x]

Description:

Run the preprocessor of the compiler only and send the output to stdout.

When you use the -E option, use the -o option to separate the output

from the header produced by the compiler.

An overview of the flags is given below.

m - generate dependencies for make

c - don't strip comments

i - keep #include directives

p - don't generate #line source position info

x - disable macro expansion

The m flag overrules all other flags.

Examples:

The following command preprocesses the file test.c and sends the

output to the file preout .

c166 –E –o preout test.c

The following command generates dependency rules for the file test.c
which can be used by mk166 (the C166/ST10 'make' utility).

c166 –Em test.c

test.obj : test.c

Chapter 44–24
U
S
A
G
E

-e

Option:

-e

Description:

Remove the output file when an error has occurred. With this option the

'make' utility always does the proper productions.

Example:

c166 –e test.c

Compiler Use 4–25

• • • • • • • •

-err

Option:

-err

Description:

Write errors to the file source.err instead of stderr .

Example:

To write errors to the test.err instead of stderr , enter:

c166 –err test.c

Chapter 44–26
U
S
A
G
E

-exit

Option:

-exit

Description:

Use alternative exit values in case warnings are reported. In case warnings

are reported, the compiler returns an exit value as if there were errors

reported.

Compiler Use 4–27

• • • • • • • •

-F

Option:

-F[flags]

Arguments:

Optionally a floating point control flag.

Description:

Control floating point. The flags which are controlled by a letter can be

switched on with the lowercase letter and switched off with the uppercase

letter. -F used without flags is the same as using -Fs. Currently the

following flags are implemented.

c Enables the use of float constants.

C Default This flag is ignored when -Fs is set.

s Forces using single precision. Implies -Fc.

S Default

Chapter 44–28
U
S
A
G
E

-f

Option:

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Example:

 ”This has a single quote ’ embedded”

Compiler Use 4–29

• • • • • • • •

or

 ’This has a double quote ” embedded’

or

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a

text file. To circumvent this limitation it is possible to use continuation

lines. These lines end with a backslash and newline. In a quoted

argument, continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments, all whitespace

on the next line will be stripped.

Example:

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

 control(file1(mode,type),\
 file2(type))
 –>
 control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following lines:

–err
test.c

The command line can now be:

c166 –f mycmds

Chapter 44–30
U
S
A
G
E

-G

Option:

-Ggroupname

Arguments:

The name for a group of near data sections.

Description:

With this option you can specify a name for a group of near data sections.

This option can only be used in the medium and large memory model.

See the sections Efficiency in Large Data Models (Medium/Large) and

Interrupt for more details.

Compiler Use 4–31

• • • • • • • •

-g

Option:

-g[b|f|l|s]

Description:

Add directives to the output files, incorporating symbolic information to

facilitate high level debugging. Note: using -g may turn off some peephole

optimizations.

With -gb 'bit' type information and pointer behavior description is omitted

for compatibility with old IEEE-695 consuming tools.

With -gf high level language type information is also emitted for types

which are not referenced by variables. Therefore, this suboption is not

recommended.

With -gl you disable lifetime information for all types.

With -gs user stack adjustment information is omitted for compatibility

with old IEEE-695 consuming tools. If you use -gs it is also recommended

to invoke ieee166 with the -c1 option. This combination gives the best

compatibility with old IEEE-695 consuming tools. When you invoke the

control program cc166 with -gs this will also set -c1 on invocation of

ieee166.

Examples:

To add symbolic debug information to the output files, enter:

c166 –g test.c

To add symbolic debug information to the output files but disable lifetime

information for all types, enter:

c166 –gl test.c

Chapter 44–32
U
S
A
G
E

-gso

Option:

-gso

-gso=file.gso

Arguments:

The name of a .gso file with object allocation information for the final

build.

Description :

Enable the global storage optimizer. Please refer to Appendix Global
Storage Optimizer for more details.

Examples:

c166 module.c –gso

Generates the file module.sif (Source Information File) with information

on all global objects.

c166 module.c –gso=module.gso

Generates module.c with the global objects allocated as specified in the

module.gso file.

Compiler Use 4–33

• • • • • • • •

-H

Option:

-Hfile

Arguments:

The name of an include file.

Description:

Include file before compiling the C source. This is the same as specifying

#include "file" at the first line of your C source.

Example:

c166 –Hstdio.h test.c

-I

Chapter 44–34
U
S
A
G
E

-i

Option:

-iscale

Arguments:

Specify scaling of the interrupt vector table.

Description:

The C166S v2.0 / Super10 architechtures (ext2) allows a scalable interrupt

vector table. This option can be used to specify the scaling factor:

Scale Factor Size

0 x1 4 bytes / vector
(no scaling)

1 x2 8 bytes / vector

2 x4 16 bytes / vector

3 x8 32 bytes / vector

Table 4-4: Scaling factor

Depending on the size of an interrupt vector table entry, the compiler will

try to place as much code from an interrupt function inside the vector

table as possible.

This option can only be used in conjunction with the -x2 option.

Example:

c166 –x2 –i3 test.c

Selects the C166S v2.0 / Super10 architechtures (ext2) and specifies that

each interrupt vector table entry is 32 bytes in size.

Compiler Use 4–35

• • • • • • • •

-I

Option:

-Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not

have an absolute pathname to look in directory. Thus, #include files

whose names are enclosed in "" are searched for first in the directory of

the file containing the #include line, then in directories named in -I

options in left-to-right order. If the include file is still not found, the

compiler searches in a directory specified with the environment variable

C166INC. C166INC may contain more than one directory. Finally, the

directory ../include relative to the directory where the compiler binary

is located is searched. This is the standard include directory supplied with

the compiler package.

For #include files whose names are in <>, the directory of the file

containing the #include line is not searched. However, the directories

named in -I options (and the one in C166INC and the relative path) are

still searched.

Example:

c166 –I/proj/include test.c

Section Include Files.

Chapter 44–36
U
S
A
G
E

-M

Option:

-Mmodel

Arguments:

The memory model to be used, where model is one of:

t tiny (cpu in non-segmented mode)

s small

m medium

l large

Default:

-Ms

Description:

Select the memory model to be used.

Example:

c166 –Ml test.c

Section Memory Models.

Compiler Use 4–37

• • • • • • • •

-m

Option:

-mmem=size

or

-mmem=[size],threshold

Arguments:

A memory space with a memory size. mem can be one of:

mem Description Default size
limit (bytes)

BI bits 2048 (bits)

CO strings / floating
point

none

BA bitwords 256

NB near data none

FB far data none

XB shuge data none

HB huge data none

PR functions 65536

SB system data 16384

IR internal ramdata
if –x[ifmp] used

1024
2048

Table 4-5: Memory spaces

A threshold value. The default is no threshold.

Description:

Specify the memory size (limits) to be used by the compiler for checking

static memory allocations of the module being processed. If the -t option

is used the size allocated by the module is reported, when c166 completes

compilation.

Chapter 44–38
U
S
A
G
E

When a section is equal or larger than the threshold size, the compiler will

switch to a new selection with the identical attributes and class for

subsequent allocations. The threshold size is memory dependent. A size of

zero means no threshold and this is the default. Specifying a threshold size

is particularly useful when compiling very big modules or when there are

too many initiialized variables in a single module.

Example:

–mPR=0,4000

is suitable for compiling modules with more than 64Kb code without

getting a too large number of sections.

Likewise:

–mFB=0,4000

allows more than 16Kb of initialized far data in a single module by

switching to a new section after approximately 4Kb. However, it will result

in numbered sections with different names, so it might be necessary to

adapt the linker/locator invocation when locator controls refer to a

particular section by name.

Compiler Use 4–39

• • • • • • • •

-misrac

Option:

-misracn,n,....

Arguments:

The MISRA C rules to be checked.

Description:

With this option, the MISRA C rules to be checked can be specified. Refer

to Appendix B MISRA C for a list of supported and unsupported MISRA C

rules.

Example:

c166 –misrac9 test.c

Will generate an error in case 'test.c' contains nested comments.

Chapter 44–40
U
S
A
G
E

-n

Option:

-n

Description:

Do not create output files but send the output to stdout .

Example:

c166 –n test.c

Compiler Use 4–41

• • • • • • • •

-O

Option:

-Oflags

Arguments:

One or more optimization flags.

Default:

-O1

Description:

Control optimization. By default c166 performs as much code

optimizations as possible (same as -O1).

Flags which are controlled by a letter, can be switched on with the lower

case letter and switched off with the uppercase letter. These options are

described together. An overview of the flags is given below.

a - relax alias checking

b - no clearing of non-initialized static and

 public variables

c - common subexpression elimination

d - data flow, constant/copy propagation

e - allocate (constant) romdata in PDAT instead

 of LDAT (only with -Ms)

f - optimize for speed (increases code size)

g - enable expression recognition

h - optimize interrupt frame

j - peephole optimization

k - register contents tracing

l - fast loops (increases code size)

n - NOP removal

o - code order rearranging

p - control flow optimization

q - use far pointer when converting to/from long

r - optimize allocation of register variables

s - use jump table for switch statement

t - turn tentative into defining occurrence

u - use user stack for interrupt

Chapter 44–42
U
S
A
G
E

w - relax alias checking: assume no cross type aliasing

x - inline the intrinsic version of some C library functions

Example:

c166 –OAcdFhkLmprstVw test.c

Compiler Use 4–43

• • • • • • • •

-Onumber

Option:

-Onumber

Arguments:

A number in the range 0 - 3.

Default:

-O1

Description:

Control optimization. You can specify a single number in the range 0 - 3,

to enable or disable optimization. The options are a combination of the

other optimization flags:

-O0 - same as -OABCDEFGHJKLNOPQRSTUWX (no optimization)

-O1 - same as -OABcdEFghjkLnopQrS*UwX (default)

-O2 - same as -OaBcdEFghjkLnopQrS*UwX (size)

-O3 - same as -OaBcdEfghjklnopQrS*Uwx (speed)

 * = t for -Mm/-Ml, T for -Mt/-Ms

Example:

To optimize for code size, enter:

c166 –O2 test.c

Chapter 44–44
U
S
A
G
E

-Oa / -OA

Option:

-Oa / -OA

Pragma:

noalias / alias

Default:

-OA

Description:

With -Oa you relax alias checking. If you specify this option, c166 will

not erase remembered register contents of user variables if a write

operation is done via an indirect (calculated) address. You must be sure

this is not done in your C code (check pointers!) before turning on this

option.

With -OA you specify strict alias checking. If you specify this option, the

compiler erases all register contents of user variables when a write

operation is done via an indirect (calculated) address.

Example:

An example is given in section Alias in this chapter.

Pragmas noalias and alias in section Pragmas.

Compiler Use 4–45

• • • • • • • •

-Ob / -OB

Option:

-Ob / -OB

Default:

-OB

Description:

With -Ob the compiler performs no 'clearing' of non-initialized static and

public variables.

With -OB the compiler performs 'clearing' of non-initialized static and

public variables.

Section Non-Initialized Variables.
Pragma noclear and clear in section Pragmas.

Chapter 44–46
U
S
A
G
E

-Oc / -OC

Option:

-Oc / -OC

Default:

-Oc

Description:

With -Oc you enable CSE (common subexpression elimination). With this

option specified, the compiler tries to detect common subexpressions

within the C code. The common expressions are evaluated only once, and

their result is temporarily held in registers or on the user stack.

The size of the maximum used user stack area can be specified with the

-csize option.

With -OC you disable CSE (common subexpression elimination). With this

option specified, the compiler will not try to search for common

expressions.

Example:
/*
 * Compile with –OC –O0,
 * Compile with –Oc –O0, common subexpressions are found
 * and temporarily saved.
 */

char x, y, a, b, c, d;

void
main(void)
{
 x = (a * b) – (c * d);

 y = (a * b) + (c * d);/*(a*b) and (c*d) are common */
}

-c

Pragmas cse resume and cse suspend in section Pragmas.

Compiler Use 4–47

• • • • • • • •

-Od / -OD

Option:

-Od / -OD

Default:

-Od

Description:

With -Od you enable constant and copy propagation. With this option, the

compiler tries to find assignments of constant values to a variable, a

subsequent assignment of the variable to another variable can be replaced

by the constant value.

With -OD you disable constant and copy propagation.

Example:

/*
 * Compile with –OD –O0, ’i’ is actually assigned to ’j’
 * Compile with –Od –O0, 15 is assigned to ’j’, ’i’ was
 * propagated
 */

int i;
int j;

void
main(void)
{
 i = 10;
 j = i + 5;
}

Chapter 44–48
U
S
A
G
E

-Oe / -OE

Option:

-Oe / -OE

Default:

-OE

Description:

With -Oe you enable allocation of constant romdata 'CROM' in paged data

sections (PDAT). This option is explained in section Constant Romdata
Section Allocation.

With -OE standard allocation of constant romdata 'CROM' in linear data

sections (LDAT) is done.

These options only affect the code generation and section allocation in the

small memory model.

Section Constant Romdata Section Allocation.

Pragmas switch_tabmem_far , switch_tabmem_near and

switch_tabmem_default in section Pragmas.

Compiler Use 4–49

• • • • • • • •

-Of / -OF

Option:

-Of / -OF

Pragma:

speed / size

Default:

-OF

Description:

With -Of you produce fast code. Favour execution speed above code

density. Note that this option may increase code size.

With -OF you produce small code. Favour code density above execution

speed. If -OF is specified, c166 calls a run-time library routine for a

number of operations.

Pragmas speed and size in section Pragmas.

Chapter 44–50
U
S
A
G
E

-Og / -OG

Option:

-Og / -OG

Default:

-Og

Description:

With -Og you enable expression recognition. Expressions for which very

efficient code can be generated are recognized and optimal code is

emitted.

With -OG you disable expression recognition. Handle expressions that

could be recognized using the -Og option as generic cases.

Compiler Use 4–51

• • • • • • • •

-Oh / -OH

Option:

-Oh / -OH

Default:

-Oh

Description:

With -Oh you enable optimization of interrupt frame code for C interrupt

functions.

With -Oh you disable optimization of interrupt frame code for C interrupt

functions.

Section Interrupt in chapter Language Implementation.

Chapter 44–52
U
S
A
G
E

-Oj / -OJ

Option:

-Oj / -OJ

Default:

-Oj

Description:

With -Oj you enable peephole optimization. Remove redundant code.

With -OJ you disable peephole optimization.

Optimization option NOP removal -On.

Compiler Use 4–53

• • • • • • • •

-Ok / -OK

Option:

-Ok / -OK

Default:

-Ok

Description:

With -Ok you trace the contents of registers and try to reuse the registers

without reloading.

With -OK you disable register contents tracing.

Example:

/*
 * Compile with –OK –O0
 * Compile with –Ok –O0, register contents tracing,
 * one register is reused
 */
int a, c;

void f(register int b)
{
 a = 22;
 if (b)
 {
 c = 22;
 }
}

Chapter 44–54
U
S
A
G
E

-Ol / -OL

Option:

-Ol / -OL

Default:

-OL

Description:

With -Ol you enable fast loops. Duplicate the loop condition. Evaluate the

loop condition one time outside the loop, just before entering the loop,

and at the bottom of the loop. This saves one unconditional jump and

gives less code inside a loop.

With -OL you disable fast loops. The smallest code is generated for loops.

Example:

/*

 * Compile with –OL –O0

 * Compile with –Ol –O0, compiler duplicates the loop

 * condition, the unconditional jump is removed.

 */

int i;

void

main(void)

{

 for(; i<10; i++)

 {

 do_something();

 }

}

Compiler Use 4–55

• • • • • • • •

-On / -ON

Option:

-On / -ON

Default:

-On

Description:

With -On you enable NOP removal by peephole optimizer.

With -ON you disable NOP removal by peephole optimizer.

Chapter 44–56
U
S
A
G
E

-Oo / -OO

Option:

-Oo / -OO

Default:

-Oo

Description:

With -Oo you enable code rearranging in flow optimization.. Try to move

(sub)expressions to get faster code. Some debuggers may have difficulties

with such options.

With -OO you disable code rearranging.

Compiler Use 4–57

• • • • • • • •

-Op / -OP

Option:

-Op / -OP

Default:

-Op

Description:

With -Op you enable control flow optimizations on the intermediate code

representation, such as jump chaining and conditional jump reversal.

With -OP you disable control flow optimizations.

Example:

/*

 * Compile with –OP –O0

 * Compile with –Op –O0, compiler finds first time ’i’ is

 * always < 10, the unconditional jump is removed.

 */

int i;

void

main(void)

{

 for(i=0; i<10; i++)

 {

 do_something();

 }

}

Chapter 44–58
U
S
A
G
E

-Oq / -OQ

Option:

-Oq / -OQ

Default:

-OQ

Description:

With -Oq you treat casting a pointer to long equal to casting a pointer to a

far pointer.

With -OQ you treat casting a pointer to long equal to casting a pointer to

a huge pointer.

Compiler Use 4–59

• • • • • • • •

-Or / -OR

Option:

-Or / -OR

Default:

-Or

Description:

With -Or you retrieve better code. Enable automatic C register variable

allocation, unless overruled by the -rnr option. If you do not want a

certain automatic to be allocated in a register (e.g. setjmp() /longjmp()
pair used), you can declare this variable to be volatile and yet still use the

-Or option!

With -OR you disable automatic C register variable allocation.

Chapter 44–60
U
S
A
G
E

-Os / -OS

Option:

-Os / -OS

Default:

-OS

Description:

With -Os you force the compiler to generate jump tables for switch

statements.

With -OS the compiler chooses the best switch method possible, jump

chain or jump table. So, with -OS a jump table can still be generated.

Example:

/*

 * Compile with –OS, generate jump chain.

 * Compile with –Os, generate jump table.

 */

int i;

void

main(void)

{

 switch (i)

 {

 case 1: i = 0;

 case 2: i = 1;

 case 3: i = 2;

 default: i = 3;

 }

}

Section Switch Statement.
Pragmas switch_force_table and switch_smart in section Pragmas.

Compiler Use 4–61

• • • • • • • •

-Ot / -OT

Option:

-Ot / -OT

Default:

-Ot (medium and large model)

-OT (tiny and small model)

Description:

With -Ot the compiler turns tentative declarations (such as 'int i; ') into

defining occurrences (e.g. 'int i=0; ').

With -OT declarations remain tentative as long as possible.

Section Efficiency in Large Data Models.

Chapter 44–62
U
S
A
G
E

-Ou / -OU

Option:

-Ou / -OU

Default:

-OU

Description:

With -Ou the compiler uses the user stack instead of the system stack for

task switch (interrupt).

With -OU the compiler uses the system stack for task switch (interrupt).

Compiler Use 4–63

• • • • • • • •

-Ow / -OW

Option:

-Ow / -OW

Default:

-Ow

Description:

With -Ow the compiler relaxes alias checking, assuming there are no

pointer aliases for different type. For example, when a pointer to an int is

dereferenced (written), it is reasonable to assume that this cannot have any

effect on char objects.

With -OW the compiler performs cross-type alias checking.

Chapter 44–64
U
S
A
G
E

-Ox / -OX

Option:

-Ox / -OX

Default:

-OX

Description:

With -Ox you enable extra inlining of C library functions. It is only

worthwhile to inline C library functions which are very small and

frequently used. Therefore, only the following C library functions are

inlined in small and tiny memory model. Inlining C library functions is not

conform the ANSI-C standard. Extra inlining will be disabled when

compiling with inlining allowed, see option -Ai/-AI. Remember that you

cannot take the address of an inline function and you cannot define one

of these functions yourself when -Ox is active.

The next C library functions are inlined for tiny and small memory model:

strcpy(), strlen(), strchr(), strcmp(),

strcat(), memset(), memcpy()

With -OX you disable extra inlining of the C library functions mentioned

above.

Compiler Use 4–65

• • • • • • • •

-o

Option:

-o file

Arguments:

An output filename. The filename may not start immediately after the

option. There must be a tab or space in between.

Default:

Module name with .src suffix.

Description:

Use file as output filename, instead of the module name with .src suffix.

Special care must be taken when using this option, the first -o option

found acts on the first file to compile, the second -o option acts on the

second file to compile, etc.

Example:

When specified:

c166 file1.c file2.c –o file3.src –o file2.src

two files will be created, file3.src for the compiled file file1.c and

file2.src for the compiled file file2.c .

Chapter 44–66
U
S
A
G
E

-P

Option:

-P[d]

Description:

Enable user stack model. See section User Stack Model for details. Requires

linking with user stack model library unless -Pd is specified.

Appendix H, User Stack Model Library Support.

Compiler Use 4–67

• • • • • • • •

-R

Option:

-R{cl|co|al}mem=new

Pragma:

class / combine / align

Arguments:

mem is a two letter abbreviation indicating the memory area of a C

program. mem can be one of:

mem Description

BI bits

CO strings / floating point

BA bitwords

NB near data

FB far data

XB shuge data

HB huge data

PR functions

SB system data

IR internal ramdata
if –x[ifmp] used

Table 4-6: Memory spaces

new is the new class name, combine type or align type for mem.

Description:

The compiler defaults to a section naming convention as described in the

section Section Allocation. With this option you can change the class

name, combine type or align type of a compiler generated section for

mem.

Chapter 44–68
U
S
A
G
E

In case a module must be loaded at a fixed address or a data section

needs a special place in memory, the -R option enables you to generate a

unique class name, combine type or align type with a section name. With

-Rclmem=new you can specify a new class name for mem (same as

pragma class). With -Rcomem=new you can specify a new combine type

for mem (same as pragma combine). With -Ralmem=new you can specify

a new align type for mem (same as pragma align). In this way the order

l166 allocates these sections can be specified in a locator command file.

Section Section Allocation.

Pragmas align , class and combine in section Pragmas.

Compiler Use 4–69

• • • • • • • •

-r

Option:

-r[nr[,name[,C]]]

Pragma:

regdef

Arguments:

nr is the number of GPR registers.

name is the register bank name.

Description:

With the -rnr option you can specify the number of GPR registers

assigned to this task. If the number is omitted, the compiler omits the

REGDEF declaration. You can also specify the register bank name and if

this register bank must be 'common' (C) or not.

Section Interrupt.
Pragma regdef in section Pragmas.

Chapter 44–70
U
S
A
G
E

-S

Option:

-S

Pragma:

static

Description:

All functions of the C module are compiled using static memory for

non-register function automatics. This option can be useful for non

recursive applications.

Section Static Approach of Function Automatics
Pragmas automatic and static in section Pragmas.

Compiler Use 4–71

• • • • • • • •

-s

Option:

-s [i]

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

When the additional 'i' sub option is specified, the C source of the include

files will also be merged.

Example:

c166 –s test.c

 NAME TEST_C
; test.c 1 int i;
; test.c 2
; test.c 3 int
; test.c 4 main(void)
; test.c 5 {
 PUBLIC _main
TEST_1_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_main PROC FAR

Pragmas source and nosrouce in section Pragmas.

Chapter 44–72
U
S
A
G
E

-T

Option:

-Tsize

or

-T[size], size2

Arguments:

The maximum threshold size in bytes (size). Or the threshold size for

initialized variables (size2)

Default:

-T256

Description:

With this option you can specify a maximum size (threshold) for allocating

data in default data sections. This is useful when you want to limit the size

of the default data group. You can use this option in the medium and large

model only.

Initialized variables have an infinite threshold by default. Unless a

threshold is specified by a second argument to the -T option, they are

always allocated in the default far data sections.

Example:

To allocate values of maximum 128 bytes long in default far data sections,

enter:

c166 –T128 –Mm test.c

Section Efficiency in Large Data Models (Medium/Large).

Compiler Use 4–73

• • • • • • • •

-t

Option:

-t

Description:

With this option the C compiler produces totals (a module summary) on

stdout and writes section information in an output file.

Example:

c166 –t test.c

MODULE SUMMARY

Code size (bytes) = 8
Constant size (bytes) = 6
Near data size (bytes) = 2
Far data size (bytes) = 0
Huge data size (bytes) = 0
Shuge data size (bytes) = 0
System data size (bytes) = 0
Internal ram data size (bytes) = 0
Bit size (bits) = 0
Bit addressable size (bytes) = 0
User stack size (bytes) = 0
Register bank size (GPR’s) = 16

processed 13 lines at 1331 lines/min
total: tokens=34, symbols=226

Chapter 44–74
U
S
A
G
E

-U

Option:

-Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a

predefined ANSI standard macro. ANSI specifies the following predefined

symbols to exist, which cannot be removed:

__FILE__ "current source filename"

__LINE__ current source line number (int type)

__TIME__ "hh:mm:ss"

__DATE__ "Mmm dd yyyy"

__STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.

Whenever language extensions are excepted, __STDC__ is set

to 0 (zero).

When c166 is invoked, also the following predefined symbols exist:

_C166 value represents the version of the TASKING C166/ST10 C

compiler.

_MODEL memory model used (see section Memory Models for details)

These symbols can be turned off with the -U option.

Example:

c166 –U_MODEL test.c

-D

Compiler Use 4–75

• • • • • • • •

-u

Option:

-u

Description:

Treat 'character' type variables as 'unsigned character' variables. By default

char is the same as specifying signed char . With -u char is the same

as unsigned char .

Example:

With the following command char is treated as unsigned char :

c166 –u test.c

Chapter 44–76
U
S
A
G
E

-V

Option:

-V

Description:

Display version information.

Example:

c166 –V

C166/ST10 C compiler v x. y r z SN00000000–000 (c) year TASKING, Inc.

Compiler Use 4–77

• • • • • • • •

-w

Option:

-w[num]

-wstrict

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. -wnum only suppresses the given

warning. -wstrict suppresses extensive warnings 183, 196 and 216.

Example:

To suppress warning 135, enter:

c166 file1.c –w135

Chapter 44–78
U
S
A
G
E

-x

Option:

-x[2|22|d|i|f|m|p] extended architecture

Arguments:

Optional features:

d support for the MAC co-processor

i extended instruction set (e.g. EXTP, EXTS)

f extended special function registers (esfr, esfrbit). Implies -xi.

m extended memory (24 bit addresses instead of 18 bit addresses)

p extended PEC pointers (0FCE0h instead of 0FDE0h)

2 C166S v2.0 / Super10 architecture

22 Enhanced C166S v2.0 / Super10 architecture

Description:

Allow all or some features of the extended architecture. The -x option

without any additional character enables all features of the

C167/ST10x167/262 extended architechtures.

Option -x2 enables support for the C166S v2.0 / SUPER-10 architecture.

This option automatically implies -ximfp.

Option -x22 enables support for ext2 derivatives with an enhanced

instruction set. This option automatically implies -x2imfp.

The ext2 version of the libraries must be used.

Furthermore, this option automatically enables instruction reordering. If

this is not wanted, use #pragma noreorder to switch this feature off. (Or

use the -znoreorder command line option).

Option -xd enables support for the MAC co-processor, which can be

found in STx272, C166S v2.0 and Super10 architectures.

Example:

To use the extended instruction set, enter:

c166 –xi file.c

Pragma reorder in section Pragmas.

Compiler Use 4–79

• • • • • • • •

-z

Option:

-zpragma

Arguments:

A pragma as listed in section Pragmas.

Description:

With this option you can give a pragma on the command line. This is the

same as specifying '#pragma pragma' in the C source. Dashes ('-') on the

command line in the pragma are converted to spaces.

Example:

To issue a '#pragma autobita 2' using the command line, enter:

c166 –zautobita–2 file.c

The '-' between autobita and 2 is converted to a space.

Section Pragmas.

Chapter 44–80
U
S
A
G
E

4.4 INCLUDE FILES

You may specify include files in two ways: enclosed in <> or enclosed in

"". When an #include directive is seen, c166 uses the following algorithm

trying to open the include file:

1. If the filename is enclosed in "", and it is not an absolute pathname (does

not begin with a '\' for PC, or a '/' for UNIX), the include file is searched

for in the directory of the file containing the #include line. For example,

in:

PC:

c166 ..\..\source\test.c

UNIX:

c166 ../../source/test.c

c166 first searches in the directory ..\source (../source for UNIX) for

include files.

If you compile a source file in the directory where the file is located (c166

test.c), the compiler searches for include files in the current directory.

This first step is not done for include files enclosed in <>.

2. Use the directories specified with the -I options, in a left-to-right order.

For example:

PC:

c166 –I..\include message.c

UNIX:

c166 –I../include message.c

3. Check if the environment variable C166INC exists. If it does, use the

contents as a directory specifier for include files. You can specify more

than one directory in the environment variable C166INC by using a

separator character. Instead of using -I as in the example above, you can

specify the same directory using C166INC:

Compiler Use 4–81

• • • • • • • •

PC:

set C166INC=..\include
c166 message.c

UNIX:

if using the Bourne shell (sh)

 C166INC=../include
 export C166INC
 c166 message.c

or if using the C-shell (csh)

 setenv C166INC ../include
 c166 message.c

4. When an include file is not found with the rules mentioned above, the

compiler tries the subdirectory include , one directory higher than the

directory containing the c166 binary. For example:

PC:

c166.exe is installed in the directory C:\C166\BIN
The directory searched for the include file is C:\C166\INCLUDE

UNIX:

c166 is installed in the directory /usr/local/c166/bin
The directory searched for the include file is

/usr/local/c166/include

The compiler determines run-time which directory the binary is executed

from to find this include directory.

A directory name specified with the -I option or in C166INC may or may

not be terminated with a directory separator, because c166 inserts this

separator, if omitted.

When you specify more than one directory to the environment variable

C166INC, you have to use one of the following separator characters:

PC:

; , space

e.g. set C166INC=..\include;\project\include

Chapter 44–82
U
S
A
G
E

UNIX:

: ; , space

e.g. setenv C166INC ../include:/project/include

Compiler Use 4–83

• • • • • • • •

4.5 PRAGMAS

According to ANSI (3.8.6) a preprocessing directive of the form:

#pragma pragma–token–list new–line

causes the compiler to behave in an implementation-defined manner. The

compiler ignores pragmas which are not mentioned in the list below.

Pragmas give directions to the code generator of the compiler. Besides the

pragmas there are two other possibilities to steer the code generation

process: command line options and keywords (e.g., near type variables)

in the C application itself. The compiler acknowledges these three groups

using the following rules:

Command line options can be overruled by keywords and pragmas.

Keywords can be overruled by pragmas. Hence, pragmas have the highest

priority.

This approach makes it possible to set a default optimization level for a

source module, which can be overridden temporarily within the source by

a pragma.

Most pragmas have a corresponding compiler option at the command line.

When no corresponding option is mentioned here, you can use the -z

option for this purpose. For example,

#pragma nocustack

can be specified at the command line by entering

–znocustack

When the pragma text consists of multiple tokens, they can be separated

on the command line with dashes. For example,

#pragma class mem=name

would become

–zclass– mem=name

c166 supports the following pragmas:

alias

Default. Same as -OA option. Perform strict alias checking. See also the

section Alias.

Chapter 44–84
U
S
A
G
E

noalias

Same as -Oa option. Relax alias checking.

asm [args]

Insert the following (non preprocessor lines) as assembly language source

code into the output file. The inserted lines are not checked for their

syntax. The args are an interface to the C language. See section Inline
Assembly for details.

asm_noflush

Same as asm, except that the peephole optimizer does not flush the code

buffer and assumes register contents remain valid.

endasm [args]

Switch back to the C language. With the args variables can be passed to

the C language. See section Inline Assembly for details.

autobita threshold

Move chars, (long) ints and struct/unions which are smaller than or equal

to the threshold to bitaddressable memory. The declaration may not

contain any memory modifiers. The default threshold value is set to zero

bytes.

Pointers, arrays and function return values are not moved to bitaddressable

memory. Local variables are only moved to bitaddressable memory when

declared static or compiled with the -S option. See also bita in section

3.2.1.8.

autobitastruct threshold

Move struct/unions which contain at least one bitfield with length 1 to

bitaddressable memory. This only applies for structs/unions which are

smaller than or equal to the specified threshold. The declaration may not

contain any memory modifiers. The default threshold value is set to 4

bytes.

Pointers, arrays and function return values are not moved to bitaddressable

memory. Local structs/unions are only moved to bitaddressable memory

when declared static or compiled with the -S option. See also bita in

section 3.2.1.8.

Compiler Use 4–85

• • • • • • • •

automatic

Default. Use stack approach for non register function automatics. Support

recursion.

static

Use static memory for non register function automatics. Same as -S option.

See section Static Approach of Function Automatics.

align mem=atype

Same as -Ral option. Use atype as align type for section of area mem.

class mem=name

Same as -Rcl option. Use name as class for section of area mem.

combine mem=ctype

Same as -Rco option. Use ctype as combine type for section of area mem.

cse size

Same as -c option. Change the maximum user stack space allocation to

store CSE values in.

cse suspend

cse resume

When the CSE optimization is switched on (-Oc) then a sequence of

#pragma cse suspend
#pragma cse resume

has the effect that expressions in between are not part of the CSE

optimization. The pragmas have function scope and do not have any effect

unless the CSE optimization is switched on. The CSE optimization for

expressions can be switch off in a single function by placing

#pragma cse suspend

at the start of the functon body.

custack

Default. Generate a 'C166_US' section estimating the stack usage of a

module.

