
MA019–000–00–00
Doc. ver.: 5.13

C166/ST10 v7.5

CROSS–ASSEMBLER,
LINKER/LOCATOR,
UTILITIES
USER’S GUIDE

A publication of

TASKING

Documentation Department

Copyright  2001 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes no
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 Introduction 1-3.

1.2 C166/ST10 Program Development 1-4.

1.3 Sample Session 1-6.

1.3.1 Using EDE 1-6.

1.3.2 Using the Control Program 1-14.

1.3.3 Using the Makefile 1-16.

1.4 Environment Variables 1-18.

1.5 Temporary Files 1-19.

1.6 Formatting a File For CrossView Pro 1-19.

1.7 File Extensions 1-20.

1.8 Macro Preprocessing 1-20.

1.9 Assembler Listing 1-21.

1.10 Error Messages 1-21.

1.11 Symbolic Debugging 1-21.

1.12 Command Line Processing 1-22.

1.12.1 Batch Files 1-22.

1.12.2 UNIX Scripts 1-23.

SOFTWARE CONCEPT 2-1

2.1 The Modular Concept 2-3.

2.1.1 Modular Programming 2-3.

2.1.2 Modular Programming with C166/ST10 Toolchain 2-4. . . .

2.1.3 Module Structure 2-6.

2.1.4 Connections Between Modules 2-7.

2.2 Procedures 2-7.

2.2.1 Defining a Procedure 2-8.

2.2.2 Procedure Interfaces 2-8.

2.2.3 Procedure Types 2-9.

2.3 Interrupt Concepts 2-10.

2.4 The Task Concept 2-11.

2.4.1 Hardware Support of Tasks 2-11.

2.4.2 Software Support of Tasks 2-12.

Table of ContentsVI
C
O
N
T
E
N
T
S

2.4.3 Structure of a Task 2-13.

2.4.3.1 Software Definition of a Task 2-13.

2.4.3.2 Attributes of a Task 2-14.

2.4.4 Connections Between Tasks 2-15.

2.4.4.1 EXTERN-GLOBAL Connection 2-16.

2.4.4.2 COMMON Sections 2-18.

2.4.4.3 COMMON Registers 2-19.

2.4.4.4 Same Module in Several Tasks 2-19.

2.5 The Flat Interrupt Concept 2-20.

2.6 Logical Memory Segmentation

(Section, Group, and Class) 2-23.

2.6.1 The Term 'Section' 2-23.

2.6.1.1 Attributes of a Section 2-24.

2.6.1.2 Generating Addresses in a Section 2-24.

2.6.2 The Term 'Group' 2-25.

2.6.3 The Term 'Class' 2-26.

2.7 Memory Models 2-27.

2.7.1 CPU Memory Mode 2-27.

2.7.2 Assembler Memory Models 2-27.

2.7.3 NONSEGMENTED Memory Model 2-28.

2.7.4 NONSEGMENTED/SMALL Memory Model 2-29.

2.7.5 SEGMENTED Memory Model 2-32.

2.8 Registers 2-34.

2.8.1 Location of Registers 2-34.

2.8.2 Accessing Registers 2-34.

2.8.3 Register Banks 2-36.

2.8.3.1 Defining Register Banks 2-36.

2.9 Use of the PEC (Peripheral Event Controller) 2-38.

2.9.1 Addressing as MEM Type 2-38.

2.9.2 Addressing as GPRs 2-38.

2.10 Defining and Addressing Memory Units 2-39.

2.10.1 Basic Data Units 2-39.

2.10.1.1 Defining Basic Data Units 2-39.

2.10.1.2 Addressing Basic Data Units 2-39.

Table of Contents VII

• • • • • • • •

2.10.2 Variables and Labels 2-40.

2.10.2.1 Defining Code Labels 2-41.

2.10.2.2 Defining Data Labels 2-43.

2.10.3 Constants 2-44.

2.10.4 Pointers 2-44.

2.10.4.1 Defining Pointers 2-44.

2.10.4.2 Segment Pointers 2-44.

2.10.4.3 Page Pointers 2-45.

2.10.4.4 Bit Pointers 2-45.

2.11 Scopes of Symbolic Names 2-46.

2.11.1 Scope of Memory Class LOCAL 2-46.

2.11.2 Scope of Memory Class PUBLIC 2-46.

2.11.3 Scope of Memory Class GLOBAL 2-47.

2.11.4 Promoting PUBLIC to GLOBAL 2-47.

MACRO PREPROCESSOR 3-1

3.1 Introduction 3-3.

3.2 m166 Invocation 3-4.

3.3 Environment Variables 3-4.

3.4 m166 Controls 3-5.

3.4.1 Overview m166 Controls 3-6.

3.4.2 Description of m166 Controls 3-7.

3.5 Creating and Calling Macros 3-25.

3.5.1 Creating Parameterless Macros 3-25.

3.5.2 Creating Macros with Parameters 3-31.

3.5.3 Local Symbols in Macros 3-33.

3.6 The Macro Preprocessor's Built-In Functions 3-35.

3.6.1 Numbers and Expressions in m166 3-35.

3.6.2 SET Function 3-36.

3.6.3 EVAL Function 3-37.

3.6.4 Control Flow and Conditional Assembly 3-38.

3.6.4.1 IF Function 3-39.

3.6.4.2 WHILE Function 3-41.

3.6.4.3 REPEAT Function 3-42.

Table of ContentsVIII
C
O
N
T
E
N
T
S

3.6.4.4 BREAK Function 3-43.

3.6.4.5 EXIT Function 3-43.

3.6.4.6 ABORT Function 3-45.

3.6.5 String Manipulation Functions 3-46.

3.6.5.1 LEN Function 3-46.

3.6.5.2 SUBSTR Function 3-47.

3.6.5.3 MATCH Function 3-48.

3.6.6 Logical Expressions and String Comparison in m166 3-50. .

3.6.7 DEFINED Function 3-51.

3.6.8 Console I/O Built-In Functions 3-52.

3.6.9 Comment Function 3-53.

3.6.10 Overview Macro Built-In Functions 3-55.

3.7 Advanced m166 Concepts 3-58.

3.7.1 Definition and Use of Macro Names/Types 3-58.

3.7.1.1 Definition of a Macro Call with DEFINE 3-59.

3.7.1.2 Definition of a Macro Variable with SET 3-60.

3.7.1.3 Definition of a Macro String with MATCH 3-60.

3.7.2 Scope of Macro, Formal Parameters and Local Names 3-61.

3.7.3 Redefinition of Macros 3-61.

3.7.4 Literal vs. Normal Mode 3-61.

3.7.5 Multi-Token Parameter 3-64.

3.7.6 Variable Number of Parameters 3-65.

3.7.7 Parameter Type STRING 3-66.

3.7.8 Algorithm for Evaluating Macro Calls 3-68.

ASSEMBLER 4-1

4.1 Description 4-3.

4.2 Invocation 4-3.

4.2.1 Input Files and Output Files 4-4.

4.3 Sections and Memory Allocation 4-5.

4.4 Environment Variables 4-5.

Table of Contents IX

• • • • • • • •

ASSEMBLY LANGUAGE 5-1

5.1 Input Specification 5-3.

5.2 Sections 5-4.

5.2.1 Multiple Definitions for a Section 5-4.

5.2.2 'Nested' or 'Embedded' Sections 5-5.

5.3 Extend Blocks 5-7.

OPERANDS AND EXPRESSIONS 6-1

6.1 Operands 6-3.

6.1.1 Operands and Addressing Modes 6-3.

6.1.2 Operand Combinations 6-5.

6.1.2.1 Abbreviations 6-6.

6.1.2.2 Real Operand Combinations 6-8.

6.1.2.3 Virtual Operand Combinations 6-10.

6.2 Expressions 6-11.

6.2.1 Expressions in the Assembler 6-13.

6.2.2 Number 6-15.

6.2.3 Expression String 6-16.

6.2.4 Symbol 6-17.

6.3 Operators 6-17.

6.3.1 Arithmetic Operators 6-18.

6.3.1.1 Addition and Subtraction 6-18.

6.3.1.2 Sign Operators 6-19.

6.3.1.3 Multiplication and Division 6-19.

6.3.1.4 Shift Operators 6-20.

6.3.1.5 Relational Operators 6-20.

6.3.1.6 Logical Operator 6-21.

6.3.1.7 Bitwise Operators 6-21.

6.3.1.8 Selection Operators 6-22.

6.3.1.9 Dot Operator 6-22.

6.3.2 Attribute Overriding Operators 6-24.

6.3.2.1 Page Override Operator 6-24.

6.3.2.2 PTR Operator 6-25.

6.3.2.3 DATAn Operator 6-26.

Table of ContentsX
C
O
N
T
E
N
T
S

6.3.2.4 SHORT Operator 6-27.

6.3.3 Attribute Value Operators 6-28.

6.3.3.1 SEG Operator 6-28.

6.3.3.2 PAG Operator 6-29.

6.3.3.3 SOF Operator 6-29.

6.3.3.4 POF Operator 6-30.

6.3.3.5 BOF Operator 6-31.

6.4 SFR and Bit Names 6-32.

6.4.1 Special Function Registers (SFR) 6-32.

6.4.2 Bit Names 6-33.

ASSEMBLER CONTROLS 7-1

7.1 Introduction 7-3.

7.2 Overview a166 Controls 7-6.

7.3 Description of a166 Controls 7-10.

ASSEMBLER DIRECTIVES 8-1

8.1 Introduction 8-3.

8.2 Directives Overview 8-3.

8.3 Debugging 8-5.

8.4 Location Counter 8-5.

8.5 Program Linkage 8-5.

8.6 Directives 8-5.

INSTRUCTION SET 9-1

9.1 Introduction 9-3.

9.2 The Hardware Instruction Set 9-3.

9.2.1 Arithmetic Instructions 9-3.

9.2.2 Logical Instructions 9-4.

9.2.3 Boolean Bit Manipulation Instructions 9-4.

9.2.4 Compare and Loop Control Instructions 9-5.

9.2.5 Shift and Rotate Instructions 9-5.

Table of Contents XI

• • • • • • • •

9.2.6 Prioritize Instruction 9-6.

9.2.7 Data Movement Instructions 9-6.

9.2.8 System Stack Instructions 9-6.

9.2.9 Jump and Call Instructions 9-7.

9.2.10 Return Instructions 9-8.

9.2.11 System Control Instructions 9-8.

9.2.12 Miscellaneous 9-9.

9.3 The Software Instruction Set 9-9.

DERIVATIVE SUPPORT 10-1

10.1 Introduction 10-3.

10.2 Differences between C166 and C167 10-3.

10.3 Differences between C167 and C166S v2.0 / Super10 10-4.

10.4 Enabling the Extensions 10-4.

10.4.1 EXTEND Controls (assembler) 10-5.

10.4.2 STDNAMES and NOMOD166 Controls (assembler) 10-6. . .

10.4.3 IRAMSIZE Control (locator) 10-7.

10.5 Extended Instruction Set 10-7.

10.5.1 Extend Blocks 10-8.

10.5.2 Nesting Extend Blocks 10-9.

10.5.3 Extend SFR Instructions 10-10.

10.5.4 Operand Combinations in Extend SFR Blocks 10-11.

10.5.5 Page Extend and Segment Extend Instructions 10-12.

10.6 Locating C167 Applications 10-13.

10.6.1 Extended System Stack 10-13.

10.6.2 PEC Source and Destination Pointer Locations 10-14.

10.6.3 Locating GPRs 10-14.

10.7 Example: Building an C167 Application 10-14.

Table of ContentsXII
C
O
N
T
E
N
T
S

LINKER/LOCATOR 11-1

11.1 Overview 11-3.

11.2 Introduction 11-3.

11.2.1 Linker/locator Purpose 11-4.

11.2.2 Linker/locator Functions 11-4.

11.3 Naming Conventions 11-5.

11.4 Locate Algorithm 11-6.

11.4.1 Public and Global Groups 11-9.

11.4.2 Combination of COMMON Sections 11-9.

11.5 Invocation 11-11.

11.6 Environment Variables 11-15.

11.6.1 User Defined Environment Variables 11-16.

11.7 Default Object and Library Directories 11-17.

11.8 Overview Input and Output files 11-18.

11.9 Predefined Symbols 11-21.

11.10 l166 Controls 11-24.

11.10.1 The Module Scope Switch 11-25.

11.10.2 Expressions 11-26.

11.10.3 Overview of Controls per Category 11-28.

11.10.4 Overview l166 Controls 11-31.

11.10.5 Description of Controls 11-37.

UTILITIES 12-1

12.1 Overview 12-3.

12.2 ar166 12-4.

12.3 cc166 12-8.

12.4 d166 12-17.

12.5 dmp166 12-23.

12.6 gso166 12-25.

12.6.1 Description 12-25.

12.6.2 Memory Models 12-27.

12.6.3 Memory Spaces 12-28.

12.6.4 Pre-allocation Files 12-29.

12.6.5 Creating gso Libraries 12-29.

Table of Contents XIII

• • • • • • • •

12.6.6 Reserved Memory Areas 12-30.

12.6.7 Ordering .sif / .gso Files on the Command Line 12-31.

12.6.8 Options 12-32.

12.6.9 .gso/.sif File Format 12-34.

12.6.10 Pre-allocation File Format 12-36.

12.6.11 Example makefile 12-39.

12.7 ieee166 12-40.

12.8 ihex166 12-41.

12.9 mk166 12-47.

12.10 srec166 12-60.

A.OUT FILE FORMAT A-1

1 Introduction A-3.

1.1 File Header A-4.

1.2 Section Headers A-5.

1.3 Section Fillers A-6.

1.4 Relocation Records A-6.

1.5 Name Records A-7.

1.6 Extension Records A-9.

2 Format of a.out File as C Include File A-12.

MACRO PREPROCESSOR OUTPUT FILES B-1

1 Assembly File B-3.

2 List File B-4.

2.1 Page Header B-5.

2.2 Source Listing B-5.

2.3 Total Error/Warning Page B-6.

3 Error Print File B-6.

Table of ContentsXIV
C
O
N
T
E
N
T
S

ASSEMBLER OUTPUT FILES C-1

1 List File C-3.

1.1 List File Header C-3.

1.2 Source Listing C-4.

1.3 Section Map C-7.

1.4 Group Map C-9.

1.5 Symbol Table C-9.

1.6 Register Area Table C-12.

1.7 XREF Table C-12.

1.8 Total Error/Warning Page C-13.

2 Error Print File C-13.

LINKER/LOCATOR OUTPUT FILES D-1

1 Print File D-3.

1.1 Print File Header D-3.

1.2 Memory Map D-5.

1.3 Symbol Table D-7.

1.4 Interrupt Table D-8.

1.5 Register Bank Map Link Stage D-9.

1.6 Register Map Locate Stage D-10.

1.7 Summary Control D-11.

1.8 Error Report D-12.

GLOBAL STORAGE OPTIMIZER ERROR MESSAGES E-1

1 Introduction E-3.

2 Errors and Warnings E-3.

MACRO PREPROCESSOR ERROR MESSAGES F-1

1 Introduction F-3.

2 Warnings (W) F-3.

3 Errors (E) F-5.

4 Fatal Errors (F) F-9.

5 Internal Errors (I) F-10.

Table of Contents XV

• • • • • • • •

ASSEMBLER ERROR MESSAGES G-1

1 Introduction G-3.

2 Warnings (W) G-3.

3 Errors (E) G-11.

4 Fatal Errors (F) G-26.

5 Internal Errors (I) G-27.

LINKER/LOCATOR ERROR MESSAGES H-1

1 Introduction H-3.

2 Warnings (W) H-3.

3 Errors (E) H-17.

4 Fatal Errors (F) H-32.

5 Internal Errors (I) H-35.

LIMITS I-1

1 Assembler I-3.

2 Linker/Locator I-3.

INTEL HEX RECORDS J-1

MOTOROLA S-RECORDS K-1

INDEX

Table of ContentsXVI
C
O
N
T
E
N
T
S

Manual Purpose and Structure XVII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the C166/ST10 Cross-Assembler,
Linker/Locator and utilities. It assumes that you are familiar with
programming the C166/ST10.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Overview

Makes you familiar with the assembler itself, through the use of sample

programs.

2. Software Concept

Describes the basics of modular programming, the interrupt concepts

and memory models.

3. Macro Preprocessor

Describes the action of, and options applicable to the macro

preprocessor.

4. Assembler

Describes the actions and invocation of the assembler.

5. Assembly Language

Describes the formats of the possible statements for an assembly

program.

6. Operands and Expressions

Describes the operands and expressions to be used in the assembler

instructions and directives.

7. Assembler Controls

Describes the syntax and semantics of all assembler controls.

8. Assembler Directives

Describes the pseudo instructions or assembler directives to pass

information to the assembler program.

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

9. Instruction Set

Gives a list of assembly language instruction mnemonics.

10. Derivative Support

Describes the features of C166 derivatives such as the SAB C167.

11. Linker/Locator

Describes the action of, and options/controls applicable, to the linker

and locator phase of l166.

12. Utilities

Contains descriptions of the utilities supplied with the package, which

may be useful during program development.

APPENDICES

A. A.out File Format

Contains the layout of the output file produced by the package.

B. Macro Preprocessor Output Files

Contains a description of the output files of the macro preprocessor.

C. Assembler Output Files

Contains a description of the output files of the assembler.

D. Linker/Locator Output Files

Contains a description of the output files of the link stage and locate

stage of l166.

E. Global Storage Optimizer Error Messages

Gives a list of error messages which can be generated by the global

storage optimizer.

F. Macro Preprocessor Error Messages

Gives a list of error messages which can be generated by the macro

preprocessor.

G. Assembler Error Messages

Gives a list of error messages which can be generated by the

assembler.

H. Linker/Locator Error Messages

Gives a list of error messages which can be generated by the

linker/locator.

Manual Purpose and Structure XIX

• • • • • • • •

I. Limits

Gives a list of limits of the assembler and the linker/locator.

J. Intel Hex Records

Contains a description of the Intel Hex format.

K. Motorola S-Records

Contains a description of the Motorola S-records.

INDEX

Manual Purpose and StructureXX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• C166/ST10 C Cross-Compiler User's Guide

[TASKING, MA019-002-00-00]

• C166/ST10 C++ Compiler User's Guide [TASKING, MA019-012-00-00]

• C166/ST10 CrossView Pro Debugger User's Guide

[TASKING, MA019-041-00-00]

• C166 User's Manual [Infineon Technologies]

• C167 User's Manual [Infineon Technologies]

• ST10 Family Programming Manual [STMicroelectronics]

• C166S v2.0 / Super10 User's Manual

[Infineon Technologies / STMicroelectronics]

Manual Purpose and Structure XXI

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureXXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

1.1 INTRODUCTION

The C166/ST10 package can produce load files for running on C166, C167,

ST10, C166S v2.0 and Super10. The assembler a166 accepts programs

written or generated by c166 according to the assembler language

specification for the C166/ST10. A formatter enables the load file to be

formatted into IEEE format ready for loading into CrossView Pro. Another

formatter enables the load file to be formatted into Intel Hex format ready

for loading into a PROM programmer.

The product contains the following programs:

cc166 The control program for the C166/ST10 toolchain.

c166 The C compiler which produces an assembly file.

gso166 A global storage optimizer which optimizes the allocation of

objects in memory spaces.

m166 A string-macro preprocessor allowing macro substitution, file

inclusion and conditional assembly, according to the Macro

Preprocessor Language described in the chapter Macro
Preprocessor.

a166 The assembler program which produces an object file from a

given assembly file.

l166 A linker/locator combining several objects and object libraries

into tasks or several tasks into one target load file.

ar166 A librarian facility, which can be used to create and maintain

object libraries.

d166 A disassembler utility to read the contents of an a.out file.

dmp166 A utility to report the contents of an object file.

ieee166 A program which formats an absolute (located) TASKING

a.out file to the IEEE-695 format which has full high level

language debugging support. The IEEE-695 format is used by

CrossView Pro.

ihex166 A facility to translate an absolute (located) TASKING a.out
file into Intel Hex Format for (E)PROM programmers. No

symbol information.

Chapter 11–4
O
V
E
R
V
IE
W

srec166 A facility to translate an absolute (located) TASKING a.out
file into Motorola S Format for (E)PROM programmers. No

symbol information.

mk166 A utility program to maintain, update, and reconstruct groups

of programs.

xfw166 The CrossView Pro debugger using C166/ST10 execution

environments such as the ertec EVA166 board.

1.2 C166/ST10 PROGRAM DEVELOPMENT

The C166/ST10 toolchain provides an environment for modular program

development and debugging. The following diagram shows the structure

of the package.

Overview 1–5

• • • • • • • •

assembly source file
.asm

macro preprocessor
m166

assembly file
.src

assembler
a166

relocatable object

linker
link stage

l166

linker l166
locate stage

linked object
module .lno

absolute object
module a.out

IEEE Formatter
ieee166

archiver
ar166

C compiler
c166

C source file
.c

error list file .erl

object library
.lib

module .obj

Motorola S Formatter Intel Hex Formatter
srec166 ihex166

Motorola S–records IEEE–695 load module.abs Intel Hex–records

CrossView Pro

xfw166

C166/ST10
execution

environment

Invocation file

Invocation file

Invocation file

list file

print file

map file .map

.lnl

.lst

list file .mpl

Invocation file

error list file .mpe

control program
cc166

error list file .err

C++ compiler
cp166

C++ source file
.cc

.ic

Debugger

global storage optimizer
gso166

.gso

.sif

.sif

Figure 1-1: C166/ST10 development flow

Chapter 11–6
O
V
E
R
V
IE
W

1.3 SAMPLE SESSION

This section illustrates the typical input format of a C166/ST10 assembly

program for the cross-assembler. As a part of the installation a directory

examples\asm (examples/asm for UNIX) is created depending on the

place where you installed the package on your system. This example

directory contains, among others, the following assembly source file:

optext.asm

Note that this program has been written for illustrative purposes only.

1.3.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

MS-Windows oriented Integrated Development Environment you can use

with your TASKING toolchain to design and develop your application.

To use EDE on the demo program in the subdirectory asm in the

examples subdirectory of the C166/ST10 product tree follow the steps

below.

How to Start EDE

You can launch EDE by double-clicking on the appropriate icon in the

program group created by the installation program. Or you can launch

EDE by double-clicking on the EDE shortcut on your desktop.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Overview 1–7

• • • • • • • •

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do

the following:

1. Access the EDE menu and select the Select Toolchain... menu item.

This opens the Select Toolchain dialog.

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and press OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. Access the Project menu and select Open... .

2. Select the project file to open and then click OK. For the demo program

select the file asm.pjt in the subdirectory asm in the examples
subdirectory of the C166/ST10 product tree. If you have used the defaults,

the file asm.pjt is in the directory c:\c166\examples\asm .

Chapter 11–8
O
V
E
R
V
IE
W

How to Load/Open Files

The next two steps are not needed for the demo program because the file

optext.asm is already open. To load the file you want to look at.

1. In the Project menu click on Load files... .

This opens the Choose Project Files to Edit dialog.

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then press the OK button.

This launches the file(s) so you can edit it (them).

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

select a command to be executed as foreground or background process.

1. Access the EDE menu and select the Build Options... menu item.

Overview 1–9

• • • • • • • •

This opens the Build Options dialog.

Chapter 11–10
O
V
E
R
V
IE
W

If you set the Show command line options at the bottom of a
tool tab check box EDE shows the command line equivalent of the

selected tool option. You can also click on the arrow button (left of the

OK button) in a tool options dialog.

2. Make your changes and press the OK button.

3. Select the EDE | Directories menu item and check the directory paths

for programs, include files and libraries. You can add your own directories

here, separated by semicolons.

Overview 1–11

• • • • • • • •

4. Access the EDE menu and select the Scan All Dependencies menu

item.

5. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages.

You can see which commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

TASKING program builder v x. y r z SN00000000–bid (c) year TASKING, Inc.

Preprocessing optext.asm

Assembling optext.src

Linking and locating to asm.out

Converting asm.out to asm.abs in IEEE–695 format

Chapter 11–12
O
V
E
R
V
IE
W

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug. To do

this:

1. Click on File in the menu bar and select the Load Symbolic Debug
Info... item. This opens up the Load Symbolic Debug Info dialog

box.

2. Click Load .

When using EDE, the program that will be built from it, will automatically

be loaded.

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.

To open this window,

1. Click on View in the menu bar and select the Source–>Source lines

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

2. Click on Run in the menu bar and select the Program Reset item.

3. Again click on Run in the menu bar and now select the Animate item.

Overview 1–13

• • • • • • • •

The program optext.abs is now stepping through the high level

language statements. Using the Accelerator bar or the menu bar you can

set breakpoints, monitor data, display registers, simulate I/O and much

more. See the CrossView Pro Debugger User's Guide for more information.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. Access the Project menu and select Project Space | New... .

2. Give your project space a name and then click OK.

3. Click on the Add new project to project space button.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify

the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

• If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new

filename and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Enter one or more file patterns separated

by semicolons. The button next to the Pattern field contains some

predefined patterns. Next click OK.

Chapter 11–14
O
V
E
R
V
IE
W

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Add the applicable files by

double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. Click Project | Load Files to open files you want on your EDE

desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

1.3.2 USING THE CONTROL PROGRAM

1. Instead of invoking all the individual translation phases by hand, it is

possible (and recommended) to use the control program cc166, which

calls all phases automatically:

cc166 –ihex –nolib optext.asm –o optext.hex

You may enter multiple input files on the command line. Also, you may

specify options and controls for the assembler, linker and locator together.

The control program recognizes the options and controls and places them

in the appropriate command when invoking the assembler, linker or

locator. The control program is described in detail in Chapter 12, Utilities.

The -ihex option selects the Intel Hex format.

The -nolib option specifies not to link with the standard libraries.

The -o option specifies the name of the output file.

2. If you want to see how the control program calls the assembler, linker and

locator, you can use the -v0 option or -v option. The -v0 option only

displays the invocations without executing them. The -v option also

executes them.

cc166 –ihex –nolib optext.asm –o optext.hex –v0

The control program shows the following command invocations without

executing them (UNIX output):

Overview 1–15

• • • • • • • •

C166/ST10 control program v x. y r z SN00000000–bid (c) year TASKING, Inc.

+ m166 optext.asm TO CC18713b.src

+ a166 CC18713b.src TO optext.obj NOPR

+ l166 LNK TO /tmp/cc18713c.tmp optext.obj NOWA

+ l166 LOC TO /tmp/cc18713d.tmp /tmp/cc18713c.tmp PR(optext)

+ ihex166 /tmp/cc18713d.tmp optext.hex

The NOPR control suppresses the list file generation of the assembler. The

TO control has the same function as the -o option of the compiler, and

specifies the output filename. The PR control of the locate stage specifies

the basename of the map file.

3. In step 2, the tools use temporary files for intermediate results. If you want

to keep the intermediate files you can use the -tmp option. The following

command makes this clear.

cc166 –ihex –nolib optext.src –o optext.hex –v0 –tmp

This command produces the following output:

C166/ST10 control program v x. y r z SN00000000–bid (c) year TASKING, Inc.

+ a166 optext.src TO optext.obj NOPR

+ l166 LNK TO optext.lno optext.obj NOWA

+ l166 LOC TO optext.out optext.lno PR(optext)

+ ihex166 optext.out optext.hex

As you can see, if you use the -tmp option, the assembly source files and

linker output file will be created in your current directory also.

Assuming the program assembles, links and locates successfully and that a

load file can be produced, the result will be in the file optext.out in the

current directory. The format of the output file is given in the appendix

A.out File Format.

The linker derives the name of the output file from the name of the first

object module. If this name is not suitable, the linker can be told to use a

specific filename:

l166 optext.obj to aprog.lno

Programs are easier to maintain if they are broken down into smaller

functional units.

Chapter 11–16
O
V
E
R
V
IE
W

1.3.3 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile

which can be processed by mk166. Also each subdirectory contains a

readme.txt file with a description of how to build the example.

To build the demo example follow the steps below. This procedure is

outlined as a guide for you to build your own executables for debugging.

1. Make the subdirectory asm of the examples directory the current working

directory.

This directory contains a makefile for building the demo example. It uses

the default mk166 rules.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

program builder mk166:

mk166

This command will build the example using the file makefile .

To see which commands are invoked by mk166 without actually

executing them, type:

mk166 –n

This command produces the following output:

C166/ST10 program builder v x. y r z SN00000000–bid (c) year TASKING, Inc.

m166 optext.asm

a166 optext.src

l166 LINK optext.obj

l166 LOCATE optext.lno TO optext.out

ihex166 optext.out optext.hex

cc166 –o optexta.hex –ihex –nolib optext.src

All examples are by default built for the C166/ST10. By defining macros on

the command line you can control the way the examples are build. A

macro is defined by <macroname>=<replacement>. The following macros

can be defined:

Overview 1–17

• • • • • • • •

Macro Description

EXT= Translate with all derivative extensions on. I.e. translate
for the C167 family.

V= Set verbose mode of the control program. If set it shows
the invocations of the separate tools.

Table 1-1: Makefile macros

Example:

mk166 V= EXT=

When you want to re-translate the examples with other settings you

should first clean up the results of a previous translation. This can be done

by:

mk166 clean

You can also use this when you just want to clean up the example

directories.

Chapter 11–18
O
V
E
R
V
IE
W

1.4 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the C166/ST10 toolchain.

Environment
Variable

Description

A166INC Specifies an alternative path for STDNAMES files
for the assembler a166.

C166INC Specifies an alternative path for #include files for the
C compiler c166.

CC166BIN When this variable is set, the control program
cc166 , prepends the directory specified by this
variable to the names of the tools invoked.

CC166OPT Specifies extra options and/or arguments to each
invocation of cc166 . The control program processes
the arguments from this variable before the
command line arguments.

LINK166 Specifies extra options and/or arguments to each
invocation of the link stage of l166.

LM_LICENSE_FILE Identifies the location of the license data file. Only
needed for hosts that need the FLEXlm license
manager.

LOCATE166 Specifies extra options and/or arguments to each
invocation of the locate stage of l166.

M166INC Specifies an alternative path for include files for the
macro preprocessor m166.

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by c166, cc166 ,
a166, m166, l166, ar166.

Table 1-2: Environment variables

Overview 1–19

• • • • • • • •

1.5 TEMPORARY FILES

The assembler, linker/locator and archiver may create temporary files. By

default these files will be created in the current directory. If you want the

tools to create temporary files in another directory you can enforce this by

setting the environment variable TMPDIR.

PC:

set TMPDIR=c:\tmp

UNIX:

 Bourne shell, Korn shell:

TMPDIR=\tmp ; export TMPDIR

 csh:

setenv TMPDIR /tmp

Note that if you create your temporary files on a directory which is

accessible via the network for other users as well, conflicts in the names

chosen for the temporary files may arise. It is more save to create

temporary files in a directory that is solely accessible to yourself. Of course

this does not apply if you run the tools with several users on a multi-user

system, such as UNIX. Conflicts may arise if two different computer

systems use the same network directory for tools to create their temporary

files.

1.6 FORMATTING A FILE FOR CROSSVIEW PRO

Before a file generated by the cross-assembler can be loaded into

CrossView Pro it must be in a suitable format. This format is known as

IEEE-695. The C166/ST10 Cross-Assembler package includes a utility

program ieee166 which can format output files into this IEEE format.

The simplest call of this program follows; for a full description of ieee166

see the chapter Utilities.

ieee166 optext optext.abs

The output file optext.abs can now be loaded into CrossView Pro as

described in C166/ST10 CrossView Pro Debugger User's Guide.

Chapter 11–20
O
V
E
R
V
IE
W

1.7 FILE EXTENSIONS

All the assembler source files so far have had the extension .src . The

assembler will actually accept files with any extension, but by adding the

extension .src to assembler source files, they can be easily distinguished.

Another reason for using the .src extension is that the assembler uses

this extension by default if it is omitted. So

a166 optext

has the same effect as

a166 optext.src

Both these commands assemble the file optext.src and create a list file

optext.lst , a relocatable object module optext.obj and an error list

file optext.erl (if requested).

For compatibility with future TASKING Cross-Software the following

extensions are suggested:

.lib object libraries files in archive format

.src output from the string macro preprocessor m166

.obj relocatable object files

.asm input assembly source file for m166

.lno relocatable output files from l166 in link stage

.out absolute output files from l166 in locate stage

.ili invocation files for l166 in link stage

.ilo invocation files for l166 in locate stage

1.8 MACRO PREPROCESSING

For a description of the possibilities offered by the string macro

preprocessor see the chapter Macro Preprocessor. In this section we shall

merely show how it can be used in conjunction with the assembler.

The simplest call to m166 is:

m166 optext.asm

The result of this command is that the file optext.src will be created.

Overview 1–21

• • • • • • • •

1.9 ASSEMBLER LISTING

The assembler generates a listing file by default. As a result of the

command:

a166 optext.src

the listing file optext.lst is created. If a listing is not desired the

NOPRINT control can be used. For example:

a166 optext.src NOPRINT

To redirect the listing information to another file the PRINT control is

available. For example:

a166 optext.src PRINT(list.lst)

1.10 ERROR MESSAGES

Error messages from the cross-assembler are sent to the standard error

device and written in the list file. If severe errors occur in one of the first

two passes the error messages only occur on the standard error device

because the assembler aborts before the third pass. It may however be

useful to have a (not yet complete) list file of these first phases with the

error messages inserted on the place where they occurred. This can be

done using the LISTALL control.

If this control is specified the assembler creates a listing file in every

phase. If a phase ends successfully, the listing file will be overwritten in

the next phase.

1.11 SYMBOLIC DEBUGGING

To facilitate debugging, the programmer can decide how much symbolic

debugging information to include in the load file. The following categories

of information are available:

1) PUBLIC names

2) GLOBAL names

3) local names

4) names defined in ?SYMB directives

5) records for ?LINE and ?FILE directives

6) section names, class names and group names

Chapter 11–22
O
V
E
R
V
IE
W

See the debugging controls: SYMB/NOSYMB, LOCALS/NOLOCALS and

LINES/NOLINES in the chapter Assembler Controls and the debugging

directives ?SYMB, ?LINE, ?FILE in the chapter Assembler Directives for

more information on symbolic debugging.

1.12 COMMAND LINE PROCESSING

This section contains a description of the use of batch files and UNIX

scripts. The use of Makefiles is explained in the chapter Utilities.

1.12.1 BATCH FILES

Batch files are a facility on the PC whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

m166 ifile .asm
a166 ifile .src LISTALL PRINT(listfile)

The files ifile and listfile vary from one call to the next. To reduce the

number of calls, you can make a batch file, for example, proj166.bat .

Whatever the batch file is called it must end with the file extension .bat .

The file should contain:

m166 %1.asm
a166 %1.src LISTALL PRINT(%2)

On invocation %1 and %2 will be replaced by the first and second

parameters after the batch file name. Using the name mentioned above

(proj166 - note that the file extension .bat is not needed for

invocation) the call becomes:

proj166 ifile listfile

DOS will return on the screen the actual command line executed, with all

the parameters expanded to the values used.

Overview 1–23

• • • • • • • •

1.12.2 UNIX SCRIPTS

Scripts are a facility within UNIX whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

m166 ifile .asm
a166 ifile .src LISTALL PRINT(listfile)

The files ifile and listfile vary from one call to the next. To reduce the

number of calls, you can make a script, for example, proj166 . The file

should contain:

m166 $1.asm
a166 $1.src LISTALL PRINT($2)

On invocation $1 and $2 will be replaced by the first and second

parameters after the script file name. Using the name mentioned above

(proj166) the call becomes:

sh proj166 ifile listfile

Chapter 11–24
O
V
E
R
V
IE
W

2

SOFTWARE
CONCEPT

C
H

A
P

T
E

R

Chapter 22–2
C
O
N
C
E
P
T

2

C
H

A
P

T
E

R

Software Concept 2–3

• • • • • • • •

2.1 THE MODULAR CONCEPT

2.1.1 MODULAR PROGRAMMING

The tools for the C166/ST10 program development enables the user to

program in a modular fashion. The following sections explain the basics of

modular program development.

The Advantages of Modular Programming

Many programs are too long or complex to write as a single unit.

Programming becomes much simpler when the code is divided into small

functional units. Modular programs are usually easier to code, debug and

change than monolithic programs.

The modular approach to programming is similar to the design of

hardware that contains numerous circuits. The device or program is

logically divided into 'black boxes' with specific inputs and outputs. Once

the interfaces between the units have been defined, detailed design of

each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach

since small subprograms are easier to understand, design and test than

large programs. With the module inputs and outputs defined, the

programmer can supply the needed input and verify the correctness of the

module by examining the output. The separate modules are then linked

and located into one program module. Finally, the completed module is

tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular

programming allows these sections to be saved for future use. Because the

code is relocatable, saved modules can be linked to any program which

fulfills their input and output requirements. With monolithic programming,

such sections of code are buried inside the program and are not so

available for use by other programs.

Chapter 22–4
C
O
N
C
E
P
T

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs.

Because of the well-defined module interfaces of the program, problems

can be isolated to specific modules. Once the faulty module has been

identified, fixing the problem is considerably simpler. When a program

must be modified, modular programming simplifies the job. New or

debugged modules can be linked to the existing program with the

confidence that the rest of the program will not be changed.

2.1.2 MODULAR PROGRAMMING WITH C166/ST10

TOOLCHAIN

The TASKING C166/ST10 toolchain supports modular programming

techniques with the following features and elements:

Include Capability

Source text parts occurring in the same form in several modules can be

externally stored in files and, by means of $INCLUDE controls, included in

the assembly in each module precisely where they are required.

Macro Capability

The M166 macro preprocessor offers the possibility to combine frequently

used instruction sequences and to define them as macro instructions. For a

software development project, a macro library in the form of include files

to be used by the entire development team can be set up. In addition,

conditional assembly can be implemented via macro variables and macro

control structures.

Library Management

Modules with uniquely defined input and output declarations which have

already been compiled and tested and are to be used in several programs

can be stored in library files. The use of libraries permits a program to be

assembled using a major amount of 'finished parts' (library modules), thus

significantly reducing the error rate and the testing effort during

development.

Software Concept 2–5

• • • • • • • •

Tasks

The software implementation of a task concept (see section 2.4 The Task
Concept) aids the user in programming such program parts that fulfill a

closely confined task as a unit. In general, these are responses of the

application system to events reported by peripherals to the CPU. As a rule,

such events are independent of each other and may require different

system response times. Programming under the aspect of tasks therefore

ensures a better logical separation and event-specific responses adjusted

to the variety of tasks of a complex application system.

Procedures

In order to optimize the logical/functional structuring of a program, code

fragments can be combined and defined in the form of procedures. Each

procedure fulfills a small partial function which may be required at several

points within a program. At such points, the procedure is simply invoked

via a call instruction. Since procedures have defined input and output

interfaces, they can be individually compiled and tested within a module.

Sections

The modular approach is based on the idea of relocatable code. In order

to prevent data definitions and parts of code from being assigned to

absolute memory addresses during the development of the source text,

they can be integrated within relocatable sections. In a section, only the

relative position of the data and/or code to the respective section basis is

defined. A section as a compact unit, however, remains freely relocatable

within the entire addressable memory space until locate-time.

Groups

Memory accesses are accomplished by means of a base address and an

associated offset. Therefore, memory cells containing several sections

located in the same page or the same segment, respectively, can be

addressed using the same base address. The group directives permit

several sections to be already combined during programming so that they

will be located into the same page or segment without affecting the

relocatability of the entire group. Sections contained in a group need not

be individually specified at locate-time. A group can be located as a

compact unit.

Chapter 22–6
C
O
N
C
E
P
T

Classes

Combining several sections to form a class offers another possibility of

chaining sections in spite of their relocatability. Class membership means

that the sections are stored near to each other in the memory by the

locator. Other than groups, classes may contain sections of different types

(DATA, CODE, BIT), and page or segment boundaries may be exceeded.

All sections belonging to one class can be located as a unit under the class

name.

2.1.3 MODULE STRUCTURE

An assembler source module is a finite sequence of assembler statements

which are, as a whole, compiled to an object module. The assembler

source module thus represents the compilation unit of the assembler. The

object module is the smallest unit that can be processed by the linker.

Generally speaking, a module is to be understood as a program part that

can be independently compiled, managed, and tested.

A modular program consists of several modules. A set of modules can be

combined to a larger module, a task.

The term 'task' is explained in section 2.4.

Each source text file specified as an input file to A166 must be a source

module. A source module is identified by a name which may be specified

in the NAME directive. In the absence of a NAME directive, the file name

of the source module (without extension) is entered in the object module

format as the module name. A source module is composed of statement

lines and ends with an END directive. Any text lines after the END

directive are ignored during assembly. A module contains one or more

sections. The module definition (NAME-END) determines the scope of

local symbols. Include files are pure text files and must not have the

structure of a source module. The include files are inserted as text blocks

in the text of a source module by the macro preprocessor.

Source modules cannot be nested. Each compilation unit may contain only

one NAME directive and one END drive.

Software Concept 2–7

• • • • • • • •

2.1.4 CONNECTIONS BETWEEN MODULES

The subdivision of a program into modules presumes that connections

between modules are possible and that data and code of one module can

be accessed from another module. Such connections are implemented in

the TASKING C166/ST10 toolchain via assembler directives EXTERN,

PUBLIC and GLOBAL. Before externally defined variables, labels,

constants, subprograms or interrupt numbers can be accessed, the

respective names and their type must be declared by means of the

EXTERN directive. The EXTERN directive represents only one part of a

module connection. Its counterpart is a PUBLIC or GLOBAL directive.

Variables, labels, constants or subprograms which are accessed from other

modules as well must be made know beyond the module boundary by

means of PUBLIC or GLOBAL directives. The scope of PUBLIC declared

symbols is the task (all modules of the task). The scope of GLOBAL

declared symbols is the entire system.

If modules are viewed as independent blocks, then module connections

should be regarded as, for example combination plug connections with

ductile cables on these blocks. A connection can be set up only if the two

plug elements show the same 'pin allocation', i.e. the same combination

code with identical names and types. The ductile cables permit the blocks

to be relocated to each other.

Note in this context that the name of an interrupt number and the name of

a task procedure are automatically declared GLOBAL by A166.

The validity of module connections can, therefore, be checked only

outside of the compilation process, not until link-time for

EXTERN/PUBLIC and not until locate-time for EXTERN/GLOBAL.

2.2 PROCEDURES

The subroutine concept is one of the essential characteristics of efficient

programming. It permits a sequence of instructions to be combined to

form a procedure (subroutine) which may be called and executed at any

point in another program.

On the hardware side, the procedure concept is supported by the

processor via several CALL and RET instructions as well as the stack

management instructions PUSH; POP; SCXT; MOV [-Rm],Rn;

MOV Rn,[Rm+]. The last two instructions provide an easy means of setting

up a user stack in addition to the system stack.

Chapter 22–8
C
O
N
C
E
P
T

In support of the procedure concept. A166 provides language elements

which significantly facilitate programming with procedures.

2.2.1 DEFINING A PROCEDURE

The PROC/ENDP directive permits all instructions delimited by this

directive to be combined and defined as a procedure. The symbolic name

generated by the procedure definition can be used in all CALL instructions.

A166 provides only one CALL instruction covering all types of procedure

calls. A166 automatically determines the required call instruction type from

the combination of operands, type of procedure name, and call context.

Procedures may have several entry points. These entry points are defined

as labels, using the LABEL directive if required. These labels must be of

the same type as the procedure in which they are defined. They can be

used in CALL instructions in much the same way as a procedure name.

In theory, procedures may be nested to any depth desired. The only

restriction imposed in this respect is the size of the system stack.

2.2.2 PROCEDURE INTERFACES

A procedure should have a uniquely defined interface within its

environment and access registers and data only via this interface. In order

to meet this requirement, local registers must be made available within the

procedure. The TASKING C166/ST10 toolchain concept offers several

possibilities for this purpose:

- At the beginning of the procedure, the locally required registers are

saved on the stack, and the original values are restored prior to

exiting the procedure. For General Purpose Registers, the user stack

may be used.

- A new register bank for local use within the procedure is defined

on the system stack. For supplying parameters to a procedure,

register of the system stack or a user stack may be used

alternatively. (For more details, see section Procedure Call Entry
and Exit in the User's Manual for the C166)

For supplying parameters to procedures it is helpful if not only the actual

data but also pointers to data can be supplied.

Software Concept 2–9

• • • • • • • •

In order to facilitate the generation of pointers, the assembler directives

DSPTR, DPPTR and DBPTR have been created. These directives serve to

define pointers to procedures (DSPTR) and variables of type WORD

(DPPTR), BYTE (DPPTR), and BIT (DBPTR).

The C166 supports no instructions to use these kind of full qualified

pointers directly. The access to data via this must be implemented by user

written macros. In order to minimize the system stack load, a user stack is

recommended for supplying the parameters in the case of deeply nested

procedures.

2.2.3 PROCEDURE TYPES

Due to code addressing via CSP (Code Segment Pointer) or IP (Instruction

Pointer), a distinction must be made as to wether at the time of a

procedure call the called procedure resides in the current segment or in a

different segment. Depending on the location of the procedure relative to

the calling program, the CSP register in addition to the current IP, may

have to be saved on the system stack as the return address. If a different

segment is addressed by a CALL instruction, this is referred to as a

FAR-CALL. A CALL within the same segment is designated as NEAR-CALL.

The called procedure must also be of type FAR or NEAR, in accordance

with the CALL type. The type of the return instruction is implicitly

determined by the type of the procedure.

It is a prerequisite to modular programming that the modules can be

compiled separately and linked at some later time. As a result of

relocatability, the memory segment in which a procedure will be placed is

not defined until locate-time. In order to fully preserve this freedom in

program assembly, type FAR must be defined for any procedure intended

for general use.

Chapter 22–10
C
O
N
C
E
P
T

2.3 INTERRUPT CONCEPTS

The 80C166 microcontroller is a processor essentially developed for

control and monitoring functions. The nature of these functions requires

that the processor must be able to respond to events occurring at

unpredictable times within a defined time period. On the hardware side, a

priority-controlled interrupt management has been implemented in

support of this requirement. An event can thus request the processor via

an interrupt. In such a case, depending on the priority, the processor will

interrupt its current program and execute a subroutine which contains the

absolutely required, time-critical processing. After that, the interrupted

program is resumed, As a rule, the response to an external event is an

independent program which can be executed at any time without

significantly influencing the remaining activities of the processor.

Since the introduction of the 80C166 development tools have been

available from Infineon. With these tools the Infineon Task Concept is

introduced, an interrupt concept which is closely related to the

architecture of the processor. For compatibility reasons the TASKING

C166/ST10 toolchain supports the Task Concept since its introduction.

With the Task Concept it is possible to introduce a high grade of

modularity and code-reusability. However, for some users (used to the

interrupt concepts of other tools) the Task Concept might be too

restrictive. For this reason TASKING introduced the Flat Interrupt concept.

The following sections describe both the Task concept and the Flat

Interrupt concept. It is recommended to read the section about the Task

concept first, because the Flat Interrupt concept embodies also many

aspects of the Task concept. It is possible that you use a mixture of both

concepts. For users strictly following the Task concept, the control

STRICTTASK must be supplied to assembler, linker and locator stage.

Software Concept 2–11

• • • • • • • •

2.4 THE TASK CONCEPT

This section describes the strict definition of the Task concept, which

means that the STRICTTASK control is set for assembling, linking and

locating. Without this control, it is still possible to follow the Task concept,

but the assembler and linker/locator will not check if a task has all

attributes it should have.

A task in the TASKING C166/ST10 toolchain software concept is to be

understood as an independent program part which fulfills a closely

confined function and operates within its own environment (CSP, IP, PSW,

GPRs). Quasi-multitasking, with several tasks using the processor in

accordance with their priorities, has been implemented based on the

priority-controlled interrupt management of the processor.

From the perspective of the processor, a task is defined by its interrupt

number, its own register bank (GPRs), and its PSW, CSP, and IP.

2.4.1 HARDWARE SUPPORT OF TASKS

The C166 microcontroller supports software structuring via tasks by

offering the following features:

- Separate register bank for each task.

- PSW, CSP, and IP are automatically saved on the system stack

during interrupt processing.

- Interrupt vector table for up to 127 functions, divided in system

traps, hardware interrupts and software traps.

- Calling of a task via software using the special instruction TRAP.

- Context switching (switching of register banks) using the special

instruction SCXT.

- Background servicing of an interrupt request with the PEC

(Peripheral Event Controller) if simple data transfers are involved.

- Local register banks. (C166S v2.0 / Super10 only)

Since the CPU only initiates a task and provides a register bank, the user is

offered language elements that permit the convenient and flexible

allocation and management of the processor resources.

Chapter 22–12
C
O
N
C
E
P
T

2.4.2 SOFTWARE SUPPORT OF TASKS

The TASKING C166/ST10 toolchain provides the programmer with the

following additional language capabilities:

- A register bank with up to 16 registers can be allocated to task

(REGBANK Directive).

- Register banks may overlap, thus permitting intertask

communication via registers.

- The absolute location of the register bank need not be defined

until locate-time.

- A task is defined by means of an interrupt procedure. When a task

is defined, it can be assigned a symbolic name and a symbolic

interrupt number.

- A task can be activated within another task via the symbolic

interrupt number.

- The allocation of a symbolic interrupt number to a physical

interrupt number need not take place until locate-time.

- Intertask communication is available via COMMON data areas.

- The scope of symbolic names and addresses can be extended

beyond task boundaries by means of the GLOBAL directive. This

permits data and code to be accessed beyond task boundaries.

- Procedures used by one task only, can be stored and managed as

relocatable modules in designated application libraries (public

libraries).

- A validity check of the allocation of processor resources is

performed at locate-time.

When programming strictly in the Task concept (STRICTTASK control)

with several tasks, the following restrictions should be noted:

- Only one task (interrupt procedure) may be programmed per

source module.

- Only one register bank may be defined per task.

The hierarchical level of a task is between a system and a procedure.

There is only one task possible within a module.

A program which contains tasks has the following structure:

Software Concept 2–13

• • • • • • • •

Physical Structure Logical Structure

System

Task

Procedure

Program

Module

Section

. . .

. . .

. . .

. . .

Figure 2-1: Physical and Logical Structure

2.4.3 STRUCTURE OF A TASK

A task is composed of a source main module and possibly several source

submodules which can be individually programmed and compiled to

relocatable object modules.

2.4.3.1 SOFTWARE DEFINITION OF A TASK

A task is defined in a main module. This main module must contain one

(and only one) interrupt procedure definition. By means of the interrupt

procedure definition, a symbolic start address, a symbolic name, and an

interrupt number can be defined for a task. A symbolic name or an

absolute number may be alternatively specified as the interrupt number.

The procedure name of a task and the name of the interrupt number (task

number) are automatically declared GLOBAL by the assembler.

Chapter 22–14
C
O
N
C
E
P
T

Example:

TSKPROC PROC TASK TSKNAME INTNO = TSKNR
 .
 .
RET

TSKPROC ENDP

In addition to interrupt procedure, the task name and the task number, a

register bank must be defined for a task. The register bank definition

should be in the main module, but may also be contained in one of the

submodules.

2.4.3.2 ATTRIBUTES OF A TASK

A task accordingly has the following attributes:

- Task name

- Task number (interrupt number)

- Task start address

- Register bank

The task name is a user defined name for a task.

The task number serves to allocate a task to a specific interrupt number

(trap number or peripheral unit, respectively).

The start address of a task is required for initializing the interrupt vector

table. This table is part of the hardware-based interrupt handling. The

interrupt number is used by the hardware as an index of that table in

order to access the start address of a task. The vector table can be set up

automatically by the locator or via a separate initialization task.

The register bank of a task is the actual working area of a task. Each task

has its own working area (register bank). It is, therefore, not necessary to

save the contents of the working registers (GPRs) of a task when switching

to another task via an interrupt.

Software Concept 2–15

• • • • • • • •

All attributes of a task (except the task name to which no address or value

corresponds) are relocatable; a task can, therefore, be programmed as an

unit available for general use. It is not until locate-time that a task is

assigned, via its attributes, to the processor resources (internal RAM,

interrupt vector table). For special programming tasks, however, it is

possible to absolutely define the attributes already in the assembler. The

submodules of a task contain procedures which are, in general, used only

in this task. Each submodule contains a register bank declaration. This

declaration (REGBANK without name) notifies the assembler as to the

register configuration of the register bank defined in the main module. In

this manner, you can check already at assembly time whether only

registers belonging to this task have been used. If more registers have

been used, the linker issues a warning and expands the register bank to

the correct length.

Example:

Register definition in the main module:

RBAST1 REGBANK R0 – R9

Register declaration in the submodules:

REGBANK R0 – R9

All modules of a task are linked by the linker to a larger relocatable 'task

module'. Thus after the linker run, only one module exists for each task.

The locator fulfills the function of linking several tasks, distributing the

processor resources and generating one program module from all input

modules.

2.4.4 CONNECTIONS BETWEEN TASKS

Several tasks can communicate with each other by using shared data.

Access can also be made from one task to the data and code of another

task by COMMON sections. Fast access to data can be performed by

COMREG registers.

Chapter 22–16
C
O
N
C
E
P
T

To permit access to a name defined in a task from outside of this task, this

name must be declared GLOBAL. The GLOBAL declaration extends the

scope of a name from the local level to the program level. In contrast, a

PUBLIC declaration is an extension of the scope of a name from a local

level to a task level (a PUBLIC name cannot be accessed outside of a task).

As such, a connection between tasks is produced via an EXTERN-

GLOBAL declaration.

2.4.4.1 EXTERN-GLOBAL CONNECTION

If, in a module belonging to a task, access is to be made to a name not

defined in this module, this name and its type must be reported to the

assembler via the EXTERN directive. No distinction is made as to wether

this name has been defined in another module of the same task or in

another task.

If, on the other hand, a name defined in a module of a specific task is to

be made available to other tasks, this name must to be made know

beyond the module and task boundaries via the GLOBAL directive. A

name declared GLOBAL can be accessed from any module of any task via

an appropriate EXTERN declaration.

When a name is reported to the assembler via EXTERN directive, a

decision cannot be made whether this connection is to be resolved with a

suitable PUBLIC or GLOBAL declaration of this name. To have control

over resolving EXTERN connections, a name that is declared GLOBAL

must to be declared PUBLIC in any other module or task.

Software Concept 2–17

• • • • • • • •

Example EXTERN-PUBLIC/ EXTERN-GLOBAL Connection.

Module A, Task A

PUBLIC AVAR ; AVAR is declared public
; AVAR can only be accessed
; in Task A

GLOBAL BVAR ; BVAR is declared global
; BVAR can be accessed in
; any Task

DSEC SECTION DATA
.
.

AVAR DW 8 ; AVAR is defined here
BVAR DB 4 ; BVAR is defined here

.
DSEC ENDS

CSEC SECTION CODE
ASSUME DPP2:AVAR
.

CSEC ENDS

Module B, Task A

EXTERN DPP2:AVAR:WORD ; extern declaration

CSEC SECTION CODE
.
.
MOV R0, AVAR ; AVAR is used here
.

CSEC ENDS

Module A, Task B

EXTERN BVAR:BYTE ; extern declaration

CSEC SECTION CODE
.
.
MOV R0, BVAR ; BVAR is used here
.

CSEC ENDS

Chapter 22–18
C
O
N
C
E
P
T

2.4.4.2 COMMON SECTIONS

Sections with equal names and the combine type common in several tasks

will be placed by the locator at the same start address. These sections must

have an identical length and must not belong to different classes. They

may belong to a group if this group consists of only common sections.

Common sections can be used to share data or code within several tasks.

Example with COMMON sections:

Module task1.src :

EXTERN COMDAT:WORD
RBANK2 REGDEF R0

CSEC1 SECTION CODE
PROC1 PROC TASK TASK1 INTNO=1

MOV R0, COMDAT ; access to common data
RET

PROC1 ENDP
CSEC1 ENDS

END

Module task2.src :

EXTERN COMDAT:WORD
RBANK2 REGDEF R0

CSEC2 SECTION CODE
PROC2 PROC TASK TASK2 INTNO=2

MOV COMDAT, R0 ; access to common data
RET

PROC2 ENDP
CSEC2 ENDS

END

Module common.src :

PUBLIC COMDAT

COMSEC SECTION DATA WORD COMMON
COMDAT DSW 1 ; storage for 1 word
COMSEC ENDS

END

Software Concept 2–19

• • • • • • • •

All three modules are assembled. The two tasks are linked and located as

follows:

l166 LINK task1.src common.src TO task1.lno
l166 LINK task2.src common.src TO task2.lno
l166 LOCATE task1.lno task2.lno TO common.out

When locating, COMMON sections with equal names are overlapped, i.e.

located at the same address. In the example this means that the label

COMDAT is located at the same address for both tasks, thus creating a data

area which can be accessed from both tasks.

2.4.4.3 COMMON REGISTERS

Several tasks can communicate with each other via common register

ranges as well. The common register ranges are defined in the COMREG

directive. If tasks are to access common registers, the COMREG ranges

defined in the tasks must be equal in size. See also the COMREG directive

in the chapter Assembler Directives.

2.4.4.4 SAME MODULE IN SEVERAL TASKS

In addition, the same task module can be located into several tasks. For

this purpose, the procedure name of task, the interrupt number, and the

EXTERN names, if any, must be renamed at locate-time with the RENAME

control, so that the allocation to the desired GLOBAL names and the entry

of the start address in the interrupt vector table are made unambiguous.

Chapter 22–20
C
O
N
C
E
P
T

2.5 THE FLAT INTERRUPT CONCEPT

This section describes the differences between the Flat Interrupt concept

and the Task concept. It is recommended that you first read section 2.4,

The Task Concept.

In this interrupt concept the public scope level is not used. This means

that the link stage can be skipped. All assembler generated object files and

libraries are directly input for the locate stage. This implies that the public

level remains local within the assembly source modules. By means of the

locator control PUBTOGLB you can 'flatten' the object files, i.e. promoting

the public scope level to global. This means that an interrupt procedure in

the Flat Interrupt concept can easily share code, data and register banks

with other interrupt procedures.

It is still possible to combine a set of modules with interrupt functions (e.g.

having the same interrupt level) to one larger (linker-)object module with

its code and data unaccessible for other modules of the application. This

larger module is build by the linker stage and can be compared with the

modules formed by a task in the Task Concept. But in the Flat Interrupt

concept the restrictions stated for the Task concept do not exist. So:

- unlimited number of interrupt procedures per source module may

be programmed.

- you are allowed to define an unlimited number of register banks

per source module

In the Task concept register banks with equal names are treated as

different register banks. In the Flat Interrupt concept register banks with

equal names are treated as the same register bank. The linker or locator

will issue a warning when register banks with equal names do not have

equal definition and the definitions are combined.

Summarized the following rules determine which concept is used:

- when assembler, linker and locator stage are invoked with the

STRICTTASK control and the PUBTOGLB control is not used, the

Task concept is followed.

- when the PUBTOGLB control is used for all input modules of the

locator and the STRICTTASK control is never used, the Flat Interrupt

concept is followed.

- if none of the two rules mentioned above is fully fulfilled, a mixture

of both concepts is used.

Software Concept 2–21

• • • • • • • •

The following figures show examples of an application built with both

concepts and an example mixing both concepts.

Example

appl.

a b c d e

X Y

Figure 2-2: Example: Task Concept

The Task concept: The application consists of two tasks X and Y. Each task

consists of several assembly modules (a, b, c , d and e). In this example

module a defines the Task procedure for task X and module d defines the

Task procedure for task Y. The invocations of assembler linker and locator

looks like:

a166 a.src STRICTTASK
a166 b.src STRICTTASK
a166 c.src STRICTTASK
a166 d.src STRICTTASK
a166 e.src STRICTTASK
l166 LINK STRICTTASK a.obj b.obj c.obj TO x.lno
l166 LINK STRICTTASK d.obj e.obj TO y.lno
l166 LOCATE STRICTTASK x.lno y.lno TO appl.out

Example

appl.

a b c d e

Figure 2-3: Example: Flat Interrupt Concept

Chapter 22–22
C
O
N
C
E
P
T

The Flat Interrupt concept: the application consists of five assembly

modules (a to e). Module a and d contain definitions of interrupt

procedures. The invocations of assembler and locator looks like:

a166 a.src
a166 b.src
a166 c.src
a166 d.src
a166 e.src
l166 LOCATE PUBTOGLB a.obj b.obj c.obj d.obj e.obj

TO appl.out

Example

appl.

a b c d e

X

Figure 2-4: Example: Mixed Concepts

Mixed concepts: the application consists of task X and module d and e.

The task X consists of modules a, b, and c . Module a and module d
contain interrupt procedures. The invocations of assembler linker and

locator looks like:

a166 a.src
a166 b.src
a166 c.src
a166 d.src
a166 e.src
l166 LINK a.obj b.obj c.obj TO x.lno
l166 LOCATE x.lno d.obj PUBTOGLB e.obj PUBTOGLB

TO appl.out

Software Concept 2–23

• • • • • • • •

2.6 LOGICAL MEMORY SEGMENTATION (SECTION,

GROUP, AND CLASS)

The C166 microcontroller can directly address 256 Kbytes. This memory

area is addressed by the CPU via one code segment and four data pages.

The segment and the 4 data pages have the effect of a mask placed on the

full 256 Kbytes memory area. This means that the CPU can, at any

particular time, address only those memory areas visible through this

mask.

For code accesses, the entire address range is divided into 4 segments of

64 Kbytes each. The segments are identified by segment numbers 0 to 3. A

segment number represents the two highest-order bits of the physical start

address of the segment concerned. The segment number of the current

segment is stored in the register CSP.

For data accesses the entire address range is divided into 16 pages of 16

Kbytes each. The pages are identified by page numbers 0 to 15. A page

number is represented by the 4 highest-order bits of the physical start

address of the page concerned. The page numbers of the four current

pages are stored in the registers DPP0 to DPP3.

Segment 0 is of particular significance, since the processor resources are

accommodated in this segment. For more details about the memory

organization in segment 0, see section Memory Organization in the User's

Manual for the C166.

2.6.1 THE TERM 'SECTION'

In order to implement the modular approach, it is required that this

hardware-based memory organization has a software equivalent that can

be used at the logical program development level. The equivalent of a

physical segment or a physical page, respectively, is the SECTION at the

logical level.

Chapter 22–24
C
O
N
C
E
P
T

2.6.1.1 ATTRIBUTES OF A SECTION

A section is defined in the assembler language via the SECTION/ENDS

directive. By means of the attributes of a section, such as 'section-type',

'align-type', 'combine-type', and 'class-name' any additional information

required for a section can be defined. The 'section-type' is used to allocate

a section to segment (CODE), to a page (DATA, PDAT or BIT), to a

sequence of pages (LDAT) or to all memory (HDAT). Specification of an

'align-type' permits a section to be aligned to byte or word boundaries or,

if required, to be located in a bit-addressable or PEC-addressable memory

area. The 'combine-type' specifies how sections with the same name,

which are defined in different modules, will be combined. Via a

'class-name' several sections can be combined to be physically located in

a definable memory range. This does not mean the sections to be

sequentially ordered in memory.

All data definitions and assembler instructions must be contained within a

section, with data definitions usually found in sections of type DATA,

PDAT, LDAT or HDAT and instructions in sections of type CODE. This

arrangement, however, is not mandatory. It is possible to define data in

sections of type CODE. However this results in restrictions (e.g. a page

boundary cannot be exceeded) of the (code) section attributes.

2.6.1.2 GENERATING ADDRESSES IN A SECTION

A section is to be regarded as a 'block' that is freely relocatable within the

memory. All addresses within a section are offsets relative to the section

base (section offset). Accordingly, a logical address is composed of two

parts: a section reference (section index) and a section offset. By means of

these two items of information, all addresses can be kept freely relocatable

until locate-time without affecting the logical connections to these

addresses.

It is not until locate-time that the absolute location of a section within a

physical address space is determined and the base address of a section is

thus defined. The base address is the physical address of the first byte of a

section and is composed of a page or segment number and an offset of

the section beginning relative to the beginning of this physical page or

segment. The locator generates the absolute address of a variable or a

label by removing from the section base the page or segment number,

respectively, and forming the physical page offset or segment offset,

respectively, from the remaining offset portion of the section base and the

section offset.

Software Concept 2–25

• • • • • • • •

All physical addresses within a page or a segment can be formed using the

same page number or segment number, respectively, and the appropriate

page offset or segment offset. On the logical side, all variables and labels

of a section have the same section base and their respective section offset.

To ensure an unambiguous relationship between the logical and the

physical address, a section of type DATA or PDAT must not exceed one

page (16 Kbytes), and a section of type CODE or LDAT must not exceed

one segment (64 Kbytes). Sections may consist of several parts defined

either in the same module or in different modules.

2.6.2 THE TERM 'GROUP'

An n:1 relationship exists between section and page or segment,

respectively. Several small sections may be located into the same segment.

It should be noted, however, that no section may exceed the page or

segment boundary when you want to combine sections to form a group.

All sections located in the same page or the same segment have the same

page or segment number in their base address. As a result, all addresses

from within sections located in the same page can be formed without

reloading, using the same DPP register, and all addresses from within

sections located in the same segment can be formed, without reloading,

using the CPS register. In order to make use of this physical aspect already

on the logical level during program development, A166 offers two group

directives (DGROUP, CGROUP). The GROUP directives permit several

sections from the same module or from different modules to be combined

to form a group. All sections belonging to the same group have the same

page or segment number, respectively. It should be noted that the total

size of a data group must not exceed 16 Kbytes, and the total size of a

code group must not exceed 64 Kbytes.

The use groups offers the advantage that a DPP register has to be loaded

only once for several sections and that, at locate-time, a group can be

managed as a whole.

Section names and group names can be used in instructions with

immediate addressing and represent the number of the page or segment in

which the respective section or group is contained. The DPP registers can

thus be reloaded with the page numbers of data sections or data groups.

Example:

MOV DPP0,#PAG DSEC ;DSEC is a section name
MOV DPP1,#PAG DATAGRP ;DATAGRP is a group name

Chapter 22–26
C
O
N
C
E
P
T

2.6.3 THE TERM 'CLASS'

Combining several sections to form a class (by specifying the same class

name in the section definitions) offers advantages similar to those of

groups. A class can be managed as a whole at locate-time. As distinct from

a group, a class may extend over several pages or segments, respectively.

The sections may, therefore, have different page or segment numbers. A

class name has no base and cannot be used for data initialization and

instructions. A class may contain sections of type DATA, LDAT, PDAT,

HDAT, BIT as well as sections of type CODE.

When combining sections to form groups and classes, special care should

be taken to avoid grouping conflicts. For example: If two sections

belonging to the same class are each defined in a group as well, a conflict

may arise at locate-time when an attempt is made to locate the groups

other than in sequential order.

Software Concept 2–27

• • • • • • • •

2.7 MEMORY MODELS

When working with the C166/ST10-assembler toolchain, a memory model

has to be chosen. Each memory model has a different approach of code

and data and a different maximum amount of code and data. The

assembler and locator have to be told which model is used by means of

controls. The limits and location depend on the setting of these controls.

For the assembly programmer there are three memory models (see

sections 2.7.3, 2.7.4 and 2.7.5). One model requires the CPU to run with

segmentation disabled, the others require the CPU to run with

segmentation enabled.

2.7.1 CPU MEMORY MODE

The 80166 CPU has two memory modes: segmentation enabled and

segmentation disabled. Which one is active depends on the SGTDIS bit in

the SYSCON register.

If the SGTDIS bit is '1', segmentation is disabled. The entire memory range

is restricted to 64 KBytes (segment 0) and all addresses can be

represented by 16 bits. Only the two least significant bits of the DPP

registers are used for physical address generation. The contents of the CSP

register is ignored. On interrupts the 80166 does not have to save the CSP

register and an extra port (Port 4) is available, because address line A16 -

A17 (or A16 - A23 for the C167) are not used.

If the SGTDIS bit is '0', the segmentation is enabled. The CSP register is

used to address code and the DPP registers are used to address data.

2.7.2 ASSEMBLER MEMORY MODELS

The assembler has two controls to control the memory model:

SEGMENTED/NONSEGMENTED

MODEL(model) where model is one of NONE, TINY,

SMALL, MEDIUM or LARGE

The NONSEGMENTED control initializes the assembler to use full 16 bit

addresses for data instruction operands. DPP-prefixes and the ASSUME

directive cannot be used. In NONSEGMENTED mode the assembler

accepts all types of sections.

Chapter 22–28
C
O
N
C
E
P
T

The SEGMENTED control initializes the assembler to use DPPs. The

assembler expects the use of DPP-prefixes or the ASSUME directive for

data addresses as instruction operands. The CPU runs in the segmented

mode. If the SEGMENTED control is set the assembler does not accept

LDAT and PDAT sections.

The MODEL control is introduced for C compiler support. This control

indicates the C166 memory model. The linker and locator check if all input

modules have the same model. Using NONE as model (default) never

causes any conflict with other models. Although this control is introduced

for C compiler support, the assembly programmer can use this control for

setting the SMALL model. The assembler and locator allow other memory

usage for the SMALL model. When using the SMALL model the CPU has to

run in the segmented mode. Other arguments (TINY, MEDIUM and

LARGE) for the MODEL control are only used for detecting model conflicts

while linking and locating C programs.

In general we can distinguish three models for the assembly programmer:

NONSEGMENTED: CPU non-segmented,

assembler segmented

NONSEGMENTED/SMALL: CPU segmented,

assembler non-segmented

SEGMENTED: CPU segmented,

assembler segmented

The properties of each model are described in the next sections.

2.7.3 NONSEGMENTED MEMORY MODEL

Assembler controls:

NONSEGMENTED

MODEL(NONE) or MODEL(TINY)

NONSEGMENTED and MODEL(NONE) are the defaults for the assembler.

CPU:

The CPU runs with segmentation disabled.

Software Concept 2–29

• • • • • • • •

Sections:

Type Approach Max.size Location

CODE segmented 64KB first segment

DATA paged 16KB first segment

LDAT linear 64KB first segment

HDAT non–paged 64KB first segment

PDAT paged 16KB first segment

Locator controls:

It is not possible to locate any sections outside the first segment. The

controls ADDRESSES, SETNOSGDPP and CLASSES do not accept addresses

outside the first segment.

C166 memory model:

This memory model is the 'tiny' model for C166.

Description:

The assembler uses full 16 bit addresses for addressing data with

instructions. It is not possible to use DPP-prefixes and the ASSUME

directive. And sections cannot be located at an address higher than

0FFFFh, because the CPU runs with segmentation disabled. The four DPP

registers contain 0, 1, 2 and 3. This makes it possible to cross page

boundaries without loading a DPP register for data access. LDAT sections

should be used for this purpose.

2.7.4 NONSEGMENTED/SMALL MEMORY MODEL

Assembler controls:

NONSEGMENTED

MODEL(SMALL)

CPU:

The CPU runs with segmentation enabled.

Chapter 22–30
C
O
N
C
E
P
T

Sections:

Type Approach Max.size Location

CODE segmented 64KB anywhere

DATA paged 16KB first segment

LDAT linear
or paged

64KB
16KB

anywhere
anywhere

HDAT non–paged – anywhere

PDAT paged 16KB anywhere

Locator controls:

To locate LDAT sections outside first segment, the controls ADDRESSES

LINEAR and SETNOSGDPP can be used. If SETNOSGDPP is used, all

LDAT sections are paged instead of linear.

C166 memory model:

This memory model is the 'small' model for C166.

Description:

For this memory model the assembler uses full 16 bit addresses for data

instruction operands. DPP-prefixes and the ASSUME directive cannot be

used. The CPU runs with segmentation enabled, which implies that DPPs

are used for addressing data anywhere in memory. However, the

assembler does not accept DPP-prefixes or the ASSUME directive, which

means the DPPs are used linear. The predefined assembler symbols

?BASE_DPP0, ?BASE_DPP1, ?BASE_DPP2 and ?BASE_DPP3 should be used

to initialize the DPP registers. These symbols are assigned by the locator to

the physical pages addressed with each DPP. The only sections which can

be addressed this way are LDAT sections. For addressing DATA, PDAT or

HDAT sections the DPP registers should be loaded correctly. For

addressing a label from a DATA, PDAT or HDAT section, it is

recommended to use DPP0 because the POF operator can be used for

making the two most significant bits, representing the DPP number, zero.

The POF operator replaces the DPP prefix, which is not allowed.

Example:

In this example the pdat_label is defined in a PDAT section. The same

construction can be used for labels which are defined in a DATA or HDAT

section.

Software Concept 2–31

• • • • • • • •

MOV DPP0, #PAG pdat_label ; load DPP0
MOV R0, POF pdat_label ; access data via DPP0
MOV DPP0, #PAG ?BASE_DPP0 ; restore DPP0
MOV DPP0, ldat_label ; access linear data

If all data (DATA, HDAT, LDAT and PDAT) is located in the first segment,

this way of addressing is not needed. In that case, the only advantage of

this memory model in is the possibility to locate code sections outside the

first segment.

The next three examples illustrate different ways the LDAT sections can be

located.

Map example I Map example II

256K

64K

0

LDAT

code

page 3

page 2

page 1

page 0

PDAT /
HDAT

DPP0

DPP1

DPP2

DPP3

256K

64K

0

LDAT

code

page 3

page 10

page 9

page 8 DPP0

DPP1

DPP2

DPP3

code
LDAT

code

code

PDAT /
HDAT

(Default) Using locate control:

 AD LINEAR(page 8)

LDAT sections can contain both RAM data and ROM data.

Chapter 22–32
C
O
N
C
E
P
T

Map

example III Using locate control:

 SND(DPP0(10), DPP1(12), DPP2(7))

256K

64K

0

LDAT

code

page 3

page 10

page 12

page 7

DPP1

DPP0

DPP2

DPP3

code

code

LDAT

code

LDAT

LDAT

PDAT /
HDAT

DATA sections in the NONSEGMENTED/SMALL memory model are equal

to PDAT sections, but restricted to the first segment.

2.7.5 SEGMENTED MEMORY MODEL

Assembler controls:

SEGMENTED

MODEL(NONE) or MODEL(MEDIUM) or MODEL(LARGE)

CPU:

The CPU runs with segmentation enabled.