Chapter 44–86
U
S
A
G
E

nocustack

Suppress the user stack estimation.

clear

Default. Same as -OB option. Perform 'clearing' of non-initialized

static/public variables. See section Non-Initialized Variables for more

information.

noclear

Same as -Ob option. No 'clearing' of non-initialized static/public variables.

See section Non-Initialized Variables for more information.

default_attributes

Default. Use default section attributes. See the section Section Allocation
for details.

save_attributes

Save the current section attributes. See the section Section Allocation for

details about changing section attributes.

restore_attributes

Restore the last saved section attributes. A warning is issued when no

section attributes were saved. See the section Section Allocation for details

about changing section attributes.

eramdata

Allocate all non automatic initialized variables in both ROM and RAM. The

RAM data section has the class name 'CINITERAM' (unless part of the

default data group where all sections must have the same class name).

Copy from ROM to RAM at startup (transparent for the user). See section

Initialized Variables for details.

iramdata

Default. Allocate all non automatic initialized variables in both ROM and

RAM. The RAM data section has the class name 'CINITIRAM' (unless part

of the default data group where all sections must have the same class

name). Copy from ROM to RAM at startup (transparent for the user). See

section Initialized Variables for details.

Compiler Use 4–87

• • • • • • • •

romdata

Allocate all non-automatic variables in ROM only. The ROM data section

can have the class names 'CROM', 'CNEARROM', 'CFARROM' or

'CHUGEROM' (unless part of the default data group where all sections

must have the same class name). See section Initialized Variables for

details.

fix_byte_write

For all code following this pragma the compiler generates two NOP

instructions after each instruction which does a byte write. These

instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB, NEGB, ORB,

SUBB, SUBCB, XORB. This is a bypass for the erroneous byte forwarding

on internal RAM problem. This pragma is equivalent to the new command

line option -BB.

nofix_byte_write

Default. For all code following this pragma the compiler does not generate

two NOP instructions after each instruction which does a byte write. This

pragma is equivalent to the new command line option -Bb. By default the

generation of two extra NOP instructions after a byte write operation is

disabled.

The pragmas fix_byte_write/ nofix_bytewrite and the -BB option only

have to be used for the steps of the SAB 88C166 (flash), which have the

"Erroneous Byte Forwarding for internal RAM locations". Please refer to

the Infineon errata sheets of your CPU step for more information.

fragment

fragment resume

fragment continue

Controls fragmentation of code memory. See section 3.2.3, Code Memory
Fragmentation for details.

global_dead_store_elim

Default. Enable dead store elimination on global and local static variables.

Chapter 44–88
U
S
A
G
E

no_global_dead_store_elim

Disable dead store elimination on global and local static variables.

Example:

void func (void)
{
 enable=1;
 while (!activity);
 enable=0;
}

The first assignment will not be optimized away when this pragma was

used.

m166include "include-file"

This pragma is intended to be used together with user defined intrinsics.

This pragma will generate a:

$INCLUDE(header.asm)

control in the output file. This header file can be used to include the

definition of macro (functions) emitted by the compiler when user defined

intrinsics are used.

Example:

#pragma m166include ”header.asm”

macro

Default. Perform macro expansion.

nomacro

Do not perform macro expansion.

noframe

Do not emit the interrupt frame code for C interrupt functions. See the

section Interrupt for details.

preserve_mulip

Make the MULIP bit available for use inside interrupt handlers by

saving/restoring PSW in interrupt function prologue/epilogue respectively.

Compiler Use 4–89

• • • • • • • •

public

Default. Public C variables have task scope. See section Task Scope for

details.

global

Public C variables have application scope. See section Task Scope for

details.

regdef number

Same as -r option. See the section Interrupt for details. Specify 0 if the

register bank definition must be omitted.

reorder

Enable instruction reordering for the C166S v2.0 / Super10 architecture

(-x2 option).

noreorder

Disable instruction reordering for the C166S v2.0 / Super10 architecture.

savemac

Save MAC SFRs in an interruptframe. You must use this pragma together

with the -xd option.

This pragma will not save anything if used together with the noframe

pragma.

nosavemac

Do not save MAC SFRs in an interrupt frame. You must use this pragma

together with the -xd option.

autosavemac

Save MAC registers in an interrupt frame only when needed. You must use

this pragma together with the -xd compiler option. If you use this pragma

in conjuction with #pragma noframe, nothing will be saved.

source

Same as -s option. Enable mixing C source with assembly code.

Chapter 44–90
U
S
A
G
E

nosource

Default. Disable generation of C source within assembly code.

size

Default. Same as -OF option. Favour code density above execution speed.

speed

Same as -Of option. Favour execution speed above code density.

switch_force_table

Same as -Os option. Allow number of gaps to exceed number of case

labels and yet use a jump table. See section Switch Statement for more

details.

switch_smart

Default. Same as -OS option. Try to use jump table if it is worthwhile. See

section Switch Statement for more details.

switch_tabmem_far

Place jump tables for the small memory model in far ROM. The ROM

section where the jump tables are placed have class 'CFARROM'. See

section Constant Romdata Section Allocation for details.

switch_tabmem_near

Place jump tables for the small memory model in near ROM. The ROM

section where the jump tables are placed have class 'CNEARROM'. See

section Constant Romdata Section Allocation for details.

switch_tabmem_default

Default. Jump tables are located as specified by the -Oe/-OE option. See

section Constant Romdata Section Allocation for details.

volatile_union

Treat unions as if declared volatile , prohibiting certain optimizations

which clash with non-ANSI use of unions: Sometimes a union is used for

converting data by writing one member but reading back another.

novolatile_union

Default. Treat unions conform their definition.

Compiler Use 4–91

• • • • • • • •

4.6 ALIAS

By default the compiler assumes that each pointer may point to any object

created in the program, so when any pointer is dereferenced, all register

contents are assumed to be invalid afterwards.

When it is known that aliasing problems do not occur in the written

C-source, alias checking may be relaxed (use the -Oa option or #pragma

alias). Note that the option -Oc must be on to use this option. Relaxing

alias checking may reduce code size.

Example 1:

int i;

void
func()
{
 char * p;
 char c;
 char d;

 if(i)
 p = &c;
 else
 p = &d;

 c = 2;
 d = 3;

 p = 4; / may write to ’c’ or ’d’ */
 /* ––> aliasing object ’c’ or ’d’ */

 i = c; /* ’*p’ might have changed the value of ’c’, */
 /* so ’c’ may not be used from register */
 /* contents, but MUST be read from memory */
 /* ––> alias checking MUST be ON in this case */
}

Chapter 44–92
U
S
A
G
E

Example 2:

int i;

void
func(char *p)
{
 char c;
 char d;

 c = 2;
 d = 3;

 p = 4; / cannot write to ’c’ or ’d’, but to some other
 object */

 i = c; /* ’*p’ cannot have changed the value of ’c’, */
 /* so ’c’ may be used from register contents */
 /* ––> alias checking may be OFF in this case */
}

Example 3:

int array[2];

main()
{
 array[0] = 1;
 array[1] = –1;

 array[0] = array[0] + array[1];
 /* an interrupt might have changed the value */
 /* of ’array’, so ’array’ may not be used */
 /* from register contents, but MUST be read */
 /* from memory */
 /* ––> alias checking MUST be ON in this case */
}

Compiler Use 4–93

• • • • • • • •

4.7 COMPILER LIMITS

The ANSI C standard [1-2.2.4] defines a number of translation limits, which

a C compiler must support to conform to the standard. The standard states

that a compiler implementation should be able to translate and execute a

program that contains at least one instance of every one of the following

limits, (c166's actual limits are given within parentheses):

Most of the actual compiler limits are determined by the amount of free

memory in the host system. In this case a 'D' (Dynamic) is given between

parentheses. Some limits are determined by the size of the internal

compiler parser stack. These limits are marked with a 'P'. Although the size

of this stack is 200, the actual limit can be lower and depends on the

structure of the translated program.

• 15 nesting levels of compound statements, iteration control

structures and selection control structures (P > 15)

• 8 nesting levels of conditional inclusion (50)

• 12 pointer, array, and function declarators (in any combinations)

modifying an arithmetic, a structure, a union, or an incomplete type

in a declaration (12)

• 31 nesting levels of parenthesized declarators within a full

declarator (P > 31)

• 32 nesting levels of parenthesized expressions within a full

expression (P > 32)

• 31 significant characters in an external identifier (full ANSI-C

mode),

500 significant characters in an external identifier (non ANSI-C

mode)

• 511 external identifiers in one translation unit (D)

• 127 identifiers with block scope declared in one block (D)

• 1024 macro identifiers simultaneously defined in one translation unit

(D)

• 31 parameters in one function declaration (D)

• 31 arguments in one function call (D)

• 31 parameters in one macro definition (D)

• 31 arguments in one macro call (D)

• 509 characters in a logical source line (1500)

• 509 characters in a character string literal or wide string literal (after

concatenation) (1500)

Chapter 44–94
U
S
A
G
E

• 8 nesting levels for #included files (50)

• 257 case labels for a switch statement, excluding those for any

nested switch statements (D)

• 127 members in a single structure or union (D)

• 127 enumeration constants in a single enumeration (D)

• 15 levels of nested structure or union definitions in a single

struct-declaration-list (D)

As far as the compiler implementation uses fixed tables, they will be large

enough to meet the standards limits. However, most of the internal

structures and tables of the compiler are dynamic. Thus the actual

compiler limits are determined by the amount of free memory in the

system.

5

COMPILER
DIAGNOSTICS

C
H

A
P

T
E

R

Chapter 55–2
D
IA
G
N
O
S
T
IC
S

5

C
H

A
P

T
E

R

Compiler Diagnostics 5–3

• • • • • • • •

5.1 INTRODUCTION

c166 has three classes of messages: user errors, warnings and internal

compiler errors.

Some user error messages carry extra information, which is displayed by

the compiler after the normal message. The messages with extra

information are marked with 'I' in the list below and never appear without

a previous error message and error number. The number of the

information message is not important, and therefore this number is not

displayed. A user error can also be fatal (marked as 'F' in the list below),

which means that the compiler aborts compilation immediately after

displaying the error message and may generate a 'not complete' output

file.

The error numbers and warning numbers are divided in two groups. The

frontend part of the compiler uses numbers in the range 0 to 499, whereas

the backend (code generator) part of the compiler uses numbers in the

range 500 and higher. Note that most error messages and warning

messages are produced by the frontend.

If a (non fatal) user error occurs during compilation, c166 displays the C

source line that contains the error, the error number and the error message

on the screen. If the error is generated by the code generator, the C source

line displayed always is the last line of the current C function, because

code generation is started when the end of the function is reached by the

front end. However, in this case, c166 displays the line number causing

the error before the error message. c166 always generates the error

number in the assembly output file, exactly matching the place where the

error occurred.

For example, the following program causes a code generator error

message:

 bit b;

 void
 err()
 {
 b = 1; /* OK */
 b += 1; /* Not allowed */
 }

test.c: 8: }
E 539: (line 7) ’+=’ not allowed on bit type

Chapter 55–4
D
IA
G
N
O
S
T
IC
S

The output file contains:

 PUBLIC _err
TEST_1_PR SECTION CODE WORD PUBLIC ’CPROGRAM’
_err PROC NEAR
 BSET _b
 ERROR C166_ERROR_539
 RET
_err ENDP
TEST_1_PR ENDS

So, when a compilation is not successful, the generated output file is not

accepted by the assembler, thus preventing a corrupt application to be

made (see also the -e option).

Warning messages do not result in an erroneous assembly output file.

They are meant to draw your attention to assumptions of the compiler, for

a not correct situation. You can control warning messages with the

-w[number] option.

The last class of messages are the internal compiler errors. The following

format is used:

S number : assertion failed – please report

These errors are caused by failed internal consistency checks and should

never occur. However, if such a 'SYSTEM' error appears, please report the

occurrence to TASKING, using a Problem Report form. Please include a

small C program causing the error.

5.2 RETURN VALUES

c166 returns an exit status to the operating system environment for testing.

For example,

in a BATCH-file you can examine the exit status of the program executed

with ERRORLEVEL:

c166 –s %1.c
IF ERRORLEVEL 1 GOTO STOP_BATCH

Compiler Diagnostics 5–5

• • • • • • • •

In a bourne shell script, the exit status can be found in the $? variable, for

example:

c166 $*
case $? in
0) echo ok ;;
1|2|3) echo error ;;
esac

The exit status of c166 is one of the numbers of the following list:

0 Compilation successful, no errors

1 There were user errors, but terminated normally

2 A fatal error, or System error occurred, premature ending

3 Stopped due to user abort

or if the -exit commandline option was used:

0 Compilation successful, no errors/warnings

1 There were user errors/warnings, but terminated normally

2 A fatal error, or System error occurred, premature ending

3 Stopped due to user abort

Chapter 55–6
D
IA
G
N
O
S
T
IC
S

5.3 ERRORS AND WARNINGS

Errors start with an error type, followed by a number and a message. The

error type is indicated by a letter:

I information

E error

F fatal error

S system error

W warning

Frontend

F 1 evaluation expired

Your product evaluation period has expired. Contact your local

TASKING office for the official product.

W 2 unrecognized option: 'option'

The option you specified does not exist. Check the invocation syntax

for the correct option.

E 4 expected number more '#endif'

The preprocessor part of the compiler found the'#if', '#ifdef' or '#ifndef'

dirctive but did not find a corresponding '#endif' in the same source

file. Check your source file that each '#if', '#ifdef' or '#ifndef' has a

corresponding '#endif'.

E 5 no source modules

You must specify at least one source file to compile.

F 6 cannot create "file"

The output file or temporary file could not be created. Check if you

have sufficient disk space and if you have write permissions in the

specified directory.

F 7 cannot open "file"

Check if the file you specified really exists. Maybe you misspelled the

name, or the file is in another directory.

F 8 attempt to overwrite input file "file"

The output file must have a different name than the input file.

Compiler Diagnostics 5–7

• • • • • • • •

E 9 unterminated constant character or string

This error can occur when you specify a string without a closing

double-quote (”) or when you specify a character constant without a

closing single-quote (’). This error message is often preceded by one

or more E 19 error messages.

F 11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is

reached. Check for #include files that contain other #include files. Try

to split the nested files into simpler files.

F 12 memory allocation error

All free space has been used. Free up some memory by removing any

resident programs, divid the file into several smaller source files, break

expressions into smaller subexpressions or put in more memory.

W 13 prototype after forward call or old style declaration - ignored

Check that a prototype for each function is present before the actual

call.

E 14 ';' inserted

An expression statement needs a semicolon. For example, after ++i in

{ int i; ++i } .

E 15 missing filename after -o option

The -o option must be followed by an output filename.

E 16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the

octal digit syntax. Also, a constant may not be too large to be

represented in the type to which it was assigned. For example,

int i = 0x1234567890; is too large to fit in an integer.

E 17 string too long

This error occurs if the maximum string size (1500) is reached. Reduce

the size of the string.

E 18 illegal character (0xhexnumber)

The character with the hexadecimal ASCII value 0xhexnumber is not

allowed here. For example, the '#' character, with hexadecimal value

0x23, to be used as a preprocessor command, may not be preceded by

non-white space characters. The following is an example of this error:

Chapter 55–8
D
IA
G
N
O
S
T
IC
S

char *s = #S ; // error

E 19 newline character in constant

The newline character can appear in a character constant or string

constant only when it is preceded by a backslash (\). To break a string

that is on two lines in the source file, do one of the following:

• End the first line with the line-continuation character, a backslash

(\).

• Close the string on the first line with a double quotation mark, and

open the string on the next line with another quotation mark.

E 20 empty character constant

A character contant must contain exactly one character. Empty

character contants (’’) are not allowed.

E 21 character constant overflow

A character contant must contain exactly one character. Note that an

escape sequence (for example, \t for tab) is converted to a single

character.

E 22 '#define' without valid identifier

You have to supply an identifier after a '#define'.

E 23 '#else' without '#if'

'#else' can only be used within a corresponding '#if', '#ifdef' or '#ifndef'

construct. Make sure that there is a '#if', '#ifdef' or '#ifndef' statement in

effect before this statement.

E 24 '#endif' without matching '#if'

'#endif' appeared without a matching '#if', '#ifdef' or '#ifndef'

preprocessor directive. Make sure that there is a matching '#endif' for

each '#if', '#ifdef' and '#ifndef' statement.

E 25 missing or zero line number

'#line' requires a non-zero line number specification.

E 26 undefined control

A control line (line with a '#identifier') must contain one of the known

preprocessor directives.

Compiler Diagnostics 5–9

• • • • • • • •

W 27 unexpected text after control

'#ifdef' and '#ifndef' require only one identifier. Also, '#else' and

'#endif' only have a newline. '#undef' requires exactly one identifier.

W 28 empty program

The source file must contain at least one external definition. A source

file with nothing but comments is considered an empty program.

E 29 bad '#include' syntax

A '#include' must be followed by a valid header name syntax. For

example, #include <stdio.h misses the closing '>'.

E 30 include file "file" not found

Be sure you have specified an existing include file after a '#include'

directive. Make sure you have specified the correct path for the file.

E 31 end-of-file encountered inside comment

The compiler found the end of a file while scanning a comment.

Probably a comment was not terminated. Do not forget a closing

comment '*/' when using ANSI-C style comments.

E 32 argument mismatch for macro "name"

The number of arguments in invocation of a function-like macro must

agree with the number of parameters in the definition. Also, invocation

of a function-like macro requires a terminating ")" token. The

following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */

#define B(b) 1
int j = B(1; /* error */

E 33 "name" redefined

The given identifier was defined more than once, or a subsequent

declaration differed from a previous one. The following examples

generate this error:

int i;
char i; /* error */
main()
{
}

Chapter 55–10
D
IA
G
N
O
S
T
IC
S

main()
{
 int j;
 int j; /* error */
}

W 34 illegal redefinition of macro "name"

A macro can be redefined only if the body of the redefined macro is

exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line

and in the source with a '#define' directive. It also can be caused by

macros imported from include files. To eliminate the warning, either

remove one of the definitions or use an '#undef' directive before the

second definition.

E 35 bad filename in '#line'

The string literal of a #line (if present) may not be a "wide-char" string.

So, #line 9999 L”t45.c” is not allowed.

W 36 'debug' facility not installed

'#pragma debug' is only allowed in the debug version of the compiler.

W 37 attempt to divide by zero

A divide or modulo by zero was found. Adjust the expression or test if

the second operand of a divide or modulo is zero.

E 38 non integral switch expression

A switch condition expression must evaluate to an integral value. So,

char *p = 0; switch (p) is not allowed.

F 39 unknown error number: number

This error may not occur. If it does, contact your local TASKING office

and provide them with the exact error message.

W 40 non-standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed

by a number or letter), it contains an illegal escape character. For

example, \c causes this warning.

Compiler Diagnostics 5–11

• • • • • • • •

E 41 '#elif' without '#if'

The '#elif' directive did not appear within an '#if', '#ifdef or '#ifndef'

construct. Make sure that there is a corresponding '#if', '#ifdef' or

'#ifndef' statement in effect before this statement.

E 42 syntax error, expecting parameter type/declaration/statement

A syntax error occurred in a parameter list a declaration or a statement.

This can have many causes, such as, errors in syntax of numbers, usage

of reserved words, operator errors, missing parameter types, missing

tokens.

E 43 unrecoverable syntax error, skipping to end of file

The compiler found an error from which it could not recover. This

error is in most cases preceded by another error. Usually, error E 42.

I 44 in initializer "name"

Informational message when checking for a proper constant initializer.

E 46 cannot hold that many operands

The value stack may not exceed 20 operands.

E 47 missing operator

An operator was expected in the expression.

E 48 missing right parenthesis

')' was expected.

W 49 attempt to divide by zero - potential run-time error

An expression with a divide or modulo by zero was found. Adjust the

expression or test if the second operand of a divide or modulo is zero.

E 50 missing left parenthesis

'(' was expected.

E 51 cannot hold that many operators

The state stack may not exceed 20 operators.

E 52 missing operand

An operand was expected.

Chapter 55–12
D
IA
G
N
O
S
T
IC
S

E 53 missing identifier after 'defined' operator

An identifier is required in a #if defined(identifier) .

E 54 non scalar controlling expression

Iteration conditions and 'if' conditions must have a scalar type (not a

struct, union or a pointer). For example, after static struct {int
i;} si = {0}; it is not allowed to specify while (si) ++si.i; .

E 55 operand has not integer type

The operand of a '#if' directive must evaluate to an integral constant.

So, #if 1. is not allowed.

W 56 '<debugoption><level>' no associated action

This warning can only appear in the debug version of the compiler.

There is no associated debug action with the specified debug option

and level.

W 58 invalid warning number: number

The warning number you supplied to the -w option does not exist.

Replace it with the correct number.

F 59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

E 60 label "label" multiple defined

A label can be defined only once in the same function. The following

is an example of this error:

f()
{
lab1:
lab1: /* error */
}

E 61 type clash

The compiler found conflicting types. For example, a long is only

allowed on int or double , no specifiers are allowed with struct ,

union or enum. The following is an example of this error:

unsigned signed int i; /* error */

Compiler Diagnostics 5–13

• • • • • • • •

E 62 bad storage class for "name"

The storage class specifiers auto and register may not appear in

declaration specifiers of external definitions. Also, the only storage class

specifier allowed in a parameter declaration is register .

E 63 "name" redeclared

The specified identifier was already declared. The compiler uses the

second declaration. The following is an example of this error:

struct T { int i; };
struct T { long j; }; /* error */

E 64 incompatible redeclaration of "name"

The specified identifier was already declared. All declarations in the

same function or module that refer to the same object or function must

specify compatible types. The following is an example of this error:

f()
{
 int i;
 char i; /* error */
}

W 66 function "name": variable "name" not used

A variable is declared which is never used. You can remove this

unused variable or you can use the -w66 option to suppress this

warning.

W 67 illegal suboption: option

The suboption is not valid for this option. Check the invocation syntax

for a list of all available suboptions.

W 68 function "name": parameter "name" not used

A function parameter is declared which is never used. You can remove

this unused parameter or you can use the -w68 option to suppress this

warning.

E 69 declaration contains more than one basic type specifier

Type specifiers may not be repeated. The following is an example of

this error:

int char i; /* error */

Chapter 55–14
D
IA
G
N
O
S
T
IC
S

E 70 'break' outside loop or switch

A break statement may only appear in a switch or a loop (do , for
or while). So, if (0) break; is not allowed.

E 71 illegal type specified

The type you specified is not allowed in this context. For example, you

cannot use the type void to declare a variable. The following is an

example of this error:

void i; /* error */

W 72 duplicate type modifier

Type qualifiers may not be repeated in a specifier list or qualifier list.

The following is an example of this warning:

{ long long i; } /* error */

E 73 object cannot be bound to multiple memories

Use only one memory attribute per object. For example, specifying

both rom and ram to the same object is not allowed.

E 74 declaration contains more than one class specifier

A declaration may contain at most one storage class specifier. So,

register auto i; is not allowed.

E 75 'continue' outside a loop

continue may only appear in a loop body (do , for or while). So,

switch (i) {default: continue;} is not allowed.

E 76 duplicate macro parameter "name"

The given identifier was used more than one in the formatl parameter

list of a macro definition. Each macro parameter must be uniquely

declared.

E 77 parameter list should be empty

An identifier list, not part of a function definition, must be empty. For

example, int f (i, j, k); is not allowed on declaration level.

E 78 'void' should be the only parameter

Within a function protoype of a function that does not except any

arguments, void may be the only parameter. So, int f(void,
int); is not allowed.

Compiler Diagnostics 5–15

• • • • • • • •

E 79 constant expression expected

A constant expression may not contain a comma. Also, the bit field

width, an expression that defines an enum, array-bound constants and

switch case expressions must all be integral contstant expressions.

E 80 '#' operator shall be followed by macro parameter

The '#' operator must be followed by a macro argument.

E 81 '##' operator shall not occur at beginning or end of a macro

The '##' (token concatenation) operator is used to paste together

adjacent preprocessor tokens, so it cannot be used at the beginning or

end of a macro body.

W 86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed

by a 'x' and a number) must fit in 8 bits storage. The number of bits

per character may not be greater than 8. The following is an example

of this warning:

char c = ’\xabc’; /* error */

E 87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

W 88 "name" redeclared with different linkage

The specified identifier was already declared. This warning is issued

when you try to redeclare an object with a different basic storage class,

and both objects are not declared extern or static. The following is an

example of this warning:

int i;
int i(); /* error E 64 and warning */

E 89 illegal bitfield declarator

A bit field may only be declared as an integer, not as a pointer or a

function for example. So, struct {int *a:1;} s; is not allowed.

E 90 #error message

The message is the descriptive text supplied in a '#error' preprocessor

directive.

Chapter 55–16
D
IA
G
N
O
S
T
IC
S

W 91 no prototype for function "name"

Each function should have a valid function prototype.

W 92 no prototype for indirect function call

Each function should have a valid function prototype.

I 94 hiding earlier one

Additional message which is preceded by error E 63. The second

declaration will be used.

F 95 protection error: message

Something went wrong with the protection key initialization. The

message could be: "Key is not present or printer is not correct.", "Can't

read key.", "Can't initialize key.", or "Can't set key-model".

E 96 syntax error in #define

#define id(requires a right-parenthesis ')'.

E 97 "..." incompatible with old-style prototype

If one function has a parameter type list and another function, with the

same name, is an old-style declaration, the parameter list may not have

ellipsis. The following is an example of this error:

int f(int, ...);
int f(); /* error, old–style */

E 98 function type cannot be inherited from a typedef

A typedef cannot be used for a function definition. The following is

an example of this error:

typedef int INTFN();
INTFN f {return (0);} /* error */

F 99 conditional directives nested too deep

'#if', '#ifdef' or '#ifndef' directives may not be nested deeper than 50

levels.

E 100 case or default label not inside switch

The case: or default: label may only appear inside a switch .

Compiler Diagnostics 5–17

• • • • • • • •

E 101 vacuous declaration

Something is missing in the declaration. The declaration could be

empty or an incomplete statement was found. You must declare array

declarators and struct , union , or enum members. The following are

examples of this error:

int ; /* error */

static int a[2] = { }; /* error */

E 102 duplicate case or default label

Switch case values must be distinct after evaluation and there may be

at most one default: label inside a switch .

E 103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer -

pointer, or pointer - scalar. So, scalar - pointer is not allowed. The

following is an example of this error:

int i;
int *pi = &i;
ff(1 – pi); /* error */

E 104 left operand of operator has not struct/union type

The first operand of a '.' or '->' must have a struct or union type.

E 105 zero or negative array size - ignored

Array bound constants must be greater than zero. So, char a[0]; is

not allowed.

E 106 different constructors

Compatible function types with parameter type lists must agree in

number of parameters and in use of ellipsis. Also, the corresponding

parameters must have compatible types. This error is usually followed

by informational message I 111. The following is an example of this

error:

int f(int);
int f(int, int); /* error different
 parameter list */

Chapter 55–18
D
IA
G
N
O
S
T
IC
S

E 107 different array sizes

Corresponding array parameters of compatible function types must

have the same size.This error is usually followed by informational

message I 111. The following is an example of this error:

int f(int [][2]);
int f(int [][3]); /* error */

E 108 different types

Corresponding parameters must have compatible types and the type of

each prototype parameter must be compatible with the widened

definition parameter. This error is usually followed by informational

message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type
 in parameter list */

E 109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to

which it was assigned. See section Data Types for the valid range of a

floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

E 110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.

A pointer to a function is allowed. The following are examples of this

error:

typedef int F(); F f(); /* error */

typedef int A[2]; A g(); /* error */

I 111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type

of parameters must match. This message is preceded by error E 106, E

107 or E 108.

E 112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must

include an identifier. Also, an identifier declared as a typedef name

cannot be a parameter name. The following are examples of this error:

Compiler Diagnostics 5–19

• • • • • • • •

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */

E 114 incomplete struct/union type

The struct or union type must be known before you can use it. The

following is an example of this error:

extern struct unknown sa, sb;
sa = sb; /* ’unknown’ does not have a
 defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115 label "name" undefined

A goto statement was found, but the specified label did not exist in

the same function or module. The following is an example of this error:

f1() { a: ; } /* W 116 */
f2() { goto a; } /* error, label ’a:’ is
 not defined in f2() */

W 116 label "name" not referenced

The given label was defined but never referenced. The reference of the

label must be within the same function or module. The following is an

example of this warning:

f() { a: ; } /* ’a’ is not referenced */

E 117 "name" undefined

The specified identifier was not defined. A variable's type must be

specified in a declaration before it can be used. This error can also be

the result of a previous error. The following is an example of this

error:

unknown i; /* error, ’unknown’ undefined */
i = 1; /* as a result, ’i’ is also
 undefined */

W 118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also

when converting a floating point value to an integer, the floating point

constant may not be too large. This warning is usually preceded by

error E 16 or E 109. The following is an example of this warning:

Chapter 55–20
D
IA
G
N
O
S
T
IC
S

int i = 10E88; /* error and warning */

E 119 cannot take 'sizeof' bitfield or void type

The size of a bit field or void type is not known. So, the size of it

cannot be taken.

E 120 cannot take 'sizeof' function

The size of a function is not known. So, the size of it cannot be taken.

E 121 not a function declarator

This is not a valid function. This may be due to a previous error. The

following is an example of this error:

int f() return 0; /* missing ’{ }’ */
int g() { } /* error, ’g’ is not a
 formal parameter and
 therefore, this is not a
 valid function declaration */

E 122 unnamed formal parameter

The parameter must have a valid name.

W 123 function should return something

A return in a non-void function must have an expression.

E 124 array cannot hold functions

An array of functions is not allowed.

E 125 function cannot return anything

A return with an expression may not appear in a void function.

W 126 missing return (function "name")

A non-void function with a non-empty function body must have a

return statement.

E 129 cannot initialize "name"

Declarators in the declarator list may not contain initializations. Also, an

extern declaration may have no initializer. The following are

examples of this error:

{ extern int i = 0; } /* error */
int f(i) int i=0; /* error */

Compiler Diagnostics 5–21

• • • • • • • •

W 130 operands of operator are pointers to different types

Pointer operands of an operator or assignment ('='), must have the

same type. For example, the following code generates this warning:

long *pl;
int *pi = 0;
pl = pi; /* warning */

E 131 bad operand type(s) of operator

The operator needs an operand of another type. The following is an

example of this error:

int *pi;
pi += 1.; /* error, pointer on left; needs
 integral value on right */

W 132 value of variable "name" is undefined

This warning occurs if a variable is used before it is defined. For

example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */

E 133 illegal struct/union member type

A function cannot be a member of a struct or union . Also, bit fields

may only have type int or unsigned .

E 134 bitfield size out of range - set to 1

The bit field width may not be greater than the number of bits in the

type and may not be negative. The following example generates this

error:

struct i { unsigned i : 999; }; /* error */

W 135 statement not reached

The specified statement will never be executed. This is for example the

case when statements are present after a return .

E 138 illegal function call

You cannot perform a function call on an object that is not a function.

The following example generates this error:

int i, j;
j = i(); /* error, i is not a function */

Chapter 55–22
D
IA
G
N
O
S
T
IC
S

E 139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct , union or a

pointer) and also the operand of a (cast) must be a scalar. The

following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union
 to something else */

E 140 type cannot be applied to a register/bit/bitfield object or

builtin/inline function

For example, the '&' operator (address) cannot be used on registers

and bit fields. So, func(&r6); and func(&bitf.a); are invalid.

E 141 operator requires modifiable lvalue

The operand of the '++', or '--' operator and the left operand of an

assignment or compound assignment (lvalue) must be modifiable. The

following is an example of this error:

const int i = 1;
i = 3; /* error, const cannot be
 modified */

E 143 too many initializers

There may be no more initializers than there are objects. The

following is an example of this error:

static int a[1] = {1, 2}; /* error,
 only one object can be initialized */

W 144 enumerator "name" value out of range

An enum constant exceeded the limit for an int . The following is an

example of this warning:

enum { A = INT_MAX, B }; /* warning,
 B does not fit in an int anymore */

E 145 requires enclosing curly braces

A complex initializer needs enclosing curly braces. For example, int
a[] = 2; is not valid, but int a[] = {2}; is.

E 146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

Compiler Diagnostics 5–23

• • • • • • • •

W 147 argument #number: different levels of indirection

With prototypes, the types of arguments must be assignment

compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &i); /* warning, argument 2 */

W 148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual

argument was a struct or union ., but they have different tags. The

tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
main()
{
 struct { int i; } t;
 f(t); /* t has other type than s */
}

E 149 object "name" has zero size

A struct or union may not have a member with an incomplete type.

The following is an example of this error:

struct { struct unknown m; } s; /* error */

W 150 argument #number: pointers to different types

With prototypes, the pointer types of arguments must be compatible.

The following example generates this warning:

int f(int*);
long *l;
f(l); /* warning */

W 151 ignoring memory specifier

Memory specifiers for a struct , union or enum are ignored.

E 152 operands of operator are not pointing to the same memory

space

Be sure the operands point to the same memory space. This error

occurs, for example, when you try to assign a pointer to a pointer from

a different memory space.

Chapter 55–24
D
IA
G
N
O
S
T
IC
S

E 153 'sizeof' zero sized object

An implicit or explicit sizeof operation references an object with an

unkown size. This error is usually preceded by error E 119 or E 120,

cannot take 'sizeof'.

E 154 argument #number: struct/union mismatch

With prototypes, only one of the prototyped function argument or the

actual argument was a struct or union . The types should match. The

following is an example of this error:

f(struct s); /* prototype */

main()
{
 int i;
 f(i); /* i is not a struct */
}

E 155 casting lvalue 'type' to 'type' is not allowed

The operand of the '++', or '--' operator or the left operand of an

assignment or compound assignment (lvalue) may not be cast to

another type. The following is an example of this error:

int i = 3;
++(unsigned)i; /* error, cast expression
 is not an lvalue */

E 157 "name" is not a formal parameter

If a declarator has an identifier list, only its identifiers may appear in

the declarator list. The following is an example of this error:

int f(i) int a; /* error */

E 158 right side of operator is not a member of the designated

struct/union

The second operand of '.' or '->' must be a member of the designated

struct or union .

E 160 pointer mismatch at operator

Both operands of operator must be a valid pointer. The following

example generates this error:

int *pi = 44; /* right side not a pointer */

Compiler Diagnostics 5–25

• • • • • • • •

E 161 aggregates around operator do not match

The contents of the structs, unions or arrays on both sides of the

operator must be the same. The following example causes this error:

struct {int a; int b;} s;
struct {int c; int d; int e;} t;
s = t; /* error */

E 162 operator requires an lvalue or function designator

The '&' (address) operator requires an lvalue or function designator.

The following is an example of this error:

int i;
i = &(i = 0);

W 163 operands of operator have different level of indirection

The types of pointers or addresses of the operator must be assignment

compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */

E 164 operands of operator may not have type 'pointer to void'

The operands of operator may not have operand (void *) .

W 165 operands of operator are incompatible: pointer vs. pointer to

array

The types of pointers or addresses of the operator must be assignment

compatible. A pointer cannot be assigned to a pointer to array. The

following is an example of this warning:

main()
{
 typedef int array[10];
 array a;
 array *ap = a; /* warning */
}

E 166 operator cannot make something out of nothing

Casting type void to something else is not allowed. The following

example generates this error:

Chapter 55–26
D
IA
G
N
O
S
T
IC
S

void f(void);
main()
{
 int i;

 i = (int)f(); /* error */
}

E 170 recursive expansion of inline function "name"

An _inline function may not be recursive. The following example

generates this error:

_inline int a (int i)
{
 a(i); /* recursive call */
 return i;
}
main()
{
 a(1); /* error */
}

E 171 too much tail-recursion in inline function "name"

If the function level is greater than or equal to 40 this error is given.

The following example generates this error:

_inline void a ()
{
 a();
}
main()
{
 a();
}

W 172 adjacent strings have different types

When concatenating two strings, they must have the same type. The

following example generates this warning:

char b[] = L”abc””def”; /* strings have
 different types */

E 173 'void' function argument

A function may not have an argument with type void .

Compiler Diagnostics 5–27

• • • • • • • •

E 174 not an address constant

A constant address was expected. Unlike a static variable, an automatic

variable does not have a fixed memory location and therefore, the

address of an automatic is not a constant. The following is an example

of this error:

int *a;
static int *b = a; /* error */

E 175 not an arithmetic constant

In a constant expression no assignment operators, no '++' operator, no

'--' operator and no functions are allowed. The following is an

example of this error:

int a;
static int b = a++; /* error */

E 176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed

memory location and therefore, the address of an automatic is not a

constant. The following is an example of this error:

int a; /* automatic */
static int *b = &a; /* error */

W 177 static variable "name" not used

A static variable is declared which is never used. To eliminate this

warning remove the unused variable.

W 178 static function "name" not used

A static function is declared which is never called. To eliminate this

warning remove the unused function.

E 179 inline function "name" is not defined

Possibly only the prototype of the inline function was present, but the

actual inline function was not. The following is an example of this

error:

Chapter 55–28
D
IA
G
N
O
S
T
IC
S

_inline int a(void); /* prototype */

main()
{
 int b;
 b = a(); /* error */
};

E 180 illegal target memory (memory) for pointer

The pointer may not point to memory. For example, a pointer to

bitaddressable memory is not allowed.

E 181 invalid cast to function

This error is generated when attempting to cast an object to a function

type as shown in the example below:

int i;
void main(void)
{
 i+=(int*(int))i;
 return;
 }

W 182 argument #number: different types

With prototypes, the types of arguments must be compatible.

W 183 variable 'name' possibly uninitialized

Possibly an initialization statement is not reached, while a function

should return something. The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {
 i = 0; /* statement not reached */
 }
 return i; /* warning */
}

Compiler Diagnostics 5–29

• • • • • • • •

W 184 empty pragma name in -z option - ignored

After the -z option you must specify an existing pragma. See the

description of the -z option for details.

I 185 (prototype synthesized at line number in "name")

This is an informational message containing the source file position

where an old-style prototype was synthesized. This message is

preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.

E 186 array of type bit is not allowed

An array cannot contain bit type variables.

E 187 illegal structure definition

A structure can only be defined (initialized) if its members are known.

So, struct unknown s = { 0 }; is not allowed.

E 188 structure containing bit-type fields is forced into bitaddressable

area

This error occurs when you use a bitaddressable storage type for a

structure containing bit-type members.

E 189 pointer is forced to bitaddressable, pointer to bitaddressable is

illegal

A pointer to bitaddressable memory is not allowed.

W 190 "long float" changed to "float"

In ANSI C floating point constants are treated having type double ,

unless the constant has the suffix 'f'. If you have specified an option to

use float constants, a long floating point constant such as 123.12fl is

changed to a float .

E 191 recursive struct/union definition

A struct or union cannot contain itself. The following example

generates this error:

struct s { struct s a; } b; /* error */

E 192 missing filename after -f option

The -f option requires a filename argument.

Chapter 55–30
D
IA
G
N
O
S
T
IC
S

E 194 cannot initialize typedef

You cannot assign a value to a typedef variable. So, typedef i=2; is

not allowed.

W 195 constant expression out of range -- truncated

The resulting constant expression is too large to fit in the specified data

type. The value is truncated. The following example generates this

warning:

int i = 140000L; /* warning, value is too large
 to fit in an int */

W 196 constant expression out of range due to signed/unsigned type

mismatch

The resulting constant expression is too large to fit in the specified data

type. The following example generates this warning:

int i = 40000U; /* the unsigned value is too large
 to fit in a signed int */
 /* unsigned int i = 40000U; is OK */

W 197 unrecognized -w argument: argument

The -w option only accepts a warning number or the text 'strict' as an

argument. See the description of the -w option for details.

W 198 trigraph sequence replaced

The character set of C source programs is contained within seven-bit

ASCII, but is a superset of the ISO 646-1983 Invariant Code Set. In

order to enable programs to be represented in the reduced set, all

occurrences of the following trigraph sequences are replaced by the

corresponding single character. This replacement occurs before any

other processing.

??= represents #
??/ represents \
??’ represents ^
??(represents [
??) represents]
??! represents |
??< represents {
??> represents }
??– represents ~

Compiler Diagnostics 5–31

• • • • • • • •

The compiler issuses a warning when it performs a trigraph

replacement to inform that something occured which was probably not

expected to occur.

F 199 demonstration package limits exceeded

The demonstration package has certain limits which are not present in

the full version. Contact TASKING for a full version.

W 200 unknown pragma "name" - ignored

The compiler ignores pragmas that are not known. For example,

#pragma unknown .

W 201 name cannot have storage type - ignored

A register variable or an automatic/parameter cannot have a storage

type. To eliminate this warning, remove the storage type or place the

variable outside a function�.

E 202 'name' is declared with 'void' parameter list

You cannot call a function with an argument when the function does

not accept any (void parameter list). The following is an example of

this error:

int f(void); /* void parameter list */

main()
{
 int i;
 i = f(i); /* error */
 i = f(); /* OK */
}

E 203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree

with the protoype of the function. The following is an example of this

error:

int f(int); /* one parameter */

main()
{
 int i;
 i = f(i,i); /* error, one too many */
 i = f(i); /* OK */
}

Chapter 55–32
D
IA
G
N
O
S
T
IC
S

W 204 U suffix not allowed on floating constant - ignored

A floating point constant cannot have a 'U' or 'u' suffix.

W 205 F suffix not allowed on integer constant - ignored

An integer constant cannot have a 'F' or 'f' suffix.

E 206 'name' named bit-field cannot have 0 width

A bit field must be an integral contstant expression with a value greater

than zero.

E 207 list of rule numbers expected after "-misrac" option.

A list of rule numbers is required after the '-misrac' option.

W 208 unsupported MISRA C rule number %d.

Specified MISRA C rule number is not supported.

E 209 +MISRA C rule %d violation: %s

A specified MISRA C rule is violated.

E 212 "name": missing static function definition

A function with a static prototype misses its definition.

W 213 invalid string/character constant in non-active part of source

This part of the source is skipped.

E 214 second occurence of #pragma asm or asm.noflush.

E 215 "pragma endasm" without a "#pragma asm"

W 216 suggest parentheses around assignment used as truth value

In the example below W 216 will be generated because of a suspicious

assignment within an if condition.

int func(int a, int b, int c)
{
 if (a = b)
 {
 return c;
 }
 return a;
}

Compiler Diagnostics 5–33

• • • • • • • •

Backend

W 501 initializer was truncated

Some most significant bits are non-zero. Due to a cast, the most

significant bits are stripped off.

F 504 object doesn't fit in memory: memory

A memory overflow occurred. Use a larger memory model or specify a

larger storage type. When memory is "program", then try to split the

module into separate ones on function basis. It is usually sufficient to

split the module into two separate ones, each having about the half of

the program code of the original module. Program code of a single

function is limited to 64Kb. When memory is "fstack", the allocation of

automatic data exceeds 16K.

E 519 no indirection allowed on bit type

Pointer to a bit variable and array of bit is not allowed, because the

80166 has no instructions to indirectly access a bit variable.

E 531 restriction: impossible to convert to 'type'

The structure or union cannot be casted to types bit , char , int ,

long , float or double .

E 539 operator not allowed on bit type

See section 3.4.3, The Bit Type, for a list of operators that are allowed

on type bit .

E 540 bit type parameter not allowed

A bit type variable is not allowed as parameter. The allowed classes

for bit are: static, public or extern. See also section 3.4.3, The Bit Type.

E 541 bit type switch expression not allowed

A bit typed expression is not allowed as switch expression. See also

section 3.4.3, The Bit Type.

E 542 argument number is not an integral constant expression

The argument of the specified intrinsic function must evaluate to an

integral value. See section 3.16, Intrinsic Functions, for the syntax of

the specified intrinsic function.

Chapter 55–34
D
IA
G
N
O
S
T
IC
S

W 543 'extern near' might be in other data group: check 'Ggroupname'
option is also used with module defining external

If you use the -G option, it is your own responsibility to declare

'extern near' variables within the same group. See also section 3.2.1.6,

Efficiency in Large Data Models.

E 544 semaphore must be bit object

The intrinsic functions _testset() and _testclear() must have a

bit type argument.

E 545 maximum interrupt number is 127

Use an interrupt number less than 128.

E 547 calling an interrupt routine, use '_int166()'

An interrupt function cannot be called directly, you must use the

intrinsic function _int166() .

E 549 argument number is not bitaddressable

The intrinsic functions _getbit() , _putbit() and _bfld() require

a bitaddressable argument. See section 3.16, Intrinsic Functions, for the

syntax of these intrinsic functions.

E 550 assignment/parameter/return not allowed with bit-structure

Structure of bit is supported, with the restriction that no other type

than bit is member of this structure. Structure of bit is not allowed

as parameter or return value of a function.. See also section 3.4.3, The
Bit Type.

F 551 too many sections (> number)

A module can contain 255 sections at the most.

E 552 'memory_type' is illegal memory for function: near or huge only

The specified storage type is not valid for this function. The storage

type of a function can be either near or huge . A function can also

have return type bit .

F 553 illegal memory model

See the compiler usage for valid arguments of the -M option.

F 554 illegal memory type specified

See the description of the -m option for the correct syntax.

Compiler Diagnostics 5–35

• • • • • • • •

F 555 invalid option option

The option must have a valid argument. See the description of the

option for the correct syntax.

F 556 illegal section qualifier in -R option

See the description of the -R option for the correct syntax.

F 557 illegal number in option

You must specify a valid number (decimal or hexdecimal) to the

option.

W 558 maximum number of GPR's in a registerbank is 16 - ignored

If you specify a number of GPRs to the -r option or pragma regdef it

must have a value in the range 6-16 (inclusive).

W 559 obsolete option -Om/-OM - please use -Bm/-BM

The -Om/-OM option is no longer used in this version, use the

-Bm/-BM option instead.

E 560 static initialization of sfr/sfrbit esfr/esfrbit is not allowed

For example, the construction sfr SYSCON = 2; is not allowed.

E 561 illegal storage class for sfr/sfrbit, esfr/esfrbit, xsfr

[e]sfr/[e]sfrbit/xsfr is not allowed as static, extern, automatic, register or

parameter.

E 562 it is not allowed to change the align type for internal ram data

sections

Internal ram data sections are always IRAM addressable.

E 563 "function()": 0 is invalid interrupt number, use "main()"

An interrupt number must be in the range 0 to 127 or -1.

E 564 section "name" may not be BYTE aligned

The sectoin must be word, page, segment or PEC aligned.

F 565 Illegal combine type

The combine type must be one of L (local), P (public), C (common), G

(global), S (Sysstack), U (Usrstack) or A address (absolute section AT

constant address).

Chapter 55–36
D
IA
G
N
O
S
T
IC
S

F 566 Illegal align type

The combine type must be one of B (byte), W (word), P (page), S

(segment), C (PEC addressable) or I (IRAM addressable).

E 568 more than 16K initialized data for 'name': use 'shuge' or use the

-m option

more than 64K initialized data for 'name': use 'huge' or use the

-m option

Declare explicitiy initialized variables in shuge or huge memory when

the total size of those variables in a module exceeds 16K or 64K

respectively. An alternative is to omit the initializer and to initialize the

variable at runtime as far as needed. cstart.asm clears variables

without explicit initializer automatically.

-m option

E 569 far/huge not allowed in tiny memory model

The far , huge and shuge keywords are not possible (and not

allowed) in the tuny memory model, because all normal data is

implicitly near .

E 570 allocation single data object exceeds 16K: use 'shuge'

allocation single data object exceeds 64K: use 'huge'

Variables greater than 16K or 64K must be declared 'shuge' or 'huge'

respectively.

F 571 'memory' is illegal memory for #pragma romdata:

near/far/huge only

You can only use the near , far , huge and shuge keywords on

romdata sections.

W 572 invalid option for this model: 'option' - ignored

The -Ggroupname and -Tsize options are only allowed in the medium

or large memory model.

W 573 conversion of long address to short address

This warning is issued when pointer conversion is needed, for

example, when you assign a huge pointer to a near pointer.

W 575 c166 language extension keyword used as identifier

A language extension keyword is a reserved word, and reserved words

cannot be used as an identifier.

Compiler Diagnostics 5–37

• • • • • • • •

F 577 -xchar is invalid suboption

See the description of the -x option for the correct syntax.

E 578 esfr/esfrbit only allowed when using -x[f]

You need to specify the -xf or -x option to enable the extended SFR

area.

E 579 'offset' must be a constant value between 0 and 15

The bit offset used in _atbit must be a constant value between 0 and

15 (the bit position in an integer).

E 580 REGDEF R0-Rnum is too small for register arguments/parameter

of "name": use 'stackparm'

The number of registers is too small for parameter passing. Pass the

arguments over the user stack. You can use the stackparm keyword

for this purpose.

W 582 REGDEF R0-R5 is minimum registerbank, if not omitted

If you specify a number of GPRs to the -r option or pragma regdef it

must have a value in the range 6-16 (inclusive).

F 583 -Fchar is invalid suboption

See the description of the -F option for the correct syntax.

W 585 duplicate function qualifier - 'name (number)' ignored

Only one function qualifier is allowed. The number within parentheses

indicates which of the qualifiers is ignored, 0 being the first occurrence.

W 586 duplicate function qualifier - 'name'

Only one function qualifier is allowed. The duplicate qualifier is

ignored.

W 587 'number' illegal interrupt/bank number (min to max) - ignored

An interrupt number must be in the range 0 to 127 or -1. A register

bank number must be in the range 1 to 255.

W 588 'name1' not allowed with 'name2' or 'name3' - ignored

This is an illegal function qualifier combination. Functon qualifier

name1 is ignored.

Chapter 55–38
D
IA
G
N
O
S
T
IC
S

E 589 interrupt function must have void result and void parameter list

A function declared with interrupt(n) may not accept any

arguments and may not return anything.

E 590 bank function qualifier allowed in small/large model only (code

>64K)

The bank(n) function qualifier cannot be used in the tiny and medium

memory models. It is only allowed in the small or large memory

model. See also section 3.17, Code Memory Banking.

E 591 conflict in 'name' attribute

The attributes of the current function qualifier declaration and the

previous function qualifier declaration are not the same.

E 592 different 'name' number

The function prototype of an interrupt service routine must have the

same vector number and using numbers as in the function definition.

The same applies to the bank number of a banked function.

W 593 function qualifier used with non-function

A function qualifier can only be used on functions.

E 595 bank function qualifier not allowed with near function

Code memory banking is only useful in the small and large memory

model (code > 64Kb).

W 596 #pragma switch_force_table (-Os) ignored: jump table would

exceed 16K

The jump table does not fit in 16K.

E 597 indirect near call to function "function()" from huge function is

not allowed

near call to run-time library function "function()" from huge

function is not allowed

A huge function may not call any standard C (or run-time) library

function, or any other 'near function' in the first segment.

E 598 invalid number atomic instructions, atomic range is [1..4]

The _atomic intrinsic function only accepts a number in the range

[1..4].

Compiler Diagnostics 5–39

• • • • • • • •

W 599 nothing to restore, no section attributes are saved with #pragma

save_attributes

Pragma restore_attributes was used without a previous pragma

save_attributes .

F 602 corrupt initialized variable: different size between initialized RAM

and ROM section

The initialized RAM and ROM sections must have the same size. This

may be due to a different level of indirection with an assignment.

W 604 possible un-aligned access on byte-label 'name'

Characters are not aligned. Functions and pointers are always aligned.

E 605 _atbit() only possible on objects, not on constant addresses

Use _atbit() to define bit variables within a bitword or sfr
variable with a previously defined name.

E 606 _atbit() only possible for bit/sfrbit objects

Only bit and sfrbit objects can be declared with _atbit() .

E 607 _atbit() only possible on bitword/sfr objects

_atbit() only accepts bitword or sfr objects as an argument.

E 608 specified object not BIT-addressable

The object specified to _atbit() must be a bitword or sfr object.

E 610 sfrbit object can only have _atbit() on sfr object

bit object can only have _atbit() on a bitword object

You cannot specify a sfrbit object with _atbit() on a bitword
object, and you cannot specify a bit object with _atbit() on a sfr
object.

E 611 missing #pragma endasm

You cannot specify a #pragma asm or asm_noflush when inline

assembly is already active. You have to use #pragma endasm first.

E 612 missing #pragma asm

The #pragma endasm was found while inline assembly was not active.

Remove the pragma or insert a #pragma asm.

Chapter 55–40
D
IA
G
N
O
S
T
IC
S

E 613 '(' missing in inline assembly pragma

Check the syntax of the pragma asm/endasm. '(' was expected. See

section 3.10, Inline Assembly, for the correct syntax.

E 614 ')' missing in inline assembly pragma

Check the syntax of the pragma asm/endasm. ')' was expected.

E 615 illegal character 'character' in inline assembly pragma

Check the syntax of the pragma asm/endasm. A '=' or '@' was

expected.

E 616 illegal pseudo register in inline assembly pragma

A pseudo register name has the following synopsis: @[w|b|i]num. See

section 3.10, Inline Assembly, for more information.

E 617 pseudo register "@number" already defined

A pseudo register cannot be defined twice. Use another name or

number.

E 618 illegal variable name in inline assembly pragma

The variable name specified after a pragma asm/endasm is not a valid

identifier.

E 619 "name" undefined in inline assembly pragma

A C variable with the name you specified to a pragma asm/endasm
does not exist. Check if you specified the correct variable name.

E 620 pseudo register "@number" undefined

The pseudo register must first be defined after a pragma asm.

E 621 no registers anymore for "@name"

There were no free registers left to allocat this pseudo register.

E 622 improper use of "bita"/"bitword" in declaration of "name"

The bita keyword is only allowed on structures, unions and integral

types.

W 720 -OZ no longer supported

This version of the compiler no longer supports the -OZ option.

Compiler Diagnostics 5–41

• • • • • • • •

E 724 _at() requires a numerical address

You can only use an expression that evaluates to a numerical address.

E 725 _at() address out of range for this type of object

The absolute address is not present in the specified memory space.

E 726 _at() only valid for global variables

Only global variables can be placed on absolute addresses.

E 727 _at() only allowed on non-initialized variables

Absolute variables cannot be initialized.

W 728 _at() has no effect on external declaration

When declared extern the variable is not allocated by the compiler.

W 729 _at() cannot be used on struct / union members (ignored)

E 730 _at() cannot be used on bit, bita, system, sfr, esfr, xsfr and iram

E 731 _at() this type of object must be word aligned

E 732 _at() address out of range for this memory model

The absolute address does not fit in the specified memory model. You

might want to use a larger memory model.

E 733 bad argument to #pragma cse, expect a number, "suspend" or

"resume"

See the description of pragma cse for more information.

E 734 #pragma cse suspend/resume has no effect outside function

body

Pragma cse suspend/resume has a function scope.

W 735 pointer conversion restricts arithmetic precision and alignment

When a huge pointer is converted to an shuge pointer, it may lead to

incorrect code when the (huge) object it points to crosses a segment

boundary. After the conversion, the compiler assumes that the object is

64Kb at most and won't cross a segment boundary. Both assumptions

may be wrong. A similar problem arises when converting a shuge or

huge pointer to a far pointer. Far objects are limited to 16Kb and never

cross a page boundary.

E 736 function "name" too big (should be <= 64Kb code)

Break the function into smaller ones.

Chapter 55–42
D
IA
G
N
O
S
T
IC
S

E 737 function "name" doesn't fit in section, try -mPR=0,4000

See the description of the -m option for additional information.

W 739 ormask: 0xhexnumber does not fit into andmask: 0xhexnumber

When the set bits in the ormask do not overlap the set bits in the

andmask, these bits might be unintentionally set.

F 740 -schar is invalid suboption

Only 'i' can be used as a suboption. See the description of the -s

option for additional information.

E 744 bad #pragma m166include syntax

An error occured when defining a macro-processor include file.

E 745 no registers left for expression

There were no free registers left to pass expression to a user defined

intrinsic.

W 749 bypass option -BJ can only be used in combination with an

extended instruction set

This warning is generated when bypass option -BJ is enabled and you

did not select the extended instruction set using -x or -xi.

E 750 _atbit() not possible on type: "name"

You cannot use: struct / union members, tags, labels, parameters or

inline function locals as a base symbol to define bits in.

E 752 _localbank qualifier only allowed with interrupt functions

You can only use the _localbank function qualifier in combination

with the _interrupt function qualifier.

W 753 'name' not allowed with 'name1', 'name2' or 'name3' - ignored

For example, the localbank function qualifier cannot be used in

combination with stackparm , bank or using - ignored.

E 754 name function qualifier can only be used in combination with

-x2

The localebank and stacksize qualifiers can only be used with the

C166S V2.0 / Super10 architecture.

Compiler Diagnostics 5–43

• • • • • • • •

E 758 stacksize qualifier only allowed with interrupt functions using a

local register bank

For example the following is not allowed:

 void _interrupt(0x10) _localbank(0) _stacksize(20) ISR(void);

Because _localbank(0) indicates a global register bank.

W 759 stacksize must be even - ignored

The value of the stacksize function qualifier must be even.

W 760 negative stack size adjustment exceeds user stack size

estimation, truncated

Suppose the compiler estimates that the occupied stack space for an

interrupt function is 12 bytes. If ’_stacksize(–14)’ is added to

the function definition, this warning is generated and the value of the

_stacksize qualifier will be adjusted to -12.

W 761 keyword 'name' only allowed in combination with -x2 -

ignored

The used keyword is only valid for the C166S V2.0 / Super10

architecture and will be ignored if this chip is not selected. (Use -x2)

E 762 option -i can only be used in combination with -x2 - ignored

E 763 _cached qualifier only allowed with interrupt functions

W 764 #pragma name only allowed in small memory model with

extended instruction set

E 766 initialized ramdata sections don't support section attributes

E 771 variable argument list not allowed with intrinsic function:

"name()"

W 775 obsolete option -Ff/-FF - floating point library is reentrant by

default

The -Ff / -FF option is no longer needed,

W 781 _at () has no effect on zero sized. object: "%s"

e.g. int a[] _at (0x1234);

Chapter 55–44
D
IA
G
N
O
S
T
IC
S

E 785 _xnear only allowed in medium/large memory model

In the medium/large memory model, the _xnear keyword allows you

to allocate variables in DPP1 which shares this page with the user

stack. In the tiny/small memory model the user stack is located in

_near memory where normal data is also located. Hence this memory

space is already shared. Therefore there is no need for an _xnear

memory space in the tiny/small memory model.

F 787 bad argument in -gso option : argument

The syntax of the -gso option is -gso=file.gso where file.gso is the

name of a .gso file.

E 788 GSO file not generated by 'gso166'

Missing $GSO166 directive in the .gso file.

E 789 GSO file memory model mismatch

$MODEL(modelname) in the .gso file does not match the compiler

memory model.

E 790 - E 849 Reserved for gso166 errors.

E 000 from gso166 maps on compiler error E 790;

E 001 from gso166 maps on compiler error E 791;

etc.

F 850 cannot find object object in GSO file

The name of a global object cannot be found in the .gso file for

automatic storage assignment.

W 851 -T option cannot be used in conjunction with -gso

When you use gso166 for building the application, gso166 will assign

storage to global objects. However, with the -Tsize option the compiler

is not allowed to allocate global objects in _near memory that exceed

the specified size.

6

LIBRARIES
C

H
A

P
T

E
R

Chapter 66–2
L
IB
R
A
R
IE
S

6

C
H

A
P

T
E

R

Libraries 6–3

• • • • • • • •

6.1 INTRODUCTION

c166 comes with libraries per memory model and with header files

containing the appropriate prototype of the library functions. The library

functions are also shipped in source code (C or assembly).

Seven sets of libraries are delivered to meet specific requirements for the

various C166, Gold, C167/ST10x167/ST10x262, C166S v2.0 and Super10

microcontroller architectures. These sets are located in separate directories:

166 The non-protected libraries are the default libraries for the

C166/ST10x166 and similar architectures.

166p The protected libraries provide a software workaround for

CPU functional problems. They must be using in conjunction

with the appropriate -B compiler option. For more details

refer to appendix G: CPU Functional Problems for more

information.

goldp These protected libraries are the default libraries for the Gold

and similar architectures which are based on C166/ST10x166

architectures but feature 24-bit extended addressing instead

of 18-bit. Use these libraries in conjunction with the compiler

option -xm.

ext The extended libraries are needed for the

C167/ST10x167/ST10x262 and similar architectures. These

architectures feature the extended instruction set, extended

special function registers, 24-bit addressing and extended

PEC pointers. Use these libraries in conjunction with the

compiler option -x.

extp The protected libraries provide a software workaround for

CPU functional problems. Use these libraries in conjunction

with the compiler options -x and -B.

ext2 The extended 2 libraries are needed for the C166S v2.0 /

Super10 and similar architectures. These architectures feature

jump prediction, scalable and relocatable interrupt vector

table, local register banks and instruction reordering. Use

these libraries in conjunction with the compiler option -x2.

ext2p The protected libraries provide a software workaround for

CPU functional problems. Use these libraries in conjunction

with the compiler options -x2 and -B.

Chapter 66–4
L
IB
R
A
R
IE
S

Another seven sets of libraries are delivered to meet specific User Stack

Model requirements for the various microcontroller architectures. These

libraries must be used in conjunction with the additional compiler option

-P. These sets are located in separate directories:

u166 The User Stack Model variant of the non-protected libraries.

u166p The User Stack Model variant of the protected libraries.

ugoldp The User Stack Model variant of the protected Gold

architecture libraries.

uext The User Stack Model variant of the extended non-protected

libraries.

uextp The User Stack Model variant of the extended protected

libraries.

uext2 The User Stack Model variant of the extended C166S v2.0 /

Super10 architectures non-protected libraries.

uext2p The User Stack Model variant of the extended C166S v2.0 /

Super10 architectures protected libraries.

Each library set contains the following libraries:

c166?[s].lib C library. The optional [s] stands for single precision floating

point (all floating point arithmetic is in single precision

instead of ANSI double precision).

fp166?[t].lib

Floating point library. The optional [t] stands for trapping

floating point (using boundary checking and the floating

point trap mechanism).

rt166?[s][m].lib

Run-time library. The optional [s] stands for single precision

floating point. The optional [m] stands for MAC optimized

(use MAC instructions in some basic operations for

optimization).

The question mark '?' in these library names must be replaced by a letter

representing the selected memory model:

Libraries 6–5

• • • • • • • •

t tiny

s small

m medium

l large

All C library functions are described in the section C Library Interface
Description. These functions are only called by explicit function calls in

your application program. However, some compiler generated code

contain calls to run-time library functions that would use too much code

when generated as inline code. The name of a run-time library function

always contains two leading underscores. For example, to perform a long

(32 bit) signed division, the function __sdil is called.

Because c166 generates assembly code (and not object code) it adds a

leading underscore to the names of (public) C variables to distinguish

these symbols from 80166 registers. So if you use a function with a leading

underscore, the assembly label for this function contains two leading

underscores. This function name could cause a name conflict (double

defined) with one of the run-time library functions. Therefore, you should

avoid names starting with an underscore. Note that ANSI states that it is

not portable to use names starting with an underscore for public C

variables and functions, because results are implementation defined.

The code sections of the C166 library have the class 'CLIBRARY',

'SHAREDCLIB', 'RTLIBRARY' or 'SHAREDRTLIB' allowing the library to be

allocated in a special memory area via the CLASSES control of l166.

6.2 SMALL, MEDIUM AND LARGE I/O FORMATTERS

The C library contains the SMALL I/O formatter version of the printf() and

scanf() functions and their variants like sprintf(), fprintf(), etc. This SMALL

version does not contain the required functionality to handle precision

specifiers and floating point I/O which can specified in the format

argument of these functions.

The following extra libraries are included to support easy switching

between the three I/O formatter versions:

MEDIUM I/O formatter library no floating point I/O supported

precision specifiers supported fmtio?m.lib.

LARGE I/O formatter library floating point I/O supported precision

specifiers supported fmtio?l[s].lib.

Chapter 66–6
L
IB
R
A
R
IE
S

The question mark '?' in these library names must be replaced by a

character representing the selected memory model:

t tiny

s small

m medium

l large

These I/O formatter libraries are included in all library sets. The control

program options -libfmtiom and -libfmtiol can be used to selected the

MEDIUM and LARGE I/O formatter libraries.

If no cc166 -libfmtio* option is specified on the commandline, then the

SMALL printf()/scanf() formatter variant is linked from the C library.

6.3 SINGLE PRECISION FLOATING POINT

In ANSI C all mathematical functions (<math.h>), are based on double
arguments and double return type. So, even if you are using only float
variables in your code, the language definition dictates promotion to

double , when using the math functions or floating point formatters

(printf() and scanf()). The result is more code and less execution

speed. In fact the ANSI approach introduces a performance penalty.

To improve the code size and execution speed, the compiler now supports

the option -F to force single precision floating point usage. If you use -F,

a float variable passed as an argument is no longer promoted to double
when calling a variable argument function or an old style K&R function,

and the type double is treated as float . It is obvious that this affects the

whole application (including libraries). Therefore special single precision

versions of the floating point libraries are now delivered with the package.