Sections:

Type Approach Max.size Location

CODE segmented 64KB anywhere

DATA paged 16KB anywhere

LDAT n/a – –

Software Concept 2–33

• • • • • • • •

LocationMax.sizeApproachType

HDAT non–paged – anywhere

PDAT n/a – –

Locator controls:

In this memory model the assembler does not accept LDAT and PDAT

sections. Using the ADDRESSES LINEAR and SETNOSGDPP controls is not

allowed.

C166 memory model:

This memory model is the 'medium' or the 'large' model for C166. For the

assembly programmer there is no difference between those C-compiler

memory models.

Description:

The assembler expects the use of DPP-prefixes or the ASSUME directive

for data addresses as instruction operands. This also implies that the CPU

has to run with segmentation enabled. Because all addressing is done via

the DPP registers, LDAT sections can not be used in this memory model.

Like PDAT sections in the NONSEGMENTED/SMALL model, DATA sections

can be located anywhere in memory in the SEGMENTED MODEL.

Chapter 22–34
C
O
N
C
E
P
T

2.8 REGISTERS

The C166 contains two types of registers: GPRs (General Purpose

Registers) and SFRs (Special Function Registers). (For a detailed

explanation, see section Register Address Space in the User's Manual for

the C166)

2.8.1 LOCATION OF REGISTERS

Due to the architecture of the microcontroller, all registers are located in

the addressable memory space. The SFRs are located at hardware defined

addresses in the upper range of page 3 (segment 0). The location of the

GPRs can be defined by the user within the internal RAM by means of the

CP register (Context Pointer).

2.8.2 ACCESSING REGISTERS

For reasons of the technical design, several addressing modes have been

implemented for registers in order to achieve an instruction code as short

and as quick to execute as possible.

The SFRs are usually addressed via a register number (0 to 240). This

corresponds to the 'REG' operand type (see chapter Operands and
Expressions in this manual). Symbolic names which serve as placeholders

for the corresponding SFR numbers are available in the assembler for all

SFRs.

All SFRs can be accessed as words. Byte access is possible only to the

LOW byte,with the exception of GPRs R0 to R7, which are used as RL0,

RH0 to RL7, RH7. In addition, special attention should be paid to setting

the HIGH byte to 0 whenever a byte-oriented write access is made to the

LOW byte of a SFR (with the exception of the GPRs). All SFRs residing in

the bit-addressable range can be accessed as bits as well.

If the addressing mode cannot be unambiguously derived from the types

of the two operands of an instruction intended to access a SFR, a PTR

operator must be applied to one of the operands.

Software Concept 2–35

• • • • • • • •

The GPRs are, in general, accessed via a register offset (register numbers 0

to 15) relative to the CP (Context Pointer). This corresponds to the 'Rn'

operand type. The CP contains an absolute address in the internal RAM.

Starting at this address, 16 memory locations can be addressed as GPRs via

the appropriate register offsets. Symbolic register names which serve as

placeholders for the corresponding register offsets (register numbers) are

available in the assembler for the GPRs. The first eight GPRs can be

addressed as words (R0 to R7) or as bytes (RL0,RH0 to RL7,RH7). GPRs R8

to R15 can be addressed as words. This restriction is a result of the

compact operation code, since only 4 bits are available in the instruction

format for coding a register number. All GPRs can also be addressed as

bits, providing they reside in the bit-addressable range of the internal

RAM.

Two operand formats ('REG' and 'Rn') can be allocated to register names

R0 to R15 and RL0,RH0 to RL7,RH7. The assembler decides automatically

which of the two operand formats is required for a given instruction. If an

instruction permits both formats, the assembler chooses the format with

the shorter instruction code.

The instruction:

MOV R0,R1

permits, e.g., only the operand format Rn,Rm. In this case, the assembler

uses the addressing mode on CP and register numbers (R0=0, R1=1)

However, for the instruction:

MOV R3,#1234H

only the operand combination REG,#data16 is available. The assembler

converts the instruction to the format:

MOV (0F3H),#1234H.

if several operand combinations are possible, such as Rn,#data4 (4 bytes)

in the instruction:

MOV R4,#0EH

The assembler selects the addressing mode which generates the shorter

instruction code.

For further explanation, see section General Purpose Registers in the User's

Manual for the C166.

Chapter 22–36
C
O
N
C
E
P
T

As a result of their location in the addressable memory, all SFR registers

can also be addressed as normal memory locations via the appropriate

addresses. For this form of addressing it should be noted that, given an

operand of type 'MEM', the two highest-order bits identify a DPP register

and are not part of the absolute address.

The instruction:

MOV 0FEB0H,R0

loads e.g. the S0TBOF register. In order for this instruction to function

correctly, the value 3 for page 3 must be present in the DPP3 register. The

number 0FEB0H will be interpreted by the assembler in two parts: 11 -

11.1110.1011.0000Y (DPP and page offset).

2.8.3 REGISTER BANKS

The 16 GPRs that can be addressed via the same Context Pointer form a

unit called register bank. The location of a register bank can be

determined by the contents of the CP register (contains the base address

of the register bank).The size of a register bank is limited to a maximum of

16 registers, since a register number may occupy only 4 bits in the

instruction format. A register bank may also contain less than 16 registers.

If several register banks are used in a program, space can be saved by

defining the Context Pointers such that the register banks succeed one

another without gaps.

With register banks using less than 16 registers, this results in a possibility

of inadvertently altering the registers of the subsequent register bank. In

order to be able to discover such errors already during the development of

a program and to define register banks as relocatable units, the special

directives REGDEF, REGBANK and COMREG have been implemented in

the assembler.

2.8.3.1 DEFINING REGISTER BANKS

The register bank definition is an important component part of the task

concept.

The REGDEF and REGBANK directives offer the following possibilities:

Software Concept 2–37

• • • • • • • •

- Definition of a symbolic name for the register bank.

This symbolic name represents the base address of a register bank

and can be used to load the CP for the purpose of switching to the

appropriate register bank.

- The REGDEF or REGBANK directive can be used to both define and

declare a register bank. A REGDEF or REGBANK directive without a

name is regarded as a declaration. Register bank declarations are,

in general, used in submodules of a task to inform the assembler as

to the register configuration defined in the main module. It can thus

be checked wether only registers permitted in this task have been

used.

The REGDEF, REGBANK and COMREG directives offers the following

possibilities:

- Definition of the size and the range of a register bank.

A register bank can be subdivided into several ranges. These ranges

can be defined with the REGDEF, REGBANK or COMREG directives.

With REGBANK defined register ranges contain registers only

addressable within the respective register bank. Several register

banks may overlap via COMREG areas, thus permitting intertask

communication via register contained in this range.

Example:

REGBAS REGDEF R0–R5 PRIVATE, R6–R7 COMMON=COMAREA

Is the same as:

REGBAS REGBANK R0 – R5
COMAREA COMREG R6 – R7

A register bank defined using REGBANK is relocatable. The absolute

address of the register bank is not defined until later in the locator.

Although, when using COMREG ranges, a firm interconnection of the

register banks concerned is already established during development, this

combination as a whole remains relocatable.

Chapter 22–38
C
O
N
C
E
P
T

2.9 USE OF THE PEC (PERIPHERAL EVENT

CONTROLLER)

The 80C166 supports 8 PEC channels which permit interrupt controlled

data transfer (BYTE or WORD) from or to segment 0. A counter/control

register (located in the bit-addressable SFR range) and one target and

source pointer each (located in the bit-addressable RAM range

(0FDE0H-0FDFFH) belong to each channel. Since these PEC pointers are

not located in the SFR range, they can only be addressed as MEM type or

as GPRs.

Whenever the PEC is used, some of the upper 16 memory words in the

internal RAM are occupied. Depending on which channels are

programmed, open gaps remain in the memory area in which the PEC

pointer resides. In order to be able to fill such gaps with small

bit-addressable sections at locate-time, the locator must be notified as to

which channels are in use.

The PEC channels used are declared in the assembler by means of the

PECDEF directive. This information is passed on to the locator.

2.9.1 ADDRESSING AS MEM TYPE

If the PEC pointers are to be addressed with their system name, this can

only be done via DPPn. DPPn must be loaded with page number 3.

2.9.2 ADDRESSING AS GPRS

Since the PEC pointers are located in the internal RAM area, they can also

be addressed as GPRs.

For this purpose, the Context Pointer (CP) must be loaded with the

address of the SRCP0 (0FDE0H).

A PEC table (an area to which the PEC service writes data or from which it

reads data) can only located in segment 0. To ensure this, the PEC table

must be defined in a section with the align-type PECADDRESSABLE.

Software Concept 2–39

• • • • • • • •

2.10 DEFINING AND ADDRESSING MEMORY UNITS

The following data units can be defined in A166;

- Memory bits (1 bit)

- Memory bytes (8 bits)

- Memory words (16 bytes)

- Memory areas (n bytes)

- Memory areas (n words)

- Code pointers (2 words)

- Data pointers (2 words)

- Bit pointer (3 words)

2.10.1 BASIC DATA UNITS

2.10.1.1 DEFINING BASIC DATA UNITS

The basic data units of type bit, word, and area are used for the general

storage and management of data. They are defined via the memory

reservation directives DBIT (Define Bit), DB (Define Byte), DW (Define

Word), DDW (Define Double Word) and DS, DSB, DSW and DSDW

(Define Storage). When defining a memory unit, it may be given a

symbolic name representing the address of this memory unit. Byte, word

and area addresses are expressed by offsets in byte units. In sections of

DATA, LDAT, PDAT, HDAT and CODE, the location counter is counter in

byte units in ascending order. Bit addresses are expressed by offsets in bit

units. Consequently, DBIT directives may only be used in sections of type

BIT. In such sections, the location counter in bit units in ascending order.

2.10.1.2 ADDRESSING BASIC DATA UNITS

The symbolic names of basic data units can be used in assembler

instructions to access the addresses (immediate addressing mode) or the

contents (direct addressing mode) of the base data units (variables).

Chapter 22–40
C
O
N
C
E
P
T

Example:

MOV DPP0, #PAG WORDVAR ;Access to the address
MOV R0, #DPP0:WORDVAR ;of WORDVAR
MOV R1, [R0] ;Access to WORDVAR,

 ;indirectly via R0
MOV R2, DPP0:WORDVAR ;Direct access to WORDVAR
MOV BITVAR, R3.1 ;Direct access to BITVAR

2.10.2 VARIABLES AND LABELS

After registers, variables and labels are the two most referenced objects.

These objects are defined in a program. Variables refer to data items, areas

of memory where values are stored. Labels refer to sections of code that

may be JuMPed to or CALLed. Each variable and label has a unique name

in the program.

Variables

A variable can be defined through a data definition statement, the LABEL

directive or the BIT directive. Each variable has three attributes: section,

offset and type:

Section: This is the index to the section. It is a value that is a handle

to have access to the base address (start) of the section.

Offset: This is the offset (current location counter) of the variable or

label defined. It is a value that represents the distance in

bytes (or bits) from the base (start) of the section to the point

in memory where the variable is defined. In sections of type

BIT the offset is counted in bit units.

Type: This is the size of the data items in bytes. There are three

possible types:

BIT one bit

BYTE one byte

WORD one word

Labels

Labels define addresses for executable instructions. They represent a

'name' for a location in the code. This 'name' or label is a location that can

be JuMPed to or CALLed from. A label can be an operand of a JMP or

CALL instruction. A label can be defined in three ways:

Software Concept 2–41

• • • • • • • •

- a name followed by a ':' (e.g. LAB1:)

- a LABEL directive

- a PROC directive

Like a variable, a label has three attributes, two are the same as those of a

variable:

Section: Same as variable.

Offset: Same as variable.

Type: Specifies the type of JuMP or CALL that must be made to that

location. There are two types:

NEAR: This type represents a label that is accessed by a

JuMP or CALL that lies within the same physical

segment. In this case, only the offset of the label

is used in the JuMP or CALL instruction.

FAR: This type represents a label that is accessed

from a different segment. A far label is

represented in the JuMP or CALL instruction by

its offset and its segment number.

A special form of defining a label is the PROC directive. This form

specifies a sequence of code that is CALLed just as a subroutine in a

high-level language. The PROC directive defines a label with the type,

either NEAR or FAR. It also defines a context for the RET instruction so

that the assembler can determine the type of RET to code (either RET or a

RETS).

When you define a variable or label, the assembler stores its definition,

which includes the above attributes.

2.10.2.1 DEFINING CODE LABELS

'Code' labels can be defined by:

label:

or

label: {NEAR|FAR}

Chapter 22–42
C
O
N
C
E
P
T

or

label: instruction

label is a unique a166 identifier and instruction is an a166 instruction.

When used in DATA sections a166 reports a warning on. This label has

the following attributes:

Section: the index to the section being assembled.

Offset: the current value of the location counter.

Type: is NEAR if keyword NEAR is used.

is FAR if keyword FAR is used.

If no keyword is used, the type depends on the section type in which the

label is used:

- In CODE sections the 'Code' label type is specified by the PROC

type.

Example:

CSEC SECTION CODE
PR PROC NEAR; PROC type is NEAR
LABF:FAR ; Label type is FAR
ABC: RET ; Label type is NEAR
PR ENDP
CSEC ENDS

The label must be defined on an even address, otherwise a166

issues a warning and corrects it to the next even address.

- In DATA sections the 'Code' label type is always NEAR. a166

reports a warning.

Example:

DSEC SECTION DATA
LAB1: ; type NEAR, warning
AVAR DW 2
DESC ENDS

Software Concept 2–43

• • • • • • • •

2.10.2.2 DEFINING DATA LABELS

'Data' labels can be defined by:

label

or

label {BYTE | WORD}

label is a unique a166 identifier. When used in CODE sections a166

reports a warning. This label has the following attributes:

Section: the index to the section being assembled.

Offset: the current value of the location counter.

Type: is BYTE if keyword BYTE is used.

is WORD if keyword WORD is used.

If no keyword is used, the type depends on the section type in which the

label is used:

- In DATA sections the 'Data' label type is specified by the align-type

of SECTION.

Example:

DSEC SECTION DATA ; align type is WORD
LABA ; Label type is WORD
LABB BYTE ; Label type is BYTE
AVAR DB 2
DSEC ENDS

- In CODE sections the 'Data' label type is always WORD. a166

reports a warning.

Example:

CSEC SECTION CODE
PR PROC
LABA ; Label type is WORD

; warning
RET

PR ENDP
CSEC ENDS

Chapter 22–44
C
O
N
C
E
P
T

2.10.3 CONSTANTS

A constant is a pure number (binary, decimal, octal or hexadecimal) or an

expression-string (ASCII string of 0, 1 or 2 bytes length). See the sections

Number and Expression String in the chapter Operands and Expressions
for more information about numbers and expression strings.

2.10.4 POINTERS

Pointers are memory units in which complete physical addresses of

variables, labels or procedures are stored. Pointers serve to support the

procedure concept and are used essentially to supply parameters to

procedures. They are used in particular in conjunction with the C

compiler.

The A166 instruction set does not contain instructions for which pointer

can be used directly (as described below). Special instructions using this

type of pointer must be created as macro instructions by the user.

2.10.4.1 DEFINING POINTERS

Pointers can be defined in A166 by means of the memory addressing

directives DSPTR (Define Segment Pointer), DPPTR (Define Page Pointer),

and DBPTR (Define Bit Pointer). When a pointer is defined, it can be

assigned a symbolic name by which this pointer can be addressed. The

three types of pointers have the structures shown in the following

sections.

2.10.4.2 SEGMENT POINTERS

Segment pointers are 4 bytes (2 words) long and contain the physical

address of a label or procedure, subdivided into segment number and

segment offset.

segment offset
segment number

n
n + 2

Figure 2-5: Segment pointer

Software Concept 2–45

• • • • • • • •

2.10.4.3 PAGE POINTERS

Page pointers are 4 bytes (2 words) long and contain the physical address

of a variable of type BYTE or WORD, subdivided into page number and

page offset.

page offset
page number

n
n + 2

Figure 2-6: Page pointer

2.10.4.4 BIT POINTERS

Bit pointers are 6 bytes (3 words) long and contain the physical address of

a variable of type BIT, subdivided into page number, page offset and bit

offset.

bit position
page offset

n
n + 2

page numbern + 4

Figure 2-7: Bit pointer

Chapter 22–46
C
O
N
C
E
P
T

2.11 SCOPES OF SYMBOLIC NAMES

The TASKING C166/ST10 toolchain concept provides Two application

scopes (memory classes) for user-defined symbolic names:

- Local

- Public

- Global

2.11.1 SCOPE OF MEMORY CLASS LOCAL

A symbolic name of memory class LOCAL is know only within the module

in which the name was defined. All names defined in a module

automatically receive memory class LOCAL upon definition. The memory

class can only altered by means of the declaration directive PUBLIC and

GLOBAL. Identical 'local' names defined in different modules have no

connection with each other. In the debugger, locally defined names can

only be addressed in conjunction with the appropriate module name.

Symbolic names defined within a procedure are not only known within

the procedure; their scope of application is the entire module.

2.11.2 SCOPE OF MEMORY CLASS PUBLIC

A symbolic name of memory class PUBLIC is known only within the task,

including all modules of the task, in which this name was defined. In

order to allocate memory class PUBLIC to a symbolic name, this name

must be declared PUBLIC, using the PUBLIC directive, within the same

module in which it was defined. A symbolic name of memory class

PUBLIC implicitly has LOCAL validity as well.

The task-internal module connections EXTERN-PUBLIC are resolved by

the linker. Identical PUBLIC names defined in different tasks have no

connection with each other. In the debugger, public names can only be

addressed in conjunction with the appropriate task name.

Software Concept 2–47

• • • • • • • •

2.11.3 SCOPE OF MEMORY CLASS GLOBAL

A symbolic name of memory class GLOBAL is valid in every module of

every task. In order to allocate memory class GLOBAL to a symbolic name,

this name must be declared GLOBAL, using the GLOBAL directive, within

the same module in which it was defined. A symbolic name of memory

class GLOBAL implicitly has PUBLIC and LOCAL validity as well.

The intertask connections EXTERN-GLOBAL are resolved by the locate

stage of l166. GLOBAL names must be unambiguous within the entire

program. In the debugger, these names are directly addressable. To have

control over resolving EXTERN connections the name of a GLOBAL

symbol must not be made PUBLIC in any other module.

2.11.4 PROMOTING PUBLIC TO GLOBAL

By means of the locator control PUBTOGLB, abbreviated PTOG, the

PUBLIC scope level can be promoted to the GLOBAL scope level (i.e. all

PUBLIC names become GLOBAL). If this control is set all PUBLIC and

GLOBAL names must be unambiguous within the entire program. The

task-internal module connections now can be accessed from other

modules which means that the Task concept is not strictly followed.

Chapter 22–48
C
O
N
C
E
P
T

3

MACRO
PREPROCESSOR

C
H

A
P

T
E

R

Chapter 33–2
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

3

C
H

A
P

T
E

R

Macro Preprocessor 3–3

• • • • • • • •

3.1 INTRODUCTION

The macro preprocessor, m166, is a string manipulation tool which allows

you to write repeatedly used sections of code once and then insert that

code at several places in your program. m166 also handles conditional

assembly, assembly-time loops, console I/O and recursion.

The macro preprocessor is implemented as a separate program which

saves both time and space in an assembler, particularly for those programs

that do not use macros. m166 is compatible with Infineon syntax for the

C166 macro processing language (MPL). A user of macros must submit his

source input to the macro preprocessor. The macro preprocessor produces

one output file which can then be used as an input file to the a166

Cross-assembler.

The macro preprocessor regards its input file as a stream of characters, not

as a sequence of statements like the assembler does. The macro

preprocessor scans the input (source) file looking for macro calls. A

macro-call is a request to the macro preprocessor to replace the call

pattern of a built-in or user defined macro with its return value.

As soon as a macro call is encountered, the macro preprocessor expands

the call to its return value. The return value of a macro is the text that

replaces the macro call. This value is then placed in a temporary file, and

the macro preprocessor continues. The return value of some macros is the

null string, i.e., a character string containing no characters. So, when these

macros are called, the call is replaced by the null string on the output file,

and the assembler will never see any evidence of its presence. This is of

course particularly useful for conditional assembly.

This chapter documents m166 in several parts. First the invocation of

m166 and the controls you can use are described. The following sections

describe how to define and use your own macros, define the syntax and

describe the macro preprocessor's built-in functions. This chapter also

contains a section that is devoted to the advanced concepts of m166.

The first five sections give enough information to begin using the macro

preprocessor. However, sometimes a more exact understanding of m166's

operation is needed. The advanced concepts section should fill those

needs.

Chapter 33–4
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

At macro time, symbols, labels, predefined assembler symbols, EQU, and

SET symbols, and the location counter are not known. The macro

preprocessor does not recognize the assembly language. Similarly, at

assembly time, no information about macro symbols is known.

3.2 M166 INVOCATION

The PC command line invocation of m166 is:

m166 input-file [control-list] [TO output-file]
m166 -V

m166 -?

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

m166 ” -?” or m166 -\?

The input-file is an assembly source-file containing user-defined macros.

If you give no file extension the default .asm is taken.

The control-list is a subset of the controls specified in the next section.

The output-file is an assembly source file in which all user-defined macros

are replaced. This file is the input file for a166. It has the default file

extension of .src . m166 also generates an optional list file with default

file extension .mpl . The list file is only created when the PRINT control is

used.

Invocation with -V only displays a version header, while invocation with

-? shows the usage of m166.

3.3 ENVIRONMENT VARIABLES

m166 uses the following environment variables:

TMPDIR The directory used for temporary files. If this environment

variable is not set, the current directory is used.

M166INC The directory where include files can be found. See the

INCLUDE control for the use of include files.

Macro Preprocessor 3–5

• • • • • • • •

M166INC can contain more than one directory. Separate multiple

directories with ';' for PC (':' for UNIX).

Examples:

PC:

set TMPDIR=\tmp
set M166INC=c:\c166\include

UNIX:

if you use the Bourne shell (sh)

 TMPDIR=/tmp
 M166INC=/usr/local/c166/include
 export TMPDIR M166INC

if you use the C-shell (csh)

 setenv TMPDIR /tmp
 setenv M166INC /usr/local/c166/include

3.4 M166 CONTROLS

Like assembler controls the macro preprocessor controls can be classified

as primary or general.

Primary controls can be used at the command line and at the beginning

of the assembly source file.

General controls may appear anywhere in an assembly source file and

also on the command line. When specified on the command line, the

controls override the corresponding controls in the source file.

The controls that m166 encounters are listed on the next pages in

alphabetical order. Some controls have separate versions for turning an

option on or off. These controls are described together.

Chapter 33–6
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

3.4.1 OVERVIEW M166 CONTROLS

In the next table an overview is given of all controls that are encountered

by m166.

Control Abbr. Type Def. Description

CASE
NOCASE

CA
NOCA

pri
pri NOCA

All user names are case sensitive.
User names are not case sensitive.

CHECKUNDEFINED

NOCHECKUNDEFINED

CU
NOCU

pri

pri NOCU

Generated whenever an undefined
macro is used legaly.
Do not generate whenever an unde-
fined macro is used legaly.

DATE(’date’) DA pri system Set date in header of list file.

DEFINE(name
[,replacement])

DEF pri
1

Define a one line macro.

EJECT EJ gen Generate formfeed in list file.

ERRORPRINT [(err–file)]
NOERRORPRINT

EP
NOEP

pri
pri NOEP

Print errors to named file.
No error printing.

GEN
GENONLY
NOGEN

GE
GO
NOGE

gen
gen
gen

GE List macro def., calls and expansion.
List only expansion of macros.
List only macro definitions and calls.

INCLUDE(inc–file) IC gen Include named file.

LINE[(level)]
NOLINE

LN
NOLN

pri
pri

LN Generate #LINE in output file.
Do not generate #LINE in output file.

LIST
NOLIST

LI
NOLI

gen
gen

LI Resume listing.
Stop listing.

PAGELENGTH(length) PL pri 60 Set list page length.

PAGEWIDTH(width) PW pri 120 Set list page width.

PAGING
NOPAGING

PA
NOPA

pri
pri

PA Format print file into pages.
Do not format print file into pages.

PRINT[(print–file)]
NOPRINT

PR
NOPR

pri
pri NOPR

Define print file name.
Do not create a print file.

RESTORE
SAVE

RE
SA

gen
gen

Restore saved listing control.
Save listing control.

TABS(number) TA pri 8 Set list tab width.

TITLE (’title’) TT gen mod–
name

Set list page header title.

Macro Preprocessor 3–7

• • • • • • • •

DescriptionDef.TypeAbbr.Control

WARNING(number) WA pri 1 Set warning level.

Abbr.: Abbreviation of the control.
Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Table 3-1: m166 controls

3.4.2 DESCRIPTION OF M166 CONTROLS

CASE

Control :

CASE/NOCASE

Abbreviation :

CA/NOCA

Class :

Primary

Default :

NOCASE

Description :

Selects whether the macro preprocessor operates in case sensitive mode or

not. In case insensitive mode the macro preprocessor maps characters on

input to uppercase. (literal strings excluded).

Example :

m166 x.asm case ; m166 in case sensitive mode

Chapter 33–8
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

CHECKUNDEFINED/

NOCHECKUNDEFINED

Control :

CHECKUNDEFINED/NOCHECKUNDEFINED

Abbreviation :

CU/NOCU

Class :

Primary

Default :

NOCU

Description :

With the CHECKUNDEFINED control, a warning on level 2 can be

generated whenever an undefined macro is used legally. Such a macro will

be taken to be empty or of value 0 as usual.

Warning level 2 must be activated as well.

Example :

m166 undef.asm CU ”WA(2)” ; produce warnings for
undefined macro usage

Macro Preprocessor 3–9

• • • • • • • •

DATE

Control:

DATE('date')

Abbreviation:

DA

Class:

Primary

Default:

system date

Description:

m166 uses the specified date-string as the date in the header of the list

file. Only the first 11 characters of string are used. If less than 11 characters

are present, m166 pads them with blanks.

Examples:

; Nov 25 1992 in header of list file
m166 x.asm date(’Nov 25 1992’)

; 25–11–92 in header of list file
m166 x.asm da(’25–11–92’)

Chapter 33–10
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

DEFINE

Control:

DEFINE(name[,replacement])

Abbreviation:

DEF

Class:

Primary

Default:

-

Description:

With the DEFINE control you can define a one line macro with a control.

Controls can be used on the command line, so the DEFINE control can be

used to define macros on the command line. The defined macro name is
replaced with '1' if the replacement is omitted, otherwise the replacement
is used.

Example:

Contents of opt.asm :

@IF(@DOIT)
@REPEAT(@RN)

Repeat this text
@ENDR

@ENDI

With the following invocation the macro @DOIT is assigned to 1, and the

REPEAT is done three times:

m166 opt.asm DEF(DOIT) DEF(RN,3)

With the following invocation the macro @DOIT is not assigned, '0' will be

substituted and the REPEAT is not done:

m166 opt.asm

Macro Preprocessor 3–11

• • • • • • • •

EJECT

Control:

EJECT

Abbreviation:

EJ

Class:

General

Default:

New page started when page length is reached

Description:

The current page is terminated with a formfeed after the current (control)

line, the page number is incremented and a new page is started. Ignored if

NOPAGING, NOPRINT or NOLIST is in effect.

Example:

. ; source lines

.
$eject ; generate a formfeed
.
. ; more source lines
$ej ; generate a formfeed
.
.

Chapter 33–12
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

ERRORPRINT

Control:

ERRORPRINT[(file)]/NOERRORPRINT

Abbreviation:

EP/NOEP

Class:

Primary

Default:

NOERRORPRINT

Description:

ERRORPRINT displays the error messages at the console and also redirects

the error messages to an error list file. If no extension is given the default

.mpe is used. If no filename is specified, the error list file has the same

name as the input file with the extension changed to .mpe .

Examples:

m166 x.asm ep(errlist) ; redirect errors to file
; errlist.mpe

m166 x.asm ep ; redirect errors to file
; x.mpe

Macro Preprocessor 3–13

• • • • • • • •

GEN/GENONLY/NOGEN

Control :

GEN/GENONLY/NOGEN

Abbreviation :

GE/GO/NOGE

Class :

General

Default :

GEN

Description :

With the control GEN, all macro source lines (definitions and calls) are

written to the list file identical to the source-file. After a macro call, all

assembly lines of code that are expanded by the call are written to the list

file with all information (including the macro level). Nested macros are not

shown.

With the control GENONLY, the expanded code only is written to the list

file, but no macro definitions or calls.

With the control NOGEN, only macro definitions and calls are written to

the first file, but no expanded code. Nested macro calls are not shown.

Examples :

; source lines
$gen
.
; all macro source lines are written to list file
.
$genonly
; only expanded code is written to list file

Chapter 33–14
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

INCLUDE

Control :

INCLUDE(include-file)

Abbreviation :

IC

Class :

General

Default :

-

Description :

With the INCLUDE control you can include text from include-file within

the input text of the assembly source file.

At the occurrence of an INCLUDE control, m166 reads the text from

include-file until end of file is reached. The directory to look for include

files can be specified with the M166INC environment variable. M166INC

can contain more than one directory. Separate multiple directories with ';'

for PC (':' for UNIX).

When m166 does not find the include file in the current directory, it tries

the directories of the M166INC environment variable.

include-files may also contain INCLUDE controls. include-file is any file

that contains text.

Example :

; source lines
.
$include(mysrc.inc) ; include the contents of

; file mysrc.inc
.
; other source lines
.

Macro Preprocessor 3–15

• • • • • • • •

LINE

Control:

LINE[(level)]/NOLINE

Abbreviation:

LN/NOLN

Class:

Primary

Default:

LINE(2)

Description:

The macro preprocessor generates #LINE directives for the assembler. With

the LINE control you can set the the output level of "#LINE" strings in the

output file.

Level 0: no "#LINE" directives are generated in the output file.

Level 1: "#LINE" directives are generated before and after an

INCLUDE statement. This is for backward compatibility with

earlier versions of the toolchain.

Level 2: "#LINE" directives are also generated after all build-in

macros, after macro comments and after every newline within

a macro. When an error is detected in the .src file, with

LINE(2) the corresponding line number in the .asm file is

known.

Example:

m166 code.asm ”LN(2)” ; Generate ”#LINE” directiveds
 ; at level 2.

Chapter 33–16
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

LIST

Control:

LIST/NOLIST

Abbreviation:

LI/NOLI

Class:

General

Default:

LIST

Description:

Switch the listing generation on or off. These controls take effect starting at

the next line. LIST does not override the NOPRINT control.

Example:

$noli ; Turn listing off. These lines are not
; present in the list file

.

.
$list ; Turn listing back on. These lines are

; present in the list file
.
.

Macro Preprocessor 3–17

• • • • • • • •

PAGELENGTH

Control:

PAGELENGTH(lines)

Abbreviation:

PL

Class:

Primary

Default:

PAGELENGTH(60)

Description:

Sets the maximum number of lines on one page of the listing file. This

number does include the lines used by the page header (4). The valid

range for the PAGELENGTH control is 20 - 255.

Example:

m166 x.asm pl(50) ; set page length to 50

Chapter 33–18
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

PAGEWIDTH

Control:

PAGEWIDTH(characters)

Abbreviation:

PW

Class:

Primary

Default:

PAGEWIDTH(120)

Description:

Sets the maximum number of characters on one line in the listing. Lines

exceeding this width are wrapped around on the next lines in the listing.

The valid range for the PAGEWIDTH control is 60 - 255. Although greater

values for this control are not rejected by the macro preprocessor, lines are

truncated if they exceed the length of 255.

Example:

m166 x.asm pw(130)

; set page width to 130 characters

Macro Preprocessor 3–19

• • • • • • • •

PAGING

Control:

PAGING/NOPAGING

Abbreviation:

PA/NOPA

Class:

Primary

Default:

PAGING

Description:

Turn the generation of formfeeds and page headers in the listing file on or

off. If paging is turned off, the EJECT control is ignored.

Example:

m166 x.asm nopa

; turn paging off: no formfeeds and page headers

Chapter 33–20
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

PRINT

Control:

PRINT[(file)]/NOPRINT

Abbreviation:

PR/NOPR

Class:

Primary

Default:

NOPRINT

Description:

The PRINT control specifies an alternative name for the listing file. If no

extension for the filename is given, the default extension .mpl is used. If

no filename is specified, the list file has the same name as the input file

with the extension changed to .mpl . The NOPRINT control causes no

listing file to be generated.

Examples:

m166 x.asm ; no list file generated
m166 x.asm pr ; list file name is x.mpl
m166 x.asm pr(mylist) ; list file name is

; mylist.mpl

Macro Preprocessor 3–21

• • • • • • • •

SAVE/RESTORE

Control:

SAVE/RESTORE

Abbreviation:

SA/RE

Class:

General

Default:

-

Description:

SAVE stores the current value of the LIST/NOLIST controls onto a stack.

RESTORE restores the most recently SAVEd value; it takes effect starting at

the next line. SAVEs can be nested to a depth of 16.

Example:

$nolist
; source lines
$save ; save values of LIST/NOLIST

$list

$restore ; restore value (nolist)

Chapter 33–22
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

TABS

Control:

TABS(number)

Abbreviation:

TA

Class:

Primary

Default:

TABS(8)

Description:

TABS specifies the number of blanks that must be inserted for a tab

character in the list file. TABS can be any decimal value in the range 1 -

12.

Example:

m166 x.asm ta(5) ; use 5 blanks for a tab

Macro Preprocessor 3–23

• • • • • • • •

TITLE

Control:

TITLE('title')

Abbreviation:

TT

Class:

General

Default:

TITLE(module-name)

Description:

Sets the title which is to be used at the second line in the page headings of

the list file. To ensure that the title is printed in the header of the first

page, the control has to be specified in the first source line. The title string

is truncated to 60 characters. If the page width is too small for the title to

fit in the header, it is be truncated even further.

Example:

$title(’NEWTITLE’)

; title in page header is NEWTITLE

Chapter 33–24
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

WARNING

Control:

WARNING(number)

Abbreviation:

WA

Class:

Primary

Default:

WARNING(1)

Description:

This control sets the warning level to the supplied number. The macro

preprocessor knows 3 warning levels:

0 display no warnings

1 display important warnings only (default)

2 display all warnings

Example:

m166 x.asm wa(2) ; display all warnings

Macro Preprocessor 3–25

• • • • • • • •

3.5 CREATING AND CALLING MACROS

Macro calls differ between user-defined macros and so-called built-in

functions (an overview of all built-in functions and the entire macro

syntax is contained in section 3.6.10). All characters in bold typeface in

the syntax descriptions of the following sections are constituents of the

macro syntax. Italic tokens represent place holders for user-specific

declarations.

Since m166 only processes macro calls, it is necessary to call a macro in

order to create other macros. The built-in function DEFINE creates

macros. Built-in functions are a predefined part of the macro language, so

they may be called without prior definition.

Syntax:

@[*]DEFINE macro-name [(parameter-list)] [@LOCAL(local-list)]
macro-body

@ENDD

DEFINE is the most important m166 built-in function. This section of the

chapter is devoted to describing this built-in function. Each of the symbols

in the syntax above (macro-name, parameter-list, local-list and

macro-body) are described in detail on the pages that follow. In some

cases, we have abbreviated this general syntax to emphasize certain

concepts.

3.5.1 CREATING PARAMETERLESS MACROS

When you create a parameterless macro, there are two parts to a DEFINE

call: the macro-name and the macro-body. The macro-name defines the

name used when the macro is called; the macro-body defines the return

value of the call.

Syntax:

@[*]DEFINE macro-name [()]
macro-body

@ENDD

The '@' character signals a macro call. The exact use of the literal character

'*' is discussed in the advanced concept section. When you define a

parameterless macro, the macro-name is a macro identifier that follows the

'@' character in the source line. The rules for macro identifier are:

Chapter 33–26
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

- The identifier must begin with an upper or lower-case alphabetic

character (A,B,...,Z or a,b,...,z), or the underscore character (_).

- The remaining characters may be alphabetic, the underscore

character (_), or decimal digits (0,1,2,...,9).

- A macro identifier can be a maximum of 32 characters in length. A

macro label can consist of 28 characters. Upper-case and

lower-case identifiers are differentiated, as long as the $CASE

control is active.

The macro-body is usually the return value of the macro call and is

enclosed by the @DEFINE statement and @ENDD statement. However, the

macro-body may contain calls to other macros. If so, the return value is

actually the fully expanded macro-body, including the return values of the

call to other macros. When you define a macro using the literal character

'*', as shown above, macro calls contained in the body of the macro are

not expanded until the macro is called. The macro call is re-expanded

each time it is called.

Example 1:

@DEFINE String_1 An @ENDD

@DEFINE String_2 ele
@ENDD

@DEFINE String_3
phant @ENDD

@DEFINE String_4 ()
shopping

@ENDD

@DEFINE String_5
 goes
@String_4
@ENDD

@DEFINE Part_1
@String_1 @String_2()@String_3

@ENDD

The specification of the brackets () when calling a parameterless macro is

optional. This is regardless of wether brackets () were specified for the

definition or not.

Macro Preprocessor 3–27

• • • • • • • •

Example:

Definition Call
String_3: @DEFINE String_3 @String_3 or @String_3()
String_4: @DEFINE String_4() @String_4 or @String_4()

As previously mentioned, the macro-body is surrounded by the @DEFINE

statement and the @ENDD statement. The possible placement of the

macro-body and the @ENDD statement are both represented in the above

examples.

The beginning of the macro-body is determined by the syntactical end of

@DEFINE statement, where tabs (08H), blanks and the first new line (0AH)

are not counted as a part of the macro-body.

The macro-body of String_1 starts with the 'A' of "An"

The macro-body of String_3 starts with the 'p' of "phant"

The macro-body of String_4 starts with the '(08H)' of "(08H)shopping".

The end of macro-body is displayed by the @ENDD statement, where the

new line (0AH) preceding @ENDD is not counted as part of the

macro-body.

The macro-body of String_4 is "(08H)shopping"

The macro-body of String_5 is " goes (0AH)

(08H)shopping"

To call a macro, you use the '@' character followed by the name of the

macro (the literal character '*' is only admissible for defined macros whose

call is passed to a macro as a an actual parameter; example: @M1(@*M2)).

The macro preprocessor removes the call and inserts the return value of

the call. If the macro-body contains any call to other macros, they are

replaced with their return values.

Example 2:

@Part_1 @String_5 ––> An elephant goes
shopping.

Once a macro has been created, it may be redefined by a second call to

DEFINE (see Advanced m166 Concepts). The examples below show

several macro definitions. Their return values are also shown.

The macros shown have the disadvantage of using fixed label names.

Calling them twice produces a syntax error at assembly time. This problem

can be solved using the LOCAL facility, which is described later.

Chapter 33–28
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example 3:

Macro definition at the top of the program:

@DEFINE MOVE ()
MOV R1, #TAB1
MOV R2, #TAB2

LAB1:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB1 – 100T
CMP R7, #0
JMP LAB1

@ENDD

The macro call as it appears in the program:

MOV R0, #TABSEG
––––@MOVE

The program as it appears after the macro preprocessor made the

following expansion, where the first expanded line is preceded by the four

blanks preceding the call (the sign - indicates the preceding blanks):

–––– MOV R1, #TAB1
MOV R2, #TAB2

LAB1:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB1 – 100T
CMP R7, #0
JMP LAB1

Macro Preprocessor 3–29

• • • • • • • •

Example 4:

Macro definition at the top of the program:

@DEFINE ADD5
MOV R1, #TAB2

LAB2:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R7, #5T
ADD R7, [R4]
MOV [R4], R7
MOV R7, R1
SUB R7, #TAB2 – 100T
CMP R7, #0
JMP LAB2

@ENDD

The macro call as it appears in the original program body:

MOV R0, #TABSEG
@ADD5

The program after the macro expansion:

MOV R0, #TABSEG
MOV R1, #TAB2

LAB2:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R7, #5T
ADD R7, [R4]
MOV [R4], R7
MOV R7, R1
SUB R7, #TAB2 – 100T
CMP R7, #0
JMP LAB2

Example 5:

Macro definition at the top of the program:

@*DEFINE MOVE_AND_ADD()
@MOVE
@ADD5
@ENDD

Chapter 33–30
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

The macro call as it appears in the body of the program:

MOV R0, #TABSEG
@MOVE_AND_ADD

The body after the macro expansion:

MOV R1, #TAB1
MOV R2, #TAB2

LAB1:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB1 – 100T
CMP R7, #0
JMP LAB1
MOV R1, #TAB2

LAB2:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R7, #5T
ADD R7, [R4]
MOV [R4], R7
MOV R7, R1
SUB R7, #TAB2 – 100T
CMP R7, #0
JMP LAB2

Macro Preprocessor 3–31

• • • • • • • •

3.5.2 CREATING MACROS WITH PARAMETERS

If the only function of the macro preprocessor was to perform simple

string replacement, then it would not be very useful for most of the

programming tasks. Each time we wanted to change even the simplest part

of the macro's return value we would have to redefine the macro.

Parameters in macro calls allow more general-purpose macros. Parameters

leave holes in a macro-body that are filled in when you call the macro.

This permits you to design a single macro that produces code for typical

programming operations. The term 'parameters' refers to both the formal

parameters that are specified when the macro is defined (the holes, and

the actual parameters or argument that are specified when the macro is

called (the fill-ins). The syntax for defining macros with parameters is very

similar to the syntax for macros without parameters.

Syntax:

@[*]DEFINE macro-name [(parameter-list)]
macro-body

@ENDD

The macro-name must be a valid identifier. The parameter-list is a list of

macro identifiers separated by ','. These identifiers comprise the formal

parameters used in the macro. The macro identifier for each parameter in

the list must be unique. The locations of parameter replacement (the

placeholders to be filled in by the actual parameters) are indicated by

placing a parameter's name preceded by the '@' character in the

macro-body (if a user-defined macro has the same macro identifier name

as one of the parameters to the macros, the macro may not be called

within the macro-body since the name would be recognized as a

parameter).

The example below shows the definition of a macro with three

parameters: SOURCE, DEST and COUNT. The macro produces code to copy

any number of words from one part of memory to another.

Chapter 33–32
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

@DEFINE MOVE_ADD_GEN (SOURCE, DEST, COUNT)
MOV R1, #@SOURCE
MOV R2, #@DEST

LAB1:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #@SOURCE – @COUNT
CMP R7, #0
JMP CC_EQ, LAB1

@ENDD

To call a macro with parameters, you must use the '@' character followed

by the macro's name as with parameterless macros. However, a list of the

actual parameters must follow. These actual parameters have to be

enclosed within parentheses and separated from each other by commas.

The actual parameters may optionally contain calls to other macros.

A simple call to a macro defined above might be:

@MOVE_ADD_GEN(TAB1, TAB2, 100T)

The above macro call produces the following code:

MOV R1, #TAB1
MOV R2, #TAB2

LAB1:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB1 – 064h
CMP R7, #0
JMP CC_EQ, LAB1

Macro Preprocessor 3–33

• • • • • • • •

3.5.3 LOCAL SYMBOLS IN MACROS

As mentioned in the note to Example 3, a macro using a fixed label can

only be called once, since a second call to the macro causes a conflict in

the label definitions at assembly time. The label can be made a parameter

and a different symbol name can be specified each time the macro is

called.

A preferable way to ensure a unique label for each macro call is to put the

label in a local-list. The local-list construct allows you to use macro

identifiers to specify assembly-time symbols. Each use of a LOCAL symbol

in a macro guarantees that the symbol will be replaced by a unique

assembly-time symbol each time the symbol is called.

The macro preprocessor increments a counter once for each symbol used

in the list every time your program calls a macro that uses the LOCAL

construct. Symbols in the local-list, when used in the macro-body, receive

a three digit suffix that is the decimal value of the counter preceded by '_'.

The first time you call a macro that uses the LOCAL construct the suffix is

'_001'.

The syntax for the LOCAL construct in the DEFINE function is shown

below. (This is the complete syntax for the built-in function DEFINE):

Syntax:

@[*]DEFINE macro-name [(parameter-list)] [@LOCAL(local-list)]
macro-body

@ENDD

The local-list is a list of valid macro identifiers separated by commas.

Since these macro identifiers are not parameters, the LOCAL construct in a

macro has no effect on a macro call.

Chapter 33–34
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

@DEFINE MOVE_ADD_GEN(SOURCE, DEST, COUNT) @LOCAL(LABEL)
MOV R1, #@SOURCE
MOV R2, #@DEST

@LABEL:
MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #@SOURCE – @COUNT
CMP R7, #0
JMP CC_EQ, @LABEL

@ENDD

The following macro call:

@MOVE_ADD_GEN(TAB1, TAB2, 100T)

produces the following code if this is the eleventh call to a macro using

LABEL in its local-list:

MOV R1, #TAB1
MOV R2, #TAB2

LABEL_011:
MOV R4, R1
SUB R1, #1
ADD R4, R5
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB – 064h
CMP R7, #0
JMP CC_EQ, LABEL_011

Since macro identifiers follow the same rules as A166, any macro identifier

can be used in a local-list.

Macro Preprocessor 3–35

• • • • • • • •

3.6 THE MACRO PREPROCESSOR'S BUILT-IN

FUNCTIONS

The macro preprocessor has several built-in or predefined macro

functions. These built-in functions perform many useful operations that

are difficult or impossible to produce in a user-defined macro.

We have already discussed one of these built-in functions, DEFINE.

DEFINE creates user-defined macros. DEFINE does this by adding an entry

in the macro preprocessor's tables of macro definitions. Each entry in the

tables includes the macro-name of the macro, its parameter-list, its

local-list and its macro-body. Entries for the built-in functions are present

when the macro preprocessor begins operation.

Other built-in functions perform numerical and logical expression

evaluation, affect control flow of the macro preprocessor, manipulate

character strings, and perform console I/O.

The following sections deal with the following:

Expressions processed by m166

Calculating functions (SET, EVAL)

Controlling functions (IF, WHILE, REPEAT, BREAK, EXIT, ABORT)

String-processing functions (LEN, SUBSTR, MATCH)

String-comparing functions (EQS, NES, LTS, LES, GTS, GES)

Identifier check function (DEFINED)

Input/Output functions (IN, OUT)

Macro comments ("...", "...)

3.6.1 NUMBERS AND EXPRESSIONS IN M166

Many built-in functions recognize and evaluate numerical expressions in

their arguments. m166 uses the following rules for representing numbers:

- Numbers may be represented in the formats binary (B suffix), octal

(O suffix), decimal (D, T or no suffix), and hexadecimal (H suffix).

Chapter 33–36
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

- Internal representation of numbers is 32-bits (00H to 0FFFFFFFFH) ;

the processor does not recognize or output real or long integer

numbers.

- The following operators are recognized by the macro preprocessor

(in descending precedence):

Binary operators (left-associated) and Unary operators

(right-associated):

1. '(' ')'

2. HIGH LOW '+' '-' '~'

3. '*' '/' MOD '%' SHL '<<' SHR '>>'

4. '+' '-'

5. LT '<' LE '<=' GT '>' GE '>=' ULT ULE UGT UGE EQ '==' NE '!='

6. NOT '!'

7. AND '&' '&&'

8. XOR '^' OR '|' '||'

Unary operators (right-associated):

HIGH LOW NOT '!' '~' '+' '-'

HIGH removes the lower 8 bits, using an arithmetic shift right. Similarly,

LOW removes all but the lower 8 bits.

An overview of the expressions can be found in the macro syntax in

section 3.6.10.

The macro preprocessor cannot access the assembler's symbol table. The

values of labels, location counter, EQU and SET symbols are not known

during macro time expression evaluation. Any attempt to use assembly

time symbols in a macro time expression generates an error. Macro time

symbols can be defined, however, with the predefined macro, SET.

3.6.2 SET FUNCTION

SET assigns the value of the numeric expression to the identifier,

macro-variable, and stores the macro-variable in the macro time symbol

table, macro-variable must follow the same syntax convention used for

other macro identifiers. Expansion of a macro-variable always results in

hexadecimal format.

Macro Preprocessor 3–37

• • • • • • • •

Syntax:

@SET(macro-variable, expression)

The SET macro call affects the macro time symbol table only; when SET is

encountered, the macro preprocessor replaces it with the null string.

Symbols defined by SET can be redefined by a second SET call, or defined

as a macro by a DEFINE call (in this case a warning is sent - see

Advanced m166 Concepts).

Example:

@SET(COUNT, 0)–> null string
@SET(OFFSET, 16) –> null string
MOV R1, #@COUNT + @OFFSET –> MOV R1,#00h + 010h
MOV R2, #@COUNT –> MOV R2,#00h

SET can also be used to redefine symbols in the macro time table:

@SET(COUNT, @COUNT + @OFFSET) –> null string
@SET(OFFSET, @OFFSET * 2) –> null string
MOV R1, #@COUNT + @OFFSET –> MOV R1,#010h + 020h
MOV R2, #@COUNT –> MOV R2,#010h

3.6.3 EVAL FUNCTION

The built-in function EVAL accepts an expression as its argument and

returns the expression's value in hexadecimal.

Syntax:

@EVAL(expression)

The expression argument must be a legal macro time expression. The

return value from EVAL is built according to a166's rules for representing

hexadecimal numbers. The trailing character is always the hexadecimal

suffix (h).

Chapter 33–38
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

COUNT SET @EVAL(33H + 15H + 0f00H) –> COUNT SET 0F48h

MOV R1, #@EVAL(10H – ((13+6) *2) +7) –> MOV R1, #0FFFFFFF1h

@SET(NUM1, 44) –> null string
@SET(NUM2, 25) –> null string

MOV R1, #@EVAL(@NUM1 <= @NUM2) –> MOV R1, #00h

3.6.4 CONTROL FLOW AND CONDITIONAL ASSEMBLY

Some built-in functions expect logical expressions in their arguments.

Logical expressions follow the same rules as numeric expressions. The

difference is in how the macro interprets the 32-bit value that the

expression represents. Once the expression has been evaluated to a 32-bit

value, m166 uses the '<=0' comparison to determine whether the

expression is TRUE or FALSE (if the value is less than or equal to 0 the

expression is FALSE else it is TRUE).

Typically, the relational operators (EQ, '==', NE, '!=', LE, '<=', LT, '<', GE,

'>=', or GT, '>') or the string comparison functions (EQS, NES, LES LTS,

GES, or GTS) are used to specify a logical value. Since these operators and

functions always evaluate to 01h or 00h, internal determination is not

necessary.

Similar to the definition of a macro (where the macro statement is
enclosed by the @DEFINE statement and the @ENDD statement), the body

of the control structures @IF, @WHILE and @REPEAT are constructed the

same way. The control body (statements) of the macro are enclosed by the

control statement and the respective control structures that end with

@ENDx (x = I for ENDI, W for ENDW and R for ENDR). Like for @ENDD,

the last new line before the respective control end statement is not

counted as part of the macro-body (see section 3.5.1).

Macro Preprocessor 3–39

• • • • • • • •

3.6.4.1 IF FUNCTION

The IF built-in function evaluates a logical expression, and based on that

expression, expands or withholds its statements.

Syntax:

@IF(expression)

statements
[@ELSE

statements]
@ENDI

The IF function first evaluates the expression. If it's TRUE, then the

succeeding statements are expanded; if it's FALSE and the optional ELSE

clause is included in the call, then the statements succeeding @ELSE are

expanded. If the expression results to FALSE and the ELSE clause is not

included, the IF call returns the null string. The control-body is to be

terminated by @ENDI.

IF calls can be nested. The ELSE clause refers to the most recent IF call

that is still open (not terminated by @ENDI). @ENDI terminates the most

recent IF call that is still open. The level of macro nesting is limited to 300.

When using an undefined macro in an expression in the @IF function, the

preprocessor will not complain about an undefined macro, but expands

the macro to '0'. This is useful for testing on default situations.

Example:

This is a simple example of the IF call with no ELSE clause:

@SET(VALUE, 0F0H)
@IF(@VALUE >= 0FFH)

MOV R1, #@VALUE
@ENDI

Example:

This is the simplest form of the IF call with an ELSE clause:

@MATCH(OPERATION, OP2, ”ADD R2”)
@IF(@EQS(”ADD R2”, @OPERATION))

ADD R7, #00FFH
@ELSE@OPERATION, #00FFH
@ENDI

Chapter 33–40
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

This is an example of several nested IF calls:

@IF(@EQS(@OPER, ”ADD”))
ADD R1, #DATUM

@ELSE @IF(@EQS(@OPER, ”SUB”))
SUB R1, #DATUM
@ELSE@IF(@EQS(@OPER, ”MUL”))

MOV R1, #DATUM
JMP MUL_LAB
@ELSE
MOV R1, #DATUM
JMP DIV_LAB
@ENDI

@ENDI
@ENDI

Example:

This an example of testing on undefined macros. The macro @INCL_FILE

is not defined:

@IF(@INCL_FILE)
$INCLUDE(incfil.h)

@ENDI

Now the file incfil.h is only included when @INCL_FILE is set to 1.

Example:

Demonstrating conditional assembly:

@SET(DEBUG, 1)
@IF(@DEBUG)

MOV R1, #DBFLAG
JMP DEBUG

@ENDI

MOV R1, R2
 .
 .
 .

Macro Preprocessor 3–41

• • • • • • • •

This expands to:

MOV R1, #DBFLAG
JMP DEBUG
MOV R1, R2

@SET can be changed to:

@SET(DEBUG, 0)

to turn off the debug code.

3.6.4.2 WHILE FUNCTION

The IF macro is useful for implementing one kind of conditional assembly

including or excluding lines of code in the source file. However, in many

cases this is not enough. Often you may wish to perform macro operations

until a certain condition is met. The built-in function WHILE provides this

facility.

Syntax:

@WHILE(expression)

statements
@ENDW

The WHILE function evaluates the expression. If it results to TRUE, the

statements are expanded; otherwise not. Once the statements have been

expanded, the logical arguments is retested and it's still TRUE, the

statements are expanded again. This continues until the logical argument

proves FALSE.

Since the macro continues processing until the expression is FALSE, the

statements should modify the expression, or else WHILE may never

terminate.

A call to built-in function BREAK or EXIT always terminates a WHILE

macro. BREAK and EXIT are described below.

The following example shows the common use of the WHILE macro:

Chapter 33–42
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

@SET(COUNTER, 7)

@WHILE(@COUNTER >= 0)
MOV R2, #@COUNTER
MOV [R1], R2
ADD R1, #2
@SET(COUNTER, @COUNTER – 1)

@ENDW

This example uses the SET macro and a macro time symbol to count the

iterations of the WHILE macro.

3.6.4.3 REPEAT FUNCTION

m166 offers another built-in function that performs the counting loop

automatically. The built-in function REPEAT expands its statements a
specified number of times.

Syntax:

@REPEAT(expression)

statements
@ENDR

Unlike the IF and WHILE macros, REPEAT uses the expression for a

numerical value that specifies the number of times the statements should

be expanded. The expression is evaluated once when the macro is first

called, then the specified number of iterations is performed.

A call to built-in function BREAK or EXIT always terminates a WHILE

macro. BREAK and EXIT are described in the next sections.

Example:

Lab:
MOV R1, #TAB8
MOV R2, #0FFFFH

@REPEAT(8)
 MOV[R1], R2
 ADDR1, #2
@ENDR

Macro Preprocessor 3–43

• • • • • • • •

3.6.4.4 BREAK FUNCTION

The built-in BREAK function terminates processing of the WHILE or the

REPEAT loop in the body where they are called. If BREAK is used outside

of a loop, a BREAK is treated like EXIT. BREAK allows a loop to be exited

at various points.

Syntax:

@BREAK

Example:

@SET(CNT, 8)
@WHILE(@CNT)

@M2(@CNT) @” sets @CNT2”

@REPEAT(@CNT2)
 @M1(@CNT) @” sets @CNT3”
 @IF(@CNT3 <= 0)
 @BREAK
@ENDR

@SET(CNT, @CNT – 1)
@ENDW

This use of BREAK terminates the current REPEAT action and continues

with the @SET statement succeeding the REPEAT structure.

3.6.4.5 EXIT FUNCTION

The built-in function EXIT terminates expansion of the most recently

called user defined macro. It is most commonly used to avoid infinite

loops (e.g. a recursive user defined macro that never terminates). It allows

several exit points in the same macro.

Syntax:

@EXIT

Chapter 33–44
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

This use of EXIT terminates a recursive macro when an odd number of

bytes has been added.

@*DEFINE AS(STR1,STR2) @STR1@STR2@ENDD

@*DEFINE MEM_ADD_MEM(SOURCE, DEST, BYTES)
@IF(@BYTES <= 0)
 @EXIT
ADD R0, #@SOURCE
MOV RL2, [R0]
ADD R1, #@DEST
ADD RL2, [R1]
MOV [R1], R2
@IF(@BYTES == 1)
 @EXIT
@ENDI
ADD R0, #1
MOV RL2, [R0]
ADD R1, #1
ADD RL2, [R1]
MOV [R1], R2

@MEM_ADD_MEM(@AS(@SOURCE,”+2”),@AS(@DEST,”+2”),@AS(@BYTES,”–2”))
@ENDI

@ENDD

The above example adds two pairs of bytes and stores results in DEST. As

long as there is a pair of bytes to be added, the macro MEM_ADD_MEM is

expanded. When BYTES reaches a value of 1 or 0, the macro is exited.

Example:

This EXIT is a simple jump out of a recursive loop:

@*DEFINE BODY
MOV R1,@MVAR
@SET(MVAR, @MVAR + 1)

@ENDD

@*DEFINE UNTIL(CONDITION, EXE_BODY)
@EXE_BODY
@IF(@CONDITION)
 @EXIT
@ELSE
 @UNTIL(@CONDITION, @EXE_BODY)
@ENDI

@ENDD

@SET(MVAR, 0)
@UNTIL(”@MVAR > 3”, @*BODY)

Macro Preprocessor 3–45

• • • • • • • •

The purpose of the macro preprocessor is to manipulate character strings.

Therefore, there are several built-in functions that perform common

character string manipulation functions. They are described in the

following sections.

3.6.4.6 ABORT FUNCTION

The built-in ABORT function terminates the preprocessing session. It can

be used to abort preprocessing when an error has been detected or when

preprocessing should be halted at a certain point.

When the ABORT function is called, a message will be output and the

program will exit with the supplied exit status.

Syntax:

@ABORT(exit-status)

Example:

The following use of ABORT illustrates the way the macro preprocessor

parses macro definitions.

@DEFINE TEST
First
@ABORT(0)
Second
@ENDD

Third
@TEST
FOURTH

This will result in the following output:

First

When parsing the TEST macro definition, the ABORT function is executed

immediately. This works in the same way as the @OUT and @IN functions.

The correct way of using @ABORT inside macro definitions is to use literal

mode:

Chapter 33–46
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

@*DEFINE TEST
First
@ABORT(0)
Second
@ENDD

Third
@TEST
Fourth

This will result in the following output:

Third
First

3.6.5 STRING MANIPULATION FUNCTIONS

The macro language contains three functions that perform common string

manipulation functions, namely, the LEN, SUBSTR and MATCH function.

3.6.5.1 LEN FUNCTION

The built-in function LEN takes a character string argument and returns

the length of the character string in hexadecimal format (the same format

as EVAL).

Syntax:

@LEN(string)

string is a place holder for:

1. an explicitly specified string enclosed in quotes ("..."),

2. an identifier which characterizes a macro-string (defined by

MATCH)

3. the call of a built-in function that returns a string.

The definition of this parameter type applies for all of the following

functions that use "string".

Macro Preprocessor 3–47

• • • • • • • •

Example:

Several examples of calls to LEN and the hexadecimal numbers returned

are shown below:

Before Macro Expansion After Macro Expansion

@LEN(”ABNCDEFGHIJKLMOPQRSTUVWXYZ”) –> 01Bh
@LEN(”A,B,C”) –> 05h
@LEN(””) –> 00h

@MATCH(STR1, STR2, ”Cheese, Mouse”)
@LEN(@STR1) –> 06h
@LEN(@SUBSTR(@STR2, 1, 3)) –> 03h

3.6.5.2 SUBSTR FUNCTION

The built-in function SUBSTR returns a substring of its text argument. The

macro takes three arguments: a string from which the substring is to be

extracted and two numeric arguments.

Syntax:

@SUBSTR(string, expression, expression)

string as described earlier (see LEN)

The first expression specifies the starting character of the substring.

The second expression specifies the number of characters to be included

in the substring.

If the first expression is greater than the length of the argument string,

SUBSTR returns the null string. If the expression's value is 0 or 1, the first

character of the string is specified as starting character.

If the second expression is zero, then SUBSTR returns the null string. If it

is greater than the remaining length of the string, then all characters from

the start character of the substring to the end of the string are included.

Chapter 33–48
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

The examples below several calls to SUBSTR and the value returned:

Before Macro Expansion After Macro Expansion

@SUBSTR(”ABCDEFG”, 5, 1) –> ”E”
@SUBSTR(”ABCDEFG”, 5, 100) –> ”EFG”
@SUBSTR(”123(56)890”, 4, 4) –> ”(56)”
@SUBSTR(”ABCDEFG”, 8, 1) –> null
@SUBSTR(”ABCDEFG”, 3, 0) –> null

3.6.5.3 MATCH FUNCTION

The MATCH function primarily serves to define a macro-string (text
variable for the simple text replacement). A macro-string is a place holder

for the string defined and assigned by the MATCH function.

A string can be:

1. a text-string enclosed by quotation marks

2. a name of a previously defined macro-string

3. the call of a built-in function that returns a string.

Syntax:

@MATCH(macro-string,[macro-string,] string)

macro-string is a valid m166 identifier.

string as described earlier (see LEN).

At the time when a macro-string is defined, the assigned string is not

tested. Testing of the string contents occurs when the macro-string is

expanded.

Example:

@MATCH(MS1, ”ABC”)–> ABC
@MATCH(MS2, @MS1) –> ABC
@MATCH(MS3, @LEN(@MS1)) –> 03h

The alternative use of MATCH is for processing string lists. This application

is selected when two macro-strings are specified for the definition.

Macro Preprocessor 3–49

• • • • • • • •

Example:

@MATCH (N1, N2, ”10, 20, 30”)

In this case, MATCH searches a character string for a comma and assigns

the substrings on either side of the comma for the macro-strings.

MATCH searches the string for the first comma. When it is found, all

characters to the left of it are assigned to the first macro-string and all

characters to the right are assigned to the second macro-string. If the

comma is not found, the entire string is assigned to the first macro-string
and the null string is assigned to the second one.

Example:

@MATCH(NEXT, LIST, ”10H, 20H, 30H”)
ADD R0, #TAB

@WHILE(@LEN(@NEXT))
MOV R1, [R0]
ADD R1, #@NEXT
MOV [R0], R1
ADD R0, #2

@MATCH(NEXT, LIST, @LIST)
@ENDW

Produces the following code:

ADD R0, #TAB

First iteration of WHILE:

MOV R1, [R0]
ADD R1, #10H
MOV [R0], R1
ADD R0, #2

Second iteration of WHILE:

MOV R1, [R0]
ADD R1, #20H
MOV [R0], R1
ADD R0, #2

Chapter 33–50
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Third iteration of WHILE:

MOV R1, [R0]
ADD R1, #30H
MOV [R0], R1
ADD R0, #2

3.6.6 LOGICAL EXPRESSIONS AND STRING

COMPARISON IN M166

Several built-in functions return a logical value when they are called. Like

relational operators that compare numbers and return TRUE or FALSE

('01H' or '00H') respectively, these built-in functions compare character

strings. If the function evaluates to 'TRUE', then it returns the character

string '01H'. If the function evaluates to 'FALSE', then it returns '00H'.

The built-in functions that return a logical value compare two string
arguments and return a logical value based on that comparison. The list of

string comparison functions below shows the syntax and describes the

type of comparison made for each.

@EQS(string, string) TRUE if both strings are identical; equal

@NES(string, string) TRUE if strings are different in any way; not
equal

@LTS(string, string) TRUE if first string has a lower value than
second string;less than

@LES(string, string) TRUE if first string has a lower value than
second string or if both strings are identical;
less than or equal

@GTS(string, string) TRUE if first string has a higher value than
second string; greater than

@GES(string, string) TRUE if first string has a higher value than
second string, or if strings are identical;
greater than or equal

Macro Preprocessor 3–51

• • • • • • • •

Before these functions perform a comparison, both strings are completely

expanded. Then the ASCII value of the first character in the first string is
compared to the ASCII value of the first character in the second string. If

they differ, then the string with the higher ASCII value is to be considered

to be greater. If the first characters are the same, the process continues

with the second character in each string, and so on. Only two strings of

equal length that contain the same characters in the same order are equal.

Example:

Before Macro Expansion After Macro Expansion

@EQS(”ABC”,”ABC”) 01H (TRUE).
The character strings are identical.

@EQS(”ABC”,”ACB”) 00H (FALSE).

@LTS(”CBA”,”cba”) 01H (TRUE).
The lower case characters have a
higher ASCII value than upper case.

@GES(”ABC”,”ABC”) 00H (FALSE).
The space at the end of the second
string makes the second string
greater than the first one.

@GTS(”16D”,”11H”) 01H (TRUE).
ASCII ’6’ is greater than ASCII ’1’.

The strings to the string comparison macros have to follow the rules of the

parameter-type string described earlier.

@MATCH(NEXT, LIST, ”CAT, DOG_MOUSE”)

@EQS(@NEXT, ”CAT”) –> 01H
@EQS(”DOG”, @SUBSTR(@LIST, 1,3)) –> 01H

3.6.7 DEFINED FUNCTION

The DEFINED function can be used to check if an identifier is defined or

not. The function can only be used in expressions. It returns 1 if the

identifier is defined, and 0 if the identifier is not defined.

Syntax:

@DEFINED([@] identifier)

Chapter 33–52
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

The next lines ensure that the macro PECDEF is defined:

@IF (!@DEFINED(@PECDEF))
@DEFINE PECDEF

PECDEF PECC0–PECC7
@ENDD

@ENDI

@PECDEF

3.6.8 CONSOLE I/O BUILT-IN FUNCTIONS

Two built-in functions, IN and OUT, perform console l/O. They are

line-oriented. IN outputs the characters '>>' as a prompt to the console,

and returns the next line typed at the console including the line

terminator. OUT outputs a string to the console; the return value of OUT is

the null string.

The results of an @IN call (of the input) is interpreted as a macro-string.

IN can also be used everywhere where a macro-string is allowed.

Syntax:

@IN

@OUT(string)

Example:

@OUT(”ENTER NUMBER OF PROCESSORS IN SYSTEM”)
@SET(PROC_COUNT, @IN)
@OUT(”ENTER THIS PROCESSOR’S ADDRESS”)
ADDRESS SET @IN
@OUT(”ENTER BAUD RATE”)
@SET(BAUD, @IN)

The following lines would be displayed on the console:

ENTER NUMBER OF PROCESSORS IN SYSTEM >> user response
ENTER THIS PROCESSOR’S ADDRESS >> user response
ENTER BAUD RATE >> user response

OUT outputs an end-of-line only if it is specified inside its string by '\n'.

Macro Preprocessor 3–53

• • • • • • • •

Example:

@OUT(”Line with a new–line at the end\n”)

3.6.9 COMMENT FUNCTION

The macro processing language can be very subtle, and the operation of

macros written in a straightforward manner may not be immediately

obvious. Therefore, it is often necessary to comment macro definitions.

Syntax:

@"text"

or

@"text end-of-line

The comment function always evaluates to the null string. Two terminating

characters are recognized: the quotation mark " and the end-of-line
(line-feed character, ASCII 0AH). The second form of the call allows macro

definitions to be spread over several lines, while avoiding any unwanted

end-of-lines in the return value. In either form of the comment function,

the text or comment is not evaluated for macro calls.

Example:

@DEFINE MOVE_ADD_GEN(SOURCE, DEST, COUNT) @LOCAL (LABEL)
MOV R1, #@SOURCE @”@SOURCE must be a word address”
MOV R2, #@DEST @”@DEST must be a word address”

@LABEL: @”This is a local label.
@”End of line is inside the comment!

MOV R4, R1
SUB R1, #1
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #@SOURCE – @COUNT
CMP R7, #0 @”@COUNT must be a constant”
JMP EQ, @LABEL

@ENDD

Call the above macro:

@MOVE_ADD_GEN(TAB1, TAB2, 100T)

Chapter 33–54
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Return value from above call:

MOV R1, #TAB1
MOV R2, #TAB2

LABEL_001: MOV R4, R1
SUB R1, #Q
ADD R4, R0
MOV R5, R2
SUB R2, #1
ADD R5, R0
MOV R7, [R4]
MOV [R5], R7
MOV R7, R1
SUB R7, #TAB1 – 064h
CMP R7, #0
JMP EQ, LABEL_001

Note that the comments that were terminated with the end-of-line
removed the end-of-line character along with the rest of the comment.

The '@' character is not recognized as flagging a call to the macro

preprocessor when it appears in the comment function.

At the top level of the processed file a ";" (semicolon) will skip all

characters until end-of-line. This only applies to the top level. Inside

macro bodies (including built-in macros), the preprocessor reads the

semicolon as a normal ASCII character. Example:

;@IF(1)@OUT(”Hello World”)@ENDI
@IF(1);@OUT(”Hello World”)@ENDI

will result in the following source file:

;@IF(1)@OUT(”Hello World”)@ENDI
;

and the string "Hello World" will be output to the screen once. That is, the

first macro @IF is not parsed due to the semicolon at the start of the line.

The second @IF is parsed, as is the @OUT macro. Although the latter is

preceded by a semicolon, because it is inside a macro body it is parsed

nonetheless.

Macro Preprocessor 3–55

• • • • • • • •

3.6.10 OVERVIEW MACRO BUILT-IN FUNCTIONS

This section contains an overview of the syntax for all macro built-in

functions. All macro keywords are preceded by the character '@'. All

characters and tokens illustrated in bold print belong to the macro syntax.

1) Macro definition

@[*]DEFINE macro-name [(parameter-list)] [@LOCAL(locallist)]
macro-body

@ENDD

parameter-list: empty

or identifier [, identifier]...

local-list: identifier [, identifier]...

2) 'Calculating' Functions

@SET(macro-variable, expression)

@EVAL(expression)

3) 'Controlling' Functions

@IF(expression)

statements
[@ELSE

statements]
@ENDI

@WHILE(expression)

statements
@ENDW

@REPEAT(expression)

statements
@ENDR

@BREAK ; Break current @WHILE or @REPEAT structure

@EXIT ; Terminates expansion of the current macro

@ABORT(expression) ; Terminates macro preprocessor with given exit

; status

Chapter 33–56
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

4) 'String-Processing' Functions

Definition 'string': "text"

or macro-string

or string-returning functions (@EVAL, @LEN,
@SUBSTR, @EQS, @NES, @LTS, @LES, @GTS,
@GES, @IN)

@LEN(string)

@SUBSTR(string, expression , expression)

@MATCH(macro-string, [macro-string ,] string)

5) 'String-Comparing' Functions

@EQS(string, string)

@NES(string, string)

@LTS(string, string)

@LES(string, string)

@GTS(string, string)

@GES(string, string)

6) 'Identifier check' Function

@DEFINED([@] identifier)

7) 'Input/Output' Functions

@IN

@OUT(string)

8) MACRO Comment

@"text["]

Macro Preprocessor 3–57

• • • • • • • •

9) The MACRO Call

@macro-name [(actual-parameter-list)]

actual-parameter-list: empty

or actual-parameter [, actual-parameter]...

actual-parameter: identifier

or number

or string
or @formal-parameter
or @[*]macro-token

macro-token: macro-name ...
or macro-variable
or macro-string

@macro-variable

@macro-string

10) MACRO Expression

Valid operands:

- number (binary, octal, decimal, hexadecimal)

- macro-variable

- macro-string (if its contents represents an expression part)

- actual-parameter (if its contents represents an expression part)

- macro-name (if the call's expansion results to an
expression-part)

- string-comparing function (@EQS, @NES, @LTS, @LES, @GTS, @GES)

- @DEFINED-function

- @EVAL-function

- @LEN-function

Chapter 33–58
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Valid operators (in descending precedence):

Binary operators (left-associated) Unary operators (right-associated):

1. '(' ')'

2. HIGH LOW '+' '-' '~'

3. '*' '/' MOD '%' SHL '<<' SHR '>>'

4. '+' '-'

5. LT '<' LE '<=' GT '>' GE '>=' ULT ULE UGT UGE EQ '==' NE '!='

6. NOT '!'

7. AND '&' '&&'

8. XOR '^' OR '|' '||'

Unary operators (right-associated):

HIGH LOW NOT '!' '~' '+' '-'

3.7 ADVANCED M166 CONCEPTS

For most programming problems, m166 as described above, is sufficient.

However, in some cases, a more complete description of the macro

preprocessor's function is necessary. It is impossible to describe all of the

possibilities of the macro preprocessor in a single chapter. Specific

questions to m166 can easily be answered by simple tests following the

given rules.

3.7.1 DEFINITION AND USE OF MACRO NAMES/TYPES

You can use three different types of macro definitions. These three types

are:

1. definition of a macro call with DEFINE

2. definition of a macro-variable with SET

3. definition of a macro-string with MATCH.

Macro Preprocessor 3–59

• • • • • • • •

3.7.1.1 DEFINITION OF A MACRO CALL WITH DEFINE

A macro call contains, as a rule, actions like control structures, macro calls,

macro-variables, macro-string definitions, parameter evaluations,

calculation operations, etc.

Limitations:

• A macro call cannot contain a definition of another macro call.

• Forward references are not allowed.

These limitations are necessary to detect errors in the early stages (during

the definition) and to test the use of macro-names and types. However,

these restrictions do not affect the performance scope of the macro

preprocessing.

A macro call can be inserted in various ways (macro call). The number of

actual parameters is dependent on the number of the parameters during

the definition of the macro call.

• A macro call can appear in an assembly statement.

• A macro call can appear in a macro call definition. Expansion (in

literal mode the macro call itself) is entered in the body of the

macro call defined.

• A macro call can appear in the actual parameter list of a macro call.

The actual parameter contains the expansion of the macro call (in

literal mode the macro itself).

• A macro call can be inserted in an expression when its macro-body
contains a partial expression.