When using -F, these libraries must be used. It is not possible to mix C

modules created with the -F option and C modules which are using the

regular ANSI approach.

For compatibility with the old -F option, the -Fc option is introduced.

This option only treats floating point constants (having no suffix) as float
instead of double .

Libraries 6–7

• • • • • • • •

6.4 USER STACK MODEL

If you use the -P or -Pd option of c166, the compiler does not emit the

regular CALL/RET instructions when calling a C function, but emits code

using a jumping mechanism, specifying the return address on the user

stack. The advantage of this approach is that the system stack is not used

at all. The price paid for this feature is an execution speed penalty.

When using plain user stack model, special libraries are needed to support

this feature. These user stack model libraries are an integral part of this

product. If -Pd was specified at the command line, all calls to the library

use the regular CALL/RET calling convention.

This behavior can also be forced for user defined functions using either

the _usm or _nousm function qualifiers. If _usm is specified at the

function definition, the function is called using user stack model calling

conventions. If _nousm is specified, the function is called using the

generic CALL/RET calling method, even if -P was specified on the

command line.

–P option Libraries Def. func.
qualifier

_USMLIB
macro

none default _nousm _nousm

–P USM _usm _usm

–Pd default _usm _nousm

Table 6-1: User stack model

There are two valid reasons to use this option (and libraries):

• Real-time Operation Systems

When using a real-time kernel, it is often not allowed to use the

system stack area (in fact change SP), because this area is reserved for

the kernel. Therefore, the -P option can be used, when using a kernel.

Please refer to the documentation supplied with the kernel to verify if

this option must be used.

• Heavy recursion

When the system stack area is getting too small and it is not possible to

implement a circular system stack approach (using SOV/SUN exception

handlers), the -P option can be used. In this case the compiler uses the

user stack instead of the system stack. You must link the application

with the user stack model libraries.

Chapter 66–8
L
IB
R
A
R
IE
S

Using -P does not mean that you have to use a kernel. You can run the

application as a standalone application, without any kernel.

6.5 CAN SUPPORT

The Infineon CAN protocol driver software routines including pre-built

CAN libraries are supplied with the 32-bit Windows 95/98/NT version of

this product. The file ap292201.pdf describes the usage of these

libraries. This file is located in the doc/pdf directory.

The can166?.Lib CAN libraries are available for all memory models in the

ext , extp , uext and uextp library sets. These libraries can be rebuilt

using the corresponding makefiles.

6.6 HEADER FILES

The following header files are delivered with the C compiler:

<assert.h> assert

<c166.h> Special file for portability between c166 and other C

compilers. Contains macros to enable or disable the usage of

TASKING C-166 Language extensions.

<canr16x.h>

CAN libraries function prototypes.

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,

isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,

tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<float.h> Constants related to floating point arithmetic.

<limits.h> Limits and sizes of integral types. No C functions.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, fabs, floor, fmod,

frexp, exp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan,

tanh

<reg*.h> Special function register declarations for all supported

derivatives.

Libraries 6–9

• • • • • • • •

<setjmp.h> longjmp, setjmp

<stdarg.h> va_arg, va_end, va_start

<stddef.h> offsetof. Definition of special types.

<stdio.h> clearerr, fclose, feof, ferror, fflush, fgetc, fgets, fopen, fprintf,

fputc, fputs, fread, freopen, fscanf, fwrite, getc, getchar, gets,

_ioread, _iowrite, printf, putc, putchar, puts, scanf, setbuf,

setvbuf, sprintf, sscanf, ungetc, vfprintf, vprintf, vsprintf

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit,

free, labs, ldiv, malloc, qsort, rand, realloc, srand, strtod,

strtol, strtoul

<string.h> memchr, memcmp, memcpffb, memcpffw, memcpfhb,

memcpfhw, memcpfnb, memcpfnw, memcpfsb, memcpfsw,

memcphfb, memcphfw, memcphhb, memcphhw,

memcphnb, memcphnw, memcphsb, memcphsw, memcpnfb,

memcpnfw, memcpnhb, memcpnhw, memcpnnb,

memcpnnw, memcpnsb, memcpnsw, memcpsfb, memcpsfw,

memcpshb, memcpshw, memcpsnb, memcpsnw, memcpssb,

memcpssw, memcpy, memmove, memset, strcat, _fstrcat,

_hstrcat, _sstrcat, strchr, _fstrchr, _hstrchr, _sstrchr, strcmp,

_fstrcmp, _hstrcmp, _sstrcmp, strcpy, _fstrcpy, _hstrcpy,

_sstrcpy, strcspn, _fstrcspn, _hstrcspn, _sstrcspn, strlen,

_fstrlen, _hstrlen, _sstrlen, strncat, _fstrncat, _hstrncat,

_sstrncat, strncmp, _fstrncmp, _hstrncmp, _sstrncmp, strncpy,

_fstrncpy, _hstrncpy, _sstrncpy, strpbrk, _fstrpbrk, _hstrpbrk,

_sstrpbrk, strrchr, _fstrrchr, _hstrrchr, _sstrrchr, strspn,

_fstrspn, _hstrspn, _sstrspn, strstr, _fstrstr, _hstrstr, _sstrstr,

strtok, _fstrtok, _hstrtok, _sstrtok

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime,

_stime, strftime, _time, time, _tzset

<vt100.h> VT100 Terminal Emulation escape sequences for use with the

CrossView Pro FSS feature.

Chapter 66–10
L
IB
R
A
R
IE
S

6.7 C LIBRARY INTERFACE DESCRIPTION

_fstrcat

#include <string.h>
char far *_fstrcat(char far *s, const char far *ct);

Concatenates far string ct to far string s , including the trailing NULL

character.

Returns s

_fstrchr

#include <string.h>
char far *_fstrchr(const char far *cs, int c);

Returns a far pointer to the first occurrence of character c in the

string cs . If not found, NULL is returned.

_fstrcmp

#include <string.h>
int _fstrcmp(const char far *cs,
 const char far *ct);

Compares far string cs to far string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

_fstrcpy

#include <string.h>
char far *_fstrcpy(char far *s, const char far *ct);

Copies far string ct into the far string s , including the trailing NULL

character.

Returns s

Libraries 6–11

• • • • • • • •

_fstrcspn

#include <string.h>
size_t _fstrcspn(const char far *cs,
 const char far *ct);

Returns the length of the prefix in far string cs , consisting of

characters not in the far string ct .

_fstrlen

#include <string.h>
size_t _fstrlen(const char far *cs);

Returns the length of the far string in cs , not counting the NULL

character.

_fstrncat

#include <string.h>
char far *_fstrncat(char far *s,
 const char far *ct,
 size_t n);

Concatenates far string ct to far string s , at most n characters are copied.

Add a trailing NULL character.

Returns s

_fstrncmp

#include <string.h>
int _fstrncmp(const char far *cs,
 const char far *ct,
 size_t n);

Compares at most n bytes of far string cs to far string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

Chapter 66–12
L
IB
R
A
R
IE
S

_fstrncpy

#include <string.h>
char far *_fstrncpy(char far *s,
 const char far *ct,
 size_t n);

Copies far string ct onto the far string s , at most n characters are copied.

Add a trailing NULL character if the string is smaller than n characters.

Returns s

_fstrpbrk

#include <string.h>
char far *_fstrpbrk(const char far *cs,
 const char far *ct);

Returns a far pointer to the first occurrence in cs of any character out

of far string ct . If none are found, NULL is returned.

_fstrrchr

#include <string.h>
char far *_fstrrchr(const char far *cs, int c);

Returns a far pointer to the last occurrence of c in the far string cs . If

not found, NULL is returned.

_fstrspn

#include <string.h>
size_t _fstrspn(const char far *cs,
 const char far *ct);

Returns the length of the prefix in far string cs , consisting of

characters in the far string ct .

Libraries 6–13

• • • • • • • •

_fstrstr

#include <string.h>
char far *_fstrstr(const char far *cs,
 const char far *ct);

Returns a far pointer to the first occurrence of far string ct in the far

string cs . Returns NULL if not found.

_fstrtok

#include <string.h>
char far *_fstrtok(char far *s, const char far *ct);

Search the far string s for tokens delimited by characters from far string

ct . It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

_hstrcat

#include <string.h>
char huge *_hstrcat(char huge *s,
 const char huge *ct);

Concatenates huge string ct to huge string s , including the trailing NULL

character.

Returns s

_hstrchr

#include <string.h>
char huge *_hstrchr(const char huge *cs, int c);

Returns a huge pointer to the first occurrence of character c in the

string cs . If not found, NULL is returned.

Chapter 66–14
L
IB
R
A
R
IE
S

_hstrcmp

#include <string.h>
int _hstrcmp(const char huge *cs,
 const char huge *ct);

Compares huge string cs to huge string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

_hstrcpy

#include <string.h>
char huge *_hstrcpy(char huge *s,
 const char huge *ct);

Copies huge string ct into the huge string s , including the trailing NULL

character.

Returns s

_hstrcspn

#include <string.h>
size_t _hstrcspn(const char huge *cs,
 const char huge *ct);

Returns the length of the prefix in huge string cs , consisting of

characters not in the huge string ct .

_hstrlen

#include <string.h>
size_t _hstrlen(const char huge *cs);

Returns the length of the huge string in cs , not counting the NULL

character.

Libraries 6–15

• • • • • • • •

_hstrncat

#include <string.h>
char huge *_hstrncat(char huge *s,
 const char huge *ct,
 size_t n);

Concatenates huge string ct to huge string s , at most n characters are

copied. Add a trailing NULL character.

Returns s

_hstrncmp

#include <string.h>
int _hstrncmp(const char huge *cs,
 const char huge *ct,
 size_t n);

Compares at most n bytes of huge string cs to huge string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

_hstrncpy

#include <string.h>
char huge *_hstrncpy(char huge *s,
 const char huge *ct,
 size_t n);

Copies huge string ct onto the huge string s , at most n characters are

copied. Add a trailing NULL character if the string is smaller than n
characters.

Returns s

Chapter 66–16
L
IB
R
A
R
IE
S

_hstrpbrk

#include <string.h>
char huge *_hstrpbrk(const char huge *cs,
 const char huge *ct);

Returns a huge pointer to the first occurrence in cs of any character

out of huge string ct . If none are found, NULL is returned.

_hstrrchr

#include <string.h>
char huge *_hstrrchr(const char huge *cs, int c);

Returns a huge pointer to the last occurrence of c in the huge string

cs . If not found, NULL is returned.

_hstrspn

#include <string.h>
size_t _hstrspn(const char huge *cs,
 const char huge *ct);

Returns the length of the prefix in huge string cs , consisting of

characters in the huge string ct .

_hstrstr

#include <string.h>
char huge *_hstrstr(const char huge *cs,
 const char huge *ct);

Returns a huge pointer to the first occurrence of huge string ct in the

huge string cs . Returns NULL if not found.

Libraries 6–17

• • • • • • • •

_hstrtok

#include <string.h>
char huge *_hstrtok(char huge *s,
 const char huge *ct);

Search the huge string s for tokens delimited by characters from huge

string ct . It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

_ioread

#include <stdio.h>
int _ioread(FILE *fp);

Low level input function. The delivered library contains an 'empty'

function. To perform real world I/O, this function must be customized by

the user. _ioread is used by all input functions (scanf, getc, gets, etc.). See

the file serio.c in the examples io directory demonstrating a serial

I/O implementation of this low level input function.

_iowrite

#include <stdio.h>
int _iowrite(FILE *fp, int c);

Low level output function. The delivered library contains an 'empty'

function. To perform real world I/O, this function must be customized by

the user. _iowrite is used by all output functions (printf, putc, puts, etc.).

See the file serio.c in the examples io directory demonstrating a serial

I/O implementation of this low level output function.

_stime

#include <time.h>
void _stime(time_t *s);

Sets the current calendar time.

Returns nothing.

Chapter 66–18
L
IB
R
A
R
IE
S

_sstrcat

#include <string.h>
char shuge *_sstrcat(char shuge *s,
 const char shuge *ct);

Concatenates shuge string ct to shuge string s , including the trailing NULL

character.

Returns s

_sstrchr

#include <string.h>
char shuge *_sstrchr(const char shuge *cs, int c);

Returns a shuge pointer to the first occurrence of character c in the

string cs . If not found, NULL is returned.

_sstrcmp

#include <string.h>
int _sstrcmp(const char shuge *cs,
 const char shuge *ct);

Compares shuge string cs to shuge string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

_sstrcpy

#include <string.h>
char shuge *_sstrcpy(char shuge *s,
 const char shuge *ct);

Copies shuge string ct into the shuge string s , including the trailing NULL

character.

Returns s

Libraries 6–19

• • • • • • • •

_sstrcspn

#include <string.h>
size_t _sstrcspn(const char shuge *cs,
 const char shuge *ct);

Returns the length of the prefix in shuge string cs , consisting of

characters not in the shuge string ct .

_sstrlen

#include <string.h>
size_t _sstrlen(const char shuge *cs);

Returns the length of the shuge string in cs , not counting the NULL

character.

_sstrncat

#include <string.h>
char shuge *_sstrncat(char shuge *s,
 const char shuge *ct,
 size_t n);

Concatenates shuge string ct to shuge string s , at most n characters are

copied. Add a trailing NULL character.

Returns s

_sstrncmp

#include <string.h>
int _sstrncmp(const char shuge *cs,
 const char shuge *ct,
 size_t n);

Compares at most n bytes of shuge string cs to shuge string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

Chapter 66–20
L
IB
R
A
R
IE
S

_sstrncpy

#include <string.h>
char shuge *_sstrncpy(char shuge *s,
 const char shuge *ct,
 size_t n);

Copies shuge string ct onto the shuge string s , at most n characters are

copied. Add a trailing NULL character if the string is smaller than n
characters.

Returns s

_sstrpbrk

#include <string.h>
char shuge *_sstrpbrk(const char shuge *cs,
 const char shuge *ct);

Returns a shuge pointer to the first occurrence in cs of any character

out of shuge string ct . If none are found, NULL is returned.

_sstrrchr

#include <string.h>
char shuge *_sstrrchr(const char shuge *cs, int c);

Returns a shuge pointer to the last occurrence of c in the shuge string

cs . If not found, NULL is returned.

_sstrspn

#include <string.h>
size_t _sstrspn(const char shuge *cs,
 const char shuge *ct);

Returns the length of the prefix in shuge string cs , consisting of

characters in the shuge string ct .

Libraries 6–21

• • • • • • • •

_sstrstr

#include <string.h>
char shuge *_sstrstr(const char shuge *cs,
 const char shuge *ct);

Returns a shuge pointer to the first occurrence of shuge string ct in

the shuge string cs . Returns NULL if not found.

_sstrtok

#include <string.h>
char shuge *_sstrtok(char shuge *s,
 const char shuge *ct);

Search the shuge string s for tokens delimited by characters from shuge

string ct . It terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

_time

#include <time.h>
time_t _time(time_t *pt);

Low-level time function. To perform real-time clock support, you must

customize this function. _time is used by the C library functions clock and

time. See the file time.c in the examples time directory demonstrating

an implementation of this low-level time function.

Returns the processor time used. To determine the time used in

seconds, the value returned must be divided by the value of

the macro TICKS_PER_SEC, as defined in time.h

Chapter 66–22
L
IB
R
A
R
IE
S

_tolower

#include <ctype.h>
int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an

uppercase character.

Returns the converted character.

_toupper

#include <ctype.h>
int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a

lowercase character.

Returns the converted character.

_tzset

#include <time.h>
int _tzset(const char *s);

Converts the widely used time zone format string pointed to by s to tzone

format. That string takes the form EST05EDT, where the number in the

middle counts the hours West of UTC.

Returns one if successful, or zero on error.

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally.

Returns nothing.

Libraries 6–23

• • • • • • • •

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos-1(x) of x in the range [0, π],

x ∈ [-1, 1].

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1993\n\0

Returns the time in string form.

asin

#include <math.h>
double asin(double x);

Returns the arcsine sin-1(x) of x in the range [-π/2, π/2],

x ∈ [-1, 1].

Chapter 66–24
L
IB
R
A
R
IE
S

assert

#include <assert.h>
assert(expr);

When compiled with NDEBUG, this is an empty macro. When compiled

without NDEBUG defined, it checks if 'expr' is true or false. If it is false,

then a line like:

”Assertion failed: expression , file filename , line num”

is printed.

Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan-1(x) of x in the range [-π/2, π/2]. x ∈ [-1,

1].

atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan-1(y/x) in the range [-π, π].

atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.

Returns zero, if program terminates normally.

non-zero, if the registration cannot be made.

Libraries 6–25

• • • • • • • •

atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the integer value.

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the long value.

Chapter 66–26
L
IB
R
A
R
IE
S

bsearch

#include <stdlib.h>
void *bsearch(const void *key,
 const void *base, size_t n,
 size_t size, int (*cmp)
 (const void *, const void *));

This function searches in an array of n members, for the object pointed to

by ptr . The initial base of the array is given by base . The size of each

member is specified by size . The given array must be sorted in ascending

order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL

when not found.

calloc

#include <stdlib.h>
void *calloc(size_t nobj, size_t size);

The allocated space is filled with zeros. The maximum space that can be

allocated can be changed by customizing the heap size (see the section

Heap Size). By default no heap is allocated.

Returns a pointer to space in external memory for nobj items of

size bytes length.

NULL if there is not enough space left.

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x , as a double.

Libraries 6–27

• • • • • • • •

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream .

Returns nothing.

clock

#include <time.h>
clock_t clock(void);

Returns the processor time used in seconds.

cos

#include <math.h>
double cos(double x);

Returns the cosine of x .

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x .

ctime

#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This

function is the same as:

asctime(localtime(tp));

Returns the local time in string form.

Chapter 66–28
L
IB
R
A
R
IE
S

difftime

#include <time.h>
double difftime(time_t time2, time_t time1);

Computes the difference between calendar times.

Returns the result of time2 – time1 in seconds.

div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()' returns with status
as the return value.

Returns zero, on successful termination.

exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function ex.

Libraries 6–29

• • • • • • • •

fabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x . |x|

fclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,

frees any automatically allocated buffer, then closes the stream .

Returns zero if the stream is successfully closed, or EOF on error.

feof

#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is

set.

ferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set.

fflush

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If

stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

Chapter 66–30
L
IB
R
A
R
IE
S

fgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream .

See also "_ioread()".

Returns the read character, or EOF on error.

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n-1 characters from the given stream into the

array s until a newline is found.

See also "_ioread()".

Returns s , or NULL on EOF or error.

floor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x , as a double.

fmod

#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of x/y , with the same sign as x .

If y is zero, the result is implementation-defined.

Libraries 6–31

• • • • • • • •

fopen

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.

fopen needs a heap size of at least 512 bytes.

You can specify the following values for mode:

 "r" read; open text file for reading

 "w" write; create text file for writing; if the file already exists its

contents is discarded

 "a" append; open existing text file or create new text file for

writing at end of file

 "r+" open text file for update; reading and writing

 "w+" create text file for update; previous contents if any is

discarded

 "a+" append; open or create text file for update, writes at end of

file

The update mode (with a '+') allows reading and writing of the same file.

In this mode the function fflush must be called between a read and a write

or vice versa. By including the letter �b" after the initial letter, you can

indicate that the file is a binary file. E.g. "rb" means read binary, "w+b"

means create binary file for update. The filename is limited to

FILENAME_MAX characters. At most FOPEN_MAX files may be open at

once.

fprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Performs a formatted write to the given stream .

See also "printf()" and "_iowrite()".

Chapter 66–32
L
IB
R
A
R
IE
S

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream .

See also "_iowrite()".

Returns EOF on error.

fputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream . The terminating NULL character is not

written.

See also "_iowrite()".

Returns NULL if successful, or EOF on error.

fread

#include <stdio.h>
size_t fread(void *ptr, size_t size,
 size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array

pointed to by ptr .

See also "_ioread()".

Returns the number of successfully read objects.

Libraries 6–33

• • • • • • • •

free

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

allocated by a call to "calloc()", "malloc()" or "realloc()". Otherwise the

behavior is undefined.

See also "calloc()", "malloc()" and "realloc()".

Returns nothing

freopen

#include <stdio.h>
FILE *freopen(const char *filename,
 const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function

is normally used to change the files associated with stdin, stdout, or stderr.

See also "fopen()".

Returns stream , or NULL on error.

frexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is

returned, and a power of 2, which is stored in *exp . If x is zero, both

parts of the result are zero. For example: frexp(4.0, &var) results in

0.5·23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

Chapter 66–34
L
IB
R
A
R
IE
S

fscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream .

See also "scanf()" and "_ioread()".

Returns the number of items converted successfully.

fwrite

#include <stdio.h>
size_t fwrite(const void *ptr,
 size_t size, size_t nobj,
 FILE *stream);

Writes nobj members of size bytes to the given stream from the array

pointed to by ptr .

Returns the number of successfully written objects.

getc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream .

See also "_ioread()".

Returns the character read or EOF on error.

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.

See also "_ioread()".

Libraries 6–35

• • • • • • • •

Returns the character read or EOF on error.

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The

newline is replaced by a NULL-character.

See also "_ioread()".

Returns a pointer to the read string or NULL on error.

gmtime

#include <time.h>
struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not

available.

isalnum

#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when c is an alphabetic character or a

number ([A-Z][a-z][0-9]).

isalpha

#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character

([A-Z][a-z]).

Chapter 66–36
L
IB
R
A
R
IE
S

isascii

#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is

a non-ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non-zero value when c is a control character.

isdigit

#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0-9]).

isgraph

#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.

islower

#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a-z]).

Libraries 6–37

• • • • • • • •

isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.

ispunct

#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when c is a punctuation character (such as

'.', ',', '!', etc.).

isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space,

tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#include <ctype.h>
int isupper(int c);

Returns a non-zero value when c is an uppercase character ([A-Z]).

isxdigit

#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit

([0-9][A-F][a-f]).

Chapter 66–38
L
IB
R
A
R
IE
S

labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
double ldexp(double x, int n);

Returns the result of: x· 2n.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder

are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

localtime

#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

log

#include <math.h>
double log(double x);

Returns the natural logarithm ln(x), x>0 .

Libraries 6–39

• • • • • • • •

log10

#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0 .

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The

function calling the corresponding call to setjmp() may not be terminated

yet. The value of val may not be zero.

Returns nothing.

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be

allocated can be changed by customizing the heap size (see the section

Heap Size). By default no heap is allocated.

Returns a pointer to space in external memory of size bytes length.

NULL if there is not enough space left.

memchr

#include <string.h>
void *memchr(const void *cs, int c, size_t n);

Checks the first n bytes of cs on the occurrence of character c .

Returns NULL when not found, otherwise a pointer to the found

character is returned.

Chapter 66–40
L
IB
R
A
R
IE
S

memcmp

#include <string.h>
int memcmp(const void *cs,
 const void *ct, size_t n);

Compares the first n bytes of cs with the contents of ct .

Returns a value < 0 if cs < ct ,

0 if cs == ct ,

or a value > 0 if cs > ct .

memcpffb

#include <string.h>
void memcpffb(void far *dest,
 void far *src, size_t n);

Copies n bytes from far data pointed by src to far data pointed by dest .

No care is taken if the two objects overlap and page boundaries are not

checked. (0 < n <= 16384)

Returns nothing

memcpffw

#include <string.h>
void memcpffw(void far *dest,
 void far *src, size_t n);

Copies n words from far data pointed by src to far data pointed by dest .

No care is taken if the two objects overlap and page boundaries are not

checked. (0 < n <= 8192)

Returns nothing

Libraries 6–41

• • • • • • • •

memcpfhb

#include <string.h>
void memcpfhb(void huge *dest,
 void far *src, size_t n);

Copies n bytes from far data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 16384)

Returns nothing

memcpfhw

#include <string.h>
void memcpfhw(void huge *dest,
 void far *src, size_t n);

Copies n words from far data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 8192)

Returns nothing

memcpfnb

#include <string.h>
void memcpfnb(void near *dest,
 void far *src, size_t n);

Copies n bytes from far data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap and page boundaries are

not checked. (0 < n <= 16384)

Returns nothing

Chapter 66–42
L
IB
R
A
R
IE
S

memcpfnw

#include <string.h>
void memcpfnw(void near *dest,
 void far *src, size_t n);

Copies n words from far data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap and page boundaries are

not checked. (0 < n <= 8192)

Returns nothing

memcpfsb

#include <string.h>
void memcpfsb(void shuge *dest,
 void far *src, size_t n);

Copies n bytes from far data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 16384)

Returns nothing

memcpfsw

#include <string.h>
void memcpfsw(void shuge *dest,
 void far *src, size_t n);

Copies n words from far data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 8192)

Returns nothing

Libraries 6–43

• • • • • • • •

memcphfb

#include <string.h>
void memcphfb(void far *dest,
 void huge *src, size_t n);

Copies n bytes from huge data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 16384)

Returns nothing

memcphfw

#include <string.h>
void memcphfw(void far *dest,
 void huge *src, size_t n);

Copies n words from huge data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for far data.

(0 < n <= 8192)

Returns nothing

memcphhb

#include <string.h>
void memcphhb(void huge *dest,
 void huge *src, size_t n);

Copies n bytes from huge data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 65535)

Returns nothing

Chapter 66–44
L
IB
R
A
R
IE
S

memcphhw

#include <string.h>
void memcphhw(void huge *dest,
 void huge *src, size_t n);

Copies n words from huge data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 65535)

Returns nothing

memcphnb

#include <string.h>
void memcphnb(void near *dest,
 void huge *src, size_t n);

Copies n bytes from huge data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for near data. (0 < n <= 16384)

Returns nothing

memcphnw

#include <string.h>
void memcphnw(void near *dest,
 void huge *src, size_t n);

Copies n words from huge data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for near data. (0 < n <= 8192)

Returns nothing

Libraries 6–45

• • • • • • • •

memcphsb

#include <string.h>
void memcphsb(void shuge *dest,
 void huge *src, size_t n);

Copies n bytes from huge data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 65535)

Returns nothing

memcphsw

#include <string.h>
void memcphsw(void shuge *dest,
 void huge *src, size_t n);

Copies n words from huge data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 65535)

Returns nothing

memcpnfb

#include <string.h>
void memcpnfb(void far *dest,
 void near *src, size_t n);

Copies n bytes from near data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 16384)

Returns nothing

Chapter 66–46
L
IB
R
A
R
IE
S

memcpnfw

#include <string.h>
void memcpnfw(void far *dest,
 void near *src, size_t n);

Copies n words from near data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 8192)

Returns nothing

memcpnhb

#include <string.h>
void memcpnhb(void huge *dest,
 void near *src, size_t n);

Copies n bytes from near data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for near data. (0 < n <= 16384)

Returns nothing

memcpnhw

#include <string.h>
void memcpnhw(void huge *dest,
 void near *src, size_t n);

Copies n words from near data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for huge data but not checked for near data. (0 < n <= 8192)

Returns nothing

Libraries 6–47

• • • • • • • •

memcpnnb

#include <string.h>
void memcpnnb(void near *dest,
 void near *src, size_t n);

Copies n bytes from near data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap and page boundaries are

not checked. (0 < n <= 16384)

Returns nothing

memcpnnw

#include <string.h>
void memcpnnw(void near *dest,
 void near *src, size_t n);

Copies n words from near data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap and page boundaries are

not checked. (0 < n <= 8192)

Returns nothing

memcpnsb

#include <string.h>
void memcpnsb(void shuge *dest,
 void near *src, size_t n);

Copies n bytes from near data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not for near data. (0 < n <= 16384)

Returns nothing

Chapter 66–48
L
IB
R
A
R
IE
S

memcpnsw

#include <string.h>
void memcpnsw(void shuge *dest,
 void near *src, size_t n);

Copies n words from near data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not for near data. (0 < n <= 8192)

Returns nothing

memcpsfb

#include <string.h>
void memcpsfb(void far *dest,
 void shuge *src, size_t n);

Copies n bytes from shuge data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not checked for far data. (0 < n <= 16384)

Returns nothing

memcpsfw

#include <string.h>
void memcpsfw(void far *dest,
 void shuge *src, size_t n);

Copies n words from shuge data pointed by src to far data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not checked for far data. (0 < n <= 8192)

Returns nothing

Libraries 6–49

• • • • • • • •

memcpshb

#include <string.h>
void memcpshb(void huge *dest,
 void shuge *src, size_t n);

Copies n bytes from shuge data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 16384)

Returns nothing

memcpshw

#include <string.h>
void memcpshw(void huge *dest,
 void shuge *src, size_t n);

Copies n words from shuge data pointed by src to huge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 8192)

Returns nothing

memcpsnb

#include <string.h>
void memcpsnb(void near *dest,
 void shuge *src, size_t n);

Copies n bytes from shuge data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not for near data.

(0 < n <= 16384)

Returns nothing

Chapter 66–50
L
IB
R
A
R
IE
S

memcpsnw

#include <string.h>
void memcpsnw(void near *dest,
 void shuge *src, size_t n);

Copies n words from shuge data pointed by src to near data pointed by

dest . No care is taken if the two objects overlap. Page boundaries are

checked for shuge data but not for near data.

(0 < n <= 8192)

Returns nothing

memcpssb

#include <string.h>
void memcpssb(void shuge *dest,
 void shuge *src, size_t n);

Copies n bytes from shuge data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 16384)

Returns nothing

memcpssw

#include <string.h>
void memcpssw(void shuge *dest,
 void shuge *src, size_t n);

Copies n words from shuge data pointed by src to shuge data pointed by

dest . No care is taken if the two objects overlap.

(0 < n <= 8192)

Returns nothing

Libraries 6–51

• • • • • • • •

memcpy

#include <string.h>
void *memcpy(void *s, const void *ct, size_t n);

Copies n characters from ct to s . No care is taken if the two

objects overlap.

Returns s

memmove

#include <string.h>
void *memmove(void *s, const void *ct, size_t n);

Copies n characters from ct to s . Overlapping objects will be

handled correctly.

Returns s

memset

#include <string.h>
void *memset(void *s, int c, size_t n);

Fills the first n bytes of s with character c .

Returns s

mktime

#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time in seconds, or -1 if it cannot be

represented.

Chapter 66–52
L
IB
R
A
R
IE
S

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x . It

stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
int offsetof(type, member);

Be aware, offsetof() for bit structures/unions may give unpredictable

results. Also the offsetof() of a bitfield is undefined.

Returns the offset for the given member in an object of type.

pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0 , or if x<0 and y is not an integer.

Returns the result of x raised to the power of y : xy.

printf

#include <stdio.h>
int printf(const char *format, ...);

Performs a formatted write to the standard output stream.

See also "_iowrite()".

Returns the number of characters written to the output stream.

Libraries 6–53

• • • • • • • •

The format string may contain plain text mixed with conversion

specifiers. Each conversion specifier should be preceded by a '%'

character. The conversion specifier should be build in order :

- Flags (in any order):

– specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.

+ has higher precedence as space.

space a negative number is preceded with a sign, positive numbers

with a space.

0 specifies padding to the field width with zeros (only for

numbers).

specifies an alternate output form. For o, the first digit will be

zero. For x or X, "0x" and "0X" will be prefixed to the

number. For e, E, f, g, G, the output always contains a

decimal point, trailing zeros are not removed.

- A number specifying a minimum field width. The converted

argument is printed in a field with at least the length specified here.

If the converted argument has fewer characters than specified, it will

be padded at the left side (or at the right when the flag '–' was

specified) with spaces. Padding to numeric fields will be done with

zeros when the flag '0' is also specified (only when padding left).

Instead of a numeric value, also '* ' may be specified, the value is

then taken from the next argument, which is assumed to be of type

int.

- A period. This separates the minimum field width from the

precision.

- A number specifying the maximum length of a string to be printed.

Or the number of digits printed after the decimal point (only for

floating point conversions). Or the minimum number of digits to be

printed for an integer conversion. Instead of a numeric value, also

'* ' may be specified, the value is then taken from the next

argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to

be treated as a short or unsigned short number. 'l' should be used if

the argument is a long integer. 'L' indicates that the argument is a

long double.

Chapter 66–54
L
IB
R
A
R
IE
S

Flags, length specifier, period, precision and length modifier are optional,

the conversion character is not. The conversion character must be one of

the following, if a character following '%' is not in the list, the behavior is

undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase
respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s char *, the characters from the string are printed until
a NULL character is found. When the given precision
is met before, printing will also stop

f double

e, E double

g, G double

n int *, the number of characters written so far is written
into the argument. This should be a pointer to an inte-
ger in default memory. No value is printed.

p pointer

% No argument is converted, a ’%’ is printed.

Table 6-2: Printf conversion characters

The 'p' conversion character can be used to print pointers. In the tiny and

small memory models, pointers will be printed as near pointers by default.

In the medium and large memory models, pointers will be printed as far

pointers by default. By specifying one of the length modifiers 'h', 'l' or 'L',

a pointer will always be printed as near, far or huge respectively.

Libraries 6–55

• • • • • • • •

Because of the large overhead of the printf() function on small programs,

three different versions of the formatter (_doprint.c) are delivered. The

LARGE version is able to print everything as specified above. The

MEDIUM version has no floating point formatting. When a floating point

conversion character is found, errno is filled with the correct error

number, printf stops immediately. The SMALL version does not print

floating point, and does not accept flags, width specifier, period and

precision. This formatter is considerably smaller in code size than the

MEDIUM or LARGE version.

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream.

See also "_iowrite()".

Returns EOF on error.

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

See also "_iowrite()".

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

See also "_iowrite()".

Returns NULL if successful, or EOF on error.

Chapter 66–56
L
IB
R
A
R
IE
S

qsort

#include <stdlib.h>
void qsort(void *base, size_t n,
 size_t size, int (*cmp)
 (const void *, const void *));

This function sorts an array of n members. The initial base of the array is

given by base . The size of each member is specified by size . The given

array is sorted in ascending order, according to the results of the function

pointed to by cmp.

This function is recursive, and therefore may need an increased user stack

section!

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to

RAND_MAX.

realloc

#include <stdlib.h>
void *realloc(void *p, size_t size);

Reallocates the space for the object pointed to by p. The contents of the

object will be the same as before calling realloc(). The maximum space

that can be allocated can be changed by customizing the heap size (see

the section Heap Size). By default no heap is allocated.

Returns NULL and *p is not changed, if there is not enough space for

the new allocation. Otherwise a pointer to the newly

allocated space for the object is returned.

Libraries 6–57

• • • • • • • •

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

See also "_ioread()".

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default

memory) of the type which is specified in the format string.

The format string may contain :

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the

input stream.

- Conversion specifications, starting with a '%' character.

Conversion specifications should be build as follows (in order) :

- A '*', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i , n, o, u and x may be preceded by

'h' if the argument is a pointer to short rather than int , or by 'l'

(letter ell) if the argument is a pointer to long . The conversion

characters e, f , and g may be preceded by 'l' if a pointer double
rather than float is in the argument list, and by 'L' if a pointer to a

long double .

- A conversion specifier. '*', maximum field width and length modifier

are optional, the conversion character is not. The conversion

character must be one of the following, if a character following '%'

is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character

is not. The conversion character must be one of the following, if a

character following '%' is not in the list, the behavior is undefined.

Chapter 66–58
L
IB
R
A
R
IE
S

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is
entered) or hexadecimal (leading ”0x” or ”0X”), or just
decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

s char *, a string of non white space characters. The
argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

f float

e, E float

g, G float

n int *, the number of characters written so far is written
into the argument. No scanning is done.

p pointer; must be entered with 0x– prefix.

[...] Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ’]’
character in the set of scanning characters.

[^...] Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying [^]...] includes the ’]’
character in the set.

% Literal ’%’, no assignment is done.

Table 6-3: Scanf conversion characters

The 'p' conversion character can be used to read pointers. In the tiny and

small memory models, pointers will be read as near pointers by default. In

the medium and large memory models, pointers will be read as far

pointers by default. By specifying one of the length modifiers 'h', 'l' or 'L',

a pointer will always be read as near, far or huge respectively.

Libraries 6–59

• • • • • • • •

Two different version of the formatter (_doscan.c) are delivered. The

LARGE version is able to scan everything as specified above. The SMALL

version has no floating point scanning. When a floating point conversion

character is found, errno is filled with the correct error number, scanf

stops immediately.

Therefore the default formatter installed in the C library is the SMALL

version.

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream , if buf is NULL.

Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ)

Returns nothing.

See also "setvbuf(�)".

setjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjmp(). Calling the function

"longjmp()" using the saved env will restore the current

environment and jump to this place with a non-zero return

value.

See also "longjmp()".

Chapter 66–60
L
IB
R
A
R
IE
S

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
 int mode, size_t size);

Controls buffering for the stream ; this function must be called before

reading or writing. mode can have the following values:

_IOFBF causes full buffering

_IOLBF causes line buffering of text files

_IONBF causes no buffering

 If buf is not NULL, it will be used as a buffer; otherwise a buffer will be

allocated. size determines the buffer size.

Returns zero if successful

a non-zero value for an error.

See also "setbuf(�)".

sin

#include <math.h>
double sin(double x);

Returns the sine of x .

sinh

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x .

Libraries 6–61

• • • • • • • •

sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.

See also "printf()".

sqrt

#include <math.h>
double sqrt(double x);

Returns the square root of x . √x , where x ≥ 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random

numbers to be returned by subsequent calls to srand(). When srand is

called with the same seed value, the sequence of pseudo-random

numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string.

See also "scanf()".

Chapter 66–62
L
IB
R
A
R
IE
S

strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s , including the trailing NULL character.

Returns s

strchr

#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string

cs . If not found, NULL is returned.

strcmp

#include <string.h>
int strcmp(const char *cs, const char *ct);

Compares string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

strcpy

#include <string.h>
char *strcpy(char *s, const char *ct);

Copies string ct into the string s , including the trailing NULL character.

Returns s

Libraries 6–63

• • • • • • • •

strcspn

#include <string.h>
size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

not in the string ct .

strftime

#include <time.h>
size_t strftime(char *s, size_t smax,
 const char *fmt,
 const struct tm *tp);

Formats date and time information from the structure *tp into s according

to the specified format fmt . fmt is analogous to a printf format. Each

%c is replaced as described below:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour, 24-hour clock (00-23)

%I hour, 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year, Sunday as first day of the

week (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year, Monday as first day of the

week (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

Chapter 66–64
L
IB
R
A
R
IE
S

%Z time zone name, if any

%% %

Ordinary characters (including the terminating '\0') are copied into s . No

more than smax characters are placed into s .

Returns the number of characters ('\0' not included), or

zero if more than smax characters where produced.

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in cs , not counting the NULL

character.

strncat

#include <string.h>
char *strncat(char *s, const char *ct, size_t n);

Concatenates string ct to string s , at most n characters are copied. Add a

trailing NULL character.

Returns s

strncmp

#include <string.h>
int strncmp(const char *cs,
 const char *ct, size_t n);

Compares at most n bytes of string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

Libraries 6–65

• • • • • • • •

strncpy

#include <string.h>
char *strncpy(char *s, const char *ct, size_t n);

Copies string ct onto the string s , at most n characters are copied. Add a

trailing NULL character if the string is smaller than n characters.

Returns s

strpbrk

#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in cs of any character out of

string ct . If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs, int c);

Returns a pointer to the last occurrence of c in the string cs . If not

found, NULL is returned.

strspn

#include <string.h>
size_t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs , consisting of characters

in the string ct .

strstr

#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs .

Returns NULL if not found.

Chapter 66–66
L
IB
R
A
R
IE
S

strtod

#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.

Initial white spaces are skipped. When endp is not a NULL pointer, after

this function is called, *endp will point to the first character not used by

the conversion.

Returns the read value.

strtok

#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct . It

terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.

Initial white spaces are skipped. Then a value is read using the given

base . When base is zero, the base is taken as defined for integer

constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

Libraries 6–67

• • • • • • • •

strtoul

#include <stdlib.h>
unsigned long strtoul(const char *s,
 char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned

long integer. Initial white spaces are skipped. Then a value is read using

the given base . When base is zero, the base is taken as defined for

integer constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

tan

#include <math.h>
double tan(double x);

Returns the tangent of x .

tanh

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x .

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp , if tp is not NULL.

Returns the current calendar time in seconds, or -1 if the time is not

available.

Chapter 66–68
L
IB
R
A
R
IE
S

toascii

#include <ctype.h>
int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non-ANSI

function.

Returns the converted value.

tolower

#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

toupper

#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase

character, otherwise c is returned.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

Libraries 6–69

• • • • • • • •

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.

It's return type has the type of the given argument type . A

next call to this macro will return the value of the next

argument.

va_end

#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It

should be called before the function using the macro 'va_start' is

terminated (ANSI specification).

va_start

#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap . After this call, each call to va_arg() will return

the value of the next argument. In our implementation, va_list cannot

contain any bit type variables. Also the given argument lastarg must be

the last non bit type argument in the list.

vfprintf

#include <stdio.h>
int vfprintf(FILE *stream,
 const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()" and "_iowrite()".

Chapter 66–70
L
IB
R
A
R
IE
S

vprintf

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Does a formatted write to standard output. Instead of a variable argument

list as for printf(), this function expects a pointer to the list.

See also "printf()" and "_iowrite()".

vsprintf

#include <stdio.h>
int vsprintf(char *s, const char *format,
 va_list arg);

Does a formatted write a string. Instead of a variable argument list as for

printf(), this function expects a pointer to the list.

See also "printf()" and "_iowrite()".

Libraries 6–71

• • • • • • • •

6.8 CREATING YOUR OWN C LIBRARY

There are several reasons why it is desired to have a specially adapted

C library. Therefore all C sources of all library functions are delivered with

the compiler. These files are placed in the directory lib\src (Windows)

or lib/src (UNIX).

When creating your own library, the order of the objects in the library file

is very important. To know the exact order in which the objects should be

placed in the library, make a list of the order in which the delivered

libraries are made by using the command 'ar166 t c166m.lib ’, for

example.

The easiest method to create your own library is to make a copy of the

existing library (use the library in the same memory model you want to

create) and replace the existing objects in it by your own made objects

with the command 'ar166 crv libname objectname ... ' . This way

the order of the objects in the library will be maintained. At link time you

only have to link the newly made library to your application instead of a

delivered library.

You can rebuild your library with mk166. To use the correct makefile, first

make sure you are in the directory of the library you want to rebuild:

lib\src\ architecture \ library (Windows) or

lib\src\ architecture \ library (UNIX). Use mk166 to rebuild your

library now. (You may want to make a backup copy of the original library

first.)

Chapter 66–72
L
IB
R
A
R
IE
S

7

RUN–TIME
ENVIRONMENT

C
H

A
P

T
E

R

Chapter 77–2
R
U
N
-
T
IM
E

7

C
H

A
P

T
E

R

Run–time Environment 7–3

• • • • • • • •

7.1 STARTUP CODE

When linking (Task Concept) or locating (Flat Interrupt Concept) the

module containing main() which is an object module containing the C

startup code has to be linked to the application. This module, called

start.obj , is included in each C library with a system startup

configuration default for the library it is included in. The compiler

generates a reference to this module when it translates the definition of the

main() function. This reference causes the start.obj to be extracted

from the library by l166.

This file specifies the run-time environment of your C166 application. The

file is delivered in assembly source (start.asm) in the directory

lib/src . The file start.asm includes the file cstart.asm ,

cstartx.asm or cstartx2.asm depending on the selected architecture.

Modifications to these files are not necessary since all parameters can be

manipulated using macro preprocessor symbols.

When you want to control start.asm from within EDE, you first have to

add start.asm to your project: Select the Project | Properties
menu item, activate the Files tab, browse to lib\src\start.asm and

add it to your project. You can specify all your startup settings in the

Startup tab of the CPU Configuration dialog (select the EDE | CPU
Configuration... menu item). You can specify CPU settings in the

same dialog by selecting the EDE | Bus Configuration... menu item

you can select the bus configuration settings that are appropriate. EDE

automatically defines macros according to the selected settings.

When you are not using EDE, you must use m166 before a166 when a

new version of the object file has to be created:

m166 start.asm DEFINE(MODEL, LARGE)
a166 start noprint

You must specify the memory model for the preprocessing phase.

Therefore you have to define the preprocessor symbol MODEL. You can

do this with the m166 command line control DEFINE by defining the

memory model you are using. When preprocessing the startup file,

MODEL is checked to select, skip or include certain pieces of code.

The new start.obj can be supplied to l166 when linking the module

containing main() . l166 will use this object instead of the object from the

library.

Chapter 77–4
R
U
N
-
T
IM
E

There are a number of other preprocessor symbols used, which can be

enabled or disabled using the command line control DEFINE (Syntax:

DEFINE(identifier [, replacement])).

In the startup file the following preprocessor symbols are used (please also

review cstart[x or x2].asm):

EX_AB Must be enabled (set to 1) if the C library function exit() or

abort() is called by the application. Otherwise it must be

cleared (set to 0). Default cleared, because the total code

size is increased, due to assumptions about buffered file I/O,

which must be flushed at exit.

_EXT Must be enabled (set to 1) when an extended architecture

(ext or ext2) needs to be initialized. It must be cleared (set to

0) when a non-extended architecture like the 166 needs to

be initialized.

FLOAT Must be enabled (set to 1) if floating point arithmetic is used

(or floating point C library functions called) by the

application. Otherwise it must be cleared (set to 0). Default

set.

BIT_INIT Must be enabled (set to 1) if initialized bit variables (bit b
= 1;) are used, so the initialization is done at startup.

Non-initialized bit variables are always set to 0. Default set to

0, because initialized bit variables are very seldom used and

rather expensive in both ROM space and execution time

during startup. Therefore, if possible, initialized bit variables

should be avoided.

NOBITCLEAR

When set, skips clearing of the bitaddressable RAM.

EVA Must be enabled (set to 1) when using the ROM/RAM

monitor on evaluation boards as execution environment.

Needed to force the tiny model to execute with the CPU

segmentation enabled and to prevent the startup code to

clear the bit-addressable area, which contains monitor data.

It also starts the application with interrupts enabled and

provides CrossView Pro with information about the

configuration when the C167 is used. Default enabled.

Run–time Environment 7–5

• • • • • • • •

_CPU Must be set when one of the following directories is used:

165-UTAH (165Utah), 167CS-40 (167CS40), SDA6000

(sda6000). Set the _CPU symbol to the appropriate value

mentioned between brackets. If none of these derivatives is

used then _CPU does not need to be set.

_USRSTACK

Must be enabled (set to 1) to support the user stack model.

Default disabled. See section User Stack Model for more

details.

CALLINIT Can be set to a function to be called before main . This

function may not have any return value and may not have

any arguments. This function can be used, for example, to

initialize the serial port before main is called. This is useful

for building benchmark programs without making any

modifications to the original source.

CALLEINIT Can be set to a function to be called before the EINIT

instruction is executed, but after register initialization. Like

the CALLINIT function, it may not have a return value or any

arguments.

SSKENABLE

If set, intializes the system stack for C166S v2.0 / Super10

architectures using a modifiable SYSSTACK system.

__SSKSIZE Determines the stack size in bytes on C166S v2.0 / Super10

architectures.

__SSKSEG Determines the segment where the system stack is positioned

on C166S v2.0 / Super10 architectures.

In the startup file a code section named __CSTART_PR is declared. In this

code section the task procedure __CSTART is declared, using interrupt

number 0, which is the power-on vector of the processor.

First the system is configured using a macro for each configuration item:

wait states, read/write signal delay, system clock output, segmentation

control, system stack size etc. You must specify these values using the

appropiate macros, depending on the specific needs of your target system.

Please review the appropriate startup file for an exact overview of

initialized registers and macros used.

Chapter 77–6
R
U
N
-
T
IM
E

The system stack registers (overflow, underflow and stack pointer) are

initialized using the predefined symbols ?SYSSTACK_BOTTOM and

?SYSSTACK_TOP. The assembler, linker and locator treat predefined

symbols (all starting with a '?') in a special way. They give the assembler

programmer access to information which is normally not available before

the locate stage of the application.

After the context pointer register is set to the register bank of this task,

write output is enabled and the 'end-of-initialization' instruction (EINIT) is

executed.

All bit addressable memory is cleared, because this guarantees all non

initialized bit variables of each task to have the value of 0.

The startup code also takes care of initialized static/public C variables of

each task, residing in the different RAM areas (not const or #pragma
romdata). All these initialized variables are allocated in both a ROM and

RAM section for each category (bit, near, far, huge). See the section

Initialized Variables for more details. The startup code copies the initial

values of initialized C variables for the whole application (all tasks in the

Task Concept) from ROM to RAM using a table (in the global C166_INIT

section), which has been built by the compiler. The predefined symbol

?C166_INIT_HEAD contains the start address of the table.

In ANSI-C all non-initialized static/public C variables must have the initial

value of 0. Non-initialized bit variables are already cleared by previous

code. Therefore, the startup code clears the non-initialized non-bit

variables of the whole application (all tasks in the Task Concept) using a

table (in the global C166_BSS section), which has been built by the

compiler (unless the -Ob option has been used). The predefined symbol

?C166_BSS_HEAD contains the start address of the table. See the section

Non-Initialized Variables for more information.

Finally, the DPP registers are initialized, depending on the memory model

used. DPP0 to DPP2 are initialized accordingly. The predefined symbols

?BASE_DPP0 to ?BASE_DPP2 are used to initialize DPP0 to DPP2.

Last but not least, the user stack pointer is initialized using the predefined

symbol ?USRSTACK_TOP.

When everything described above has been executed, your C application

is called, using the public label _main, which has been generated by c166

for the C function main() . When the C application 'returns', which is not

likely to happen in an embedded environment, you can specify if the

program uses the function exit() , abort() or atexit() .

Run–time Environment 7–7

• • • • • • • •

At the assembly label __EXIT, the system stack pointer, the user stack

pointer and the floating point stack (if floats are used) are restored and the

program performs an endless loop setting the CPU in power down mode

(IDLE instruction).

Chapter 77–8
R
U
N
-
T
IM
E

7.2 STACK SIZE

c166 maintains two types of stack: the system stack and the user stack.

The system stack is used for return addresses (CALL/RET instructions) and

can be accessed via PUSH/POP instructions (using the SP register).

Because the system stack is very small (internal memory for the

C166/ST10), c166 tries to avoid it as much as possible. Code generator

temporaries are pushed on the user stack. Via the -Ou option it is even

possible to let a task switch (interrupt) use the user stack instead of the

system stack. As described above, you must specify the size of the system

stack size in the system startup code (SYSCON register), which is the

system stack size for all tasks (the whole application).

For the C166S v2.0 / Super10 architectures, the system stack size is

determined by specifying a SYSSTACK section of the required size and

using the SSKDEF 7 directive option. The locator can relocate this section.

Use the preprocessor macros SSKENABLE, __SSKSEG and __SSKSIZE to

determine the correct system stack.

If -P is used, the system stack is not used at all. See section User Stack
Model for details.

The user stack is the so-called 'C stack'. c166 uses R0 as 'User Stack

Pointer' and the [-R0]/[R0+] addressing modes perform push/pop

sequences. If data paging is used (medium and large memory model), the

user stack is limited to 16K (one page). In these models, c166 uses DPP1

as 'user-stack page number'. The locator combines the user stack areas of

each task to one global user stack area (with cumulated size). A context

switch inherits the user stack pointer (R0) value in the new register bank

and DPP1 remains unchanged.

c166 estimates the needed user stack size for each C module by adding

the stack sizes of each function to each other. This amount of bytes is

allocated in the data section called C166_US (see section Section
Allocation). However, in most cases this is too big, because not all

functions are active simultaneously. In other cases, the size will be too

small, e.g. when recursive functions are present (note that qsort() is

implemented as a recursive function).

You can modify the user stack size using the SECSIZE control of the

locator.

Run–time Environment 7–9

• • • • • • • •

R0

stack pointer

framesize

temporary
storage

pushed register

automatics

pushed register
parameters

conventional
parameters

conventional

automatics
stacksize

adjust

double precision

return value

Figure 7-1: Stack diagram

Example:

l166 task t1.lno SECSIZE(C166_US(–50))
task t2.lno SECSIZE(C166_US(–10))
TO applic.out

7.3 HEAP SIZE

The heap is only needed when dynamic memory management library

functions are used: malloc() , calloc() , free() and realloc() . The

heap is allocated by the linker for each task in a special (public) section

called ?C166_HEAP with the class name ?CHEAP having a default size of 0

bytes. If you are using one of the memory allocation functions listed above

in a certain task, you must change the heap size for that task using the

HEAPSIZE control at link stage.

Chapter 77–10
R
U
N
-
T
IM
E

When the Flat Interrupt Concept is used the link stage is skipped and the

locator generates the ?C166_HEAP section when it is needed. You can use

the HEAPSIZE control for changing the heap size at locate stage. The

dynamic memory management library functions are not reentrant, because

they use static data for the memory management. This means that when

the memory management functions are used, it is not possible to interrupt

them with an interrupt function which also uses the memory management

functions. If reentrancy is needed with memory management functions,

you should use the Task Concept where each interrupt can have its own

memory management.

In tiny and small model the ?C166_HEAP section has the section type

'LDAT' allowing a total heap size up to 64K. Because paging is not used

(except for the small SND variant, a linear 16 bit pointer is returned), the

maximum amount of memory asked for is not limited to a page (16K).

In medium and large model the ?C166_HEAP section has the section type

'HDAT' allowing a total heap size greater then 64K. However, in these

models paging is used: a far pointer is returned. This means that you

cannot allocate (dynamically) a single buffer greater then one page (16K).

Of course you can allocate the whole heap in pieces of (approximately)

16K. In these models, you should use memory allocation with great care,

because the paging approach may introduce 'fragmentation' of the heap.

For example, if you allocate two times 9K of memory, the second request

does not fit in the same page as the first 9K. So 9K will be allocated in the

next page, introducing a gap of approximately 7K, which only will be

used for requests fitting in 7K.

7.4 ASSEMBLY LANGUAGE INTERFACING

Assembly language functions can be called from C-166 and vice versa.

The names used by c166 are case sensitive, so you must specify a166 to

act case sensitive too, using the $CASE control. c166 adds an underscore

for the name of public C variables, to distinguish these names from the

80166 registers. So, any names used or defined in C-166 must have a

leading underscore in assembly code.

Run–time Environment 7–11

• • • • • • • •

In the section Register Usage of the chapter Language Implementation, the

registers used for return values of functions are explained. Note that R0 is

used as user stack pointer and must be used in the assembly function

accordingly. If fast parameter passing is used with this assembly function

or functions called by this assembly function, R12 to R15 can not be used

as scratch registers. Note that if you want to use one of the registers R6 to

R9, you must save it on the user stack at entry and restore at exit, because

this register might contain a C register variable of another C function.

Registers R1-R5, R10 and R11 are free.

In the section Function Parameters of the chapter Language
Implementation is described how parameter passing is supported by c166.

If you do not want parameter passing in registers (e.g. existing assembly

function expecting parameters on the user stack) you must use the

keyword stackparm (as function qualifier) in the full C prototype of the

assembly language function. The quickest (and most reliable) way to make

an assembly language function, which must conform to C-166, is to make

the body of this function in C, and compile this module. If the assembly

function must return something, specify the return type in the 'assembler

function' using C syntax, and let it return something. If parameters are

used, force code generation for accessing these parameters with a dummy

statement (e.g. an assignment):

int stackparm
assem(char c, int i)
{

return(c + i);
}

Now compile this module, using the correct memory model. The compiler

makes the correct frame, and you can edit the generated assembly

module, to make the real assembly function inside this frame.

A second method to create an interface to assembly is to use inline

assembly in C. Assembly lines in the C source must be introduced by a

'#pragma asm', the end is indicated by a '#pragma endasm'.

For example:

Chapter 77–12
R
U
N
-
T
IM
E

int
inline(char c, int i)
{

int j = i – c;

if (j > 5)
{

#pragma asm
NOP ; do something in assembly

#pragma endasm
j = 0;

}
return (j);

}

If the inserted assembly code does not change any registers, like in the

example above, also '#pragma asm_noflush' may be used instead of

'#pragma asm'. The advantage of this pragma is that the peephole buffer is

not flushed, so the compiler will emit a JMPR instructions instead of a

JMPA instruction for the condition above. Note that the inserted assembly

is NOT interpreted, so code size reported is only the code generated for C

statements. The disadvantage of the '#pragma asm_noflush' is that the

distance checking for relative jumps becomes your responsibility !

Note that the compiler also does NOT recognize inline CALL instructions.

If a function does not call any other function from C, it is treated like a

'leaf' function, so parameter registers of this function are not saved on the

user stack at function entry. If a 'leaf' function calls another function using

inline assembly, it is your responsibility to preserve the parameter registers

(if any) of this 'leaf' function.

A

FLEXIBLE LICENSE
MANAGER (FLEXlm)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Globetrotter Software's Flexible License Manager

and how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Software Installation.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

on UNIX, the directory /usr/local/flexlm will contain two

subdirectories, bin and licenses . After installing SW000098 on Windows

the directory c:\flexlm will contain the subdirectory bin . The exact

location may differ if FLEXlm has already been installed as part of a

non-TASKING product but in general there will be a directory for

executables such as bin . That directory must contain a copy of the

Tasking daemon shipped with every TASKING product. It also contains

the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a license file must be present containing the information of all

licenses. This file is usually called license.dat . The default location of

the license file is in directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX. If you did install SW000098

then the licenses directory on UNIX will be empty, and on Windows

the file license.dat will be empty. In that case you can copy the

license.dat file from the product to the licenses directory after filling

in the data from your "License Information Form".

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

Appendix AA–6
F
L
E
X
L
M

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If the pathname of the resulting license file differs from this default

location then you must set the environment variable LM_LICENSE_FILE to

the correct pathname. If you have more than one product using the

FLEXlm license manager you can specify multiple license files by

separating each pathname (lfpath) with a ';' (on UNIX also ':') :

Windows:

set LM_LICENSE_FILE= lfpath[;lfpath]...

UNIX:

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If you are running the TASKING software on multiple nodes, you have

three options for making your license file available on all the machines:

1. Place the license file in a partition which is available (via NFS on Unix

systems) to all nodes in the network that need the license file.

2. Copy the license file to all of the nodes where it is needed.

3. Set LM_LICENSE_FILE to "port@host", where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/license.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/flexlm/Tasking.opt (UNIX), then

you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexlm/Tasking.opt

Appendix AA–8
F
L
E
X
L
M

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

3 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmcksum

Prints license checksums.

lmdiag (Windows only)

Diagnoses license checkout problems.

lmdown

Gracefully shuts down all license daemons (both lmgrd all vendor

daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

lmgrd

The main daemon program for FLEXlm.

lmhostid

Reports the hostid of a system.

lmremove

Removes a single user's license for a specified feature.

lmreread

Causes the license daemon to reread the license file and start any new

vendor daemons.

lmstat

Helps you monitor the status of all network licensing activities.

lmswitchr

Switches the report log file.

lmver

Reports the FLEXlm version of a library or binary file.

lmtools (Windows only)

This is a graphical Windows version of the license administration tools.

Appendix AA–10
F
L
E
X
L
M

3.1 LMCKSUM

Name

lmcksum - print license checksums

Synopsis

lmcksum [-c license_file] [-k]

Description

The lmcksum program will perform a checksum of a license file. This is

useful to verify data entry errors at your location. lmcksum will print a

line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

• hostid on the SERVER lines

• daemon name on the DAEMON lines

• feature name, version, daemon name, expiration date, # of licenses,

encription code, vendor string and hostid on the FEATURE lines

• daemon name and encryption code on FEATURESET lines

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmcksum looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmcksum looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,

lmcksum will compute the checksum using the exact case of

the FEATURE's and FEATURESET's encryption code.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3.2 LMDIAG (Windows only)

Name

lmdiag - diagnose license checkout problems

Synopsis

lmdiag [-c license_file] [-n] [feature]

Description

lmdiag (Windows only) allows you to diagnose problems when you

cannot check out a license.

If no feature is specified, lmdiag will operate on all features in the license

file(s) in your path. lmdiag will first print information about the license,

then attempt to check out each license. If the checkout succeeds, lmdiag

will indicate this. If the checkout fails, lmdiag will give you the reason for

the failure. If the checkout fails because lmdiag cannot connect to the

license server, then you have the option of running "extended connection

diagnostics".

These extended diagnostics attempt to connect to each port on the license

server node, and can detect if the port number in the license file is

incorrect. lmdiag will indicate each port number that is listening, and if it

is an lmgrd process, lmdiag will indicate this as well. If lmdiag finds the

vendor daemon for the feature being tested, then it will indicate the

correct port number for the license file to correct the problem.

Parameters

feature Diagnose this feature only.

Options

-c license_file
Diagnose the specified license_file. If no -c option is

specified, lmdiag looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdiag looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-n Run in non-interactive mode; lmdiag will not prompt for

any input in this mode. In this mode, extended connection

diagnostics are not available.

Appendix AA–12
F
L
E
X
L
M

3.3 LMDOWN

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. You may want to protect the execution of lmdown, since shutting

down the servers causes users to lose their licenses. See the -p option in

Section 3.4, lmgrd.

lmdown sends a message to every license daemon asking it to shut down.

The license daemons write out their last messages to the log file, close the

file, and exit. All licenses which have been given out by those daemons

will be revoked, so that the next time a client program goes to verify his

license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd, lmstat, lmreread

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

3.4 LMGRD

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-2 -p] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features. On UNIX systems, it

is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-2 -p Restricts usage of lmdown, lmreread, and lmremove to a

FLEXlm administrator who is by default root. If there is a

UNIX group called "lmadmin" then use is restricted to only

members of that group. If root is not a member of this group,

then root does not have permission to use any of the above

utilities.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

Appendix AA–14
F
L
E
X
L
M

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown, lmstat

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

3.5 LMHOSTID

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1999 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–16
F
L
E
X
L
M

3.6 LMREMOVE

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

lmstat

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

3.7 LMREREAD

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

The license administrator may want to protect the execution of lmreread.

See the -p option in Section 3.4, lmgrd for details about securing access to

lmreread.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You cannot use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down (lmdown) the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file license.dat in the default location.

lmdown

Appendix AA–18
F
L
E
X
L
M

3.8 LMSTAT

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Options

-a Display all information.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd

Appendix AA–20
F
L
E
X
L
M

3.9 LMSWITCHR (Windows only)

Name

lmswitchr - switch the report log file

Synopsis

lmswitchr [-c license_file] feature new-file

or:

lmswitchr [-c license_file] vendor new-file

Description

lmswitchr (Windows only) switches the report writer (REPORTLOG) log

file. It will also start a new REPORTLOG file if one does not already exist.

Parameters

feature Any feature this daemon supports.

vendor The name of the vendor daemon (such as Tasking).

new-file New file path.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmswitchr looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmswitchr looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

3.10 LMVER

Name

lmver - report the FLEXlm version of a library or binary file

Synopsis

lmver filename

Description

The lmver utility reports the FLEXlm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to

get the FLEXlm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

Appendix AA–22
F
L
E
X
L
M

3.11 LICENSE ADMINISTRATION TOOLS FOR WINDOWS

3.11.1 LMTOOLS FOR WINDOWS

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is

provided. It has the same functionality as listed in the previous sections

but is graphically-oriented. Simply run the program (Start | Programs
| TASKING FLEXlm | FLEXlm Tools) and choose a button for the

functionality required. Refer to the previous sections for information about

the options of each feature. The command line interface is replaced by

pop-up dialogs that can be filled out.The central EDIT field is where the

license file path is placed. This will be used for all other functions and

replaces the "-c license_file" argument in the other utilities.

The HOSTID button displays the hostid's for the computer on which the

program is running. The TIME button prints out the system's internal time

settings, intended to diagnose any time zone problems. The TCP
Settings button is intended to fix a bug in the Microsoft TCP protocol

stack which has a symptom of very slow connections to computers. After

pressing this button, the system will need to be rebooted for the settings to

become effective.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

3.11.2 FLEXLM LICENSE MANAGER FOR WINDOWS

lmgrd.exe can be run manually or using the graphical Windows tool. You

can start this tool from the FLEXlm program folder. Click on Start |
Programs | TASKING FLEXlm | FLEXlm Tools

From the Control tab you can start, stop, and check the status of your

license server. Select the Setup tab to enter information about your

license server.

Appendix AA–24
F
L
E
X
L
M

Select the Control tab and click the Start button to start your license

server. lmgrd.exe will be launched as a background application with the

license file and debug log file locations passed as parameters.

If you want lmgrd.exe to start automatically on NT, select the Use NT
Services check box and lmgrd.exe will be installed as an NT service.

Next, select the Start Server at Power–UP check box.

The Licenses tab provides information about the license file and the

Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–26
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–28
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–29

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–30
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–31

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–32
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–33

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–34
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license key is incorrect. If this is the case then there must be an error

message in the log file of lmgrd. Correct the key using the license data

sheet for the product. Finally rerun lmreread. The log file of lmgrd is

usually specified to lmgrd at startup with the -l option or with >.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–35

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–36
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

Flexible License Manager (FLEXlm) A–37

• • • • • • • •

6 FREQUENTLY ASKED QUESTIONS (FAQS)

6.1 LICENSE FILE QUESTIONS

I've received FLEXlm license files from 2 different companies. Do I

have to combine them?