• A macro call can purposely be used during the definition of a

macro-string. The macro call then appears in the definition string.

Expansion of the macro call occurs when the macro-string is used.

The actual parameter list (during a macro call) consists of tokens separated

by commas. These tokens can be any of the following:

- A number

Represented in hexadecimal format when actual parameters are

used.

Examples: 13–> 0Dh, 21 –> 015h

A parameter passed as a number is always considered as a

numerical value. The following applies in general: If a number is to

be interpreted as a string, this must be enclosed in quotation marks

when entered.

Chapter 33–60
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

- An identifier

Is expanded in the same manner as it was specified as an actual

parameter.

Example: DB, byte–var

- A string
A macro-name in the string is expanded first when the actual

parameters are used.

Example: ”13” –> 13, ”1 + @VARS5 +3” –> 1 + 05h +3

- A macro-name
In normal mode, the macro-name is expanded in the actual

parameter. In literal mode, the macro-name itself appears in the

actual parameter and is expanded first when used.

Example: @MC_VAR, @*MC1(dw).

- A parameter of an actual macro call.

This allows parameters to be further reached.

3.7.1.2 DEFINITION OF A MACRO VARIABLE WITH SET

Syntax:

@SET(macro-variable, expression)

A macro-variable represents a numerical value. Its expansion always

results in hexadecimal representation. This variable can be used similar to

a macro call (in assembly statements, in a macro call definition, in actual

parameter lists of a macro call, in expressions, during the definition of a

macro-string in the definition string).

If an actual parameter is a number, this can be used in the macro-body
using the corresponding formal parameters, similar to macro-variable.

3.7.1.3 DEFINITION OF A MACRO STRING WITH MATCH

Syntax:

@MATCH(macro-string, [macro-string,] string)

MATCH defines a macro-string in the sense of simple text replacement, or

it processes text lists.

Macro Preprocessor 3–61

• • • • • • • •

Example:

@Match(MS1, ”DB ’text’”)
@Match(MLS1, MLS2, ”10, 20, 30”)

The contents of a macro-string is not tested at the time of the definition.

For more information, see section 3.6.5.3 MATCH Function.

A macro-string can be used similar to a macro call in assembly statements,
in a macro call definition, in actual parameter lists of a macro call, in

expressions, during the definition of a macro-string in the definition string
and in built-in functions that allow a string. If an actual parameter is a

string, this can be used in the macro-body using the corresponding formal

parameters, similar to a macro-string.

3.7.2 SCOPE OF MACRO, FORMAL PARAMETERS AND

LOCAL NAMES

All macro-names are known globally. The scope of formal parameters and

local names is from their definition to the end of the macro-body. This is

true even if you redefine them.

3.7.3 REDEFINITION OF MACROS

All macro identifiers with a leading '@' character, which are called like a

user-defined macro (and, of course, user-defined) can be redefined.

When redefining macros, the number of parameters can be changed. A

warning message is, however, issued when the macro type is changed

during the redefinition (i.e. when the name of a prior macro-string is used

for the definition of a macro-variable).

3.7.4 LITERAL VS. NORMAL MODE

In normal mode, the macro preprocessor scans text looking for the '@'

character. When it is found, it begins expanding the macro call. Parameters

are substituted and macro calls are expanded. This is the normal operation

of the macro preprocessor, but sometimes it is necessary to modify this

mode of operation. The most common use of the literal mode is to prevent

macro expansion. The literal character '*' in DEFINE prevents the

expansion of macros in the macro-body until the macro is called.

Chapter 33–62
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

When the literal character is placed in a DEFINE call, the macro

preprocessor shifts to literal mode while expanding the call. Macro

comments are processed, any calls to other macros are not expanded.

A macro definition (in regard to the macro parameter) in literal mode is

always then necessary when formal parameters are used as: actual

parameters, user-defined macros or as parameters to built-in functions.

Moreover, the definition of a macro in literal mode can save working

memory space if additional macro calls follow in the body of this macro.

This is because these calls are already expanded fully in the macro-body
by the definition in normal mode. However, in literal mode only the calls

are entered. In some situations, it may also be necessary that the use of

the literal mode is not used for the purpose of 'logical flow' of user

macros.

The macro-body is not expanded in literal mode, but a syntax check is

performed to point out errors to the user in the macro definition. Forward

referencing of macros is not supported.

Example:

The following example illustrates the difference between defining a macro

in literal mode and normal mode:

@SET(TOM, 1)

@*DEFINE M1 ()
@EVAL(@TOM)

@ENDD

@DEFINE M2 ()
@EVAL(@TOM)

@ENDD

When M1 and M2 are defined, TOM is equal to 1. The macro-body of M1

has not been evaluated due to the literal character, but the macro-body of

M2 has been completely evaluated, since the literal character is not used in

the definition. Changing the value of TOM has no affect on M2, it changes

the return value of M1 as illustrated below:

Before Macro Expansion After Macro Expansion

@SET(TOM, 2)
@M1 –> 02h
@M2 –> 01h

Macro Preprocessor 3–63

• • • • • • • •

Sometimes it is necessary to obtain access to parameters by several macro

levels. The literal mode is also used for this purpose. The following

example assumes that the macro M1 () called in the macro-body is

predefined.

Example:

@*DEFINE M2(P1)
MOV R1, @P1
@M1(@P1)

@ENDD

In the above example, the formal parameter @P1 is used once as a simple

place holder and once as an actual parameter for the macro M1().

Actual parameters in the contents must not be known in literal mode,

since they are not expanded. If the definition of M2(), however, occurred

in normal mode, the macro preprocessor would try to expand the call

from M1() and, therefore, the formal parameter @P1 (used as an actual

parameter). However, this first receives its value when called from M2(). If

its contents happen to be undefined, an error message is issued.

Another application possibility for the literal mode exists for macro calls

that are used as actual parameters (macro-strings, macro-variables, macro

calls).

Example:

@M1(@*M2)

The formal parameter of M1 was assigned the call from M2 ('@M2') by its

expansion. M2 is expanded from M1 when the formal parameters are

processed.

In normal mode, M2 is expanded in its actual parameter list immediately

when called from M1. The formal parameters of M1 in its body are

replaced by the prior expanded macro-body from M2.

The following example shows the different use of macros as actual

parameters in the literal and normal mode.

Chapter 33–64
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

@SET(M2, 1)

@*DEFINE M1 (P1)
@SET(M2, @M2 + 1)
@M2, @P1

@ENDD

@M1(@*M2) –> 02h, 02h
@M1(@M2) –> 03h, 02h
@M1(@*M2) –> 04h, 04h

3.7.5 MULTI-TOKEN PARAMETER

The actual parameters shown in the prior examples were all restricted to a

token. What, however, occurs when several tokens are passed as one

parameter?

Example:

@DEFINE DW(LIST, NAME)
@NAME DW @LIST

@ENDD

The macro DW(�) expands DW statements, where the variable NAME

represents the first parameter and the expression LIST represents the

second parameter.

The following expansion should be obtained by the call:

PHONE DW 198H, 3DH, 0F0H

If the call in the following form:

@DW(198H, 3DH, 0F0H, PHONE)

occurs, the macro preprocessor would report 'Too many macro

parameters', since all tokens separated from one another by a comma are

interpreted as actual parameters.

In order to change this method of interpretation, all tokens that are to be

combined for an individual parameter must be identified as a parameter

string and set in quotation marks:

@DW(”198H, 3DH, 0F0H”, PHONE)

Macro Preprocessor 3–65

• • • • • • • •

The placing of actual parameters in quotation marks (parameter strings)

has still another effect when macro calls are used as parameters. Since

parameter strings are not expanded, and since their contents are passed

'unchanged' to the formal parameters, a macro call identified as a

parameter string corresponds to a call in literal mode. The calls

represented in the following example are, therefore, identical.

Example:

@M1(”@M2”)
@M1(@*M2)

3.7.6 VARIABLE NUMBER OF PARAMETERS

For creating possibly efficient macros, the option of passing parameters in

variable numbers is an essential feature. The following algorithms are

recommended for processing these parameters:

@*DEFINE macro_name(ParameterList)
.
.
@MATCH(P1, ParList, @ParameterList)
@WHILE(@LEN(@P1))
.
.
statement s
.
.
@MATCH(P1, P2, @P2)
@ENDW
.
.

@ENDD

As already described in the previous section, several tokens that are to be

interpreted as one parameter are to be represented as a parameter string.

This requirement is used to pass a macro a desired number of parameters,

polished as one parameter.

Chapter 33–66
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

Example:

@”––––––––––––––––––––––––––––––––––––
@”Macro for saving registers
@”––––––––––––––––––––––––––––––––––––
@*DEFINE PushReg(RegList)

@MATCH(Reg, List, @RegList)
@WHILE(@LEN(@Reg))
 PUSH @Reg
 @MATCH(Reg, List, @List)
@ENDW

@ENDD

@PushReg (”R0, R1”)

The macro PushReg("R0, R1") saves all registers that are contained in

passed register lists. The register list is identified as a parameter string
when called from PushReg("R0, R1") and passed as a parameter to the

macro. With use of the WHILE loop and the MATCH function, all partial

parameters of the returned parameters are processed by the macro.

3.7.7 PARAMETER TYPE STRING

The macro preprocessor provides the internal type 'STRING' for parameter

strings. This allows the following to be performed:

1. Type test during the processing of this parameter when expanded

by the macro

2. Interpretation of the call and application

3. A precise error test.

Example:

@*DEFINE M1(P1)
@LEN(@P1)

@ENDD

A string that is to be passed as a parameter and, in addition, to be

interpreted as a string by the macro expansion when this parameter is

processed should, be specified in the following manner (this is in

accordance with the standard text replacement rules of the macro

preprocessor):

@M1(”””Test_String”””)

Macro Preprocessor 3–67

• • • • • • • •

Quotation marks that should belong to the string must be specified twice.

The formal parameters of M1 are additionally replaced by "Test_String".

When no quotation marks are used during the call M1("Test_String"),

"Test_String" is returned and the parameters are not recognized as a string.

The quotation marks enclosing the string are eliminated by the macro

preprocessor in the entry in the parameter list.

The concept of the parameter type 'STRING' allows, however, the user to

avoid this unclear parameter 'string' definition. Instead, the parameter

string specified is assigned the type 'STRING' by the macro preprocessor

and the expansion of the formal macro parameters are performed when

the macro is expanded. This is independent of the type and application of

the parameter.

The following rules apply here:

Everywhere where a string is syntactically expected (see macro syntax

overview 'string', section 3.6.10), a formal parameter specified here is

replaced with its actual parameter. If this is a 'STRING' type, it is

interpreted as a string; i.e. this is when the formal parameter is used as

actual parameters from string processing built-in functions. If the type is

not 'STRING', a corresponding error message appears.

If no interpretation as string is possible, the formal parameter is replaced

with its actual parameter, without considering the type.

Example:

@*DEFINE M0(P1)
MOV @P1

@ENDD

@*DEFINE M1(P1)
MOV R1, @LEN(@P1)
@P1

@ENDD

@*DEFINE M2(P1)
@M1(@P1)
@P1

@ENDD

@*DEFINE M3(P1)
@P1

@ENDD

Chapter 33–68
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

@M0(”R1, R0”)
@M1(”R1, R0”)
@M2(”R1, R0”)
@M1(”R1, @M3(33)”)
@M2(”R1, @M3(44)”)

Macro Call Expansion

@M0(”R1, R0”) MOV R1, R0
@M1(”R1, R0”) MOV R1, 06h

R1, R0
@M2(”R1, R0”) MOV R1, 06h

R1, R0
R1, R0

@M1(”R1, @M3(33)”) MOV R1, 0Dh
R1, 021h

@M2(”R1, @M3(44)”) MOV R1, 09h
R1, 02Ch
R1, 02Ch

- When M0() is expanded, the formal parameter is replaced by the actual

parameter, without a type check.

- When M1() is expanded, the actual parameter is checked for the type

'STRING', since the built-in function LEN expects a string parameter.

- When M2() is expanded, M1 is called and the actual parameter is

reached. Proceed like for M1().

- When the M1() is called, the actual parameter contains a macro call.

This is not expanded, in accordance with the rules described in section

3.7.4. Proceed like for M1() above.

- When expanding M2(), M1() is recalled and the actual parameter is

reached (no expansion of M3). Proceed like for M1() above.

3.7.8 ALGORITHM FOR EVALUATING MACRO CALLS

The algorithm of the macro preprocessor used for evaluating the source

file can be broken down into 6 steps:

1. Scan the input until the '@' character is found.

2. Isolate the macro-name.

3. If macro has parameters, expand each parameter from left to right (initiate

step one for actual parameter) before expanding the next parameter.

Macro Preprocessor 3–69

• • • • • • • •

4. Substitute actual parameters for formal parameters in macro-body.

5. If the literal character is not used, initiate step one on macro-body.

6. Insert the result into output stream.

The terms 'input stream' and 'output stream' are used because the return

value of one macro may be a parameter to another. On the first iteration,

the input stream is the source line. On the final iteration, the output stream

is passed to the assembler.

Example:

The examples below illustrate the macro preprocessor's evaluation

algorithm:

@SET(TOM, 3)

@*DEFINE STEVE ()
@SET(TOM, @TOM –1) @TOM
@ENDD

@DEFINE ADAM(A, B)
DB @A, @B, @A, @B, @A, @B

@ENDD

The call ADAM is presented here in the normal mode with TOM as the

first actual parameter and STEVE as the second actual parameter. The first

parameter is completely expanded before the second parameter is

expanded. After the call to ADAM has been completely expanded, TOM

will have the value 02h.

Before Macro Expansion After Macro Expansion

@ADAM(@TOM, @STEVE) –> DB 03h, 02h, 03h, 02h, 03h, 02h

Now reverse the order of the two actual parameters. In this call to ADAM,

STEVE is expanded first (and TOM is decremented) before the second

parameter is evaluated. Both parameters have the same value.

@SET(TOM, 3)
@ADAM(@STEVE, @TOM) –> DB 02h, 02h, 02h, 02h, 02h, 02h

Now we will literalize the call to STEVE when it appears as the first actual

parameter. This prevents STEVE from being expanded until it is inserted in

the macro-body, then it is expanded for each replacement of the formal

parameters. TOM is evaluated before the substitution in the macro-body.

Chapter 33–70
M

A
C

R
O

 P
R

E
P

R
O

C
E

S
S

O
R

@SET(TOM, 3)
@ADAM(@*STEVE, @TOM) –> DB 02h, 03h, 01h, 03h, 00h, 03h

4

ASSEMBLER
C

H
A

P
T

E
R

Chapter 44–2
A
S
S
E
M
B
L
E
R

4

C
H

A
P

T
E

R

Assembler 4–3

• • • • • • • •

4.1 DESCRIPTION

The C166 assembler A166 is a three pass program:

Pass 1 Reads the source file and performs lexical actions such as

evaluating equate statements. This pass will generate an

intermediate token file.

Pass 2 Performs optimization of jump instructions.

Pass 3 Generates machine code and list file.

The assembler is source compatible (mnemonics, directives, controls and

invocation files) with the Infineon assembler. Some directives are more

flexible and the scope of the jump optimization is larger. Some directives

are implemented by the macro preprocessor m166.

Because of the three passes, the assembler can perform optimization for

the generic jump and call instructions (jmp/call), even with forward

references.

File inclusion and macro facilities are not integrated into the assembler.

Rather, they are provided by the macro preprocessor m166, which is

supplied as a separate program. The assembler can be used with or

without the m166 macro preprocessor. Alternatively, another macro

preprocessor, such as a standard C-preprocessor may be used.

4.2 INVOCATION

The PC command line invocation of a166 is:

a166 [source-file] [@invocation-file] [control-list] [TO object-file]
a166 -V

a166 -?

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

a166 ” -?” or a166 -\?

Chapter 44–4
A
S
S
E
M
B
L
E
R

The invocation file contains a control list. The control-list can be one or

more assembler controls separated by whitespace. All available controls

are described in chapter Assembler Controls. A combination of invocation

file and control list on the invocation line is possible. The invocation file

must be preceded by a '@'.

The source-file and TO object-file are also allowed in the invocation file.

Invocation with -V only displays a version header, while invocation with

-? shows the usage of a166.

4.2.1 INPUT FILES AND OUTPUT FILES

The following is a short description of all the input files and output files

the assembler deals with:

Assembly source file

This is the input source of the assembler. This file contains assembly code

which is either hand written, generated by c166 or processed by m166.

Any name is allowed for this file. If no file extension is used .src is

assumed.

Invocation file

This is an input file to control the assembler. All general controls are

allowed in this file. Input files and output files can be defined. Any name

is valid and must be preceded by a '@' on invocation. The invocation files

can be nested up to eight levels.

Object file

The output file of the assembler which contains the object code. By

default the name of the assembly source file with the extension replaced

by .obj . The name can also be user defined via TO or the OBJECT

control.

List file

An output file containing information about the generated object code. By

default the name of the assembly source file with the extension replaced

by .lst is used. The name can also be user defined by the PRINT control.

Assembler 4–5

• • • • • • • •

Error list file

An output file with the errors detected during assembly. Must be defined

by an ERRORPRINT control. Otherwise error messages are printed to

standard output. The default name is the input filename extended with

.erl .

4.3 SECTIONS AND MEMORY ALLOCATION

A section is a logical piece of code or data which will be assigned to

physical memory as a single block. Every section has a name and a section

type (CODE, DATA, LDAT, PDAT, HDAT or BIT). There are two types of

sections: relocatable sections and absolute sections.

The assembler can handle up to 254 different sections in a module. Each

module consists of at least one section. Sections in different modules, but

with the same name will be combined into one section by the

linker/locator.

See the paragraph Sections in the chapter Assembly Language for more

information about sections.

4.4 ENVIRONMENT VARIABLES

a166 uses the following environment variables:

TMPDIR The directory used for temporary files. If this environment

variable is not set, the current directory is used.

A166INC The directory where STDNAMES files can be found. See the

DEF directive and the STDNAMES assembler control for the

use of STDNAMES files. A166INC can contain more than one

directory. Separate multiple directories with ';' for PC (':' for

UNIX).

Examples:

PC:

set TMPDIR=\tmp
set A166INC=c:\c166\include

Chapter 44–6
A
S
S
E
M
B
L
E
R

UNIX:

if you use the Bourne shell (sh)

TMPDIR=/tmp
A166INC=/usr/local/c166/include
export TMPDIR A166INC

if you use the C-shell (csh)

setenv TMPDIR /tmp
setenv A166INC /usr/local/c166/include

5

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

Chapter 55–2
L
A
N
G
U
A
G
E

5

C
H

A
P

T
E

R

Assembly Language 5–3

• • • • • • • •

5.1 INPUT SPECIFICATION

An assembly program consists of zero or one statement per line. A

statement may optionally be followed by a comment, which is introduced

by a semicolon character (;) and terminated by the end of the input line.

Lines starting with a dollar character ($) in the first column are control

lines. They are interpreted independently from the rest of the input. The

syntax of these lines is described separately in the chapter Assembler
Controls.

A line with a # character in the first position is a line generated by a macro

preprocessor to inform the assembler of the original source file name and

line number. The format of the remaining lines is given below. A statement

can be defined as:

[label [:]] [instruction | directive] [;comment]

where,

label is an identifier. The occurrence of label: defines the symbol

denoted by label and assigns the current value of the location

counter to it. The colon ':' is only required for CODE labels.

identifier has to be made up of letters, digits, underscore

characters (_) and/or question marks (?). The first character

must not be a digit.

Example:

LAB1: ;This is a label

instruction is any valid C166 (or C167) assembly language instruction

consisting of a mnemonic and one, two, three or no

operands. Operands are described in the chapter Operands
and Expressions. The instructions are described separately in

the chapter Instruction Set.

Examples:

EINIT ; No operand
BSET ABIT ; One operand
AND R0, #0H ; Two operands
BFLDL 0FF0CH, #4, #6 ; Three operands

directive any one of the assembler directives; described separately in

the chapter Assembler Directives.

Chapter 55–4
L
A
N
G
U
A
G
E

A statement may be empty.

5.2 SECTIONS

The C166 can address 256 Kbytes of memory. The memory map is divided

into 4 segments of 64 Kbytes each. To access a memory address 18 bits are

required. The CPU uses so called 'BASED' instructions to form the 18 bits.

An 18-bit address for a code is produced by a segment base (a 2-bit

segment number) and a segment offset (a 16-bit value). An 18-bit address

for data is produced by a page base (a 4-bit page number) and a page

offset (a 14-bit value).

The C167 family can address 16 Mbytes of memory. The memory map is

divided into 256 segments of 64 Kbytes each. To access a memory address

24 bits are required. The CPU uses so called 'BASED' instructions to form

the 24 bits. An 24-bit address for a code is produced by a segment base (a

8-bit segment number) and a segment offset (a 16-bit value). An 24-bit

address for data is produced by a page base (a 10-bit page number) and a

page offset (a 14-bit value). The EXTMEM control enables the use of

24-bit addresses.

The assembler a166 uses sections for addressability in relocatable

modules. A section is simply a portion of memory which may be

addressed by a section base and an offset. Sections of different modules

may be combined to form a group at link-time and sections can have a

'class' name to place different sections near each other in memory by the

locator. Because there are different ways to address code and data, there

are also different types of sections and groups.

5.2.1 MULTIPLE DEFINITIONS FOR A SECTION

Sections may be opened and closed with a SECTION/ENDS pair within the

same module as many times as you wish. All parts of the section which

you define are treated by the assembler as parts of one section.

Assembly Language 5–5

• • • • • • • •

Example:

The following two DATA1 sections:

DATA1 SECTION DATA
AWORD1 DW 0
ABYTE1 DB 0
DATA1 ENDS

DATA1 SECTION DATA
AWORD2 DW 0
ABYTE2 DB 0
DATA1 ENDS

are the same as:

DATA1 SECTION DATA
AWORD1 DW 0
ABYTE1 DB 0
AWORD2 DW 0
ABYTE2 DB 0
DATA1 ENDS

When a section is re-opened, its attributes need not be specified. The

attributes can not be changed. The following example produces an error.

Example:

DATA1 SECTION DATA AT 03F00H
.
.
.

DATA1 ENDS

DATA1 SECTION DATA AT 0C00H ; error !
.
.
.

DATA1 ENDS

5.2.2 'NESTED' OR 'EMBEDDED' SECTIONS

Sections are never physically nested or embedded in memory. However,

you may nest data section definitions in your program. This is only a

logical nesting and not a physical nesting in memory. Nesting of CODE

sections is not allowed.

Chapter 55–6
L
A
N
G
U
A
G
E

Example:

The following example is legal:

CODE1 SECTION CODE ; Begin CODE1
.
.
.

 DATA1 SECTION DATA ; Begin DATA1, stop
 . ; assembling CODE1
 .
 .

 DATA1 ENDS ; End DATA1, continue
. ; assembling CODE1
.
.

CODE1 ENDS

The assembler treats the CODE1 section separately from the DATA1

section. The contents of the DATA1 section are not contained within the

CODE1 section. The following example produces an error because the

SECTION/ENDS pair must match as shown in the example above.

CODE1 SECTION CODE ; Begin CODE1
.
.
.

 DATA1 SECTION DATA ; Begin DATA1, stop
 . ; assembling CODE1
 .
 .

CODE1 ENDS ; Error!! Cannot close
. ; CODE1 before closing
. ; DATA1
.

 DATA1 ENDS

Up to ten nested SECTION/ENDS pairs are supported.

Assembly Language 5–7

• • • • • • • •

5.3 EXTEND BLOCKS

The C167, ST10x167/262, C166S v2.0 and Super10 architectures have

instructions which create extend blocks:

- begin atomic sequence ATOMIC

- begin extended register sequence EXTR

- begin extended page sequence EXTP

- begin extended page and register sequence EXTPR

- begin extended segment sequence EXTS

- begin extended segment and register sequence EXTSR

An extend block starts after one of the extend instructions is issued and

ends after the number of instructions as issued with the extend instruction.

Example:

EXTR #2 ; 2 extended instr.
MOV PT0, #value0 ; extend SFR
MOV PT1, #value1 ; extend SFR
MOV PSW, #valueX ; standard SFR

Branching into or from an extend block probably introduces a 'virtual

extend block'. See also chapter Derivative Support.

Chapter 55–8
L
A
N
G
U
A
G
E

6

OPERANDS AND
EXPRESSIONS

C
H

A
P

T
E

R

Chapter 66–2
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6

C
H

A
P

T
E

R

Operands and Expressions 6–3

• • • • • • • •

6.1 OPERANDS

An operand is the part of the instruction that follows the instruction

opcode. There can be one, two, three or even no operands in an

instruction. The operands of the assembly instruction can be divided into

the following types:

Operand Description

Rn, Rm Direct access to a General Purpose Register (GPR) in the
current register bank

REG Direct access to any GPR and SFR

BITOFF Direct access to any word in the bit addressable memory
space

BITADDR Direct access to a single bit in the bitaddressable memory
space

MEM Direct access to any memory location

[Rn], [Rm] Indirect access to the entire memory space by the content of a
GPR

#DATA(x) An immediate constant (x = 3, 4, 8 or 16)

#MASK An immediate byte value to be used as a mask field in Bit Field
instructions

CADDR Absolute 16–bit code address within the current segment for
use in branch instructions

REL Relative offset for a branch instruction

SEG A code segment number

#TRAP An interrupt number

CC A condition code

Table 6-1: Operand Types

A detailed description of the operand types shown above can be found in

Infineon C166 User's Manual.

6.1.1 OPERANDS AND ADDRESSING MODES

The C166 has several different addressing modes. These are listed below

with a short description. A complete description of the addressing modes

is given in the Infineon C166 User's Manual.

Chapter 66–4
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Short addressing

This addressing mode uses an implicit base offset address to specify a

physical 18-bit address.

Memory space: data in GPR, SFR or bit addressable memory space.

Operand types: Rn, REG, BITOFF, BITADDR.

Long addressing

This addressing mode uses one of the four DPP registers to specify a

physical 18 bit address.

Memory space: any word or byte data in the entire memory space.

Operand types: MEM.

Indirect addressing

This addressing mode is a mix of short and long addressing. The contents

of a GPR specifies a 16-bit address indirectly. One of the four DPP

registers is used to specify a physical 18-bit address.

Memory space: any word or byte data in the entire memory space.

Operand types: [Rn].

Immediate addressing

This addressing mode uses word or byte constants.

Memory space: not relevant.

Operand types: #DATA(x), #MASK.

Branch target addressing

This addressing mode uses relative, absolute and indirect modes to specify

the target address and segment of a jump or call instruction.

Memory space: any word in the entire memory space.

Object types: REL, CADDR, [Rn], SEG, #TRAP, CC.

Operands and Expressions 6–5

• • • • • • • •

6.1.2 OPERAND COMBINATIONS

There are two kinds of operand combinations, real and virtual. Real

operand combinations are those types of operands combinations which

are written in the hardware architectural specification for the C166 and

assigned to the individual hardware instructions. For the option of

addressing registers by their absolute memory addresses, additional

operand combinations exist that are not explicitly mentioned in the

architectural specification. These combinations can not be directly

transferred in an instruction format and, therefore, require conversion of

the types and values. These combinations are called virtual operand

combinations.

Example:

The operand combination:

R, MEM_WORD (e.g.: MOV R5, WVAR)

is a virtual combination and is converted to:

REG, MEM_WORD

In this sense, the register number of the GPR R5 is internally converted to

the register word number. This word number represents an 8-bit address

of the 'CPU Virtual General Purpose Register' that lies at the 16-bit address

0FFEAH in the SFR area (Special Function Register).

Example:

The operand combination:

REG, R (e.g.: MOV CP, R5;
 CP = Context Pointer is a SFR)

is, likewise, a virtual operand combination and is converted to:

MEM_WORD, REG

In this case, the register word number of the SFR is internally converted to

the 16-bit address of the Special Function Register. In order to guarantee

correct addressing in SEGMENTED mode, the user must assign the

attribute SYSTEM to a DPP using the ASSUME directive (when assembly in

SEGMENTED mode is desired).

Chapter 66–6
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Example:

ASSUME DPP1:SYSTEM

Thereby, you inform the assembler that page number 3 is contained in

DPP1 register. You assume the responsibility of ensuring that the DPP is

loaded with the value of 3 (page number) at the right time during the

execution. This page number is given in an explicit instruction since the

assembler cannot check the contents of the DPP register.

The DPP registers are automatically initialized by the processor in

NONSEGMENTED mode. The ASSUME instruction is, therefore, omitted.

When converting REG to MEM in SEGMENTED mode, a166 truncates the

address. So DPP is used which is ASSUMED to contain the System page

(3).

A summary of the operand combinations is given below preceded by a list

explaining the used abbreviations

6.1.2.1 ABBREVIATIONS

Abbreviation Description

ADDR_BY_DEC_GPR Indirect data access through GPR that is
decremented before the data has been
fetched

ADDR_BY_GPR Indirect data access through GPR

ADDR_BY_GPR_INC Indirect data access through GPR that is
incremented after the indirect data has been
fetched

ADDR_BY_GPR_PLUS_C Indirect data access based on the sum of a
GPR and a 16–bit constant base table offset

ADDR_BY_GPRI Indirect data access through GPR R0, R1, R2
or R3

ADDR_BY_GPRI_INC Indirect data access through GPR R0, R1, R2
or R3 the respective GPR is incremented after
the indirect data has been fetched

BITADDR A bit address (absolute bit number, a bit name
defined by BIT or DBIT)

BWOFF The offset of the bit–addressable word (SFR,
GPR or bit–word) relative to the
bit–addressable range

Operands and Expressions 6–7

• • • • • • • •

DescriptionAbbreviation

CC One of the condition codes

CONST_MASK Mask for application of BFLDx instructions

CONST_TRAP Trap number

CONST_DATA3 3–bit immediate constant

CONST_DATA4 4–bit immediate constant

CONST_DATA8 8–bit immediate constant

CONST_DATA16 16–bit immediate constant

EXPL_BITADDR An explicit bit address
(SFR–SymbolName.BitPosition,
GPRn.BitPosition (n = 0 – 15), absolute bit
word number.bit position absolute bit word
address.bit position symbolic bit word.bit
position)

MEM_BYTE A memory address representing BYTE access

MEM_WORD A memory address representing WORD
access

MEM_NEAR A jump address of type NEAR

MEM_FAR A jump address of type FAR

R A GPR: R0 – R15

HR RL0 – RL7, RH0 – RH7

HREG A GPR: RL0 – RL7, RH0 – RH7

REG A GPR or a SFR symbol name

REL A jump address reachable inside of the
displacement of –128 to +127 words

SEG The segment number of a jump address

Table 6-2: Operand Abbreviations

Chapter 66–8
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.1.2.2 REAL OPERAND COMBINATIONS

ADDR_BY_DEC_GPR, HR

ADDR_BY_DEC_GPR, R

ADDR_BY_GPR, ADDR_BY_GPR

ADDR_BY_GPR, ADDR_BY_GPR_INC

ADDR_BY_GPR, HR

ADDR_BY_GPR, MEM_BYTE

ADDR_BY_GPR, MEM_WORD

ADDR_BY_GPR, R

ADDR_BY_GPR_INC, ADDR_BY_GPR

ADDR_BY_GPR_PLUS_C, HR

ADDR_BY_GPR_PLUS_C, R

BITADDR, BITADDR

BITADDR, EXPL_BITADDR

BITADDR, REL

BITADDR, ZERO

BWOFF, CONST_MASK, CONST_DATA8

CC, ADDR_BY_GPR

CC, MEM_NEAR

CC, REL

CONST_TRAP, ZERO

EXPL_BITADDR, BITADDR

EXPL_BITADDR, EXPL_BITADDR

EXPL_BITADDR, REL

EXPL_BITADDR, ZERO

HR, ADDR_BY_GPR

HR, ADDR_BY_GPRI

HR, ADDR_BY_GPR_INC

HR, ADDR_BY_GPRI_INC

HR, ADDR_BY_GPR_PLUS_C

HR, CONST_DATA3

HR, CONST_DATA4

HR, HR

HR, ZERO

Operands and Expressions 6–9

• • • • • • • •

HREG, CONST,DATA16

HREG, MEM,BYTE

MEM_BYTE, ADDR_BY_GPR

MEM_BYTE, HREG

MEM_BYTE, REG

MEM_WORD, ADDR_BY_GPR

MEM_WORD, HREG

MEM_WORD, REG

R, ADDR_BY_GPR

R, ADDR_BY_GPRI

R, ADDR_BY_GPR_INC

R, ADDR_BY_GPRI_INC

R, ADDR_BY_GPR_PLUS_C

R, CONST_DATA3

R, CONST_DATA4

R, CONST_DATA16

R, HR

R, MEM_WORD

R, R

R, ZERO

REG, CONST_DATA8

REG, CONST_DATA16

REG, MEM_BYTE

REG, MEM_WORD

REG, MEM_NEAR

REG, ZERO

REL, ZERO

SEG, MEM_FAR

SEG, MEM_NEAR

Chapter 66–10
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.1.2.3 VIRTUAL OPERAND COMBINATIONS

ADDR_BY_GPR

ADDR_BY_GPR, REG

HR, CONST_DATA16

HR, MEM_BYTE

HR, REG

MEM_BYTE, HR

MEM_WORD, HR

MEM_WORD, R

MEM_WORD, REG

R, CONST_DATA16

R, MEM_BYTE

R, MEM_NEAR

R, MEM_WORD

R, REG

R, ZERO

REG, ADDR_BY_GPR

REG, HR

REG, MEM_WORD

REG, R

REG, REG

BITADDR, MEM_WORD

MEM_WORD, BITADDR

Operands and Expressions 6–11

• • • • • • • •

6.2 EXPRESSIONS

An operand of an assembler instruction or directive is either an assembler

symbol or an expression. The assembler symbols for the C166 are: SFR

names (Bit and Non-Bit Addressable), System bit names and Peripheral bit

names. An expression denotes an address in a particular memory space or

a number. Expressions that can be evaluated at assembly time are called

absolute expressions. Expressions where the result can not be known

until logical sections have been combined and located are called

relocatable expressions.

There are some rules and restrictions when an expression is relocatable:

Sections and Groups

The name of a section or group can be used to represent its page or

segment number in an expression. This value is relocatable for all sections

and groups except for a section defined with the 'AT expression' form for

the SECTION directive. These values are assigned by the locator. This type

of relocatability is called 'base relocatability'. See the paragraph Sections
in the chapter Assembly Language for more information on sections and

groups.

Example:

DATAGRP DGROUP DATA1, DATA2
DATA1 SECTION DATA

 .
 .

DATA1 ENDS

DATA2 SECTION DATA PUBLIC
SEGSTORE DW DATAGRP ; DATAGRP is base relocatable
SEGBASE DW DATA1 ; DATA1 is base relocatable
DATA2 ENDS

Variables and Labels

The offset of any variable or label is relocatable, i.e. variables are 'offset

relocatable'. These values are also assigned by the locator.

Chapter 66–12
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Example:

DATA1 SECTION DATA
ABYTE DB 0 ; ABYTE and AWORD are relocatable
AWORD DW POF ABYTE ; page offset of ABYTE is not

 ; known at assembly time
DATA1 ENDS

Constants

Constants defined by the EXTERN/EXTRN directive (see chapter Assembler
Directives) are relocatable. The constant value is unknown at assembly

time.

Example:

DATA1 SECTION DATA
EXTRN NUM:DATA16
EXVAR DW NUM ; NUM is relocatable
DATA1 ENDS

You can use all operators with both absolute and relocatable expressions.

Expression syntax

The syntax of an expression can be any of the following:

- number

- expression_string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

All types of expressions are explained below and in following sections.

$ represents the current location counter value in the currently active

section.

() You can use parentheses to control the evaluation order of the

operators. What is between parentheses is evaluated first.

Operands and Expressions 6–13

• • • • • • • •

Examples:

(3 + 4) * 5 ; Result is 35.
; 3 + 4 is evaluated first.

3 + (4 * 5) ; Result is 23.
; 4 * 5 is evaluated first.

6.2.1 EXPRESSIONS IN THE ASSEMBLER

To allow good checking on DPP prefixes and ASSUMEd DPPs and to have

a more consistent type checking of the operands of an expression, the

expression handling of the assembler is designed as follows.

The expression handling of the assembler checks the types of the

operands left and right of each operator. The expression operand types are

divided into two groups:

address types:

NEAR, FAR, BYTE, WORD, BIT, BITWORD, REGBANK and GROUP (DATA

or CODE)

constant types:

DATA3, DATA4, DATA8, DATA16 and

INTNO(8bit)

Some operations on address types are not allowed.

The following tables show the resulting type after an operation.

Unary operator Operand Combination

Constant Address

POF, SOF DATA16

PAG DATA4 (NOEXTMEM) or DATA16 (EXTMEM)

SEG DATA3 (NOEXTMEM) or DATA8 (EXTMEM)

BOF DATA4

other unary operator No type change Illegal address operation

Table 6-3: Resulting operand types with unary operators

Chapter 66–14
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Binary operator Operand Combination

Constant/Constant Address/Constant Address/Address

– (subtraction) Highest DATAn

remarks: the section
information of the left
operand is used for
the result

Address type

remarks: the
section information
and assume
information of the
address operand is
used for the result

DATA16

remarks: There is
no relocation if
both address are
from same
section. DPP
prefixes on
operands are
ignored.

==, !=, >=, <=, >, <,
ULT, UGT, ULE, UGE

DATA3

. (dot) BIT BIT

remarks: only
allowed if type of
address is
BITWORD

Illegal address
operation

other binary operator Highest DATAn

remarks: the section
information of the left
operand is used for
the result

Address type

remarks: the
section information
and assume
information of the
address operand is
used for the result

Illegal address
operation

Table 6-4: Resulting operand types with binary operators

Examples:

BIT1 + 3 ; result type is BIT
BIT1 + BIT1 ; illegal address operation
2 + WVAR1 ; result type is WORD
WVAR2 – WVAR1 ; result type is DATA16
WVAR1 + (WVAR2 – WVAR1) ; result type is WORD

Each operation in an expression yields a new type. So

WVAR1 * WVAR2 – WVAR1

is not allowed because WVAR1 * WVAR2 is not allowed. But

WVAR1 * (WVAR2 – WVAR1)

is allowed because the resulting type of WVAR2 – WVAR1 is DATA16, and

WORD * DATA16 is allowed. The resulting type is WORD.

Operands and Expressions 6–15

• • • • • • • •

If the result of the expression is absolute and the type is DATAn, the type

used for a DATAn operand of the mnemonic can be different.

Example:

EQ1 EQU DATA16 1 ; EQ1 has DATA16 type
MOV R0, #EQ1 ; MOV REG, #DATA4

6.2.2 NUMBER

number can be one of the following:

- bin_numB (or bin_numY)

- dec_num (or dec_numT or dec_numD)

- oct_numO

- hex_numH

Lowercase equivalences are allowed: b, y, t, d, o, h.

bin_num is a binary number formed of '0'-'1' ending with a 'B', 'b', 'Y'

or 'y'.

Examples: 1001B; 1001Y; 01100100b;

dec_num is a decimal number formed of '0'-'9', optionally followed by

the letter 'T', 't', 'D' or 'd'.

Examples: 12; 5978D; 192837465T;

oct_num is an octal number formed of '0'-'7' ending with an 'O' or 'o'.

Examples: 11O; 447o; 30146O

hex_num is a hexadecimal number formed of the characters '0'-'9' and

'a'-'f' or 'A'-'F' ending with a 'H' or 'h'. The first character

must be a decimal digit, so it may be necessary to prefix a

hexadecimal number with the '0' character.

Examples: 45H; 0FFD4h; 9abcH

Chapter 66–16
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.2.3 EXPRESSION STRING

An expression_string is a string with a length of 0, 1 or 2 bytes evaluating

to a number. The value of the string is calculated by putting the last

character (if any) in the least significant byte of a word and the second last

character (if any) in the most significant byte of the word.

string is a string of ASCII characters, enclosed in single (') or double

(") quotes. The starting and closing quote must be the same.

To include the enclosing quote in the string, double it. E.g.

the string containing both quotes can be denoted as: ″ ′ ″″ ″
or ′ ′ ′ ″ ′ .

In strings with double quotes you can also use C-escape sequence

characters, which are preceded by a '\' backslash. A complete list of

C-escape sequence characters is given below.

Examples:

’A’ + 1 ; a 1–byte ASCII string, result 42H
″9C″ + 1 ; a 2–byte ASCII string, result 3944H

List of C-escape sequence characters (double quotes only):

\a alert (bell) character \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \” double quote

\r carriage return \ooo octal number

\t horizontal tab \xhh hexadecimal number

\v vertical tab

where, ooo is one to three octal digits

hh is one or more hexadecimal digits.

″\\″ ; use this for a single backslash ! (double quotes)

′\′ ; or this (single quotes)

Operands and Expressions 6–17

• • • • • • • •

6.2.4 SYMBOL

A symbol is an identifier. A symbol represents the value of an identifier
which is already defined, or will be defined in the current source module

by means of a label declaration, equate directive or the EXTRN directive.

Symbols result in relocatable expressions.

Examples:

CON1 EQU 3H ; The variable CON1 represents
; the value of 3

MOV R1, CON1 + 0FFD3H ; Move contents of address
; 0FFD7H to register R1

6.3 OPERATORS

There are two types of operators:

- unary operators

- binary operators

Operators can be arithmetic operators, relational operators, logical

operators, attribute overriding operators or attribute value operators. All

operators are described in the following sections.

If the grouping of the operators is not specified with parentheses, the

operator precedence is used to determine evaluation order. Every operator

has a precedence level associated with it. The following table lists the

operators and their order of precedence (in descending order).

Operators Type

. (dot operator) binary

BIT PTR, BYTE PTR, WORD PTR, NEAR PTR, FAR PTR, DPP0:,
DPP1:, DPP2:, DPP3:, DATA3, DATA4, DATA8, DATA16, SEG,
PAG, SOF, POF, BOF

unary

HIGH, LOW, NOT, !, ~, +, – unary

*, /, MOD, % binary

+, – binary

SHL, <<, SHR, >> binary

LT, <, LE, <=, GT, >, GE, >=, ULT, ULE, UGT, UGE binary

Chapter 66–18
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

TypeOperators

EQ, ==, NE, != binary

AND, & binary

XOR, ^ binary

OR, | binary

SHORT unary

Table 6-5: Operators Precedence List

Except for the unary operators, the assembler evaluates expressions with

operators of the same precedence level left-to-right. The unary operators

are evaluated right-to-left. So, –4 + 3 * 2 evaluates to (–4) + (3 *
2) . With the SHORT operator no multiple operators are allowed.

Note that you can also use the '.' operator in expressions (for bit selection

in a byte)!

6.3.1 ARITHMETIC OPERATORS

6.3.1.1 ADDITION AND SUBTRACTION

Synopsis:

Addition: operand + operand

Subtraction: operand - operand

The + operator adds its two operands and the - operator subtracts them.

The operands can be any expression evaluating to an absolute number or

a relocatable operand.

Examples:

0a342h + 23h ; addition of absolute numbers
0ff1ah – AVAR ; subtraction with a variable

Operands and Expressions 6–19

• • • • • • • •

6.3.1.2 SIGN OPERATORS

Synopsis:

Plus: +operand
Minus: -operand

The + operator does not modify its operand. The - operator subtracts its

operand from zero.

Example:

5 + –3 ; result is 2

6.3.1.3 MULTIPLICATION AND DIVISION

Synopsis:

Multiplication: operand * operand
Division: operand / operand
Modulo: operand % operand

operand MOD operand

The * operator multiplies its two operands, the / operator performs an

integer division, discarding any remainder. The MOD and % operators also

perform an integer division, but discard the quotient and return the

remainder. The operands can be any expression evaluating to an absolute

number or a relocatable operand.

Examples:

AVAR * 2 ; multiplication
0ff3ch / COUNT ; division
23 mod 4 ; modulo, result is 3

Chapter 66–20
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.3.1.4 SHIFT OPERATORS

Synopsis:

Shift left: operand << count
operand SHL count

Shift right: operand >> count
operand SHR count

These operators shift their left operand (operand) either left (SHL, <<) or

right (SHR, >>) by the number of bits (absolute number) specified with the

right operand (count). The operands can be any expression evaluating to

an absolute number or a relocatable operand.

Examples:

R0 << 2 ; shift left register R0, 2 times
AVAR shr COUNT; shift right variable AVAR,

; COUNT times

6.3.1.5 RELATIONAL OPERATORS

Synopsis:

Equal: operand EQ operand
operand == operand

Not equal: operand NE operand
operand != operand

Less than: operand LT operand
operand < operand

Less than or equal: operand LE operand
operand <= operand

Greater than: operand GT operand
operand > operand

Greater than or equal: operand GE operand
operand >= operand

Unsigned less than: operand ULT operand
Unsigned less than or equal: operand ULE operand
Unsigned greater than: operand UGT operand
Unsigned greater than or equal: operand UGE operand

These operators compare their operands and return an absolute number

(data16) of 1's for 'true' and 0's for 'false'. The operands can be any

expression evaluating to an absolute number or a relocatable operand.

Operands and Expressions 6–21

• • • • • • • •

Examples:

3 GE 4 ; result is 0 (false)
4 EQ COUNT ; 1’s (true), if COUNT is 4.

; 0 otherwise.
9 ULT0Ah ; result is 1’s (true)

6.3.1.6 LOGICAL OPERATOR

Synopsis:

Logical NOT: ! operand

The ! operator performs a logical not on its operand. ! returns 1 ('true') if

the operand is 0, otherwise ! returns 0 ('false').

Examples:

! 0Ah ; result is 0 (false)
! (4 < 3) ; result is 1 (true).

; 4 < 3 result is 0 (false).

6.3.1.7 BITWISE OPERATORS

Synopsis:

Bitwise AND: operand AND operand
operand & operand

Bitwise OR: operand OR operand
operand | operand

Bitwise XOR: operand XOR operand
operand ^ operand

Bitwise NOT: NOT operand
~ operand

The AND, OR and XOR operators take the bit-wise AND, OR respectively

XOR of the left and right operand. The NOT operator performs a bit-wise

complement on its operand. The operands can be any expression

evaluating to an absolute number or a relocatable operand.

Chapter 66–22
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Examples:

0Bh and 3 ; result is 3
1011b
0011b and
0011b

NOT 0Ah ; result is 5
not 1010b = 0101b

6.3.1.8 SELECTION OPERATORS

Synopsis:

Select high: HIGH operand
Select low: LOW operand

LOW selects the least significant byte of its operand, HIGH selects the

most significant byte.

Examples:

DB HIGH 1234H; stores 0012H
DB LOW 1234H; stores 0034H

6.3.1.9 DOT OPERATOR

Synopsis:

bitword.bitpos

The . (dot) operator singles out the bit number specified by the bitpos
from the bitword. The result is an address in the BIT addressable memory

space.

bitword can have the following absolute values:

00h .. 7fh (8-bit word offset in RAM)

80h .. 0efh (8-bit word offset in SFR)

0fd00h .. 0fdfeh (internal RAM)

0ff00h .. 0ffdeh (internal SFR)

bitpos can have the following values:

00h .. 0fh

Operands and Expressions 6–23

• • • • • • • •

The assembler internally uses the 8-bit word offset for bit addresses. An

expression like 0fd10h.2 is evaluated by first converting 0fd10h to the

corresponding 8-bit word offset 08h. This conversion is made because the

8-bit word offset for RAM and SFR areas are contiguous, while the

corresponding 16-bit addresses are not.

The distinction between RAM area and SFR area is made because the

acceptance of both (RAM area and SFR area) in 'DOT' expressions

depends on the context in which they are used.

For example: the bitword of a 'DOT' expression used in the operand of

the BIT directive must be in internal RAM.

The 8-bit word offset in SFR is not allowed when the EXTSFR control is

active.

When EXTSFR is active an internal SFR address also can be an address in

the range 0f00h ... 0f1deh.

Examples:

BITW SECTION DATA BITADDRESSABLE
BITWRD DS 2
BITW ENDS

25.3 ; absolute bitwordnumber . bitposition
0FD20H. 4 ; absolute bitwordaddress . bitposition
BITWRD. 2 ; relative bitwordoffset . bitposition

BITWRD + 4 . ST1 – 3 ; Illegal address operation!!
(BITWRD + 4) . (ST1 – 3) ; expression . expression
0FD00H.0 + 21H ; results in: 0FD02H.1

Chapter 66–24
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.3.2 ATTRIBUTE OVERRIDING OPERATORS

6.3.2.1 PAGE OVERRIDE OPERATOR

Synopsis:

DPPn:var-name

The physical page in which a variable lies is defined by the page number

in one of the Data Page Pointer (DPP) registers. Access to a variable is

established by the page number and a page offset. The page override

operator is used to override or specify the page attribute of a variable. In

other words, the operator can specify what the contents of the DPP

registers is at run time. The page override is similar to the ASSUME

directive (described in the chapter Assembler Directives), but here the

override for a reference to a variable or label must be explicitly coded!

DPPn can be any of the Data Page Pointer registers: DPP0, DPP1, DPP2,

DPP3. The var-name can be a variable name or label name or an address

expression including a variable name or label name.

The DPP: operator is only allowed in the segmented mode.

Example:

ASSUME DPP0:DSEC1

DSEC1 SECTION DATA
AWORD DW 0
WORDLBL LABEL WORD
DSEC1 ENDS

CSEC1 SECTION CODE
.
.
MOV R0, AWORD ; The ASSUME covers the
. ; the reference
.
MOV DPP1, #DSEC1 ; Explicit code
MOV R0, DPP1:AWORD ; The page override operator
MOV R1, DPP1:WORDLBL ; covers the reference
.

CSEC1 ENDS

Operands and Expressions 6–25

• • • • • • • •

6.3.2.2 PTR OPERATOR

Synopsis:

ptr-type [PTR] operand

Use the PTR operator to define a memory reference with a certain type.

The PTR operator can also overwrite the type of the operand.

Ptr-type can be any of the following pointer types:

BIT, BYTE, WORD, BITWORD, NEAR, FAR

The operand can be any address expression which represents a variable or

label.

Examples:

MOV [R1], BYTE PTR 100

is the same as

MOV [R1], 100

The PTR operator can also overwrite the type of the operand.

MOV RL0, BYTE PTR AWORD ; get first byte
MOV RL1, BYTE PTR AWORD + 1 ; get second byte

A PTR operator can not be used on section, group or externally declared

constants. A BYTE PTR operator cannot be used on system addresses. A

BIT PTR operator can only by applied to bits, and a bit can only be

prefixed by a BIT PTR.

Chapter 66–26
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.3.2.3 DATAN OPERATOR

Synopsis:

DATAn operand

Use the DATAn operator to specify forward references to constants or to

adjust the data type of the operand. There are four different DATAn

operators, each within a defined range. n represents the number of bits:

Operator Range

DATA3 0 – 7

DATA4 0 – 15

DATA8 0 – 255

DATA16 0 – 65535 or –32768 to + 32767

When the DATAn operator is properly used in immediate expressions, you

can reduce the instruction code length. If no DATAn operator is used, the

assembler extends the operand type to the type with the maximum width.

The DATA operator can only be used to force a larger data type, not

smaller (see the examples). If an invalid data type is specified in an

instruction, an error occurs.

Examples:

CON1 EQU 9 ; type DATA4

CSEC SECTION CODE
 MOV R0, #DATA4 CON2 ; 2 byte instruction, type DATA4
 MOV R2, #CON1 ; 2 byte instruction, type DATA4
 ADD R0, #DATA16 CON1 + 5 * CON2 ; type DATA16
 .
 MOV R3, #CON2 ; Warning: unknown type in Pass 1
 . ; (maybe forward reference): type DATA16
 . ; is assumed to enable instruction length
 MOV R2, #DATA4 CON3 ; Error: data type of the result
 . ; is larger than the type
 . ; determined with the DATA operator
CSEC ENDS

CON2 EQU 9 ; type DATA4
CON3 EQU 1234 ; type DATA16

Operands and Expressions 6–27

• • • • • • • •

6.3.2.4 SHORT OPERATOR

Synopsis:

SHORT label

The SHORT operator is used to generate a short distance jump (relative

jump within -128 to +127 words at the instruction) to a forward referenced

label. The operator can only be used in jump instructions where a two

byte JMP shall be coded (JMPR relative jump). The label can only be a

NEAR label, addressable through the same CSP. When the OPTIMIZE

control is in effect, a166 performs optimizations for jump instructions

whenever possible. In pass 2 the assembler determines if the distance

between the instruction and the label can fit in a short distance jump. If

the SHORT operator is used when OPTIMIZE is in effect, a166 reports an

error if the optimization is not possible. If the assembler control

NOOPTIMIZE is used, the SHORT operator performs the optimization.

Example:

CSEC SECTION CODE
JMP LAB ; 2 byte instruction, optimized
. ; by the assembler
JMP SHORT LAB ; 2 byte instruction
.

LAB: MOV R0, #14
CSEC ENDS

Chapter 66–28
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.3.3 ATTRIBUTE VALUE OPERATORS

The attribute value operators return the numerical value (a part of the

physical address) of the attribute of an operand. The attribute of the

operand is not changed by the operators. These operators are useful when

you explicitly need to know the memory location or memory offset of a

variable, label, section or group name.

6.3.3.1 SEG OPERATOR

Synopsis:

SEG operand

This operator returns a 2-bit (8-bit for extended architectures) relocatable

segment number of the named symbol (variable-, label-, section-, group

name, SFR and PEC pointer). If the operator is used with system names,

the returned value is not a relocatable number, it returns segment number

0.

Examples:

DSEC SECTION DATA
AWORDDW SEG TABX ; Initialize with the segment

; number where TABX is located.
TABX DS 0
TABY DS 20
DSEC ENDS

CSEC SECTION CODE
MOV R0, #SEG TABY ; Init R0 with the segment
. ; number where TABY is located
JMPS SEG TABY, LAB1 ; jump to segment where
. ; TABY is located

LAB1:.
CSEC ENDS

Operands and Expressions 6–29

• • • • • • • •

6.3.3.2 PAG OPERATOR

Synopsis:

PAG operand

This operator returns a 4-bit (10-bit for extended architectures) relocatable

page number of a symbol (variable-, label-, section- or register bank

name). If this operator is used with system names, it returns an absolute

page number.

Examples:

DSEC SECTION DATA
AWORDDW PAG COUNT ; Initialize with the page

; number of the variable count.
DSEC ENDS

CSEC SECTION CODE
MOV DPP0, #PAG COUNT ; Init DPP0 with count’s

; section
CSEC ENDS

6.3.3.3 SOF OPERATOR

Synopsis:

SOF operand

This operator returns a 16-bit segment offset of a variable, label, section or

register bank from the base of the segment in which it is defined. Group

names cannot be used as operands for an offset, because at assembly time

the start offset of an absolute group cannot be determined for every

situation, as the order of the section inside the group can be changed with

the l166 locator.

Chapter 66–30
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Examples:

DSEC SECTION DATA
AWORDDW SOF TAB2 ; Init with the segment–

; offset of variable TAB2.
TAB2 DW 8

DSEC ENDS

CSEC SECTION CODE
MOV R0, #SOF TAB2 ; Fill R0 with the segment–

; offset of variable TAB2.
CSEC ENDS

6.3.3.4 POF OPERATOR

Synopsis:

POF operand

This operator returns a relocatable 14-bit page offset of a variable, label,

section or register bank from the base of the page in which it is defined.

Group names cannot be used as operands for an offset, because at

assembly time the start offset of an absolute group cannot be determined

for every situation, as the order of the section inside the group can be

changed with the l166 locator.

Examples:

DSEC SECTION DATA
AWORDDW POF TAB2 ; Init with the page–offset

; of variable TAB2.
TAB2 DW 8

DSEC ENDS

CSEC SECTION CODE
MOV R0, #POF TAB2 ; Fill R0 with the page–

; offset of variable TAB2.
CSEC ENDS

Operands and Expressions 6–31

• • • • • • • •

6.3.3.5 BOF OPERATOR

Synopsis:

BOF bit-var

This operator returns the bit position of a bit variable, in the word in

which it is defined. This is not a relocatable number. The BOF operator

can only be used on bit variables.

Examples:

EXTERN EBIT:BIT

DSEC SECTION DATA BITADDRESSABLE
BW DS 8
BWX BIT BW. 9
DSEC ENDS

BSEC SECTION BIT AT 0FD00 . 4H
BN DBIT
BSEC ENDS

CSEC SECTION CODE
ROL R2, #BOF EBIT ; Rotate R2 as many times to the

; left as the number of the bit–
; position of variable EBIT

ROL R4, #BOF BN ; Rotate left 4 times
ROL R5, #BOF BWX ; Rotate left 9 times

CSEC ENDS

Chapter 66–32
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6.4 SFR AND BIT NAMES

Built into the assembler are a number of symbol definitions for various

C166 addresses in bit, data and code memory space. These symbols are

special function register and bit names. The symbols are listed below.

They are ordered by address.

6.4.1 SPECIAL FUNCTION REGISTERS (SFR)

SFRs are subdivided in Non Bit- and Bit-addressable SFRs.

- Non Bit Addressable SFRs are placed between address FE00h and

FEFFh in the first segment

Name Physical
address

Name Physical
address

Name Physical
address

DPP0 FE00h
DPP1 FE02h
DPP2 FE04h
DPP3 FE06h
CSP FE08h
MDH FE0Ch
MDL FE0Eh
CP FE10h
SP FE12h
STKOV FE14h
STKUN FE16h
ADDRSEL1 FE18h
T2 FE40h
T3 FE42h
T4 FE44h
T5 FE46h
T6 FE48h
CAPREL FE4Ah

T0 FE50h
T0REL FE54h
T1 FE52h
T1REL FE56h
CC0 FE80h
CC1 FE82h
CC2 FE84h
CC3 FE86h
CC4 FE88h
CC5 FE8Ah
CC6 FE8Ch
CC7 FE8Eh
CC8 FE90h
CC9 FE92h
CC10 FE94h
CC11 FE96h
CC12 FE98h
CC13 FE9Ah

CC14 FE9Ch
CC15 FE9Eh
ADDAT FEA0h
WDT FEAEh
S0TBUF FEB0h
S0RBUF FEB2h
S0BG FEB4h
S1TBUF FEB8h
S1RBUF FEBAh
S1BG FEBCh
PECC0 FEC0h
PECC1 FEC2h
PECC2 FEC4h
PECC3 FEC6h
PECC4 FEC8h
PECC5 FECAh
PECC6 FECCh
PECC7 FECEh

Table 6-6: Non Bit Addressable SFRs for the C166

Operands and Expressions 6–33

• • • • • • • •

- Bit Addressable SFRs are placed between address FF00h and FFDFh

Name Physical
address

Name Physical
address

Name Physical
address

P0 FF00h
DP0 FF02h
P1 FF04h
DP1 FF06h
DP4 FF0Ah
SYSCON FF0Ch
MDC FF0Eh
PSW FF10h
BUSCON1 FF14h
ZEROS FF1Ch
ONES FF1Eh
T2CON FF40h
T3CON FF42h
T4CON FF44h
T5CON FF46h
T6CON FF48h
T01CON FF50h
CCM0 FF52h
CCM1 FF54h
CCM2 FF56h
CCM3 FF58h

T2IC FF60h
T3IC FF62h
T4IC FF64h
T5IC FF66h
T6IC FF68h
CRIC FF6Ah
S0TIC FF6Ch
S0RIC FF6Eh
S0EIC FF70h
S1TIC FF72h
S1RIC FF74h
S1EIC FF76h
CC0IC FF78h
CC1IC FF7Ah
CC2IC FF7Ch
CC3IC FF7Eh
CC4IC FF80h
CC5IC FF82h
CC6IC FF84h
CC7IC FF86h
CC8IC FF88h
CC9IC FF8Ah

CC10IC FF8Ch
CC11IC FF8Eh
CC12IC FF90h
CC13IC FF92h
CC14IC FF94h
CC15IC FF96h
ADCIC FF98h
ADEIC FF9Ah
T0IC FF9Ch
T1IC FF9Eh
ADCON FFA0h
P5 FFA2h
TFR FFACh
WDTCON FFAEh
S0CON FFB0h
S1CON FFB8h
P2 FFC0h
DP2 FFC2h
P3 FFC4h
DP3 FFC6h
P4 FFC8h

Table 6-7: Bit Addressable SFRs for the C166

6.4.2 BIT NAMES

Bit names can be subdivided in system bit names and peripheral bit names.
The addresses in the following tables are bit addresses in the form

BITADDR.BITPOS. BITADDR is the address of one of the SFR registers

where the bit is part of. BITPOS is the bit position in the SFR register.

Chapter 66–34
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

System bit names:

Name Physical
address

Name Physical
address

Name Physical
address

MDRIU FE0Eh.4
RWDC FF0Ch.4
MTTC FF0Ch.5
CLKEN FF0Ch.8
BYTDIS FF0Ch.9
BUSACT FF0Ch.A
SGTDIS FF0Ch.B
RDYEN FF0Ch.C

N FF10h.0
C FF10h.1
V FF10h.2
Z FF10h.3
E FF10h.4
MULIP FF10h.5
USR0 FF10h.6
HLDEN FF10h.A

IEN FF10h.B
RWDC1 FF14h.4
MTTC1 FF14h.5
ALECTL1 FF14h.9
BUSACT1 FF14h.A
RDYEN1 FF14h.C

Table 6-8: System Bit Names for the C166

Peripheral bit names:

Name Physical
address

Name Physical
address

Name Physical
address

A16 FFC8.0
A17 FFC8.1
T2R FF40h.6
T2UD FF40h.7
T3R FF42h.6
T3UD FF42h.7
T4R FF44h.6
T4UD FF44h.7
T3UDE FF42h.8
T3OE FF42h.9
T3OTL FF42h.A
T5M FF46h.3
T5R FF46h.6
T5UD FF46h.7
T5CLR FF46h.E
T5SC FF46h.F
T6R FF48h.6
T6UD FF48h.7
T6OE FF48h.9
T6OTL FF48h.A
T6SR FF48h.F
T2IR FF60h.7

T0M FF50h.3
T0R FF50h.6
T1M FF50h.B
T1R FF50h.E
ACC0 FF52h.3
ACC1 FF52h.7
ACC2 FF52h.B
ACC3 FF52h.F
ACC4 FF54h.3
ACC5 FF54h.7
ACC6 FF54h.B
ACC7 FF54h.F
ACC8 FF56h.3
ACC9 FF56h.7
ACC10 FF56h.B
ACC11 FF56h.F
ACC12 FF58h.3
ACC13 FF58h.7
ACC14 FF58h.B
ACC15 FF58h.F
T2IE FF60h.6
T3IE FF62h.6

T3IR FF62h.7
T4IE FF64h.6
T4IR FF64h.7
T5IE FF66h.6
T5IR FF66h.7
T6IE FF68h.6
T6IR FF68h.7
CRIE FF6Ah.6
CRIR FF6Ah.7
S0TIE FF6Ch.6
S0TIR FF6Ch.7
S0RIE FF6Eh.6
S0RIR FF6Eh.7
S0EIE FF70h.6
S0EIR FF70h.7
S1TIE FF72h.6
S1TIR FF72h.7
S1RIE FF74h.6
S1RIR FF74h.7
S1EIE FF76h.6
S1EIR FF76h.7

Table 6-9: Peripheral Bit Names for the C166

Operands and Expressions 6–35

• • • • • • • •

Name Physical
address

Name Physical
address

Name Physical
address

CC0IE FF78h.6
CC0IR FF78h.7
CC1IE FF7Ah.6
CC1IR FF7Ah.7
CC2IE FF7Ch.6
CC2IR FF7Ch.7
CC3IE FF7Eh.6
CC3IR FF7Eh.7
CC4IE FF80h.6
CC4IR FF80h.7
CC5IE FF82h.6
CC5IR FF82h.7
CC6IE FF84h.6
CC6IR FF84h.7
CC7IE FF86h.6
CC7IR FF86h.7
CC8IE FF88h.6
CC8IR FF88h.7
CC9IE FF8Ah.6
CC9IR FF8Ah.7
CC10IE FF8Ch.6
CC10IR FF8Ch.7
CC11IE FF8Eh.6
CC11IR FF8Eh.7
CC12IE FF90h.6
CC12IR FF90h.7
CC13IE FF92h.6
CC13IR FF92h.7
CC14IE FF94h.6
CC14IR FF94h.7
CC15IE FF96h.6
CC15IR FF96h.7

ADCIE FF98h.6
ADCIR FF98h.7
ADEIE FF9Ah.6
ADEIR FF9Ah.7
T0IE FF9Ch.6
T0IR FF9Ch.7
T1IE FF9Eh.6
T1IR FF9Eh.7
ADST FFA0h.7
ADBSY FFA0h.8
AN0 FFA2h.0
AN1 FFA2h.1
AN2 FFA2h.2
AN3 FFA2h.3
AN4 FFA2h.4
AN5 FFA2h.5
AN6 FFA2h.6
AN7 FFA2h.7
AN8 FFA2h.8
AN9 FFA2h.9
ILLBUS FFACh.0
ILLINA FFACh.1
ILLOPA FFACh.2
PRTFLT FFACh.3
UNDOPC FFACh.7
STKUF FFACh.D
STKOF FFACh.E
NMI FFACh.F
WDTIN FFAEh.0
WDTR FFAEh.1
S0STP FFB0h.3
S0REN FFB0h.4

S0PEN FFB0h.5
S0FEN FFB0h.6
S0OEN FFB0h.7
S0PE FFB0h.8
S0FE FFB0h.9
S0OE FFB0h.A
S0BRS FFB0h.D
S0LB FFB0h.E
S0R FFB0h.F
S1STP FFB8h.3
S1REN FFB8h.4
S1PEN FFB8h.5
S1FEN FFB8h.6
S1OEN FFB8h.7
S1PE FFB8h.8
S1FE FFB8h.9
S1OE FFB8h.A
S1BRS FFB8h.D
S1LB FFB8h.E
S1R FFB8h.F
T0IN FFC4h.0
T6OUT FFC4h.1
CAPIN FFC4h.2
T3OUT FFC4h.3
T3EUD FFC4h.4
T4IN FFC4h.5
T3IN FFC4h.6
T2IN FFC4h.7
CLKOUT FFC4h.F

Table 6-9: Peripheral Bit Names for the C166 (continued)

Chapter 66–36
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

7

ASSEMBLER
CONTROLS

C
H

A
P

T
E

R

Chapter 77–2
C
O
N
T
R
O
L
S

7

C
H

A
P

T
E

R

Assembler Controls 7–3

• • • • • • • •

7.1 INTRODUCTION

Assembler controls are provided to alter the default behavior of the

assembler. They can be specified on the command line or on control lines,

embedded in the source file. A control line is a line with a dollar sign ($)

on the first position. Such a line is not processed like a normal assembly

source line, but as an assembler control line. Only one control per source

line is allowed. An assembler control line may contain comments.

The controls are classified as: primary or general.

Primary controls affect the overall behavior of the assembler and remain

in effect throughout the assembly. For this reason, primary controls

may only be used on the invocation line or at the beginning of a

source file, before the assembly starts. If you specify a primary control

more than once, a warning message is given and the last definition is

used. This enables you to override primary controls via the invocation

line.

General controls are used to control the assembler during assembly.

Control lines containing general controls may appear anywhere in a

source file and are also allowed in the invocation. When you specify

general controls via the invocation line the corresponding general

controls in the source file are ignored.

The controls GEN, NOGEN, GENONLY and INCLUDE are implemented in

the macro preprocessor. If one of these controls is encountered, the

assembler generates a warning.

The following controls are not known by the Infineon assembler:

ASMLINEINFO / NOASMLINEINFO

CHECKBUS18 / NOCHECKBUS18

CHECKC166SV1DIV / NOCHECKC166SV1DIV

CHECKC166SV1SP / NOCHECKC166SV1SP

CHECKC166SV1CP / NOCHECKC166SV1CP

CHECKCPU3 / NOCHECKCPU3

CHECKCPU16 / NOCHECKCPU16

CHECKCPU1R006 / NOCHECKCPU1R006

Chapter 77–4
C
O
N
T
R
O
L
S

CHECKCPU21 / NOCHECKCPU21

CHECKLONDON1 / NOCHECKLONDON1

CHECKLONDON1751 / NOCHECKLONDON1751

CHECKMULDIV / NOCHECKMULDIV

CHECKSTBUS1 / NOCHECKSTBUS1

DEBUG / NODEBUG

EXTINSTR / NOEXTINSTR

EXTMAC / NOEXTMAC

EXTEND / NOEXTEND

EXTEND2 / NOEXTEND2

EXTEND22 / NOEXTEND22

EXTMEM / NOEXTMEM

EXTSFR / NOEXTSFR

EXTSSK / NOEXTSSK

EXTPEC / NOEXTPEC

EXTPEC16 / NOEXTPEC16

FLOAT(float-type)

LINES / NOLINES

LISTABSOFFSET / NOLISTABSOFFSET

LISTALL / NOLISTALL

LOCALS / NOLOCALS

MISRAC(string)

MODEL(name)

OBJECT(file)

OPTIMIZE / NOOPTIMIZE

Assembler Controls 7–5

• • • • • • • •

PEC / NOPEC

RETCHECK / NORETCHECK

STRICTTASK / NOSTRICTTASK

SYMB / NOSYMB

WARNING(number)

WARNINGASERROR / NOWARNINGASERROR

The examples in this chapter are given for a PC environment.

An overview of all assembler controls is listed on the following pages.

Chapter 77–6
C
O
N
T
R
O
L
S

7.2 OVERVIEW A166 CONTROLS

Control Abbr. Type Def. Description

ABSOLUTE
NOABSOLUTE

AB
NOAB

pri
NOAB

Generate absolute code.
Do not generate absolute code.

ASMLINEINFO
NOASMLINEINFO

A
NOA

gen
NOA

Generate line and file info.
Do not generate line and file info.

CASE
NOCASE

CA
NOCA

pri
NOCA

All user names are case sensitive.
User names are not case sensitive.

CHECKBUS18
NOCHECKBUS18

BUS18
NOBUS18

gen
NO....

Check for BUS.18 problem.
Do not check for BUS.18 problem.

CHECKC166SV1DIV
NOCHECKC166SV1DIV

C166SV1DIV
NOC166SV1DIV

gen
NO....

Check for CR105893 problem.
Do not check for CR105893 problem.

CHECKC166SV1SP
NOCHECKC166SVSP

C166SV1SP
NOC166SV1SP

gen
NO....

Check for CR105685 problem.
Do not check for CR105685 problem.

CHECKC166SV1CP
NOCHECKC166SVCP

C166SV1CP
NOC166SV1CP

gen
NO....

Check for CR105840 problem.
Do not check for CR105840 problem.

CHECKCPU3
NOCHECKCPU3

CPU3
NOCPU3

gen
NO....

Check for PU.3 problem.
Do not check for CPU.3 problem.

CHECKCPU16
NOCHECKCPU16

CPU16
NOCPU16

gen
NO....

Check for CPU.16 problem.
Do not check for CPU.16 problem.

CHECKCPU1R006
NOCHECKCPU1R006

CPU1R006
NOCPU1R0066

gen
NO....

Check for CPU1R006 problem.
Do not check for CPU1R006 problem.

CHECKCPU21
NOCHECKCPU21

CPU21
NOCPU21

gen
NO....

Check for CPU.21 problem.
Do not check for CPU.21 problem.

CHECKLONDON1
NOCHECKLONDON1

LONDON1 NO
LONDON1

gen
NO....

Check for LONDON.1 problem
Do not check for LONDON.1 problem.

CHECKLONDON1751
NOCHECKLONDON1751

LONDON1751
NOLONDON1751

gen
NO....

Check for LONDON.1751 problem
Do not check for LONDON.1751
problem.

CHECKMULDIV
NOCHECKMULDIV

MD
NOMD

gen
NOMD

Check for unprotected MUL/DIV
Do not check for unprotected MUL/DIV.

Abbr.: Abbreviation of the control.
Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Table 7-1: a166 controls

Assembler Controls 7–7

• • • • • • • •

Control Abbr. Type Def. Description

CHECKSTBUS1
NOCHECKSTBUS1

STBUS1
NO
STBUS1

gen
NO....

Check for ST_BUS.1 problem.
Do not check for ST_BUS.1 problem.

DATE(’date’) DA pri system Set date in header of list file.

DEBUG
NODEBUG

DB
NODB

pri
NODB

Produce symbolic debug information.
Do not produce symbolic debug info.

EJECT EJ gen Generate formfeed in list file.

ERRORPRINT [(err–file)]
NOERRORPRINT

EP
NOEP

pri
NOEP

Print errors to named file.
No error printing.

EXTEND
NOEXTEND

EX
NOEX

pri
NOEX

Use all extensions of the 80C166.
Use no extensions of the 80C166.

EXTEND2
NOEXTEND2

EX2
NOEX2

pri
NOEX2

Use C166Sv2.0/Super10 instruction set.
Do not use C166Sv2.0/Super10 instruction
set.

EXTEND22
NOEXTEND22

EX22
NOEX22

pri
NOEX22

Use C166Sv2.0/Super10 ST extensions.
Do not use C166Sv2.0/Super10 ST
extensions.

EXTINSTR
NOEXTINSTR

XI
NOXI

pri
NOXI

Use extended instruction set (C167).
Use 80C166 instruction set.

EXTMAC
NOEXTMAC

XC
NOXC

pri
NOXC

Use MAC instruction set.
Do not Use MAC instructon set.

EXTMEM
NOEXTMEM

XM
NOXM

pri
NOXM

Use 24–bit addresses.
Use 18–bit addresses.

EXTPEC
NOEXTPEC

XP
NOXP

pri
NOXP

Use PEC pointers at 0FCE0h.
Use PEC pointers at 0FDE0h.

EXTPEC16
NOEXTPEC16

EP16
NOEP16

pri
NOEP16

Enables use of PECC8 to PECC15.
Disables use of PECC8 to PECC15.

EXTSFR
NOEXTSFR

XF
NOXF

pri
NOXF

Use extended SFR area.
Do not use extended SFR area.

EXTSSK
NOEXTSSK

XS
NOXS

pri
NOXS

Use extended SSKDEF.
Do not use extended SSKDEF.