You don't have to combine license files. Each license file that has any

'counted' lines (the 'number of licenses' field is >0) requires a server. It's

perfectly OK to have any number of separate license files, with different

lmgrd server processes supporting each file. Moreover, since lmgrd is a

lightweight process, for sites without system administrators, this is often

the simplest (and therefore recommended) way to proceed. With v6+

lmgrd/lmdown/lmreread, you can stop/reread/restart a single vendor

daemon (of any FLEXlm version). This makes combining licenses more

attractive than previously. Also, if the application is v6+, using 'dir/*.lic' for

license file management behaves like combining licenses without

physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine

license files to ease administration of FLEXlm licenses. It's purely a matter

of preference.

Does FLEXlm handle dates in the year 2000 and beyond?

Yes. The FLEXlm date format uses a 4-digit year. Dates in the 20th century

(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of

this feature is quite widespread. Dates in the year 2000 and beyond must

specify all 4 year digits.

6.2 FLEXLM VERSION

Which FLEXlm versions does TASKING deliver?

For Windows we deliver FLEXlm v6.1 and for UNIX we deliver v2.4.

Appendix AA–38
F
L
E
X
L
M

I have products from several companies at various FLEXlm version

levels. Do I have to worry about how these versions work together?

If you're not combining license files from different vendors, the simplest

thing to do is make sure you use the tools (especially lmgrd) that are

shipped by each vendor.

lmgrd will always correctly support older versions of vendor daemons

and applications, so it's always safe to use the latest version of lmgrd and

the other FLEXlm utilities. If you've combined license files from 2 vendors,

you must use the latest version of lmgrd.

If you've received 2 versions of a product from the same vendor, you must

use the latest vendor daemon they sent you. An older vendor daemon

with a newer client will cause communication errors.

Please ignore letters appended to FLEXlm versions, i.e., v2.4d. The

appended letter indicates a patch, and does NOT indicate any

compatibility differences. In particular, some elements of FLEXlm didn't

require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b

vendor daemon.

I've received a new copy of a product from a vendor, and it uses a new

version of FLEXlm. Is my old license file still valid?

Yes. Older FLEXlm license files are always valid with newer versions of

FLEXlm.

6.3 WINDOWS QUESTIONS

What Windows Host Platforms can be used as a server for Floating

Licenses?

The system being used as the server (where the FLEXlm License Manager

is running) for Floating licenses, must be Windows NT. The FLEXlm

License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to

provide connectivity with a Netware License server.

Flexible License Manager (FLEXlm) A–39

• • • • • • • •

6.4 TASKING QUESTIONS

How will the TASKING licensing/pricing model change with License

Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can

purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a
specific system. It cannot be
moved to another system.

The pricing for this
license will be the
current product pricing.

Floating This license requires a network
(license server and a TCP/IP (or
IPX/SPX) connection between
clients and server) and can be used
on any host system (using the
same operating system) in the
network.

The pricing for this
license will be 50%
higher than the node
locked license.

How does FLEXlm affect future product ordering?

For all licenses, node locked or floating, you must provide information

that is used to create a license key. For node locked licenses we must

have the HOST ID. Floating licenses require the HOST ID and HOST

NAME. The HOST ID is a unique identification of the machine, which is

based upon different hardware depending upon host platform. The HOST

NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the

HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display

the HOST ID so a customer can easily obtain this information. This utility

is available from our web site, placed on all product CDs (which support

FLEXlm), and from technical support. If you have already installed

FLEXlm, you can also use lmhostid.

• In the case of a Node locked license, it is important that the customer

runs this utility on the exact machine he intends to run the

TASKING tools on.

Appendix AA–40
F
L
E
X
L
M

• In the case of a Floating License, the tkhostid.exe (or lmhostid)

utility should be run on the machine on which the FLEXlm license

manager will be installed, e.g. the server. The HOST NAME

information can be obtained from within the Windows Control

Panel. Select "Network", click on "Identification", look for

"Computer name".

How will the �locking" mechanism work?

• For node locked licenses, FLEXlm will first search for an ethernet card.

If one exists, it will lock onto the number of the ethernet card. If an

ethernet card does not exist, FLEXlm will lock onto the hard disk serial

number.

• For floating licenses, the ethernet card number will be used.

What happens if I try to move my node locked license to another

system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license

from the license server. The license server keeps track of the number of

licenses already issued, and grants or denies the request. When the

software has finished running, the license is kept by the license server for

a period of time known as the �linger-time". If the same user requests the

TASKING product again within the linger-time, he is granted the license

again. If another user requests a license during the linger-time, his

request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is

5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)

than the time specified by TASKING.

What happens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due

to a system crash or to move from one system to another system. You will

then need to work with your local sales representative to obtain a

permanent new license key.

Flexible License Manager (FLEXlm) A–41

• • • • • • • •

6.5 USING FLEXLM FOR FLOATING LICENSES

Does FLEXlm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the

internet. This can be limited with the 'INTERNET=' attribute on the

FEATURE line, which limits access to a range of internet addresses. You

can also use the INCLUDE and EXCLUDE options in the daemon option

file to allow (or deny) access to clients running on a range of internet

addresses.

Does FLEXlm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.

FLEXlm v5 lmgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client's whole system crashes. Assuming communications is

TCP, the license is automatically freed immediately. If communications are

UDP, then the license is freed after the UDP timeout, which is set by each

vendor, but defaults to 45 minutes. UDP communications is normally only

set by the end-user, so TCP should be assumed. If the whole system

crashes, then the license is not freed, and you should use 'lmremove' to

free the license.

What happens when the license server dies?

FLEXlm applications send periodic heartbeats to the server to discover if it

has died. What happens when the server dies is then up to the application.

Some will simply continue periodically attempting to re-checkout the

license when the server comes back up. Some will attempt to re-checkout

a license a few times, and then, presumably with some warning, exit.

Some GUI applications will present pop-ups to the user periodically

letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it's in use, it's because lmgrd is already running on

the port - or was recently killed, and the port isn't freed yet. Assuming this

is not the case, then use 'telnet host port' - if it says "can't connect", it's a
free port.

Appendix AA–42
F
L
E
X
L
M

Does FLEXlm require root permissions?

No. There is no part of FLEXlm, lmgrd, vendor daemon or application,

that requires root permissions. In fact, it is strongly recommended that you

do not run the license server (lmgrd) as root, since root processes can

introduce security risks.

If lmgrd must be started from the root user (for example, in a system boot

script), we recommend that you use the 'su' command to run lmgrd as a

non-privileged user:

su username –c” / path / lmgrd –c / path / license.dat \
 –l / path / log”

where username is a non-privileged user, and path is the correct paths to

lmgrd, license.dat and debug log file. You will have to ensure that the

vendor daemons listed in /path-to-license/license.dat have execute

permissions for username. The paths to all the vendor daemons in the

license file are listed on each DAEMON line.

Is it ok to run lmgrd as 'root' (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on

UNIX, as it may pose a security risk to the Operating System. Therefore,

we recommend that lmgrd be run as a non-privileged user (not 'root'). If

you are starting lmgrd from a boot script, we recommend that you use

su username –c”umask 022; / path / lmgrd \
 –c / path / license.dat –l / path / log”

to run lmgrd as a non-privileged user.

Does FLEXlm licensing impose a heavy load on the network?

No, but partly this depends on the application, and end-user's use. A

typical checkout request requires 5 messages and responses between

client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.

When an application, or lmstat, requests the list of current users, this can

significantly increase the amount of networking FLEXlm uses, depending

on the number of current users. Also, prior to FLEXlm v5, use of

'port@host' can increase network load, since the license file is

down-loaded from the server to the client. 'port@host' should be, if

possible, limited to small license files (say < 50 features). In v5, 'port@host'

actually improves performance.

Flexible License Manager (FLEXlm) A–43

• • • • • • • •

Does FLEXlm work with NFS?

Yes. FLEXlm has no direct interaction with NFS. FLEXlm uses an

NFS-mounted file like any other application.

Does FLEXlm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXlm. FLEXlm requires TCP/IP or

SPX (Novell Netware). So long as TCP/IP works, FLEXlm will work.

Does FLEXlm work with subnets, fully-qualified names, multiple

domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a

license server and a client are located in different domains, fully-qualified

host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the 'hostname'

command or 'uname -n') domain is the internet domain name, e.g.

'globes.com'.

To ensure success with FLEXlm across domains, do the following:

1. Make the sure the fully-qualified hostname is the name on the SERVER

line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet'

to that fully-qualified hostname. For example, if the host is locally called

'speedy', and the domain name is 'corp.com', local systems will be able to

logon to speedy via 'telnet speedy'. But very often, 'telnet

speedy.corp.com' will fail, locally.

Note that this telnet command will always succeed on hosts in other

domains (assuming everything is configured correctly), since the network

will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias' for speedy so it's also known locally as

speedy.corp.com. This alias is added to the /etc/hosts file, or if

NIS/Yellow Pages are being used, then it will have to be added to the NIS

database. This requirement goes away in version 3.0 of FLEXlm.

If all components (application, lmgrd and vendor daemon) are v6.0 or

higher, no aliases are required; the only requirement is that the

fully-qualified domain name, or IP-address, is used as a hostname on the

SERVER, or as a hostname in LM_LICENSE_FILE port@host, or @host.

Appendix AA–44
F
L
E
X
L
M

Does FLEXlm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause

FLEXlm to fail. In v5 of FLEXlm, NIS and DNS can be avoided to solve this

problem. In particular, sometimes DNS is configured for a server that's not

current available (e.g., a dial-up connection from a PC). Again, if DNS is

configured, but the server is not available, FLEXlm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that

applications be linked dynamically to support NIS or DNS. If a vendor

links statically, this can cause the application to fail at a site that uses NIS

or DNS. In these situations, the vendor will have to relink, or recompile

with v5 FLEXlm. Vendors are strongly encouraged to use dynamic libraries

for libc and networking libraries, since this tends to improve quality in

general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is

usually because the system is configured for a dial-up DNS server which is

not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not

legal hostnames, although PCs will allow you to enter them, and they will

not work with DNS.

We're using FLEXlm over a wide-area network. What can we do to

improve performance?

FLEXlm network traffic should be minimized. With the most common uses

of FLEXlm, traffic is negligible. In particular, checkout, checkin and

heartbeats use very little networking traffic. There are two items, however,

which can send considerably more data and should be avoided or used

sparingly:

• 'lmstat -a' should be used sparingly. 'lmstat -a' should not be

used more than, say, once every 15 minutes, and should be

particularly avoided when there's a lot of features, or concurrent

users, and therefore a lot of data to transmit; say, more than 20

concurrent users or features.

• Prior to FLEXlm v5, the 'port@host' mode of the LM_LICENSE_FILE

environment variable should be avoided, especially when the

license file has many features, or there are a lot of license files

included in LM_LICENSE_FILE. The license file information is sent

via the network, and can place a heavy load. Failures due to

'port@host' will generate the error LM_SERVNOREADLIC (-61).

B

MISRA C
A
P
P
E
N
D
IX

Appendix BB–2
M

IS
R

A
 C

B

A
P
P
E
N
D
IX

MISRA C B–3

• • • • • • • •

Supported and unsupported MISRA C rules

1. no language extensions shall be used

* 2. other languages should only be used with an interface standard

3. inline assembly is only allowed in dedicated C functions

* 4. provision should be made for appropriate run-time checking

5. only use characters defined by the C standard

* 6. character values shall be restricted to a subset of ISO 106460-1

7. trigraphs shall not be used

8. multibyte characters and wide string literals shall not be used

9. comments shall not be nested

* 10. sections of code should not be "commented out"

11. identifiers shall not rely on significance of more than 31 characters

12. the same identifier shall not be used in multiple name spaces

13. specific-length typedefs should be used instead of the basic types

14. use 'unsigned char' or 'signed char' instead of plain 'char'

* 15. floating point implementations should comply with a standard

* 16. the bit representation of floating point numbers shall not be used

17. typedef names should not be reused

* 18. numeric constants should be suffixed to indicate type

19. octal constants (other than zero) shall not be used

20. all object and function identifiers shall be declared before use

21. identifiers shall not hide identifiers in an outer scope

22. declarations should be at function scope where possible ("static
variable")

* 23. all declarations at file scope should be static where possible

24. identifiers shall not have both internal and external linkage

Appendix BB–4
M

IS
R

A
 C

* 25. identifiers with external linkage shall have exactly one definition

26. multiple declarations for objects or functions shall be compatible

* 27. external objects should not be declared in more than one file

28. the 'register' storage class specifier should not be used

29. the use of a tag shall agree with its declaration

30. all automatics shall be initialized before being used

31. braces shall be used in the initialization of arrays and structures

32. only the first, or all enumeration constants may be initialized

33. the right hand side of && or || shall not contain side effects

34. the operands of a logical && or || shall be primary expressions

35. assignment operators shall not be used in Boolean expressions

* 36. logical operators should not be confused with bitwise operators

37. bitwise operations shall not be performed on signed integers

38. a shift count shall be between 0 and the operand width minus 1

39. the unary minus shall not be applied to an unsigned expression

40. 'sizeof' should not be used on expressions with side effects

* 41. the implementation of integer division should be documented

42. the comma operator shall only be used in a 'for' condition

43. don't use implicit conversions which may result in information loss

44. redundant explicit casts should not be used

45. type casting from any type to/from pointers shall not be used

46. the value of an expression shall be evaluation order independent

* 47. no dependence should be placed on operator precedence rules

* 48. mixed arithmetic should use explicit casting

* 49. tests of a (non-Boolean) value against 0 should be made explicit

MISRA C B–5

• • • • • • • •

50. F.P. variables shall not be tested for exact equality or inequality

* 51. constant unsigned integer expressions should not wrap-around

52. there shall be no unreachable code

53. all non-null statements shall have a side-effect

54. a null statement shall only occur on a line by itself

55. labels should not be used

56. the 'goto' statement shall not be used

57. the 'continue' statement shall not be used

58. the 'break' statement shall not be used (except in a 'switch')

59. an 'if' or loop body shall always be enclosed in braces

60. all 'if', 'else if' constructs should contain a final 'else'

61. every non-empty 'case' clause shall be terminated with a 'break'

62. all 'switch' statements should contain a final 'default' case

63. a 'switch' expression should not represent a Boolean case

64. every 'switch' shall have at least one 'case'

65. floating point variables shall not be used as loop counters

* 66. a "for" should only contain expressions concerning loop control

* 67. iterator variables should not be modified in a "for" loop

68. functions shall always be declared at file scope

69. functions with variable number of arguments shall not be used

70. functions shall not call themselves

71. function prototypes shall be visible at the definition and call

72. the function prototype of the declaration shall match the definition

73. identifiers shall be given for all prototype parameters or for none

74. parameter identifiers shall be identical for declaration/definition

Appendix BB–6
M

IS
R

A
 C

75. every function shall have an explicit return type

76. functions with no parameters shall have a 'void' parameter list

* 77. an actual parameter type shall be compatible with the prototype

78. the number of actual parameters shall match the prototype

79. the values returned by 'void' functions shall not be used

80. void expressions shall not be passed as function parameters

* 81. "const" should be used for reference parameters not modified

82. a function should have a single point of exit

83. every exit point shall have a 'return' of the declared return type

84. for 'void' functions, 'return' shall not have an expression

85. function calls with no parameters should have empty parentheses

* 86 if a function returns error information, it should be tested

87 #include shall only be preceded by another directives or

comments

88 non-standard characters shall not occur in #include directives

89 #include shall be followed by either <filename> or "filename"

90 plain macros shall only be used for constants/qualifiers/specifiers

91 macros shall not be defined/undefined within a block

92 '#undef' should not be used

* 93 a function should be used in preference to a function-like macro

94 a function-like macro shall not be used without all arguments

* 95 macro arguments shall not contain pre-preprocessing directives

96 macro definitions/parameters should be enclosed in parentheses

97 don't use undefined identifiers in pre-processing directives

98 a macro definition shall contain at most one # or ## operator

MISRA C B–7

• • • • • • • •

* 99 all uses of the #pragma directive shall be documented

100 'defined' shall only be used in one of the two standard forms

101 pointer arithmetic should not be used

102 no more than 2 levels of pointer indirection should be used

* 103 no relational operators between pointers to different objects

104 non-constant pointers to functions shall not be used

105 functions assigned to the same pointer shall be of indentical type

106 an automatic address may not be assigned to a longer lived object

* 107 the null pointer shall not be de-referenced

* 108 all struct/union members shall be fully specified

* 109 overlapping variable storage shall not be used

* 110 unions shall not be used to access the sub-parts of larger types

111 bit fields shall have type 'unsigned int' or 'signed int'

112 bit fields of type 'signed int' shall be at least 2 bits long

113 all struct/union members shall be named

114 reserved and standard library names shall not be redefined

115 standard library function names shall not be reused

* 116 production libraries shall comply with the MISRA C restriction

* 117 the validity of library function parameters shall be checked

118 dynamic heap memory allocation shall not be used

119 'errno' should not be used

120 the macro 'offsetof()' shall not be used

121 <locale.h> and the 'setlocale' function shall not be used

122 the 'setjmp' and 'longjmp' functions shall not be used

123 the signal handling facilities of <signal.h> shall not be used

Appendix BB–8
M

IS
R

A
 C

124 the <stdio.h> library shall not be used in production code

125 the functions atof/atoi/atol shall not be used

126 the functions abort/exit/getenv/system shall not be used

127 the time handling functions of library <time.h> shall not be used

* = Not supported by the TASKING C166 C-compiler

C

USING CROSSVIEW
PRO FOR
EVALUATION
BOARDS

A
P
P
E
N
D
IX

Appendix CC–2
E

V
A

L
U

A
T

IO
N

 B
O

A
R

D
S

C

A
P
P
E
N
D
IX

Using CrossView Pro for Evaluation Boards C–3

• • • • • • • •

When using an evaluation board, a monitor will be run from the memory

where your application is loaded and running. You should use the l166

RESERVE MEMORY locator control to prevent the locator from locating

sections in the memory areas in use by the monitor. For example:

RESERVE MEMORY(0FD00h to 0FD4Bh)

Please see the CrossView user's manual which areas are in use by the

monitor that is used for your evaluation board.

In the start.asm file, the @EVA symbol must be enabled (set to 1).

When using a ROM monitor with a dual vector table, the vector table of

your application should be located at the memory location where the

monitor expects it to be. Use the l166 VECTAB locator control to supply

the vector table start location to the locator. For example:

VECTAB(08000h)

Please refer to the CrossView user's manual for the required vector table

location for the board and monitor that you use.

When using this dual vector table ROM monitor, you must also supply the

-sstartaddress option to the ieee166 IEEE-695 object formatter. The

startaddress should be address where you located the vector table with the

VECTAB control. This address will be generated in the absolute file.

CrossView will start execution at this address after a program reset.

Appendix CC–4
E

V
A

L
U

A
T

IO
N

 B
O

A
R

D
S

D

USING KONTRON
DEBUGGERS

A
P
P
E
N
D
IX

Appendix DD–2
K
O
N
T
R
O
N

D

A
P
P
E
N
D
IX

Using Kontron Debuggers D–3

• • • • • • • •

When using Kontron debuggers, the following operation remarks exist:

• Use the TASKING ieee166 converter program to generate an

IEEE-695 output file from the absolute (located) output file. The

Kontron KSE695 filter program is needed to translate this

IEEE-695 file into Kontron object and symbol files.

• You can use the compiler option -g to generate debug information

for use by Kontron debuggers. Versions of KSE695 previous to v4.3

(04) may require using the compiler option -gb. The -gb option

prevents c166 from emitting 'bit', 'bitfield' and '80166 pointer

behavior' high level language information.

• The KSE695 command line option '-t t -x .' must be used when

converting IEEE-695 format to Kontron format.

-t t = Specify TASKING c166 IEEE-695 format.

-x = Preserve filename and extension information found in the

IEEE-695 file.

• Kontron debuggers supports all high level language debug

information generated by c166.

• Kontron debuggers support debugging of TASKING a166 assembly

files at the source code level. You can use the Kontron LINE166

utility before preprocessing source with TASKING m166 or

assembling with a166.

The LINE166 utility has the following command line syntax:

LINE166 inputfile outputfile

where, inputfile is the file you would normally process with the TASKING

macro preprocessor or assembler and outputfile is the instrumented output

file. This output file is the file you must use for preprocessing/assembly.

The input and output filename must differ.

Batch file when TASKING m166 used Batch file when m166 not used

@echo off @echo off
rem RELINE1.BAT rem RELINE2.BAT
line166 %1.asm %1.a66 line166 %1.asm %1.a66
if errorlevel 1 goto end if errorlevel 1 goto end
m166 %1.a66 a166 %1.a66 debug
if errorlevel 1 goto end if errorlevel 1 goto end
del %1.a66 del %1.a66
a166 %1.src debug :end
if errorlevel 1 goto end
del %1.src
:end

Appendix DD–4
K
O
N
T
R
O
N

To use these batch files, simply enter either

reline1 asmfile

or,

reline2 asmfile

use asmfile without a file extension.

E

USING HITEX HITOP
A

P
P

E
N

D
IX

Appendix EE–2
H

IT
E

X
 H

IT
O

P

E

A
P

P
E

N
D

IX

Using Hitex HiTOP E–3

• • • • • • • •

1 USING TELEMON 80C166

When using the Hitex telemon 80C166 execution environment, the

following operation remarks exist:

• The following resources are used by the monitor:

07000h - 08000h monitor data

0FCF0h - 0FD00h register bank

0FA00h - 0FA40h system stack

You should use the l166 RESERVE MEMORY locator control to prevent the

locator from locating sections in these regions.

For example:

RE(ME(07000hTO 08000h),
ME(0FCF0hTO 0FD00h))

cstart[x or l].asm uses SSKDEF 0 (256 words) by default and

initializes SP to the top of the system stack (0FBFF). So there is no conflict

with the system stack area of the monitor.

• In the start.asm file, the @EVA symbol must be enabled (set to 1).

• The TASKING ieee166 converter must be used to generate an

IEEE-695 output file from the absolute (located) output file. The Hitex

sp166ta symbolic preprocessor for Tasking 80166 is needed to convert

this IEEE-695 file into Hitex format.

If you want to convert files based on C++ source code, you must use

the switch -PEext -where ext is the extension of the C++ source files-

to display the C++ source code in the HiTOP List Window. For

example, for sources with extension .cpp , use -PEcpp.

• Register automatics/parameters are not supported by HiTOP.

• Bit variables, bitword variables and bit fields are not supported by

HiTOP, but not when using HiTOP with a telemon.

Appendix EE–4
H

IT
E

X
 H

IT
O

P

2 USING TELEMON 80C16A

When using the Hitex telemon 80C16A execution environment, the

following operation remarks exist:

• The following resources are used by the monitor:

0 - 221h monitor vector table

10222h - 193A9h monitor

0FCE0h - 0FCFFh register bank

0FA00h - 0FA3Fh system stack

You should use the l166 RESERVE MEMORY locator control to prevent the

locator from locating sections in these regions.

For example:

RE(ME(0TO 221h),
ME(10222hTO 193A9h),
ME(0FCE0hTO 0FCFFh))

cstart[x or l].asm uses SSKDEF 0 (256 words) by default and

initializes SP to the top of the system stack (0FBFF). So there is no conflict

with the system stack area of the monitor.

• In the start.asm file, the @EVA symbol must be enabled (set to 1).

• The TASKING ieee166 converter must be used to generate an

IEEE-695 output file from the absolute (located) output file. Use the

Hitex sp166ta symbol preprocessor for Tasking 80166 to convert this

IEEE-695 file into Hitex format.

If you want to convert a file based on C++ source code, use the switch

-PEext -where ext is the extension of the C++ source- to display the

C++ source code in the HiTOP List Window. For example, to display

C++ sources of the pattern module.cpp , use -PEcpp.

• Bit variables, bitword variables and bit fields are supported by HiTOP,

but not when using HiTOP with a telemon.

Using Hitex HiTOP E–5

• • • • • • • •

3 USING TELEMON 80C167

When using the Hitex telemon 80C167 execution environment, the

following operation remarks exist:

• The following resources are used by the monitor:

00000h - 079FFh monitor code

40000h - 401FFh monitor vector table

40200h - 415FFh monitor data

0FCE0h - 0FCFFh register bank

0FA00h - 0FA3Fh system stack

You should use the l166 RESERVE MEMORY locator control to prevent the

locator from locating sections in these regions.

For example:

RE(ME(00000hTO 079FFh),
ME(40000hTO 401FFh),
ME(40200hTO 415FFh),
ME(0FCE0hTO 0FCFFh))

cstart[x orl].asm uses SSKDEF 0 (256 words) by default and

initializes SP to the top of the system stack (0FBFF). So there is no conflict

with the system stack area of the monitor.

• In the start.asm file, the @EVA symbol must be enabled (set to 1).

• The TASKING ieee166 converter must be used to generate an

IEEE-695 output file from the absolute (located) output file. The Hitex

SP166TA filter program is needed to translate this IEEE-695 file into

Hitex format.

• Bit variables, bitword variables and bit fields are supported by HiTOP,

but not when using HiTOP with a telemon.

Appendix EE–6
H

IT
E

X
 H

IT
O

P

F

USING PLS
FAST–VIEW66

A
P
P
E
N
D
IX

Appendix FF–2
F
A
S
T
-
V
IE
W
6
6

F

A
P
P
E
N
D
IX

Using pls fast–view66 F–3

• • • • • • • •

When using the fast-view66 debugger, the following operation remarks

exist:

• Use the -g compiler option to generate debug information for use

with fast-view66.

• Fast-view66 supports all C/C++ language debug information

generated by c166/cp166.

• You can use the absolute output file format (locator output file) for

download to the C166/ST10 target hardware.

Appendix FF–4
F
A
S
T
-
V
IE
W
6
6

G

CPU FUNCTIONAL
PROBLEMS

A
P

P
E

N
D

IX

Appendix GG–2
C

P
U

 P
R

O
B

L
E

M
S G

A
P

P
E

N
D

IX

CPU Functional Problems G–3

• • • • • • • •

1 INTRODUCTION

Infineon Components regularly publishes microcontroller errata sheets for

reporting both functional problems and deviations from the electrical and

timing specifications.

For some of these functional problems in the microcontroller itself,

TASKING's C166 compiler can provide workarounds. In fact these are

software workarounds for hardware problems.

This appendix lists a summary of functional problems which can be

bypassed by the compiler tool kit.

Please refer to the Infineon errata sheets for the CPU step you are using, to

verify if you need to use one of these bypasses.

Appendix GG–4
C

P
U

 P
R

O
B

L
E

M
S

2 CPU FUNCTIONAL PROBLEM BYPASSES

Protecting multiply and divide against interrupts

Infineon reference: CPU.18

Use compiler option:

-BM

Use libraries:

lib\[u]166p*.lib
lib\[u]extp*.lib
lib\[u]ext2p*.lib

This solution should be used where failures occur for interrupts during the

MUL, MULU, DIV, DIVU, DIVL and DIVLU instructions:

- For C166 derivatives, the compiler option -BM emits code using

run-time library calls for the multiply and divide operations. In

these run-time library calls, the operations are protected against

interrupts, so that the problems cannot occur.

- For ext and ext2 derivatives, multiply and divide operations are

protected inline using ATOMIC instructions. In some cases, an

additional NOP might be generated after the multiply or divide

instruction. When you want to use the inline protection, you should

use both the compiler options -x[i] and -BM.

-BM is a workaround for many MUL/DIV problems. Besides CPU.18 it

fixes problem 7, problem 13, problem 17, CPU.2 and CPU.11.

When using the -BM option you should also link libraries in which the

multiply and divide operations are protected.

CPU Functional Problems G–5

• • • • • • • •

Protecting divide only against interrupts

Infineon reference: Problem 13

Use compiler option:

-BD

Use libraries:

lib\[u]166p*.lib
lib\[u]extp*.lib
lib\[u]ext2p*.lib
lib\[u]goldp*.lib

This solution should be used where failures occur for interrupts during the

DIV, DIVL, DIVU and DIVLU instructions:

- For the GOLD chip, the compiler option -BD emits code using

run-time library calls for the divide operations. In these run-time

library calls, the operations are protected against interrupts, so that

the problem cannot occur.

- For ext and ext2 derivatives, divide operations are protected inline

using the ATOMIC instruction. In some cases, an additional NOP

instruction might be generated after the divide instruction. When

you want to use the inline protection of divide instructions, you

should use both the compiler options -x[i] and -BD.

When using the -BD option you should also link libraries in which the

divide operations are protected. The libraries in the directory lib\goldp
have this protection. The libraries in the directories lib\166p , lib\extp
and lib\ext2p also have the multiply protected against interrupts, but

can be used safely to bypass this CPU problem.

Appendix GG–6
C

P
U

 P
R

O
B

L
E

M
S

Protecting multiply operations only against interrupts

Infineon reference: CPU.11

Use compiler option:

-BU

Use libraries:

lib\[u]166p*.lib
lib\[u]extp*.lib
lib\[u]ext2p*.lib

This solution should be used where failures occur for interrupts during the

MUL and MULU instructions:

- For C166 derivatives, the compiler option -BU emits code using

run-time library calls for the multiply operations. In these run-time

library calls, the operations are protected against interrupts, so that

the problem cannot occur.

- For ext and ext2 derivatives, multiply operations are protected inline

using ATOMIC instructions. In some cases, an additional NOP might

be generated after the multiply instruction. When you want to use

the inline protection, you should use both the compiler options

-x[i] and -BU.

When using the -BU option you should also link libraries in which the

divide operations are protected. The libraries in the directories lib\166p ,

lib\extp and lib\ext2p also have the divide protected against

interrupts, but can be used safely to bypass this CPU problem.

CPU Functional Problems G–7

• • • • • • • •

Uninterruptable RETI

Infineon reference: Problem 17

Use compiler option:

-BI

Use libraries:

no solution in libraries required

When a multiply instruction has been interrupted, it may be completed

incorrectly after return from interrupt if a higher priority interrupt or

hardware trap is generated while the RETI instruction is executed. This

problem does not occur with PEC transfers.

In this case the previously mentioned workaround can be used, but at the

price of an increased worst case interrupt response time.

To avoid having to use the previous workaround, the problem can be

bypassed by an adaption in the interrupt frame code (file intrpt.c in the

c subdirectory of the examples directory).

In this file the RETI instruction is preceded by a BFLDH PSW, #0F0h,

#0F0H instruction, when the compiler bypass option -BI is used. This will

cause an interrupted multiplication or division to be correctly completed

after RETI before a higher priority interrupt will be acknowledged.

Appendix GG–8
C

P
U

 P
R

O
B

L
E

M
S

Generate two NOP instructions after Byte Write instructions

Infineon reference: Problem S1

Use compiler option:

-BB

Use libraries:

lib\[u]166p*.lib

This problem occurs on older steps of the FLASH EPROM version of the

CPU. With the -BB option the compiler generates two NOP instructions

after each instruction which does a byte write operation. These

instructions are: ADDB, ADDCB, ANDB, CPLB, MOVB, NEGB, ORB,

SUBB, SUBCB, XORB. The pragma fix_byte_write and nofix_byte_write

can be used to switch this option on the fly in your source code. To

reduce the number of NOP instructions to be generated, the disassembler

d166 can be used to detect where for the CPU erroneous sequences are

generated.

See the description of the disassembler in the Utilities chapter of the

C166/ST10 Assembler, Linker/Locator, Utilities User's Guide for more

information.

Extend EXTEND sequences with one instruction

Infineon reference: CPU.3

Use compiler option:

-BE

Use libraries:

lib\[u]extp*.lib

On older C167 derivatives the last instruction in an extend sequence will

use a DPP translation instead of the page or segment number supplied

with the extend instruction (EXTxx). This problem occurs only when the

last instruction of this extend instruction uses the addressing mode Rn,

[Rm+#data16]. When you use the -BE compiler option the compiler will

lengthen the extend sequence with one instruction when it generates an

instruction using this addressing mode.

CPU Functional Problems G–9

• • • • • • • •

Prevent generation of MOVB [Rn], mem for 'const' objects

Infineon reference: CPU.16

Use compiler option:

-BF

Use libraries:

lib\[u]166p*.lib
lib\[u]extp*.lib
lib\[u]goldp*.lib

When the MOVB[Rn],mem instruction is executed, where (a) mem

specifies a direct 16-bit byte operand address in the internal ROM/Flash

memory, and (b) [Rn] points to an even byte address, while the contents of

the word which includes the byte addressed by mem is odd, or [Rn] points

to an odd byte address, while the contents of the word which includes the

bytes addressed by mem is even, the following problem occurs:

1. when [Rn] points to external memory or to the X-Peripheral (XRAM,

CAN, etc.) address space, the data value which is written back is always

00h.

2. when [Rn] points to the internal RAM or SFR/ESFR address space, (a)

the (correct) data value [mem] is written to [Rn]+1, i.e. to the odd byte

address of the selected word in case [Rn] points to an even byte

address, (b) the (correct) data value [mem] is written to [Rn]-1, i.e. to

the even byte address of the selected word in case [Rn] points to an

odd byte address.

Since internal ROM/Flash/OTP data is referred to as 'const' data, the

compiler will prevent generating the MOVB [Rn], mem instruction when

even 'const' objects are accessed. The compiler is unaware of the exact

location of these objects which is determined at locate time.

Appendix GG–10
C

P
U

 P
R

O
B

L
E

M
S

Disable generation of MOV (B) Rn, [Rm+#data16] instruction

Infineon reference: CPU1R006

Use compiler option:

-BO

Use libraries:

lib\[u]extp*.lib

The opcode MOV (B) Rn, [Rm+#data16] can cause the CPU to hang. The

problem is encountered under the following conditions:

• [Rm+#data16] is used to address the source operand

• [Rm+#data16] points to the program memory

• a hold cycle has to be generated by the ir_ready signal at the

beginning of the operand fetch cycle

Since the compiler is unaware of the actual location the source operand

[Rm+#data16] refers to, the generation of this addressing mode is

completely surpressed.

CPU Functional Problems G–11

• • • • • • • •

Project JMPS instructions by ATOMIC #2 instruction

STMicroelectronics reference: ST_BUS.1

Use compiler option:

-BJ

Use libraries:

lib\[u]extp*.lib

When a JMPS instruction is followed by a PEC transfer, the generated PEC

source address is false. This results in an incorrect PEC transfer.

The compiler prevents the JMPS instruction from interfering with the PEC

transfers by inserting an ATOMIC #2 instruction before a JMPS instruction.

This bypass option can only be used in combination with the extended

instuction set. Further more, all JMPS instructions in the interrupt vector

table are replaced by CALLS instructions. The compiler will generate an

ADD SP, #04h instruction in the interrupt frame to delete the return

address generated by the CALLS instruction from the system stack.

The assembler contains the $CHECKSTBUS1 control to check for this CPU

problem.

The instruction to delete the return address from the system stack is part of

the interrupt frame and will NOT be generated if #pragma noframe was

used.

Signed Divisions may produce erroneous results in case of

interruption

Infineon reference: Problem 13

Use compiler option:

-BD (-BM can also be used)

Use libraries:

lib\[u]166p*.lib
lib\[u]extp*.lib
lib\[u]ext2p*.lib
lib\[u]goldp*.lib

Appendix GG–12
C

P
U

 P
R

O
B

L
E

M
S

Signed divide operations may produce incorrect results when an interrupt

(PEC, standard interrupt or hardware trap) occurs during an execution of

the DIV or DIVL instuction. Note that this bug will not occur for unsigned

divisions. When the -BD option is used the compiler will disable

interrupts during a signed division. When the -BM option is used all

multiply and divide instructions will be protected against interrupts. This

bypasses several other CPU problems as well.

Protect DIVx/MD[LH] sequences by ATOMIC instruction

Infineon / STMicroelectronics reference: LONDON 1751

Use compiler option:

-BA

Use libraries:

lib\[u]ext2p*.lib

In the following situation:

DIVU R12
ADD R13, R14
...
MOV MSW, will destroy the division
...
MOV R13,MDH
,.

CPU Functional Problems G–13

• • • • • • • •

Protect JMPI / CALLI instruction by ATOMIC instruction

Infineon / STMicroelectronics reference: LONDON1

Use compiler option:

-BL

Use libraries:

lib\[u]ext2p*.lib

Description:

JMPI

When the program hits a breakpoint right before a JMPI instruction, the

first instruction injected in the pipeline will not be processed by the core.

This leads to a deny of all interrupts and OCE injection requests. The

problem may also occur when single stepping right before a JMPI

instruction.

CALLI

CALLI instruction is not working properly in some cases if it is followed by

an injected interrupt. This results in causing a fault in the stack pointer

management.

Disable generation of JMPR instruction at jump target address

Infineon / STMicroelectronics reference: BUS.18

Use compiler option:

-BH

Use libraries:

lib\[u]ext2p*.lib

If a PEC transfer occurs immediately after a JMPR instuction the program

counter can have a wrong value. There are many other requirements

before this actually happens, among others the JMPR has to be reached by

a jump instruction.

Appendix GG–14
C

P
U

 P
R

O
B

L
E

M
S

Disable generation of unprotected BFLDL/BFLDH instructions

Infineon / STMicroelectronics reference: CPU.21

Use compiler option:

-BK

Use libraries:

lib\[u]extp*.lib

The result of a BFLDL/BFLDH instruction may be incorrect after a write to

internal RAM. This only happens under very specific circumstances.

Avoid CoSTORE pipeline problem

STMicroelectronics reference: Kfm_BR03

Use compiler option:

-BN

Use libraries:

lib\[u]extp*.lib

After a CoSTORE instruction with any destiniation (E)SFR, the (E)SFR

cannot be read.

Wrong SP used if RETS, RETI or RETP follows an SP modifying

instruction

Infineon (preliminary) reference: CR105685

Use compiler option:

-BZc166sv1sp

Use libraries:

lib\[u]extp*.lib

Between an SP modifying instruction and a RETS, RETI or RETP instruction

at least two instructions are needed.

CPU Functional Problems G–15

• • • • • • • •

Wrong CP used if a GPR using instruction follows a CP modifying

instruction

Infineon (preliminary) reference: CR105840

Use compiler option:

-BZc166sv1cp

Use libraries:

lib\[u]extp*.lib

In many cases two NOPS are needed between a CP modifying instruction

and a GPR using instruction.

Interrupted division corrupted by division in ISR

Infineon (preliminary) reference: CR105893

 Use compiler option:

-BZc166sv1div

Use libraries:

lib\[u]extp*.lib

The results of an interrupted division are corrupt if the division is

interrupted by an interrupt that uses a division instruction as well.

Appendix GG–16
C

P
U

 P
R

O
B

L
E

M
S

H

USER STACK MODEL
LIBRARY SUPPORT

A
P

P
E

N
D

IX

Appendix HH–2
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

H

A
P

P
E

N
D

IX

User Stack Model Library Support H–3

• • • • • • • •

1 INTRODUCTION

This appendix describes the special coding methods used in the libraries

and C166/ST10 C compiler to support a special stack frame. This appendix

describes a user stack model approach, which is used in a special version

of the libraries.

If you use the -P option of c166, the compiler does not emit the regular

CALL/RET instructions, when calling a C function, but emits code using a

jumping mechanism, specifying the return address on the user stack. The

advantage of this approach is that the system stack is not used at all. The

price paid for this feature is a run-time execution speed performance

penalty. The special libraries needed to support this feature are included

in the C and C++ compiler packages.

There are two valid reasons to use this option (and libraries):

• RTOS

When using a RTOS kernel, it is often not allowed to use the system

stack area (in fact change SP), because this area is reserved for the

kernel. Therefore, the -P option must be used when using RTOS.

• Heavy recursion

When the system stack area is getting too small and it is not possible to

implement a circular system stack approach (using SOV/SUN exception

handlers), the -P option can be used. In this case the compiler uses the

user stack instead of the system stack. You must link the application

with the user stack model libraries.

Using -P does not mean that you have to use a RTOS. You can run the

application as a standalone application, without any kernel.

The calling convention is explained in more detail in the next chapters.

The push and pop instructions are only allowed during hardware task

switches. Nevertheless, with the C compiler option -Ou, it is possible to

use the user stack instead of the system stack for hardware task switches.

See the -Ou option in section 4.3 Detailed Description of the C-166 options
in this manual.

Appendix HH–4
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

The offset of structure components relative to the structure can be

determined from the symbolic debug information, also needed for high

level language debugging, generated by the C compiler when you use the

command line option -g. The syntax for structure symbolic debug

information is described in section 3.18 Structure Type of the document

"Symbolic Debug Specification for 8051 and 80166".

The conventions for register and data page usage, as well as the calling

conventions for functions, are fully documented in chapter 3 Language
Implementation. Section 3.5 Function Parameters of chapter 3, describes

when parameters are passed via registers and when they are passed via

the user stack.

2 FUNCTION CALL AND RETURN

The next sections describe how function calls and function returns are

implemented in the libraries and in the C compiler to support a special

stack frame.

2.1 DIRECT INTRA-SEGMENT FUNCTION CALL AND

RETURN

A direct intra-segment function call (near function call) is normally

performed with a CALLA instruction and returned with a RETN instruction.

But the direct intra-segment function call must be performed without

using the system stack.

Therefore, the user stack is used to pass the return label to the near

function. Then the near function is invoked using an absolute

intra-segment jump. At exit, the near function return is implemented using

an indirect jump on the contents of the user stack.

The following assembly listing displays the code the C compiler generates

for an absolute near function call. The near function called is named _f .

Rn is a register used by the C compiler for temporary results.

User Stack Model Library Support H–5

• • • • • • • •

min.
code state

. size times

.
mov Rn, #SOF __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
jmpa CC_UC, _f 4 4

__RETURN_LABEL:
. –– ––
. 10 8

The assembly listing described below displays the code the C compiler

generates to return to the caller of the near function.

min.
code state

. size times

.
mov R2, [R0+] 2 2
jmpi CC_UC, [R2] 2 4
retv ; virtual return 0 0
. –– ––
. 4 6

Temporary register R2 is used to pop the return address from the user

stack and to continue program execution at the return label via a indirect

jump on the contents of R2. The user stack pointer is updated by the

called function before it returns (see [R0+]). This is not the regular

method to handle the user stack pointer in a C function, but this saves one

instruction. Register R2 can be used, because it is always free for use at

function return. No parameters are returned via register R2.

2.2 INDIRECT INTRA-SEGMENT FUNCTION CALL AND

RETURN

An indirect intra-segment function call (indirect near function call) must

also be performed without using the system stack. The user stack is used

to pass the return label to the near function. The (offset) address of the

near function is determined at run-time. At exit, the near function returns

the same way as described above.

The following assembly listing displays the code the C compiler generates

for an indirect near function call. The near function called indirectly is in

the function pointer array named _fp . Rx contains the index value. Rn is a
register used by the C compiler for temporary results.

Appendix HH–6
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

min.
code state

. size times

.
mov Rn, #SOF __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
mov Rn, [Rx+#_fp] 4 4
jmpi CC_UC, [Rn] 2 4

__RETURN_LABEL:
. –– ––
. 12 12

It is obvious that the code, needed to return from a near function, is

always the same, because the function does not know whether it is called

directly or indirectly. See previous section for the code the C compiler

generates to return from a near function.

2.3 DIRECT INTER-SEGMENT FUNCTION CALL AND

RETURN

A direct inter-segment function call (far function call) is normally

performed with a CALLS instruction and returned with a RETS instruction,

but now the system stack may not be used.

A direct inter-segment function can be invoked using a JMPS instruction,

but the called function does not know where to return to on exit.

Therefore, the user stack is used to pass the return label to the far

function. Not only the segment offset of the return label is passed but also

the segment number of the return label is passed, because the return label

can be located in any segment.

The following assembly listing displays the code the C compiler generates

for a far function call. The far function called is named _f . Rn is a register

used by the C compiler for temporary results.

min.
code state

. size times

.
mov Rn, #SOF __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
mov Rn, #SEG __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
jmps SEG _f, SOF _f 4 4

__RETURN_LABEL:
add R0, #4 2 2
. –– ––
. 18 14

User Stack Model Library Support H–7

• • • • • • • •

The user stack pointer must be increased with four bytes, when code

execution continues at the return label, to remove the inter-segment

return address from the user stack.

It is very likely that in a regular C application functions of the same task

c.q. process are grouped together and therefore, also located in the same

segment. So, for a regular C application more intra-segment calls than

inter-segment calls are expected between functions. The execution speed

performance increases when it is possible to return immediate with an

intra-segmented jump to the return label, instead of returning with an

inter-segmented jump to the return label. First is tested, at far function

return, if the code segment pointer CSP is already pointing to the segment

the return label is located in. An indirect intra-segment jump to the return

label can be performed if the segment number of the return label is equal

to CSP.

An indirect inter-segment jump on the contents of the user stack must be

performed, at far function return, when CSP is not equal to the segment

the return label is located in. But, there is no instruction available to do

this. A so-called return table stub function __iret is invoked, at far

function return, to set CSP. Setting CSP is performed by invoking a return

stub function in the segment the return label is located in. When the

return stub function is entered in the segment of the return label, an

indirect intra-segment jump to return label can be performed. See also

section 2.5, Inter-segment Call and Return Table Stub Functions and

section 2.6, Intra-segment Call and Return Stub Functions.

Testing CSP to check if it possible to return immediate with an

intra-segmented jump increases the code execution speed but decreases

the code density, because the CSP test is generated at each far function

return. For this reason it can be controlled with the compiler optimization

option. The compiler generates default compact code (default compiler

optimization is -OF). Fast code generation can be turned on with the

compiler option -Of. All the libraries are generated for fast code execution

(-Of)!

The assembly listing described below displays the code the C compiler

generates for a far function to return to its caller, with compiler option -Of

(fast code generation) and -OF (default: compact code generation).

Appendix HH–8
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

–Of min.
code state

. size times

.
mov R2, [R0] 2 2
cmp R2, CSP 4 2
jmp cc_NE, __LBL 2 4
mov R2, [R0+#02H] 4 4
jmpi CC_UC, [R2] 2 4

__LBL: jmps SEG (__iret), SOF (__iret) 4 4
retv ; virtual return 0 0
. –– ––
. intra–segment return 18 16

inter–segment return 18 12

–OF (default) min.
code state

. size times

.
mov R2, [R0] 2 2
jmps SEG (__iret), SOF (__iret) 4 4
retv ; virtual return 0 0
. –– ––

inter–segment return 6 6

Temporary register R2 can be used to compare CSP, because register R2 is

free for use at function return. No parameters are returned via register R2.

2.4 INDIRECT INTER-SEGMENT FUNCTION CALL AND

RETURN

An indirect inter-segment function call (indirect far function call) is

normally performed with a run-time library function, and the far function

called indirect returns with a RETS instruction. The segment number and

segment offset are passed to this run-time library function to perform the

inter-segment call, but it uses the system stack which is not allowed in this

implementation of the library.

The far function cannot be invoked with an inter-segment jump, because

the segment number and segment offset for the indirect call are

determined run-time. A calculated segmented jump is not present in the

instruction set. But the far function can be invoked with an indirect

intra-segment jump when the code segment pointer is set to the segment

the far function is located in. A so-called call table stub function __icall
is used to set CSP. Setting CSP is done by jumping to the call stub function

located in the same segment as the far function. This call stub function

finally performs the indirect intra-segment jump to the far function.

User Stack Model Library Support H–9

• • • • • • • •

The segment number and segment offset of the indirect far function are

passed via register R4 and R5 to the stub functions. The segment number

is passed via register R5 to the call table stub function and the segment

offset is passed trough via register R4 to the call stub function in the

segment the indirect far function is located in. It is possible to pass the

address of the indirect far function via general registers, because they are

never used for parameter passing in C functions and C library functions.

Remember that general registers are used for parameter passing in the run

time library functions, but run-time library functions are never called

indirectly! If you create an assembly function which is called indirectly,

then no parameters can be passed to it via registers R4 and R5!

The segment offset and the segment number of the return label are passed

via the user stack to the far function called indirectly. It is obvious that the

code, needed to return from a far function is always the same, because the

function does not know whether it is called directly or indirect. See

previous section for the code the C compiler generates to return from a far

function.

The next assembly listing displays the code the C compiler generates for

an indirect far function call, using the call table stub function __icall .

The far function called indirectly is in the function pointer array named

_fp . Rx contains the index value. Rn is a register used by the C compiler

for temporary results.

min.
code state

. size times

.
mov Rn, #SOF __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
mov Rn, #SEG __RETURN_LABEL 4 2
mov [–R0], Rn 2 2
mov R4, [Rx+#_fp] 4 4
mov R5, [Rx+#_fp+02H] 4 4
jmps SEG(__icall), SOF(__icall) 4 4

__RETURN_LABEL:
add R0, #4 2 2
. –– ––
. 26 22

The user stack must be lowered with four bytes, when code execution

continues at the return label, to remove the inter-segment return address

from the user stack.

Appendix HH–10
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

It is possible to check CSP if it is already pointing to the segment the

indirect far function is located in. If so, an indirect intra-segmented jump

can be performed immediate to the far function. But, it will not make

much difference in execution speed if CSP is tested or not, because an

indirect far call is not very frequently used in a regular C applications. And

the code size increases for each indirect far call. This all makes it

unprofitable to implement CSP testing for indirect far calls.

2.5 INTER-SEGMENT CALL AND RETURN TABLE STUB

FUNCTIONS

The call and return table stub functions are called __icall and __iret .

The call table stub function is only invoked for indirect far function calls

and the return table stub function is only invoked at far function return if

the code segment pointer CSP is not equal to the segment the return label

is located in. These functions are invoked with a segmented jump, so they

can be located in any segment.

The inter-segment call table stub function is needed to invoke the call

stub function in the segment the indirect far function is located in. The

segment number is passed via register R5 and used as offset for the jump

table to invoke the call stub function in the right segment, which causes

CSP to be loaded with the right segment number.

The assembly listing described below displays the code for the call table

stub function.

min.
code state
size times

__icall:
shl R5, #2 2 2
add R5, #SOF(table) 4 2
jmpi CC_UC, [R5] 2 4

table: jmps SEG(__icall_0), SOF(__icall_0) 4 4
jmps SEG(__icall_1), SOF(__icall_1) 4
jmps SEG(__icall_2), SOF(__icall_2) 4
jmps SEG(__icall_3), SOF(__icall_3) 4
retv 0 0

–– ––
24 12

Register R5 can be used to calculate the indirect jump in the inter-segment

jump table, because there are no parameters passed to C functions via

register R5. If you create an assembly function or you use inline assembly

which is called indirectly, it may not use register R5 for parameter passing!

User Stack Model Library Support H–11

• • • • • • • •

The return table stub function is needed to invoke the return stub function

in the segment the return label is located in. The segment number is

passed via register R2 and used as an offset for the jump table to invoke

the return stub function in the right segment, which causes CSP to be

loaded with the right segment number. The segment number of the return

label is also passed via the user stack, but register R2 is already loaded

with it for testing CSP at far function return. This makes reloading register

R2 with the segment number from the user stack superfluous. See section

2.3 Direct Inter-segment Function Call and Return.

The assembly listing described below displays the code for the return table

stub function.

min.
code state
size times

__iret:
shl R2, #2 2 2
add R2, #SOF(table) 4 2
jmpi CC_UC, [R2] 2 4

table: jmps SEG(__iret_0), SOF(__iret_0) 4 4
jmps SEG(__iret_1), SOF(__iret_1) 4
jmps SEG(__iret_2), SOF(__iret_2) 4
jmps SEG(__iret_3), SOF(__iret_3) 4
retv 0 0

–– ––
24 12

Temporary register R2 can be used to calculate the indirect jump in the

inter-segment jump table, because register R2 is free for use at function

call and at function return. No parameters are passed via register R2 ! All

the library functions meet this requirement. If you create an assembly

function or if you use inline assembly which uses register R2 and it must

be preserved over a function call, then R2 must be saved on the user

stack.

Appendix HH–12
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

2.6 INTRA-SEGMENT CALL AND RETURN STUB

FUNCTIONS

The intra-segment call stub function is called by the inter-segment call

table stub function, to set the code segment pointer CSP to the segment of

the indirect called far function. When the call stub function is entered in

the segment of the far function, an indirect intra-segmented jump can be

performed to the segment offset the indirect far function is located at. The

segment offset of the indirect far function is passed to the call stub

function via register R4.

The intra-segment return stub function is called by the inter-segment

return table stub function to set the code segment pointer CSP to the

segment of the return label. When the return stub function is entered in

the segment of the return label, an indirect intra-segmented jump can be

performed to the segment offset the return label is located at. The segment

offset of the return label is passed via the user stack to the return stub

function.

The assembly listing described below displays the stub code module for

the call and return stub function. The same stub code module is located in

all C166/ST10 segments. Only the entry names are different, they are

related to the segment they are located in. SEG specifies the segment

number, SEG can be 0 to 3 for the C166/ST10.

min.
code state
size times

__ICALLRET_SEG section code word common ’ICALLRET_SEG’
__iret_SEG proc far

mov R2, [R0+#02H] 4 4
jmpi CC_UC, [R2] 2 4
retv 0 0

–– ––
 6 8

__icall_SEG:
jmpi CC_UC, [R4] 2 4
retv 0 0

–– ––
 2 4

__ICALLRET_SEG ends

Register R4 can be used to pass the segment offset address of the indirect

far function, because there are no parameters passed to C functions via

register R4. If you create an assembly function or you use inline assembly

which is called indirectly, it may not use register R4 for parameter passing!

User Stack Model Library Support H–13

• • • • • • • •

Temporary register R2 can be used to get the segment offset of the return

label from the user stack and to jump indirect to it, because register R2 is

free for use at function call and at function return. No parameters are

passed via register R2! All the library functions meet this requirement. If

you create an assembly function or you use inline assembly which uses

register R2 and it must be preserved over a function call, then R2 must be

saved on the user stack.

In the C166/ST10 C library are four stub code modules archived, for each

segment one. They have to be located in the right segments with a locator

control. For example, with:

ADDRESSES(SECTIONS(
__ICALLRET_0(SEGMENT 0 + 0200H),
__ICALLRET_1(SEGMENT 1),
__ICALLRET_2(SEGMENT 2),
__ICALLRET_3(SEGMENT 3)

))

Each stub code module needs its own class name, because it also must be

possible to locate the code stub modules in the right segments with the

locator control "CLASSES(..)".

3 USING THE EXTENDED INSTRUCTION SET

3.1 INTRODUCTION

When an extended instruction set is available (e.g. C167) it is no longer

needed to avoid the system stack for indirect inter-segment jumps.

Because with the extended instruction ATOMIC the standard PEC

interrupts and class A hardware trap can be disabled for a specified

number of instructions.

To perform an indirect inter-segment jump the segment number and

segment offset are pushed on the system stack and a RETS instruction is

executed. Then the execution resumes at the inter-segment address

pushed on the system stack. To avoid that these instructions are

interrupted they are protected with an ATOMIC instruction.

The following assembly listing shows the code for an indirect

inter-segment jump using the ATOMIC instruction. Rseg and Rsof contain

the inter-segment address to jump to.

Appendix HH–14
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

; code can be read as :
; mov CSP, Rseg
; mov IP, Rsof

atomic #3 ; protect against interrupts
push Rseg ; (SP) <– (SP) – 2 ; ((SP)) <– Rseg
push Rsof ; (SP) <– (SP) – 2 ; ((SP)) <– Rsof
rets ; (IP) <– ((SP)) ; (SP) <– (SP) + 2

; (CSP)<– ((SP)) ; (SP) <– (SP) + 2

The advantage of using extended instructions to perform indirect

inter-segment jumps is that there are no jump stubs needed anymore. This

means that there are less user stack operations needed. However, a

disadvantage of using the extended instructions is that the interrupt

acknowledge performance decreases.

3.2 DIRECT INTER-SEGMENT FUNCTION CALL AND

RETURN

Before an direct inter-segment jump can be performed to the far function,

the segment number and segment offset of the return label must be stored

on the user stack. The far function being invoked returns to its caller by

getting the return label from the user stack and then performing an

indirect inter-segment jump to the return label, as described in the

previous section.

The next assembly listing displays the code the C compiler generates for a

far function call when extended instructions are available.

The far function called is named _f . Rsof and Rseg are registers used by

the C compiler for temporary results.

min.
code state

. size times

.
mov Rsof, #SOF __RETURN_LABEL 4 2
mov [–R0], Rsof 2 2
mov Rseg, #SEG __RETURN_LABEL 4 2
mov [–R0], Rseg 2 2
jmps SEG _f, SOF _f 4 4

__RETURN_LABEL: –– ––
. 16 12
.

The next assembly listing displays the code the C compiler generates for a

far function to return to its caller.

User Stack Model Library Support H–15

• • • • • • • •

min.
code state

. size times

.
mov Rseg, [R0+] 2 2
mov Rsof, [R0+] 2 2
atomic #3 2 2
push Rseg 2 2
push Rsof 2 2
rets 2 4
. –– ––
. 12 14

3.3 INDIRECT INTER-SEGMENT FUNCTION CALL AND

RETURN

Also now the segment number and segment offset of the return label must

be stored on the user stack before an indirect inter-segment jump can be

performed to the far function. The far function being invoked returns to its

caller by getting the return label from the user stack and then performing

an indirect inter-segment jump to the return label. The far function being

invoked is determined run-time. So, an indirect inter-segment jump is

needed. When segment number and segment offset of the far function

being called is determined run-time, the same mechanism as described in

section 3.2, can be used again to make the inter-segment jump.

The next assembly listing displays the code the C compiler generates for

an indirect far function call when extended instructions are available.

The far function called indirectly is in the function pointer array named

_fp . Rx contains the index value. Rseg and Rsof are registers used by

the C compiler for temporary results.

Appendix HH–16
U

S
E

R
 S

T
A

C
K

 M
O

D
E

L

min.
code state

. size times

.
mov Rsof, #SOF __RETURN_LABEL 4 2
mov [–R0], Rsof 2 2
mov Rseg, #SEG __RETURN_LABEL 4 2
mov [–R0], Rseg 2 2
mov Rsof, [Rx+#_fp] 4 4
mov Rseg, [Rx+#_fp+02H] 4 4
atomic #3 2 2
push Rseg 2 2
push Rsof 2 2
rets 2 4

__RETURN_LABEL: –– ––
. 28 26
.

It is obvious that the code, needed to return from a far function is always

the same, because the function does not know whether it is called directly

or indirectly. See section 3.2 for the code the C compiler generates to

return from a far function when extended instructions are available.

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
?BASE_DPPn, 7-6

#define, 4-22

#include, 4-35, 4-80

#pragma, 4-83

alias, 4-83
align, 4-85
asm, 3-62, 4-84
asm_noflush, 3-62, 4-84
autobita, 4-84
automatic, 4-85
autosavemac, 4-89
class, 4-85
clear, 4-86
combine, 4-85
cse, 4-85
cse resume, 4-85
cse suspend, 4-85
custack, 4-85
default_attributes, 4-86
endasm, 3-62, 4-84
eramdata, 3-59, 4-86
fix_byte_write, 4-87
fragment, 4-87
fragment continue, 4-87
fragment resume, 4-87
global, 4-89
global_dead_store_elim, 4-87
iramdata, 3-59, 4-86
m166include, 4-88
macro, 4-88
no_global_dead_store_elim, 4-88
noalias, 4-84
noclear, 4-86
nocustack, 4-86
nofix_byte_write, 4-87
noframe, 3-65, 4-88
nomacro, 4-88
noreorder, 4-89
nosavemac, 4-89
nosource, 4-90

novolatile_union, 4-90
preserve_mulip, 4-88
public, 4-89
regdef, 4-89
reorder, 4-89
restore_attributes, 4-86
romdata, 3-59, 3-61, 4-87
save_attributes, 4-86
savemac, 4-89
size, 4-90
source, 4-89
speed, 4-90
static, 4-85
switch_force_table, 4-90
switch_smart, 4-90
switch_tabmem_default, 4-90
switch_tabmem_far, 4-90
switch_tabmem_near, 4-90
volatile_union, 4-90

#undef, 4-74

-DMEASURE_TIME, 2-22

-DSER_PORT_1, 2-27

-g option, H-4

-OF option, H-7

-Of option, H-7

-Ou option, H-3

-P option, H-3

__banksw, 3-123

__DATE__, 4-74

__FILE__, 4-74

__FP_ENV, 3-93

__LINE__, 4-74

__STDC__, 4-74

__TIME__, 4-74

_at attribute, 3-36

_atbit attribute, 3-38

_atomic, 3-110

_bfld, 3-106

_C166, 3-137, 4-74

_CoABS, 3-94

_CoADD, 3-95

_CoADD2, 3-95

IndexIndex–4
IN
D
E
X

_CoASHR, 3-95

_CoCMP, 3-96

_CoLOAD, 3-96

_CoLOAD2, 3-96

_CoMAC, 3-97

_CoMAC_min, 3-98

_CoMACsu, 3-97

_CoMACsu_min, 3-98

_CoMACu, 3-97

_CoMACu_min, 3-98

_CoMAX, 3-99

_CoMIN, 3-99

_CoMUL, 3-99

_CoMULsu, 3-100

_CoMULu, 3-100

_CoNEG, 3-100

_CoNOP, 3-101

_CoRND, 3-101

_CoSHL, 3-101

_CoSHR, 3-102

_CoSTORE, 3-102

_CoSTOREMAH, 3-102

_CoSTOREMAL, 3-103

_CoSTOREMAS, 3-103

_CoSTOREMSW, 3-103

_CoSUB, 3-104

_CoSUB2, 3-104

_CPU, 7-5

_diswdt, 3-110

_div32, 3-111

_divu32, 3-111

_einit, 3-110

_EXT, 7-4

_fstrcat, 6-10

_fstrchr, 6-10

_fstrcmp, 6-10

_fstrcpy, 6-10

_fstrcspn, 6-11

_fstrlen, 6-11

_fstrncat, 6-11

_fstrncmp, 6-11

_fstrncpy, 6-12

_fstrpbrk, 6-12

_fstrrchr, 6-12

_fstrspn, 6-12

_fstrstr, 6-13

_fstrtok, 6-13

_getbit, 3-107

_hstrcat, 6-13

_hstrchr, 6-13

_hstrcmp, 6-14

_hstrcpy, 6-14

_hstrcspn, 6-14

_hstrlen, 6-14

_hstrncat, 6-15

_hstrncmp, 6-15

_hstrncpy, 6-15

_hstrpbrk, 6-16

_hstrrchr, 6-16

_hstrspn, 6-16

_hstrstr, 6-16

_hstrtok, 6-17

_idle, 3-108

_inline, 3-38

_int166, 3-107

_ioread, 6-17

_iowrite, 6-17

_mkfp, 3-114

_mkhp, 3-115

_mksp, 3-115

_mod32, 3-112

_MODEL, 3-16, 4-74

_modu32, 3-112

_mul32, 3-111

_mulu32, 3-111

_nop, 3-108

_nousm function qualifier, 6-7

_packed, 3-39

_pag, 3-113

_pof, 3-113

_prior, 3-109

_putbit, 3-107

_pwrdn, 3-109

_rol, 3-104

_ror, 3-105

_seg, 3-114

Index Index–5

• • • • • • • •

_sof, 3-114

_srvwdt, 3-109

_sstrcat, 6-18

_sstrchr, 6-18

_sstrcmp, 6-18

_sstrcpy, 6-18

_sstrcspn, 6-19

_sstrlen, 6-19

_sstrncat, 6-19

_sstrncmp, 6-19

_sstrncpy, 6-20

_sstrpbrk, 6-20

_sstrrchr, 6-20

_sstrspn, 6-20

_sstrstr, 6-21

_sstrtok, 6-21

_stime, 6-17

_testclear, 3-105

_testset, 3-106

_time, 6-21

_tolower, 6-22

_toupper, 6-22

_tzset, 6-22

_usm function qualifier, 6-7

_USRSTACK, 7-5

_xnear, 3-19

_xsfr keyword, 3-52

Numbers
80166 segments, H-12

A
a166, 2-10

abort, 6-22

abs, 6-23

accessing memory, 3-5

acos, 6-23

adding files to a project, 2-21

address ranges, 3-5

addresses, locator control, H-13

addresses linear, 3-8

alias, 4-44, 4-83, 4-91

align, 4-85

align type, 3-26, 3-30, 4-67

ansi standard, 2-3, 3-3, 3-59, 3-61,

4-74

ar166, 2-12

asctime, 6-23

asin, 6-23

asm, 4-84

asm_noflush, 4-84

assembly functions, H-9, H-11, H-13

assembly language interfacing, 7-10

assembly source file, 2-10

assert, 6-24

assert.h, 6-8

assert, 6-24
atan, 6-24

atan2, 6-24

atexit, 6-24

atof, 6-25

atoi, 6-25

atol, 6-25

atomic instruction, H-13

autobita, 4-84

autobitastruct, 4-84

automatic, 4-85

automatic initializations, 3-59

autosavemac, 4-89

B
backend

compiler phase, 2-6
optimization, 2-6

bank, function qualifier, 3-122

bank switch, 3-124

benchmark, 2-22

bit, 3-45

bit type, 3-50

BIT_INIT, 7-4

IndexIndex–6
IN
D
E
X

bita, 3-24

bitword, 3-45

bitword type, 3-51

bsearch, 6-26

built-in functions, 3-94

builtin.c, 3-115

C
C

inline functions, 3-38
language extensions, 3-3

C function return types, 3-75

C library, 6-4

creating your own, 6-71
interface description, 6-10

C startup code, 7-3

C166 stack, 7-9

c166.h, 3-137, 6-8

C166INC, 4-35, 4-80

call table stub function, H-8

inter-segment, H-10
intra-segment, H-12

CALLEINIT, 7-5

CALLINIT, 7-5

calloc, 6-26

CAN, 6-8

canr16x.h, 6-8

casting pointer to long, 4-58, 4-61

cc166, 2-12, 4-3

ceil, 6-26

character arithmetic, 3-49, 4-12

class, 3-26, 4-85

class name, 4-67

classes, locator control, H-13

clear, 4-86

clearerr, 6-27

clearing variables, 4-45

CLIBRARY, 6-5

clock, 6-27

code density, 4-49

-OF, H-7
code memory banking, 3-122

code memory fragmentation, 3-32

code rearranging, 4-56

combine, 4-85

combine type, 3-26, 3-31, 4-67

command file, 4-28

command line options

detailed compiler options, 4-10
overview compiler options, 4-6
overview control program options,