FLOAT(float–type)
 float–type:
 NONE, SINGLE, ANSI

FL gen NONE Place float–type in object file.

Abbr.: Abbreviation of the control.
Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Table 7-1: a166 controls (continued)

Chapter 77–8
C
O
N
T
R
O
L
S

Control Abbr. Type Def. Description

GEN
GENONLY
NOGEN

GE
GO
NOGE

gen GE Implemented with macro processor1

Implemented with macro processor1

Implemented with macro processor1

GSO GSO pri Enable global storage optimizer.

HEADER
NOHEADER

HD
NOHD

pri
NOHD

Print list file header page.
Do not print list file header page.

INCLUDE(inc–file) IC gen Implemented with macro processor1

LINES
NOLINES

LN
NOLN

gen LN Keep line number information.
Remove line number information.

LIST
NOLIST

LI
NOLI

gen LI Resume listing.
Stop listing.

LISTALL
NOLISTALL

LA
NOLA

pri
NOLA

List in every pass.
Do not list in every pass.

LISTABSOFFSET
NOLISTABSOFFSET

LAO
NOLAO

pri
NOLAO

List absolute code location.
Do not list absolute code location.

LOCALS
NOLOCALS

LC
NOLC

gen LC Keep local symbol information.
Remove local symbol information.

MISRAC(string) MC pri Set MISRA C check list.

MOD166
NOMOD166

M166
NOM166

pri M166 Use all system names.
Minimize nr. of known system names.

MODEL(modelname)
 modelname:
 NONE, TINY, SMALL,
 MEDIUM or LARGE

MD pri NONE Indicate C compiler memory model.

OBJECT[(file)]
NOOBJECT

OJ
NOOJ

pri src.obj Alternative name for object file.
Do not produce an object file.

OPTIMIZE
NOOPTIMIZE

OP
NOOP

gen OP Turn optimization on.
Turn optimization off.

PAGELENGTH(length) PL pri 60 Set list page length.

PAGEWIDTH(width) PW pri 120 Set list page width.

PAGING
NOPAGING

PA
NOPA

pri PA Format print file into pages.
Do not format print file into pages.

Abbr.: Abbreviation of the control.
Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.
 1 This control is only implemented for compatibility, the assembler will generate a
 warning on level 2.

Table 7-1: a166 controls (continued)

Assembler Controls 7–9

• • • • • • • •

Control Abbr. Type Def. Description

PEC
NOPEC

PC
NOPC

gen PEC

PRINT[(print–file)]
NOPRINT

PR
NOPR

pri src.lst Define print file name.
Do not create a print file.

RESTORE
SAVE

RE
SA

gen Restore saved listing control.
Save listing control.

RETCHECK
NORETCHECK

RC
NORC

gen RC Check on correct RET instruction.
No check on correct RET instruction.

SEGMENTED
NONSEGMENTED

SG
NOSG

pri
NOSG

Segmented memory model.
Non segmented memory mode.

STDNAMES(std–file) SN pri Read user defined system names.

STRICTTASK
NOSTRICTTASK

ST
NOST

pri
NOST

Assemble strictly with Task Concept.
Allow all extensions on Task Concept.

SYMB
NOSYMB

SM
NOSM

gen SM Keep ?SYMB symbols.
Remove ?SYMB symbols.

SYMBOLS
NOSYMBOLS

SB
NOSB

pri
NOSB

Print symbol table in list file
Do not print symbol table in list file

TABS(number) TA pri 8 Set list tab width.

TITLE (’title’) TT gen mod–na
me

Set list page header title.

TYPE
NOTYPE

TY
NOTY

pri TY Produce type records in object file.
Do not produce type records.

WARNING(number)
NOWARNING(NUMBER)

WA
NOWA

gen 1 Set warning level.
Dis / enable warnings

WARNINGASERROR
NOWARNINGASERROR

WAE
NOWAE

gen
NOWAE

Exit with an exit status.
Unequal 0 if there were warnings

XREF
NOXREF

XR
NOXR

pri
NOXR

Generate cross–reference
Do not generate cross–reference

Abbr.: Abbreviation of the control.
Type: Type of control: pri for primary controls, gen for general controls.
Def.: Default.

Table 7-1: a166 controls (continued)

On the next pages, the available assembler controls are listed in alphabetic

order.

Chapter 77–10
C
O
N
T
R
O
L
S

7.3 DESCRIPTION OF A166 CONTROLS

ABSOLUTE

Control:

ABSOLUTE/NOABSOLUTE

Abbreviation:

AB/NOAB

Class:

Primary

Default:

NOABSOLUTE

Description:

ABSOLUTE generates absolute object code that can be loaded into

memory without linking or locating. When using ABSOLUTE, all sections

must be defined with the combine type 'AT address'. NOABSOLUTE

generates relocatable object code, which has to be linked and located by

l166.

Example:

a166 x.src ab ; generate absolute object code

Assembler Controls 7–11

• • • • • • • •

ASMLINEINFO

Control:

ASMLINEINFO/NOASMLINEINFO

Abbreviation:

AL/NOAL

Class:

General

Default:

NOASMLINEINFO

Description:

The ASMLINEINFO control forces the assembler to generate line and file

symbolic debugging information for each instruction. The #line directives,

as well as the ?LINE and ?FILE symbols, (all three are explained in detail in

the following chapter) are used to keep track of which file and which line

in that file is being assembled.

As long as ASMLINEINFO is effective, ?LINE and ?FILE symbols are not

directly converted to the corresponding symbol. Instead, that information

is stored, and the line number is increased for every assembly instruction.

This can cause strange results during debugging if used carelessly together

with the compiler -g (symbolic debugging) option.

The ASMLINEINFO control is completely seperate from the SYMB and

LINES controls, which regulate the translation of compiler generated

symbolic debug information. With NOLINES and ASMLINEINFO, all line

number information will be derived from the assembly source file. The

DEBUG control regulates the effect of ASMLINEINFO in general. See that

control's description for a list of effected controls.

Example:

$ASMLINEINFO
;generate line and file debug information
MOV R0, R12

$NOASMLINEINFO
;stop generating line and file information

Chapter 77–12
C
O
N
T
R
O
L
S

CASE

Control:

CASE/NOCASE

Abbreviation:

CA/NOCA

Class:

Primary

Default:

NOCASE

Description:

Selects whether the assembler operates in case sensitive mode or not. In

case insensitive mode the assembler maps characters on input to

uppercase. (literal strings excluded).

Example:

a166 x.src case ; a166 in case sensitive mode

Assembler Controls 7–13

• • • • • • • •

CHECKBUS18

Control:

CHECKBUS18/NOCHECKBUS18

Abbreviation:

BUS18/NOBUS18

Class:

General

Default:

NOCHECKBUS18

Description:

Infineon regularly publishes microcontroller errata sheets for reporting cpu

functional problems. With the CHECKBUS18 control the assembler issues

warning 153 when the BUS.18 problem is present on your cpu.

BUS.18: Possible conflict between jump chaining and PEC transfers.

Please refer to the Infineon errata sheets for a description of the BUS.18

problem. See also the description of warning W 153.

Example:

$checkbus18 ; check for BUS.18 problem

Chapter 77–14
C
O
N
T
R
O
L
S

CHECKC166SV1DIV

Control:

CHECKC166SV1DIV/NOCHECKC166SV1DIV

Abbreviation:

C166SV1DIV/NOC166SV1DIV

Class:

General

Default:

NOCHECKC166SV1DIV

Description:

Several processor steppings of the C166S v1 architecture have a problem

with interrupted divisions. The internal infineon reference (preliminary) for

this problem is CR105893: 'Interrupted division corrupted by division in

interrupt service routine'. The assembler generates a warning if an

unprotected DIV is found. Protect these DIV instructions with appropiate

atomic and extended sequences to prevent interrupts.

Please refer to the Infineon errata sheets for a description of the CR105893

problem.

Example:

$CHECKC166SV1DIV ; check for CR105893 ’Interrupted DIV’

Assembler Controls 7–15

• • • • • • • •

CHECKC166SV1SP

Control:

CHECKC166SV1SP/NOCHECKC166SV1SP

Abbreviation:

C166SV1SP/NOC166SV1SP

Class:

General

Default:

NOCHECKC166SV1SP

Description:

Several processor steppings of the C166S v1 architecture have a problem

with reading the SP register in the pipeline. The internal infineon reference

(preliminary) is CR105685: 'Wrong SP is used if RETS, RETI or RETP

follows a SP modifying instruction'. In such cases, the wrong return

address is popped from the stack.

Please note that a single instruction which does not use SP is always

required directly after an SP modifying instruction. For processors with this

silicon bug, two instructions that do not use SP must be inserted before

the return instruction.

Please refer to the Infineon errata sheets for a description of the CR105685

problem.

Example:

$CHECKC166SV1SP ; check for RETS, RETI, RETP
 after SP modifying instructions

Chapter 77–16
C
O
N
T
R
O
L
S

CHECKC166SV1CP

Control:

CHECKC166SV1CP/NOCHECKC166SV1CP

Abbreviation:

C166SV1CP/NOC166SV1CP

Class:

General

Default:

NOCHECKC166SV1CP

Description:

Several processor steppings of the C166S v1 architecture have a problem

with reading the CP register in the pipeline. The internal infineon

reference (preliminary) is CR105840: 'Wrong CP is used if an instruction

using GPR follows a CP modification'.

Please note that a regular operation that does not use CP is required after

a CP modifying instruction in all architectures. The CP must be modified

explicitely or through indirect addressing. The violating instruction has to

use CP to calculate a GPR address. This counts for all addressing modes

using Rw, Rb or [Rw] in any combination.

If cached jumps occur directly after a CP modifying instruction, the target

instruction is also affected. Because of the wide implications of this silicon

bug, an error is generated in when the bug occurs and a warning on

level 2 is generated when it may occur. The latter is the case with

• indirect addressing modes (these may change CP)

• jumps (the target of the jump may use CP to calculate a GPR address)

• instructions that use CP to calculate a GPR address at a label (a cached

jump may occur directly after a CP modifying instruction).

Use the WARNING and NOWARNING controls to switch off the warnings

around labels and jumps where it is known that this problem does not

occur.

Assembler Controls 7–17

• • • • • • • •

Please refer to the Infineon errata sheets for a description of the CR105685

problem.

Examples:

$CHECKC166SV1CP ; Check for ’Wrong CP used’ problem

$NOWA(171) ; the following sequence
MOV [R15], R1 ; was investigated and R15 will
NOP ; never point to CP,
MOV R1, R1 ; so turn off warning temporarily
$WA(171)

$NOWA(172)
MOV CP, #2 ; CP is modified
JMPA cc_Z, _label ; but target does not use it
$WA(172) ; so switch off warning temporarily

$NOWA(172) ; jump to label does not occur
_label: MOV R1, #2 ; directly after a CP modifying
$WA(172) ; instruction so switch off warning
 ; temporarily

Chapter 77–18
C
O
N
T
R
O
L
S

CHECKCPU3

Control:

CHECKCPU3/NOCHECKCPU3

Abbreviation:

CPU3/NOCPU3

Class:

General

Default:

NOCHECKCPU3

Description:

Infineon regularly publishes microcontroller errata sheets for reporting cpu

functional problems.

Early steps of the extended architecture core have a problem with the

MOV Rn, [Rm + #data16] instuction at the end of an EXTEND sequence

(EXTP, EXTPR, EXTS or EXTSR). In this case, the DPP addressing

mechanism is not bypassed and an invalid code access might occur.

With the CHECKCPU3 control the assembler issues a warning when this

instruction is found at the end of EXTP, EXTPR, EXTS or EXTSR sequences.

Please refer to the Infineon errata sheets for a description of the CPU.3

problem.

Example:

$checkcpu3 ; check for CPU.3 problem

a166 module.src CHECKCPU3 ; check for CPU.3 problem in
 ; module.src

Assembler Controls 7–19

• • • • • • • •

CHECKCPU16

Control:

CHECKCPU16/NOCHECKCPU16

Abbreviation:

CPU16/NOCPU16

Class:

General

Default:

NOCHECKCPU16

Description:

Infineon regularly publishes microcontroller errata sheets for reporting cpu

functional problems. With the CHECKCPU16 control the assembler issues

fatal error 420 when the CPU.16 problem is present on your cpu.

CPU.16: Data read access with MOVB [Rn],mem instruction to internal

ROM/Flash/OTP.

Please refer to the Infineon errata sheets for a description of the CPU.16

problem.

Example:

$checkcpu16 ; check for CPU.16 problem

Chapter 77–20
C
O
N
T
R
O
L
S

CHECKCPU1R006

Control:

CHECKCPU1R006/NOCHECKCPU1R006

Abbreviation:

CPU1R006/NOCPU1R006

Class:

General

Default:

NOCHECKCPU1R006

Description:

Infineon regularly publishes microcontroller errata sheets for reporting cpu

functional problems. With the CHECKCPU1R006 control, the assembler

issues fatal error 422 when the CPU 1.006 problem is present on your cpu.

CPU 1.006: Cpu hangs with MOV (B) Rn, [Rm+#data16] instryction when

the source operand refers to program memory on C163-24D

derivatives.

Please refer to the Infineon errata sheets for a description of the CPU 1.006

problem.

Example:

$CHECKCPU1R006 ; check for CPU 1.006 problem

Assembler Controls 7–21

• • • • • • • •

CHECKCPU21

Control:

CHECKCPU21/NOCHECKCPU21

Abbreviation:

CPU21/NOCPU21

Class:

General

Default:

NOCHECKCPU21

Description:

Infineon regularly publishes microcontroller errata sheets for reporting cpu

functional problems. With the CHECKCPU21 control the assembler checks

for the CPU.21 silicon problem and issues warnings and errors:

• an error when the previous operation writes to a register (including

post increment, pre increment, post decrement and pre decrement)

whose 8 bit address equals the appropiate field in the BFLDx

operation.

• a warning if the previous operation writes to a register and the BFLDx

instruction has a relocatable value in the concerned field.

• a warning if the previous instruction uses indirect addressing or

executes an implicit stack write a warning if the previous instruction

writes to IRAM and the BFLDx field is relocatable or larger than 0xEF.

• a warning if the previous instruction writes to bit addressable IRAM

(including writing to a register) and the BFLDx field is relocatable or

smaller than 0xF0.

• a warning if the BFLDx instruction is not protected by ATOMIC, EXTR,

EXTP, EXTPR, EXTS or EXTSR, which means a PEC transfer may occur

just before the execution of BFLDx. If the NOPEC control is effective

for this BFLDx instruction, no warning will be given.

• a warning after any PCALL, because such routines normally use the

RETP instruction, which could cause a problem a warning after any

RETP, because a BFLDx could follow directly, which could in turn

cause a problem.

Chapter 77–22
C
O
N
T
R
O
L
S

For places where a warning is generated, but where the programmer has

manually checked that a problem will not occur, you can put

NOCHECKCPU21 and CHECKCPU21 around the BFLDx instruction.

When you use CHECKCPU21 as command line control, it will not

override the use of NOCHECKCPU21 in the source file itself and vice

versa. This is contrary to what most other assembler controls do.

See also the PEC/NOPEC control.

Please refer to the Infineon errata sheets for a description of the CPU.21

problem.

Example:

$checkcpu21 ; check for CPU.21 problem

Assembler Controls 7–23

• • • • • • • •

CHECKLONDON1

Control:

CHECKLONDON1 / NOCHECKLONDON1

Abbreviation:

LONDON1 / NOLONDON1

Class:

General

Default:

NOCHECKLONDON1

Description:

The C166S v2.0 / Super10 architectures have problems with CALLI, which

has to be circumvented using ATOMIC#2. With this control, the assembler

will give a warning for a CALLI instruction not being protected by an

ATOMIC sequence of at least length 2.

Example:

$CHECKLONDON1 ; enable checking for LONDON.1 problem

Chapter 77–24
C
O
N
T
R
O
L
S

CHECKLONDON1751

Control:

CHECKLONDON1751 / NOCHECKLONDON1751

Abbreviation:

LONDON1751 / NOLONDON1751

Default:

NOCHECKLONDON1751

Description:

The C166S v2.0 / Super10 architectures have a problem writing to a cpu

SFR while a DIV[L][U] is in progress in the background. There are different

ways to solve this problem, you could, for example, not write to a cpu SFR

during the DIV operation or stall the pipeline just before a write operation

to a cpu SFR. But because interrupts can write to cpu SFRs as well, the

entire DIV operation has to be protected from interrupts (unless it is

certain that no interrupt writes to a cpu SFR).

Another solution is built around the DIV operation:

ATOMIC #2
DIV Rx
MOV Ry, MDL/MDH

With this control, the assembler checks for the sequence around DIV[L][U].

If a DIV is proven to be free of this problem, you can disable the check

around the respective DIV operation using $NOLONDON1751 and

re-enable it after the DIV. Because a command line control will override

any setting globally (thereby effectively ignoring any $LONDON1751 or

$NOLONDON1751 controls), it might prove easier to put $NOWA (157)

and $WA(157) around the instructions in question.

Assembler Controls 7–25

• • • • • • • •

Example:

$CHECKLONDON1751 ;; enable checking for LONDON.1751
 ATOMIC #2 ;; protected DIV, but no warning
 DIV R1 ;; DIV
 MOV R2, MDL ;; stall pipeline until finished
 ATOMIC #3 ;; protect from interrupt
$NOCHECKLONDON1751 ;; disable checking
 DIV R2 ;; DIV
$CHECKLONDON1751 ;; re–enable checking
 MOV R1, R2 ;; any instruction,breaks sequence
 MOV R3, MDH ;; stall pipeline

Chapter 77–26
C
O
N
T
R
O
L
S

CHECKLONDONRETP

Control:

CHECKLONDONRETP / NOCHECKLONDONRETP

Abbreviation:

LONDONRETP / NOLONDONRETP

Default:

NOCHECKLONDONRETP

Description:

Some derivatives of the C166S v2.0 / Super10 architecture have a problem

with RETP on CPU SFRs.When the CHECKLONDONRETP control is up, the

assembler will generate a warning whenever RETP is used on one of the

CPU SFRs of the C166S v2.0/Super10 architecture.

Example:

a166 london.src CHECKLONDONRETP
;check for RETP problem while assembling file

Assembler Controls 7–27

• • • • • • • •

CHECKMULDIV

Control:

CHECKMULDIV/NOCHECKMULDIV

Abbreviation:

MD / NOMD

Class:

General

Default:

NOCHECKMULDIV

Description:

Several processor cores have problems with interrupted MUL or DIV

sequences. The CHECKMULDIV control instructs the assembler to issue a

warning whenever a MUL or DIV is encountered that is not protected by

an ATOMIC sequence.

MUL and DIV can also be protected by disabling interrupts using the

appropriate PSW bit. This control does not check for that type of

protection, which is used for 166 non-extended architectures, because that

instruction set lacks the ATOMIC instruction.

Example:

$NOMD ; disable checking for unprotected MUL or DIV
DIV R1 ; this is an unprotected DIV, but no warning

is issued
$MD ; enable checking for unprotected MUL or DIV

Chapter 77–28
C
O
N
T
R
O
L
S

CHECKSTBUS1

Control:

CHECKSTBUS1/NOCHECKSTBUS1

Abbreviation:

STBUS1/NOSTBUS1

Class:

General

Default:

NOCHECKSTBUS1

Description:

When a JMPS instruction is followed by a PEC transfer, the generated PEC

source address is false. This results in an incorrect PEC transfer.

Workaround: Substitute JMPS by the CALLS instruction with 2 POP

instructions at the new program location. You can avoid this problem by

disabling interrupts by using the ATOMIC #2 instruction before the JMPS.

Please refer to the ST10 errata sheets of the used derivative for a

description of the ST_BUS.1 problem. See also the description of warning

W 154.

Example:

$CHECKSTBUS1 ; check for ST_BUS.1 problem

Assembler Controls 7–29

• • • • • • • •

DATE

Control:

DATE('date')

Abbreviation:

DA

Class:

Primary

Default:

system date

Description:

a166 uses the specified date-string as the date in the header of the list file.

Only the first 11 characters of string are used. If less than 11 characters are

present, a166 pads them with blanks.

Examples:

; Nov 25 1992 in header of list file
a166 x.src date(’Nov 25 1992’)

; 25–11–92 in header of list file
a166 x.src da(’25–11–92’)

Chapter 77–30
C
O
N
T
R
O
L
S

DEBUG

Control:

DEBUG/NODEBUG

Abbreviation:

DB/NODB

Class:

Primary

Default:

NODEBUG

Description:

Controls the generation of debugging information in the object file.

DEBUG enables the generation of debugging information and NODEBUG

disables it. When DEBUG is set, the amount of symbolic debug

information is determined by the

LINES/NOLINES,

LOCALS/NOLOCALS,

SYMB/NOSYMB

ASMLINEINFO/NOASMLINEINFO

controls.

Example:

a166 x.src db ; generate debug information

Assembler Controls 7–31

• • • • • • • •

EJECT

Control:

EJECT

Abbreviation:

EJ

Class:

General

Default:

New page started when page length is reached

Description:

The current page is terminated with a formfeed after the current (control)

line, the page number is incremented and a new page is started. Ignored if

NOPAGING, NOPRINT or NOLIST is in effect.

Example:

. ; assembler source lines

.
$eject ; generate a formfeed
.
. ; more source lines
$ej ; generate a formfeed
.
.

Chapter 77–32
C
O
N
T
R
O
L
S

ERRORPRINT

Control:

ERRORPRINT[(file)]/NOERRORPRINT

Abbreviation:

EP/NOEP

Class:

Primary

Default:

NOERRORPRINT

Description:

ERRORPRINT displays the error messages at the console and also redirects

the error messages to an error list file. If no extension is given the default

.erl is used. If no filename is specified, the error list file has the same

name as the input file with the extension changed to .erl .

See also the chapter on assembler invocation.

Examples:

a166 x.src ep(errlist) ; redirect errors to file
; errlist.erl

a166 x.src ep ; redirect errors to file
; x.erl

Assembler Controls 7–33

• • • • • • • •

EXTEND

Control:

EXTEND/NOEXTEND

Abbreviation:

EX/NOEX

Class:

Primary

Default:

NOEXTEND

Description:

EXTEND turns on all extensions for the C166. This is the same as

specifying the controls EXTINSTR, EXTMEM, EXTSFR, EXTSSK and

EXTPEC. NOEXTEND turns off the use of extensions.

Example:

a166 x.src extend

; use extended instruction set (C167),
; 24–bit address ranges,
; extended SFR area,
; extended SSKDEF and
; PEC pointers at 0FCE0h

Chapter 77–34
C
O
N
T
R
O
L
S

EXTEND2

Control:

EXTEND2/NOEXTEND2

Abbreviation:

EX2/NOEX2

Class:

Primary

Default:

NOEX2

Description:

EXTEND2 specifies to use the C166S v2.0 / Super10 instruction set.

NOEXTEND2 turns off the use of the C166S v2.0 / Super10 instruction set.

Example:

a166 x.src extend2

; use C166S v2.0 / Super10 instruction set

Assembler Controls 7–35

• • • • • • • •

EXTEND22

Control:

EXTEND22/NOEXTEND22

Abbreviation:

EX22/NOEX22

Class:

Primary

Default:

NOEX22

Description:

EXTEND22 specifies to use the C166S v2.0 / Super10 ST extensions.

NOEXTEND22 turns off the use of the C166S v2.0 / Super10 ST extensions.

These extensions are:

• CoSHL #data5, rnd

• CoSHL Rwn, rnd

• CoSHL [Rwn], rnd

• an extra local register bank:

C166_US2/?USRSTACK2_TOP/?USRSTACK2_BOTTOM

• new interrupt sources and registers. These are defined in the register

definition files.

EXTEND22 implicitely enables EXTEND2 and EXTEND. When you

subsequently specify EXTEND22 and NOEXTEND22, EXTEND2 and

EXTEND will be left enabled.

Example:

a166 x.src extend22

; allow the use of CoSHL #data5,rnd and
; the other ST10 extensions.

Chapter 77–36
C
O
N
T
R
O
L
S

EXTINSTR

Control:

EXTINSTR/NOEXTINSTR

Abbreviation:

XI/NOXI

Class:

Primary

Default:

NOEXTINSTR

Description:

EXTINSTR specifies to use the extended instruction set (C167).

NOEXTINSTR turns off the use of the extended instruction set.

Example:

a166 x.src extinstr

; use the extended instruction set (C167)

Assembler Controls 7–37

• • • • • • • •

EXTMAC

Control:

EXTMAC/NOEXTMAC

Abbreviation:

XC/NOXC

Class:

Primary

Default:

NOEXTMAC

Description:

EXTMAC specifies to use the ST10x262 MAC instruction set. NOEXTMAC

turns off the use of the ST10x262 MAC instruction set.

Example:

a166 x.src extmac

; use ST10x262 MAC instruction set

Chapter 77–38
C
O
N
T
R
O
L
S

EXTMEM

Control:

EXTMEM/NOEXTMEM

Abbreviation:

XM/NOXM

Class:

Primary

Default:

NOEXTMEM

Description:

EXTMEM specifies to use 24 bit addresses. NOEXTMEM turns off the use

of extended addresses. Only 18 bit address ranges can be specified.

Example:

a166 x.src extmem

; use 24–bit addresses instead of 18–bit addresses

Assembler Controls 7–39

• • • • • • • •

EXTSFR

Control:

EXTSFR/NOEXTSFR

Abbreviation:

XF/NOXF

Class:

Primary

Default:

NOEXTSFR

Description:

EXTSFR specifies to use the extended SFR area. When the extended SFR

area must be reserved by the locator, this control must be specified to the

assembler. NOEXTSFR turns off the use of the extended SFR area.

The EXTSFR control affects the register set in the smallest configuration.

See the DEF directive for a list of the register set in the smallest

configuration.

Example:

a166 x.src extsfr

; use the extended SFR area

Chapter 77–40
C
O
N
T
R
O
L
S

EXTSSK

Control:

EXTSSK/NOEXTSSK

Abbreviation:

XS/NOXS

Class:

Primary

Default:

NOEXTSSK

Description:

EXTSSK specifies to use the extended SSKDEF. NOEXTSSK turns off the

use of the extended SSKDEF.

Example:

a166 x.src extssk

; use extended SSKDEF

Assembler Controls 7–41

• • • • • • • •

EXTPEC

Control:

EXTPEC/NOEXTPEC

Abbreviation:

XP/NOXP

Class:

Primary

Default:

NOEXTPEC

Description:

EXTPEC specifies to use PEC pointers starting at address 0FCE0h to

0FCFEh. The advantage of this control is that you have a larger

bit-addressable area (0FD00h - 0FDFEh). NOEXTPEC specifies the PEC

pointers to be at the original address of 0FDE0h.

Example:

a166 x.src extpec

; use PEC pointers at address 0FCE0h

Chapter 77–42
C
O
N
T
R
O
L
S

EXTPEC16

Control:

EXTPEC16/NOEXTPEC16

Abbreviation:

EP16/NOEP16

Class:

Primary

Default:

NOEXTPEC16

Description:

The EXTPEC16 control enables the use of PECC8 to PECC15 in a PECDEF

directive. Please note that EXTPEC16 does not imply EXTPEC. The location

of the relevant SRCPx and DSTPx registers to be reserved is determined by

EXTPEC or EXTEND2 during the locator phase.

Example:

a166 pecc.src EP16

; allow use of PECC8–15 in PECDEF directive

Assembler Controls 7–43

• • • • • • • •

FLOAT

Control:

FLOAT(float-type)

Abbreviation:

FL(float-type)

Class:

General

Default:

FLOAT(NONE)

Description:

This control places the float-type in the object file. The linker checks for

conflicts between the float-type in the linked modules.

float-type is one of:

NONE no floating point used

SINGLE single precision floating point

ANSI ANSI floating point

The control is set by the C compiler to prevent linking mixed floating

point types or linking the wrong C library.

The class of the control is general because the C compiler only knows if

floating point was used at the end of the module. With a general control

the compiler can generate the FLOAT control at the end of its output. The

only action of the assembler with this control is setting the float-type flag

in the object file. The last FLOAT control in the source governs.

The linker issues an error if it detects a module assembled with

FLOAT(SINGLE) and a module assembled with FLOAT(ANSI). Using

FLOAT(NONE) never introduces conflicts.

Chapter 77–44
C
O
N
T
R
O
L
S

Example:

a166 x.src FLOAT(ANSI)

; check for conflicts on floating point type

Assembler Controls 7–45

• • • • • • • •

GEN/GENONLY/NOGEN

Control:

GEN/GENONLY/NOGEN

Abbreviation:

GE/GO/NOGE

Class:

General

Default:

-

Description:

These controls are ignored, since the macro preprocessor is not integrated

with the assembler. They are included for compatibility. The assembler

generates a warning on level 2 when one of these controls are used.

Chapter 77–46
C
O
N
T
R
O
L
S

GSO

Control:

GSO

Abbreviation:

GSO

Class:

Primary

Default:

-

Description:

Enable global storage optimizer. Please refer to the gso166 manual for

more details.

Assembler Controls 7–47

• • • • • • • •

HEADER

Control:

HEADER/NOHEADER

Abbreviation:

HD/NOHD

Class:

Primary

Default:

NOHEADER

Description:

This control specifies if a header page must be generated as the first page

in the list file. A header page consists of a page header (assembler name,

the date, time and the page number, followed by a title), assembler

invocation and the status of the primary a166 controls.

Example:

a166 x.src hd

; generate header page in list file

Chapter 77–48
C
O
N
T
R
O
L
S

INCLUDE

Control:

INCLUDE(file)

Abbreviation:

IC

Class:

General

Default:

-

Description:

The INCLUDE control is interpreted by the macro preprocessor. When this

control is recognized by the assembler, a warning on level 2 is generated.

Assembler Controls 7–49

• • • • • • • •

LINES

Control:

LINES/NOLINES

Abbreviation:

LN/NOLN

Class:

General

Default:

LINES

Description:

LINES keeps line number information in the object file. This information

can be used by high level language debuggers. LINES specifies a166 to

generate symbol records defined by the ?LINE and ?FILE directives of the

assembler when the DEBUG control is in effect. The line number

information is not needed to produce executable code. The NOLINES

control removes this information from the output file. NOLINES decreases

the size of the output object file.

Example:

. ; source lines
$lines ; keep line number information
. ; of the following source lines
.
$nolines ; the line number information of the
. ; following source lines is removed by a166 .

Chapter 77–50
C
O
N
T
R
O
L
S

LIST

Control:

LIST/NOLIST

Abbreviation:

LI/NOLI

Class:

General

Default:

LIST

Description:

Switch the listing generation on or off. These controls take effect starting at

the next line. LIST does not override the NOPRINT control.

Example:

$noli ; Turn listing off. These lines are not
; present in the list file

.

.
$list ; Turn listing back on. These lines are

; present in the list file
.
.

Assembler Controls 7–51

• • • • • • • •

LISTABSOFFSET

Control:

LISTABSOFFSET/NOLISTABSOFFSET

Abbreviation:

LAO/NOLAO

Class:

General

Default:

NOLISTABSOFFSET

Description:

The previous behaviour for code in list files was to print the absolute

location of instructions inside absolute code sections. This has changed to

relative, as is similar with ordinary sections. With this control, the previous

behaviour can be activated.

Example:

$LISTABSOFFSET ; turn on absolute listing
abssec SECTION CODE AT 08010h
.
.
abssec ends
$NOLISTABSOFFSET ; turn off relative listing

Chapter 77–52
C
O
N
T
R
O
L
S

LISTALL

Control:

LISTALL/NOLISTALL

Abbreviation:

LA/NOLA

Class:

Primary

Default:

NOLISTALL

Description:

The LISTALL control causes a listing to be generated in every pass of the

assembler instead of just in pass 3. This can be useful for getting a listing

with error messages, even when the assembler does not perform pass 3

due to errors occurring in pass 1 or 2. LISTALL overrules a following

NOPRINT.

Example:

a166 x.src listall ;generate listing in every
;pass of the assembler

Assembler Controls 7–53

• • • • • • • •

LOCALS

Control:

LOCALS/NOLOCALS

Abbreviation:

LC/NOLC

Class:

General

Default:

LOCALS

Description:

LOCALS specifies to generate local symbol records when the DEBUG

control is in effect. The debugger uses this information. It is not needed to

produce executable code. When NOLOCALS is set a166 does not generate

local symbol records.

Example:

; source lines
.
.
$locals ; a166 keeps local symbol information

; of the following source lines
.
.
$nolocals ; a166 keeps no local symbol

; information of the following
. ; source lines
.

Chapter 77–54
C
O
N
T
R
O
L
S

MISRAC

Control:

MISRAC(string)

Abbreviation:

MC

Class:

Primary

Default:

-

Description:

MISRAC sets the string that is passed to the linker/locator in the object file.

The string consists of 32 hexadecimal characters, each representing four

possible MISRA C checks. Check numbering starts from the right.

This option is controlled by the C compiler's MISRA C feature, and

therefore does not require any user interaction from this assembler control.

Example:

a166 x.src MC(74000000100000000000000000000002)
 ; assemble x.src and tell the linker/locator that
 ; MISRA C checks 2(2), 93(1), 123(4) and 125–127(7)
 ; were used during the compiling process.

Assembler Controls 7–55

• • • • • • • •

MOD166

Control:

MOD166/NOMOD166

Abbreviation:

M166/NOM166

Class:

Primary

Default:

MOD166

Description:

MOD166 specifies that all system names specified in the hardware

architectural specification for the C166 can be used without restrictions.

With NOMOD166 active only a minimum of the system names is available.

See the DEF directive and the STDNAMES control for more information.

Example:

a166 x.src nom166

; minimum of system names is available

Chapter 77–56
C
O
N
T
R
O
L
S

MODEL

Control:

MODEL(modelname)

Abbreviation:

MD(modelname)

Class:

Primary

Default:

MODEL(NONE)

Description:

This control indicates the C compiler memory model. The model is

supplied to the linker via the object file. The linker checks for conflicts

between the memory models of the objects. Using model NONE never

causes a conflict with the other models. The linker supplies the model via

the linker object file to the locator, which will check for conflicts between

tasks.

modelname is one of: NONE, TINY, SMALL, MEDIUM, LARGE

Example:

a166 x.src md(tiny)

; check for conflicts on TINY model

The warning "W 138 FAR procedures in NONSEGMENTED mode not

necessary" is no longer issued if MODEL(SMALL) is in effect.

Assembler Controls 7–57

• • • • • • • •

OBJECT

Control:

OBJECT[(file)]/NOOBJECT

Abbreviation:

OJ/NOOJ

Class:

Primary

Default:

OBJECT(sourcefile.obj)

Description:

The OBJECT control specifies an alternative name for the object file. If no

extension is given the default .obj is used. If no filename is specified, the

object file has the same name as the input file with the extension changed

to .obj . The NOOBJECT control causes no object file to be generated.

Examples:

a166 x.src ; generate object file x.obj
a166 x.src oj ; generate object file x.obj
a166 x.src nooj ; do not generate an object file

Chapter 77–58
C
O
N
T
R
O
L
S

OPTIMIZE

Control:

OPTIMIZE/NOOPTIMIZE

Abbreviation:

OP/NOOP

Class:

General

Default:

OPTIMIZE

Description:

NOOPTIMIZE turns off the optimization for forward generic jmp and call

instructions. Normally the assembler tries to select a relative jmp (JMPR) or

relative call (CALLR) instruction for a generic jmp/call in an absolute or

relocatable section, even with forward references. If the optimization is

turned off, a forward generic jmp is always translated to an absolute jmp

(JMPA) and call is translated to an absolute call (CALLA).

Example:

$noop
; turn optimization off
; source lines

$op
; turn optimization back on
; source lines

Assembler Controls 7–59

• • • • • • • •

PAGELENGTH

Control:

PAGELENGTH(lines)

Abbreviation:

PL

Class:

Primary

Default:

PAGELENGTH(60)

Description:

Sets the maximum number of lines on one page of the listing file. This

number does include the lines used by the page header (4). The valid

range for the PAGELENGTH control is 20 - 255.

Example:

a166 x.src pl(50) ; set page length to 50

Chapter 77–60
C
O
N
T
R
O
L
S

PAGEWIDTH

Control:

PAGEWIDTH(characters)

Abbreviation:

PW

Class:

Primary

Default:

PAGEWIDTH(120)

Description:

Sets the maximum number of characters on one line in the listing. Lines

exceeding this width are wrapped around on the next lines in the listing.

The valid range for the PAGEWIDTH control is 60 - 255. Although greater

values for this control are not rejected by the assembler, lines are truncated

if they exceed the length of 255.

Example:

a166 x.src pw(130)

; set page width to 130 characters

Assembler Controls 7–61

• • • • • • • •

PAGING

Control:

PAGING/NOPAGING

Abbreviation:

PA/NOPA

Class:

Primary

Default:

PAGING

Description:

Turn the generation of formfeeds and page headers in the listing file on or

off. If paging is turned off, the EJECT control is ignored.

Example:

a166 x.src nopa

; turn paging off: no formfeeds and page headers

Chapter 77–62
C
O
N
T
R
O
L
S

PEC

Control:

PEC/NOPEC

Abbreviation:

PC/NOPC

Class:

General

Default:

PEC

Description:

When the check for CPU.21 silicon problem is enabled with the

CHECKCPU21 control, a warning is given if the BFLDx instruction is not

protected by ATOMIC, EXTR, EXTP, EXTPR, EXTS or EXTSR. In this case a

PEC transfer may occur just before the execution of BFLDx.

If you know that PEC transfers do not occur, you can use NOPEC/PEC to

prevent this warning. Currently this information is used in conjunction

with the CHECKCPU21 control. For CPU.21, you can also use this control

if PEC transfers can occur, but not in a problematic way. For example if

your PEC source and destination pointers point to proper addresses.

See the CPU.21 problem description for a more in-depth explanation.

Examples:

NOP ; PEC on by default
BFLDH SYSCON, #0F0h, #0F0h ; possible CPU21 problem when
 ; PEC transfer occurs
$NOPEC ; known that no PEC transfers
 will occur now
NOP
BFLDH SYSCON, #0F0h, #0F0h ; no CPU21 problem
$PEC ; PEC transfers can occur
 again

Assembler Controls 7–63

• • • • • • • •

PRINT

Control:

PRINT[(file)]/NOPRINT

Abbreviation:

PR/NOPR

Class:

Primary

Default:

PRINT(sourcefile.lst)

Description:

The PRINT control specifies an alternative name for the listing file. If no

extension for the filename is given, the default extension .lst is used. If

no filename is specified, the list file has the same name as the input file

with the extension changed to .lst . The NOPRINT control causes no

listing file to be generated. NOPRINT overrules a following LISTALL.

Examples:

a166 x.src ; list file name is x.lst
a166 x.src to out.obj ; list file name is x.lst
a166 x.src pr(mylist) ; list file name is

; mylist.lst

Chapter 77–64
C
O
N
T
R
O
L
S

RETCHECK

Control:

RETCHECK/NORETCHECK

Abbreviation:

RC/NORC

Class:

General

Default:

RETCHECK

Description:

NORETCHECK turns off the checking for the correct return instruction

from a subroutine. For example, an interrupt task must be returned from

with a RETI instruction, if the assembler finds another return instruction

within the interrupt task an error will be generated.

RETCHECK turns on the checking for the correct return instruction from a

routine.

The errors "E 353 wrong RETurn mnemonic - for TASK procedures use

RETI" and "E 354 wrong RETurn mnemonic - for FAR procedures use

RETS" are no longer issued if NORETCHECK is in effect.

Assembler Controls 7–65

• • • • • • • •

Example:

PRC PROC TASK
.
.
.
ATOMIC #03h
PUSH R5
PUSH R4
RETS ; when RC is set E 353 will be issued
.
.
.
RETI

PRC ENDP

The assembler will give an error on the RETS instruction, because a task

procedure must be ended with a RETI instruction.

The code in this example may be generated by the C compiler in some

special cases. The C compiler will use the NORETCHECK control because

it knows that this code sequence is correct.

Chapter 77–66
C
O
N
T
R
O
L
S

SAVE/RESTORE

Control:

SAVE/RESTORE

Abbreviation:

SA/RE

Class:

General

Default:

-

Description:

SAVE stores the current value of the LIST/NOLIST controls onto a stack.

RESTORE restores the most recently SAVEd value; it takes effect starting at

the next line. SAVEs can be nested to a depth of 16.

Example:

$nolist
; source lines
$save ; save values of LIST/NOLIST

$list

$restore ; restore value (nolist)

Assembler Controls 7–67

• • • • • • • •

SEGMENTED

Control:

SEGMENTED/NONSEGMENTED

Abbreviation:

SG/NOSG

Class:

Primary

Default:

NONSEGMENTED

Description:

NONSEGMENTED specifies that a166 translates the source module to the

non-segmented memory mode. The ASSUME directive and DPP prefixes

are not needed in this model. SEGMENTED uses the segmented memory

model. A DPP register must be associated. A combination of the controls

SEGMENTED and ABSOLUTE is impossible.

Example:

a166 x.src sg ; segmented memory model

Chapter 77–68
C
O
N
T
R
O
L
S

STDNAMES

Control:

STDNAMES(std-file)

Abbreviation:

SN

Class:

Primary

Default:

-

Description:

With this control a166 includes a std-file before loading the source

module. The std-file contains a subset of the system names such as

(E)SFRs and memory mapped I/O registers.. This control is useful if you

want to define your own subset of system names. You can only use the

DEF and LIT directives in the std-file.

If MOD166 is active, STDNAMES cannot be used. In this case a166 issues

a warning and sets the NOMOD166 control before reading the std-file. In
case of redefinition of system names or system addresses, the assembler

reports an error.

The directory where to find the std-file can be specified with the A166INC

environment variable.

When the std-file is not present in the current directory or in one of the

directories specified with the A166INC environment variable, a166

searches the directory etc relative to the path the binary is started from.

For example, when a166 is started from \c166\bin , the std-file is
searched in the directory \c166\etc .

Example:

a166 x.src sn(names.std) nomod166

; use own subset of system names from file
; names.std

Assembler Controls 7–69

• • • • • • • •

STRICTTASK

Control:

STRICTTASK/NOSTRICTTASK

Abbreviation:

ST/NOST

Class:

Primary

Default:

NOSTRICTTASK

Description:

The STRICTTASK control causes the assembler to work strictly with the

Task Concept. When STRICTTASK is set you are not allowed to have more

than one REGDEF or REGBANK directive and more than one task per

assembly source module. Use this control to be fully compatible with the

Infineon toolchain.

Example:

a166 x.src st

; assemble according to the Task Concept

Chapter 77–70
C
O
N
T
R
O
L
S

SYMB

Control:

SYMB/NOSYMB

Abbreviation:

SM/NOSM

Class:

General

Default:

SYMB

Description:

SYMB specifies a166 to allow high level language symbols defined by the

?SYMB directive of the assembler to be present in the output file when the

DEBUG control is in effect. The symbols are used by a high level language

debugger. This debug information is not needed to produce executable

code. NOSYMB removes ?SYMB symbols from the output file.

Example:

; source lines
.
$symb
; a166 keeps ?SYMB symbol information of
; the following source lines
.
$nosymb
; a166 keeps no ?SYMB symbol information of
; the following source lines

Assembler Controls 7–71

• • • • • • • •

SYMBOLS

Control:

SYMBOLS/NOSYMBOLS

Abbreviation:

SB/NOSB

Class:

Primary

Default:

NOSYMBOLS

Description:

SYMBOLS prints a symbol table at the end of the list file. This symbol table

contains alphabetical lists of all assembler identifiers and their attributes.

SYMBOLS does not override the NOPRINT control.

Example:

a166 x.src symbols

; prints symbol table at end of list file

Chapter 77–72
C
O
N
T
R
O
L
S

TABS

Control:

TABS(number)

Abbreviation:

TA

Class:

Primary

Default:

TABS(8)

Description:

TABS specifies the number of blanks that must be inserted for a tab

character in the list file. TABS can be any decimal value in the range 1 -

12.

Example:

a166 x.src ta(5) ; use 5 blanks for a tab

Assembler Controls 7–73

• • • • • • • •

TITLE

Control:

TITLE('title')

Abbreviation:

TT

Class:

General

Default:

TITLE(module-name)

Description:

Sets the title which is to be used at the second line in the page headings of

the list file. To ensure that the title is printed in the header of the first

page, the control has to be specified in the first source line. The title string

is truncated to 60 characters. If the page width is too small for the title to

fit in the header, it is be truncated even further.

Example:

$title(’NEWTITLE’)

; title in page header is NEWTITLE

Chapter 77–74
C
O
N
T
R
O
L
S

TYPE

Control:

TYPE/NOTYPE

Abbreviation:

TY/NOTY

Class:

Primary

Default:

TYPE

Description:

TYPE tells the assembler to produce type information in the records

describing the symbol type used in the source file. The records are needed

by the l166 linker to perform a type checking during linking. NOTYPE

does not produce type information.

Example:

a166 x.src notype ; no type information is produced

Assembler Controls 7–75

• • • • • • • •

WARNING

Control:

WARNING(number) / NOWARNING(number)

Abbreviation:

WA / NOWA

Class:

General

Default:

WARNING(1)

Description:

This control allows you to set a general warning level or enable and

disable individual warnings. The general warning levels can have the

following values:

0 display no warnings

1 display important warnings only (default)

2 display all warnings

When a valid warning number is supplied, this specific warning will be

supressed (nowarning) or enabled (warning).

Disabling all warnings using general warning level 0 will also disable

warnings specifically enabled before or after setting the general warning

level. Unimportant warnings (for example: those not given on general

warning level 1) cannot be enabled individually while the general warning

level is 1 (or 0)

Example:

a166 x.src wa(1) ; display only important warnings
a166 y.src wa(2) nowa(156)
 ; disable warning nr 156, display all other warnings

Chapter 77–76
C
O
N
T
R
O
L
S

WARNINGASERROR

Control:

WARNINGASERROR / NOWARNINGASERROR

Abbreviation:

WAE / NOWAE

Class:

General

Default:

NOWAE

Description:

When this control is up, the assembler will exit with an error status, even

if there were only warnings generated during assembly.

Example:

a166 x.src wae ; always exit with error status, unless
 ; no warnings and no errors were
 ; generated.

Assembler Controls 7–77

• • • • • • • •

XREF

Control:

XREF/NOXREF

Abbreviation:

XR/NOXR

Class:

Primary

Default:

NOXREF

Description:

The XREF control generates a cross reference table. This table contains a

list of all local symbols with the line number of the source file at which

they appear. The first line number is the line where the local symbol is

defined.

NOXREF causes no cross reference table to be generated.

Example:

a166 x.src xref ; generate cross reference table

Chapter 77–78
C
O
N
T
R
O
L
S

8

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 88–2
D
IR
E
C
T
IV
E
S

8

C
H

A
P

T
E

R

Assembler Directives 8–3

• • • • • • • •

8.1 INTRODUCTION

Assembler directives, are used to control the assembly process. Rather than

being translated into a 166 machine instruction, assembler directives are

interpreted by the assembler. The other directives perform actions like

defining or switching sections, defining symbols or changing the location

counter. The a166 assembler supports all directives known by the

Infineon Assembler. However the a166 assembler knows some new

directives and some directives are more flexible (less restrictions).

The directives will be described in groups where they belong to. First an

overview is given of all directives.

8.2 DIRECTIVES OVERVIEW

Directive Description

DEBUGGING

?FILE ”filename” Generate filename symbol record.

?LINE [abs_expr] Generate line number symbol record.

?SYMB string, expression [,abs–expr] [,abs–expr] Generate hll symbol info record.

#[line] line–number ”filename” Pass line and file info to assembler.

SECTIONS

name SECTION section–type [align–type] [combine–type] [’class’] Define logical section.

name ENDS End logical section.

ASSUME DPPn:secpart [,DPPn:secpart]... Assume DPP usage.

ASSUME NOTHING Assume no DPP usage.

group–name CGROUP sect–name [,sect–name]... Group code type sections

group–name DGROUP sect–part [,sect–part]... Group data type sections

DEFINING REGISTER BANKS AND PEC CHANNELS

[reg–bank–name] REGDEF [reg–range [type]] [,reg–range [type]]... Define or declare register bank.

[reg–bank–name] REGBANK [reg–range [type]] [,reg–range [type]]... Define or declare register bank (Private).

[com–reg–name] COMREG reg–range Common register bank.

PECDEF channel–range [,channel–range]... Define PEC channel usage

SSKDEF stack–size–number Define stack size

Table 8-1: a166 directives

Chapter 88–4
D
IR
E
C
T
IV
E
S

Directive Description

ACCESSING DATA OPERANDS

lit–name LIT ’lit–string’ Define text replacement.

equ–name EQU expression Assign expression to name.

set–name SET expression Define symbol for expression.

bit–name BIT bit–address Assign bit address to name.

name DEFR SFR–number [,attribute] Define SFR name for REG to name.

name DEFA address [,attribute] Define address for REG to name.

name DEFB bit–address [,attribute] Define bit address for REG to name.

TYPEDEC name:type [,name:type]... Define type attribute of symbol name

DEFINING AND INITIALIZING DATA

[name] DB init [,...] 1–byte initialization

[name] DW init [,...] 2–byte initialization

[name] DDW init [,...] 4–byte initialization

[name] DBIT [number] bit indeterminate initialization

[name] DS number Indeterminate initialization

[name] DSB number Reserve 1*number of bytes (Same as DS)

[name] DSW number Reserve 2*number of bytes

[name] DSDW number Reserve 4*number of bytes

[name] DSPTR init [,init]... Segment Pointer initialization

[name] DPPTR init [,init]... Page Pointer initialization

[name] DBPTR init [,init]... Bit pointer initialization

name LABEL type Define a label.

name PROC [type] Define a label to a procedure.

name PROC TASK [task–name][INTNO{[int–name][=int–no]}] Define a label to a procedure

name ENDP Indicate end of procedure.

PROGRAM LINKAGE

PUBLIC name [,...] Define symbols to be public

GLOBAL name [,...] Define symbols to be global

EXTERN [DPPx:] name: type [,[DPPx:] name:type]...
EXTRN [DPPx:] name: type [,[DPPx:] name:type]...

Set symbols to be defined public/global.

NAME module–name Define module name

END End assembly.

Table 8-1: a166 directives (continued)

Assembler Directives 8–5

• • • • • • • •

8.3 DEBUGGING

The assembler a166 supports the following debugging directives: ?FILE,

?LINE and ?SYMB. These directives will not be used by an assembler

programmer. They are used by a high level language code generator as

c166 or a debugger to pass high level language symbol information.

When a preprocessor is used (like m166), this preprocessor can supply

the name of the original input file and the line number in that file to a166

by using the #line directive.

8.4 LOCATION COUNTER

The location counter keeps track of the current offset within the current

section that is being assembled. This value, symbolized by the character

'$', is considered as an offset and may only be used in the same context

where offset is allowed.

8.5 PROGRAM LINKAGE

The a166 supplies the necessary directives to support multimodular

programs, A program may be composed of many individual modules that

are separately assembled. The mechanism in a166 for communicating

symbol information from module to module are the

PUBLIC/GLOBAL/EXTERN directives. The PUBLIC directive defines those

symbols that may be used by other modules of the same task. The

GLOBAL symbol defines those symbols that may be used by other

modules, even from different tasks. The EXTERN directive defines for a

given module those symbols (defined elsewhere) that can be used. In

order to uniquely name different object modules that are to be linked

together, use the NAME directive. The END directive is required in all

modules.

8.6 DIRECTIVES

The rest of this chapter contains an alphabetical list of the assembler

directives.

Chapter 88–6
D
IR
E
C
T
IV
E
S

?FILE

Synopsis:

?FILE "file_name"

Description:

This directive is intended mainly for use by a high level language code

generator. It generates a symbol record containing the high level source

file name, which is written to the object file. Also, the current high level

line number is reset to zero. The file name can be used by a high level

language debugger.

?LINE

Synopsis:

?LINE [abs_expr]

Description:

This directive is intended mainly for use by a high level language code

generator. It generates a symbol record containing the high level source

file line number, which is written to the object file. The line number can

be used by a high level language debugger. abs_expr is any absolute

expression. If abs_expr is omitted, the line number defined by the

previous ?LINE or ?FILE is incremented and used.

?SYMB

Synopsis:

?SYMB string, expression [, abs_expr] [, abs_expr]

Description:

The ?SYMB directive is used for passing high-level language symbol

information to the assembler. This information can be used by a high level

language debugger.

Assembler Directives 8–7

• • • • • • • •

#LINE

Synopsis:

[line] line-number "filename"

Description:

This directive is used to pass line and file information to the assembler.

The assembler sets the internal line number counter to line-number and

uses this number in the list file and when printing error messages. The

filename argument is printed for error messages.

The #line directive is generated by the macro preprocessor m166 and by

the C preprocessor of c166. If you are familiar with C preprocessor

language, it is also possible to use the c166 C compiler, or an other C

preprocessor, instead of the m166 macro preprocessor to preprocess

assembly source.

When using the c166 C compiler as preprocessor it should be invoked as

follows:

c166 –E input–filename –o output–filename

Example:

c166 –E cprep.asm –o cprep.src

The file cprep.asm is preprocessed, and the output is placed in

cprep.src .

Chapter 88–8
D
IR
E
C
T
IV
E
S

ASSUME

Synopsis:

ASSUME DPPn:sectpart [, DPPn:sectpart]...

or

ASSUME NOTHING

Description:

At run-time, every data memory reference (access to a variable) requires

two parts in order to be physically addressed: a page number and a page

offset.

The page number is contained in one of the Data Page Pointer (DPP)

registers, defining the physical page in which the variable lies. (This value

is loaded in the DPP register by the appropriate initialization code). The

DPP register number and the offset value is contained in the instruction

code which makes the reference. These two values are used to compute

the absolute address of the object referenced.

You can use the ASSUME directive to specify what the contents of the DPP

registers will be at run-time. This is done to help the assembler to ensure

that the data referenced will be addressable.

The assembler checks each data memory reference for addressability

based on the contents of the ASSUME directive. The ASSUME directive

does not initialize the DPP registers; it is used by the assembler to help

you be aware of the addressability of your data. Unless the data is

addressable (as defined either by an ASSUME or a page override), the

assembler produces an error.

The ASSUME directive also helps the assembler to decide when to

automatically generate a page override instruction prefix.

See also the DPPn operator.

Field Values:

DPPn One of the C166 Data Page Pointer (DPP) registers: DPP0,

DPP1, DPP2, DPP3.

Assembler Directives 8–9

• • • • • • • •

sectpart By this field a page number can be defined. It can have the

following names:

- section name, as in

ASSUME DPP0:DSEC1, DPP1:DSEC3

All variables and labels defined in section DSEC1 are

addressed with DPP0 and all variables defined in the section

DSEC3 are addressed with DPP1.

- group name, as in

ASSUME DPP2:DGRP

All variables and labels defined in sections which are

member of the group DGRP are addressed with DPP2.

- variable name or label name, as in

ASSUME DPP0:VarOrLabName

If the variable or label name is defined in a module internal

section, all variables or labels defined in this section are

addressed with DPP0. If the variable or label name is defined

in a module-external section, only this variable can be

addressed with DPP0.

- NOTHING keyword, as in

ASSUME DPP1:NOTHING

This indicates that nothing is assumed in the DPP register at

that time. If a DPP register is assumed to contain nothing, the

assembler does not implicitly use this DPP register for

memory addressing. Also possible is: ASSUME NOTHING

This is the same as:

ASSUME DPP0:NOTHING, DPP1:NOTHING
ASSUME DPP2:NOTHING, DPP3:NOTHING

This is the default which remains in effect until the first

ASSUME directive is found.

- SYSTEM keyword, as in

ASSUME DPP1:SYSTEM

Chapter 88–10
D
IR
E
C
T
IV
E
S

This keyword enables the addressability of system ranges (via

SFR) in SEGMENTED mode, if a SFR is used in a virtual

operand combination.

The SYSTEM keyword can also be used in a DGROUP

directive, which causes a whole group to be located in the

system page (page 3). If this group is assumed to a DPP,

SYSTEM is also assumed. If SYSTEM is assumed, it implies

that the whole group is assumed also.

Example:

The following example illustrates the use of ASSUME.

$SEGMENTED
DSEC1 SECTION DATA
AWORD DW 0
DSEC1 ENDS

DSEC2 SECTION DATA
BYTE1 DB 0
DSEC2 ENDS

DSEC3 SECTION DATA
BYTE2 DB 0
DSEC3 ENDS

CSEC SECTION CODE
ASSUME DPP0:DSEC1, DPP1:DSEC3
MOV DPP0, #DSEC1
MOV DPP1, #DSEC3
MOV DPP2, #DSEC2
.
.
MOV R0, AWORD ; The ASSUME covers the reference.
. ; DPP0 points to the base of
. ; section DSEC1 that contains AWORD
.
MOV RL1, DPP2:BYTE1 ; Explicit code. The page override
. ; operator covers the reference
MOV RL1, BYTE1 ; Error!: No DPP register used and
. ; no ASSUME has been made.
.
MOV RL2, BYTE2 ; The ASSUME covers the reference.
. ; DPP1 points to the base of
. ; section DSEC3 that contains BYTE2
CSEC ENDS

Assembler Directives 8–11

• • • • • • • •

When several DPPs are assumed to one sectpart, the lowest DPP number

is used as DPP prefix. This also happens if, for example, both a label and

the section it belongs to are assumed to different DPPs, or if both a section

and the group it belongs to, are assumed to different DPPs.

Example:

$SEGMENTED

 ASSUME DPP1:AGRP, DPP2:AVAR1

AGRP DGROUP DSEC1, DSEC2

DSEC1 SECTION DATA
AVAR1 DW 1
DSEC1 ENDS

DSEC2 SECTION DATA
 .
 .
 .
DSEC2 ENDS

CSEC SECTION CODE
PROC1 PROC FAR
 .
 .
 MOV R0, AVAR1 ; DPP1 is used for AVAR1
 .
 .
 ASSUME DPP1:NOTHING
 MOV R0, AVAR1 ; DPP2 is used for AVAR1
 MOV R0, AGRP ; DPP2 is used for AGRP
 .
 .
 RET
PROC1 ENDP
CSEC ENDS

Chapter 88–12
D
IR
E
C
T
IV
E
S

Example:

ASSUME directives can forward reference a name. Also double forward

references are allowed.

ASSUME DPP0:DSEC1 ; Forward reference
ASSUME DPP1:AVar ; Double forward reference.

DSEC1 SECTION DATA
 .
 .
 .
DSEC1 ENDS

AVar EQU WORD PTR wVar + 2

DSEC1 SECTION DATA
wVar DW 0
 DW 0
DSEC1 ENDS

An ASSUME directive remains in effect until it is changed by another

ASSUME.

If a multiple ASSUME on predefined symbols is done the lowest DPP

number will be used for addressing the predefined symbols.

Example 1:

ASSUME DPP1:?FPSTKOV
ASSUME DPP3:?FPSTKUN
ASSUME DPP2:?FACBASE
ASSUME DPP3:?FACSGN

The result of these ASSUME directives is that DPP1 will be used for the

predefined symbols.

Example 2:

ASSUME DPP2:?FACEXP
ASSUME DPP3:?FACMAN_0
ASSUME DPP1:?FACMAN_2
ASSUME DPP1:IDENT

The result of these ASSUME directives is that DPP2 will be used for the

predefined symbols, because DPP1 is used for IDENT.

Assembler Directives 8–13

• • • • • • • •

BIT

Synopsis:

bit-name BIT expression

Description:

The BIT directive assigns the value of expression to the specified

bit-name. A bit-name defined with BIT may not be redefined elsewhere

in the program.

The expression may not contain forward references to EQUate names, SET

names or BIT names. Other forward references are allowed.

Only the bits inside of the bit-addressable internal RAM range can be

defined by the BIT directive. For definition of bits in the bitaddressable

system range (SFR range), use the DEFB directive.

Field Values:

bit-name This a unique a166 identifier. This symbol is of type BIT.

bit-address The bit-address must be an absolute or simple relocatable

expression as stated above.

Examples:

BITW SECTION DATA BITADDRESSABLE
BITWRD DW 2
BITW ENDS

BITS SECTION BIT
BIT0 DBIT
BITS ENDS

BIT1 BIT BITWRD.0 ; bit 0 of BITWRD
BIT2 BIT BIT0 + 0.1 ; Illegal address
 ; operation. The ’ . ’
 ; operator has BIT as result
BIT3 BIT BIT0 + 1 ; BIT0 + 1 word (16 bits)
BIT4 BIT BIT1 + 2 ; bit 2 of BITWRD
BIT5 BIT BITWRD.0 + 3 ; address of BITWRD + 4
 ; bits + 3 words

Chapter 88–14
D
IR
E
C
T
IV
E
S

CGROUP/DGROUP

Synopsis:

group-name CGROUP sect-name [, sect-name]...

group-name DGROUP sect-part [, sect-part]...

Description:

Because of differences in addressing code and data, two group directives

are supported: CGROUP and DGROUP.

CGROUP supports sections of type CODE and DGROUP supports sections

of type DATA. Sections of type LDAT, HDAT and PDAT are not allowed

with the DGROUP directive.

The GROUP directives can be used to combine several logical sections, so

that they are located to the same physical segment or page (all sections

will have the same base address). The total size of a group is the sum of

the sizes of all sections specified by the GROUP directive. The total size

for CODE groups (CGROUP) must fit in one segment. The total size for

DGROUP groups must fit in one page. a166 does not check if the size of a

group is correct, this is done by the l166 locator.

The order of the sections in the GROUP directive is not necessarily the

same as the order of the sections in memory after the program is located.

This order can be changed at link-time. The group-name can be used as

if it was a sect-name, except in another GROUP directive.

The DGROUP directive also accepts SYSTEM as a sect-part. This makes it

possible to assume one DPP to both sections and SYSTEM. When SYSTEM

is grouped, an ASSUME on the group also assumes SYSTEM, and an

ASSUME of SYSTEM also assumes the whole group. For SYSTEM in a

group, the assembler generates an absolute WORD aligned DATA section

with the name SYSTEM at the address 0C000h. The size of this section is

zero. The locator now locates all sections of the group in page 3.

Assembler Directives 8–15

• • • • • • • •

A GROUP directive serves as a 'shorthand' way of referring to a

combination of sections. A specified collection of sections is grouped at

link-time and can be located as a logical unit to one physical segment or

page. The assembler works in terms of sections. When you define a

variable or label, the assembler assigns that variable or label to the section

in which it was defined. The offset associated with the variable or label is

from the base of its own section and not from the base of the group.

If a member of a group is an absolute section (specified with the

align-type AT ...) then the group is implicitly absolute as well.

Field Values:

group-name is a unique a166 identifier to be used as the name for the

group

sect-name a section name

sect-part a sect-name or SYSTEM

Example:

CSEC1 SECTION CODE
 .
 .
CSEC1 ENDS

CSEC2 SECTION CODE
 .
 .
CSEC2 ENDS

CODEGRP CGROUP CSEC1, CSEC2 ; Group combination
 ; of the CODE
 ; sections CSEC1 and
 ; CSEC2

Chapter 88–16
D
IR
E
C
T
IV
E
S

DB/DW/DDW/DBIT/

DS/DSB/DSW/DSDW

Synopsis:

[name] DB init [, init]...

[name] DW init [, init]...

[name] DDW init [, init]...

[name] DBIT [number]

[name] DS number

[name] DSB number

[name] DSW number

[name] DSDW number

Description:

The DB (Define Byte), DW (Define Word), DDW (Define Double Word),

DBIT (Define BIT) and DS (Define Storage), DSB (Define Storage BYTE),

DSW (Define Storage Word) and DSDW (Define Storage Double Word)

directives are used to define variables, initialize memory and reserve

storage.

Sections with DB, DW, DDW or DBIT directives are located in ROM

because initialized data cannot be stored in RAM.

Sections with DS, DSB, DSW or DSDW are located in RAM because ROM

data must have a predefined value.

DB Initialize 1 byte in memory. If init is a string definition, the

characters are stored each in one byte adjacent to another.

With this directive strings longer than 2 characters and empty

strings are allowed. The maximum string length is 200

characters. The DB directive cannot be used in BIT sections.

The symbol type of name is BYTE.

Assembler Directives 8–17

• • • • • • • •

DW Initialize a word of memory. If it does not match on an even

address, the assembler reports a warning. In this case, the

word definition must be aligned with the EVEN directive.

However, you can also accept this warning, because the

assembler internally provides for a correct alignment. The

word value represented by init, is placed in memory with the

high byte first. Unlike the DB directive, no more than two

characters are permitted in a character string, and the null

string evaluates to 0000h. The DW directive cannot be used

in BIT sections. The symbol type of name is WORD.

DDW Initialize a double word (4 bytes) in memory. The assembler

reports a warning if this address does not match on an even

address. In this case, the EVEN directive can be used to align

on an even address. The double word is placed in memory

with the high word first, and each word with the high byte

first. The symbol type for name is WORD because

instructions never can have a double word operand. Just like

DW only two byte character strings are allowed. The DDW

directive cannot be used in BIT sections.

DBIT Bit definition in a section of type BIT. An optional number
can be used to indicate the number of bits to be reserved.

The label [name] is assigned to the first reserved bit. c166

uses the optional number to support bit structures. When a

DBIT directive is encountered, the location counter of the

current section is incremented by the number of bits

specified with the number. Initialization with the DBIT

directive is impossible. The symbol type of name is BIT.

DS Reserve as many bytes (or bits) of memory as you define

with the number without initializing them. Reserves bytes in

DATA and CODE sections and bits in BIT sections. When a

DS directive is encountered, the location counter of the

current section is incremented by the number of bits

specified with the number. When a DS directive is used in a

non BIT section the symbol type of name is BYTE. In BIT

sections the symbol type of name is BIT.

DSB This is the same as DS. Reserve number of bytes or the

number of bits if used in a BIT section. When the directive is

used in a non BIT section the symbol type of name is BYTE.

In BIT sections the symbol type of name is BIT.

Chapter 88–18
D
IR
E
C
T
IV
E
S

DSW This is an extension of DS. It reserves two times the number

of bytes defined by number, or two times the number of bits

if used in a BIT section. When the directive is used in a non

BIT section the symbol type of name is WORD. In BIT

sections the symbol type of name is BIT.

DSDW This is an extension of DS. It reserves four times the number

of bytes defined by number, or four times the number of bits

if used in a BIT section. When the directive is used in a non

BIT section the symbol type of name is WORD. In BIT

sections the symbol type of name is BIT.

Field Values:

name A unique a166 identifier. It defines a variable whose

attributes are the current section index, the current location

counter and a type defined by the data initialization unit.

init Different initialization values are possible depending on the

usage and context:

- A constant expression

- 1-byte initialization, a constant expression that evaluates to 8

bits (i.e. 0 to 255 decimal)

- 2-byte initialization, a constant expression that evaluates to

16 bits (i.e. -32768 to +32767 decimal or 0 to 65535 decimal)

- 4-byte initialization, a constant expression that evaluates to

32 bits (i.e. -2147483648 to 2147483647 decimal or 0 to

4294967295 decimal)

- String definition, 0, 1 or 2 bytes long

- An address expression

You can initialize a variable with the offset or

segment-number respective page number of a label or

variable using the DW directive:

DW POF VAR ; Store the offset of the
 ; variable VAR from its
 ; page begin
DW VAR ; Has the same effect

When you use a section name or group name in a DW

directive, the segment number/page number of that item are

stored respectively:

Assembler Directives 8–19

• • • • • • • •

DW CSEC1 ; Store the segment number
 ; of CSEC1 section

- Initializing with a string (DB only)

With the DB directive you can define a string up to 200

characters long. Each character is stored in a byte, where

successive characters occupy successive bytes. The string

must be enclosed within single or double quotes. If you want

to include a single or double quote in a string, code it as two

consecutive quotes, or use a single quote in a string enclosed

within double quotes or vice versa.

ALPHABET DB ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
DIGITS DB ″0123456789 ″
SINGLEQUOTE DB ″This isn’t hard ″
DOUBLEQUOTE DB ’This isn’’t hard also’

number Is a constant expression which determines the number of

bytes that must be reserved. No initialization is done.

Examples:
- Constant expression - a numeric value

TEN DB 6+4 ; Initialize a byte: 0AH
 DW 10 ; Initialize a word: 000AH
CONSTA DW″?B″ ; Initialize a word: 3F42H
 ; ^^ constant string of maximum 2 bytes,
 ; evaluated to a number.
LONG1 DDW 012345678h ; initialize a double word

- Indeterminate initialization

RESERVE DS 2 ; Reserve two bytes. This word
 ; is not aligned.
RESBYTES DSB 4 ; Reserve four bytes.
RESWORDS DSW 2 ; Reserve four bytes.
RESDWRD DSDW 1 ; reserve four bytes

- An address expression - the offset or base part of a variable or label

SEGBASE DW DSEC ; Store page number of DATA section
COFFSET DW POF VAR ; Store offset value of VAR
LBASE DW SEG LAB1 ; Store segment number of LAB1
DBASE DW PAG VAR ; Store page number of VAR
ADDR DDW VAR ; store full 32 bit address of VAR

Chapter 88–20
D
IR
E
C
T
IV
E
S

- An ASCII string of more than two characters - DB only.

AMESSAGE DB ″HELLO WORLD″
SOFTWARE DB ’ASSEMBLER A166’

- A list of initializations

 The values are stored at succeeding addresses.

STUFF DB 10, ″A STRING″, 0, 3, ’R’
;reserve 12 bytes memory

NUMBS DW 1, ’M’, 3, 4, 0FFFFH
;reserve 5 words memory

- Bit reservation

BSEC SECTION BIT
FLAG DBIT ; reserve one bit
FLAG2 DBIT 4 ; reserve 4 bits
BSEC ENDS

Assembler Directives 8–21

• • • • • • • •

DEFR/DEFA/DEFB

Synopsis:

name DEFR SFR-address [, attribute]

name DEFA system-address [, attribute]

name DEFB bit-address [, attribute]

Description:

The directives mentioned above serve to define REG names,

system-address names and bit names with the attributes read, write, or

read/write (default). These definitions are pure system definition and do

not appear in the symbol table of the list files.

The DEFR/DEFA/DEFB directives are mainly used to define system names

in a STDNAMES standard configuration file (see control STDNAMES).

These directives can also be used, however, in the source file.

In this context, note the following:

- A STDNAMES file can only be used if the control MOD166 is not set

at the same time.

- If there is no STDNAMES control and MOD166 is set, the a166

default initialization takes place, which implies the usage of the

internal definitions of all C166 SFRs and bit names.

- If neither a STDNAMES file nor MOD166 is active, only a subset of

system symbols is available to enable programming in the smallest

configuration.

The DEFB directive can be used only for defining bits in the

bit-addressable system range (SFR range). For the definition of bits in the

bit-addressable internal RAM range, use the BIT directive.

The system-addresses, defined with the DEFA directive, must be in the

internal RAM range from 0C000h to 0FFFEh.

Field Values:

name A unique a166 identifier. This is a REG name, address

name or bit name.

Chapter 88–22
D
IR
E
C
T
IV
E
S

SFR-address A SFR address (0FE00h - 0FFDEh extended with 0F000h -

0F1DEh for EXTSFR). If the MOD166 control is active, the

addresses of the smallest configuration (see tables 8-2 -

8-4), and addresses which are already defined by a SFR,

may not be used.

system-address A 16-bit address (address in the system page 0C000H -

0FFFEH). PEC pointer addresses may not be used.

bit-address This is the bit address represented as:

{SFR name | SFR address}.Bit number (0 - 15)

attribute The following attributes are available:

R (read only)

W (write only)

RW (read and write) default.

The EXTSFR/NOEXTSFR controls affect the available system names in the

smallest configuration. The available system names in the smallest

configuration are:

- Non Bit-Addressable Registers

NOEXTSFR EXTSFR EXTEND2

Name Address Name Address Name Address

DPP0 0FE00h DPP0 0FE00h DPP0

DPP1 0FE02h DPP1 0FE02h DPP1

DPP2 0FE04h DPP2 0FE04h DPP2

DPP3 0FE06h DPP3 0FE06h DPP3

CSP 0FE08h CSP 0FE08h CSP

EMUCON 0FE0Ah EMUCON 0FE0Ah

MDH 0FE0Ch MDH 0FE0Ch MDH

MDL 0FE0Eh MDL 0FE0Eh MDL

CP 0FE10h CP 0FE10h CP

SP 0FE12h SP 0FE12h SP

STKOV 0FE14h STKOV 0FE14h STKOV

STKUN 0FE16h STKUN 0FE16h STKUN

Table 8-2: Smallest Configuration Non Bit-Addressable

Assembler Directives 8–23

• • • • • • • •

NOEXTSFR EXTSFR EXTEND2

Name Address Name Address Name Address

ADDRSEL1 0FE18h ADDRSEL1 0FE18h

ADDRSEL2 0FE1Ah

ADDRSEL3 0FE1Ch

ADDRSEL4 0FE1Eh

Table 8-2: Smallest Configuration Non Bit-Addressable (continued)

- Bit-addressable Registers

NOEXTSFR EXTSFR EXTEND2

Name Address Name Address Name Address

SYSCON 0FF0Ch * SYSCON 0FF12h

MDC 0FF0Eh MDC 0FF0Eh

PSW 0FF10h PSW 0FF10h PSW

ZEROS 0FF1Ch ZEROS 0FF1Ch

ONES 0FF1Eh ONES 0FF1Eh

* BUSCON0 0FF0Ch

BUSCON1 0FF14h BUSCON1 0FF14h

BUSCON2 0FF16h

BUSCON3 0FF18h

BUSCON4 0FF1Ah

Table 8-3: Smallest Configuration Bit-Addressable

* With EXTSFR the BUSCON0 register is at the address of SYSCON with

NOEXTSFR (0FF0Ch), and SYSCON is located at a higher address

(0FF12h).