4-4
command line processing, 4-28

comments, C++ style, 4-14

common, 3-41

common subexpression elimination,

2-8

common tail merging, 2-9

compiler, 4-6

compiler limits, 4-93

compiler options

-?, 4-11
-A, 4-12
-B, 4-16
-c, 4-21
-D, 4-22
-E, 4-23
-e, 4-24
-err, 4-25
-exit, 4-26
-F, 4-27, 6-6
-f, 4-28
-Fc, 4-27, 6-6
-Fs, 4-27
-G, 4-30
-g, 4-31
-gb, 4-31
-gf, 4-31
-gl, 4-31
-gs, 4-31

Index Index–7

• • • • • • • •

-gso, 4-32
-H, 4-33
-I, 4-35
-i, 4-34
-M, 4-36
-m, 4-37
-misrac, 4-39
-n, 4-40
-O, 4-41, 4-43
-o, 4-65
-Oa / -OA, 4-44
-Ob / -OB, 4-45
-Oc / -OC, 4-46
-Od / -OD, 4-47, 4-49
-Oe / -OE, 4-48
-Og / -OG, 4-50
-Oh / -OH, 4-51
-Oj / -OJ, 4-52
-Ok / -OK, 4-53
-Ol / -OL, 4-54
-On / -ON, 4-55
-Oo / -OO, 4-56
-Op / -OP, 4-57
-Oq / -OQ, 4-58
-Or / -OR, 4-59
-Os / -OS, 4-60
-Ot / -OT, 4-61
-Ou / -OU, 4-62
-Ow / -OW, 4-63
-Ox / -OX, 4-64
-P, 4-66, 6-7
-Pd, 4-66
-r, 4-69
-Ral, 4-67
-Rcl, 4-67
-Rco, 4-67
-S, 4-70
-s, 4-71
-T, 4-72
-t, 4-73
-U, 4-74
-u, 4-75
-V, 4-76

-w, 4-77
-wstrict, 4-77
-x, 4-78
-z, 4-79
detailed description, 4-10
overview, 4-6
overview in functional order, 4-8

compiler phases, 2-5

backend, 2-6
code generator phase, 2-6
instruction reordering phase, 2-6
optimization phase, 2-6
peephole optimizer phase, 2-6

frontend, 2-5
optimization phase, 2-6
parser phase, 2-5
preprocessor phase, 2-5
scanner phase, 2-5

compiler structure, 2-10

conditional bit jump, 2-6

conditional jump reversal, 2-8, 4-57

const qualifier, 3-59

constant folding, 2-7

constant propagation, 4-47

constant romdata, 4-48

constant/value propagation, 2-8

context pointer register, 7-6

control flow optimization, 2-8, 4-57

control macros, 3-52

control program, 4-3

options overview, 4-4
conversions, ANSI C, 3-46

copy propagation, 4-47

cos, 6-27

cosh, 6-27

cpu functional problems, 4-16

creating a makefile, 2-22

cross-assembler, 2-10

CSE, 2-8, 4-46

cse, 4-21

cse (pragma), 4-85

cse resume, 4-85

cse suspend, 4-85

IndexIndex–8
IN
D
E
X

ctime, 6-27

ctype.h, 6-8

_tolower, 6-22
_toupper, 6-22
isalnum, 6-35
isalpha, 6-35
isascii, 6-36
iscntrl, 6-36
isdigit, 6-36
isgraph, 6-36
islower, 6-36
isprint, 6-37
ispunct, 6-37
isspace, 6-37
isupper, 6-37
isxdigit, 6-37
toascii, 6-68
tolower, 6-68
toupper, 6-68

custack, 4-85

D
d166, 2-12

data allocation, 3-17

data sections

default, 3-18
initialized, 3-28
non-initialized, 3-27
normal, 3-27
ramdata, 3-28
romdata, 3-27
specials, 3-29

data types, 3-45�3-54

_bit, 3-45
_bitword, 3-45
_esfr, 3-45
_esfrbit, 3-45
_sfr, 3-45

_sfrbit, 3-45
_xsfr, 3-45
double, 3-45
far pointer, 3-45
float, 3-45
huge pointer, 3-45
long double, 3-45
near pointer, 3-45
shuge pointer, 3-45
signed char, 3-45
signed int, 3-45
signed long, 3-45
signed short, 3-45
unsigned char, 3-45
unsigned int, 3-45
unsigned long, 3-45
unsigned short, 3-45
xnear pointer, 3-45

dead code elimination, 2-8

debug information, 4-31

debugger, starting, 2-20

default_attributes, 4-86

DEFINE, m166 control, 7-3

defining occurrence, 3-19

derivatives, 2-5

detailed option description, compiler,

4-10�4-79

development flow, 2-11

difftime, 6-28

directory separator, 4-81

div, 6-28

dmp166, 2-12

double, 3-45

double precision, 3-81

double base expression subroutines,
3-81

double conversion subroutines, 3-82
double support subroutines, 3-83

DPP registers, 7-6

DPP usage, 3-18

Index Index–9

• • • • • • • •

E
EDE, 2-14

build an application, 2-16
load files, 2-16
open a project, 2-15
select a toolchain, 2-15
start a new project, 2-21
starting, 2-14

efficiency in large data models,

3-17�3-20

embedded development environment.

See EDE

enabling MISRA C, 3-127

endasm, 4-84

environment variable

C166INC, 4-35, 4-80
LM_LICENSE_FILE, 1-17, A-6
overview of, 2-13
PATH, 1-4, 1-7, 1-10
TMPDIR, 1-4, 1-7, 1-10
used by toolchain, 2-13

eramdata, 4-86

errno.h, 6-8

error level, 5-4

Error Messages, 3-128

errors, 5-6

backend, 5-33
FLEXlm license, A-33
frontend, 5-6

esfr, 3-45

esfrbit, 3-45

EVA, 7-4

EX_AB, 7-4

example

starting EDE, 2-14
using EDE, 2-14
using separate programs, 2-24
using the control program, 2-22
using the makefile, 2-26

examples, serial I/O, 2-27

execution speed, 4-49

-Of, H-7, H-10
exit, 6-28

exit status, 5-4, 5-5

exp, 6-28

expression rearrangement, 2-7

expression recognition, 4-50

expression simplification, 2-7

extended features, 4-78

extended instruction set, H-13

extensions to C, 3-3

extern keyword, 3-41

external memory, 3-26

F
fabs, 6-29

FAQ, FLEXlm, A-37

far, 3-19

far function, H-6, H-7, H-8, H-10,

H-12, H-14

far pointer, 3-45

fast loops, 4-54

fclose, 6-29

feof, 6-29

ferror, 6-29

fflush, 6-29

fgetc, 6-30

fgets, 6-30

fix_byte_write, 4-87

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-25
daemon options file, A-7
FAQ, A-37
frequently asked questions, A-37
license administration tools, A-8

for Windows, A-22
license errors, A-33

float, 3-45, 4-27

IndexIndex–10
IN
D
E
X

FLOAT (preprocessor symbol), 7-4

float.h, 6-8

floating license, 1-11

floating point

double precision, 3-81
double base expression subroutines,

3-81
double conversion subroutines,

3-82
double support subroutines, 3-83
register usage, 3-84

IEEE-754, 3-76
interfacing, 3-76
single precision, 3-79, 6-6

float base expression subroutines,
3-79

float conversion subroutines, 3-80
register usage, 3-80

storage in memory, 3-78
trapping, 3-85
usage for assembly programmers,

3-84
floating point constants, 3-17

floor, 6-30

fmod, 6-30

fopen, 6-31

fprintf, 6-31

fputc, 6-32

fputs, 6-32

fragment, 4-87

fragment continue, 4-87

fragment resume, 4-87

fread, 6-32

free, 6-33

freopen, 6-33

frexp, 6-33

frontend

compiler phase, 2-5
optimization, 2-6, 2-7

fscanf, 6-34

function, inline C, 3-38

function automatics, 3-56

function call, H-4

direct inter-segment, H-6, H-14
direct intra-segment, H-4
indirect inter-segment, H-8, H-15
indirect intra-segment, H-5

function parameters, 3-54

function qualifier

_nousm, 6-7
_usm, 6-7

function return, H-4

functional problems, G-3

functions

built-in, 3-94
intrinsic, 3-94

fwrite, 6-34

G
general purpose registers, 3-75

number of, 4-69
getc, 6-34

getchar, 6-34

gets, 6-35

global, 3-43, 4-89

global storage optimizer, 4-32

global_dead_store_elim, 4-87

gmtime, 6-35

GPR registers, number of, 4-69

group name, 4-30

gso166, 2-12

H
HDAT, 3-12

header files, 6-8

heap, 7-9

heap size, 7-9

Hitex HiTOP

telemon 80C166, E-3

Index Index–11

• • • • • • • •

telemon 80C167, E-5
telemon 80C16A, E-4

hostid, determining, 1-19

hostname, determining, 1-19

how to program smart with c166,

3-137

huge pointer, 3-45

I
identifier, 4-13

ieee166, 2-10

ihex166, 2-12

include files, 4-80

default directory, 4-81
initialized variables, 3-59�3-60

inline, C library functions, 4-64

inline assembly, 3-62

installation

licensing, 1-11
Linux, 1-5

RPM, 1-5
tar.gz, 1-6

UNIX, 1-8
Windows, 1-3
Windows 95, 1-3
Windows NT, 1-3

instruction set, extended, H-13

integral promotion, 3-46

internal memory, 3-26

interrupt, 3-65�3-66

flat interrupt concept, 3-44
interrupt frame, 3-65

intrinsic functions, 3-94

_atomic, 3-110
_bfld, 3-106
_CoABS, 3-94
_CoADD, 3-95
_CoADD2, 3-95
_CoASHR, 3-95
_CoCMP, 3-96

_CoLOAD, 3-96
_CoLOAD2, 3-96
_CoMAC, 3-97
_CoMAC_min, 3-98
_CoMACsu, 3-97
_CoMACsu_min, 3-98
_CoMACu, 3-97
_CoMACu_min, 3-98
_CoMAX, 3-99
_CoMIN, 3-99
_CoMUL, 3-99
_CoMULsu, 3-100
_CoMULu, 3-100
_CoNEG, 3-100
_CoNOP, 3-101
_CoRND, 3-101
_CoSHL, 3-101
_CoSHR, 3-102
_CoSTORE, 3-102
_CoSTOREMAH, 3-102
_CoSTOREMAL, 3-103
_CoSTOREMAS, 3-103
_CoSTOREMSW, 3-103
_CoSUB, 3-104
_CoSUB2, 3-104
_diswdt, 3-110
_div32, 3-111
_divu32, 3-111
_einit, 3-110
_getbit, 3-107
_idle, 3-108
_int166, 3-107
_mkfp, 3-114
_mkhp, 3-115
_mksp, 3-115
_mod32, 3-112
_modu32, 3-112
_mul32, 3-111
_mulu32, 3-111
_nop, 3-108
_pag, 3-113
_pof, 3-113

IndexIndex–12
IN
D
E
X

_prior, 3-109
_putbit, 3-107
_pwrdn, 3-109
_rol, 3-104
_ror, 3-105
_seg, 3-114
_sof, 3-114
_srvwdt, 3-109
_testclear, 3-105
_testset, 3-106

intrpt.c, 3-71

invocation

compiler, 4-6
control program, 4-3

iram, 3-24

iramdata, 4-86

isalnum, 6-35

isalpha, 6-35

isascii, 6-36

iscntrl, 6-36

isdigit, 6-36

isgraph, 6-36

islower, 6-36

isprint, 6-37

ispunct, 6-37

isspace, 6-37

isupper, 6-37

isxdigit, 6-37

J
jump chain, 3-74

jump chaining, 2-8, 4-57

jump table, 3-34, 3-74, 4-60

jump tables, 3-17

K
keyword

_bita, 3-24
_inline, 3-38

_interrupt, 3-65
_iram, 3-24
_near, 3-18
_packed, 3-39
_stackparm, 3-54
_system, 3-23
_using, 3-66
_xnear, 3-19
far, 3-19
register, 3-57
system, 3-18

L
l166

link stage, 2-10
locate stage, 2-10

labs, 6-38

language extensions, 4-12

large, 3-22

LDAT, 3-9, 3-12

ldexp, 6-38

ldiv, 6-38

leaf function, 3-55, 7-12

libraries

C, 6-4
C (single precision floating point),

6-6
floating point, 3-85, 6-4
user stack model, 6-7

license

floating, 1-11
node-locked, 1-11
obtaining, 1-11

license file

default location, A-6
location, 1-17

licensing, 1-11

lifetime information, disable, 4-31

limits, compiler, 4-93

limits.h, 6-8

linear address space, 3-8

Index Index–13

• • • • • • • •

LM_LICENSE_FILE, 1-17, A-6

lmcksum, A-10

lmdiag, A-11

lmdown, A-12

lmgrd, A-13

lmhostid, A-15

lmremove, A-16

lmreread, A-17

lmstat, A-18

lmswitchr, A-20

lmver, A-21

localtime, 6-38

locator control, H-13

log, 6-38

log10, 6-39

logical expression optimization, 2-7

long double, 3-45

longjmp, 6-39

loop rotation, 2-7

loop variable detection, 4-46

M
m166, 2-12

m166include, 4-88

macro, 4-88

macros, 2-26

makefile

automatic creation of, 2-22
updating, 2-22

makefiles, 2-26

malloc, 6-39

math.h, 6-8

acos, 6-23
asin, 6-23
atan, 6-24
atan2, 6-24
ceil, 6-26
cos, 6-27
cosh, 6-27
exp, 6-28

fabs, 6-29
floor, 6-30
fmod, 6-30
frexp, 6-33
ldexp, 6-38
log, 6-38
log10, 6-39
modf, 6-52
pow, 6-52
sin, 6-60
sinh, 6-60
sqrt, 6-61
tan, 6-67
tanh, 6-67

medium, 3-21

memchr, 6-39

memcmp, 6-40

memcpffb, 6-40

memcpffw, 6-40

memcpfhb, 6-41

memcpfhw, 6-41

memcpfnb, 6-41

memcpfnw, 6-42

memcpfsb, 6-42

memcpfsw, 6-42

memcphfb, 6-43

memcphfw, 6-43

memcphhb, 6-43

memcphhw, 6-44

memcphnb, 6-44

memcphnw, 6-44

memcphsb, 6-45

memcphsw, 6-45

memcpnfb, 6-45

memcpnfw, 6-46

memcpnhb, 6-46

memcpnhw, 6-46

memcpnnb, 6-47

memcpnnw, 6-47

memcpnsb, 6-47

memcpnsw, 6-48

memcpsfb, 6-48

IndexIndex–14
IN
D
E
X

memcpsfw, 6-48

memcpshb, 6-49

memcpshw, 6-49

memcpsnb, 6-49

memcpsnw, 6-50

memcpssb, 6-50

memcpssw, 6-50

memcpy, 6-51

memmove, 6-51

memory, accessing, 3-5

memory model, 3-6

large, 3-15
medium, 3-13
small, 3-8
tiny, 3-6

memory size, 4-37

memset, 6-51

migration from Siemens CC166, 3-129

assembly interface, 3-133
bit support, 3-132
command line options, 3-131
interrupt, 3-134
memory models, 3-130
miscellaneous, 3-134
output files, 3-129
pec support, 3-133
preprocessor controls, 3-129
principles of operation, 3-129
section allocation, 3-131
semaphore operations, 3-133
sfr/sfrbit/xsfr/bitword support, 3-132
supercomments, 3-130

MISRA C, 3-127

mk166, 2-12

mktime, 6-51

MODEL (preprocessor symbol), 7-3

modf, 6-52

module summary, 4-73

N
near, 3-18

near function, H-5

near function call, H-4

near pointer, 3-45

near, xnear, far, huge and shuge,

3-20�3-25

no_global_dead_store_elim, 4-88

noalias, 4-84

NOBITCLEAR, 7-4

noclear, 4-86

nocustack, 4-86

node-locked license, 1-11

nofix_byte_write, 4-87

noframe, 4-88

nomacro, 4-88

nomod166, 3-53

non-initialized variables, 3-60

nop removal, 4-55

noreorder, 4-89

nosavemac, 4-89

nosource, 4-90

novolatile_union, 4-90

O
offsetof, 6-52

optimization, 4-41, 4-43

-OF, H-7
-Of, H-7
backend, 2-6
frontend, 2-6, 2-7

optimization (frontend)

common subexpression elimination,
2-8

common tail merging, 2-9
conditional jump reversal, 2-8
constant folding, 2-7
constant/value propagation, 2-8
control flow optimization, 2-8

Index Index–15

• • • • • • • •

dead code elimination, 2-8
expression rearrangement, 2-7
expression simplification, 2-7
jump chaining, 2-8
logical expression optimization, 2-7
loop rotation, 2-7
register coloring, 2-8
sharing of string literals and floating

point constants, 2-9
switch optimization, 2-7

options

control program, 4-4
detailed compiler options, 4-10
overview compiler options, 4-6
overview control program options,

4-4
output file, 4-65

overlay, 3-122, 3-124

P
packed structures, 3-39

parser, 2-5

PATH, 1-4, 1-7, 1-10

PDAT, 3-12

PEC support, 3-135

peephole optimization, 4-52

pointer, casting to long, 4-58

register

automatic register variable
allocation, 4-59

contents tracing, 4-53
portable c code, 3-137

pow, 6-52

pragma, 3-30, 4-83

alias, 4-83
align, 4-85
asm, 4-84
asm_noflush, 4-84
autobita, 4-84
autobitastruct, 4-84

automatic, 3-57, 4-85
autosavemac, 4-89
class, 4-85
clear, 4-86
combine, 4-85
cse, 4-85
cse resume, 4-85
cse suspend, 4-85
custack, 4-85
default_attributes, 4-86
endasm, 4-84
eramdata, 4-86
fix_byte_write, 4-87
fragment, 4-87
fragment continue, 4-87
fragment resume, 4-87
global, 4-89
global_dead_store_elim, 4-87
iramdata, 4-86
m166include, 4-88
macro, 4-88
no_global_dead_store_elim, 4-88
noalias, 4-84
noclear, 4-86
nocustack, 4-86
nofix_byte_write, 4-87
noframe, 4-88
nomacro, 4-88
noreorder, 4-89
nosavemac, 4-89
nosource, 4-90
novolatile_union, 4-90
on command line, 4-79
preserve_mulip, 4-88
public, 4-89
regdef, 4-89
reorder, 4-89
restore_attributes, 4-86
romdata, 4-87
save_attributes, 4-86
savemac, 4-89
size, 4-90

IndexIndex–16
IN
D
E
X

source, 4-89
speed, 4-90
static, 3-57, 4-85
switch_force_table, 4-90
switch_smart, 4-90
switch_tabmem_default, 4-90
switch_tabmem_far, 4-90
switch_tabmem_near, 4-90
volatile_union, 4-90

predefined symbols, 4-74, 7-6

_C166, 4-74
_MODEL, 4-74

preprocessor symbols, 7-4

preserve_mulip, 4-88

printf, 6-52

private, 3-31

product definition, 2-4

project files, adding files, 2-21

public, 3-43, 4-89

pubtoglb, 3-44

putc, 6-55

putchar, 6-55

puts, 6-55

Q
qsort, 6-56

R
RAM data, 3-17

rand, 6-56

realloc, 6-56

reg.def, 3-52

reg.h, 6-8

reg165.h, 3-52

reg166.h, 3-52

reg167.h, 3-52

regdef, 4-69, 4-89

register bank, 4-69

register coloring, 2-8

register definition file, 3-52

register keyword, 3-57

register usage, 3-75

register variables, 3-57�3-58

registers, number of, 4-69

reorder, 4-89

restore_attributes, 4-86

return table stub function, H-7

inter-segment, H-11
intra-segment, H-12

return values, 5-4

romdata, 3-33, 4-87

RTLIBRARY, 6-5

S
SAB C167, H-13

sample session, 2-14

save_attributes, 4-86

savemac, 4-89

scanf, 6-57

scanner, 2-5

SDAT, 3-12

section allocation, 3-26�3-40

code memory fragmentation, 3-32
constant romdata, 3-33, 4-48

semaphore, 3-133

serial I/O, 2-27

serio.c, 6-17

setbuf, 6-59

setjmp, 6-59

setjmp.h, 6-9

longjmp, 6-39
setjmp, 6-59

setting the environment, 1-4, 1-7, 1-10

setvbuf, 6-60

sfr, 3-45

sfrbit, 3-45

SHAREDCLIB, 6-5

SHAREDRTLIB, 6-5

sharing of string literals and floating

point constants, 2-9

Index Index–17

• • • • • • • •

shuge pointer, 3-45

signed

char, 3-45
int, 3-45
long, 3-45
short, 3-45

simulated I/O, 2-27

sin, 6-60

single precision, 3-79

float base expression subroutines,
3-79

float conversion subroutines, 3-80
sinh, 6-60

size, 4-90

small, 3-21

snd, locator control, 3-8

source, 4-89

special function registers

_esfr, 3-52
_esfrbit, 3-52
_sfr, 3-52
_sfrbit, 3-52
_xsfr, 3-52

speed, 4-90

sprintf, 6-61

sqrt, 6-61

srand, 6-61

srec166, 2-12

sscanf, 6-61

SSKENABLE, 7-5

SSKSEG, 7-5

SSKSIZE, 7-5

stack, 3-54, 6-7, 7-9, H-3, H-4, H-5,

H-6, H-11

stack size, 7-8

stackparm, 3-54, 7-11

standard c, 3-5

start.obj, 7-3

startup code, 7-3

static, 4-85

static approach of function automatics,

3-56�3-59

static initializations, 3-59

static memory, 4-70

stdarg.h, 6-9

va_arg, 6-69
va_end, 6-69
va_start, 6-69

stddef.h, 6-9

offsetof, 6-52
stdio.h, 6-9

_ioread, 6-17
_iowrite, 6-17
clearerr, 6-27
fclose, 6-29
feof, 6-29
ferror, 6-29
fflush, 6-29
fgetc, 6-30
fgets, 6-30
fopen, 6-31
fprintf, 6-31
fputc, 6-32
fputs, 6-32
fread, 6-32
freopen, 6-33
fscanf, 6-34
fwrite, 6-34
getc, 6-34
getchar, 6-34
gets, 6-35
printf, 6-52
putc, 6-55
putchar, 6-55
puts, 6-55
scanf, 6-57
setbuf, 6-59
setvbuf, 6-60
sprintf, 6-61
sscanf, 6-61
ungetc, 6-68
vfprintf, 6-69
vprintf, 6-70
vsprintf, 6-70

stdlib.h, 6-9

abort, 6-22

IndexIndex–18
IN
D
E
X

abs, 6-23
atexit, 6-24
atof, 6-25
atoi, 6-25
atol, 6-25
bsearch, 6-26
calloc, 6-26
div, 6-28
exit, 6-28
free, 6-33
labs, 6-38
ldiv, 6-38
malloc, 6-39
qsort, 6-56
rand, 6-56
realloc, 6-56
srand, 6-61
strtod, 6-66
strtol, 6-66
strtoul, 6-67

stdnames, 3-53

strcat, 6-62

strchr, 6-62

strcmp, 6-62

strcpy, 6-62

strcspn, 6-63

strftime, 6-63

string.h, 6-9

_fstrcat, 6-10
_fstrchr, 6-10
_fstrcmp, 6-10
_fstrcpy, 6-10
_fstrcspn, 6-11
_fstrlen, 6-11
_fstrncat, 6-11
_fstrncmp, 6-11
_fstrncpy, 6-12
_fstrpbrk, 6-12
_fstrrchr, 6-12
_fstrspn, 6-12
_fstrstr, 6-13
_fstrtok, 6-13
_hstrcat, 6-13

_hstrchr, 6-13
_hstrcmp, 6-14
_hstrcpy, 6-14
_hstrcspn, 6-14
_hstrlen, 6-14
_hstrncat, 6-15
_hstrncmp, 6-15
_hstrncpy, 6-15
_hstrpbrk, 6-16
_hstrrchr, 6-16
_hstrspn, 6-16
_hstrstr, 6-16
_hstrtok, 6-17
_sstrcat, 6-18
_sstrchr, 6-18
_sstrcmp, 6-18
_sstrcpy, 6-18
_sstrcspn, 6-19
_sstrlen, 6-19
_sstrncat, 6-19
_sstrncmp, 6-19
_sstrncpy, 6-20
_sstrpbrk, 6-20
_sstrrchr, 6-20
_sstrspn, 6-20
_sstrstr, 6-21
_sstrtok, 6-21
memchr, 6-39
memcmp, 6-40
memcpffb, 6-40
memcpffw, 6-40
memcpfhb, 6-41
memcpfhw, 6-41
memcpfnb, 6-41
memcpfnw, 6-42
memcpfsb, 6-42
memcpfsw, 6-42
memcphfb, 6-43
memcphfw, 6-43
memcphhb, 6-43
memcphhw, 6-44
memcphnb, 6-44
memcphnw, 6-44

Index Index–19

• • • • • • • •

memcphsb, 6-45
memcphsw, 6-45
memcpnfb, 6-45
memcpnfw, 6-46
memcpnhb, 6-46
memcpnhw, 6-46
memcpnnb, 6-47
memcpnnw, 6-47
memcpnsb, 6-47
memcpnsw, 6-48
memcpsfb, 6-48
memcpsfw, 6-48
memcpshb, 6-49
memcpshw, 6-49
memcpsnb, 6-49
memcpsnw, 6-50
memcpssb, 6-50
memcpssw, 6-50
memcpy, 6-51
memmove, 6-51
memset, 6-51
strcat, 6-62
strchr, 6-62
strcmp, 6-62
strcpy, 6-62
strcspn, 6-63
strlen, 6-64
strncat, 6-64
strncmp, 6-64
strncpy, 6-65
strpbrk, 6-65
strrchr, 6-65
strspn, 6-65
strstr, 6-65
strtok, 6-66

strings, 3-17, 3-61

strlen, 6-64

strncat, 6-64

strncmp, 6-64

strncpy, 6-65

strpbrk, 6-65

strrchr, 6-65

strspn, 6-65

strstr, 6-65

strtod, 6-66

strtok, 6-66

strtol, 6-66

strtoul, 6-67

switch optimization, 2-7, 4-60

switch statement, 3-74�3-75

switch_force_table, 3-74, 4-90

switch_smart, 3-74, 4-90

switch_tabmem_default, 3-34, 4-90

switch_tabmem_far, 3-34, 3-74, 4-90

switch_tabmem_near, 3-34, 4-90

symbols, predefined, 4-74

system, 3-18, 3-23

system stack, 7-8, H-4, H-5, H-6,

H-13

for task switch, 4-62, 4-63
system stack registers, 7-6

T
tan, 6-67

tanh, 6-67

target processors, 2-5

task scope, 3-41�3-44

task switch, 4-62, 4-63

tentative declarations, 3-19, 4-61

threshold, 3-19, 4-72

time, 6-67

time.h, 6-9

_stime, 6-17
_time, 6-21
_tzset, 6-22
asctime, 6-23
clock, 6-27
ctime, 6-27
difftime, 6-28
gmtime, 6-35
localtime, 6-38
mktime, 6-51
strftime, 6-63
time, 6-67

IndexIndex–20
IN
D
E
X

tiny, 3-21

TMPDIR, 1-4, 1-7, 1-10

toascii, 6-68

tolower, 6-68

toupper, 6-68

trap, 3-86

trap routine, 3-86

trap.obj, 3-85

U
ungetc, 6-68

unsigned

char, 3-45
int, 3-45
long, 3-45
short, 3-45

updating makefile, 2-22

user defined intrinsics, 3-116

user stack, 3-56, 7-8, H-3, H-4, H-5,

H-6, H-11, H-14, H-15

for task switch, 4-62, 4-63
user stack model, 4-66, 4-70

special library, 6-7
user stack pointer, H-5, H-7

using, 3-66

V
va_arg, 6-69

va_end, 6-69

va_start, 6-69

variables

initialized, 3-59
non-initialized, 3-60

version information, 4-76

vfprintf, 6-69

volatile, 3-53

volatile_union, 4-90

vprintf, 6-70

vsprintf, 6-70

W
warnings, 5-6

warnings (suppress), 4-77

X
xnear pointer, 3-45

xsfr, 3-45

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Setting the Environment

	Installation for Linux
	RPM Installation
	Tar.gz Installation
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	OVERVIEW
	Introduction to C C166/ST10 Cross-Compiler
	Product Definition
	General Implementation
	Compiler Phases
	Frontend Optimizations

	Compiler Structure
	Environment Variables
	Sample Session
	Using EDE
	Using the Control Program
	Using the Separate Programs
	Using a Makefile
	Serial I/O Modules

	LANGUAGE IMPLEMENTATION
	Introduction
	Accessing Memory
	Memory Models
	Tiny Memory Model
	Small Memory Model
	Medium Memory Model
	Large Memory Model
	_MODEL
	Efficiency in Large Data Models (Medium/Large)
	Near, Xnear, Far, Huge and Shuge
	System, Iram and Bita

	Section Allocation
	Code Memory Fragmentation
	Constant Romdata Section Allocation
	The _at() Attribute
	The _atbit() Attribute
	Inline C Functions
	Using Packed Structures

	Task Scope
	Data Types
	ANSI C Type Conversions
	Character Arithmetic
	The Bit Type
	The Bitword Type
	Special Function Registers

	Function Parameters
	Static Approach of Function Automatics

	Register Variables
	Initialized Variables
	Automatic Initializations
	Static Initializations

	Non-Initialized Variables
	Strings
	Inline Assembly
	Interrupt
	Extensions for the ext2 Architectures
	Switch Statement
	Register Usage
	Floating Point Interfacing
	Introduction Software Floating Point Usage
	The IEEE-754 Format
	Storage in Memory
	Single Precision Usage
	Float Base Expression Subroutines
	Float Conversion Subroutines
	Register Usage Single Precision

	Double Precision Usage
	Double Base Expression Subroutines
	Double Conversion Subroutines
	Double Support Subroutines
	Register Usage Double Precision

	Float/Double Usage for Assembly Programmers
	Floating Point Trapping
	Handling Floating Point Traps in a C Application

	Intrinsic Functions
	User Defined Intrinsics
	Implementing Other _CoXXX Intrinsics Using the _CoXXX Intrinsic Functions

	Code Memory Banking
	MISRA C
	Migration from Old Siemens CC166
	PEC Support
	Portable C Code
	How to Program Smart with c166

	COMPILER USE
	Control Program
	Compiler
	Detailed Description of the C-166 options
	Include Files
	Pragmas
	Alias
	Compiler Limits

	COMPILER DIAGNOSTICS
	Introduction
	Return Values
	Errors and Warnings

	LIBRARIES
	Introduction
	Small, Medium and Large I/O Formatters
	Single Precision Floating Point
	User Stack Model
	CAN Support
	Header Files
	C Library Interface Description
	Creating your own C Library

	RUN-TIME ENVIRONMENT
	Startup Code
	Stack Size
	Heap Size
	Assembly Language Interfacing

	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	MISRA C
	USING CROSSVIEW PRO FOR EVALUATION BOARDS
	USING KONTRON DEBUGGERS
	USING HITEX HITOP
	Using telemon 80C166
	Using telemon 80C16A
	Using telemon 80C167

	USING PLS FAST-VIEW66
	CPU FUNCTIONAL PROBLEMS
	Introduction
	CPU Functional Problem Bypasses

	USER STACK MODEL LIBRARY SUPPORT
	Introduction
	Function Call and Return
	Direct Intra-segment Function Call and Return
	Indirect Intra-segment Function Call and Return
	Direct Inter-segment Function Call and Return
	Indirect Inter-segment Function Call and Return
	Inter-segment Call and Return Table Stub Functions
	Intra-segment Call and Return Stub Functions

	Using the Extended Instruction Set
	Introduction
	Direct Inter-segment Function Call and Return
	Indirect Inter-segment Function Call and Return

	INDEX