Chapter 88–24
D
IR
E
C
T
IV
E
S

- System bits

NOEXTSFR EXTSFR EXTEND2

Name Address Name Address Name Address

* MON SYSCON.0

* VIS SYSCON.1

RWDC SYSCON.4 *

MTTC SYSCON.5 * WRCFG SYSCON.7

CLKEN SYSCON.8 CLKEN SYSCON.8

BYTDIS SYSCON.9 BYTDIS SYSCON.9

BUSACT SYSCON.10 * ROMEN SYSCON.10

SGTDIS SYSCON.11 SGTDIS SYSCON.11

RDYEN SYSCON.12 * ROMS1 SYSCON.12

MDRIU MDC.4 MDRIU MDC.4

N PSW.0 N PSW.0 N PSW.0

C PSW.1 C PSW.1 C PSW.1

V PSW.2 V PSW.2 V PSW.2

Z PSW.3 Z PSW.3 Z PSW.3

E PSW.4 E PSW.4 E PSW.4

MULIP PSW.5 MULIP PSW.5 MULIP PSW.5

USR0 PSW.6 USR0 PSW.6 USR0 PSW.6

USR1 PSW.7

HLDEN PSW.10 HLDEN PSW.10 HLDEN PSW.10

IEN PSW.11 IEN PSW.11 IEN PSW.11

RWDC0 BUSCON0.4

MTTC0 BUSCON0.5

ALECTL0 BUSCON0.9

BUSACT0 BUSCON0.10

RDYEN0 BUSCON0.12

CSREN0 BUSCON0.14

CSREN0 BUSCON0.15

RWDC1 BUSCON1.4 RWDC1 BUSCON1.4

MTTC1 BUSCON1.5 MTTC1 BUSCON1.5

ALECTL1 BUSCON1.9 ALECTL1 BUSCON1.9

BUSACT1 BUSCON1.10 BUSACT1 BUSCON1.10

Table 8-4: Smallest Configuration System Bits

Assembler Directives 8–25

• • • • • • • •

NOEXTSFR EXTSFR EXTEND2

Name Address Name Address Name Address

RDYEN1 BUSCON1.12 RDYEN1 BUSCON1.12

CSREN1 BUSCON1.14

CSWEN1 BUSCON1.15

RWDC2 BUSCON2.4

MTTC2 BUSCON2.5

ALECTL2 BUSCON2.9

BUSACT2 BUSCON2.10

RDYEN2 BUSCON2.12

CSREN2 BUSCON2.14

CSWEN2 BUSCON2.15

RWDC3 BUSCON3.4

MTTC3 BUSCON3.5

ALECTL3 BUSCON3.9

BUSACT3 BUSCON3.10

RDYEN3 BUSCON3.12

CSREN3 BUSCON3.14

CSWEN3 BUSCON3.15

RWDC4 BUSCON4.4

MTTC4 BUSCON4.5

ALECTL4 BUSCON4.9

BUSACT4 BUSCON4.10

RDYEN4 BUSCON4.12

CSREN4 BUSCON4.14

CSWEN4 BUSCON4.15

Table 8-4: Smallest Configuration System Bits (continued)

* The bits in SYSCON with NOEXTSFR are different with EXTSFR.

Examples:

ADDAT DEFR 0FEA0h, R ; define ADDAT to be SFR
 ; address 0FEA0h
 ; (read only)

MYSYS DEFA 0FBE0h, W ; define MYSYS as system
 ; address 0FBE0h to be
 ; write only

Chapter 88–26
D
IR
E
C
T
IV
E
S

ABC DEFB 0FF20h.0 ; define ABC to be bit
 ; 0 of address 0FF20h in
 ; the bit–addressable SFR
 ; area (read/write)

Assembler Directives 8–27

• • • • • • • •

DSPTR/DPPTR/DBPTR

Pointers are memory units in which complete physical addresses of

variables, labels or procedures are stored. Pointers are used essentially to

supply parameters to procedures. They are used in particular in

conjunction with the c166 compiler. Pointers can be defined by means of

the memory addressing directives DSPTR (Define Segment Pointer),

DPPTR (Define Page Pointer), and DBPTR (Define Bit Pointer).

Synopsis:

[name] DSPTR init [, init]...

[name] DPPTR init [, init]...

[name] DBPTR init [, init]...

Description:

DSPTR Segment pointer initialization. Used to define variables that

hold pointers to labels or procedures in code sections.

DPPTR Page pointer initialization. Used to define variables that hold

pointers to variables of type BYTE or WORD in data sections.

DBPTR Bit pointer initialization. Used to define variables that hold

pointers to bit variables in bit sections or bit-addressable data

sections.

When a pointer is defined, it can be assigned a symbolic name by which

this pointer can be addressed.

The pointers can be useful in SEGMENTED mode to obtain the segment-

or page offset and the segment- or page number of a variable or label to

access the variable/label from another segment or page, when you don't

know the absolute address of the variable or label.

Field Values:

name This is a unique a166 identifier. It defines a variable whose

attributes are the current section index, the current location

counter and the type WORD.

Chapter 88–28
D
IR
E
C
T
IV
E
S

init DSPTR and DPPTR can be initialized with a variable name or

label name. The assembler allocates two words of memory

and initializes them as follows:

DSPTR With this directive the first word contains the

segment offset of the label (a value in the range

0000H to FFFFH corresponding to a 16-bit

number) and the second word contains the

physical segment number of that item (a value

in the range 0000H to 0003H corresponding to a

2-bit number for the C166 or a value in the

range 0000H to 00FFh corresponding to a 8-bit

number for the C167, depending on the

EXTMEM control).

DPPTR With this directive the first word contains the

page offset of the variable or label (a value in

the range 0000H to 3FFFH corresponding to a

14-bit number) and the second word contains

the physical page number of that item (a value

in the range 0000H to 000FH corresponding to a

4-bit number for the C166 or a value in the

range 0000H to 07FFh corresponding to a 10-bit

number for the C167, depending on the

EXTMEM control).

DBPTR can be initialized with a bit variable name. The

assembler allocates three words of memory and initializes

them as follows:

DBPTR With this directive the first word contains the bit

position (a value in the range 0000H to 000FH),

the second word contains the page offset of the

bit variable (a value in the range 0D00H to

0DFFH) and the last word contains the physical

page number 0003H.

Examples:
LABPTR DSPTR LAB ; Segment Pointer to label LAB
 ; LABPTR contains the segment
 ; offset off LAB, and LABPTR + 2
 ; contains the segment number of LAB
VARPTR DPPTR VAR ; Page Pointer to variable VAR
BITPTR DBPTR BITVAR ; Bit Pointer to a bit variable
BITPTR1 DBPTR BITWORD ; Bit Pointer to a bitaddressable word

Assembler Directives 8–29

• • • • • • • •

Example where DPPTR is used to allow initialization of a variable:
$SEGMENTED
EXTERN AVAR:WORD
_IR SECTION DATA WORD PUBLIC ’CINITROM’
_IR_ENTRY LABEL BYTE ; define a label location
 ; (see LABEL directive)
 DW AVAR
_IR ENDS

C166_INIT SECTION DATA WORD GLOBAL ’CROM’
 DW 06H
 DPPTR _IR_ENTRY ; the page offset and number of the
 ; _IR_ENTRY label location is now
 ; available. By this, also the word
 ; following the _IR_ENTRY label can
 ; be accessed.
 DW 010H
 .
 .
C166_INIT ENDS

Chapter 88–30
D
IR
E
C
T
IV
E
S

END

Synopsis:

END

Description:

The END directive is required in all a166 module programs. It is,

appropriately, the last statement in the module. Its occurrence terminates

the assembly process. Any text found behind the END directive is ignored.

Characters following the END directive result in a warning on level 2.

Example:

DSEC SECTION DATA
AVAR DW 2
DSEC ENDS

CSEC SECTION CODE
 .
 .
CSEC ENDS

 END ; End of assembler source

This line is ignored by a166 .

Assembler Directives 8–31

• • • • • • • •

EQU

Synopsis:

equ-name EQU expression

Description:

EQU assigns the value of expression to the equ-name. This name cannot

be redefined.

Field Values:

equ-name This is a unique a166 identifier.

expression Is any expression.

Example:

COUNT EQU 0FFH ; COUNT is the same as 0FFH

CSEC SECTION CODE
 MOV R0, #COUNT
CSEC ENDS

Chapter 88–32
D
IR
E
C
T
IV
E
S

EVEN

Synopsis:

EVEN

Description:

The EVEN directive ensures that the code or data following the use of the

directive is aligned on a word boundary. a166 inserts a DB 0 (00H) in a

CODE section, or a DS 1 in a DATA, LDAT, PDAT or HDAT section, if it is

necessary, to force the word alignment. The EVEN directive cannot be

used in a byte or bit aligned section - an error message is issued.

Examples:

DSEC SECTION DATA ; DATA section, default
 ; word aligned
ABYTE DB ’R’ ; one byte. location
 ; counter is on an odd
 ; address
EVEN ; Location counter is
 ; incremented by one.
AWORD DW 34 ; AWORD start on an EVEN
 ; address.
DESC ENDS

Assembler Directives 8–33

• • • • • • • •

EXTERN/EXTRN

Synopsis:

EXTERN [DPPx:] name: type [, [DPPx:] name: type]...
or

EXTRN [DPPx:] name: type [, [DPPx:] name: type]...

Description:

The EXTERN directive specifies those symbols, which may be referenced

in the module that have been declared 'public' in a different module. The

EXTERN directive specifies the name of the symbol and its type.

Field Values:

DPPx A Data Page Pointer register: DPP0, DPP1, DPP2, DPP3.

name The name of the symbol declared to be public in a different

module.

type The type of the symbol. This field can have the following

values:

BIT - specifies a variable (1 bit)

BYTE - specifies a variable (8 bits)

WORD - specifies a variable (16 bits)

BITWORD - specifies a variable (16 bits)

NEAR - specifies a near label

FAR - specifies a far label

DATA3 - specifies a constant (3 bits)

DATA4 - specifies a constant (4 bits)

DATA8 - specifies a constant (8 bits)

DATA16 - specifies a constant (16 bits)

INTNO - specifies a symbolic interrupt number

REGBANK - specifies a register bank name

 (DPPx not allowed!)

Chapter 88–34
D
IR
E
C
T
IV
E
S

Example:

Module A, Task A

PUBLIC AVAR ; AVAR is declared public
GLOBAL BVAR ; BVAR is declared global

DSEC SECTION DATA
 .
 .
AVAR DW 8 ; AVAR is defined here
BVAR DB 4 ; BVAR is defined here
 .
DSEC ENDS

CSEC SECTION CODE
 ASSUME DPP2:AVAR
 .
CSEC ENDS

Module B, Task A

EXTERN DPP2:AVAR:WORD ; extern declaration

CSEC SECTION CODE
 .
 .
 MOV R0, AVAR ; AVAR is used here
 .
CSEC ENDS

Module A, Task B

EXTERN BVAR:BYTE ; extern declaration

CSEC SECTION CODE
 .
 .
 MOV R0, BVAR ; BVAR is used here
 .
CSEC ENDS

Assembler Directives 8–35

• • • • • • • •

By using the DPPx operator with the EXTERN directive, the assembler

assumes that the DPP register is loaded with the right page number to

access this variable. This is comparable with the EXTERN directive on this

variable. The DPPx assigned to the variable with the EXTERN directive is

known throughout the whole source file and cannot be overruled using

the ASSUME directive. In the module where the variable is declared

PUBLIC or GLOBAL, the variable must be assigned to the DPPx by means

of the ASSUME directive.

It is also possible to define and reference a variable in the same module.

The type of the reference and the definition will be checked. The

definition of a variable will overrule the extern reference of the variable.

Example:

EXTERN IDENT:WORD ;reference ident
PUBLIC IDENT ;ident is declared public

EXAMPLE SECTION DATA
 .
 .
IDENT dsw 1 ;ident is defined here as word
 .
EXAMPLE ENDS

This behavior is very useful for making an include file with all variables

referenced as extern. This file can be included in all modules without

getting conflicts, with the module that defines the variable. Another benefit

is that the EXTERN declaration is type check against these definitions.

Chapter 88–36
D
IR
E
C
T
IV
E
S

GLOBAL

Synopsis:

GLOBAL name [, name]...

Description:

With the GLOBAL directive you can specify which symbols in the module

are available to other modules of the same task or different tasks at

link-time. These symbols, which may be defined GLOBAL are:

- variables

- labels or

- constants defined using the EQU or BIT directive.

All other symbols will be flagged as an error. Each symbol name may be

declared GLOBAL only once in a module. Any symbol declared GLOBAL

must have been defined somewhere else in the program. GLOBAL

symbols can be accessed by other modules if the same symbol name has

been declared EXTERN in that module.

See the EXTERN directive section.

Field Values:

name This is a user-defined variable, label or constant.

Examples:

Module A, Task A

GLOBAL AVAR ; AVAR is declared global

DSEC SECTION DATA
 .
 .
AVAR DW 8 ; AVAR is defined here
 .
DSEC ENDS

Assembler Directives 8–37

• • • • • • • •

Module A, Task B

EXTERN AVAR:WORD ; extern declaration

CSEC SECTION CODE
 .
 .
MOV R0, AVAR ; AVAR is used here
 .
CSEC ENDS

Chapter 88–38
D
IR
E
C
T
IV
E
S

LABEL

Synopsis:

'Code' labels can be defined by:

label: LABEL {NEAR | FAR}

'Data' labels can be defined by:

label LABEL {BYTE | WORD}

or

label LABEL BIT

Description:

A label is a symbolic name for a particular location in a section. There are

two different types of labels:

- 'Code' labels, ending with a ':' label:

- 'Data' labels label

The LABEL directive creates a label for the current location of assembly,

whether data or code. The LABEL directive can be used to define a

variable or a label (depending on the type used) that has the following

attributes:

Section: the index to the section being assembled.

Offset: the current value of the location counter.

Type: the operator applied to the LABEL directive.

This type can have one of the following values:

BIT defines a variable of type bit

BYTE defines a variable of type byte

WORD defines a variable of type word

NEAR defines a label of type near

FAR defines a label of type far

a166 reports a warning if NEAR/FAR labels are used in DATA sections and

also if BYTE/WORD labels are used in CODE sections.

Assembler Directives 8–39

• • • • • • • •

The 'label LABEL BIT' statement can only be used in BIT sections. a166

reports an error when it is used in non bit addressable sections.

See sections Defining Code Labels and Defining Data Labels in chapter

Software Concept for defining labels without the LABEL directive.

Example:

The LABEL directive is useful for defining a different label name with

possibly a different type for a location that is named through the usual

means. For example, if you desire to access two consecutive bytes as both

a word and as two different bytes, the following usage of the LABEL

directive allows both forms of access.

DSEC SECTION DATA
AWORD LABEL WORD ; label of type WORD
LOWBYTE DB 0
HBYTE LABEL BYTE ; label of type BYTE
HIGHBYTE DB 0
DSEC ENDS

Example:

The LABEL directive can also be used to define two labels of different

types for the same location of code. This is useful to enable both NEAR

and FAR jumps to a CODE section.

CSEC SECTION CODE
PR PROC NEAR
LABFAR: LABEL FAR ; a label of type FAR
LABNEAR: MOV R0, R1 ; a label of type NEAR,
 ; same location code
 ; as LABFAR
PR ENDP
CSEC ENDS

Examples:

The LABEL directive supports also the BIT type. The LABEL directive with

the BIT type can only be used in sections of type BIT.

DSEC SECTION BIT
FIRSTBIT LABEL BIT ; label of type bit
BITS DBIT 4
DSEC ENDS

Chapter 88–40
D
IR
E
C
T
IV
E
S

LIT

Synopsis:

lit-name LIT ′lit-string′

Description:

This directive is used to substitute text. It only replaces tokens. If you want

to replace a substring, enclose the substring in {}. The lit-name can not be

defined as PUBLIC. The lit-names are not replaced in the list file.

Field Values:

lit-name A unique a166 identifier.

lit-string A character string enclosed in ′ ′ or ″″ .

Examples:

ALAB LIT ’ALABEL’

COUNT LIT ″R0″

ALAB: MOV COUNT, 10 ; Becomes: ALABEL: MOV R0, 10

SYSTEM LIT ’VARIABLE’

{SYSTEM}NAME: ; Is converted to VARIABLENAME:

Assembler Directives 8–41

• • • • • • • •

NAME

Synopsis:

NAME module-name

Description:

The NAME directive is used to identify the current object module with a

module-name. Each module that must be linked to others must have a

unique module-name. If a module-name is not a unique name, the

symbols of the second and further modules in the same task cannot be

accessed under this name when a debugger or an emulator is used. This

directive also accepts reserved words as an argument, for example NAME

ret is also allowed. a166 accepts any identifier as a valid name.

If no NAME directive is used, the default object module-name is the

source file name stripped of its extension. For example if the source file

name is MyProg.src, the object module-name is MYPROG.

Field Values:

module-name A unique identifier.

Examples:

name My_Program_Name ; module–name is MY_PROG_NAME

Chapter 88–42
D
IR
E
C
T
IV
E
S

ORG

Synopsis:

ORG expression

Description:

The ORG directive can be used for controlling the location counter within

the current section. The ORG directive sets the location counter to the

desired value relative to the section's start address. One must be very

careful not to overwrite any previously allocated data or code by ORGing

to a location previously allocated. The ORG directive is used to locate

code or data at a particular location (offset) within a section. Used within

an absolute section, you can specify the actual location in memory in

which the code or data must be located. When used at the beginning of a

task you can change the start address of the program (a new program

origin).

The above applies only to the current part of a section. If a section

continues throughout several modules, the length of the preceding section

parts is added to ORG.

If the result of the expression is greater than 65536, the assembler reports

an error.

Field Values:

expression This is an expression that is evaluated modulo 65536. You

may use the value of the current location counter in an

expression.

Examples:

CODESEC SECTION CODE ; main code section
 ORG 10H ; start address changed to 10H
 .
 .
CODESEC ENDS

ORG ($ + 1000) ; the current location
 ; counter is incremented by 1000

Assembler Directives 8–43

• • • • • • • •

Avoid an expression in the form:

ORG ($ - 1000)

because this will overwrite your last 1000 bytes of assembly (or will reORG

high in the current section, if the expression evaluates to a negative

number).

Chapter 88–44
D
IR
E
C
T
IV
E
S

PECDEF

Synopsis:

PECDEF channel-range [, channel-range]...

Description:

With the PECDEF directive you can specify which PEC (Peripheral Event

Controller) channels must be used. Only one PECDEF directive is allowed

per module. There are 8 PEC service channels implemented in the C166,

each supplied with a separate PEC Channel Counter/Control register. They

are referred to as PECCn, where n represents the number of associated

PEC channel (n= 0 through 7).

The PECDEF directive causes the locator to reserve memory for each

defined PECCn.

Note that the EXTPEC assembler control affects the addresses for the PEC

source and destination pointers. With EXTPEC active the address range for

PEC pointers is: 0FCE0h - 0FCFEh. With NOEXTPEC active the address

range for PEC pointers is: 0FDE0h - 0FDFEh.

The assembler issues the error "invalid PECDEF operand" when the PECCn
register is unknown. This implies that when the NOMOD166 control is

used, the PECCn registers must defined before the PECDEF control is

used. The PECCn registers are defined in the register definition files

reg165.def , reg166.def , reg167.def and reg167b.def . These

register definition files can be read by using the STDNAMES control.

Field Values:

channel-range This field represents one PEC channel PECCn, or a range

of PEC channels in the form PECCn-PECCm, where n <

m and both n and m must be in the range 0 to 7.

Example:

PECDEF PECC0 – PECC2, PECC6

; use channels 0, 1, 2 and 6

Assembler Directives 8–45

• • • • • • • •

PROC/ENDP

Synopsis:

name PROC [type]
.

.

name ENDP

or

name PROC TASK [taskname] [INTNO {[int.-name][=int.-no.]}]
 [SCALING scale [INLINE]]

.

.

name ENDP

or

name PROC TASK ISR

.

.

name ENDP

Description:

A PROC directive can be used to define a label and to group a sequence

of instructions that are usually interpreted to be a subroutine (procedure)

that is CALLed either from within the same physical segment (near) or

from a different physical segment (far).

The PROC TASK directive must be used to define a task. A task is defined

in a main module. When the STRICTTASK control is set, only one PROC

TASK definition is allowed per assembly module. When the

NOSTRICTTASK control is set (default) there is no limit to the number of

PROC TASK definitions. The task procedure may be given an interrupt

number (INTNO). The interrupt number is used by the locator to

automatically generate an interrupt vector table.

The primary use of the PROC directive is to give a type to the RET

instruction enclosed by the PROC/ENDP pair. A PROC is different from a

high-level language subroutine or procedure in that there is no scoping of

names in a PROC. All user defined variables and labels in a module must

be unique.

Chapter 88–46
D
IR
E
C
T
IV
E
S

The C166 has three types of RET instructions: near, far or an interrupt

return, that corresponds to the type of the CALL made.

When PROC TASK ISR is used, the procedure can exit using a RETI

instruction although it is not an actual interrupt. This is used to call

interrupt service routines (ISR) from inlined vectors.

INLINE indicates to the locator to insert this procedure in the vector table

if possible.

Field Values:

name This is a unique a166 identifier that defines a label whose

section attribute is the current section index, and whose

offset is the current location counter. Its type is defined in the

PROC directive.

type This specifies the type of the label defined. The possible

values are:

Not specified defaults to NEAR in non-

segmented mode and to FAR in

segmented mode

NEAR to define a near procedure

FAR to define a far procedure

This field specifies to the assembler what type of call

instruction to generate for the procedure and what type of

return instruction to generate for any RET instruction found

between the PROC/ENDP pair.

task-name This is a unique a166 identifier that defines the name of the

task represented by this interrupt procedure.

int.-name This is a unique a166 identifier that defines a symbolic name
for the interrupt number of the specified interrupt procedure.

This symbolic interrupt number is used in the TRAP

instructions to execute a task procedure.

int.-no. This is a numeric expression in the range 0 - 127. It

represents the interrupt number (int.-no.) of the specified

interrupt procedure. This interrupt number (int.-no.) can be

used in the TRAP instructions to execute a task procedure.

Assembler Directives 8–47

• • • • • • • •

scale Scaling to be used to fit this vector in the vector table. The

assembler does not check if the resulting procedure does

actually fit inside the specified scaling if INLINE is specified.

Examples:

1. A NEAR PROC example

LOCALCODE SECTION CODE PUBLIC

ANEARPROC PROC NEAR
 .
 .
 RET ; A near RET
ANEARPROC ENDP
 .
 .
 .
 CALL ANEARPROC ; A near CALL
 .
LOCALCODE ENDS

2. A FAR PROC example

GLOBALCODE SECTION CODE

AFARPROC PROC FAR ; a far procedure
 .
 .
 RET ; A far RET
AFARPROC ENDP

GLOBALCODE ENDS

SPECSEC SECTION CODE
 .
 .
 CALL AFARPROC ; A far CALL
 ; intra segment.
 .
SPECSEC ENDS

Chapter 88–48
D
IR
E
C
T
IV
E
S

3. Interrupt routine with absolute interrupt number specification

PUBLIC INITROUTINE

CODESEC SECTION CODE

INITROUTINE PROC TASK INTNO=0 ; Task definition
 .
 .
 RET ; Return from interrupt
INITROUTINE ENDP

CODESEC ENDS

4. Inline vector calling interrupt service routine

PUBLIC INLINE_VECTOR
PUBLIC ISR_VECTOR

INTSECT SECTION CODE

INLINE_VECTOR PROC TASK INTNO=2 SCALING 1 INLINE

 PUSH CP
 JMPS SEG ISR_VECTOR, ISR_VECTOR
 RETV

INLINE_VECTOR ENDP

INTSECT ENDS

CODESECT SECTION CODE

ISR_VECTOR PROC TASK ISR

 .

 .
 RETI

ISR_VECTOR ENDP

CODESECT ENDS

Assembler Directives 8–49

• • • • • • • •

PUBLIC

Synopsis:

PUBLIC name [, name]...

Description:

With the PUBLIC directive you can specify which symbols in the module

are available to other modules of the same task at link-time. These

symbols, which may be defined PUBLIC are:

- variables

- labels or

- constants defined using the EQU or BIT directive.

All other symbols will be flagged as an error. Each symbol name may be

declared PUBLIC only once in a module. Any symbol declared PUBLIC

must have been defined somewhere else in the program. PUBLIC symbols

can be accessed by other modules if the same symbol name has been

declared EXTERN in that module.

See the EXTERN directive section.

Field Values:

name This is a user-defined variable, label or constant.

Examples:

Module A

PUBLIC AVAR ; AVAR is declared public

DSEC SECTION DATA
 .
 .
AVAR DW 8 ; AVAR is defined here
 .
DSEC ENDS

Chapter 88–50
D
IR
E
C
T
IV
E
S

Module B

EXTERN AVAR:WORD ; extern declaration

CSEC SECTION CODE
 .
 .
 MOV R0, AVAR ; AVAR is used here
 .
CSEC ENDS

Assembler Directives 8–51

• • • • • • • •

REGDEF/REGBANK/

COMREG

Synopsis:

[register-bank-name] REGDEF [register-range [type]] [, register-range [type]]...

[register-bank-name] REGBANK [register-range] [, register-range]...

[com-reg-name] COMREG register-range

Description:

REGDEF The REGDEF directive is used to define or declare a register

bank. A register-bank-name is a name which can be

assigned to a memory range in the internal RAM holding the

GPRs, specified by the register-range which may be used in

this module and the modules the register bank is combined

with. If the register-range is omitted the complete register

range (R0 - R15) is taken as default.

REGBANK The REGBANK directive is used to define or declare a

register bank which has a PRIVATE register-range. This

means that you can use the register-range only in this

module and the modules the register bank is combined with.

If the register-range is omitted the register-bank contains no

register.

COMREG The COMREG directive is used to define a register bank

which has a COMMON register-range.

A register bank definition is a REGDEF or REGBANK directive with a

register-bank-name. The linker combines register bank definitions with

equal names.

A register bank declaration is a REGDEF or REGBANK directive without

a register-bank-name. The assembler combines all declarations in the

input module to one declaration. The assembler combines all definitions

with the declarations and issues a warning if registers in the declaration

are not in a definition and the definition is expanded accordingly.

Chapter 88–52
D
IR
E
C
T
IV
E
S

If registers are used in a module, a register bank declaration or definition

must be present in that module. If no register bank declaration or

definition is used, or if registers not contained in the register bank

declaration are used, a166 reports a warning message. When a REGDEF

directive was used the register-range description is expanded accordingly.

So only registers that are missing in the definition are added. When a

REGBANK directive was used, the register-range is not expanded. When

neither a REGDEF nor a REGBANK directive was used, a166 does not

generate a register bank.

REGDEF, REGBANK and COMREG directives cannot be used in

ABSOLUTE mode. The register bank cannot be located since the code

must be loadable first.

When the STRICTTASK control is set, only one REGDEF or REGBANK

directive is allowed per module.

Field Values:

register-bank-name
is the name for a register bank. It can be any unique a166 identifier.

com-reg-name
is the name for a COMMON register range. It can be any unique a166

identifier.

register-range
is the register range defined in the following form:

Rn [– Rm] n < m

Rn is a single register or the beginning of a register range and Rm is

the end of a register range. Rn and Rm are registers in the range R0 to

R15.

type
is one of the following register-range types:

PRIVATE the register-range is private and can only be

combined with register banks with the same

register-bank-name.

Assembler Directives 8–53

• • • • • • • •

COMMON=name the specified register areas are common and can be

used to overlap banks partially. name is the name

of the COMMON register-range.
When name is used as reference it is translated to

the last register bank definition in the source

module in which this COMMON name exists.

Examples for register bank definitions

Example 1

RBank REGDEF ; Register bank with ’RBank’ as
 ; register bank name and R0 to R15
 ; (16 registers) as register range of
 ; type PRIVATE.

Is the same as:

RBank REGBANK R0–R15

Example 2

RBANK1 REGDEF R0–R5 PRIVATE ; Register range with 6
 ; PRIVATE registers

Example 3

RBANK2 REGDEF R1–R6 PRIVATE, R7–R9 COMMON=RCOM

Is the same as:

RBANK2 REGBANK R1–R6
RCOM COMREG R7–R9

Example 4

RBANK3 REGDEF R0–R3 COMMON=COM1,
 R4–R8, R9–R12 COMMON=COM2
 ; ^ register range type PRIVATE

Examples for register bank declarations

REGDEF
; This is a default REGDEF. Register bank with all 16
; registers (R0 to R15) of type PRIVATE.

REGDEF R0–R3, R4–R5 COMMON=CREG
; R0–R3 is PRIVATE; R4–R5 is COMMON

Chapter 88–54
D
IR
E
C
T
IV
E
S

REGDEF R1–R4 COMMON=COMR1, R6–R10, R14 COMMON=COMR2

Example with reference to COMMON name:

REGDEF R4 COMMON = AA
RB1 REGDEF R0–R3
RB2 REGBANK R5–R6
 ...

MOV CP, # AA ; translated to MOV CP, #RB2
 ...

Combination of register banks by linker/locator

The linker uses the following algorithm for combining register banks:

1. All register bank declarations of all input modules are combined when

more than one declaration exists.

2. The combined declaration (if any declaration exists) is combined with the

register definitions of all modules.

3. All register bank definitions with equal names are combined. Combining

PUBLIC or GLOBAL register banks with another local, PUBLIC or GLOBAL

register bank with equal name is not allowed.

When register definitions or declarations are combined, overlapping or

mismatching COMMON register ranges result in an error message.

The linker generates the combined register banks in the output file. A

declaration is only generated when no definitions exist.

The locator uses the following algorithm for combining register banks:

1. Register bank definitions having COMMON ranges with equal names are

combined.

2. Register bank definitions having equal names are combined to one bank.

This is not done when the STRICTTASK control is set.

3. Register bank declarations are not combined to other registerbank

declarations, unless matching COMMON ranges exist or when rule 4. can

be applied.

Assembler Directives 8–55

• • • • • • • •

4. When an EXTERN NEAR or FAR is resolved by a GLOBAL NEAR or FAR

symbol from a module, the locator assumes that the GLOBAL is a

procedure which is called by the EXTERN. To be sure that the register

bank of the caller (the EXTERN) contains all registers which can be used

by the callee (the GLOBAL), all registers which exist in register banks of

the module of the callee but do not exist in the register banks in the

module of the caller are added to the register banks of the caller as private

registers (see example A.). This combination is not done when the

STRICTTASK control is set.

When register definitions or declarations are combined, overlapping or

mismatching COMMON register ranges result in an error message.

Example A

file mod1.src :

RB1 REGDEF R5,R7,R10–R15
RB2 REGDEF R4,R7
 ...
 GLOBAL PROC1
PROC1 PROC NEAR
 ...
PROC1 ENDP
 ...
 END

file mod2.src :

RB REGDEF R1,R3,R10–R12
 ...
 EXTERN PROC1:NEAR
 ...
 CALL PROC1
 ...
 END

Invocations:

a166 mod1.src
a166 mod2.src
l166 locate mod1.obj mod2.obj to mod.out

Chapter 88–56
D
IR
E
C
T
IV
E
S

The three resulting register banks:

RB1 R5 R7 R10–R15
RB2 R4 R7
RB R1 R3 R4 R5 R7 R10–R15

The bank RB now also contains all registers of RB1 and RB2 because

mod1.src which contains RB1 and RB2 is called from mod2.src which

contains RB. The called procedure PROC1 now can safely use all registers

which are defined in its register bank.

COMMON and PRIVATE register ranges

COMMON and PRIVATE register-ranges may not be conflicting. If a

register-range has been defined COMMON in one module, this

register-range must not be declared PRIVATE in other modules, and vice

versa.

COMMON register-ranges with the same name must be identical in all

modules of the tasks in which they are used:

Example:

Module A:
RBANK REGDEF R0–R2 COMMON=COM1, R3–R6 COMMON=COM2, R7–R9

Module B:
RBANK REGDEF R0–R2 COMMON=COM1, R7–R9 PRIVATE
 ; ^ same common register–range as in module A

Module C:
 REGDEF R3–R6 COMMON=COM2, R7–R8
 ; ^ same common register–range as in module A

COMMON register-ranges with the same name that are used in several

tasks must be equal in size.

PRIVATE and COMMON register-ranges of several tasks must be organized

in such a way that the same memory area can be allocated to the

COMMON register-ranges with the same name without violating the

PRIVATE and COMMON register banks of the tasks.

Examples:

Task X:
RBANKX REGDEF R0–R3 COMMON=XYZ, R4–R7, R8– R9 COMMON=XZ
; ^ 4 registers ^ 2 registers

Assembler Directives 8–57

• • • • • • • •

Task Y:
RBANKY REGDEF R0–R5 PRIVATE, R7–R10 COMMON=XYZ
; ^ 4 registers

TASK Z:
RBANKZ REGDEF R2–R5 COMMON=XYZ, R10–R11 COMMON=XZ, R12–R15
; ^ 4 registers ^ 2 registers

An example register layout for the three tasks above is given by the

following part of the locator map file:

Part of locator map file

Register banks: combination of register definitions

 Reg. bank 0
 012345–####4567##CDEF––
 ^ ^ ^ ^ ^
 | | | | |.... RBANKZ (Z) FA22h
 | | | |...... XZ FA1Eh
 | | |.......... RBANKX (X) FA16h
 | |.............. XYZ FA0Eh
 |..................... RBANKY (Y) FA00h

The paragraph Registers in chapter 2, Software Concept.

Chapter 88–58
D
IR
E
C
T
IV
E
S

SECTION/ENDS

Synopsis:

name SECTION section-type [align-type] [combine-type] ['class']
.

.

name ENDS

Description:

With this directive a logical section can be defined. This section may be

combined with other sections in the same module and/or with sections

defined in other modules. These sections form the physical segments for

code or physical pages for data, located in memory. The code or data is

placed within the SECTION/ENDS pair. Within a source module, each

occurrence of an equivalent SECTION/ENDS pair (with the same name) is

viewed as being one part of a single program section.

Field Values:

name This is the name of the section. The name must be a

unique a166 identifier.

section-type The following section types can be used:

Section Type Description

CODE This section is mapped by the locator to a physical segment.
If the assembler operates in NON–SEGMENTED mode
(default) the code can only be in the first segment of 64K. An
exception to this rule is when the MODEL control is set to
SMALL. In that case the code can be anywhere in memory. If
the assembler operates in SEGMENTED mode the code can
be anywhere in memory.

DATA This section is mapped by the locator to a physical page
(16K). If the assembler operates in NON–SEGMENTED
mode (default) the page can only be in the first segment of
64K. If the assembler operates in SEGMENTED mode the
page can be anywhere in memory.

Assembler Directives 8–59

• • • • • • • •

DescriptionSection Type

LDAT This Linear DATa section is mapped by the locator in the first
segment of 64K. No checking on 16K page boundaries will
be done. The LDAT section type can only be used in
NON–SEGMENTED mode. An LDAT section size is less
than or equal to 64K. If the MODEL control is set to SMALL, it
is also possible to locate LDAT sections outside the first
segment in NON–SEGMENTED mode. It is possible to
manipulate LDAT sections outside the first segment with the
locator control ADDRESSES LINEAR.

PDAT This Paged DATa section is mapped by the locator in one
page anywhere in memory. If the assembler operates in
NON– SEGMENTED mode the PDAT section type is the
same as the DATA section type in SEGMENTED mode. That
is why the PDAT section type should only be used in
NON–SEGMENTED mode. A PDAT section size is less than
or equal to 16K.

HDAT This Huge DATa section specifies a non–paged section (no
checking on 16K page boundaries and even no checking on
64K segment boundary!) anywhere in memory.

BIT This section will be mapped by the locator to bit–addressable
memory (0FD00h – 0FDFFh). In these sections the location
counter is incremented in bit units. All symbols defined in a
BIT section get the BIT type.

Table 8-5: Section types

align-type This alignment type field specifies on what boundaries in

memory the section will be located. In combination with

AT, the align-types are used to check the specified

absolute address for the desired alignment, and to force

alignment of sections by the linker/locator.

Align Type Description

Not specified The default value of word alignment is taken for
non–bit sections and bit alignment for bit sections.

BIT Sections start at a bit address.

BYTE Sections may start at any address.

WORD Sections start at an even address (least significant
bit equals 0).

DWORD Double word. Sections start at an even address
with the two least significant bits equal to 0).

PAGE Sections start at a page boundary (module 16K).

Chapter 88–60
D
IR
E
C
T
IV
E
S

DescriptionAlign Type

SEGMENT Sections start at a segment boundary (module
64K).

BITADDRESSABLE Sections start at an even address (word
alignment) in the bit–addressable RAM (0FD00h –
0FDFEh).

PECADDRESSABLE Sections start at an even address (word
alignment) in the first segment in pec–addressable
RAM (segment 0).

The PEC pointers are located at address range
0FDE0h – 0FDFEh, unless the EXTPEC control is
active. In that case the address range 0FCE0h –
0FCFEh is used for PEC pointers, leaving address
range 0FDE0h – 0FDFEh free for bit–addressable
RAM.

IRAMADDRESSABLE Sections start at an even address (word
alignment) in the internal RAM of the processor.
By default the internal RAM ranges from 0FA00h
to 0FFFFh for the C166, but this range can be
changed for derivatives like the C167 by locator
controls IRAMSIZE or MEMORY IRAM.

Table 8-6: Align types

combine-type This field specifies how the section are combined with

sections from other modules to form a segment or page in

memory. The actual combination occurs during the

linking and locating.

Combine Type Description

Not specified The default is non–combinable. The section is not
combined with any other section. Note, however, that
separate parts of this section in the same module are
combined.

PRIVATE Is the same as not specified.

PUBLIC All sections of the same name will be combined at link
stage. The length of the resulting section is equal to the
sum of the lengths of the sections combined.

GLOBAL All sections of the same name that are defined to be
global are combined in contiguous memory. The length of
the resulting section is the sum of the lengths of the
sections combined. GLOBAL goes one step further than
PUBLIC in that it also combines sections (with the same
name) in different TASKS.

Assembler Directives 8–61

• • • • • • • •

DescriptionCombine Type

COMMON All sections of the same name that are defined to be
common are overlapped to form one section. All of the
combined sections begin at the same physical address.
The implementation of the combination of sections with a
COMMON combine type requires the next attributes of
the sections which are combined to be equal:

– section size
– align type
– memory type
– class
– group

SYSSTACK All sections of the same name that are defined to be
system stack are combined to one section so that each
combined section ends at the same address (overlaid
against high memory) and grows ’downward’. The length
of the stack section after combination is equal to the sum
of the lengths of the sections combined. The locator
places the system stack section in the internal RAM
where it can be accessed with the Stack Pointer Register.

USRSTACK All sections of the same name that are defined to be user
stack are combined to one section so that each combined
section ends at the same address (overlaid against high
memory) and grows ’downward’. The length of the stack
section after combination is equal to the sum of the
lengths of the sections combined. The user stack section
can be located at any memory address, and is accessed
as data with DPPx and offset. USRSTACK sections are
only combined at link stage.

GLBUSRSTACK This is the same as the USRSTACK combine–type,
except that it also combines sections in different tasks.

AT expression This is an absolute section to be located at the memory
defined by the expression. The expression must evaluate
to a constant in the range:

00000h – 0FFFFh for NONSEGMENTED
MODEL(NONE) or MODEL(TINY)

00000h – 3FFFFh for NOEXTMEM SEGMENTED
00000h – 0FFFFFFh for EXTMEM SEGMENTED

No forward references are allowed. AT is considered as
an additional align–type and implies the default
combine–type PRIVATE.

Table 8-7: Combine types

Chapter 88–62
D
IR
E
C
T
IV
E
S

'class' A class name can be used to tell the locator that sections are

to be located near each other in memory. This is no

combining of sections. Class indicates that uncombined

sections are to be placed in the same general area in physical

memory (for example, ROM). You can use any name, but the

name must be a unique a166 identifier.

Example:

Two sections located adjacent to one another:

DATA1 SECTION PDAT ’ROM’
 .
 .
 .
DATA1 ENDS

DATA2 SECTION PDAT ’ROM’
 .
 .
 .
DATA2 ENDS

The paragraph Sections in chapter 5, Assembly Language.

Assembler Directives 8–63

• • • • • • • •

SET

Synopsis:

set-name SET expression

Description:

The SET directive defines a symbol (constant name) for an expression.

Public/external declaration of symbols defined with SET is not allowed.

Unlike the EQU directive, SET symbols may be redefined. Relocatable SET

symbols (i.e. the expression of the symbol contains one or more

relocatables) cannot be redefined. The most recent SET directive

determines the value of the symbol.

Constants defined with SET cannot be accessed in the debugger because

these names may be redefined and therefore a clear assignment of the

name to a value is not possible.

Field Values:

set-name This a unique a166 identifier.

expression This is any expression with the restrictions named above.

Examples:

CSET1 SET 2 + 3 ; CSET1 = 5
CSET2 SET CSET1 + 4 ; CSET2 = 9
CSET3 SET CSET4 + 1 ; ERROR, forward reference
 ; to CSET4.

DSEC1 SECTION DATA
ATAB DS 10
ABYTE DB 0
DSEC1 ENDS

CSET4 SET CSET2 + (ABYTE – ATAB) ; CSET4 = 19
CSET5 SET ABYTE + 3 ; relocatable allowed!
CSET6 SET CSET5 * 3 ; ERROR: only + and – are
 ; allowed in a relocatable
 ; expression !!

Chapter 88–64
D
IR
E
C
T
IV
E
S

SSKDEF

Synopsis:

SSKDEF stack-size-number

Description:

The SSKDEF directive specifies the size of the system stack. Only one

SSKDEF directive is allowed per module. This directive sets the STKSZ

field in the SYSCON register to the same value as the stack-size-number.
The compiler generates SSKDEF 0 by default, which is the maximum

system stack size of 256 words for the C166. When the EXTSSK control is

used an extension to the system stack space is possible. Note that the

locator reserves a system stack range when it encounters an SSKDEF

directive, with an exception for SSKDEF 7. With SSKDEF 7 the locator

expects the use of SYSSTACK sections.

Field Values:

stack-size-number
Can be an absolute number in the range 0 to 3, and when EXTSSK is

active also 4 or 7. The number corresponds to the system stack size:

Number System Stack Size Physical Stack Space

0 256 words 0FA00h – 0FBFFh (default)
1 128 words 0FB00h – 0FBFFh
2 64 words 0FB80h – 0FBFFh
3 32 words 0FBC0h – 0FBFFh
4 512 words 0F800h – 0FBFFh
7 entire internal RAM 0F600h – 0FDFFh

Table 8-8: System stack size

Example:

SSKDEF 2 ; system stack is 64 words

Assembler Directives 8–65

• • • • • • • •

TYPEDEC

Synopsis:

TYPEDEC name:type [, name:type]...

Description:

You can use this directive to define the type attribute of a symbol name.

You can use this directive to determine the type of forward referenced

symbol names already at the top of a module.

The TYPEDEC directive does not define a symbol; only a type is assigned

to a symbol name. Defining this name with a different type results in an

error. If you assign a type to a name via TYPEDEC, but you do not define

and use this name, the name is accepted by the assembler.

Field Values:

name A user-defined variable, label, procedure, register bank,

interrupt number or constant.

type The type of the symbol. This field can have the following

values:

BIT - specifies a variable (1 bit)

BYTE - specifies a variable (8 bits)

WORD - specifies a variable (16 bits)

BITWORD - specifies a variable (16 bits)

SHORT - specifies a near label

NEAR - specifies a near label

FAR - specifies a far label

DATA3 - specifies a constant (3 bits)

DATA4 - specifies a constant (4 bits)

DATA8 - specifies a constant (8 bits)

DATA16 - specifies a constant (16 bits)

INTNO - specifies a symbolic interrupt number

REGBANK - specifies a register bank name

Chapter 88–66
D
IR
E
C
T
IV
E
S

Example:

TYPEDEC s_lab:SHORT
TYPEDEC con_t_3:DATA3

CSEC SECTION CODE
APROC PROC

 JMP s_lab ; generates JMPR
 JMP n_lab ; generates JMPR
 NOP
n_lab: MOV R0, con_t_3 ; Generates MOV Rn,#data4
 ; (E000)
s_lab: MOV R0, con_3 ; Generates MOV reg,#data16
 ; (E6F00000)
 RET
APRO ENDP
CSEC ENDS

con_t_3 EQU 0
con_3 EQU 0

9

INSTRUCTION SET
C

H
A

P
T

E
R

Chapter 99–2
IN

S
T

R
U

C
T

IO
N

 S
E

T 9

C
H

A
P

T
E

R

Instruction Set 9–3

• • • • • • • •

9.1 INTRODUCTION

The 80C166 assembler a166 accepts all the assembly language instruction

mnemonics (hardware instructions) defined for the C166, C167, ST10,

C166S v2.0 / Super10 architectures. a166 also accepts a software

instruction set. This is an extension of the hardware instruction set. Both

instruction sets are described in the following sections.

For a complete list of all instructions with mnemonics, operands and

opcode format refer to the processor manuals.

The addressing modes used with the instructions and the meaning and use

of the Condition Codes are identical to the corresponding architecture

features.

9.2 THE HARDWARE INSTRUCTION SET

This section contains a summary of the C166 instruction set. The

instruction set can be subdivided in instruction classes as follows.

9.2.1 ARITHMETIC INSTRUCTIONS

Mnemonic Operation

addb Add two bytes

addcb Add with Carry of two bytes

addcw Add with Carry of two words

addw Add two words

cplb 1’s complement byte

cplw 1’s complement word

div Divide 16/16 bit signed

divl Divide 32/16 bit signed

divlu Divide 32/16 bit unsigned

divu Divide 16/16 bit unsigned

mul Multiply 16*16 bit signed

mulu Multiply 16*16 bit unsigned

negb Negate byte (2’s complement)

Chapter 99–4
IN

S
T

R
U

C
T

IO
N

 S
E

T

OperationMnemonic

negw Negate word (2’s complement)

subb Subtract two bytes

subcb Subtract with Carry of two bytes

subcw Subtract with Carry of two words

subw Subtract two words

Table 9-1: Arithmetic instructions

9.2.2 LOGICAL INSTRUCTIONS

Mnemonic Operation

andb Logical AND byte

andw Logical AND word

orb Logical OR byte

orw Logical OR word

xorb Logical Exclusive–OR byte

xorw Logical Exclusive–OR word

Table 9-2: Logical instructions

9.2.3 BOOLEAN BIT MANIPULATION INSTRUCTIONS

Mnemonic Operation

band Logical AND two bits

bclr Clear bit

bcmp Compare two bits

bfldh Manipulation of maskable bit field (high byte of a word)

bfldl Manipulation of maskable bit field (low byte of a word)

bmov Move bit

bmovn Move negated bit

bor Logical OR two bits

Instruction Set 9–5

• • • • • • • •

OperationMnemonic

bset Set bit

bxor Logical Exclusive–OR two bits

Table 9-3: Boolean bit manipulation instructions

9.2.4 COMPARE AND LOOP CONTROL INSTRUCTIONS

Mnemonic Operation

cmpb Compare bytes

cmpd1 Compare words with post–decrement by 1

cmpd2 Compare words with post–decrement by 2

cmpi1 Compare words with post–increment by 1

cmpi2 Compare words with post–increment by 2

cmpw Compare words

Table 9-4: Compare and loop control instructions

9.2.5 SHIFT AND ROTATE INSTRUCTIONS

Mnemonic Operation

ashr Arithmetic shift word right (sign bit shifting)

rol Rotate word left

ror Rotate word right

shl Shift word left

shr Shift word right

Table 9-5: Shift and rotate instructions

Chapter 99–6
IN

S
T

R
U

C
T

IO
N

 S
E

T

9.2.6 PRIORITIZE INSTRUCTION

Mnemonic Operation

prior Determination of the number of shift cycles which is
required to normalize a word operand (floating point
support)

Table 9-6: Prioritize instructions

9.2.7 DATA MOVEMENT INSTRUCTIONS

Mnemonic Operation

movb Move byte

movbs Move byte to a word location (sign extended)

movbz Move byte to a word location (zero extended)

movw Move word

Table 9-7: Data movement instructions

9.2.8 SYSTEM STACK INSTRUCTIONS

Mnemonic Operation

pop Pop word from system stack

push Push word onto system stack

scxt Safe word on system stack and update old word with new
value (for register bank switching)

Table 9-8: System stack instructions

Instruction Set 9–7

• • • • • • • •

9.2.9 JUMP AND CALL INSTRUCTIONS

Mnemonic Operation

calla Conditionally call absolutely addressed subroutine within
current code segment

calla+ Conditionally call absolutely addressed subroutine within
current code segment. Assume branch taken.
C166Sv2.0/Super10 instruction set only.

calla– Conditionally call absolutely addressed subroutine within
current code segment. Assume branch not taken.
C166Sv2.0/Super10 instruction set only.

calli Conditionally call indirectly addressed subroutine within
current code segment

callr Unconditionally call relatively addressed subroutine within
current code segment

calls Unconditionally call absolutely addressed subroutine within
any code segment

jb Jump if bit set to a relatively addressed target instruction
within the current code segment

jbc Jump if bit set to a relatively addressed target instruction
within the current code segment and clear bit if jump is
taken (semaphore support)

jmpa Conditionally jump to an absolutely addressed target
instruction within the current code segment

jmpa+ Conditionally jump to an absolutely addressed target
instruction within the current code segment. Assume
branch taken. C166Sv2.0/Super10 instruction set only.

jmpa– Conditionally jump to an absolutely addressed target
instruction within the current code segment. Assume
branch not taken. C166Sv2.0/Super10 instruction set only.

jmpi Conditionally jump to an indirectly addressed target
instruction within the current code segment

jmpr Conditionally jump to a relatively addressed target
instruction within the current code segment

jmps Unconditionally jump to an absolutely addressed target
instruction within any code segment

jnb Jump if bit Not set to a relatively addressed target
instruction within the current code segment

jnbs Jump if bit Not set to a relatively addressed target
instruction within the current code segment and set bit if
jump is taken (semaphore support)

Chapter 99–8
IN

S
T

R
U

C
T

IO
N

 S
E

T

OperationMnemonic

pcall Unconditionally call absolutely addressed subroutine within
any code segment plus additional pushing of a selectable
register onto the system stack

trap Unconditionally branch to interrupt or trap vector jump table
in code segment 0

Table 9-9: Jump and call instructions

9.2.10 RETURN INSTRUCTIONS

Mnemonic Operation

reti Return from interrupt service routine

retn Return from subroutine within current code segment

retp Return from subroutine within current code segment plus
additional popping of a selectable register from the system
stack

rets Return from subroutine within any code segment

Table 9-10: Returm instructions

9.2.11 SYSTEM CONTROL INSTRUCTIONS

Mnemonic Operation

diswdt Disable Watchdog Timer

einit Signify end of initialization routine.
(pulls RSTOUT pin low and disables the effect of any later
execution of a DISWDT instruction)

enwdt Enable watchdog timer. C166Sv2.0/Super10 instruction set
only.

idle Enter Idle mode

pwrdn Enter Power Down mode

sbrk Enter break mode (OCE) or execute softbreak TRAP.
C166Sv2.0/Super10 instruction set only.

Instruction Set 9–9

• • • • • • • •

OperationMnemonic

srst Software reset

srvwdt Service Watchdog Timer

Table 9-11: System control instructions

9.2.12 MISCELLANEOUS

Mnemonic Operation

nop Null operation which requires two bytes of storage and
which takes the minimum time to be executed

Table 9-12: Miscellaneous instructions

9.3 THE SOFTWARE INSTRUCTION SET

The software instruction set knows all instructions of the hardware

instruction set and some additional mnemonics. These additional

mnemonics are added to allow easy and comfortable programming.

The hardware mnemonics that logically belong together are combined in

one software mnemonic. The assembler will determine by means of the

combination of operands, which opcode is entered in the instruction

format. This means that based on the combination of operands the

appropriate hardware mnemonic is chosen.

Example

ADD RL0, #3 will result in ADDB RL0, #3

Software
Mnemonic

Hardware Mnemonic Operation Type

ADD ADDW (Integer Addition)
ADDB

Word
Byte

ADDC ADDCW (Add with Carry)
ADDCB

Word
Byte

CPL CPLW (1’s complement)
CPLB

Word
Byte

NEG NEGW (2’s complement)
NEGB

Word
Byte

Chapter 99–10
IN

S
T

R
U

C
T

IO
N

 S
E

T

Operation TypeHardware MnemonicSoftware
Mnemonic

SUB SUBW (Subtraction)
SUBB

Word
Byte

SUBC SUBCW (Subtraction with Carry)
SUBCB

Word
Byte

AND ANDW (Logical And)
ANDB
BAND (Bit Logical And)

Word
Byte
Bit

CMP CMPW (Compare Integer)
CMPB
BCMP (Bit–to–Bit Compare)

Word
Byte
Bit

MOV MOVW (Move Data)
MOVB
BMOV (Bit–to–Bit Move)

Word
Byte
Bit

OR ORW (Logical Or)
ORB
BOR (Bit Logical Or)

Word
Byte
Bit

XOR XORW (Logical Exclusive Or)
XORB
BXOR (Bit Logical Exclusive Or)

Word
Byte
Bit

CALL CALLA
CALLI
CALLR
CALLS

Absolute
Indirect
Relative
Inter–segment

JMP JPMA
JMPI
JMPR
JMPS

Absolute
Indirect
Relative
Inter–segment

RET RETN
RETI
RETS
RETV

NEAR proc. type
TASK proc. type
FAR proc. type
–

Table 9-13: Software instruction set

RETV is a virtual return instruction. It disables generation of the warning

message "procedure procedure-name contains no RETurn instruction". No

code is generated for this instruction. You can put this instruction just

before the ENDP directive of the procedure that caused the warning

message.

10

DERIVATIVE
SUPPORT

C
H

A
P

T
E

R

Chapter 1010–2
D
E
R
IV
A
T
IV
E
S

10

C
H

A
P

T
E

R

Derivative Support 10–3

• • • • • • • •

10.1 INTRODUCTION

The TASKING C166/ST10 toolchain has features for supporting derivatives

of the C166 family like the C167, ST10, C166S v2.0 and Super10. To be

able to support future derivatives, each of extended features can be

enabled or disabled in the toolchain. This chapter describes the use of the

extensions. We make the assumption that the C167, ST10, C166S v2.0 and

Super10 have the maximum of extensions on the 166 and that other

derivatives have subset of the extensions.

10.2 DIFFERENCES BETWEEN C166 AND C167

To know what extensions on the C166 are needed for C167 support, we

first describe the most important differences between the two processors.

Differences that do not affect the assembler and linker/locator are omitted.

on chip ram The C166 has 1 KByte internal RAM, the C167 has 2

KByte. The internal RAM is used for placing register banks

and the system stack.

system stack The system stack size for the C166 is 32, 64, 128 or 256

words (definitions 3, 2, 1 or 0). For the C167 this is

extended with 512 words (definition 4) or entire internal

RAM (definition 7).

PEC pointers The C166 has PEC pointers located in the bitaddressable

area (at 0FDE0h-0FDFFh) while the C167 has PEC

pointers located outside bitaddressable area (at

0FCE0h-0FCFFh).

memory range The C167 can address 16 MByte (24 bit addresses) of

memory while the 166 can address 256 KByte (18 bit

addresses).

instruction set The C167 has extra instructions for supporting HLL,

operating systems and an extended SFR area.

MAC instruction set

Some derivatives such as the ST10x262/272 have a MAC

(Multiply-Accumlate) coprocessor included which uses its

own instruction set.

Chapter 1010–4
D
E
R
IV
A
T
IV
E
S

SFR area The C167 has two SFR areas instead of one. The

additional area is the extended SFR area. This also implies

a changed set of SFRs. Some registers are on other

addresses than with the 166 (e.g. SYSCON).

10.3 DIFFERENCES BETWEEN C167 AND C166S V2.0 /

SUPER10

This describes the most important differences between the C166S v2.0 /

Super10 (ext2 architecture) and C167 architecture for which, toolchain

extensions are available.

Instruction set Extra instruction parameters have been added for

predicting the possibility of jumps. Additionally, the

pipeline is fully interlocked, which requires instruction

scheduling / reordering from the toolchain to prevent

pipeline stalls.

register banks Two additional register banks are available which are not

mapped into internal memory where the normal register

banks are located. These additional register banks are

called local register banks and can be used in interrupt

service routines to increase performance.

PEC pointers All PEC related registers are located in the I/O RAM area

(0xE000-0xF000). Additionally PEC source and destination

pointers can be initialised to point to any segment instead

of the segment 0 limitation of the C167.

vector table The vector table can be located anywhere in memory

starting on a segment boundary. Additionally the vector

table can be scaled up to a maximum of 32 bytes per

vector allowing interrupt service routines to be located

inside vector table entries.

10.4 ENABLING THE EXTENSIONS

For enabling or disabling the extensions, controls are used. All controls,

except IRAMSIZE are set at assembly time and are passed via the object

file to the linker and locator.

Derivative Support 10–5

• • • • • • • •

10.4.1 EXTEND CONTROLS (ASSEMBLER)

The extend controls are a set of controls to enable or disable extensions.

The EXTEND control enables all extensions and NOEXTEND disables all

extensions.

The EXTEND2 control enables all extendsions for the second extended

architechtures C166S v2.0 / Super10. The EXTEND2 control disables all

these extensions.

The settings of the extend controls are placed in the object file created by

the assembler. The linker checks if the objects, linked to one task have no

conflicts (i.e. it is required to use the same extensions in each object). The

locator checks if all tasks have equal extend controls.

The following extend controls can be used (C167 only):

EXTSFR/NOEXTSFR

Enable/disable usage of the extended SFR area in the range 0F000h -

0F1FEh. If this extension is enabled you can define registers in this area

with the DEF directive. If EXTSFR is not active, it is not possible to use a

address from the extended SFR area as a REG operand. The smallest

register configuration of the assembler is different for EXTSFR and

NOEXTSFR. The smallest configuration contains the registers which are

expected to be present for each derivative.

See description of the DEF directive and section 10.4.2.

EXTPEC/NOEXTPEC

Select PEC pointer address range: 0FCE0h-0FDFFh for NOEXTPEC (166)

and 0FCE0h-0FCFFh for EXTPEC (C167). The address used by the

assembler when one of the source and destination pointers is used,

depends on this control.

EXTMEM/NOEXTMEM

Enable/disable usage of 24 bit addresses.

EXTSSK/NOEXTSSK

Enable/disable the use of extra system stack numbers 4 (512 words) and 7

(entire internal RAM).

Chapter 1010–6
D
E
R
IV
A
T
IV
E
S

EXTINSTR/NOEXTINSTR

Enable/disable usage of the extended instruction set. The if NOEXTINSTR

is active the instructions ATOMIC, EXTR, EXTP, EXTS, EXTPR and EXTSR

cannot be used.

EXTMAC/NOEXTMAC

Enable/disable usage of the MAC instruction set.

10.4.2 STDNAMES AND NOMOD166 CONTROLS

(ASSEMBLER)

The assembler has an internal definition for all Special Function Registers

of the C166. Because each derivative can have its own set of SFRs which

differs from the C166 it is possible to define an alternate set of registers.

First the internal set of SFRs has to be disabled by using the NOMOD166

control. After this control is set, the assembler only knows the registers of

the smallest configuration. Note that this smallest configuration is affected

by the EXTSFR/NOEXTSFR control. The smallest set is specified with the

DEFR/DEFA/DEFB control of the assembler.

After setting NOMOD166 it is possible to define the new set of registers by

means of the STDNAMES control. This control has the name of an

STDNAMES file as argument. This STDNAMES file contains the register

definitions. In a STDNAMES file only the DEF and LIT directive can be

used for defining register names. For C167 support, one STDNAMES file is

included in the package:

reg167.def contains all C167 registers, and bit names.

For C166S v2.0 / Super10, two STDNAMES files are included in the

package:

regc166v2_0bo.def contains all C166S v2.0 registers and bit

names.

regsuper10bo.def contains all Super10 registers and bit names.

The use of the STDNAMES control causes the assembler to read the

STDNAMES file each time the assembler is called.

If you want to define registers from the extended SFR area in a STDNAMES

file the EXTSFR control must be set.

Derivative Support 10–7

• • • • • • • •

Although not required, a STDNAMES file for the C166 is also included in

the package: reg166.def .

10.4.3 IRAMSIZE CONTROL (LOCATOR)

The C167, ST10, C166S v2.0 and Super10 architectures have a larger

internal RAM space. Because this is only of importance for the locator, you

can not specify it with the assembler or linker. The locator control

IRAMSIZE is used to specify the internal RAM size in bytes. By default this

size is 1024 bytes (1 Kbyte). For the C167 the internal RAM size must be

set to 2048, for example:

l166 locate test.lno IRAMSIZE(2048)

The locator uses this size for locating register banks, system stack and

system stack sections.

10.5 EXTENDED INSTRUCTION SET

Once the extended instructions are enabled by the EXTINSTR control, the

assembler performs extra checks for these instructions. The extended

instructions are:

- begin atomic sequence ATOMIC

- begin extended register sequence EXTR

- begin extended page sequence EXTP

- begin extended page and register sequence EXTPR

- begin extended segment sequence EXTS

- begin extended segment and register sequence EXTSR

Each of these instructions has an operand which indicates the number of

following instructions which are part of the sequence. This number must

be in the range 1�-�4. The assembler treats the instructions in the indicated

range as an extend block.

Chapter 1010–8
D
E
R
IV
A
T
IV
E
S

10.5.1 EXTEND BLOCKS

An extend block starts after one of the extend instructions is issued and

ends after the number of instructions as issued with the extend instruction.

Example:

EXTR #2
MOV PT0, #value0
MOV PT1, #value1
CALL procedure

The extend block starts in this example at the first MOV instruction. The

CALL is the first instruction outside the extend block.

The assembler performs some extra checks on the instructions and their

operands within extend blocks. The checks which depend on the type of

extension are described in the sections 10.5.3 - 10.5.5. Checks performed

in all extend blocks are:

- Branching into and from extend blocks. This has the risk of

introducing 'virtual extend blocks'.

- Nesting of extend blocks. This is only allowed in some special

cases.

Using non-sequential instructions (branches) within extend blocks can

cause unexpected results. Branching from extend blocks, causes the block

to be continued at the target address of the branch. Such a continued

block is called a 'virtual extend block'.

The assembler issues a warning when a branch instruction occurs in an

extend block and the branch instruction was not the final instruction in

that block.

Derivative Support 10–9

• • • • • • • •

Example:

CMP R0, #value
EXTR #4
JMP cc_EQ, VirtualEXTRBlock
MOV PT0, #value0 ; Extended SFR
MOV PT1, #value1 ; Extended SFR
MOV PT2, #value2 ; Extended SFR
MOV P3, #value3 ; Standard SFR
JMP cc_UC, Continue

VirtualEXTRBlock:
EXTRV#3 ; Virtual extend
ADD PT0, #1 ; Extended SFR
ADD PT1, #1 ; Extended SFR
ADD PT2, #1 ; Extended SFR
ADD P3, #1 ; Standard SFR

Continue:

10.5.2 NESTING EXTEND BLOCKS

If an extend instruction occurs within an extend block the assembler issues

a warning, unless the instruction is the final instruction of the extend block

and it has the same type as the previous extend instruction. If an extend

instruction is the last instruction in an extend block and it has the same

type as the previous extend instruction, the extend block is expanded with

the new block.

Example:

ATOMIC #4
NOP
NOP
NOP
ATOMIC #2
NOP
NOP

The whole instruction sequence in the example is atomic. The following

examples causes warnings:

ATOMIC #2
NOP
EXTR #2 ; must be same as previous extend
NOP
NOP

Chapter 1010–10
D
E
R
IV
A
T
IV
E
S

ATOMIC #4
NOP
ATOMIC #2 ; cannot nest extend blocks
NOP
NOP

10.5.3 EXTEND SFR INSTRUCTIONS

The instructions EXTR, EXTPR and EXTSR cause the assembler to change

checking of the use of REG operands in the extend block.

When EXTSFR is active it is not allowed to use the short (8 bit) absolute

addressing mode for a REG operand. The assembler cannot check if the

intended register is a register from the standard SFR area or from the

extended SFR area. If you want to use an absolute address, then use the

16 bit address or the DEFR directive.

The assembler does not accept the usage of a register from the extended

SFR area as a REG addressing mode if the instruction the register is used in

is not within an extend block. The assembler also does not accept the

usage of a register from the standard SFR area as a REG addressing mode

if the instruction is in an extend block.

Derivative Support 10–11

• • • • • • • •

10.5.4 OPERAND COMBINATIONS IN EXTEND SFR

BLOCKS

Outside Extend SFR sequences, Extended SFRs cannot be accessed via the

'reg' or 'bitaddr' addressing modes.

op1 \ op2 GPR SFR ESFR MEM CONST none SFRBIT ESFRBIT

GPR Rn,Rn reg,mem reg,mem reg,mem reg,# reg – –

SFR reg,mem reg,mem
mem,reg

reg,mem reg,mem reg,# reg – –

ESFR mem,reg mem,reg FAULT! FAULT! FAULT! FAULT! – –

MEM mem,reg mem,reg FAULT! – – – – –

SFRBIT – – – – – bit bit,bit FAULT!

ESFRBIT – – – – – FAULT! FAULT! FAULT!

Table 10-1: Operand Combinations outside Extend SFR sequence

Inside Extend SFR sequences, Standard SFRs cannot be accessed via the

'reg' or 'bitaddr' addressing modes.

op1 \ op2 GPR SFR ESFR MEM CONST none SFRBIT ESFRBIT

GPR Rn,Rn reg,mem reg,mem reg,mem reg,# reg – –

SFR mem,reg FAULT! mem,reg FAULT! FAULT! FAULT! – –

ESFR mem,reg reg,mem reg,mem
mem,reg

reg,mem reg,# reg – –

MEM mem,reg FAULT! mem,reg – – – – –

SFRBIT – – – – – FAULT! FAULT! FAULT!

ESFRBIT – – – – – bit FAULT! FAULT!

Table 10-2: Operand Combinations inside Extend SFR sequence

Chapter 1010–12
D
E
R
IV
A
T
IV
E
S

10.5.5 PAGE EXTEND AND SEGMENT EXTEND

INSTRUCTIONS

The instructions EXTP, EXTPR and EXTSR cause the assembler to change

checks on the operands in the extend block. The page extend instructions

cause the processor to use the page number supplied with the page

extend instruction instead of the page number in a DPP register. The

segment extend instructions cause the processor to use the segment

number supplied with the segment extend instruction instead of

addressing via the page number in a DPP register.

Because the DPP registers are not used for addressing in a page extend or

segment extend block, a DPP number in bit 14 and 15 of an operand is

not allowed. So, each operand (label or expression) which expects a DPP

prefix outside a page extend or segment extend block, should not have a

DPP prefix or a DPP assumption (ASSUME directive) inside a page extend

block. If a DPP prefix or DPP assumption is used in a page extend or

segment extend block, the assembler issues a warning. This warning is not

issued if the POF operator is used for such an operand in a page extend

block or if the POF or SOF operator is used for such an operand in a

segment extend block. The POF or SOF operator should be the first

operator of an expression.

Example:

EXTP #PAG labx, #1 ; extend page
MOV R0, labx ; labx is NOT assumed: ok

EXTERN DPP0:labe:WORD
EXTP #PAG labe, #2 ; extend page
MOV R0, labe ; labe has DPP prefix:

; warning!
MOV R0, POF labe ; POF overrides DPP: ok

The extend page and extend segment instructions can only be used in the

SEGMENTED and NONSEGMENTED/SMALL memory model.

Derivative Support 10–13

• • • • • • • •

10.6 LOCATING C167 APPLICATIONS

For locating objects for the C167 (or other derivatives) the locator uses the

settings of the EXTEND controls to know what additional actions or

checks are needed while locating. The settings of the EXTEND controls are

passed by the assembler via the object format to the locator. For

supporting a larger internal RAM the locator has the IRAMSIZE control (see

section 10.4.3). The additional actions and checks are described in the

following sections.

10.6.1 EXTENDED SYSTEM STACK

Once the EXTSSK control is set with the assembler, 2 new stack size

definition numbers are introduced:

4: system stack size is 512 words

7: system stack size is entire internal RAM without wrapping.

These numbers are used with the SSKDEF directive in the assembler and

with the RESERVE(SYSSTACK(�)) control in the locator. If the EXTSSK

control is not set with the assembler, it is not possible to use the numbers

4 and 7.

If an SSKDEF 7 is used in one or more objects and no other SSKDEF is

used, the locator requires the use of sections with the combine type

SYSSTACK. If an other SSKDEF (0-4) is used in one of the objects, the

linker causes the SSKDEF 7 to be overruled. If tasks are located with

mixed SSKDEF 7 and other SSKDEFs, the locator uses the largest stack

defined by SSKDEF and expects also system stack sections. Note that a

RESERVE(SYSSTACK()) control always overrules the value of any SSKDEF

in the object files. The system stack is always located in internal RAM. The

size of the internal RAM is set with IRAMSIZE control.

Chapter 1010–14
D
E
R
IV
A
T
IV
E
S

10.6.2 PEC SOURCE AND DESTINATION POINTER

LOCATIONS

With the C167 the PEC source and destination pointers are located at a

different address than with the 166. If in the objects the EXTPEC control is

set by the assembler, the locator reserves the addresses for PEC pointers at

a different location:

without EXTSFR (default): 0FDE0h - 0FDFFh

with EXTSFR: 0FCE0h - 0FCFFh

with C166S v2.0 / Super10 0EC40h - 0EC5Fh

Which pointers are reserved depends on the PECDEF directive of the

assembler and the RESERVE(PECC(�)) control of the locator.

C166S v2.0 / Super10 unused PEC pointers cannot be used for anything

else.

10.6.3 LOCATING GPRS

GPRs are located in internal RAM. The size of the internal RAM is set with

the locator IRAMSIZE control.

10.7 EXAMPLE: BUILDING AN C167 APPLICATION

In this example we build an C167 application, which consists of two tasks:

The main task:

maintask.src
util.src

The task which performs I/O:

iotask.src

Derivative Support 10–15

• • • • • • • •

The assembler, linker and locator are invoked as follows:

a166 maintask.src EXTEND NOMOD166 STDNAMES(reg167.def)
a166 util.src EXTEND NOMOD166 STDNAMES(reg167.def)
a166 iotask.src EXTEND NOMOD166 STDNAMES(reg167.def)

l166 LINK maintask.obj util.obj TO maintask.lno
l166 LINK iotask.obj TO iotask.lno
l166 LOCATE maintask.lno iotask.lno IRAMSIZE(2048)

RESERVE MEMORY(0F200h TO 0F5FFh) TO sC167.out

In this example the STDNAMES file reg167.def is used for defining the

SFRs for the assembler. All extensions are enabled by using the EXTEND

control.

Chapter 1010–16
D
E
R
IV
A
T
IV
E
S

11

LINKER/LOCATOR
C

H
A

P
T

E
R

Chapter 1111–2
L
IN
K
E
R
/L
O
C
A
T
O
R 11

C
H

A
P

T
E

R

Linker/Locator 11–3

• • • • • • • •

11.1 OVERVIEW

The next sections describe how the C166/ST10 linker/locator program

l166 works. The installation of this program is part of the installation of

the assembler package 'TASKING C166/ST10 Cross-Assembler'. We first

introduce the linker/locator to you by describing its functions globally and

we give you some basic examples. Later on a more elaborate description

of all the features follows.

11.2 INTRODUCTION

l166 is a program that reads one or more object modules created by the

assembler a166 and locates them in memory. Object modules can be in

ordinary files or in object libraries. An object library is a file containing

object modules. Each of these modules have been created by the

assembler as a separate module in an individual object file. Afterwards you

can put these files in the library with the library manager (ar166).

l166 combines a linker and locator into one program. The linker and

locator use a lot of identical functions, so combination of the linker and

locator is justified. However, you can not use the link and locate stage

simultaneously. l166 has the controls LINK and LOCATE to indicate what

stage to execute. Combining both stages and producing a loadable file

with one linker call is not possible (and not useful). l166 also accepts

invocation files of both the Infineon linker and Infineon locator.

The link stage

The link stage attempts to resolve external references within the same task.

Any unresolved external reference remains in the output file. In order to

resolve unresolved external symbols the linker searches the libraries and

extracts referenced modules.

The locate stage

The locate stage resolves global/extern references and combines

relocatable object modules, each containing one linked task, to one

absolute object file. All sections are located to absolute memory addresses

and all processor resources are allocated. In order to resolve unresolved

external symbols the locator searches the libraries and extracts referenced

modules. You can convert the resulting code and load it into a debugger

or emulator or burn it into an EPROM with a programmer.

Chapter 1111–4
L
IN
K
E
R
/L
O
C
A
T
O
R

11.2.1 LINKER/LOCATOR PURPOSE

Many programs are often too long or too complex to be in one single unit.

As programs in a single unit grow too large they become more difficult to

maintain. An application broken down in small functional units is easier to

code and debug. Translation of these programs into load modules is faster

than their counterpart in one module.

The linker links relocatable object modules belonging to the same task to

one relocatable 'task object module'. The locator translates relocatable

'task object modules' into absolute load files. This lets you write programs

that are (partially) made up of modules that can be placed anywhere in

memory. Doing so, reusability of your code increases. You can place those

modules that fulfill a specific task needed in many applications (

I/O-routines) in a library, thus making them available for many

programmers.

11.2.2 LINKER/LOCATOR FUNCTIONS

l166 performs the following functions:

Link functions:

• Resolve public/external references.

• Combine a list of object modules in single files or in libraries into one

larger task module.

• Combine partial sections defined with the same name in different

modules into a single section.

• Generate an relocatable output and map file.

Locate functions:

• Resolve global/external references.

• Combine a list of (relocatable) modules in single files or in libraries

into one larger load module.

• Transform relocatable addresses into absolute addresses.

• Allocate address space for sections and associate an absolute address

with each section.

• Generate an absolute output file and map.

Linker/Locator 11–5

• • • • • • • •

11.3 NAMING CONVENTIONS

Section

A section is a unit of code or data in memory. Every section is described

by a memory type, a combine type and an align type. A section can be

absolute: in the assembler source text an absolute address is bound to the

section. A relocatable section is a section that is defined in the assembler

text without an address. For these sections the locate stage of l166

determines the final location in memory. You can split a section into parts

each of which can reside in different modules in the application. These

parts are called partial sections.

Module

A module is a unit of code that can be located in a file. A module can

contain one or more sections. The terms object module and object file are

used as equivalent terms.

Module Name

The module name is the name that is assigned to an object file. This can

be any user-defined name (See the NAME control). When you do not

define a module name, the filename of the object file is taken as default.

Library

An object library is a file containing a number of object modules. The

linker/locator includes only those parts from a library that have been

referred to from other modules.

Program

A program can be created out of one single task or out of a number of

tasks.

Task

An independent program part which fulfills a closely defined function and

operates within its own environment. A task is composed of a source main

module and possibly several source modules which you can individually

compile to relocatable object modules. Tasks are used to respond to

events by interrupt.

Chapter 1111–6
L
IN
K
E
R
/L
O
C
A
T
O
R

11.4 LOCATE ALGORITHM

The various memory elements which have different memory limitations are

located according to a locate algorithm. The locate algorithm is discussed

below. The memory elements are stated in the order in which they are

located.

SFR area

Is always reserved.

Extended SFR area

Only reserved if the assembler control EXTSFR is in effect.

Reserved areas

Only those areas specified by the RESERVE control.

Segment 191

Only reserved when the C166S v2.0 / Super10 is selected with the

EXTEND2 linker/locator control.

System stack.

Only if no SYSSTACK sections are used and the SSKDEF assembler

directive was used in one of the modules. The size depends on the

SSKDEF number. The largest size is used.

PEC pointers

Which PEC pointer areas depend on the PECDEF assembler directives in

the modules.

Interrupt vector table

Only if the VECTAB control is on. If the VECINIT control is on, all vectors

are reserved. If NOVECINIT is on, only the used interrupt vectors are

reserved.

Absolute GPRs

Register banks made absolute by the ADDRESSES control.

Absolute sections

Sections having the AT.. combine type or sections made absolute by the

ADDRESSES control.

Linker/Locator 11–7

• • • • • • • •

Absolute groups and groups with an absolute section

The relative sections in the group are located in the relative order.

Bit-addressable elements

First bit sections (sections with the section type BIT or the align type

BITADDRESSABLE) with a class and a CLASSES control are located in the

'The relative order', as low as possible in the bitaddressable area.

Then all bit sections without a class or with a class without a CLASSES

control are located in 'The relative order'.

System stack elements

Fist system stack sections (sections with the SYSSTACK combine type) with

a class and a CLASSES control are located in 'The relative order'.

Then all system stack sections without a class or with a class without a

CLASSES control are located in 'The relative order'. The system stack is

located as high as possible in the internal RAM area (from 0FC00h

downwards). When no more system stack sections are left and the SSKDEF

assembler directive was also used, all remaining gaps within the area

stated by the SSKDEF directive are filled up. For the C66Sv2.0 / Super10

architectures, the ADDRESSES control can be used to relocate the system

stack anywhere in memory.

Relative sections, groups and classes

First all sections and groups with a class and a CLASSES control are

located in 'The relative order'.

Then all sections and groups not having a class or having a class without a

CLASSES control are located in 'The relative order'.

THE RELATIVE ORDER

GPRs

Register banks are located in internal RAM as low as possible.

IRAMADDRESSABLE sections

All IRAMADDRESSABLE sections are located in the internal RAM as low as

possible.

Chapter 1111–8
L
IN
K
E
R
/L
O
C
A
T
O
R

Linear sections

Sections with the section type LDAT are located as low as possible within

48k, starting at the address specified by the ADDRESSES LINEAR control. If

the SETNOSGDPP control is used, the locator tries to locate LDAT sections

in the 4 indicated pages. Page 3 is always the last page the locator

searches for a gap. If it is not possible to locate an LDAT section within the

48k, the locator tries to locate it in page 3 of segment 0.

NONSEGMENTED sections

These are sections assembled in NONSEGMENTED mode.

Located as low as possible in segment 0 (first 64k).

SEGMENTED sections

These are sections assembled in SEGMENTED mode.

Located as low as possible in the processor memory space.

THE ORDER CONTROL

If a section which is included in an order control, is located, the complete

order is processed before continuing with the normal locating procedure.

The locator ensures that no sections or groups cross data or code frame

borders.

All sections are aligned to an address according to their align type.

The order in which elements are located with the same priority depends

on the SORTALIGN/NOSORTALIGN control. By default SORTALIGN is set,

which lets the locator order the sections on the section align type. This can

avoid memory gaps introduced by the alignment of sections. With sorting

on alignment the locator uses the following order for sections of the same

priority:

BIT (first)

BYTE

BITWORD

IRAMADDRESSABLE

PECADDRESSABLE

Linker/Locator 11–9

• • • • • • • •

WORD

DWORD

PAGE

SEGMENTED (last)

When the NOSORTALIGN control is set the order the sections appeared in

in the object files is used. This control is available for compatibility with

older versions of l166.

11.4.1 PUBLIC AND GLOBAL GROUPS

A global group is a group containing a section with a 'global' combine

type. A 'global' combine type is one of:

GLOBAL

SYSSTACK

GLBUSRSTACK

COMMON.

All other groups are 'public'. If groups with equal names of tasks located

together are global, the locator combines them to one group.

To indicate the type of the group, an extra field labeled with T is added

before the group name in the map file . This field is P for a public group

and G for a global group.

11.4.2 COMBINATION OF COMMON SECTIONS

The implementation of the combination of sections with a COMMON

combine type requires the next attributes of the sections which are

combined to be equal:

- section size

- align type

- memory type

- class

- group

Chapter 1111–10
L
IN
K
E
R
/L
O
C
A
T
O
R

Both the linker and locator write the COMMON section of the first input

module containing that section to the output file. The symbols are

relocated for all modules containing the section, as if the sections were

overlaid.

Linker/Locator 11–11

• • • • • • • •

11.5 INVOCATION

Because the linker and locator are implemented in one program, two

controls are added to indicate which stage must be activated:

LINK Link object files

LOCATE Locate object files

When you use these controls, you must specify them as the first control.

Different invocations of the l166 are possible. The invocation line that

covers all possible invocations on a PC is:

l166 [LINK|LOCATE] [input-file]... [@invocation-file]...
[control-list]

l166 -V

l166 -?

When you use a UNIX shell (C-shell, Bourne shell), controls containing

special characters (like '()') must be enclosed with ” ” . The invocations

are the same as for a PC, except for the -? option in the C-shell:

l166 ” -?” or l166 -\?

The examples in this chapter are given for a PC environment.

The invocation file contains a control list. A combination of invocation file

and control list on the invocation line is possible. It is also possible to

supply more than one invocation file. The invocation file is indicated by a

preceding '@' (not part of the filename). The names of the input-files are

also allowed in the invocation file. You may nest the invocation files up to

eight levels. Invocation with -V only displays a version header, while

invocation with -? displays a tiny manual. The invocation line above can

be divided in linker and locator invocations.

Linker invocations

1. l166 [LINK] [object-file]... [lib-file[(module-name,...)]]...
[control-list] [TO output-file]

2. l166 @invocation-file...

3. a combination of the two lines above.

Locator invocations

1. l166 [LOCATE] [task]... [lib-file[(module-name,...)]...
[control-list] [TO output-file]

Chapter 1111–12
L
IN
K
E
R
/L
O
C
A
T
O
R

2. l166 @invocation-file...

3. a combination of the two lines above.

Field Values:

input-files
One or more object files, library files (link stage) or task definitions

(locate stage).

object-files
One or more object files separated by a ',' or a space. These

object-files designate object modules which serve as input for l166.

The default extension for link stage is .obj . The default extension for

locate stage is .lno .

lib-files
One or more object library files. You can specify a library with

parentheses: all module-names specified in parentheses are included. If

you give no extension, the default .lib is used. You can also specify a

library without parentheses. In this case you must specify the library

name with its full name (with extension .lib). Now l166 includes all

needed modules of the library. For more information see the note at

the end of this section and the section Overview Input and Output Files.

module-name
This is the name that is assigned to an object file. This can be any

user-defined name (See the NAME control). When you do not define a

module name, the filename of the object file is taken as default.

invocation-file
This is a file that contains commands for l166. The contents of this file

is not read as an object module, but l166 processes it as if it had been

typed on the command line. The filename must be preceded by a '@'.

An invocation-file may contain spaces, tabs and newlines to separate

command elements. An advantage of using invocation-files is that you

can place comments in them. Everything following a ';' up to the end

of a line is ignored. Multiple invocation-files may be present on one

line. Invocation-files may also be nested, up to eight levels.

Since the characters '@' and '$' are valid to be used in a filename, these

characters will not be interpreted when used as an invocation file. For

example, @@invoc.ilo tells l166 to read the file '@invoc.ilo ' and

@${invoc}.ilo tells l166 to read the file '${invoc}.ilo '.

Linker/Locator 11–13

• • • • • • • •

Output-file
This is the output from l166. For the link stage the output is a linked

object file with the basename of the first object file in the input list

(with default extension .lno) as default filename. For the locate stage

the output is an absolute object file (with default filename a.out).

To increase speed, the linker/locator builds the object file in memory

(no seeking in disk file) for the MS-Windows 3.x version. If there is not

enough memory the file is built on disk. When the file is built on disk

l166 issues a warning message. You can ignore this warning, it only

indicates that the linker/locator will be slower.

control-list
This is a subset of the general controls specified in the next sections.

task
is defined as:

[TASK [(task-name)]] [INTNO {[int.-name][=int.no]}]

object-file [task-control-list]

task represents all information that is required by the locate stage to

combine and locate each task. The object-file designates an object

module that contains the code representing one single task.

task-name
Is an identifier that designates a task. If a task-name is already

specified in the assembler source, l166 overwrites this task-name. So

the task-name specified at locate stage governs.

task-control-list
Is a subset of the task controls specified in the next sections.

int.-name
This is a symbolic name that designates an interrupt number. Interrupt

names are usually defined in the assembler source code with the PROC

directive. A specification of an interrupt name in the invocation-line is
only required for completeness.

int.-no
This represents the interrupt number of the specified interrupt

procedure. The value is an absolute number in the range 0 - 127.

Chapter 1111–14
L
IN
K
E
R
/L
O
C
A
T
O
R

Invocation Examples

Link Invocation-file: LNK.INV

LINK
x.obj y.obj z.obj ; link three object files
TO xyz.lno ; to output file

Locate Invocation-file: LOC.INV

LOCATE
TASK (xyz) INTNO = 0 ; locate a linked
xyz.lno ; object file
TO xyz.out ; to an absolute

; output file

Invocation of l166 with invocation file:

l166 @LNK.INV ; link stage
l166 @LOC.INV ; locate stage

Invocation of l166 with command lines:

l166 LINK x.obj y.obj z.obj TO xyz.lno
l166 LOCATE TASK (xyz) INTNO = 0 xyz.lno

TO xyz.out

The example above can also be written as:

l166 x.obj, y.obj, z.obj TO xyz.lno
l166 TASK (xyz) INTNO = 0 xyz.lno TO xyz.out

The example invocation of l166 can be further simplified:

l166 x y z TO xyz ; default input extension is
; .obj default output
; extension is .lno

l166 TASK (xyz) INTNO = 0 xyz TO xyz
; default input extension is .lno
; default output extension is .out
; If TO xyz is omitted, the output file
; is a.out

Example use with libraries:

l166 LINK x.obj y.obj util.lib util2.lib
TO xy.lno

Linker/Locator 11–15

• • • • • • • •

If no LINK or LOCATE control is encountered the l166 starts the link stage

and prints '(LINKING)'. However if l166 encounters a TASK control the

locate stage is started and '(LOCATING)' is printed.

You can not use locate controls during the link stage and vice versa. In

this case l166 reports an error.

You can place main modules and library names in any order in the list of

object-files lib-files. l166 first reads all objects and resolves external

references and then searches the libraries in order to resolve unresolved

symbols. This is done until all references have been resolved or no more

references can be resolved.

In library names without use of parentheses, the extension (.lib) must be

specified. Otherwise, the default .obj is used.

11.6 ENVIRONMENT VARIABLES

l166 uses three environment variables:

TMPDIR The directory used for temporary files. If this environment

variable is not set, the current directory is used.

LINK166 If set, this environment variable is read after all other

invocation is parsed and the link stage is initialized.

LOCATE166 If set, this environment variable is read after all other

invocation is parsed and the locate stage is initialized.

Examples:

PC:

By setting the following environment variables:

set TMPDIR=\tmp
set LINK166=LIBPATH(\usr\lib) c166t.lib fp166t.lib
 rt166t.lib
set LOCATE166=CASE

the invocations:

l166 main.obj TO task1.lno
l166 task1.lno

Chapter 1111–16
L
IN
K
E
R
/L
O
C
A
T
O
R

are now equal to:

l166 main.obj TO task1.lno LIBPATH(\usr\lib)
c166t.lib fp166t.lib rt166t.lib

l166 task1.lno CASE

and the directory for temporary files is: \tmp .

UNIX:

if using the Bourne shell (sh)

TMPDIR=/tmp
LINK166=”LIBPATH(/usr/lib) c166t.lib fp166t.lib
 rt166t.lib”
LOCATE166=CASE
export TMPDIR LINK166 LOCATE166

if using the C-shell (csh)

setenv TMPDIR /tmp
setenv LINK166 ”LIBPATH(/usr/lib) c166t.lib fp166t.lib
 rt166t.lib”
setenv LOCATE166 CASE

11.6.1 USER DEFINED ENVIRONMENT VARIABLES

When an environment variable is needed in an invocation file, the

following construction can be used:

$[{]environment-name[}]

If the environment-name is not set, a warning will be issued and an

empty string is substituted.

Examples:

PC:

By setting the following environment variables:

set OBJDIR=\usr\obj\
set LNODIR=\usr\lno\
set PRINTFILE=\tmp\print.lnl

Linker/Locator 11–17

• • • • • • • •

the linker invocation file:

LINK ${OBJDIR}file1.obj
${OBJDIR}file2.obj

TO ${LNODIR}file.lno
PRINT($PRINTFILE)

is now equal to:

LINK \usr\obj\file1.obj
\usr\obj\file2.obj

TO \usr\lno\file.lno
PRINT(\tmp\print.lnl)

UNIX:

if using the Bourne shell (sh)

OBJDIR=/usr/obj/
LNODIR=/usr/lno/
PRINTFILE=/tmp/print.lnl
export OBJDIR LNODIR PRINTFILE

if using the C-shell (csh)

setenv OBJDIR /usr/obj/
setenv LNODIR /usr/lno/
setenv PRINTFILE /tmp/print.lnl

11.7 DEFAULT OBJECT AND LIBRARY DIRECTORIES

When an object or library file is supplied to l166, it searches the file in the

following directories:

- when the LIBPATH control is set l166 appends the library filename

to the directory specified with that control and tries to open the file.

- when the control is set l166 appends the object filename to the

directory specified with that control and tries to open the file.

- when the file could not be opened with the previous rules l166

tries to open it as issued in the invocation.

- at last l166 tries to open the file in the lib directory relative to the

directory where l166 is started from. For example if l166 is installed

in the directory \c166\bin (UNIX: /usr/local/c166/bin) the

object and library files are searched in the directory \c166\lib
(UNIX: /usr/local/c166/lib).

Chapter 1111–18
L
IN
K
E
R
/L
O
C
A
T
O
R

The LIBPATH and MODPATH controls can also be set in the LINK166 or

LOCATE166 environment variables. You can specify more than one

directory by separating them with commas or spaces.

See the examples in section 11.6 Environment Variables.

Examples:

PC:

l166 LOC main.obj funcs.lib 166\c166s.lib
LIBPATH(\lib166)

l166 uses the files main.obj in the current directory, the

\lib166\funcs.lib and \c166\lib\166\c166s.lib (l166 is

installed in the directory \c166\bin).

UNIX:

l166 LOC main.obj funcs.lib 166/c166s.lib
LIBPATH(/usr/local/lib166)

l166 uses the files main.obj in the current directory, the

/usr/local/lib166/funcs.lib and

/usr/local/c166/lib/166/c166s.lib (l166 is installed in the

directory /usr/local/c166/bin).

11.8 OVERVIEW INPUT AND OUTPUT FILES

The input files and output files for the link stage are:

Object files

Input files for the link stage which are the output of the assembler, the

extension must be .obj .

Object libraries

You can put object files in library files with ar166. The extension of the

library file must be .lib . The library files are searched if any unresolved

references are left after reading the object files.

Invocation files

These files can be used to control the linking. The invocation files are not

restricted to any name but must be preceded by a '@'.

Linker/Locator 11–19

• • • • • • • •

Linked object file

The output file containing the linked task. There are no restrictions to the

extension of the filename. If no extension is given, the default extension is

.lno .

Print file

This output file contains textual information about the linking: addresses

and types of sections and symbols. The name is the output file with

extension .lnl unless you specify another name.

The input files and output files for the locate stage are:

Object files

Input files for the locate stage which are the output of the assembler, the

extension must be .obj .

Object libraries

You can put object files in library files with ar166. The extension of the

library file must be .lib . The library files are searched if any unresolved

references are left after reading the object files.

Linked object files

Files that are output from the link stage, each containing one task. The

default extension is .lno .

Invocation files

These files can be used to control the locating. The invocation files are not

restricted to any name but must be preceded by a '@'.

Absolute object file

The output file of the locate stage contains absolute code. The default

filename is a.out .

Print file

This output file contains textual information about the locating: addresses

and types of sections and symbols. The name is the output file with

extension .map unless you specify another name.

Chapter 1111–20
L
IN
K
E
R
/L
O
C
A
T
O
R

MISRA C Report file

This output file contains a report of the MISRA C checks used during

compilation of C modules. It also contains linker/locator MISRA C

information. The name is the output file with extension .mcr unless you

specify another name.

PRINT FILE

The print file for both link stage and locate stage has a header which gives

information about the invocation. This print file consists of the next items:

Header page If the HEADER control is in effect, this page is the first

page in the map file. It consists of a page header, action,

information about invocation, and information about

input file name(s) and output file name.

Page header Contains information about the linker/locator name,

version, the date time and the page number followed

by a title.

Action Indicates the stage of l166: Linking or Locating.

Invocation Contains information about the invocation of l166.

Output Reports the output file name and module name.

Input Reports the input files and module name.

Memory map Contains information about all elements in memory,

including sections. In the link stage this map contains

information about the linked sections only.

Symbol table Contains all symbols used.

Interrupt vector table

Contains the used interrupts.

Register bank Link stage. Contains information about register bank

layout.

Register map Locate stage. Contains information about all register bank

combinations

Linker/Locator 11–21

• • • • • • • •

Summary Contains a list of classes, groups and sections,

alphabetically ordered by class and group. Additionally it

contains some information about the linking or locating

process, just as with the compiler -t option.

Error report All found errors during linking or locating.

Before creating any output file l166 checks if no input files can be

overwritten.

11.9 PREDEFINED SYMBOLS

Predefined symbols are introduced to support the TASKING C166/ST10 C

compiler. They are needed to supply begin and end labels for the startup

code and for the floating point library routines.

Predefined names start with a '?' character. If the assembler encounters a

predefined name it will always treat it as a symbol defined as follows:

EXTERN ?PREDEF:WORD

Where ?PREDEF is one of the predefined names. Predefined symbols can

be used for reference only. If the assembler reads a symbol starting with a

'?' which is not known as predefined name an error will be issued. The

symbols needed for the floating point and memory allocation library

routines are resolved with a public symbol by the l166 linker or with a

global symbol by the l166 locator and symbols needed for the startup

code are resolved with a global symbol by the l166 locator.

Class begin and end address information is available through predefined

symbols. These are formed as follows:

?CLASS_name_BOTTOM
?CLASS_name_TOP

name The name of the class. If you refer to external defined

classes, the assembler issues warning 168: "using external

class name in predefined variable". If the locator cannot find

this class, it will exit with an unresolved symbol error.

BOTTOM Contains the start address of the section of class name that

was located at the lowest memory address.

TOP Contains the end address of the section of class name that

was located at the highest memory address.

Chapter 1111–22
L
IN
K
E
R
/L
O
C
A
T
O
R

Predefined sections

The locate stage introduces a section ?INTVECT if the control VECTAB is in

effect.

To control the heap needed for the C library, the section ?C166_HEAP is

introduced whenever one of the symbols ?C166_HEAP_TOP or

?C166_HEAP_BOTTOM is referred. The size of the heap can be defined

with the HEAPSIZE control.

The linker/locator will issue an error if the heap was needed, but the heap

stack is empty.

The ?C166_HEAP section is defined as follows in non-segmented mode:

?C166_HEAP SECTION LDAT WORD PUBLIC ’?CHEAP’
?C166_HEAP_TOP LABEL WORD

DS num ; num is defined by HEAPSIZE
?C166_HEAP_BOTTOM LABEL WORD
?C166_HEAP ENDS
PUBLIC ?C166_HEAP_TOP, ?C166_HEAP_BOTTOM

In segmented mode the section type is changed to HDAT.

Linker/Locator 11–23

• • • • • • • •

Summary of all predefined names.

Predefined symbols known by the assembler needed by the startup code:

?USRSTACK_TOP start of user stack sections
?USRSTACK_BOTTOM end of user stack sections
?USRSTACK0_TOP start of user stack sections for local register
 bank 0 of the C166Sv2.0/Super10
?USRSTACK0_BOTTOM end of user stack sections for local register
 bank 0 of the C166Sv2.0/Super10
?USRSTACK1_TOP start of user stack sections for local register
 bank 1 of the C166Sv2.0/Super10
?USRSTACK1_BOTTOM end of user stack sections for local register
 bank 1 of the C166Sv2.0/Super10
?USRSTACK2_TOP start of user stack sections for local register
 bank 2 of the Super10M345 derivate
?USRSTACK2_BOTTOM end of user stack sections for local register
 bank 2 of the Super10M345 derivate
?SYSSTACK_TOP start of system stack
?SYSSTACK_BOTTOM end of system stack
?C166_INIT_HEAD start of C166_INIT section
?C166_BSS_HEAD start of C166_BSS section
?C166_HEAP_TOP start of ?C166_HEAP section
?C166_HEAP_BOTTOM end of ?C166_HEAP section
?BASE_DPP0 base address of page to be addressed via DPP0
?BASE_DPP1 base address of page to be addressed via DPP1
?BASE_DPP2 base address of page to be addressed via DPP2
?BASE_DPP3 base address of page to be addressed via DPP3

The link and locate stage introduce the following sections:

?C166_HEAP:section for the heap needed for the C library

The locate stage introduces the following section:

?INTVECT: interrupt vector table

Chapter 1111–24
L
IN
K
E
R
/L
O
C
A
T
O
R

11.10 L166 CONTROLS

You can influence the behavior of l166 with controls. You can inform the

l166 how it has to do certain tasks. In case of multiple use of the same

control, only the last entry is effective. An exception to this rule is the

ASSIGN control. There are three types of controls:

• Controls both valid during link stage and locate stage (such as the

Listing controls).

• Linking controls (only valid during link stage).

• Locating controls (only valid during locate stage).

Locating controls allow to control the strategy l166 uses to determine the

absolute addresses of the sections. You can use these controls to inform

the locator about the order in which the sections must be located or at

which absolute address a specific section must be placed. If you omit

locating controls the locator uses the default locate algorithm mentioned in

section 11.4.

The locating controls can be subdivided in two different type of controls:

• General controls. These controls apply to the whole locate job.

The position in the invocation of these controls is not important.

• Module scope controls. The scope of these controls is restricted to

the module after which they are specified on the command line.

These controls affect only the module after which they are

specified.

Example of module scope controls in an invocation file:

LOCATE
file1.lno NOGLOBALS
file2.lno
file3.lno
NOLOCALS

The NOGLOBALS control only affects file1.lno and the NOLOCALS

control only affects file3.lno .

Module scope controls can have a general scope:

• when these controls are specified in the invocation before the first

input module (just after the LOCATE control).

• when these controls are specified after the GENERAL control

• when the control affects a section with a global combine type or a

global group

Linker/Locator 11–25

• • • • • • • •

Once a module is named in the invocation it is possible to make controls

affect this module by using the module scope switch.

Remarks:

All controls used in the link stage are general controls.

In all link and locate controls the commas are optional.

11.10.1 THE MODULE SCOPE SWITCH

With the module scope switch you can tell the locator to switch the scope

to a previous module in the invocation. A module scope switch can be

permanent or temporary. The syntax of a scope switch is as follows:

{filename|GENERAL} permanent module scope switch

{filename|GENERAL controls } temporary module scope switch

All module scope controls following a permanent module scope switch

affect the filename mentioned in the module scope switch or these

controls get a GENERAL scope and affect all input modules. Using

{GENERAL} is equal to using the GENERAL control.

The temporary module scope switch has the same effect as the permanent

module scope switch, but it affects only the controls between the filename
or GENERAL and the closing brace (}). Temporary module scopes can be

nested up to eight levels deep.

The temporary module scope switch can also be used at defined places

inside the controls. See the description of these controls for more

information. The permanent scope switch cannot be used inside controls.

Chapter 1111–26
L
IN
K
E
R
/L
O
C
A
T
O
R

Example of an invocation file:

LOCATE
file1.lno
file2.lno
file3.lno
{GENERAL}
 NOLOCALS
{file1.lno
 NOGLOBALS
}
ADDRESSES SECTIONS(SECT1 (200h)
 {file2.lno SECT2 (300h) }
)

The NOLOCALS control now affects all modules and the NOGLOBALS

only affects file1.lno . The section SECT1 in ADDRESSES SECTION is

searched in al input files, while SECT2 is only searched in file2.lno .

Note that module scope controls specified between the LOCATE control

and the first module name are general, as if they were specified after

GENERAL or {GENERAL}.

11.10.2 EXPRESSIONS

In all controls where addresses are specified the address may consist of an

expression. An expression may only consist of numbers and operators. An

expression must be one of the following:

number Is an absolute number

PAGE expr
PG expr Calculate base address of page

SEGMENT expr
SG expr Calculate base address of segment

FP expr Calculate a floating point stack size. One stack element of

the floating point stack is 14 bytes. Using FP expr is the

same as expr * 14

Linker/Locator 11–27

• • • • • • • •

expr + expr Addition of expressions

expr - expr Subtraction of expressions

expr * expr Multiplication of expressions

expr / expr Division of expressions

expr % expr Remainder of division of expressions

expr & expr Bitwise ANDing of expressions

expr | expr Bitwise ORing of expressions

expr.number The expression is a bit address in the form

bitoffset.bitposition

(expr) Control the evaluation order of expressions

When specifying addresses with the '-' operator, this can result in a

conflict situation in address ranges as in: (address - address). For

compatibility with the Infineon linker/locator it is still possible to use it,

but it is hard to use in expressions. Placing ellipses around each

expression is a possible solution. The other possibility is to use the word

'TO' instead of the '- ', which therefore, is the preferred notation.

Example:

RESERVE MEMORY (PAGE 3 + 020H – PAGE 4 – 1)

is interpreted as:

RESERVE MEMORY (PAGE 3 + 020H – PAGE 4 TO 1)

while it was meant to be

RESERVE MEMORY (PAGE 3 + 020H TO PAGE 4 – 1)

or

RESERVE MEMORY ((PAGE 3 + 020H) – (PAGE 4 – 1))

To allow an easy definition of a range of one or several pages or segments

the RANGEP and RANGES range specifiers may be used in all controls

which have an "addr1 TO addr2" argument (e.g. CLASSES):

RANGEP(number,...) Specify a range containing one or more pages.

The range contains all pages starting at the page

number of the lowest number and ending with

the page number of the highest number.

Chapter 1111–28
L
IN
K
E
R
/L
O
C
A
T
O
R

RANGES(number,...) Specify a range containing one or more

segments. The range contains all segments

starting at the segment number of the lowest

number and ending with the segment number

of the highest number.

Example:

CLASSES(’CPROGRAM’ (RANGEP(5,6,7)))
RESERVE(MEMORY(RANGEP(1)))

is interpreted as:

CLASSES(’CPROGRAM’ (014000h TO 01FFFFh))
RESERVE(MEMORY(04000h TO 07FFFh))

An overview of all l166 controls in presented in section 11.10.4

11.10.3 OVERVIEW OF CONTROLS PER CATEGORY

The following list is an overview of the controls per category. Note that

not all controls are available in both link and locate stage.

Print file controls

PRINT()/NOPRINT print file generation

Listing controls

The listing controls allow to specify what the contents of the print file

should look like:

HEADER/NOHEADER turn on/off header page in print

file

LISTREGISTERS/NOLISTREGISTERS turn on/off register bank listing in

print file

LISTSYMBOLS/NOLISTSYMBOLS turn on/off symbol listing in print

file

MAP/NOMAP turn on/off section map listing in

print file

SUMMARY/NOSUMMARY turn on/off summary printing in

print file

Linker/Locator 11–29

• • • • • • • •

Controls controlling the symbol table

COMMENTS/NOCOMMENTS turn on/off the listing of comment

records

GLOBALS/NOGLOBALS turn on/off the listing of global symbols

LINES/NOLINES turn on/off the listing of high level line

symbols

LOCALS/NOLOCALS turn on/off the listing of local symbols

PRINTCONTROLS() select controls to affect print file only

PUBLICS/NOPUBLICS turn on/off the listing of public symbols

PURGE/NOPURGE turn off/on the listing of all symbol types

SYMB/NOSYMB turn on/off the listing of high level

symbolic information

SYMBOLCOLUMNS() set the number of columns of the symbol

table

Controls controlling the print file format

DATE() set date in print file header

PAGELENGTH() set the print file page length

PAGEWIDTH() set the print file page width

PAGING/NOPAGING turn on/off paging of print file

TITLE() set title in print file header

Object file symbol controls

ASSIGN() assign a value to a symbol

COMMENTS/NOCOMMENTS include/exclude comment records in

output file

DEBUG/NODEBUG include/exclude debug information in

output file

GLOBALS/NOGLOBALS include/exclude global symbol records in

output file

LINES/NOLINES include/exclude high level line

information in output file

LOCALS/NOLOCALS include/exclude local symbol records in

output file

OBJECTCONTROLS() select controls to affect output file only

PUBLICS/NOPUBLICS include/exclude public symbol records in

output file

PURGE/NOPURGE exclude/include all symbol records in

output file

RENAMESYMBOLS() rename symbols read from object file

SYMB/NOSYMB include/exclude high level symbolic

information

Chapter 1111–30
L
IN
K
E
R
/L
O
C
A
T
O
R

Section location controls

ADDRESSES() locate sections, groups or registers at an

absolute address

CLASSES() set the valid address range for one or

more classes

HEAPSIZE() set the size of the heap section (used

for C library support)

MEMORY() specify which areas of the memory are

ROM and which areas are RAM

OVERLAY() overlay classes for code memory banking

ORDER() set the order in which sections or groups

have to be located

RESERVE() reserve a part of memory

SECSIZE() resize a section

SETNOSGDPP() set the pages addressed via each DPP

SORTALIGN()/ locate using order of section alignment

NOSORTALIGN() locate using order of sections as found

VECINIT()/NOVECINIT() initialize all/used interrupt vectors

VECSCALE() set vector table scaling

VECTAB()/NOVECTAB create an interrupt vector table

Other controls

CASE/NOCASE treat symbols case sensitive/insensitive

CHECKCLASSES / turn on/off checking for classes which

NOCHECKCLASSES use the CLASSES control

CHECKMISMATCH / turn the error into warning when two

NOCHECKMISMATCH symbol declarations have different types

EXTEND2/NOEXTEND2 Specify C166S v2.0/Super10 architecture

EXTEND2_SEGMENT191 Specify C166S v2.0/Super10 architecture

 but do not reserve segment 191.

FIXSTBUS1/NOFIXSTBUS1 Replace JMPS instructions in the vector

table with CALL instructions.

GENERAL all following module scoped controls get

a general scope

GLOBALSONLY() read only global symbol records from a

file

INTERRUPT() bind an interrupt vector to a TASK

(interrupt) procedure

LIBPATH() set a search path for library files

LINK/LOCATE initialize link/locate stage

MODPATH() set a search path for object files

Linker/Locator 11–31

• • • • • • • •

NAME() set the name in the name record in the

output file

PUBLICSONLY() read only public records from a file

PUBTOGLB() promote the PUBLIC scope level to

GLOBAL

RESOLVEDPP/NORESOLVEDPP Translate 24-bit pointers to 16-bit DPP

referenced addresses

MISRAC() / generate MISRA C report

SET / manipulation of internal tables

STRICTTASK / strictly follow the Task Concept

NOSTRICTTASK allow all extensions on the Task Concept

TYPE/NOTYPE turn on/off symbol type checking

WARNING()/NOWARNING() turn on/off a warning

WARNINGASERROR / exit with exit states even

NOWARNINGASERROR if only warnings were enable

11.10.4 OVERVIEW L166 CONTROLS

Control Abbr Cl Def Description

ASSIGN(symbol–name([datatype(]value[)],...) AS G Define absolute value for symbol.

CASE
NOCASE

CA
NOCA

G
G

setting in
assembler

Scan symbols case sensitive.
Scan symbols as is.

CHECKMISMATCH
NOCHECKMISMATCH

CMM
NOCMM

G
G

CMM Turn the error that occurs when two sym-
bol declarations have different types, into
a warning.

COMMENTS
NOCOMMENTS

CM
NOCM

M
M NOCM

Keep version header information.
Remove version header information

DATE(’date’) DA G system Set date in header of printfile.

DEBUG
NODEBUG

DB
NODB

DB Keep debug information.
Remove all debug information.

EXTEND2/EXTEND22
NOEXTEND2/NOEXTEND22
EXTEND2_SEGMENT191

X2/X22
NOX2/N
OX22
X2191

G
G
G

NOX2
Specify C166Sv2.0/Super10 architec-
ture.
Use general 166 architecture.

Use C166Sv2.0/Super10, don’t reserve
sement 191

HEADER
NOHEADER

HD
NOHD

G
G NOHD

Print print file header page.
Do no print header page.

Abbr: Abbreviation of the control
Cl: Class, type of control, G means a link/locate general control

M means a link general/ locate module scope control
Def: Default control OC is default for OBJECTCONTROLS

PC is default for PRINTCONTROLS

Table 11-1: Link/locate controls

Chapter 1111–32
L
IN
K
E
R
/L
O
C
A
T
O
R

Control Abbr Cl Def Description

HEAPSIZE(no. of bytes) HS G HS(0) Determine heap size.

LIBPATH(directory–name[...]) LN
NOLN

M
M

OC
PC

Keep line number information.
Remove line number information.

LINES
NOLINES

LN
NOLN

M
M

OC
PC

Keep line number information.
Remove line number information.

LINK
LOCATE

LNK
LOC

G
G

LNK Link object files.
Locate.

LISTREGISTERS
NOLISTREGISTERS

LRG
NOLRG

G
G NOLRG

List register map in print file
No register map in print file

LISTSYMBOLS
NOLISTSYMBOLS

LSY
NOLSY

G
G NOLSY

List symbol table in print file
No symbol table in print file

LOCALS
NOLOCALS

LC
NOLC

M
M

LC Keep local symbol information.
Remove local symbol information.

MAP
NOMAP

MA
NOMA

G
G

MA Produce a map in print file.
Inhibit production of map.

MODPATH(directory–name [,...]) MP G Define module search path.

NAME(module–name) NA G output Define outputs module name.

OBJECTCONTROLS(object–control,...) OC M Apply controls to object file only

PAGELENGTH(length) PL G 60 Set print file page length.

PAGEWIDTH(width) PW G 132 Set print file page width.

PAGING
NOPAGING

PA
NOPA

G
G

PA Format print file into pages.
Do not format printfile into pages

PRINT [(filename)]
NOPRINT

PR
NOPR

G
G

PR locate
NOPR link

Print map to named file.
Do not generate print file.

PRINTCONTROLS(print–control,...) PC M Apply controls to print file.

Abbr: Abbreviation of the control
Cl: Class, type of control, G means a link/locate general control

M means a link general/ locate module scope control
Def: Default control OC is default for OBJECTCONTROLS

PC is default for PRINTCONTROLS

Valid object–controls;
 LINES/NOLINES, COMMENTS/NOCOMMENTS, LOCALS/NOLOCALS, SYMB/NOSYMB,
 PUBLICS [EXCEPT(public–symbol,...)]/NOPUBLICS [EXCEPT(public–symbol,...)], TYPE/NOTYPE,
 PURGE/NOPURGE

Valid print–controls :
 LINES/NOLINES, COMMENTS/NOCOMMENTS, LOCALS/NOLOCALS, SYMB/NOSYMB,
 PUBLICS [EXCEPT(public–symbol,...)]/NOPUBLICS [EXCEPT(public–symbol,...)], PURGE/NOPURGE

Table 11-1: Link/locate controls (continued)

Linker/Locator 11–33

• • • • • • • •

Control Abbr Cl Def Description

PUBLICS [EXCEPT(public–symbol,...)]
NOPUBLICS [EXCEPT(public–symbol,...)]

PB
NOPB

M
M

PB Keep public symbol records.
Remove public symbol records.

PURGE
NOPURGE

PU
NOPU

M
M

Remove all symbolic information.
Keep all symbolic information.

RENAMESYMBOLS(rename–control,...)
 rename control link stage:
 EXTERNS({extrn–symbol TO extrn–symbol},...)
 PUBLICS({public–symbol TO public–symbol},...)
 GROUPS({groupname TO groupname},...)

 rename–control locate stage:
 EXTERNS({extrn–symbol TO extrn–symbol},...)
 GLOBALS({global–symbol TO global–symbol},...)
 INTNRS({intnr–symbol TO intnr–symbol},...)

RS

EX
PB
GR

EX
GL
IN

M Rename symbol names.

Rename extern symbols.
Rename public symbols.
Rename groups.

Rename extern symbols.
Rename global symbols.
Rename interrupt names.

MISRAC[(filename)] MC G Print MISRA C report.

SET(system settings) SET G Allow manipulation of internal tables.

SECSIZE(size–control,...)
 size–control:
 section–name ’class–name’([+|–] size)

SS M Specify memory size used by section.

SMARTLINK [([specification | EXCEPT(specifica-
tion)] [[,] ...])]

SL G Enables the linker/locator to check for
unused sections in the output file and
removes them if specified in the SMART-
LINK control.

SUMMARY
NOSUMMARY

SUM
NOSUM

G
G NOSUM

Print summary.
Do not print summary.

STRICTTASK
NOSTRICTTASK

ST
NOST

G
G NOST

Strict checking of Task Concept.
No checking of Task Concept.

SYMB
NOSYMB

SM
NOSM

M
M

OC
PC

Keep ?SYMB symbols.
Remove ?SYMB symbols.

SYMBOLS
NOSYMBOLS

SB
NOSB

M
M

SB Keep local symbol information.
Remove local symbol information.

SYMBOLCOLUMNS(number) SC G 2 Define no. of map symbol columns

TITLE(’title’) TT G mod–name Set print file page header title.

TO name G Specify output filename.

Abbr: Abbreviation of the control
Cl: Class, type of control, G means a link/locate general control

M means a link general/ locate module scope control
Def: Default control OC is default for OBJECTCONTROLS

PC is default for PRINTCONTROLS

Table 11-1: Link/locate controls (continued)

Chapter 1111–34
L
IN
K
E
R
/L
O
C
A
T
O
R

Control Abbr Cl Def Description

TYPE
NOTYPE

TY
NOTY

G
G

TY Perform type checking.
Do not perform type checking.

WARNING[(warning–control,...)]
NOWARNING[(warning–control,...)]

 warning–control:
 warn–num [EXPECT(exp–num)]

WA
NOWA

EXP

G
G

WA Enable warning messages.
Disable warning messages.

Expect number of warnings.

WARNINGASERROR
NOWARNINGASERROR

WAE
NOWAE

G
G NOWAE

Exit with exit status 4 if warnings only.
Exit with exit status 0 if warnings only.

Abbr: Abbreviation of the control
Cl: Class, type of control, G means a link/locate general control

M means a link general/ locate module scope control
Def: Default control OC is default for OBJECTCONTROLS

PC is default for PRINTCONTROLS

Table 11-1: Link/locate controls (continued)

Control (Link stage only) Abbr. Def. Description

CHECKGLOBALS(filename ,...) CG Check globals from named files.

PUBLICSONLY(filename ,...) PO Use only publics from named files.

Abbr: Abbreviation of the control.
Def: Defautl.

Table 11-2: Link controls

Control (Locate stage only) Abbr Cl Def Description

ADDRESSES(address–spec,...)

 address–spec:
 SECTIONS({sect–name [’class–name’] (address)},...)

 GROUPS({group–name (address)},...)
 RBANK (address)
 RBANK ({bank–name (address) },...)
 LINEAR(address)

AD

SE
GR
RB
RB
LR

M

M
M
M
G
M

Define address assignment

Section addresses
Group addresses
Register bank address
General regbank address
Start address linear data section

CLASSES(class–control,...)

 class–control:
 [’]class–name[’],... ({address1 {–|TO} address2
[UNIQUE]},...)

CL G Build class in address range.

CHECKCLASSES
 (default if ME ROM or RAM is set)
NOCHECKCLASSES
 (default if ME ROM/RAM not set)

CC

NOCC

G

G

Check for classes without CLASSES
control
Do not check classes

Table 11-3: Locate controls

Linker/Locator 11–35

• • • • • • • •

Control (Locate stage only) Abbr Cl Def Description

FIXSTBUS1

NOFIXSTBUS1

FSB1

NOFSB1

G

G NOFSB1

Replace JMPS instr. with CALL instr.

GENERAL GN G Treat controls General

GLOBALS
NOGLOBALS

GL
NOGL

M
M

GL Keep global symbol records
Remove global symbol records

GLOBALSONLY(filename,...) GO G Use only globals from name file

INTERRUPT(proc.–descr (int. [TO int],...)
 proc.–descr:
 proc.–name
 TASK(task–name)
 proc.–name TASK(task–name)
 int:
 int–name
 int.–no
 int.–name(int.–no)

INT G Specify interrupt vector

IRAMSIZE(size) IS G 1K Specify size of internal RAM

MEMORY(memory–control,...)
 memory–control:
 ROM({ addr1 {TO|–} addr2 }, ...)
 RAM({ addr1 {TO|–} addr2 }, ...)
 IRAM
 IRAM(addr)
 NOIRAM

ME

IR
IR
NOIR

G ME IR Specify target memory areas.

Target ROM memory
Target RAM memory
Mark internal RAM memory
as RAM
Do not mark IRAM as RAM.

MEMSIZE(size) MS G 256K Specify total size of memory

OVERLAY(class–name, ... (addr1 TO addr2)) OVL G Overlay class for code memory
banking

ORDER(order–control,...)

 order–control:
 SECTIONS({section–name [’class–name’]},...)
 GROUPS({group–name [(section–name,...)]},...)

OR

SE
GR

M Define section and group order

Section names
Group names

PUBTOGLB [(ptog–specifier,...)]

 ptog–specifier:
 SECTIONS({sect–name [’class–name’] },...)
 GROUPS(group–name,...)

PTOG

SE
GR

M Convert public to global

Global sections
Global groups

RESOLVEDPP
NORESOLVEDPP

RD
NORD

G
G

Translate 24–bit pointers to 16 bit
DPP referenced addresses

Abbr: Abbreviation of the control.
Cl.: Class, type of locate control, M for Module scope and G for General.
Def: Defautl.

Table 11-3: Locate controls (continued)

Chapter 1111–36
L
IN
K
E
R
/L
O
C
A
T
O
R

Control (Locate stage only) Abbr Cl Def Description

SETNOSGDPP(dpp–name(value),...)
 dpp–name:
 DPP0, DPP1, DPP2, DPP3

SND G value
0 , 1 , 2 ,
3

Locate LDAT sections paged.

SORTALIGN
NOSORTALIGN

SAL
NOSAL

G
G

SAL Locate using section alignment.
Locate in order as found.

RESERVE(reserve–control,...)
 reserve–control:
 MEMORY({address1 – address2},...)
 PECPTR({pecptr1 [– pecptr2]},...)
 INTTBL({intno1 [– intno2]},...)
 SYSSTACK(stackno)

RE

ME
PP
IT
SY

G Prevent locating in reserved areas.
Reserve any memory range
Reserve PEC pointer memory
Reserve interrupt table memory
Reserve system stack mem.

TASK [(task–name)]
[INTNO {[int.–name][= int.–no]}]
input–file [task–controls]

Set taskname and intno belonging to
input file.

VECINIT [(proc–name|address)]
NOVECINIT

VI
NOVI

G
G

VI Init unused interrupt vectors.
No int. vector init.

VECSCALE(scaling) VS G Specify scaling to use in vector table

VECTAB[(base_address)]
NOVECTAB

VT
NOVT

G
G

VT Generate interrupt vector table.
Don’t generate interrupt vector table.

Abbr: Abbreviation of the control.
Cl.: Class, type of locate control, M for Module scope and G for General.
Def: Defautl.

Table 11-3: Locate controls (continued)

The following section contains an alphabetical description of all l166

controls. The kind of control is indicated by the Class.

Linker/Locator 11–37

• • • • • • • •

11.10.5 DESCRIPTION OF CONTROLS

ADDRESSES

Control:

ADDRESSES(address-spec,...)

or

ADDRESSES address-spec

Abbreviation:

AD

Class:

Locate module scope

Default:

-

Description:

With this control you can override the default address assignment

algorithm. When the parentheses are omitted only one address-spec may

be specified. address-spec can be specified as:

SECTIONS({sect-name ['class-name'] (address) },...)
GROUPS({group-name (address) },...)
RBANK(address)
RBANK({ bank-name (address) },...)
LINEAR(address)

The abbreviations are respectively: SE, GR, RB, LR.

A beginning address can be assigned to sections or groups. The

subcontrols SECTIONS and GROUPS, identify exactly what elements of the

input module are assigned addresses. When assigning an address with the

SECTIONS subcontrol, the class-name of the particular section can be

assigned, if defined.

Chapter 1111–38
L
IN
K
E
R
/L
O
C
A
T
O
R

With the RBANK subcontrol you can set the address of a register bank.

When using the register bank-name, the control is treated as a general

control, otherwise the bank in the module before the ADDRESSES RBANK

control in the invocation is assigned. When the bank-name is not

supplied, and the module contains more than one register definition the

locator issues an error. When the STRICTTASK control is set the locator

issues an error when the bank-name is supplied.

Using the module scope switch in the ADDRESSES control is allowed at

the following syntactical locations:

ADDRESSES({ module-name address-spec },...)

address-spec:

SECTIONS({ module-name sect-name
 ['class-name'] (address) },...)

GROUPS({ module-name group-name (address) },...)
RBANK(address)
RBANK({ module-name bank-name (address) },...)
LINEAR(address)

When the scope is set to GENERAL the locator will search for sect-name,
group-name and bank-name in all modules. When there is more than one

match a warning will be issued and the control is applied to the first

match.

Using global sections (GLOBAL, COMMON, SYSSTACK or GLBUSRSTACK)

in ADDRESSES SECTIONS causes the ADDRESSES control to be a general

control for that section.

Using a global group in ADDRESSES GROUP causes the ADDRESSES

control to be a general control for that group.

With the LINEAR subcontrol you can set the start address of the linear

sections (LDAT, up to 48K accessible via DPP0 to DPP2).

Although the ADDRESSES control is a task control, the ADDRESSES

LINEAR control has a general scope.

The ADDRESSES LINEAR control cannot be used in conjunction with the

SETNOSGDPP control.

If a section, group, register bank or linear address is multiply assigned by

the ADDRESSES control a warning is issued and the assignment is ignored.

If the specified address does not agree with the alignment attribute of the

specified section, the address is modified and a warning is issued.

Linker/Locator 11–39

• • • • • • • •

A special section name "SYSSTACK" is available to relocate the system

stack when using the C166S v2.0 / Super10 architecture.

Example:

addresses sections(Dsec1 (1000H))

ad se(Dsec2 ’Class2’ (0300H))

ad lr(page 5)

ad(rb(0FC00H), se(Csec (page 1)))

addresses rbank(REGB1(0FC00h), REGB2(0FC40h))

AD(SE({fil1.obj SECTA(200h)}
 {fil2.obj SECTB(400h)})
 RB({fil1.obj REGB1(0FC00h)}))

AD(SE(SYSSTACK(segment(1) + 0FC00h)))

Chapter 1111–40
L
IN
K
E
R
/L
O
C
A
T
O
R

ASSIGN

Control:

ASSIGN(symbol-name ([datatype(] value [)], ...)

Abbreviation:

AS

Class:

Link/Locate general

Default:

-

Description:

With this control you can define absolute values for symbols at link stage.

The symbol-name is internally defined as a PUBLIC symbol (link stage) or

GLOBAL symbol (locate stage) and, therefore can be accessed only inside

of a task. The symbol-name is the name of a variable, label or constant

that is defined using this control. The value can be an absolute expression.

If the symbol-name has a matching public or global definition in another

module, the public or global definition in that module is flagged as a

duplicate. Whenever a reference to the symbol-name occurs, the symbol

defined in the ASSIGN control governs. If multiple ASSIGN specifications

are provided in one invocation, all are effective (not only the last entry).

This control is particularly useful for memory-mapped I/O.

By default, the assigned symbol has no type. This could lead to type

mismatch warnings (W 120) if the assigned symbol is referenced in an

external module using the GLOBALSONLY control. To avoid these

warnings, a type can be specified with the assigned symbol. The mismatch

warning will still be given if the assigned type does not match with the

type of the external symbol in the second module.

Valid datatypes to be specified with ASSIGNed symbols are: NEAR, FAR,

BYTE, WORD, BIT, BITWORD, DATA3, DATA4, DATA8 and DATA16.

Example:

l166 link x.obj as(userpb1(1ah), userpb2(1234))

Linker/Locator 11–41

• • • • • • • •

CASE

Control:

CASE/NOCASE

Abbreviation:

CA/NOCA

Class:

Link/Locate general

Default:

Depends on the CASE/NOCASE flag in the first input module. This means

that if CASE or NOCASE is not used in the linker/locator invocation, the

control is set to the setting of the CASE/NOCASE control in the assembler.

The C compiler always sets the control to CASE.

Description:

Selects whether l166 operates in case sensitive mode or not. In case

insensitive mode l166 maps characters of symbol names on input to

uppercase.

Example:

l166 link x.obj case

; l166 in case sensitive mode

Chapter 1111–42
L
IN
K
E
R
/L
O
C
A
T
O
R

CHECKCLASSES

Control:

CHECKCLASSES/NOCHECKCLASSES

Abbreviation:

CC/NOCC

Class:

Locate general

Default:

CHECKCLASSES When control MEMORY ROM or RAM is not set.

NOCHECKCLASSES When control MEMORY ROM or RAM is set.

Description:

CHECKCLASSES indicates that the locator has to check if all classes are

located by using the CLASSES control. NOCHECKCLASSES disables this

check. If CHECKCLASSES is active and a class without the CLASSES control

is found the locator issues the warning W 193.

Example:

l166 locate task intno=0 x.lno checkclasses

; check for classes without CLASSES control

Linker/Locator 11–43

• • • • • • • •

CHECKGLOBALS

Control:

CHECKGLOBALS(filename, ...)

Abbreviation:

CG

Class:

Link Only

Default:

-

Description:

The linker reads the global symbol records from the named files and

checks if these symbols will resolve any externs during the locate stage.

The linker now does not issue warnings on the symbols which remain

unresolved after linking, but will be resolved during the locate stage.

Example:

l166 link x.obj cg(y.obj)
l166 link x.obj cg(y.lno)

; l166 checks for global symbol records

Chapter 1111–44
L
IN
K
E
R
/L
O
C
A
T
O
R

CHECKMISMATCH

Control:

CHECKMISMATCH/NOCHECKMISMATCH

Abbreviation:

CMM / NOCMM

Class:

Link/locate general

Default:

CHECKMISMATCH

Description:

When two declarations of a symbol have a different type, the

linker/locator issues error E 408, E 409 or E 410. For backwards

compatibility, you can turn this error into a warning with

NOCHECKMISMATCH. You can use the WARNING control then to

suppress this warning.

Example:

l166 locate x.lno NOCMM ; only warn if
 ; symbol types do not match

Linker/Locator 11–45

• • • • • • • •

CLASSES

Control:

CLASSES(class-control,...)

Abbreviation:

CL

Class:

Locate general

Default:

-

Description:

class-control must be specified as:

[']class-name['],... ({address1 {-|TO} address2 [UNIQUE]},...)

The CLASSES control tells the locator to build a single class of all the

classes given and to place this class in the address range given by

address1 and address2. The single quotes around each class name in the

classes control are optional.

Constructions like CLASSES(CLASS1 CLASS2 (1000h TO 4000h)) are valid.

When more than one address range is given for a class, overlapping and

adjacent ranges are treated as one range. When the sections in a class are

ordered by means of the ORDER SECTIONS control, the whole ORDER

has to fit in one address range.

When you specify the UNIQUE keyword (abbreviation UN), the locator

loacates only this class in the specified range. When all sections with a

CLASSES control are located, the locator reserves the remaining ranges

with UNIQUE control. The map file lists these as 'Reserved'

You can mix UNIQUE and non-UNIQUE ranges. The locator tries to locate

sections in the first range, irrespective of the use of the UNIQUE keyword.

This may result in the use of a non-UNIQUE range, while a UNIQUE

range is left untouched. The locator does not merge UNIQUE and

non-UNIQUE ranges, so sections cannot be located partly in a UNIQUE

and partly in a non-UNIQUE range.

Chapter 1111–46
L
IN
K
E
R
/L
O
C
A
T
O
R

Example:

classes(’ROM’ (100H to 1FFFH),
 ’RAM_1’, ”RAM_2” (0FA00H to 0FDFFH))

classes(CLASS1 CLASS2 (1000h TO 4000h))

classes(
 CODEROM,
 ROMDATA (0 TO 07FFFh, 10000h TO 17FFFh)
 RAMDATA (8000h TO 0FFFFh, 18000h TO 1FFFFh)
)

classes(
 CODEROM,
 ROMDATA (0 TO 07FFFh, 10000h TO 17FFFh)
 RAMDATA (8000h TO 0FFFFh, 18000h TO 1FFFFh UN)
)

Linker/Locator 11–47

• • • • • • • •

COMMENTS

Control:

COMMENTS/NOCOMMENTS

Abbreviation:

CM/NOCM

Class:

Link/Locate module scope

Default:

NOCOMMENTS

Description:

COMMENTS keeps the version header information in the object file.

NOCOMMENTS removes this information. The COMMENTS control is

useful to determine which version of l166 is used for building the object

file.

Example:

; Version header information in object file
l166 link x.obj comments

; No version header information in object file
l166 locate task intno=0 x.lno nc

Chapter 1111–48
L
IN
K
E
R
/L
O
C
A
T
O
R

DATE

Control:

DATE('date')

Abbreviation:

DA

Class:

Link/Locate general

Default:

system date

Description:

l166 uses the specified date-string as the date in the header of the print

file. Only the first 11 characters of string are used. If less than 11 characters

are present, l166 pads them with blanks.

Example:

; Nov 25 1992 in header of print file
l166 link x.obj date(’Nov 25 1992’)

; 25–11–92 in header of print file
l166 locate task intno=0 x.lno da(’25–11–92’)

Linker/Locator 11–49

• • • • • • • •

DEBUG

Control:

DEBUG/NODEBUG

Abbreviation:

DB/NODB

Class:

Link/Locate general

Default:

DEBUG

Description:

When DEBUG is set the amount of symbol information is determined by

the

COMMENTS/NOCOMMENTS, LINES/NOLINES

PUBLICS/NOPUBLICS, GLOBALS/NOGLOBALS

LOCALS/NOLOCALS and SYMB/NOSYMB

controls.

When NODEBUG is set, as less as possible symbol records are generated.

NODEBUG does not affect the settings by the mentioned controls, so

when DEBUG is set after a NODEBUG control they are in effect as they

were set. This is different from PURGE/NOPURGE which turns all controls

mentioned above (plus the TYPE/NOTYPE control) on or off. The link

stage always generates at least the symbol records needed for locating

even when NODEBUG is in effect.

Example:

l166 link x.obj y.obj nodebug

; do not generate debug records

Chapter 1111–50
L
IN
K
E
R
/L
O
C
A
T
O
R

EXTEND2

Control:

EXTEND2/NOEXTEND2/EXTEND2_SEGMENT191

Abbreviation:

X2 / NOX2 / X2191

Class:

Link/Locate general

Default:

NOEXTEND2

Description:

The C166S v2.0 / Super10 architecture has very specific restrictions on

memory usage with respect to the basic 166 architecture. With the

EXTEND2 control the following or extension are in effect:

- no code memory may be located in page 2 & 3 of segment 0. If

code is located there explicitly (using the ADDRESSES control or AT

in the assembly or C file), a warning is generated.

- the system stack may be located anywhere using the

AD (SE(SYSSTACK (location)))) control

- the PECC pointers are moved, PECC pointer space is reserved if a

PECC pointer is not used.

- segment 191 (0BFh) is reserved.

- vector table scaling is enabled.

With the EXTEND2_SEGMENT191 control segment 191 is not reserved, but

the other restrictions/extensions are enabled.

Examples:

l166 link x.obj x2 ; check PECC pointer usage
l166 loc x.obj x2 ; do not locate code in page 2/3

Linker/Locator 11–51

• • • • • • • •

FIXSTBUS1

Control:

FIXSTBUS1/NOFIXSTBUS1

Abbreviation:

FSB1 / NOFSB1

Class:

Locate general

Default:

NOFIXSTBUS1

Description:

The ST_BUS.1 problem occurs when a PEC transfer is initiated just after a

JMPS instruction. By protecting the JMPS instruction using an ATOMIC

instruction, or using CALLS, POP, POP as replacement for JMPS, the

problem can be circumvented.

The compiler implements a problem fix for the ST_BUS.1 problem by

protecting the JMPS instructions. However, the vector table is normally

composed of JPMS instructions and the space available is too small for an

ATOMIC instruction as well.

The FIXSTBUS1 will replace the JMPS instructions in the vector table with

CALLS instructions. The interrupt handler entered this way must issue two

POP instructions before returning. Failure to do so will lead to consecutive

interrupt calling, as each RETI will put the program counter at the next

interrupt CALLS statement.

The reset vector, located at 00'0000, is always entered in supervisor mode.

No PEC transfers occur in this mode and so the instruction at 00'0000 can

always be a JMPS. The FIXSTBUS1 control starts replacing JMPS with

CALLS after the reset vector. When both the FIXSTBUS1 and VECINIT are

up, then the vectors after the reset vector are initialized with JMPA to enter

an endless loop.

If the NOVECTAB control is up, FIXSTBUS1 has no effect.

Chapter 1111–52
L
IN
K
E
R
/L
O
C
A
T
O
R

Interrupt service routines written in assembly must delete the return

address generated by the CALLS instruction from the system stack. Always

insert the ADD SP,#04h instruction before the end of the ISR when using

the FIXSTBUS1 control. The C compiler performs this instruction

automatically when the -BJ option is in effect.

Example:

l166 loc x.obj y.obj fixstbus1

;output vector table (default) with replaced
;JMPS instructions

Linker/Locator 11–53

• • • • • • • •

GENERAL

Control:

GENERAL

Abbreviation:

GN

Class:

Locate general

Default:

-

Description:

All module scope controls specified after the GENERAL control in the

invocations are treated as general controls. This means that these controls

now apply to all input modules. The GENERAL control can also be used in

the module scope switch:

{GENERAL} or {GENERAL controls }

Example:

LOCATE file1.obj file2.obj
GENERAL
NOLOCALS ; strip locals from all input modules
ADRESSES SECTIONS(sect1(200h))
 ; search for sect1 in all input modules

Chapter 1111–54
L
IN
K
E
R
/L
O
C
A
T
O
R

GLOBALS

Control:

GLOBALS/NOGLOBALS

Abbreviation:

GL/NOGL

Class:

Locate module scope

Default:

GLOBALS

Description:

GLOBALS specifies to generate global symbol records when the DEBUG

control is in effect. NOGLOBALS removes global symbol information from

the output file.

Example:

l166 locate task intno=0 x.lno nogl

; remove global symbol information

Linker/Locator 11–55

• • • • • • • •

GLOBALSONLY

Control:

GLOBALSONLY(filename,...)

Abbreviation:

GO

Class:

Locate general

Default:

-

Description:

GLOBALSONLY indicates that only the absolute global symbol records of

the argument files are used. The other records in the module are ignored.

This can be used to resolve external references to C166/ST10 files.

filename can be the name of a file optionally preceded by a directory path

name.

Example:

l166 loc myappl.lno go(kernel.out) to myappl.out

; use only globals of kernel.out

Chapter 1111–56
L
IN
K
E
R
/L
O
C
A
T
O
R

HEADER

Control:

HEADER/NOHEADER

Abbreviation:

HD/NOHD

Class:

Link/Locate general

Default:

NOHEADER

Description:

This control specifies if a header page must be generated as the first page

in the print file. A header page consists of a page header (the

linker/locator name, the date, time and the page number, followed by a

title), linker/locator invocation.

Example:

l166 link x.obj print hd

; generate header page in print file

Linker/Locator 11–57

• • • • • • • •

HEAPSIZE

Control:

HEAPSIZE(no. of bytes)

Abbreviation:

HS

Class:

Link/Locate general

Default:

HEAPSIZE(0)

Description:

HEAPSIZE allows you to specify the size of the heap needed for the C

library. no. of bytes is the size of the heap in bytes. The no. of bytes is
used for the section ?C166_HEAP, if this section must be created. The

?C166_HEAP section will only be created when one of the symbols

?C166_HEAP_TOP or ?C166_HEAP_BOTTOM is referred. The default size is

zero bytes. The size of a ?C166_HEAP section can only be set when it is

created. This means that when HEAPSIZE is used in the locator stage it

only affects the size of the GLOBAL ?C166_HEAP section created by the

locator.

If a ?C166_HEAP section would have to be created by the linker, but the

size would be zero, the creation is skipped. This means that the locator

will have to create this section. If the heap size is still zero then the

location will generate an error.

See the section Predefined Symbols in this chapter for more information

about the heap symbols and the ?C166_HEAP section.

Example:

HEAPSIZE(70) ; allocate 70 bytes for the heap

Chapter 1111–58
L
IN
K
E
R
/L
O
C
A
T
O
R

INTERRUPT

Control:

INTERRUPT(proc-descr (int [TO int],...)

Abbreviation:

INT

Class:

Locate general

Default:

-

Description:

With the INTERRUPT control you can specify the interrupt vector to be

used for a TASK or INTERRUPT procedure. This control is more flexible

than the Infineon compatible TASK...INTNO control.

proc-descr is one of:

proc-nam
TASK(task-name)
task-name TASK(task-name)

proc.-name name of a TASK procedure

task-name the name of the TASK

int is one of:

int.-name
int.-no
int.-name (int.-no)

int.-name optional interrupt name, will be printed in map file

int.-no. interrupt number

Linker/Locator 11–59

• • • • • • • •

When the proc.-name is supplied, task names, interrupt names and

interrupt number of the interrupt already defined in the assembly file are

overruled by the task-name, int.-name and int.-no. When the

proc.-name is not supplied, the task-name should be the name of a task

existing in the object file or a name previously assigned by an INTERRUPT

or TASK...INTNO control. The interrupt name and interrupt number

already defined in the assembly file are overruled by the int.-name and

int.-no.

The interrupt name of a range will be the name of the lowest interrupt

number or none if that interrupt has no name.

When the range modifier is used, the original interrupt occupied by the

task is still used. When no interrupt has been assigned during the

assemble or link stage, the locator complains about an unassigned

interrupt. First assign a valid interrupt to the task and then extend the

range, assigning new interrupt names if so desired.

Example:
INTERRUPT(proc1(10), ; vector 10 points to proc1
 TASK2(20), ; vector 20 point to
 ; the task TASK2
 proc3(RESET(0)), ; vector 0 is named
 ; RESET and points to proc3
 proc4 TASK(T4) (INTX(32)),
 ; interrupt 32 is named INTX and points to a task
 ; named T4, implemented by proc4
 proc5(15 TO 16),
 ; interrupts 15 and 16 are handled by task proc5
 proc6(LOW6(18) TO HIGH6(20)),
 ; interrupts 18, 19 and 20 are handled by task proc6,
 ; symbols LOW6 and HIGH6 contain values 18 and 20 resp.
 proc7(120),
 proc7(121 TO 126)
 ; proc7’s original interrupt is moved to 120 and
 ; interrupts 121 to 126 are assigned to proc7 as well.
)

Chapter 1111–60
L
IN
K
E
R
/L
O
C
A
T
O
R

IRAMSIZE

Control:

IRAMSIZE(size)

Abbreviation:

IS

Class:

Locate general

Default:

IRAMSIZE(1024)

Description:

IRAMSIZE allows you to specify the maximum size of the internal RAM

area that can be available for locating. size is the size of the internal RAM

area in bytes. This control is useful if you want to extend the internal RAM

area, e.g. when using a C167. For the C166 the default size of the internal

RAM is 1K. For the C167 this value is 2K. Note that the space for the

internal SFRs and virtual GPRs is not included in this size.

The internal RAM size can also be set with the MEMORY IRAM control.

Example:

IRAMSIZE(2048) ; allocate 2 Kbytes for internal RAM

Linker/Locator 11–61

• • • • • • • •

LIBPATH

Control:

LIBPATH(directory-name [, directory-name]...)

Abbreviation:

LP

Class:

Link/Locate general

Default:

None

Description:

With LIBPATH you can designate one or more directory-names to be used

as the first search path for library files. If the searched library file is not

found in the first directory specified in LIBPATH, it searches in the next

directory in the list. If the searched library file is not found in any of the

directories specified in LIBPATH, l166 searches in the actual directory.

It is also possible to use single 'quotes' to use filenames and directories

with spaces in them.

See also section 11.7 Default Object and Library Directories.

Example:

l166 link util.lib x.obj libpath(c:\lib\c166, c:\mylib)

; util.lib is first searched for in the
; specified directories.

l166 link util.lib x.obj
libpath(’c:\program files\c166\lib\166’)

; the specified directory contains a space

Chapter 1111–62
L
IN
K
E
R
/L
O
C
A
T
O
R

LINES

Control:

LINES/NOLINES

Abbreviation:

LN/NOLN

Class:

Link/Locate module scope

Default:

LINES for OBJECTCONTROLS

NOLINES for PRINTCONTROLS

Description:

LINES keeps line number information in the object file. This information

can be used by high level language debuggers. LINES specifies l166 to

generate symbol records defined by the ?LINE and ?FILE directives of the

assembler when the DEBUG control is in effect. The line number

information is not needed to produce executable code. The NOLINES

control removes this information from the output file. NOLINES decreases

the size of the output object file.

See also OBJECTCONTROLS, PRINTCONTROLS, PURGE/NOPURGE.

Examples:

l166 link x.obj lines debug
; keep line number information in output
; module and print file.

Is the same as:

l166 link x.obj oc(ln) pc(ln) debug

Linker/Locator 11–63

• • • • • • • •

LINK/LOCATE

Control:

LINK/LOCATE

Abbreviation:

LNK/LOC

Class:

Link/Locate general

Default:

LINK

Description:

LINK explicitly tells l166 to start the link stage. LOCATE explicitly tells

l166 to start the locate stage. These controls merely improve the

readability of command lines. When used these controls must be the first

control.

Examples:

l166 link x.obj y.obj case to xy.lno ; allowed
l166 locate task intno=0 xy.lno ; allowed

l166 x.obj y.obj case link to xy.lno ; error!
l166 task intno=0 xy.lno locate ; error!

Chapter 1111–64
L
IN
K
E
R
/L
O
C
A
T
O
R

LISTREGISTERS

Control:

LISTREGISTERS/NOLISTREGISTERS

Abbreviation:

LRG/NOLRG

Class:

Link/Locate general

Default:

NOLISTREGISTERS

Description:

This control specifies if a register map must be generated in the print file.

A register map at link stage contains information about all common and

private areas in a register bank. A register map at locate stage contains

information about all register bank combinations.

See the Appendix Linker/Locator Output Files for detailed information

about the register maps.

Example:

l166 link x.obj print lrg

; generate register map in print file x.lnl

Linker/Locator 11–65

• • • • • • • •

LISTSYMBOLS

Control:

LISTSYMBOLS/NOLISTSYMBOLS

Abbreviation:

LSY/NOLSY

Class:

Link/Locate general

Default:

NOLISTSYMBOLS

Description:

This control specifies if a symbol table must be generated in the print file.

A symbol table contains information about the name of the symbol, the

number of the symbol, the value of the symbol and the type of the

symbol. The symbols are listed in alphabetical order.

See the Appendix Linker/Locator Output Files for detailed information

about the symbol table.

Example:

l166 link x.obj print lsy

; generate symbol table in print file x.lnl

Chapter 1111–66
L
IN
K
E
R
/L
O
C
A
T
O
R

LOCALS

Control:

LOCALS/NOLOCALS

Abbreviation:

LC/NOLC

Class:

Link/Locate general

Default:

LOCALS for both OBJECTCONTROLS and PRINTCONTROLS

Description:

LOCALS specifies to generate local symbol records when the DEBUG

control is in effect. The debugger uses this information. It is not needed to

produce executable code. When NOLOCALS is set l166 does not generate

local symbol records. LOCALS/NOLOCALS is the equivalent of the Infineon

controls SYMBOLS/NOSYMBOLS.

See also OBJECTCONTROLS, PRINTCONTROLS, PURGE/NOPURGE.

Example:

l166 link x.obj y.obj nolocals

; do not generate local symbol records

Linker/Locator 11–67

• • • • • • • •

MAP

Control:

MAP/NOMAP

Abbreviation:

MA/NOMA

Class:

Link/Locate general

Default:

MAP

Description:

Use this control to enable (MAP) or prevent (NOMAP) generation of a

memory map, symbol table and register map in the print file. The memory

map at link stage contains information about the attributes of logical

sections in the output module. This includes size, class, alignment attribute

and address if the section is absolute. The memory map at locate stage

shows the complete section, group and class name start address, and stop

address and other information like reserved areas, interrupt vectors,

pec-pointers etc. The symbol table contains a list of all symbols used. The

register map shows the combination of all register definitions. PRINT must

be enabled. If NOPRINT is specified the MAP-setting is ignored (no print

file is generated).

Example:

l166 link x.obj nomap

; do not generate link map in print file

Chapter 1111–68
L
IN
K
E
R
/L
O
C
A
T
O
R

MEMORY

Control:

MEMORY(memory-control, ...)

or

MEMORY memory-control

Abbreviation:

ME

Class:

Locate general

Default:

MEMORY(IRAM)

Description:

With the MEMORY control you can specify which areas in the target

memory are ROM, RAM or internal RAM.

memory-control must be specified as:

ROM({ addr1 {TO|-} addr2 }, ...)

RAM({ addr1 {TO|-} addr2 }, ...)

IRAM abbreviation: IR

IRAM(addr) abbreviation: IR

NOIRAM abbreviation: NOIR

The arguments addr1 and addr2 specify the first and last address in a

range.

With the ROM sub-control you can specify which address ranges are

ROM. All sections and other memory elements with the ROM attribute will

only be located in these ranges. When the ROM sub-control is not

specified, all ranges which are not RAM or IRAM are specified as ROM.

Linker/Locator 11–69

• • • • • • • •

With the RAM sub-control you can specify which address ranges are RAM.

All sections and other memory elements with the RAM attribute will only

be located in these ranges. When the RAM sub-control is not specified, all

ranges which are not ROM are specified as RAM.

When you specify the IRAM sub-control (default), the locator marks the

internal RAM area as RAM. The size of the internal RAM is specified with

the IRAMSIZE control. When the IRAM sub-control is specified with the

addr argument, the start address of the internal RAM is specified. The end

address of the internal RAM is always 0FFFFh. When addr is specified it

overrules a previous (or the default) IRAMSIZE control. The addr
argument should be lower than 0FE00h to ensure the SFR area can always

be located.

When you specify the NOIRAM sub-control, the locator does not mark the

internal RAM as a RAM range. This allows you to place code in internal

RAM, which is for instance needed for bootstrap code.

A section or memory element gets the ROM attribute when it contains

initialized memory, otherwise it gets the RAM attribute. In the assembler

there are only a few directives which allocate not initialized memory:

DBIT, DS, DSB, DSW, DSDW, ORG and EVEN in a section other than

CODE.

When the ROM or the RAM sub-control is used the memory layout is

defined and the CLASSES control is superfluous, so the locator sets the

control NOCHECKCLASSES.

Example:

MEMORY(ROM(0h TO 3fffh, 8000h TO 0BFFFh),
 RAM(4000h TO 7FFFh, 0C000h TO 0FFFFh))

MEMORY NOIRAM
MEMORY(ROM(0h TO 7fffh),

 RAM(8000h TO 0FFFFh)
 IRAM(0F600h)
 ROM(10000h TO 13fffh))

Chapter 1111–70
L
IN
K
E
R
/L
O
C
A
T
O
R

MEMSIZE

Control:

MEMSIZE(size)

Abbreviation:

MS

Class:

Locate general

Default:

MEMSIZE(040000h) if NOEXTMEM specified in objects

MEMSIZE(01000000h) if EXTMEM specified in objects

Description:

MEMSIZE allows you to specify the maximum size of the total memory

area that can be available for locating. size is the size of the total memory

area in bytes. This control is useful if you want to limit the memory area.

For the C166 the default memory size is 256 Kbytes. For the C167 this

value is 16 Mbytes.

Example:

MEMSIZE(020000h) ; total memory is 128 Kbytes

Linker/Locator 11–71

• • • • • • • •

MODPATH

Control:

MODPATH(directory-name [, directory-name]...)

Abbreviation:

MP

Class:

Link/Locate general

Default:

-

Description:

Using this control you can designate one or more directory-names to be

used as the first search path for module files (i.e. object files in link stage

and linked object files in locate stage). If the searched module file is not

found in the first directory specified in MODPATH, it searches in the next

directory in the list. If the searched modue file is not found in any of the

directories specified in MODPATH, l166 searches in the actual directory.

It is also possible to use single 'quotes' to use filenames and directories

with spaces in them.

See also section 11.7 Default Object and Library Directories.

Example:

l166 link util.lib x.obj modpath(c:\src\c166 c:\src)

; x.obj is first searched for in the specified
; directories.

l166 link util.lib x.obj
modpath(’c:\program files\c166\src’)

; the specified directory contains a space

Chapter 1111–72
L
IN
K
E
R
/L
O
C
A
T
O
R

NAME

Control:

NAME(module-name)

Abbreviation:

NA

Class:

Link/Locate general

Default:

The output filename without extension.

Description:

NAME assigns the specified module-name to the output module. If NAME

is not specified, the output module has the same name as the output

filename without extension. The NAME control does not affect the output

filename. Only the module-name in the output module's name record is

changed. The module-name is also the default title in the header of the

print file. module-name can be any unique identifier of up to 40

characters long.

See also the TITLE control.

Example:

l166 link x.obj ;module name is X
l166 link x.obj na(NewName)

;module name is NEWNAME
l166 link y.obj to myprog.lno

;module name is MYPROG

Linker/Locator 11–73

• • • • • • • •

OBJECTCONTROLS

Control:

OBJECTCONTROLS(object-control,...)

Abbreviation:

OC

Class:

Link/Locate module scope

Default:

OC(NOCOMMENTS, LINES, LOCALS, PUBLICS, GLOBALS, TYPE, SYMB)

Description:

This control causes the specified object-controls to be applied to the object

file only. This does not affect the print file. For example if you give the

control OC(NOLINES) only the object file contains no line numbers, the

print file may still contain line numbers. Abbreviations of the controls may

be given. Valid object-controls are:

COMMENTS/NOCOMMENTS, LINES/NOLINES,

LOCALS/NOLOCALS, GLOBALS/NOGLOBALS,

PUBLICS [EX]/NOPUBLICS [EX], SYMB/NOSYMB,

TYPE/NOTYPE and PURGE/NOPURGE.

Example:

l166 link x.obj y.obj oc(ty, noln) to z.lno
; perform type checking, no lines numbers in
; object file z.lno

Chapter 1111–74
L
IN
K
E
R
/L
O
C
A
T
O
R

ORDER

Control:

ORDER(order-control,...)

or

ORDER order-control

Abbreviation:

OR

Class:

Locate module scope

Default:

-

Description:

order-control must be specified as:

 Abbreviation

SECTIONS({section-name ['class-name']},...) SE

GROUPS({group-name [(section-name,...)] },...) GR

ORDER specifies a partial or complete order for sections and groups and

the sections within a group or class.

The subcontrol SECTIONS is used to order the list of section-names. The

section-name identifies the specific sections to be ordered. The

'class-name' may be used to resolve conflicts with duplicate

section-names. The locator issues a warning when sections of different

classes are listed within one order.

Linker/Locator 11–75

• • • • • • • •

To add all sections belonging to a class to the order, an asterisk ('*') can be

used instead of the section name. The sections belonging to this class are

all added to the list in an order depending on the status of the

SORTALIGN/NOSORTALIGN control. When SORTALIGN is active the

sections are added sorted by align type, otherwise the sequence the

sections occur in in the object file is used. When an asterisk is supplied

without a class name, l166 issues an error that it cannot find section '*'.

When a complete class is added to an order by using the asterisk notation,

the locator does not complain when the sections within that order belong

to different classes.

All sections in one order should belong to the same group or they should

not belong to any group. All sections within one group must have the

same class. This implies that using the asterisk ('*') to order classes cannot

be done when the sections in these classes belong to a group because the

other sections specified within the same order certainly have a different

group.

When an order consists of different classes the behavior of the CLASSES

control is affected. One complete order will always be located as a whole.

This implies that when one or more classes within the order have a range

specified with the CLASSES control, the entire order can only be located

within one range. When a CLASSES range is supplied for more than one

class within the order, the range for the first class in the order will be

effective for the entire order.

See also: CLASSES control.

When adding a complete class to the order by using an asterisk, the

sections within that class cannot be ordered with a separate ORDER

SECTIONS control.

The subcontrol GROUPS is used to order the listed groups in consecutive

pages in the memory space. A list of sections supplied with a group is

used to order these sections within the group. When a section does not

belong to this group the locator issues an error.

If an order cannot be completed by the locate algorithm the locator issues

a warning and ignores the remaining part of the order which caused this

warning.

Chapter 1111–76
L
IN
K
E
R
/L
O
C
A
T
O
R

The locator treats the next controls as one order:

ORDER(SECTIONS(SECTION1, SECTION2))
ORDER(SECTIONS(SECTION3, SECTION1))
ORDER(GROUPS(GROUP1(SECTION2, SECTION4)))

The resulting order is:

SECTION3, SECTION1, SECTION2, SECTION4

Using the module scope switch in the ORDER control is allowed at the

following syntactical locations:

ORDER({module-name order-control },...)

order-control:

SECTIONS({module-name section-name
 ['class-name']},...)

GROUPS({module-name group-name
 (section-name,...)},...)

When the scope is set to GENERAL the locator searches all input modules

for the section-name or group-name. When there is more than one match

a warning will be issued and the control is applied to the first match.

Using global sections (GLOBAL, COMMON, SYSSTACK or GLBUSRSTACK)

in ORDER SECTIONS causes the ORDER control to be a general control for

that section.

Using a global group in ORDER GROUP causes the ORDER control to be a

general control for that group.

Example:

Locate the SEC1, SEC4 and SEC3 in this order:

order(sections(SEC1, SEC4, SEC3))

Also locate the SEC1, SEC4 and SEC3 in this order, but take them from

class CLASS1 only::

or se(SEC1 ’CLASS1’, SEC4 ’CLASS1’, SEC3’CLASS1’)

Linker/Locator 11–77

• • • • • • • •

The same, but then for sections from different classes. The CLASSES

control specifies that CLASS1 will be located in the range 8400h to

87ffh , and CLASS2 in the range 8000h to 83ffh ; the locator will locate

the entire order of SEC1, SEC4 and SEC3 is located within the range for

CLASS1 because this is the first class within the order; the NOWARNING

control is used to suppress the warning that sections from different classes

are ordered:

OR SE(SEC1 ’CLASS1’, SEC4 ’CLASS2’, SEC3’CLASS2’)
CLASSES(’CLASS2’ (8000h to 83ffh),

 ’CLASS1’ (8400h to 87ffh))
NOWARNING(149)

Order the (the sections from the) classes CLS3, CLS1 and CLS2. The

CLASSES control specifies that CLS1 will be located in page 4, which

implies that the entire order of CLS3, CLS1 and CLS2 is located in page 4:

ORDER SECTIONS(* ’CLS3’, * ’CLS1’, * ’CLS2’)
CLASSES(’CLS1’ (RANGEP(4)))

Order classes CLS3 and CLS2 and locate section START_SCT immediately

before these classes and section END_SCT immediately after these classes:

OR SE(START_SCT, * ’CLS3’, * ’CLS2’, END_SCT)

Put the groups GROUP1 and GROUP2 in consecutive pages and order SEC1
and SEC2 within GROUP2:

OR GR(GROUP1, GROUP2 (SEC1, SEC2))

Order the sections CSECT1 and CSECT3 from module TSK1.LNO and

CSECT1 from module TSK2.LNO:

ORDER SECTIONS
(

{ TSK1.LNO CSECT3, CSECT1 }
{ TSK2.LNO CSECT1 }

)

Chapter 1111–78
L
IN
K
E
R
/L
O
C
A
T
O
R

OVERLAY

Control:

OVERLAY(class-name,... (addr1 TO addr2))

Abbreviation:

OVL

Class:

Locate general

Default:

-

Description:

The OVERLAY control is used for code memory banking. The class-names
specify the classes to be overlaid on the address range addr1 TO addr2.

Each class-name is one bank. The locator needs a CLASSES control for all

class-names and locates the classes in the specified ranges. However,

when labels or symbols, defined in sections belonging to these classes, are

used in the code, the values are translated. The value used in the code for

such a label or symbol is the address it would have if the class was located

in the address range addr1 TO addr2 of the OVERLAY control. This

translation is done as follows:

value_in_code = symbol_address - symbol_class_base + overlay_base

value_in_code : result value of symbol when it is used in the

code

symbol_address : address of symbol located in one of the classes

in the overlay

symbol_class_base : the base address of the class where the section

of the symbol belongs to. The class is one of

the overlay classes and the address is set by the

CLASSES control for this class.

overlay_base : the base address of the overlay area. This

address is set by the OVERLAY control.

Linker/Locator 11–79

• • • • • • • •

The locator does not accept more than one OVERLAY control.

Example:

In this example some hardware is used to switch between three memory

banks, BANK1, BANK2 and BANK3. The hardware is steered by a software

routine: the bankswitch function. Each bank is one EPROM or a set of

EPROMs. The EPROM programmer takes care of extracting memory banks

from the hex file and burning each bank in a separate EPROM. This is

possible because each bank has its own address range.

Figure 11-1 shows the memory map.

BANK3

BANK2

BANK1

OVERLAY AREA

lab_in_bank3

lab_in_bank2

lab_in_bank1

060000h

050000h

040000h

000000h

010000h

Figure 11-1: Memory map

Each bank is a set of sections all having the same class. In this case the

classes are named 'BANK1', 'BANK2' and 'BANK3'. The application is

located with the following locator invocation file:

MEMSIZE(SEGMENT 7)

OVERLAY(BANK1, BANK2, BANK3 (SEGMENT 1 TO SEGMENT 2 – 1))

RESERVE MEMORY(SEGMENT 1 TO SEGMENT 2 – 1)

CLASSES
(

BANK1 (SEGMENT 4 TO SEGMENT 5 – 1)
BANK2 (SEGMENT 5 TO SEGMENT 6 – 1)
BANK3 (SEGMENT 6 TO SEGMENT 7 – 1)

)

Chapter 1111–80
L
IN
K
E
R
/L
O
C
A
T
O
R

The overlay area is segment 1 (040000h to 04FFFFh). In this example the

area is reserved to prevent other sections to be located there, but it is also

possible to locate one of the banks in that area. The MEMSIZE control is

used to be able to locate the banks (classes) outside the physical memory

range of the C166/ST10.

The labels lab_in_bank1, lab_in_bank2 and lab_in_bank3 are labels

defined in sections belonging to the banks BANK1, BANK2 and BANK3

respectively. Let's assume that they are located at the addresses 040100h,

05012Ah and 0603F0h respectively. When the following code is used in a

procedure, no matter if it belongs to a bank or not, the result uses the

translated addresses of the labels:

Source Result

.

.

MOV R4, #SEG lab_in_bank1 MOV R4, # 1h

MOV R5, #SOF lab_in_bank1 MOV R5, # 100h

call to bankswitch function

.

.

MOV R4, #SEG lab_in_bank2 MOV R4, # 1h

MOV R5, #SOF lab_in_bank2 MOV R5, # 12Ah

call to bankswitch function

.

.

MOV R4, #SEG lab_in_bank3 MOV R4, # 1h

MOV R5, #SOF lab_in_bank3 MOV R5, # 3F0h

call to bankswitch function
.

.

As you can see all labels are now addressed in segment 1, which is the

overlay area. The call to bankswitch function actually switches the

memory bank, so the address in registers R4/R5 points to the correct code.

Linker/Locator 11–81

• • • • • • • •

PAGELENGTH

Control:

PAGELENGTH(lines)

Abbreviation:

PL

Class:

Link/Locate general

Default:

PAGELENGTH(60)

Description:

Sets the maximum number of lines on one page of the print file and

MISRA C file. This number does not include the lines used by the page

header (4). The valid range for the PAGELENGTH control is 20 - 255.

Example:

l166 link x.obj pl(50) ; set page length to 50

Chapter 1111–82
L
IN
K
E
R
/L
O
C
A
T
O
R

PAGEWIDTH

Control:

PAGEWIDTH(characters)

Abbreviation:

PW

Class:

Link/Locate general

Default:

PAGEWIDTH(132)

Description:

Sets the maximum number of characters on one line in the listing. Lines

exceeding this width are wrapped around on the next lines in the listing.

The valid range for the PAGEWIDTH control is 78 - 255.

Example:

l166 link x.obj pw(80)

; set page width to 80 characters

Linker/Locator 11–83

• • • • • • • •

PAGING

Control:

PAGING/NOPAGING

Abbreviation:

PA/NOPA

Class:

Link/Locate general

Default:

PAGING

Description:

Turn the generation of formfeeds and page headers in the print file and

MISRA C report on or off.

Example:

l166 locate task intno=0 x.lno nopa

; turn paging off: no formfeeds and page headers

Chapter 1111–84
L
IN
K
E
R
/L
O
C
A
T
O
R

PRINT

Control:

PRINT[(file)]/NOPRINT

Abbreviation:

PR/NOPR

Class:

Link/Locate general

Default:

Link stage: NOPRINT

Locate stage: PRINT(outputfile.map)

Description:

The PRINT control specifies an alternative name for the print file. The

filename may be omitted. If no extension is given, the default extension is

used. In the link stage the default filename is a combination of the

basename of the linked output object file and the extension .lnl . In the

locate stage the default filename is the basename of the absolute output

file and the extension .map . The NOPRINT control causes no print file to

be generated. This also affects generation of a MISRA C report.

Example:

l166 link x.obj pr
; print file name is x.lnl

l166 link x.obj to out.lno pr
; print file name is out.lnl

l166 link x.obj pr(mylist)
; print file name is mylist.lnl

l166 locate task intno=0 x.lno
; print file name is a.map

l166 locate task intno=0 x.lno pr(abslist)
; print file name is abslist.map

Linker/Locator 11–85

• • • • • • • •

PRINTCONTROLS

Control:

PRINTCONTROLS(print-control,...)

Abbreviation:

PC

Class:

Link/Locate module scope

Default:

PC(NOCOMMENTS, NOLINES, LOCALS, PUBLICS, GLOBALS, NOSYMB)

Description:

This control causes the specified print-controls to be applied to the print

file only. This does not affect the object file. For example if you give the

control PC(NOLINES) only the print file contains no line numbers, the

object file may still contain line numbers. Abbreviations of the controls

may be given. Valid print-controls are:

COMMENTS/NOCOMMENTS, LINES/NOLINES, LOCALS/NOLOCALS,

SYMB/NOSYMB, PUBLICS/NOPUBLICS, GLOBALS/NOGLOBALS, and

PURGE/NOPURGE.

When you specify a control in both OBJECTCONTROLS and

PRINTCONTROLS, it has the same effect as specifying it once outside of

these controls.

Example:

l166 link x.obj y.obj pc(ty, noln) to z.lno

; perform type checking, no lines numbers in
; print file z.lnl

Chapter 1111–86
L
IN
K
E
R
/L
O
C
A
T
O
R

PUBLICS

Control:

PUBLICS [EXCEPT(public-symbol,...)]
NOPUBLICS [EXCEPT(public-symbol,...)]

Abbreviation:

PB [EC] / NOPB [EC]

Class:

Link/Locate module scope

Default:

PUBLICS for both OBJECTCONTROLS and PRINTCONTROLS

Description:

PUBLIC keeps the public symbol records in the object file and the

corresponding information to be placed in the print file when the DEBUG

control is in effect. The EXCEPT subcontrol allows you to modify this

control. This subcontrol is only valid at link stage. Public symbol records

are used by the l166 linker to resolve external references. Public-symbol
can be any valid symbol name that is defined public in one of the input

modules.

If a public symbol is used in a relocation expression in the output file, the

symbol is not removed from the output file. Instead, the symbol is

converted to an external reference. The linker issues a warning because of

this unresolved external.

See also OBJECTCONTROLS, PRINTCONTROLS, PURGE/NOPURGE.

Example:

l166 link x.obj y.obj pb ec(upub1, upub2)
to xy.lno

; keep all publics except for the user defined
; public symbols upub1 and upub2

l166 locate task intno=0 xy.lno nopb
; no public symbol records in a.out and a.map

Linker/Locator 11–87

• • • • • • • •

PUBLICSONLY

Control:

PUBLICSONLY(filename,...)

Abbreviation:

PO

Class:

Link only

Default:

-

Description:

PUBLICSONLY indicates that only the absolute public symbol records of

the argument files are used. The other records in the module are ignored.

This can be used to resolve external references to C166/ST10 files.

filename can be the name of a file optionally preceded by a directory path

name.

Example:

l166 link x.obj y.obj po(x.obj)

; use only publics of x.obj

Chapter 1111–88
L
IN
K
E
R
/L
O
C
A
T
O
R

PUBTOGLB

Control:

PUBTOGLB [(ptog-specifier,...)]

or

PUBTOGLB [ptog-specifier]

Abbreviation:

PTOG

Class:

Locate module scope

Default:

-

Description:

The ptog-specifier is one of:

 Abbrev.

SECTIONS({sect-name ['class-name']},...) SE

GROUPS(group-name,...) GR

This control causes all public symbols, sections and groups to be

converted to global. This means that the task scope is removed from the

input module. This control can be used when the objects from the

assembler and public libraries are directly input for the locator.

When some modules are with PTOG and some modules are without

PTOG it might be necessary to force some groups or sections to be

combined from all modules. This can be done with the sub-controls

SECTIONS and GROUPS. The sub-control SECTIONS specifies section

sect-name with class-name to be made global. With the sub-control

GROUPS only the groups group-name are changed to global. When PTOG

is specified without sub-controls it will overrule the PTOG controls with

sub-controls.

Linker/Locator 11–89

• • • • • • • •

When PTOG is specified after the GENERAL control or before the first

input module it will affect all input modules.

Using the module scope switch in the PUBTOGLB control is allowed at

the following syntactical locations:

PUBTOGLB({module-name ptog-specifier },...)

SECTIONS({{module-name sect-name ['class-name'] }},...)

GROUPS({module-name group-name },...)

Pitfall when PUBLIC is promoted to GLOBAL

The following example makes the pitfall clear:

module1: - has a CODE section CODE1 with task procedure PRC1

- has a DATA section DATA1 in group GRP1

- DPP2 is assumed to GRP1

- The code uses EXTERN LAB3:WORD

module2: - has a CODE section CODE2 with task procedure PRC2

- has a DATA section DATA2 in group GRP1

- DPP2 is assumed to GRP1

- The code uses EXTERN LAB3:WORD

module3: - defines PUBLIC LAB3 in a DATA section DATA3 in GRP1

Locator invocation:

LOCATE
module1
module2
module3 PTOG
INTERRUPT(PRC1(20h) PRC2(21h))

The group GRP1 is now a PUBLIC group in module1 and in module2. It is

a GLOBAL group in module3 because of the PTOG control. This means

that the three GRP1 groups are different groups. So, it is not guaranteed

that the three groups are located in the same page. The assumed DPP2 in

module1 and module2 now cannot safely be used to access LAB3 when

DPP2 is loaded with the page number of GRP1.

Chapter 1111–90
L
IN
K
E
R
/L
O
C
A
T
O
R

To overcome the problem you have the following options:

- Explicitly load DPP2 with the page number of LAB3 each time this

label is accessed. The three groups remain different groups which

can reside in different pages.

- Add the PTOG control for all GRP1 to the locator invocation. The

three groups are now combined to one group. This whole group

cannot be larger than one page. The invocation should be as

follows:

LOCATE
module1
module2
module3 PTOG
INTERRUPT(PRC1(20h) PRC2(21h))

GENERAL ; all following controls
; apply to all modules

PTOG(GROUPS(GRP1))
 ; GRP1 from all modules now global

An equal example can be given for a PUBLIC section with a GLOBAL

label:

module1: - has a CODE section CODE1 with task procedure PRC1

- has a PUBLIC DATA section DATA1

- DPP2 is assumed to DATA1

- The code uses EXTERN LAB3:WORD

module2: - has a CODE section CODE2 with task procedure PRC2

- has a PUBLIC DATA section DATA1

- DPP2 is assumed to DATA1

- The code uses EXTERN LAB3:WORD

module3: - defines PUBLIC LAB3 in a PUBLIC DATA section DATA1

Locator invocation:

LOCATE
module1
module2
module3 PTOG
INTERRUPT(PRC1(20h) PRC2(21h))

Linker/Locator 11–91

• • • • • • • •

Also in this example we have to be careful when using LAB3 in module1

and module2. When in these module DPP2 is loaded with the page

number of data section DATA1 it is not guaranteed that the three data

sections in DATA1 are located within the same page because the PUBLIC

sections are not combined to each other and they also will not be

combined to the GLOBAL section in module3.

To overcome the problem you have the following options:

- Explicitly load a DPP with the page number of LAB3 each time the

label is accessed. The three data sections remain separate sections.

- Add the PTOG control for section DATA1 from all modules to the

locator invocation. The three data sections are now combined to

one section. This whole section cannot be larger than one page.

The locator invocation should be:

LOCATE
module1
module2
module3 PTOG
INTERRUPT(PRC1(20h) PRC2(21h))
GENERAL ; all following controls

; apply to all modules
PTOG(SECTIONS(DATA1))
 ; all DATA1 sections become global

Example:

l166 LOCATE PTOG hello.obj c166s.lib
l166 LOCATE mod1.lno PTOG mod2.lno

PTOG(GROUPS(C166_DGROUP))

Chapter 1111–92
L
IN
K
E
R
/L
O
C
A
T
O
R

PURGE

Control:

PURGE/NOPURGE

Abbreviation:

PU/NOPU

Class:

Link/Locate module scope

Default:

The controls are set as mentioned by their description.

Description:

PURGE is exactly the same as specifying NOLINES, NOLOCALS,

NOCOMMENTS, NOPUBLICS, NOSYMB, NOGLOBALS. NOPURGE in the

control list is the same as specifying LINES, LOCALS, COMMENTS,

PUBLICS, SYMB, GLOBALS. PURGE removes all of the public, global and

debug information from the object file and the print file. It produces the

most compact code possible. NOPURGE is useful to debuggers.

PRINTCONTROLS and OBJECTCONTROLS can be used to modify the

scope of PURGE/NOPURGE.

Example:

l166 link x.obj y.obj purge

; no public and debug info

Linker/Locator 11–93

• • • • • • • •

RENAMESYMBOLS

Control:

RENAMESYMBOLS(rename-control,...)

Abbreviation:

RS

Class:

Link/Locate module scope

Default:

All symbols/groups keep the name they already have.

Description:

RENAMESYMBOLS allows you to change the names of already defined

symbols and groups.

At link stage the following rename-controls are allowed:

 Abbreviation

EXTERNS({extrn-symbol TO extrn-symbol}, ...) EX

PUBLICS({public-symbol TO public-symbol}, ...) PB

GROUPS({groupname TO groupname}, ...) GR

At link stage the following rename-controls are allowed:

 Abbreviation

EXTERNS({extrn-symbol TO extrn-symbol}, ...) EX

GLOBALS({global-symbol TO global-symbol}, ...) GL

INTNRS({intnr-symbol TO intnr-symbol}, ...) IN

EXTERNS allows you to change existing external symbol names.

extrn-symbol is any valid name for an external symbol.

PUBLICS allows you to change the names of public symbols.

public-symbol is any valid name for a public symbol. The first

public-symbol must be an existing public in one of the modules in the

input list.

Chapter 1111–94
L
IN
K
E
R
/L
O
C
A
T
O
R

GLOBALS allows you to change the names of existing global symbols.

global-symbol is any valid name for a global symbol.

GROUPS allows you to change the groupname assigned by the assembler

or C-compiler. The first groupname must be an existent group in one of

the modules in the input list.

INTNRS allows you to change interrupt names which were defined in

assembler source modules. intnr-symbol is any valid name for an interrupt

symbol.

Using the module scope switch in the RENAMESYMBOLS control is

allowed at the following syntactical locations:

 RENAMESYMBOLS({module-name rename-control },...)

In the rename-control:

type({{module-name name TO name }},...)

When the module scope is set to GENERAL the locator searches for name
in all input modules and the control is applied to all matches.

You can use the RENAMESYMBOLS control to override predefined symbol.

Specify the predefined symbol as the destination name. The locator notices

that this predefined symbol already has a value and will not overwrite it

but issues warning 517: 'using existing definition of symbol'. This can be

used to override DPP assignments, specify a different user stack, etc.

Predefined symbols cannot be renamed, because they do not exist at the

time the invocation is parsed by the locator. To rename predefined

symbol, use EQU in the assembly source to equate the predefined symbol

to another symbol.

There is a limitation of 100 to the total number of RENAMESYMBOLS.

Examples:

l166 link x.obj rs(gr(agroup to newgroup))

l166 locate task intno=0 x.lno
rs(gl(aglobal to newglobal))

l166 locate x.obj ext/rt166s.lib
rs(gl(_my_stack_top to?USRSTACK_TOP))

Linker/Locator 11–95

• • • • • • • •

RESERVE

Control:

RESERVE(reserve-control,...)

or

RESERVE reserve-control

Abbreviation:

RE

Class:

Locate general

Default:

All of memory is assumed available

Description:

Specify reserve-control with one or more of the following subcontrols:

 Abbreviation

MEMORY ({address1 TO address2},...) ME

PECPTR ({pecptr1 [TO pecptr2]},...) PP

INTTBL ({intno1 [TO intno2]},...) IT

SYSSTACK (ssk_no) SY

RESERVE tells l166 to prevent locating sections in certain areas of

memory. If however, for example due to absolute section, sections are

located in such a reserved memory area, l166 reports a warning but still

places the section in this area. The first value given in the command must

be less than or equal to the second value.

MEMORY reserves address ranges. PECPTR prevents the location of

PEC-pointer or PEC-pointer ranges, INTTBL reserves positions in the

interrupt table and SYSSTACK reserves a specified stack range.

RESERVE overrules the assembler directive SSKDEF.

address1, address2 is any valid 18-bit or 24-bit memory address

that lies within the processors memory space.

Chapter 1111–96
L
IN
K
E
R
/L
O
C
A
T
O
R

pecptr1, pecptr2 can be one of the PEC pointer names: PECC0 to

PECC7.

intno1, intno2 is a value of 0 to 127.

ssk_no 0, 1, 2 or 3 if NOEXTSSK is set in the assembler

modules;

0, 1, 2, 3, 4 or 7 if EXTSSK is set in the

assembler modules. If 7 is used, the sections

must have the combine type SYSSTACK.

See the SSKDEF directive for an explanation of the ssk numbers.

Examples:

reserve(memory(100 to 200, 400H to 500H))
re me(page(2) to page(3) – 1) ;reserve one page
re pp(PECC3 TO PECC5, PECC7)
re it(3 to 10, 12, 20 to 22) re sy(2)

Linker/Locator 11–97

• • • • • • • •

RESOLVEDPP

Control:

RESOLVEDPP/NORESOLVEDPP

Abbreviation:

RD/NORD

Class:

Locate general

Default:

NORESOLVEDPP

Description:

When a module uses an external address symbol from a located file, the

absolute symbol value is a full 24-bit pointer. To translate these 24-bit

pointers to 16-bit DPP referenced addresses, the RESOLVEDPP control can

be supplied to the locator. Set the DPP addresses using the SETNOSGDPP

control.

The assembler and compiler must reserve this 16 bit space instead of a

regular 24 bit space; the object file size cannot be reduced in the locator

stage.

The RESOLVEDPP control is only needed when the 2 modules are located

in seperate stages. When located at the same time, the locator is able to

keep track of the correct pages and will work properly without the flag.

Please note that usage of the RESOLVEDPP control can result in faulty

code. See the example below.

Module A declares:

symbol A at 05'E012h

symbol B at 08'0113h

symbol C at 00'0201h

DPP0 at 05'C000h (page 23)

DPP1 at 08'0000h (page 32)

Chapter 1111–98
L
IN
K
E
R
/L
O
C
A
T
O
R

Module B uses symbols A, B and C from module A and declares:

DPP0 at 05'C000h (page 23)

DPP1 at 08'7000h (page 33)

Without the RESOLVEDPP control, the symbols are used as 24 bit pointers,

or the locator issues an error that the symbol value does not fit in the

assigned space (as could be the case for externally referenced near

variables).

With the RESOLVEDPP control, the locator will try to fit symbols A,B and

C in one of the pages referenced by the DPP registers. Symbol A will fit

nicely in DPP0 and will be stored as DPP0:2012h. Symbol B will not fit in

DPP0 and DPP1 so the locator might issue an error after all for it, or use

the 24 bit pointer. Symbol C however, does not fit in DPP0 or DPP1, but

the value does fit in a 16 bit position. Hence the locator does not see a

problem and will patch the symbol value 00201h in the reserved space.

However, 00201h is also a valid DPP0 address: DPP0:0201h and with DPP0

pointing at page 23, this address reference will go wrong at run-time.

To avoid this situation, do not use the RESOLVEDPP control in cases

where a 24 bit address lies in segment 00. In all other segments, the 24 bit

address will not fit in a 16 bit space and the locator will proceed as usual.

Examples:

l166 loc a.obj RESOLVEDPP

 ; Resolve DPP addresses for symbols

Linker/Locator 11–99

• • • • • • • •

MISRAC

Control:

MISRAC[(filename)]

Abbreviation:

MC

Class:

Link/Locate general

Default:

Description:

If the MISRAC control is specified, a report will be generated specifying

the MISRA C checks used during C compilation for each module used

while linking or locating. This is done in a cross reference table.

A seperate list of modules without MISRA C checks is printed below the

table. A report filename may be specified. By default, the report name is

the output filename with a "mc" suffix.

The linker will pass MISRA C settings to the resulting output file. The set

of MISRA C checks of the linked file is the lowest common denominator of

all the checks specified for the individual modules.

If the MC control is not specified during linking all MISRA C settings of the

linked modules will be lost and the output file will not contain any

MISRA C settings. If no modules have MISRA C settings, but the MC control

is provided, the output file will specify that it does not have any MISRA C

checks effective.

A located out-file does not contain MISRA C settings. the only effect of this

control during locating is generation of this report. If no print file is

generated (default during linking), no MISRA C report will be generated

either.

Chapter 1111–100
L
IN
K
E
R
/L
O
C
A
T
O
R

The MISRA C report uses the page length as specified with the PAGELEN

control. The pagewidth is adjusted to make room for the longest module

name plus a list of MISRA C checks. This means that the pagewidth will

most likely exceed 140 characters.

Example:

C166 link x.obj y obj PR MC

; create print file

; generate repert

Linker/Locator 11–101

• • • • • • • •

SECSIZE

Control:

SECSIZE(size-control,...)

Abbreviation:

SS

Class:

Link / Locate module scope

Default:

-

Description:

Specify size-control as:

section-name ['class-name'] ([+|-] size)

SECSIZE allows you to specify the memory space used by a section. The

size is an 18-bit number (or 24-bit for C167 family if EXTMEM assembler

control is specified) that is used to change the size of the specified section.

There are three ways to specify this value:

+ number will be added to current section length

- number will be subtracted from the current section length

No sign indicates that the number should become the new section

length.

The locator will act as if an ORG directive was used at the end of the

relocatable section in assembly. For example if the section STACKSECT is

decreased as follows:

SECSIZE(STACKSECT(–20h))

the same effect was obtained if the next line was included at the end of

the section STACKSECT:

ORG $ – 20h

Chapter 1111–102
L
IN
K
E
R
/L
O
C
A
T
O
R

Another example:

SECSIZE(STACKSECT(1024))

like:

ORG 1024

where STACKSECT is a relocatable section.

Using the module scope switch in the SECSIZE control is allowed at the

following syntactical locations:

SECSIZE({module-name size-control },...)

When the module scope is general the SECSIZE control is applied to all

sections with section-name and class-name.

When the SECSIZE control is specified after the GENERAL control, all input

modules are searched for the named sections. When multiple sections

occur with the same name, only the first occurrence is resized. When all

occurrences should be resized, the section name should be specified for

each module (using the module scope switch) for all these sections. For

example:

GENERAL
SECSIZE({ module1.obj SOMESECT (200h) }

{ module2.obj SOMESECT (200h) })

Examples:

secsize(Sec1 (1000))
ss(Sec1 ’Class1’ (0F00H)) ss(Sec1 (+100))

Linker/Locator 11–103

• • • • • • • •

SET

Control:

SET(system settings)

Abbreviation:

-

Default:

SET(SECTIONS=5000, GROUPS=250, CLASSES=250)

Description:

The SET control allows manipulation of the internal tables used for section

cross referencing and class or group ordering. The upper limit of the

number of sections, groups or classes is at this moment restricted to 65533.

Reducing the default limits can increase the linker/locator processing

speed and will reduce memory usage. Use the SUMMARY control to get a

definite count of sections found by the linker/locator.

Example:

l166 loc @_manysects.loc ”SET(SECTIONS=30000)”
;allow up to 30,000 sections

Chapter 1111–104
L
IN
K
E
R
/L
O
C
A
T
O
R

SETNOSGDPP

Control:

SETNOSGDPP(dpp-name(value), ...)

Abbreviation:

SND

Class:

Locate general

Default:

ADDRESSES LINEAR(0) if SETNOSGDPP is not used.

If SETNOSGDPP is used the not assigned DPPs are assigned as follows:

DPP0(0), DPP1(1), DPP2(2), DPP3(3)

Description:

dpp-name is one of: DPP0, DPP1, DPP2, DPP3.

value is a page number which is expected to be present in the related DPP

register. The value ranges from 0 to the last available page number, and

must be 3 for DPP3. If the SND control is used, the locate algorithm

changes for LDAT sections. The approach of LDAT sections is no longer

linear but paged. The LDAT sections cannot be located outside one of the

indicated pages. Relative LDAT sections are located within these pages.

Value may be a valid expression or a single public/global symbol.

If the ADDRESSES LINEAR control is used it is not possible to use the

SETNOSGDPP control. The predefined symbols ?BASE_DPP0,

?BASE_DPP1, ?BASE_DPP2 and ?BASE_DPP3 are directly related to the

page numbers assigned by the SETNOSGDPP control. The symbols

contain the base address of the assigned page.

Example:

setnosgdpp(dpp0(5), dpp1(6), dpp2(9), dpp3(3))
snd (dpp0(0A4000h / (page 1)), dpp1(_DppVar))
; assign page 40 to DPP0 and the value public
; symbol _DppVar to DPP1

Linker/Locator 11–105

• • • • • • • •

SMARTLINK

Control:

SMARTLINK [([smartlink-spec | EXCEPT(smartlink-spec)] [[,] ...])]

Abbreviation:

SL

Class:

Link/Locate general

Default:

-

Description:

The SMARTLINK control enables the linker/locator to check for unused

sections in the output file and removes them if specified in the

smartlink-spec field. Valid values for smartlink-spec are:

SECTIONS(sect-name)
GROUPS(group-name)
CLASSES(class-name)
FILE(file-name)

The abbreviations are respectively: SE, GR, CL, FI.

The linker/locator establishes a list of entry points for the program code

and data. This list is established as follows:

• all task routines

• sections called ?C166_HEAP, C166_BSS, C166_INIT, C166_US,

C166_US0, C166_US1 and C166_INT

• userstack, global userstack and system stack sections

• absolute sections

Sections in this list are never removed. Any section referred to by a

relocatable symbol inside these sections, is added to the list of entry

points. All sections are checked this way. Sections which are not listed in

the the entry point list are assumed to be unused and will be removed if

specified in the smartlink-spec field.

Chapter 1111–106
L
IN
K
E
R
/L
O
C
A
T
O
R

When a section is removed, all address ranges, relocation records, symbols

and other associated information is also removed. If the last section of a

class or group is removed, the class or group itself is removed as well.

Only sections specified in the SMARTLINK control will be removed. If no

sections are specified, the linker/locator assumes that any section in the

output file can be removed.

Sections specified in the EXCEPT clause will not be removed. Sections you

specify in the EXCEPT clause, are not added to the entry point list; the

EXCEPT clause only prevents sections from being removed if they are not

listed in the entry point list.

Use the SMARTLINK control preferably in the global scope locator phase.

In this phase it is easier to determine which sections are unused and

therefore can be removed. You can use the control during the link stage,

but you must ensure that sections needed by external modules -which are

not included at that point- are not removed. You can use the EXCEPT

clause for that.

Sections specified in controls other than the SMARTLINK control, will not

be removed even if they are explicitly selected for removal. Controls in

which sections can be specified are the ADDRESSES control (which makes

a section absolute, so an entry point) and the ORDER, SECSIZE and

PUBTOGLB controls. Please note that this does not work for classes or

groups. If the last section of a class or group is removed, the class or

group itself is removed as well, even if specified explicitly in a CLASSES or

ORDER control.

Because the linker/locator removes the sections from the output file, it will

first extract modules from the libraries if needed. If sections that require

these library modules are removed, the extracted sections are removed as

well.

Some library modules use sections that comply with the specification for

initial entry point as mentioned above. This is specifically the case for

sections like C166_BSS and C166_INIT. These sections will be extracted

from the library and included in the output file, although their content is

unused. In general, global and static variables from the library will not be

removed if the module specifying them was extracted at some point.

Linker/Locator 11–107

• • • • • • • •

Take care when you use the ORDER control and calculate the location of a

subsequent section based on the location and size of an earlier section.

Because the subsequent section may not be referred to directly using a

relocatable symbol, it could be removed so the runtime calculation of the

start address of that subsequent section will fail. This is a complicated and

error-prone way of programming and is strongly discouraged.

Examples:

SMARTLINK
; Remove any and all unused sections

SMARTLINK(FILE(module.obj))
; Remove only unused sections belonging to module
; ”module.obj”

SL(FI(module.obj) EXCEPT(SE(sect1)))
; Remove all unused sections of module
; ”module.obj” except section ”sect1”

SL(FI(a.lno) EC(CL(class1), SE(sect1)))
; Remove all unused sections from module ”a.lno” except
; sections belonging to class ”class1” or sections
; called ”sect1”.

The smartlink-spec provides levels of control. If you specify a section for

removal using a less general group specification, this will override an

except clause specification for a more general group. For example, when

you specify a section for removal using GROUPS(), this overrides an

(earlier or later) specification using EXCEPT(CLASSES()). This works vice

versa as well: excepting a section from a group, class or file that should be

removed as a whole.

SL(FI(a.lno) EC(CL(class1)) EC(GR(group1)) SE(sect1))
; Remove all sections from module ”a.lno”, except those
; in class ”class1” or group ”group1”, unless it is
; section ”sect1”. The SE() specification overrides the
; GR() and CL() EXCEPT clauses.

SL(EC(FI(a.lno)), CL(class1))
; Remove all sections of class ”class1”. Because this is
; less general then the EXCEPT clause, the latter has no
; effect (all sections of ”class1” even in module
; ”a.lno” will be removed)

Chapter 1111–108
L
IN
K
E
R
/L
O
C
A
T
O
R

SORTALIGN

Control:

SORTALIGN/NOSORTALIGN

Abbreviation:

SAL/NOSAL

Class:

Locate general

Default:

SORTALIGN

Description:

When NOSORTALIGN is used the sections with equal locate priority are

located in the order they were found in the object files. With SORTALIGN

the locator uses the order of the section alignment type (bit, byte,

word, ...). This avoids memory gaps introduced by the alignment of

sections. The NOSORTALIGN is available for compatibility with older

versions of l166.

Examples:

l166 locate x.obj y.obj sortalign

; turn sortalignment off

Linker/Locator 11–109

• • • • • • • •

STRICTTASK

Control:

STRICTTASK/NOSTRICTTASK

Abbreviation:

ST/NOST

Class:

Link/Locate general

Default:

NOSTRICTTASK

Description:

When STRICTTASK is set the linker/locator performs a strict checking of

the Task Concept. When this control is set the operation of all Task

Concept related actions of the linker/locator are compatible with the

versions older than 4.0.

The linker introduces the following checks and restrictions when

STRICTTASK is set:

- only one Task procedure in the input is accepted, only one Task

procedure can be emitted in the output.

- all register bank definitions in the input are combined to one

register bank. Only one register bank definition can be emitted in

the output. Register definitions with different names cause a

warning.

See also the REGDEF/REGBANK/COMREG directives of the assembler.

The locator introduces the following checks and restrictions when

STRICTTASK is set:

- only one Task procedure per input module is allowed

- only one register definition per input module is allowed, register

definitions with equal names are not combined

- the ADDRESSES RBANK does not allow using register bank names

Chapter 1111–110
L
IN
K
E
R
/L
O
C
A
T
O
R

Examples:

l166 link x.obj st ; perform strict checking
; of the Task Concept

Linker/Locator 11–111

• • • • • • • •

SUMMARY

Control:

SUMMARY/NOSUMMARY

Abbreviation:

SUM/NOSUM

Class:

Link/Locate general

Default:

NOSUMMARY

Description:

Print a summary in the print file. The summary consists of an

alphabetically ordered section list, grouped by class and group name. For

each section, the start address, size and memory class is printed. For each

group or class, a total size is printed.

Below this some general information is printed. This includes the total

number of symbols, sections, groups, classes and modules, total section

size (actually used memory), used RAM and ROM, and RAM and ROM

size, system stack, user stack and heap sizes and total time spent linking or

locating.

Examples:

l166 loc @_x.ilo sum ; print summary in print file

Chapter 1111–112
L
IN
K
E
R
/L
O
C
A
T
O
R

SYMB

Control:

SYMB/NOSYMB

Abbreviation:

SM/NOSM

Class:

Link/Locate module scope

Default:

SYMB for OBJECTCONTROLS

NOSYMB for PRINTCONTROLS

Description:

SYMB specifies l166 to allow high level language symbols defined by the

?SYMB directive of the assembler to be present in the output file when the

DEBUG control is in effect. The symbols are used by a high level language

debugger. This debug information is not needed to produce executable

code. NOSYMB removes ?SYMB symbols from the output file.

Example:

l166 link x.obj nosymb ;do not keep ?SYMB symbols

Linker/Locator 11–113

• • • • • • • •

SYMBOLS

Control:

SYMBOLS/NOSYMBOLS

Abbreviation:

SB/NOSB

Class:

Link/Locate module scope

Default:

SYMBOLS

Description:

This control is only implemented for compatibility with the Infineon

linker/locator.

See the LOCALS/NOLOCALS control.

Chapter 1111–114
L
IN
K
E
R
/L
O
C
A
T
O
R

SYMBOLCOLUMNS

Control:

SYMBOLCOLUMNS(number)

Abbreviation:

SC

Class:

Link/Locate general

Default:

SYMBOLCOLUMNS(2)

Description:

This control specifies the number of columns to be used when producing

the symbol table for the object module. number can be 1, 2, 3 or 4. 2

columns fit on a 80- character line. When a number of columns is

specified that does not fit on the page, the linker/locator issues a warning

and reduces the number.

Example:

l166 link x.obj sc(1) ; specify 1 symbol column

Linker/Locator 11–115

• • • • • • • •

TASK

Control:

TASK [(task-name)] [INTNO {[int.-name][=int.no]}]

object-file [task-control-list]

Abbreviation:

-

Class:

Locate module scope

Default:

-

Description:

TASK represents all information that is required by the locate stage to

combine and locate each task. The object-file designates an object module

that contains the code representing one single task. When more than one

task procedure is found in the object-file, the locator issues an error

because it does not know which task procedure is referred to. Please use

the INTERRUPT control for object files with more than one task.

The task-name is an identifier that designates a task. If a task-name is
already specified in the assembler source, this task-name is overwritten.

The locator reports a warning. So the task-name specified at locate stage

governs.

task-control-list is a subset of the task controls specified in this section

and the link/locate section.

int.-name is a symbolic name that designates an interrupt number.

Interrupt names are usually defined in the assembler source code with the

PROC directive. A specification of an interrupt name in the invocation-line
is only required for completeness.

int.-no represents the interrupt number of the specified interrupt

procedure. The value is an absolute number in the range 0 - 127.

Chapter 1111–116
L
IN
K
E
R
/L
O
C
A
T
O
R

TITLE

Control:

TITLE('title')

Abbreviation:

TT

Class:

Link/Locate general

Default:

TITLE(module-name)

Description:

Sets the title which is used at the second line in the page headings of the

listing. The title string is truncated to 60 characters. If the page width is too

small for the title to fit in the header, it will be truncated even further. The

default title is the module-name of the output module.

Examples:

l166 link x.obj y.obj to xy.lno
; title is XY

l166 link x.obj y.obj tt(’MYOBJ’)
; title is MYOBJ, module–name is X

Linker/Locator 11–117

• • • • • • • •

TO

Control:

TO name

Abbreviation:

-

Class:

Link/Locate general

Default:

Link stage: First object filename with .lno extension

Locate stage: a.out

Description:

This control specifies the output filename. At link stage the output is a

linked object file. A filename specified without an extension is extended

with .lno . At locate stage the output is an absolute object file (default

a.out).

It is also possible to use single 'quotes' to use filenames and directories

with spaces in them.

Examples:

l166 link x.obj y.obj ;output file is x.lno
l166 link x.obj y.obj to ’x y’ ;output file is ”x y.lno”
l166 link x.obj y.obj to myobj.rel
; output file is myobj.rel

l166 locate task intno=0 xy.lno
; output file is a.out

l166 locate task intno=0 xy.lno to xy
; output file is xy.out

l166 locate task intno=0 xy.lno to abs.tst
; output file is abs.tst

Chapter 1111–118
L
IN
K
E
R
/L
O
C
A
T
O
R

TYPE

Control:

TYPE/NOTYPE

Abbreviation:

TY/NOTY

Class:

Link/Locate general

Default:

TYPE

Description:

TYPE specifies l166 to perform type checking when linking external and

public symbols and when locating global externals and public symbols.

The type information remains in the object file, unless PURGE or

OBJECTCONTROLS is used. NOTYPE performs no type checking.

Example:

l166 locate task intno=0 x.lno noty

; no type checking

Linker/Locator 11–119

• • • • • • • •

VECINIT

Control:

VECINIT [(proc-name|address)]/NOVECINIT

Abbreviation:

VI/NOVI

Class:

Locate general

Default:

VECINIT

Description:

VECINIT initializes all non used interrupt vector locations with a JMPS to

itself. The VECTAB control must be on to generate a vector table.

NOVECINIT does not initialize the non used interrupt vector locations.

If the default address is specified, the locator will emit JMPS to that address

instead of looping jumps to itself. Instead of an address, a task name (or

global procedure) can be used. The locator will then emit JMPS to that

task or procedure.

Example:

l166 locate task x.lno novt

;no interrupt vector table

l166 locate task x.lno task y.lno vecinit(00h)

;generates a vector table that points to the reset
;vector by default. When an unhandled interrupt is
;generated, the processor automatically does a
;soft–reset.

Chapter 1111–120
L
IN
K
E
R
/L
O
C
A
T
O
R

VECSCALE

Control:

VECSCALE(scaling)

Abbreviation:

VS()

Class:

Locate general

Default:

-

Description:

The C166S v2.0 / Super10 architecture allows scaling of the vector table.

The normal 4-byte-per-vector size corresponds to scaling 0.

With the VECSCALE control, a global scaling is enforced for the vector

table. The locator will use the specified scaling, regardless of scaling

modifiers specified by the compiler or assembler. If an inline vector does

not fit inside this scale, an error is generated.

If the NOVECTAB control is specified, this control has no effect.

Example:

l166 loc task x.lno vs(3)

; use scaling 3 for the vector table

Linker/Locator 11–121

• • • • • • • •

VECTAB

Control:

VECTAB[(base_address)] / NOVECTAB

Abbreviation:

VT/NOVT

Class:

Locate general

Default:

VECTAB(0)

Description:

VECTAB specifies to automatically generate an interrupt vector table.

When the VECTAB control is active, any single task must have a unique

interrupt number. NOVECTAB does not generate an interrupt vector table.

The base_address indicates the address the vector table is located at.

Example:

l166 locate task x.lno novt

; no interrupt vector table

Chapter 1111–122
L
IN
K
E
R
/L
O
C
A
T
O
R

WARNING

Control:

WARNING[({warn-num [EXPECT(exp-num)]},...)]

NOWARNING[({warn-num [EXPECT(exp-num)]},...)]

Abbreviation:

WA(EXP()) NOWA(EXP())

Class:

Link/Locate general

Default:

WARNING. All warning messages are enabled.

Description:

You can use these controls to enable or disable warnings. With the

WARNING control you can enable warning message number warn-num
or enable all warnings if no argument is given. With the NOWARNING

control you can disable warning message with number warn-num or

disable all warnings if no argument is given. You can specify multiple

numbers. All warning messages of l166 are enabled by default. EXPECT

indicates the number of times the warning should be expected. If the

number of times the warning occurred mismatches this number, you are

warned about that. The warn-num must be an existing warning number.

The exp-num must be in the range 1 - 31.

When a warning should be suppressed which is issued due to a control in

the invocation, it is recommended to place the NOWARNING control

before the control causing the warning. Although for most of the warnings

the place of the NOWARNING control is irrelevant.

Linker/Locator 11–123

• • • • • • • •

Examples:

l166 link x.obj nowa(118 exp(2))
; disable warning 118 (unresolved externals).
; If the warning occurred more or less than 2
; times l166 issues a warning about this mismatch.

l166 locate task x.lno nowa
; disable all warnings

Chapter 1111–124
L
IN
K
E
R
/L
O
C
A
T
O
R

WARNINGASERROR

Control:

WARNINGASERROR

NOWARNINGASERROR

Abbreviation:

WAE / NOWAE

Class:

Link/Locate general

Default:

NOWARNINGASERROR

Description:

By default, the linker/locator will exit with an exit status of 0, when only

warnings were generated. This allows utilities like mk166 to continue the

build process.

With the WAE control, the exit status will be non-zero, which causes

mk166 to stop the build process (unless instructed to continue anyway).

The exit status is 4 if only warnings were generated.

Examples:

l166 link x.obj wae

; exit with error state if only warnings

12

UTILITIES
C

H
A

P
T

E
R

Chapter 1212–2
U
T
IL
IT
IE
S

12

C
H

A
P

T
E

R

Utilities 12–3

• • • • • • • •

12.1 OVERVIEW

The following utilities are supplied with the Cross-Assembler for the

C166/ST10 which can be useful at various stages during program

development.

ar166 A librarian facility, which can be used to create and maintain

object libraries.

cc166 A control program for the C166/ST10 toolchain.

d166 A disassembler utility to read the contents of an a.out file.

dmp166 A utility to report the contents of an object file.

gso166 A global storage optimizer which optimizes the allocation of

objects in memory spaces.

ieee166 A program which formats an absolute (located) TASKING

a.out file to the IEEE695 format which has full high level

language debugging support. The IEEE695 format is used by

CrossView Pro.

ihex166 A facility to translate an absolute (located) TASKING a.out
file into Intel Hex Format for (E)PROM programmers. No

symbol information.

mk166 A utility program to maintain, update, and reconstruct groups

of programs.

srec166 A facility to translate an absolute (located) TASKING a.out
file into Motorola S Format for (E)PROM programmers. No

symbol information.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The utilities are explained on the following pages.

Chapter 1212–4
U
T
IL
IT
IE
S

12.2 AR166

Name

ar166 archive and library maintainer

Synopsis

ar166 d | p | q | s | t | x [vl] archive files...
ar166 r | m [a | b | i posname][cvl] archive files...
ar166 -Q file
ar166 -V

ar166 -? (UNIX C-shell: ” -?” or -\?)

Description

ar166 maintains groups of files (modules) combined into a single archive

file. Its main use is to create and update library files as used by the

assembler/linker. It can be used, though, for any similar purpose.

The ar166 archiver uses a full ASCII module header. This makes archives

portable and allows them to be edited. The header only contains name

and size information.

A file produced by ar166 starts with the line

!<ar>!

followed by the constituent files, each preceded by a file header, for

example:

!<ar:filename 8439>!

Note that ar166 has an option that searches for headers instead of using

the size.

archive is the archive file. If '-' is used as archive file name, then the

original archive is read from standard input and the resulting

archive file is written to standard output. This makes it

possible to use ar166 as a filter.

files are constituent modules in the archive file. For PC, the usage

of wildcards (?,*) is allowed.

posname is required for the positioning options a b i and specifies the

position in the archive where modules are inserted.

Utilities 12–5

• • • • • • • •

Options

-? Display an explanation of options at stdout.

-Q�file Use this option for very long command lines. The file is used

as an argument string. Each line in the file is treated as a

separate argument for ar166.

-V Display version information at stderr.

a Append new modules after posname.

b Insert new modules before posname.

c Normally ar166 creates archive when it needs to. The create

option suppresses the warning message that is produced

when archive is created. The c option can only be used with

the r command and '-' as archive file name to suppress

reading from standard input.

d Delete the named modules from the archive file.

i Identical to option b.

l Local. This option causes ar166 to place the temporary files

in the current directory for Windows; in the directory /tmp
for UNIX.

m Move the named modules to the end of the archive, or to

another position as specified by one of the positioning

options.

p Print the contents of the named modules in the archive on

standard output.

q Quickly append the named modules to the end of the

archive file. Positioning options are invalid. The command

does not check whether the added members are already in

the archive. Useful only to avoid very long waiting times

when creating a large archive piece-by-piece.

r Replace the named modules in the archive file. If no names

are given, only those modules are replaced for which a file

with the same name is found in the current directory. New

modules are placed at the end unless another position is

specified by one of the positioning options.

Chapter 1212–6
U
T
IL
IT
IE
S

s Scan for the end of a module; do not use the size in the

module header. The end of a module is found if end-of-file

is detected or if a new module header is reached. Note that

this may give false results if the modules happen to contain

lines resembling module headers. Normally this letter is used

as an option, but if no command character is present it

behaves as a command: the archive is rewritten with correct

module sizes.

t Print a table of contents of the archive file on standard

output. If no names are given, all modules in the archive are

printed. If names are given, only those modules are tabled.

v Verbose. Under the verbose option, ar166 gives a

module-by-module description of the making of a new

archive file from the old archive and the constituent modules.

When used with t, it gives not only the names but also the

sizes of modules. When used with p, it precedes each

module with a name.

x Extract the named modules. If no names are given, all

modules in the archive are extracted. In neither case does x

alter the archive file.

If the same module is mentioned twice in an argument list, it may be put

in the archive twice.

Example

ar166 rc archive.lib *.obj ..\object1.obj
; adds all obj files in this directory and the

; object1.obj file of the parent directory to

; an archive called archive.lib .

ar166 t archive.lib
; prints a list of all modules present in the

; library on standard output

ar166 p archive.lib object1.obj > object2.obj
; extract module object1.obj from the library

; archive.lib . The content is printed on standard

; output and rerouted to a file called object2.obj

Utilities 12–7

• • • • • • • •

ar166 a archive.lib object2.obj
; append object file object2.obj to

; the end of archive archive.lib

Chapter 1212–8
U
T
IL
IT
IE
S

12.3 CC166

Name

cc166 control program for the C166/ST10 toolchain

Synopsis

cc166 [[option]... [control]... [file]...]...
cc166 -V

cc166 -? (UNIX C-shell: ” -?” or -\?)

Description

The control program cc166 is provided to facilitate the invocation of the

various components of the C166/ST10 toolchain. The control program

accepts source files, options and controls on the command line in random

order.

Options are preceded by a '-' (minus sign). Controls are reserved words.

The input file can have any extension as explained below.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options

are interpreted by cc166 itself; the remaining options are passed to

those programs in the toolchain that accept the option.

• Arguments which are known by cc166 as a control are passed to

those programs in the toolchain that accept the control.

• Arguments with a .cc , .cxx or .cpp suffix are interpreted as C++

source programs and are passed to the C++ compiler.

• Arguments with a .c suffix are interpreted as C source programs

and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as assembly source

files which are preprocessed and passed to the assembler.

• Arguments with a .src suffix are interpreted as preprocessed

assembly source files. They are directly passed to the assembler.

• Arguments with a .lib suffix are interpreted as library file and

passed to the link stage of l166 when the -cf option is not

specified. When the -cf is specified, the libraries are passed to the

locate stage.

• Arguments with a .ili suffix are interpreted as linker invocation

files and are passed to the link stage of l166 with a leading '@' sign.

Utilities 12–9

• • • • • • • •

• Arguments with a .ilo suffix are interpreted as locator invocation

files and are passed to the locate stage of l166 with a leading '@'

sign.

• Everything else is considered an object file and is passed to the

linker.

Normally, cc166 tries to compile and assemble all files specified, and link

and locate them into one output file. There are however, options to

suppress the assembler, linker or locator stage. The control program

produces unique filenames for intermediate steps in the compilation

process. These files are removed afterwards. If the compiler and assembler

are called in one phase, the control program prevents preprocessing of the

generated assembly file. Normally assembly input files are preprocessed

first.

Options

-? Display a short explanation of options at stdout .

-V The copyright header containing the version number is

displayed, after which the control program terminates.

-Wm�arg
-Wa�arg
-Wc�arg
-Wcp�arg
-Wpl arg
-Wl�arg
-Wo�arg
-Wf�arg With these options you can pass a command line argument

directly to the preprocessor (-Wm), assembler (-Wa), C

compiler (-Wc), C++ compiler (-Wcp), C++ pre-linker

(-Wpl), linker (-Wl), locator (-Wo) or object formatter

(-Wf). It may be used to pass some options that are not

recognized by the control program, to the appropriate

program. The argument may be either directly appended to

the option, or follow the option as a separate argument of

the control program.

-c++ Specify that files with the extension .c are considered to be

C++ files instead of C files. So, the C++ compiler is called

prior to the C compiler. This option also forces the linker to

link C++ libraries.

Chapter 1212–10
U
T
IL
IT
IE
S

-cc

-cs

-c

-cl

-cf

-cm

-cp Normally the control program invokes all stages to build an

absolute file from the given input files. With these options it

is possible to stop after one of the stages or to skip the linker

stage.

With the -cc option the control program stops after

compilation of the C++ files and retains the resulting .c files.

With the -cs option the control program stops after the C

compiler or macro preprocessor, with as output file the

assembly source file (.src).

With -c option the control program stops after the assembler,

with as output an object file (.obj).

With the -cl option the control program stops after the link

stage, with as output a linker object file (.lno).

The -cf option specifies that the Flat Interrupt Concept is

followed. The link stage is skipped and all objects are input

for the locator. The public scope level of all objects is

promoted to global and the default libraries are supplied to

the locator.

With the -cm option the control program always also

invokes the C++ muncher.

With the -cp option the control program always also invokes

the C++ pre-linker.

-f file Read command line arguments from file. The filename "-"

may be used to denote standard input. To get around the

limits on the size of the command line, it is possible to use

command files. These command files contain the options that

could not be part of the real command line. Command files

can also be generated on the fly, for example by the make

utility.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line
in the command file.

2. To include whitespace in the argument, surround the
argument with either single or double quotes.

Utilities 12–11

• • • • • • • •

3. If single or double quotes are to be used inside a quoted
argument, we have to go by the following rules:

a. If the embedded quotes are only single or double

quotes, use the opposite quote around the

argument. Thus, if a argument should contain a

double quote, surround the argument with single

quotes.

b. If both types of quotes are used, we have to split

the argument in such a way that each embedded

quote is surrounded by the opposite type of quote.

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of
lines within a text file. To circumvent this limitation it is
possible to use continuation lines. These lines end with a
backslash and newline. In a quoted argument,
continuation lines will be appended without stripping any
whitespace on the next line. For non-quoted arguments,
all whitespace on the next line will be stripped.

Example:

”This is a continuation \
line”

–> ”This is a continuation line”

control(file1(mode,type),\
file2(type))
–>

control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Chapter 1212–12
U
T
IL
IT
IE
S

-gs Pass the -cl option directly to ieee166 to set the

compatibility mode to 1. This option is only useful in

combination with the -ieee option.

-ihex

-ieee

-srec When none of these options is supplied to the control

program it stops when an absolute a.out 166 file is created.

With these options you can tell the control program to format

the absolute file as Intel hex, IEEE-695 or S-record file.

-noc++ Specify that files with the extensions .cc , .cpp or .cxx are

considered to be regular C files instead of C++ files. Instead

of invoking the C++ compiler, the C compiler is invoked.

-nolib Normally the control program supplies the default C floating

point and runtime libraries to the linker (locator when -cf is

used). Which libraries are needed is derived from the

compiler options. The library filenames passed to l166 have

the following format:

PC:

subdir\c166model-single.lib

subdir\fp166model-trap.lib

subdir\rt166model-single-mac.lib

UNIX:

subdir/c166model-single.lib

subdir/fp166model-trap.lib

subdir/rt166model-single-mac.lib

subdir Option

166 (default)

166p –B

ext –x

extp –x –B

ext2
ext2p

–x2
–x2 –B

goldp –xm

usubdir –P, user stack model support

Utilities 12–13

• • • • • • • •

model Option

t –Mt

s –Ms (default)

m –Mm

l –Ml

–single Option

s –F or –Fs

trap Option

t –trap (cc166 option)

mac Option

m –libmac (cc166 option)

Example:

1. When cc166 is invoked with default options the
following libraries are supplied to the linker:

PC:

166\c166s.lib 166\f166s.lib
 166\rt166s.lib

UNIX:

166/c166s.lib 166/fp166s.lib
 166/rt166s.lib

2. When cc166 is invoked with the options -x -Ml -F -trap

the following libraries are supplied to the linker:

PC:

ext\c166ls.lib ext\fp166lt.lib
 ext\rt166ls.lib

UNIX:

ext/c166ls.lib ext/fp166lt.lib
 ext/rt166ls.lib

Chapter 1212–14
U
T
IL
IT
IE
S

3. When cc166 is invoked with the option -P the following
libraries are supplied to the linker:

PC:

u166\c166s.lib u166\fp166s.lib

UNIX:

u166/c166s.lib u166/fp166s.lib

With the -nolib option the control program does not supply

C, floating point and run-time libraries to the linker or

locator.

-lib directory
This option specifies the directory where a user defined

library set is stored. This applies only to libraries which are

known by the control program (c166*.lib , cp166*.lib
rt166*.lib , fp166*.lib , can166*.lib and

fmtio*.lib). This library set directory is search for in the

linker/locator library path.

-libcan Link the CAN library. Some of the extended architectures like

C167CR (ext) contain a CAN controller. All features of this

library are described in the ap292201.pdf file which is located

in the pdf directory.

-libfmtiol Link the LARGE printf()/scanf() formatter library. This

library contains all printf() and scanf() function variants

like sprintf() , fprintf() , etc. The LARGE variant allows

the usage of precision specifiers. It also contains floating

point I/O support.

-libfmtiom Link the MEDIUM printf()/scanf() formatter library.

This libary contains all printf() and scanf() function

variants like sprintf() , fprintf() , etc. The MEDIUM

variant allows the usage of precision specifiers. It does not

contain floating point I/O support.

If no -libfmtio* option is specified on the command line, then the SMALL

printf()/scanf() formatter variants are linked from the C library. The

SMALL variant does not allow usage of precision specifiers, nor does it

support floating point I/O.

Utilities 12–15

• • • • • • • •

-libmac Link the MAC optimized run-time library. Some of the

extended architectures like ST10x262/272 (ext), C166S v2.0

(ext2) and Super10 (ext2) contain a multiply-accumulate

(MAC) co-processor. This option selects the MAC optimized

instead of the standard run-time library to get the most out of

the MAC coprocessor performance by using the MAC

instruction set.

-o file This option specifies the output filename. The option is

supplied to the last stage to be executed, which depends on

the options -c, -cl, -cs, -ieee, -ihex, -srec. The option is

translated to the option or control needed for the stage it is

supplied to (e.g. TO file when supplied to l166). The

argument may be either directly appended to the option, or

follow the option as a separate argument of the control

program.

-tmp With this option the control program creates intermediate

files in the current directory. They are not removed

automatically. Normally, the control program generates

temporary files for intermediate translation results, such as

compiler generated assembly files, object files and the linker

output file. If the next phase in the translation process

completes successfully, these intermediate files will be

removed.

-trap

-notrap When this option is specified the control program supplies

floating point library with or without trap handling to the

linker (or locator when -cf is used). See the -nolib option

for a description of how the library file names are built by

the control program.

-v When you use the -v option, the invocations of the

individual programs are displayed on standard output,

preceded by a '+' character.

-v0 This option has the same effect as the -v option, with the

exception that only the invocations are displayed, but the

programs are not started.

-wc++ Enable C and assembler warnings for C++ files. The

assembler and C compiler may generate warnings on C

output of the C++ compiler. By default these warnings are

suppressed.

Chapter 1212–16
U
T
IL
IT
IE
S

Environment Variables used by CC166

The control program uses the following environment variables:

TMPDIR This variable may be used to specify a directory, which

cc166 should use to create temporary files. When this

environment variable is not set, temporary files are created in

the directory "/tmp" on UNIX systems, and in the current

directory on other operating systems.

CC166OPT This environment variable may be used to pass extra options

and/or arguments to each invocation of cc166. The control

program processes the arguments from this variable before

the command line arguments.

CC166BIN When this variable is set, the control program prepends the

directory specified by this variable to the names of the tools

invoked.

Utilities 12–17

• • • • • • • •

12.4 D166

Name

d166 disassemble an a.out file

Synopsis

d166 [option]... [file]...
d166 -V

d166 -? (UNIX C-shell: ” -?” or -\?)

Description

With the disassembler you can read relocatable and absolute C166/ST10

a.out object files which are output of the assembler, linker or locator. It is

possible to disassemble all or selected sections or address ranges. For

relocatable files relocation information is added to the disassembled

output. The disassembler is able to replace addresses with symbols found

in the object file or with registers defined in a register definition file.

The file argument is the name of a C166/ST10 a.out object file. If no file

is given, the file a.out is used.

Options

Options start with a dash '-'.

The options only apply to the file after the options.

For example:

d166 file.out –S

makes no sense because the -S option is not supplied before the filename.

-? Display explanation of options

-B[flags] Enable the Byte Forwarding Detection. (See also paragraph

Byte Forwarding below.) When no flags are specified only an

error is issued when the byte forwarding problem sequence

occurs and all addresses are known. When -Bi is not set,

indirect addressing is assumed to be outside the internal

RAM. When the following flags are set, additional checking is

done:

Chapter 1212–18
U
T
IL
IT
IE
S

i Generate a warning when the byte forwarding problem
can occur if indirect addresses result in operations on
internal RAM.

j Generate a warning when an instruction which performs
a byte write is detected and the following instructions is a
jump instruction which can have a cache hit.

m Enable checking on direct addresses (MEM operands).
The disassembler checks only the page offset (POF) of
absolute addresses. This means that all addresses in each
page between 3A00h and 3DFFh are detected as internal
RAM addresses. If not set, direct addresses are ignored.

-C Set all columns to default values.

-Cl col Print labels in column col (default=18).

-Co col Print opcode in column col (default=28).

-Cc col Print comments in column col (default=60).

-E Also write messages to output file.

-S List only section header lines. Use this option to display the

names of the sections in the file.

-V Display version header

-a addr1[,addr2]

Disassemble only between addresses addr1 and addr2.

Specify the addresses as hexadecimal values. When only

addr1 is supplied the disassembler starts at this address.

Section headers are always printed. When switching from

printing to skipping and vice versa the disassembler prints

'skipping ...'.

-c[r] Supply comment about operand combinations. When -cr is

specified relocation information (when available) is printed

as comment.

-d Suppress DPP prefixes. All addresses are by default prefixed

with "DPPn:".

-f Do not substitute SFR and BIT addresses by the name

specified in the register definition file.

Utilities 12–19

• • • • • • • •

-h Suppress address and data column. This are the first two

hexadecimal columns in the output.

-l Print all keywords in lowercase. By default all keywords are

printed in uppercase.

-m Allow MAC instructions

-n Do not substitute addresses with symbol names as read from

the object file.

-o file Write output to specified file.

-u Display also unresolved symbols. The address of an

unresolved external is usually not fixed. For this reason

addresses will not be replaced by names of unresolved

externals.

-s name Disassemble only sections with name. It is possible to supply

several -s options. Use the -S option to print the names of

all sections in the input file.

-r file Read SFR and BIT definitions from file (See also paragraph

Register Definition Files below).

-x[2] Use the extended instruction set, or the extended 2

instruction set for the C166S v2.0 and Super10 architectures..

Data and Bit Sections

Data sections (DATA, LDAT HDAT, PDAT) are filled with DB or DW

directives, depending on the section align type. Word aligned sections are

filled with DW directives and byte aligned sections are filled with DB

directives.

Bit sections are not disassembled.

Gaps

A gap in a section can be introduced by one of the following assembler

directives:

DS, DSB, DSW, DSDW, ORG or EVEN

The disassembler cannot derive from the object file which of these

directives caused the gap and will always print an ORG directive with a

target address.

Chapter 1212–20
U
T
IL
IT
IE
S

Derivatives

The disassembler supports C166/ST10 derivatives like the C167, ST10,

C166S v2.0 and Super10. The extended instruction set is always recognized

but SFRs from the extended SFR area are only recognized when the -x

option is supplied. The –x2 option enables the C166S v2.0 and Super10

architectures.

Register Definition Files

The special function registers are read from a register definition file. By

default the file reg166.def is read. You can use the -r and -x option to

specify an alternate register definition file. The following directories are

searched for this file:

- the current directory.

- when the A166INC environment variable is set, the directory

specified in this environment variable.

- the etc directory at the same level as the directory containing the

d166 executable.

Example (PC):

when d166 is installed in \c166\bin the directory \c166\etc is

searched for register definition files.

Example (UNIX):

when d166 is installed in /usr/local/c166/bin the directory

/usr/local/c166/etc is searched for register definition files.

The register files contain assembler directives DEFA, DEFB and DEFR for

specifying registers. LIT directives are ignored. The syntax is compatible

with the register files supplied to the assembler with the STDNAMES

assembler control.

Comments

With the -c option the disassembler adds comments to the generated

output. This comment displays the operand combination according to the

opcode. For relocatable object files it is possible to display information

about the relocation types at the code locations which contain relocation

information (option -cr).

Utilities 12–21

• • • • • • • •

Byte Forwarding

For the detection of the CPU problem "Erroneous Byte Forwarding for

internal RAM locations" as described in the Infineon errata sheets 88C166

ES-BA (Sept.,15,1992) (flash), the disassembler has the option -B.

The disassembler cannot check on (possible) modification of the active

register bank by absolute MEM addressing (direct) in that memory area.

With an exception when -Bi is set, which also causes a warning to be

issued on sequences with a GPR and an indirect addressing mode.

When an erroneous byte forwarding sequence is detected with only

absolute addresses (only with -Bm), GPR addressing and bit offset

addressing (BOF) the disassembler issues the following error:

ERROR: module : byte forwarding sequence detected
section addr1 : byte write – addr2 : read in op operand

When the byte forwarding sequence contains indirect addressing and -Bi

is set the following warning will be issued instead of the error:

WARNING: module : possible byte forwarding sequence detected
section addr1 : byte write – addr2 : read in op operand

When the condition described with -Bj is detected the following warning

is issued:

WARNING: module : possible cache jump after byte write
section addr1 : byte write – addr2 : jump

In these messages the following information is printed:

section the name of the section in which the sequence is detected

addr1 the address of the instruction which performs the byte write

addr2 the address of the instruction which performs possible

erroneous read or the possible cache jump

op indicates read access on left or right operand

When the output of the disassembler is redirected to a file (option -o

filename) the error messages are still printed on the standard screen

output. The -E option specifies that these message are printed in the

output file.

Chapter 1212–22
U
T
IL
IT
IE
S

Example:

The following example checks for the Erroneous Byte Forwarding

Sequences and for possible cache jumps after a byte write (-Bj):

d166 –o myfile.dis –E –Bj myfile.out

The disassembly output and the error message are written to the file

myfile.dis (-o filename and -E option).

The disassembler can be used to disassemble relocatable object files

(assembler and linker output) or absolute object files (locator output).

However, the -Bm option makes only sense when disassembling absolute

object files or object files which contain absolute addresses.

Utilities 12–23

• • • • • • • •

12.5 DMP166

Name

dmp166 report the contents of an object file or library file

Synopsis

dmp166 [option]... [file]...
dmp166 -V

dmp166 -? (UNIX C-shell: ” -?” or -\?)

Description

dmp166 gives a complete report of all files in the argument list which

have been created by the assembler or linker/locator. The files must be

valid C166/ST10 object files or library files. If no file is given, the file

a.out is displayed.

Options

Options start with a dash '-'. Options can be combined after one dash. For

example -vhxh is the same as -v -h -xh.

-? Display an explanation of options at stdout.

-V Display version information at stderr.

-a Display the string area of the input file.

-c Display the code bytes of each section.

-e Display the extension records of the input file.

-h Display the header record of the input file.

-n Display the symbol table records of the input file.

-o file Use specified file for output.

-p Display function names from the symbol table (used for C++)

-r Display the relocation records of the input file.

-s Display the section records of the input file.

-xa Display allocation records.

-xh Display extension header record.

Chapter 1212–24
U
T
IL
IT
IE
S

-xr Display range records.

-v Verbose mode. Display also section names when a reference

to a section number is made. Type information is also

decoded into symbolic names as mentioned in out.h and

sd_class.h .

All options except the -v, -V and - ? options are on by default. The use of

any option except the -v option turns off all other options.

Utilities 12–25

• • • • • • • •

12.6 GSO166

Name

gso166 global storage optimizer

Synopsis

gso166 sif/gso files... -ofile [options]
gso166 -V

gso166 -? (UNIX C-shell: "-?" or -\?)

12.6.1 DESCRIPTION

The global storage optimizer gso166 is a tool that optimizes the allocation

of global variables. Variables are located in the best suitable place in

memory (near, far, ...). The compiler c166 and the global storage optimizer

gso166 work closely together. To achieve optimal allocation, a full build

of an application consists of three phases:

1. c166 and a166 gather statistics of all global objects in the application.

2. gso166 assigns storage for each global object.

3. c166 takes the output of gso166 as input for a final build of the

application.

Phase 1: Gathering Information

During this phase, the tools acquire statistics on all global objects. The

information consists of: name, size, reference count, linkage, memory

qualifiers and whether or not objects are referenced by an address.

To obtain the necessary information, the entire application is processed by

c166 and/or a166. For the c166, use the -gso option to generate the

statistics. See section Detailed Description of the C-166 Options in Chapter

Compiler Use of the C Cross-Compiler Users Guide. For the a166, use the

control: GSO. See section 7.3, Description of A166 Controls.

Example:

c166 c_module.c –gso ; Generate: c_module.sif

a166 a_module.src GSO ; Generate: a_module.sif

Chapter 1212–26
U
T
IL
IT
IE
S

To eliminate side effects, C-files that use #pragma asm and #pragma

endasm are best processed by c166 without the -gso option. Without the

-gso option, the compiler generates an .src file, so the statistics have to

be generated by a166. This method is only useful if the instructions inside

#pragma asm/endasm have anything to do with global objects.

Objects that are not specifically allocated in a particular memory space

with memory qualifiers (near, far, ...), are candidates for automatic

allocation. For these objects the memory space is set to 'AUTO' in the

generated output.

In addition, c166 and a166 generate information for memory areas that

are definitely used during the final rebuild. These memory areas are not

available to gso166 for automatic allocation and are therefore reserved.

See section 12.6.6, Reserved Memory Areas for detailed information.

The tools store their results in Source Information Files (.sif). The format

of the .sif file is described in section 12.6.9, .gso / .sif File Format.

Though a166 generates .sif files, objects defined in assembly modules

are never candidates for automatic allocation. These objects are already

allocated in a particular section which binds the object to a specific

memory space. The information generated by a166 however, is needed by

gso166. As described in the next section, gso166 must be able to pre-link

the application. Therefore the .sif files generated by a166 are needed to

resolve all symbols.

Phase 2: Information Processing and Allocation

In this phase gso166 assigns storage for all objects that are allocated in the

'AUTO' memory space. To do this as optimal as possible, gso166 must

have an application wide overview of all available global objects. This

includes all global objects in libraries and other pre-build objects.

Therefore, all .sif and .gso files must be supplied to gso166, including

those related to the applied libraries. Section 12.6.5, Creating GSO
Libraries describes how to generate libraries for gso166.

When gso166 has read all .sif files, it will pre-link the application.

During the linking process reference counts, object sizes, memory spaces

etc. are administered.

The next step is to subtract the sizes of all objects that are already

specifically attached to a memory space from the total available memory.

Reserved areas are also subtracted from the total available memory. The

amount of memory that remains can be used for automatic allocation.

Utilities 12–27

• • • • • • • •

After sorting the candidates in the optimal allocation order (The goal is to

reduce code size), gso166 assigns storage to all objects in the 'AUTO'

memory space. Objects that are expected to reduce code size the most, are

preferred to be allocated in short addressable memory.

Phase 3: Final Build

During this phase the final build of the application takes place. In general

this build does not differ from a normal application build without global

storage optimization. The only difference is that the information generated

by gso166 is now used when the C modules are compiled. You can

specify allocation information to c166 with the option: -gso=file.gso.

Example:

c166 module.c –gso=module.gso

This generates 'module.src' with the global objects allocated as specified in

the 'module.gso' file.

Section 12.6.11, Example Makefile shows an example makefile which you

can use to build an application with gso166.

12.6.2 MEMORY MODELS

gso166 recognizes the same memory models as c166: TINY, SMALL,

MEDIUM and LARGE. You can specify the memory model to gso166 with a

directive in the .sif files:

$MODEL(memory_model)

Where memory_model is one of:

$MODEL() corresponding c166 option

TINY -Mt

SMALL -Ms

MEDIUM -Mm

LARGE -Ml

If the $MODEL() directive is omitted, the SMALL memory model is

assumed. You cannot mix memory models.

Chapter 1212–28
U
T
IL
IT
IE
S

12.6.3 MEMORY SPACES

The memory spaces used by gso166 and their default properties are listed

below:

Size (bytes) Maximum Object Size (bytes)

Space non–
segmented segmented non–

segmented segmented

NEAR 49152 16384 49152 16384

SYSTEM 12288 12288 12288 12288

IRAM 3072 3072 3072 3072 (1)

XNEAR 16384 16384 16384 16384

FAR Infinite Infinite 16384 16384

SHUGE Infinite Infinite 65535 65535

HUGE Infinite Infinite Infinite Infinite
(1) Since the –mmem=size option can only be used to decrease the size of

the memory space, the size of IRAM is default set to the largest known
IRAM size. For most derivatives the IRAM size must be be decreased
with the –m option.

Table 12-1: Default properties of memory spaces used by gso166

The memory spaces listed above are used during the automatic storage

allocation process. In addition, gso166 is aware of the following two

memory spaces:

Size Maximum Object Size

Space non–
segmented segmented non–

segmented segmented

BITA 256 (bytes) 256 (bytes 256 (bytes) 256 (bytes)

BIT 2048 (bits) 2048 (bits) 1 (bit) 1 (bit)

Table 12-2: Default properties memory spaces that overlap IRAM

These two memory spaces are not used during the automatic allocation

process but overlap the IRAM memory space. So, a reservation or a direct

allocation in one of the memory spaces will influence the available space

in the IRAM memory space.

Utilities 12–29

• • • • • • • •

You can set most of the properties of the above listed memory spaces with

the -m and -T command line options. The -m option controls the

available memory in a particular space. The -T option controls the

maximum object size that can be allocated in a particular memory space.

See section 12.6.8, Options for the details of the options -m and -T.

Each time gso166 generates a .gso file, it will set the $GSO166 directive

in this file. c166 does not accept a file that does not have this directive. A

file that has both the $GSO166 directive and an object allocated in

memory space 'AUTO', is considered invalid.

12.6.4 PRE-ALLOCATION FILES

With a pre-allocation file gso166 can be forced to allocate a particular

object into a certain memory space. The memory specified in a

pre-allocation file is applied after linking the application. You cannot

overwrite any memory space other than the 'AUTO' memory space.

You can specify pre-allocation files on the command line with the -a

option. Multiple -a options (pre-allocation files) are allowed.

The format of pre-allocation files is described in section 12.6.10,

Pre-allocation File Format.

12.6.5 CREATING GSO LIBRARIES

If the application uses libraries or other pre-build components, each

component (.LIB/.OBJ) must have a matching .gso (archive) file. The

$ARCHIVE directive signals gso166 that a .gso file is an archive.

You can create a .gso archive with the -qfile option. When you create an

archive (sub-application), gso166 does not have an application wide

overview of all global objects in the application. Therefore the use of the

-q option implies the -d option that forces all objects to be allocated in

the default memory space for a particular memory model. See section

12.6.8, Options for more details of the options -d.

It is crucial that the information in a .gso archive file matches the

allocation in a .obj (.lib) file. Therefore you must build a matching

.gso <-> .obj file pair with gso166.

Chapter 1212–30
U
T
IL
IT
IE
S

The TASKING libraries are not delivered in a pre-build .gso format.

However, you can rebuild all libraries with:

mk166 GSO=

This command creates a matching .gso <-> .obj file pair. For example,

when building the C Library for the LARGE memory model, this command

will create:

c166l.gso ; To be used with gso166.
c166l.asif ; Summary of global allocations in library.

and

c166l.lib ; To be used with l166.

For more details on how to rebuild libraries, please refer to Chapter 6.1,

Libraries in the C Cross-Compiler Users Guide.

Please use the makefiles for the TASKING libraries as an example for how

to build your own libraries.

IMPORTANT: A mismatch between the information in a .gso file and a

pre-build component may result in run-time errors.

The key to the highest possible code size reduction is flexibility.

Therefore, the use of pre-build objects is discouraged. It is advised to use

components at source level as much as possible.

12.6.6 RESERVED MEMORY AREAS

c166 and a166 reserve memory blocks because these areas also need

space during the final rebuild. Therefore gso166 cannot use these memory

areas for automatic allocation. The following memory areas are reserved:

Areas Reserved by c166

• String constants.

• ROM copy of initialized data.

• User stack areas.

• Switch tables.

• Initialization sections. (C166_INIT and C166_BSS)

• Static objects with function scope.

• Struct/union return values.

Utilities 12–31

• • • • • • • •

Areas Reserved by a166

• Depending on SSKDEF, a166 will reserve an area in IRAM for the

system stack.

• a166 cannot determine individual object sizes. However, it will reserve

the total space needed for all objects in a source (.SRC) file.

Other memory areas that are not known to gso166 and other tools you

must reserve manually. You can do this for example by using a

pre-allocation file or the -m command line option. If you omit this,

problems can occur when the application is located.

An example of memory that needs to be reserved manually is the space

needed for register banks.

Example:

If one register bank is needed, make a pre-allocation file with the

following contents::

$RESERVE(IRAM,32)
STARTSIF
ENDSIF

Specify this file to gso166 with the -afile option.

c166 is unable to reserve memory for space consumed by alignments

(EVEN directive). Therefore it is advised to decrease the available memory

slightly by with the -m option. This will ease locating the application. Of

course when you want to get the most out of gso166, the optimal value

for the -m options can be determined through an iterative process.

You may reserve areas in the memory spaces FAR, SHUGE and HUGE.

However, for gso166 these memory spaces have an infinite size. Therefore

reserving in these areas does not have any effect.

12.6.7 ORDERING .SIF / .GSO FILES ON THE COMMAND

LINE

The order of the .sif and .gso files on the command line can be

important when you use archives. Suppose there are two archive files that

both contain a module called 'MOD_C'. In this case gso166 will use

'MOD_C' from the archive specified first on the command line.

Chapter 1212–32
U
T
IL
IT
IE
S

Suppose you have an archive file that defines 'MOD_C' and a single .sif
or .gso file (not an archive) in which 'MOD_C' is also defined. In this

situation the order on the command line is not important. gso166 will

always use 'MOD_C' from the single .sif or .gso file, overruling the

module definition in the archive.

gso166 always generates a warning when two or more modules with the

same name are detected.

12.6.8 OPTIONS

-? Display an explanation of options at stdout.

-Tmem=size Do not allow objects larger than size to be allocated in

memory space mem. Memory mem can be one of NEAR,

FAR, SHUGE, SYSTEM, IRAM or XNEAR.

The object size cannot be larger than the available number of

bytes in the given memory space.

The table below shows for which memory models the

options -T and -m can be used:

Space -Tmem=size -mmem=size

NEAR Yes Yes

SYSTEM Yes Yes

IRAM Yes Yes

XNEAR Yes Yes

FAR Yes No

SHUGE Yes No

HUGE No No

BIT No Yes

BITA Yes Yes

-V Display version information at stderr.

-afile Specify pre-allocation files.

Utilities 12–33

• • • • • • • •

-d Allocate objects in the default memory space of the given

memory model. Default memory spaces are:

Memory model Space

TINY NEAR

SMALL NEAR

MEDIUM FAR

LARGE FAR

You can overrule the default memory space using a

pre-allocation file.

-err Send diagnostics to an error list file (.err).

-ffile Read options from file file.

-mmem=sizeSpecify the maximum available bytes in memory spaces of

your target. Memory mem can be one of: BIT, BITA, NEAR,

SYSTEM, IRAM, XNEAR. When you do not specify the option

-m, the default values as described in section 12.6.3, Memory
Spaces are assumed. See also the option -T.

-ofile Specify the allocation file for the whole application. You must

always specify this option.

-ppath Write .gso files to the directory path.

-qfile Create a .gso archive. This option implies option -d.

-s Sort the application file by allocation order. If you do not

specify this option, the file is sorted alphabetically.

-t Generate an allocation summary in the application file as

specified in the -o option.

-u Force an update of all .gso files.

-w[num] Disable the output of warnings. With num you can disable a

specific warning.

Chapter 1212–34
U
T
IL
IT
IE
S

12.6.9 .GSO/.SIF FILE FORMAT

An .gso and .sif file has the following generic format:

[directives]

STARTSIF
 [module definitions]
ENDSIF

A directive can be one of the following:

$MODEL(memory_model)
Specify memory model where memory_model can be one of:

TINY

SMALL

MEDIUM

LARGE

$GSO166 Indicates that file is generated by gso166.

$ARCHIVE Indicates an .gso library file.

Between the keywords STARTSIF and ENDSIF zero or more modules can

be defined. A module definition has the following format:

MODULE(module_name)

 [RESERVE(space , size)]
 [OBJECT DEFINITIONS]

ENDMODULE

The module keyword takes the module name as an argument. Between

the MODULE and ENDMODULE keywords you can:

• Reserve memory in a particular memory space with the RESERVE

keyword.

• Define statistics on global objects.

A module can be empty.

Utilities 12–35

• • • • • • • •

The RESERVE keyword takes two arguments: the memory space and the

size to be reserved. You must specify the size in bytes for all memory

spaces except for BIT which you must specify in bits. In the reserve

control space can be one of the following: BIT, BITA, NEAR, SYSTEM,

IRAM, XNEAR, FAR, HUGE or SHUGE

For gso166 the memory spaces FAR, HUGE and SHUGE have infinite size.

You can reserving areas in these memory spaces but this will not have any

effect.

The statistics on global objects are stored in a line based format. Each line

contains the following information:

identifier refc size linkage memory address

identifier The object name.

refc The number of references made by the C-code to the object

(Static initializations are not counted) or NOTSET.

size The object size in bytes (or in bits for objects in BIT memory)

or NOTSET.

linkage PUBLIC

LOCAL

EXTERN

memory AUTO Candidate for automatic allocation

BIT

BITA

NEAR

FAR

HUGE

SHUGE

SYSTEM

IRAM

XNEAR

CODE Used for functions.

address TRUE Object referenced by its address.

FALSE Object not referenced by its address.

A semi-colon in a .gso or .sif file indicates that the remaining part of

that line is comment.

The keywords in a .gso or .sif file are case insensitive.

Chapter 1212–36
U
T
IL
IT
IE
S

If an identifier has the same name as a keyword, you must embed in

double quotes.

Below is an example .sif file generated by c166:

$MODEL(SMALL)

STARTSIF

MODULE(GSO_C)

RESERVE(FAR,16)

; identifier refc size linkage memory address
 _i 1 2 PUBLIC AUTO FALSE
 _fill_array 1 NOTSET EXTERN CODE FALSE
 _main 0 NOTSET PUBLIC CODE FALSE
 _array 0 131070 PUBLIC HUGE FALSE
 __CSTART 1 NOTSET EXTERN CODE FALSE

ENDMODULE

ENDSIF

This .sif file was generated from the following C-code:

unsigned int i;
_huge int array[65535];

extern void fill_array(unsigned int offset);

void main(void)
{
 i = 32768;
 fill_array(i);
}

12.6.10 PRE-ALLOCATION FILE FORMAT

The format of a pre-allocation file is similar to that of a .gso or .sif file.

The general format is:

[directives]

STARTSIF
 [<PRE–ALLOCATION SPECIFICATION>]
ENDSIF

Utilities 12–37

• • • • • • • •

A directive can be one of the following:

$MODEL(memory_model)
Allowed but ignored by gso166.

$GSO166 Allowed but ignored by gso166.

$ARCHIVE Allowed but ignored by gso166.

$RESERVE(space,size)
Make additional memory reservations.

Between the keywords STARTSIF and ENDSIF you can assign the storage

of global objects. The format is line based:

scope:identifier [refc] [size] memory [address]

scope PUBLIC or the module name as specified in the module

keyword. PUBLIC indicates a global object with application

scope. When a module name is specified the object is

considered to be local to that module.

identifier Object name.

[refc] Reference count, optional, ignored by gso166.

[size] Object size, optional, ignored by gso166.

memory Memory space where object has to be allocated. Memory can

be one of:

BIT

BITA

NEAR

FAR

HUGE

SHUGE

SYSTEM

IRAM

XNEAR

[address] TRUE if object is referenced by its address. Optional, ignored

by gso166.

A semi-colon in a pre-allocation file indicates that the remaining part of

that line is comment.

The keywords in a pre-allocation file are case insensitive.

Chapter 1212–38
U
T
IL
IT
IE
S

If an identifier has the same name as a keyword, you must embed in

double quotes.

The reason for so many ignored fields is that this way the .asif file

generated by gso166 can be used as a (basis for a) pre-allocation file. A

sample pre-allocation file generated by gso166 (.asif) is given below:

; C166/ST10 GSO v x. y r z SN00000000–014 (c) year TASKING, Inc.
; –ogso.asif –t

$MODEL(LARGE)
$GSO166

STARTSIF

; scope identifier refc size memory address
 PUBLIC: _array 1 131070 HUGE FALSE
 GSO2_C: _i 5 2 NEAR FALSE
 PUBLIC: _i 1 2 NEAR FALSE

ENDSIF
;
; ALLOCATION SUMMARY:
;
; space refc (%) size (hex) objects
; ===
; NEAR 6 (85.7) 4 (000004h) 2
; HUGE 1 (14.3) 131070 (01FFFEh) 1
; ––––––– ––––––– ––––––– ––––––––– –––––––– +
; total 7 (100.0) 131074 (020002h) 3
;
; RESERVED:
;
; FAR 26 (00001Ah)
; IRAM 512 (000200h)
; XNEAR 2 (000002h)

When a the same pre-allocation file has to be written by hand it can be

reduced to:

STARTSIF
PUBLIC: _array HUGE
GSO2_C: _i NEAR
PUBLIC: _i NEAR
ENDSIF

Because of this file format, gso166 can easily generate a clear application

wide allocation view combined with the possibility to use the .asif file

as a pre-allocation file. Since all global object are listed in a .asif file, it

is suitable for exactly rebuilding the application when necessary. This is in

case of allocation issues.

Utilities 12–39

• • • • • • • •

12.6.11 EXAMPLE MAKEFILE

all : application.asif
 mk166 application.abs

–––
Phase 1: Obtain statistics on global objects.
–––

module1.sif : module1.c module1.h
 c166 –gso module1.c

module2.sif : module2.c module2.h module1.h
 c166 –gso module2.c

module3.sif : module3.asm
 m166 module3.asm
 a166 module3.src GSO

–––
Phase 2: Assign storage to all global objects.
The result is a .gso file for each .sif file.
–––

application.asif : module1.sif module2.sif module3.sif
 gso166 module1.sif module2.sif module3.sif –oapplication.asif

–––
Phase 3: Rebuild the application using the result of gso166 as
input to c166. The .obj file also depends on the .gso file.
–––

module1.obj : module1.gso module1.c module1.h
 c166 –gso=module1.gso module1.c
 a166 module1.src

module2.obj : module2.gso module2.c module1.h module2.h
 c166 –gso=module2.gso module2.c
 a166 module2.src

module3.obj : module3.asm
 m166 module3.asm
 a166 module3.src

–––
Continue as usual, link, locate and convert to IEEE.
–––

application.out : module1.obj module2.obj module3.obj
cc166 –o application.out module1.obj module2.obj module3.obj –cf –v

application.abs : application.out
 ieee166 $! $@

Chapter 1212–40
U
T
IL
IT
IE
S

12.7 IEEE166

Name

ieee166 format a.out absolute object code to standard IEEE-695

object module format

Synopsis

ieee166 [-sstartaddr] [-cmode] inputfile outputfile
ieee166 -V

ieee166 -? (UNIX C-shell: ” -?” or -\?)

Description

The program ieee166 formats a TASKING a.out file to IEEE-695 Object

Module Format, as required by the CrossView Pro debugger. The input file

must be a TASKING a.out load file, which is already located.

The section information and data part are formatted to IEEE format. If the

a.out file contains high level language debug information, it is also

formatted to IEEE debug records.

Options

-? Display an explanation of options at stdout.

-V Display version information at stderr.

-cmode Set compatibility mode with older versions of ieee166 to

mode. This option makes the output strict IEEE-695. By

default no compatibility mode is set, the output file is

generated using the latest updates. The following modes are

available:

1 No distinction between register parameters and
automatics.

2 No distinction between stack parameters and automatics
and no stack adjustments.

-sstartaddr Define the (hex) execution start address of the IEEE file. If

you omit this option, the default execution start address is 0.

Utilities 12–41

• • • • • • • •

12.8 IHEX166

Name

ihex166 format object code (absolute located TASKING a.out) into

Intel hex format

Synopsis

ihex166 [option]... [infile] [-o outfile]

ihex166 -V

ihex166 -? (UNIX C-shell: ” -?” or -\?)

Description

ihex166 formats object files and executable files to Intel hex format

records for (E)PROM programmers. Hexadecimal numbers A to F are

always generated as capitals.

Empty sections in the input file are skipped. No empty records are

generated for empty sections.

The program can format records to Intel hex8 format (for addresses less

then 0xFFFF), Intel hex16 format and Intel hex32 format. When a section

jumps over a 64k limit the program switches to hex32 records

automatically. It is the programmers responsibility that sections do not

intersect with each other.

Addresses that lie between sections are not filled in.

The output does not contain symbol information.

There is no need to place the input and output file names at the end of

the command line. If data is to be read from standard input and the output

is not standard output, the output file must be specified with the -o

option.

If only one filename is given, it is assumed that it is the name of the input

file hence output is written to standard output. It is also possible to omit

both the input filename and the output filename. In that case standard

input and standard output are used.

Chapter 1212–42
U
T
IL
IT
IE
S

Options

Options must be separated by a blank and start with a minus sign (-).

Decimal and hexadecimal arguments should be concatenated directly to

the option letter.

Options may be specified in any order.

Output filenames should be separated from the -o option letter by a

blank.

Example:

ihex166 myfile.out –l20 –z –i32 outfile.hex

The next example gives the same result:

ihex166 –l20 –z –i32 –o outfile.hex < myfile.out

-? Display an explanation of options at stdout.

-V Display version information at stderr.

-aaddress The specified address is added to the address of any data

record. If address is greater than FFFFh then hex32 will be

used.

-caddress This option specifies the start address which is loaded into

the processor. The start address is placed in the 'end-of-file'

record. If address is greater than FFFFh then hex32 will be

used.

-ehex hex is the length of the data output. Use this option in

combination with -p option. If you do not specify the -p

option, the base of the first section is used. You can specify

another section with the -s option. Only one section will be

converted when you use the -e option. You must have a

clear view of the sizes and base addresses of the sections

when you use the -p and -e options.

Example:

ihex166 –s2 –eFF myfile.out

outputs the first 255 bytes of the third section of the file

myfil.out to the standard output.

Utilities 12–43

• • • • • • • •

ihex166 –s2 –pFF –eFF myfil.out

outputs the second 255 bytes of the third section. The

convertor checks whether the section end address is

exceeded.

-Enumber Generate only lines with an even number of bytes. If you

specified an odd number of bytes with the -l option, this

option adds the extra byte number (unless the maximum line

length is reached). number must be in the range 0 - ff.

Example:

ihex166 –Ec3 input.hex –o output.hex

adds 'C3' to all data records with an odd number of bytes.

-i8 Output of Intel hex8 records for addresses up to 0xFFFF. This

is the default record format.

-i16 Output of Intel hex16 records.

-i32 Output of Intel hex32 records, i.e. extended address records

with a segment base address are generated for every section.

This format is also used when a 64k boundary is crossed.

-lcount Number of data bytes in the Intel hex format record. The

number of characters in a line is given by count * 2 + 11. The

default count is 32.

-maddresslist
Map sections to different addresses. addresslist must be list of

addresses separated by commas. The first address

corresponds with the first section or, with the -s option, to

the first address selected section. You can override this with

indices between [] just before the addresses.

Examples:

ihex166 –s5,3 –m1200,1300

selects sections 5 and 3. Maps section 5 to address 01200h

and section 3 to address 01300h.

ihex166 –s5,3,1 –m1200,1300

as above but section 1 is processed without remapping.

Chapter 1212–44
U
T
IL
IT
IE
S

ihex166 –s5,3 –m1200,1300,1400

issues a warning if you specify more sections with -m than

are selected with -s.

ihex166 –s5,3,1 –m[1]1200,[3]1300

select sections 5, 3 and 1. Maps section 1 to address 01200h

and section 3 to address 01300h. Section 5 is processed

without remapping.

ihex166 –s5,4,1 –m[1]1200,[3]1300

issues a warning if you specify a section with -m that is not

selected with -s.

-Mrange=address
Remap data addresses based on address ranges. You can

specify several remap ranges separated by commas.

All section start addresses that fall within the specified ranges

are remapped.

Examples:

ihex166 –M0–8000=4000

shifts all data that starts between 0 and 08000h by 04000h.

ihex166 –M10000–20000=20000,20000–30000=10000

swaps the data in segment 1 and 2.

-o outfile outfile is the name of the file to which output is written.

This option must be used if the input is standard input and

the output must be written in a file.

-O Order sections by address (ascending).

-Od Order sections by address (descending).

Utilities 12–45

• • • • • • • •

-poffset offset is the offset in a section at which the output must start.

If no section number is specified with the -s option, then

bytes are skipped in the first record found. The user should

be aware of the fact that there is no detection of skipping an

entire section in a file. The -p option may not occur more

than once in a command line. Warning: sections are adjacent

in the input file, but do not have to be contiguous in

memory!

-P Generate an address record each time a page boundary is

encountered. Normally, address records are only generated

when segment boundaries are passed.

-r Emit address records at every start of a new section.

This results in redundant address records in the output, but

some convertors need this information.

-ssectlist sectlist is a list of section numbers that must be written to

output. The section numbers must be separated by commas.

Note: section numbers start at 0 and can be found with the

dmp166 utility. If you use this option in combination with

the -e option, only the first section in sectlist will be

converted.

-Srangelist Select data for processing based on address ranges.

rangelist must be a list of address ranges separated by

commas. These address ranges are not checked for overlap

or adjacency. If a section falls in two ranges, only the part

that fits in the first range is processed.

Example:

ihex166 –S0–4000,10000–14000

selects pages 0 and 4 for processing.

-t Skip generation of the termination record. Normally every

.hex file is closed with a termination record. With this option

you can append output of a second ihex166 run to the

output of this run.

Chapter 1212–46
U
T
IL
IT
IE
S

Example:

ihex166 –s2 –a2000 input.out –t > output.hex
ihex166 –s3 –a4000 input.out >> output.hex

this appends the output of the second run to the output of

the first run. The second run generates the appropriate

termination record.

-w Select word address count instead of byte address count.

-z Do not output records with zeros (0x00) only.

Utilities 12–47

• • • • • • • •

12.9 MK166

Name

mk166 maintain, update, and reconstruct groups of programs

Syntax

mk166 [option]... [target]... [macro=value]...
mk166 -V

mk166 -? (UNIX C-shell: ” -?” or -\?)

Description

mk166 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk166 or written to the

standard output without executing them.

If no target is specified on the command line, mk166 uses the first target

defined in the first makefile.

Long filenames are supported when they are surrounded by double quotes

("). It is also allowed to use spaces in directory names and file names.

Options

-? Show invocation syntax.

-D Display the text of the makefiles as read in.

-DD Display the text of the makefiles and 'mk166.mk'.

-G dirname
Change to the directory specified with dirname before

reading a makefile. This makes it possible to build an

application in another directory than the current working

directory.

-K Do not remove temporary files.

-S Undo the effect of the -k option. Stop processing when a

non-zero exit status is returned by a command.

-V Display version information at stderr.

-W target Execute as if this target has a modification time of "right

now". This is the "What If" option.

Chapter 1212–48
U
T
IL
IT
IE
S

-a Always rebuild the target without checking whether it is out

of date.

-c Run as child process.

-d Display the reasons why mk166 chooses to rebuild a target.

All dependencies which are newer are displayed.

-dd Display the dependency checks in more detail. Dependencies

which are older are displayed as well as newer.

-e Let environment variables override macro definitions from

makefiles. Normally, makefile macros override environment

variables. Command line macro definitions always override

both environment variables and makefile macros definitions.

-err file Redirect all error output to the specified file.

-f file Use the specified file instead of 'makefile'. A - as the

makefile argument denotes the standard input.

-i Ignore error codes returned by commands. This is equivalent

to the special target .IGNORE:.

-k When a nonzero error status is returned by a command,

abandon work on the current target, but continue with other

branches that do not depend on this target.

-m file Read command line information from file. If file is a '-', the

information is read from standard input.

-n Perform a dry run. Print commands, but do not execute

them. Even lines beginning with an @ are printed. However,

if a command line is an invocation of mk166, that line is

always executed.

-q Question mode. mk166 returns a zero or non-zero status

code, depending on whether or not the target file is up to

date.

-r Do not read in the default file 'mk166.mk'.

-s Silent mode. Do not print command lines before executing

them. This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than

performing the rules to reconstruct them.

Utilities 12–49

• • • • • • • •

-w Redirect warnings and errors to standard output. Without,

mk166 and the commands it executes use standard error for

this purpose.

macro=value
Macro definition. This definition remains fixed for the mk166

invocation. It overrides any regular definitions for the

specified macro within the makefiles and from the

environment. It is inherited by subordinate mk166's but act

as an environment variable for these. That is, depending on

the -e setting, it may be overridden by a makefile definition.

Usage

Makefiles

The first makefile read is 'mk166.mk', which is looked for at the following

places (in this order):

- in the current working directory

- in the directory pointed to by the HOME environment variable

- in the etc directory relative to the directory where mk166 is

located

Example (PC):

when mk166 is installed in \c166\bin the directory \c166\etc is

searched for makefiles.

Example (UNIX):

when mk166 is installed in /usr/local/c166/bin the directory

/usr/local/c166/etc is searched for makefiles.

It typically contains predefined macros and implicit rules.

The default name of the makefile is 'makefile' in the current directory. If

this file is not found on a UNIX system, the file 'Makefile' is then used as

the default. Alternate makefiles can be specified using one or more -f

options on the command line. Multiple -f options act as if all the makefiles

were concatenated in a left-to-right order.

Chapter 1212–50
U
T
IL
IT
IE
S

The makefile(s) may contain a mixture of comment lines, macro

definitions, include lines, and target lines. Lines may be continued across

input lines by escaping the NEWLINE with a backslash (\). If a line must

end with a backslash then an empty macro should be appended. Anything

after a "#" is considered to be a comment, and is stripped from the line,

including spaces immediately before the "#". If the "#" is inside a quoted

string, it is not treated as a comment. Completely blank lines are ignored.

An include line is used to include the text of another makefile. It consists

of the word "include" left justified, followed by spaces, and followed by

the name of the file that is to be included at this line. Macros in the name

of the included file are expanded before the file is included. Include files

may be nested.

An export line is used for exporting a macro definition to the environment

of any command executed by mk166. Such a line starts with the word

"export", followed by one or more spaces and the name of the macro to

be exported. Macros are exported at the moment an export line is read.

This implies that references to forward macro definitions are equivalent to

undefined macros.

Conditional Processing

Lines containing ifdef , ifndef , else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macroname
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef , ifndef , else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

First the macroname after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef , the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

Utilities 12–51

• • • • • • • •

Macros

Macros have the form `WORD = text and more text'. The WORD need not

be uppercase, but this is an accepted standard. Spaces around the equal

sign are not significant. Later lines which contain $(WORD) or ${WORD}

will have this replaced by `text and more text'. If the macro name is a

single character, the parentheses are optional. Note that the expansion is

done recursively, so the body of a macro may contain other macro

invocations. The right side of a macro definition is expanded when the

macro is actually used, not at the point of definition.

Example:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

`$(FOOD)' becomes `meat and/or vegetables and water' and the

environment variable FOOD is set accordingly by the export line.

However, when a macro definition contains a direct reference to the

macro being defined then those instances are expanded at the point of

definition. This is the only case when the right side of a macro definition is

(partially) expanded. For example, the line

DRINK = $(DRINK) or wine

after the export line affects `$(FOOD)' just as the line

DRINK = water or wine

would do. However, the environment variable FOOD will only be updated

when it is exported again.

You are advised not to use the double quotes (") for long filename support

in macros, otherwise this might result in a concatenation of two macros

with double quotes (") in between.

Special Macros

MAKE This normally has the value mk166. Any line which invokes

MAKE temporarily overrides the -n option, just for the

duration of the one line. This allows nested invocations of

MAKE to be tested with the -n option.

Chapter 1212–52
U
T
IL
IT
IE
S

MAKEFLAGS

This macro has the set of options provided to mk166 as its

value. If this is set as an environment variable, the set of

options is processed before any command line options. This

macro may be explicitly passed to nested mk166's, but it is

also available to these invocations as an environment

variable. The -f and -d flags are not recorded in this macro.

PRODDIR This macro expands the name of the directory where mk166

is installed without the last path component. The resulting

directory name will be the root directory of the installed

C166/ST10 package, unless mk166 is installed somewhere

else. This macro can be used to refer to files belonging to the

product, for example a library source file.

Example:

START = $(PRODDIR)/lib/src/start.asm

When mk166 is installed in the directory /c166/bin this line expands to:

START = /c166/lib/src/start.asm

SHELLCMD

This contains the default list of commands which are local to

the SHELL. If a rule is an invocation of one of these

commands, a SHELL is automatically spawned to handle it.

TMP_CCPROG

This macro contains the name of the control program. If this

macro and the TMP_CCOPT macro are set and the command

line argument list for the control program exceeds 127

characters then mk166 will create a temporary file filled with

the command line arguments. mk166 will call the control

program with the temporary file as command input file. This

macro is only known by the PC version of mk166.

TMP_CCOPT

This macro contains the option for the control program

which tells the control program to read a file as command

arguments. This macro is only known by the PC version of

mk166.

Utilities 12–53

• • • • • • • •

Example:

TMP_CCPROG= cc166
TMP_CCOPT = –f

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match , separate , protect , exist and

nexist .

The match function yields all arguments which match a certain suffix:

$(match .obj prog.obj sub.obj mylib.lib)

Chapter 1212–54
U
T
IL
IT
IE
S

will yield

prog.obj sub.obj

The separate function concatenates its arguments using the first

argument as the separator. If the first argument is enclosed in double

quotes then '\n' is interpreted as a newline character, '\t' is interpreted as

a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three

octal digits), and spaces are taken literally. For example:

$(separate ”,\n” prog.obj sub.obj)

will result in

prog.obj,
sub.obj

Function arguments may be macros or functions themselves. So,

$(separate ”,\n” $(match .obj $!))

will yield all object files the current target depends on, separated by a

comma - newline string.

The protect function adds one level of quoting. This function has one

argument which can contain white space. If the argument contains any

white space, single quotes, double quotes, or backslashes, it is enclosed in

double quotes. In addition, any double quote or backslash is escaped with

a backslash.

Example:

echo $(protect I’ll show you the ”protect” function)

will yield

echo ”I’ll show you the \”protect\” function”

The exist function expands to its second argument if the first argument is

an existing file or directory.

Example:

$(exist test.c cc166 test.c)

When the file test.c exists it will yield:

cc166 test.c

Utilities 12–55

• • • • • • • •

When the file test.c does not exist nothing is expanded.

The nexist function is the opposite of the exist function. It expands to its

second argument if the first argument is not an existing file or directory.

Example:

$(nexist test.src cc166 test.c)

Targets

A target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
[rule]
...

Any line which does not have leading white space (other than macro

definitions) is a 'target' line. Target lines consist of one or more filenames

(or macros which expand into same) called targets, followed by a colon

(:). The ':' is followed by a list of dependent files. The dependency list

may be terminated with a semicolon (;) which may be followed by a rule

or shell command.

Special allowance is made on MS-DOS for the colons which are needed to

specify files on other drives, so for example, the following will work as

intended:

c:foo.obj : a:foo.c

If a target is named in more than one target line, the dependencies are

added to form the target's complete dependency list.

The dependents are the ones from which a target is constructed. They in

turn may be targets of other dependents. In general, for a particular target

file, each of its dependent files is 'made', to make sure that each is up to

date with respect to it's dependents.

The modification time of the target is compared to the modification times

of each dependent file. If the target is older, one or more of the

dependents have changed, so the target must be constructed. Of course,

this checking is done recursively, so that all dependents of dependents of

dependents of ... are up-to-date.

To reconstruct a target, mk166 expands macros and functions, strips off

initial white space, and either executes the rules directly, or passes each to

a shell or COMMAND.COM for execution.

Chapter 1212–56
U
T
IL
IT
IE
S

For target lines, macros and functions are expanded on input. All other

lines have expansion delayed until absolutely required (i.e. macros and

functions in rules are dynamic).

Special Targets

.DEFAULT:

The rule for this target is used to process a target when there

is no other entry for it, and no implicit rule for building it.

mk166 ignores all dependencies for this target.

.DONE: This target and its dependencies are processed after all other

targets are built.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying -i

on the command line.

.INIT: This target and its dependencies are processed before any

other targets are processed.

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying -s

on the command line.

.SUFFIXES:

The suffixes list for selecting implicit rules. Specifying this

target with dependents adds these to the end of the suffixes

list. Specifying it with no dependents clears the list.

.PRECIOUS:

Dependency files mentioned for this target are not removed.

Normally, mk166 removes a target file if a command in its

construction rule returned an error or when target

construction is interrupted.

Rules

A line in a makefile that starts with a TAB or SPACE is a shell line or rule.

This line is associated with the most recently preceding dependency line.

A sequence of these may be associated with a single dependency line.

When a target is out of date with respect to a dependent, the sequence of

commands is executed. Shell lines may have any combination of the

following characters to the left of the command:

@ will not echo the command line, except if -n is used.

Utilities 12–57

• • • • • • • •

- mk166 will ignore the exit code of the command, i.e. the

ERRORLEVEL of MS-DOS. Without this, mk166 terminates when a

non-zero exit code is returned.

+ mk166 will use a shell or COMMAND.COM to execute the command.

If the '+' is not attached to a shell line, but the command is a DOS

command or if redirection is used (<, |, >), the shell line is passed to

COMMAND.COM anyway. For UNIX, redirection, backquote (`)

parentheses and variables force the use of a shell.

You can force mk166 to execute multiple command lines in one shell

environment. This is accomplished with the token combination ';\'.

Example:

cd c:\c166\bin ;\
c166 –V

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

mk166 can generate inline temporary files. If a line contains '<<WORD'

then all subsequent lines up to a line starting with WORD, are placed in a

temporary file. Next, '<<WORD' is replaced with the name of the

temporary file.

No whitespace is allowed between '<<' and 'WORD'.

Example:

l166 @<<EOF
$(separate ”,\n” $(match .obj $!)),
$(separate ”,\n” $(match .lib $!))
to $@
$(LDFLAGS)

EOF

The four lines between the tags (EOF) are written to a temporary file (e.g.

"\tmp\mk2"), and the command line is rewritten as "l166 @\tmp\mk2".

Chapter 1212–58
U
T
IL
IT
IE
S

Implicit Rules

Implicit rules are intimately tied to the .SUFFIXES: special target. Each

entry in the .SUFFIXES: list defines an extension to a filename which may

be used to build another file. The implicit rules then define how to

actually build one file from another. These files are related, in that they

must share a common basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit

rule is looked for. Each entry in the .SUFFIXES: list is combined with the

extension of the target, to get the name of an implicit target. If this target

exists, it gives the rules used to transform a file with the dependent

extension to the target file. Any dependents of the implicit target are

ignored.

If a file that is being made has an explicit target, but no rules, a similar

search is made for implicit rules. Each entry in the .SUFFIXES: list is

combined with the extension of the target, to get the name of an implicit

target. If such a target exists, then the list of dependents is searched for a

file with the correct extension, and the implicit rules are invoked to create

the target.

Examples

This makefile says that prog.out depends on two files prog.obj and

sub.ob j, and that they in turn depend on their corresponding source files

(prog.c and sub.c) along with the common file inc.h .

LIB = 166\c166s.lib

prog.out: prog.obj sub.obj
l166 loc prog.obj sub.obj $(LIB) to prog.out

prog.obj: prog.c inc.h
c166 prog.c
a166 prog.src NOPRINT

sub.obj: sub.c inc.h
c166 sub.c
a166 sub.src NOPRINT

The following makefile uses implicit rules (from mk166.mk) to perform

the same job. Note that the implicit rules use the control program cc166.

Utilities 12–59

• • • • • • • •

prog.out: prog.obj sub.obj
prog.obj: prog.c inc.h
sub.obj: sub.c inc.h

Files

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mk166.mk Default dependencies and rules.

Diagnostics

mk166 returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Chapter 1212–60
U
T
IL
IT
IE
S

12.10 SREC166

Name

srec166 format object code (absolute located TASKING a.out) into

Motorola S format

Synopsis

srec166 [-lcount] [-z] [-w] [-ssectlist] [-caddress] [-r1] [-r2] [-r3]

[-aaddress] [-n] [-nh] [-nt] [-poffset [-ehex]] [infile]
[[-o] outfile]

srec166 -V

srec166 -? (UNIX C-shell: ” -?” or -\?)

Description

srec166 formats object files and executable files to Motorola S format

records for (E)PROM programmers. Hexadecimal numbers A to F are

always generated as capitals.

Empty sections in the input file are skipped. No empty records are

generated for empty sections.

The program can format records to Motorola S1 S2 and S3 format.

Addresses that lie between sections are not filled in.

The output does not contain symbol information.

There is no need to place the input and output file names at the end of

the command line. If data is to be read from standard input and the output

is not standard output, the output file must be specified with the -o

option.

If only one filename is given, it is assumed that it is the name of the input

file, hence output is written to standard output.

It is also possible to omit both the input filename and output filename. In

that case standard input and standard output are used.

Options

Options must be separated by a blank and start with a minus sign (-).

Decimal and hexadecimal arguments should be concatenated directly to

the option letter.

Utilities 12–61

• • • • • • • •

Options may be specified in any order.

Output filenames should be separated from the -o option letter by a

blank.

Example:

srec166 myfile.out –l20 –z outfile.hex

The next example gives the same result:

srec166 –l20 –z –o outfile.hex < myfile.out

-? Display an explanation of options at stdout.

-V Display version information at stderr.

-aaddress address specifies the address that is to be added to the

address of any data record.

-caddress This option specifies the start address which is loaded into

the processor. The start address is placed in the termination

record.

-ehex hex is the length of the data output (must be used in

combination with -p option). The user must have a clear

view of the sizes and base addresses of the sections when he

uses the -p and -e options.

Example:

srec166 –p10 –eD0 myfil.out –r2

skips 16 bytes in the first section and output the following

208 bytes of the file myfil.out in S2 format records to the

standard output.

-lcount Number of character pairs in the output record. The number

of characters in a line is given by count * 2 + 4. The default

count is 32.

-n Suppress header (S0), and termination records (S7, S8 or S9).

-nh No output of header record.

-nt No output of termination record.

Chapter 1212–62
U
T
IL
IT
IE
S

-o outfile outfile is the name of the file to which output is written. This

option must be used if the input is standard input and the

output must be written in a file.

-poffset offset is the offset in a section at which the output must start.

If no section number is specified with the -s option, then

bytes are skipped in the first record found. The user should

be aware of the fact that there is no detection of skipping an

entire section in a file. The -p option may not occur more

than once in a command line. Warning: sections are adjacent

in the input file, but do not have to be contiguous in

memory!

-r1 Output of Motorola S1 data records, for 16 bits addresses.

This is the default record type.

-r2 Output of Motorola S2 records, for 24 bits addresses.

-r3 Output of Motorola S3 records, for 32 bits addresses.

-ssectlist sectlist is a list of section numbers that must be written to

output. The section numbers must be separated by commas.

Note: section numbers start at 0 and can be found with the

dmp166 utility.

-w Select word address count instead of byte address count.

-z Do not output records with zeros (0x00) only.

A

A.OUT FILE FORMAT
A

P
P

E
N

D
IX

Appendix AA–2
A
.O
U
T

A

A
P

P
E

N
D

IX

A.out File Format A–3

• • • • • • • •

1 INTRODUCTION

The layout of the assembler/linker/locator output file is machine

independent (through being fully byte oriented), compact and accepts

variable-length symbols. All chars are 1 byte, shorts are 2 bytes and

longs are 4 bytes.

The elements of an a.out file describe the sections in the file and the

symbol debug information. These elements include:

• File Header record (tk_outhead)

• Section Header records (outsect)

• Raw data for each section with initialized data

• Relocation records (outrelo)

• Name records (tk_outname)

• Identifier strings

• Extension Header record (exthead)

• Extension records:

- Segment Range records (tk_extsegm)

- Allocation records (tk_extallo)

The names between parentheses refer to the corresponding structures in

the C include file out.h , which is included at the end of this appendix.

The locate stage of l166 produces absolute object files. These files do not

contain relocation records. The following figure illustrates the layout of an

a.out file:

File Header

Section Header 1

|

|

Section Header n

Section 1 Data

|

|

Section n Data

Relocation Records

Name Records

Appendix AA–4
A
.O
U
T

Identifier Strings

Extension Header

Segment Range Records

Allocation Records

1.1 FILE HEADER

The file header occupies the first 22 bytes of the file and comprises:

oh_magic An unsigned short containing the 'magic' number

specifying the type of file (assembler/linker/locator output

file).

For C166 object files oh_magic must have the following

values:

0x201 (O_MAGIC) for locator output
0x202 (N_MAGIC) for assembler/linker output

oh_stamp An unsigned short containing the version stamp (the

assembler/linker/locator release version). The upper 8 bits of

the stamp field contain a code specifying the target processor.

These codes are defined in the out.h file, which is listed at

the end of this appendix.

For C166 object files this field must be:

O_NSTAMP | (TARGET_166 << 8)

oh_flags An unsigned short specifying the following format flags

used for the C166:

HF_LINK If bit 2 of oh_flags is '1' then one or more

references remain unresolved; otherwise all

references have been resolved.

oh_nsect An unsigned short containing the number of output section

fillers.

oh_nrelo An unsigned short containing the number of relocation

records.

A.out File Format A–5

• • • • • • • •

oh_nname An unsigned short containing the number of symbol

records.

oh_nemit A long containing the sum of the sizes of all sections in the

file.

oh_nchar A long containing the size of the symbol string area.

oh_nsegm An unsigned short containing two values:

- an extra byte for the number of relocation records

(oh_nrelo)

- an extra byte for the number of name records

(oh_nname)

These bytes are used for large number of symbols and

relocation records. The macros oh_nrelo and oh_nname

can be used to get a long integer value for these numbers.

File header layout:

byte type description
number

0–1 unsigned short oh_magic: magic number
2–3 unsigned short oh_stamp: version stamp
4–5 unsigned short oh_flags: flag field
6–7 unsigned short oh_nsect: number of sections
8–9 unsigned short oh_nrelo: number of relocation records
10–11 unsigned short oh_nname: number of name records
12–15 long oh_nemit: number of bytes initialized

 data in the file
16–19 long oh_nchar: size of string area
20–21 unsigned short oh_nsegm: additional high bytes of

 number of relocation records
 and symbol records

1.2 SECTION HEADERS

The section header records comprise a separate header for each output

section; each section header record occupies 20 bytes and comprises the

following:

os_base A long containing the start address of the section in the

machine.

os_size A long containing the size of the section in the machine.

Appendix AA–6
A
.O
U
T

os_foff A long containing the start address of the section in the file.

os_flen A long containing the size of the section in the file.

os_lign A long containing the alignment of the section.

(Not used for C166).

1.3 SECTION FILLERS

The section contents follow on from the section headers and comprise the

contents of each output section, in the same order as the section headers.

The contents start at the address specified by os_base and are of the

length specified by os_size. The initialized portion of the section is of the

length specified by os_flen. An uninitialized portion of the contents

comprising os_size - os_flen bytes is left at the end of the contents.

There are no restrictions on section boundaries so sections may overlap.

1.4 RELOCATION RECORDS

Relocation records comprise an 8-byte entry for each occurrence of a

relocatable value; the entries have the following structure:

or_type An unsigned short containing the type of reference.

or_sect An unsigned short containing the number of the

referencing section. If or_sect is zero, the relocation record

is a symbol table relocation record rather than a code

relocation record.

or_addr A long containing the address where relocation is to take

place. If the current relocation record is a symbol table

relocation record, or_addr contains the index of the symbol

to be relocated.

or_nami An unsigned short containing the number of bytes that

follows the relocation record.

A.out File Format A–7

• • • • • • • •

Expression records

For avoiding problems with for example sign extension with the relocation

of symbols it should be possible to pass an expression from the assembler

to the linker. This feature is added to a.out , which also introduces an

interesting extension to expression usage with relocatables. The extension

on a.out makes it possible to use relocatables in any expression.

The relocation record is described above.

The or_nami field of the record is used to indicate the number of bytes

that is following the relocation record. These bytes form expression

records:

An expression record consists of one type byte and optional arguments.

The type bytes are grouped as follows:

0x00 – 0x1f predefined operators no arguments
0x20 – 0xef user defined operators no arguments
0xf0 – 0xff special types argument(s)

For a definition of the operators and special types see the file out.h at the

end of this appendix. After the last byte of the expression a new relocation

record can be started.

The total length of all the relocation records is a multiple of one relocation

record. This can mean that after the last record, some extra bytes are

emitted until the record boundary is reached. The oh_nrelo field in the

file header record contains the number of fixed length relocation records

which fits in the number of bytes used for the relocation records. In this

case all tools reading a.out (like dmp166) still can find the name and

extension records, wich are placed after the relocation records in the

object.

1.5 NAME RECORDS

The name records comprise a variable length entry for each symbol. Each

entry consists of a record and an associated identifier (string); the record

and the identifier are held separately to allow variable length identifiers.

The records comprise the following:

Appendix AA–8
A
.O
U
T

on_u A union which can contain (at different times) either a char

pointer (on_ptr) or a long (on_off). on_ptr is the symbol

name when the file is loaded into memory for execution and

on_off is the offset in the file to the first character of the

identifier.

on_type An unsigned short which describes the symbol as follows:

S_TYP This comprises the least significant 7 bits of

on_type which have the following significance:

If all bits are '0' the symbol is undefined (S_UND).

If bit 0 is '1' and bits 1 to 6 are all '0' the symbol is absolute

(S_ABS).

If bit 1 is '1' and bits 0 and 2 to 6 are all '0' the symbol is a

section number in an extra field (S_SEC). The symbol is

relative. In the a.out file format a separate field is used. The

number of bits are not enough to hold all possible section

numbers.

The section mask S_SECT (0x0003) must be used for testing

the types mentioned above (S_UND, S_ABS and S_SEC).

For the C166 symbol types are added. Symbol types are

masked by S_STYP (0x003C).

The following symbol types are added:

Symbol Value Description
type

S_CLS 0x0004 CLASS – class name
S_GRP 0x0008 GROUP – group name
S_BYTE 0x000C BYTE – 8 bit variable
S_WORD 0x0010 WORD – 16 bit variable
S_BIT 0x0014 BIT – 1 bit variable
S_BTW 0x0018 BITWORD – bitword label
S_FAR 0x001C FAR – far label
S_NEAR 0x0020 NEAR – near label
S_TSK 0x0024 TASKNAME – task name
S_REG 0x0028 REGBANK – register bank name
S_INT 0x002C INTNO – symbolic interrupt number
S_DT16 0x0030 DATA16 – 16 bit constant
S_DT8 0x0034 DATA8 – 8 bit constant
S_DT4 0x0038 DATA4 – 4 bit constant
S_DT3 0x003C DATA3 – 3 bit constant

A.out File Format A–9

• • • • • • • •

S_PUB If bit 6 of on_type is '1' the symbol is

associated with a public symbol.

S_EXT If bit 7 of on_type is '1' the symbol is external;

otherwise it is local.

S_EXT | S_PUB If both bit 6 and bit 7 of on_type are '1',

the symbol is associated with a global symbol.

S_ETC Bits 8-15 are the type specification for the

symbol table information. The include file

sd_class.h contains a list of possible numbers

and their meaning.

on_desc An unsigned short containing the debug information.

on_valu A long containing the symbol value.

on_sect An unsigned short containing the number of the relocatable

section the symbol belongs to.

In order to permit several symbolic debug features, all symbol entries are

in the order of their definition. The section symbols occupy the last entries

in the symbol table for the purpose of quick reference.

For the C166 a task name record (S_TSK) is placed at the beginning of

each task in the symbol table.

1.6 EXTENSION RECORDS

The way the link information is passed from the assembler to the linker is

through extension records at the end of the out.h format. Within the

framework of these extension records we can describe all the extra

information required.

The extension records only occur in object files. Extension records consist

of:

- an extension header

- range specification records

- allocation specification records.

Appendix AA–10
A
.O
U
T

Extension Header

The extension header consists of 8 bytes and consist of:

eh_magic An unsigned short containing the 'magic' number

specifying the type of file (assembler/linker/locator output

file).

O_MAGIC (0x201) specifies an assembler/
 linker output file.

N_MAGIC (0x202) specifies a locator
 output file.

eh_stamp An unsigned short containing the version stamp (the

assembler/linker release version). This value is 0 for the166.

eh_nsegm An unsigned short containing the number of range

specification records.

eh_allo An unsigned short containing the number of allocation

records.

Segment Range Specification Records

The segment range allocation records specify the lower bound and upper

bound of a particular memory range. For the C166 section range records

are used to pass additional information to the linker/locator.

es_type An unsigned short containing section type information.

S_TYP For the 166 these bits can have the following

value:

S_UND with a value of 0x0000 : undefined

item

For other processors these bits are meaningless.

S_ETC Bits 8-15 are the type specification bits.

Currently used values are:

S_RNG with a value of 0x7100 : range record.

S_USE with a value of 0x7600 : extension

record.

es_desc An unsigned short, currently not used, but it can be used

for future debugging extensions.

A.out File Format A–11

• • • • • • • •

es_lval A long containing the lower bound value of the memory

range.

es_uval A long containing the upper bound value of the memory

range.

es_sect An unsigned short containing the segment type

information.

Allocation Specification Records

For the C166 these records are used to pass additional information about

group/class numbers in a section.

ea_type An unsigned short containing segment type information.

Types are:

S_TYP Normally these bits are meaningless. For the

C166, the following value exists:

S_SEC with the value 0x0002 :

section number

S_ETC Bits 8-15 are the type specification bits.

Currently used value for the C166 is:

S_SCT with the value 0x0100 specifies a

section type record.

ea_desc An unsigned short, currently not used, but it can be used

for future debugging extensions.

ea_valu A long containing the page size or the base address. When

the allocation record is a section type record, this value

contains the group and class number in a section.

ea_sect An unsigned short containing the segment type

information. Contains the section number if the allocation

record is a section type record.

Appendix AA–12
A
.O
U
T

2 FORMAT OF A.OUT FILE AS C INCLUDE FILE

The format of the a.out file is contained within the C include file out.h
where it is described in the following terms:

/**
 *
 * VERSION : @(#)out.h 1.9 98/07/03
 *
 * DESCRIPTION : out.h – Object format for C166 toolchain
 *
 ***/

#ifndef __OUT_H_DEFINED
#define __OUT_H_DEFINED

#ifndef _UTYPES_DEFINED
#define _UTYPES_DEFINED
typedef unsigned char Uchar;
typedef unsigned short Ushort;
typedef unsigned long Ulong;
#endif

struct outhead {
Ushort oh_magic; /* magic number */
Ushort oh_stamp; /* version stamp */
Ushort oh_flags; /* several format flags */
Uchar oh_nsect; /* number of outsect structures */
Uchar oh_nsegm; /* number of segments used */
Ushort oh_nrelo; /* number of outrelo structures */
Ushort oh_nname; /* number of outname structures */
long oh_nemit; /* sum of all os_flen */
long oh_nchar; /* size of string area */

};

struct tk_outhead {
Ushort oh_magic; /* magic number */
Ushort oh_stamp; /* version stamp */
Ushort oh_flags; /* several format flags */
Ushort oh_nsect; /* number of outsect structures */
Ushort oh_nrelo; /* number of outrelo structures */
Ushort oh_nname; /* number of outname structures */
long oh_nemit; /* sum of all os_flen */
long oh_nchar; /* size of string area */
Ushort oh_nsegm; /* MSB for number of outname

 and outrelo structures */
};

union ohdr {
struct outhead ohd;
struct tk_outhead tk_ohd;
};

A.out File Format A–13

• • • • • • • •

/*
 * magic word definitions
 */
#define MAGIC_TCP 0x0200 /* TCP assembler & linker */
#define MAGIC_INTEL 0x0400 /* Intel compatible assembler &

 linker */

#define MAGIC_O 0x0001 /* magic number for target load
file */
#define MAGIC_N 0x0002 /* magic number for object file */
#define MAGIC_MASK (~(MAGIC_TCP|MAGIC_INTEL))

#define O_MAGIC (MAGIC_O|MAGIC_TCP)
#define N_MAGIC (MAGIC_N|MAGIC_TCP)
#define O_I_MAGIC (MAGIC_O|MAGIC_INTEL)
#define N_I_MAGIC (MAGIC_N|MAGIC_INTEL)

/*
 * Macros for getting or setting the total number of relo records
 or the total number of
 * name records.
 */
#define GET_NNAME(n) ((long)(n).oh_nname |

 (((long)(n).oh_nsegm & 0x00FFL) << 16))
#define GET_NRELO(n) ((long)(n).oh_nrelo |

 (((long)(n).oh_nsegm & 0xFF00L) << 8))
#define SET_NNAME(n,v) (n).oh_nname = (Ushort)(v);

 (n).oh_nsegm=((n).oh_nsegm & 0xFF00) |
 (Ushort)((v)>>16 & 0x00FF)

#define SET_NRELO(n,v) (n).oh_nrelo = (Ushort)(v);
 (n).oh_nsegm=((n).oh_nsegm & 0x00FF) |
 (Ushort)((v)>>8 & 0xFF00)

/*
 * version stamp
 * target code in the upper 8 bits
 */
#define O_STAMP 1 /* version stamp */
#define O_NSTAMP 2 /* version stamp for new Intel comp. output */
#define O_VSTAMP 4 /* Version stamp for extended sections */

#define TARGET_8051 1
#define TARGET_8096 2
#define TARGET_68000 3
#define TARGET_Z80 4
#define TARGET_TMS320 5
#define TARGET_80166 6

#define HF_BREV 0x0001 /* high order byte lowest address */
#define HF_WREV 0x0002 /* high order word lowest address */
#define HF_LINK 0x0004 /* unresolved references left */
#define HF_8086 0x0008 /* os_base specially encoded */

Appendix AA–14
A
.O
U
T

struct outsect {
long os_base; /* startaddress in machine */
long os_size; /* section size in machine */
long os_foff; /* startaddress in file */
long os_flen; /* section size in file */
long os_lign; /* section alignment */

};

struct outrelo {
Ushort or_type; /* type of reference */
Ushort or_sect; /* referencing section */
long or_addr; /* referencing address */
Ushort or_nami; /* referenced symbol index or */

/* expression bye count */
};

/*
 * relocation type bits
 *
 * +–––+
 * | size | pos | pc rel | mach dep | extra info |
 * +–––+
 * 0 2 4 5 7
 *
 * size : size of relocatable item (2 bits)
 * pos : position of relocatable item

 in original relocated value (2 bits)
 * pc rel : pc relative indication (1 bit)
 * mach dep : reserved for machine dependent purposes (2 bits)
 * extra info : to add information to one of the other

 relocation types
 */

/* sizes (bit 0/1 values) */
#define RELO1 0x00 /* 1 byte */
#define RELO2 0x01 /* 2 bytes */
#define RELO4 0x02 /* 4 bytes */
#define RELSS 0x03 /* special size (machine dependent) */

/* positions (bit 2/3 values) */
#define RELP0 0x00 /* no byte selection */
#define RELP1 0x04 /* least significant byte/word

 * (byte 0, word 0)
 */

#define RELP2 0x08 /* byte 1, word 0 */
#define RELPS 0x0C /* special byte (machine dependent) */

/* pc relative mode (bit 4 value) */
#define RELPC 0x10 /* pc relative */

A.out File Format A–15

• • • • • • • •

/* machine dependent cases (bit 5/6 values) */
#define RELM0 0x00 /* no machine dependent case */
#define RELM1 0x20 /* machine dependent case 1 */
#define RELM2 0x40 /* machine dependent case 2 */
#define RELM3 0x60 /* machine dependent case 3 */

/* all relocation types above can have one extra flag: */
#define RELXI 0x80 /* extra information bit */

/* definition of tokens for general operators (0x00 – 0x1f) */
#define XO_ADD 0x00 /* + */
#define XO_SUB 0x01 /* – */
#define XO_MUL 0x02 /* * */
#define XO_DIV 0x03 /* / */
#define XO_MOD 0x04 /* % */
#define XO_ORB 0x05 /* | */
#define XO_ANDB 0x06 /* & */
#define XO_XOR 0x07 /* ^ */
#define XO_SR 0x08 /* >> */
#define XO_SL 0x09 /* << */
#define XO_NEGB 0x0a /* ~ */
#define XO_GT 0x0b /* > */
#define XO_LT 0x0c /* < */
#define XO_GTE 0x0d /* >= */
#define XO_LTE 0x0e /* <= */
#define XO_EQ 0x0f /* == */
#define XO_NE 0x10 /* != */
#define XO_AND 0x11 /* && */
#define XO_OR 0x12 /* || */
#define XO_NOT 0x13 /* ! */
#define XO_NEG 0x14 /* unary – */

/* definition of tokens for proccessor dependent operators (0x20 –
 0xef) */
/* C166 operators */
#define XO_POF 0x20 /* POF – page offset */
#define XO_PAG 0x21 /* PAG – page number */
#define XO_SOF 0x22 /* SOF – segment offset */
#define XO_SEG 0x23 /* SEG – segment number */
#define XO_BOF 0x24 /* BOF – bit offset */
#define XO_HIGH 0x25 /* HIGH – high byte */
#define XO_LOW 0x26 /* LOW – low byte */
#define XO_DOT 0x27 /* . – bit address: off.pos */
#define XO_ULT 0x28 /* ULT – unsigned less than */
#define XO_ULE 0x29 /* ULE – unsigned less than or equal */
#define XO_UGT 0x2a /* UGT – unsigned greater than */
#define XO_UGE 0x2b /* UGT – unsigned greater than or equal*/

/* special operators 0xf0 – 0xff */
#define XO_NUM 0xf0 /* 4 byte constant is following */
#define XO_NAM 0xf1 /* 3 byte symbol name index is following */
#define XO_NAMO 0xf2 /* 3 byte symbol name index and 4 byte

 offset */

Appendix AA–16
A
.O
U
T

struct outname {
union {

char *on_ptr; /* symbol name (in core) */
long on_off; /* symbol name (in file) */

} on_u;
Ushort on_type; /* symbol type */
Ushort on_desc; /* debug info */
long on_valu; /* symbol value */

};

struct tk_outname {
union {

char *on_ptr; /* symbol name (in core) */
long on_off; /* symbol name (in file) */

} on_u;
Ushort on_type; /* symbol type */
Ushort on_desc; /* debug info */
long on_valu; /* symbol value */
Ushort on_sect; /* section number of the symbol */

};

union nam {
struct outname onm;
struct tk_outname tk_onm;
};

#define on_mptr on_u.on_ptr
#define on_foff on_u.on_off

/*
 * section type bits and fields
 */
#define S_TYP 0x003F /* undefined, absolute or relative */
#define S_COM 0x0040 /* .comm symbol (TCP) */
#define S_PUB 0x0040 /* public symbol (Intel) */
#define S_EXT 0x0080 /* external flag */
#define S_ETC 0x7F00 /* for symbolic debug, bypassing ’as’ */

/*
 * S_TYP field values
 */
#define S_UND 0x0000 /* undefined item */
#define S_ABS 0x0001 /* absolute item */
#define S_MIN 0x0002 /* first user section */
#define S_MAX S_TYP /* last user section */
#define S_SEC 0x0002 /* section number in extra field */
#define TKS_MAX 256 /* maximum number of segments in

 extended object format */

A.out File Format A–17

• • • • • • • •

#define TKS_OSMAX 5000
/* Maximum number of segments in extended a.out format */
/* This value is used by linker/locator and should not be
 changed */
/* Tools reading a.out format should support at least */
/* this number of segments in the output format */

/*
 * S_ETC field values
 */
#define S_SCT 0x0100 /* section names */
#define S_LIN 0x0200 /* hll source line item */
#define S_FIL 0x0300 /* hll source file item */
#define S_MOD 0x0400 /* ass source file item */

#define S_SEG 0x7000 /* segment names */
#define S_RNG 0x7100 /* range descriptor */
#define S_BAS 0x7200 /* base descriptor */
#define S_PAG 0x7300 /* page descriptor */
#define S_INP 0x7400 /* page descriptor */
#define S_USE 0x7600 /* extension record identification */
#define S_VER 0x7F00 /* compiler phase identification */

/* C166 symbol types masked by 0x3C */
#define S_STYP 0x003C /* mask for symbol types */
#define S_SECT 0x0003 /* mask for section type */
#define S_CLS 0x0004 /* CLASS – class name */
#define S_GRP 0x0008 /* GROUP – group name */
#define S_BYTE 0x000C /* BYTE – 8 bit variable */
#define S_WORD 0x0010 /* WORD – 16 bit variable */
#define S_BIT 0x0014 /* BIT – 1 bit variable */
#define S_BTW 0x0018 /* BITWORD – bitword label */
#define S_FAR 0x001C /* FAR – far label */
#define S_NEAR 0x0020 /* NEAR – near label */
#define S_TSK 0x0024 /* TASKNAME – task name */
#define S_REG 0x0028 /* REGBANK – register bank name */

#define S_INT 0x002C /* INTNO – symbolic interrupt number */
#define S_DT16 0x0030 /* DATA16 – 16 bit constant */
#define S_DT8 0x0034 /* DATA8 – 8 bit constant */
#define S_DT4 0x0038 /* DATA4 – 4 bit constant */
#define S_DT3 0x003C /* DATA3 – 3 bit constant */

Appendix AA–18
A
.O
U
T

/*
 * Allocation information is generated in a
 * S_SEG record. the value field contains the attributes
 * SA_PAG, SA_INP, SA_BTA, SA_UNT and SA_BLK.
 * An S_USE record contains the attributes
 * SA_OV0, SA_OV1, SA_OV2 and SA_OV3.
 */
#define SA_PAG 0x0001 /* page boundary attribute */
#define SA_INP 0x0002 /* inpage attribute */
#define SA_BTA 0x0004 /* bitaddressable attribute */
#define SA_UNT 0x0008 /* unit attribute */
#define SA_BLK 0x0010 /* inblock attribute */
#define SA_SHT 0x1000 /* short attribute */
#define SA_ROM 0x2000 /* romdata attribute */
#define SA_ATT (SA_PAG|SA_INP|SA_BTA|SA_UNT|SA_BLK|SA_SHT|SA_ROM
)

#define SA_ASG 0x0020 /* absolute allocation */
#define SA_RSG 0x0040 /* relative allocation */
#define SA_MASK 0x007f /* allocation type mask */

#define SA_OV0 0x0100 /* overlay bank 0 attribute */
#define SA_OV1 0x0200 /* overlay bank 1 attribute */
#define SA_OV2 0x0400 /* overlay bank 2 attribute */
#define SA_OV3 0x0800 /* overlay bank 3 attribute */
#define SA_OVX (SA_OV0|SA_OV1|SA_OV2|SA_OV3)

/* C166 */
#define SA_WOR 0x0000 /* word alignment (default) */
#define SA_BYT 0x0002 /* byte alignment */
#define SA_SEG 0x0003 /* segment alignmemt */
#define SA_PCA 0x0005 /* PEC–addressable – word alignment */
#define SA_DBW 0x0006 /* double word alignment */
#define SA_IRA 0x0007 /* IRAM addressable – word alignment */
#define SA_PRV 0x0000 /* private section (default) */
#define SA_PUB 0x0010 /* public section */
#define SA_COM 0x0030 /* common section */
#define SA_SSK 0x0040 /* system stack section */
#define SA_USK 0x0050 /* user stack section */
#define SA_GLB 0x0060 /* global section */
#define SA_GUS 0x0070 /* global user stack section */

A.out File Format A–19

• • • • • • • •

/*
 * memory type definitions
 * used in symbol table (i_mtyp)
 * used in expression evaluation (mtyp)
 * used in allocation record S_SEG
 */

#define MEM_UNDEF 0x00 /* memory type undefined */
#define MEM_CODE 0x78 /* memory type code */
#define MEM_BIT 0x79 /* memory type bit */
#define MEM_DATA 0x7a /* memory type data */
#define MEM_XDATA 0x7b /* memory type xdata */
#define MEM_HDAT 0x7b /* memory type HDAT */
#define MEM_IDATA 0x7c /* memory type idata */
#define MEM_PDAT 0x7c /* memory type PDAT */
#define MEM_NBR 0x7d /* memory type number */
#define MEM_LDAT 0x7d /* memory type LDAT */
#define MEM_DBI 0x7e /* memory type data bitaddressable

 * internal use only
 */

#define MEM_SDAT 0x7f /* memory type SDAT */

/*
 * Extension records only occur in object files. Thus there
 * exists an extension header if IS_OBJECT(outhead). (see below).
 *
 * extension header */
struct exthead {

Ushort eh_magic; /* magic number */
Ushort eh_stamp; /* version stamp */
Ushort eh_nsegm; /* number of extsegm structures */
Ushort eh_nallo; /* number of extallo structures */

};

#define E_MAGIC N_MAGIC /* magic number for object file */
#define E_STAMP 0 /* version stamp */

/*
 * segment range specifications
 */
struct extsegm {

Ushort es_type; /* symbol type */
Ushort es_desc; /* debug info */
long es_lval; /* lower bound value */
long es_uval; /* upper bound value */

};

struct tk_extsegm {
Ushort es_type; /* symbol type */
Ushort es_desc; /* debug info */
long es_lval; /* lower bound value */
long es_uval; /* upper bound value */
Ushort es_sect; /* section reference */

};

Appendix AA–20
A
.O
U
T

union eseg {
struct extsegm esg;
struct tk_extsegm tk_esg;
};

/*
 * section base and paging specifications
 */
struct extallo {

Ushort ea_type; /* symbol type */
Ushort ea_desc; /* debug info */
long ea_valu; /* base or page value */

};

struct tk_extallo {
Ushort ea_type; /* symbol type */
Ushort ea_desc; /* debug info */
long ea_valu; /* base or page value */
Ushort ea_sect; /* section reference */

};

union eall {
struct extallo eal;
struct tk_extallo tk_eal;

};

/*
 * structure format strings
 */
#define SF_HEAD ”222112244”
#define SF_SECT ”44444”
#define SF_RELO ”1124”
#define SF_NAME ”4224”
#define SF_EXTH ”2222”
#define SF_SEGM ”2244”
#define SF_ALLO ”224”

#define SF_TKHEAD ”222222442”
#define SF_TKSECT ”44444”
#define SF_TKRELO ”2242”
#define SF_TKNAME ”42242”
#define SF_TKEXTH ”2222”
#define SF_TKSEGM ”22442”
#define SF_TKALLO ”2242”

A.out File Format A–21

• • • • • • • •

/*
 * structure sizes (bytes in file; add digits in SF_*)
 */
#define SZ_HEAD 20
#define SZ_SECT 20
#define SZ_RELO 8
#define SZ_NAME 12
#define SZ_EXTH 8
#define SZ_SEGM 12
#define SZ_ALLO 8

#define SZ_TKHEAD 22
#define SZ_TKSECT 20
#define SZ_TKRELO 10
#define SZ_TKNAME 14
#define SZ_TKEXTH 8
#define SZ_TKSEGM 14
#define SZ_TKALLO 10

/*
 * file access macros
 */
#define IS_BINARY(x) (((x).oh_magic & MAGIC_MASK) == MAGIC_O)
#define IS_OBJECT(x) (((x).oh_magic & MAGIC_MASK) == MAGIC_N)
#define BADMAGIC(x) (!(IS_BINARY(x) || IS_OBJECT(x)))
#define BADEMAGIC(x) ((x).eh_magic!=E_MAGIC)
#define IS_NEWHD(x) (((x).oh_stamp & 0x00FF) == O_VSTAMP)

#define OFF_SECT(x) SZ_HEAD
#define OFF_EMIT(x) (OFF_SECT(x) + ((long)(x).oh_nsect * SZ_SECT))
#define OFF_RELO(x) (OFF_EMIT(x) + (x).oh_nemit)
#define OFF_NAME(x) (OFF_RELO(x) + ((long)(x).oh_nrelo * SZ_RELO))
#define OFF_CHAR(x) (OFF_NAME(x) + ((long)(x).oh_nname * SZ_NAME))
#define OFF_EXTH(x) (OFF_CHAR(x) + (x).oh_nchar)
#define OFF_SEGM(x) (OFF_EXTH(x) + (long)SZ_EXTH)
#define OFF_ALLO(x,y) (OFF_SEGM(x) + ((long)(y).eh_nsegm *

 SZ_SEGM))

#define OFF_TKSECT(x) SZ_TKHEAD
#define OFF_TKEMIT(x) (OFF_TKSECT(x) + ((long)(x).oh_nsect *

SZ_TKSECT))
#define OFF_TKRELO(x) (OFF_TKEMIT(x) + (x).oh_nemit)
#define OFF_TKNAME(x) (OFF_TKRELO(x) + ((long)GET_NRELO(x) *

SZ_TKRELO))
#define OFF_TKCHAR(x) (OFF_TKNAME(x) + ((long)GET_NNAME(x) *

SZ_TKNAME))
#define OFF_TKEXTH(x) (OFF_TKCHAR(x) + (x).oh_nchar)
#define OFF_TKSEGM(x) (OFF_TKEXTH(x) + (long)SZ_TKEXTH)
#define OFF_TKALLO(x,y) (OFF_TKSEGM(x) + ((long)(y).eh_nsegm *

SZ_TKSEGM))

#endif /* __OUT_H_DEFINED */

Appendix AA–22
A
.O
U
T

B

MACRO
PREPROCESSOR
OUTPUT FILES

A
P

P
E

N
D

IX

Appendix BB–2
M

1
6
6
 O

U
T

P
U

T

B

A
P

P
E

N
D

IX

Macro Preprocessor Output Files B–3

• • • • • • • •

1 ASSEMBLY FILE

m166 outputs a source file which serves as an input file for a166. In this

source file all macros are replaced with source lines. The default file

extension is .src .

Example:

The following file, eg.asm :

@DEFINE RDF
REGDEF R0–R15

@ENDD

@RDF

seg1 SECTION CODE

fun PROC NEAR
NOP
MOV r1, r2
RET

fun ENDP

seg1 ENDS

END

results in the following assembly file (eg.src) after processing by m166:

#line 1 ”eg.asm”

REGDEF R0–R15

seg1 SECTION CODE

fun PROC NEAR
NOP
MOV r1, r2
RET

fun ENDP

seg1 ENDS

END

Appendix BB–4
M

1
6
6
 O

U
T

P
U

T

The macro @RDF has been replaced by ' REGDEF R0-R15'.

2 LIST FILE

The list file is optional. m166 generates a list file with default file

extension .mpl when the PRINT control is used.

Example:

The following file (eg.mpl) is the list file generated when preprocessing

the file (eg.asm) of the previous section:

C166/ST10 macro preprocessor v a. b r c SNzzzzzz
 Date: Jun 10 1997 Time: 17:29:23 Page: 1
eg

 LINE SOURCELINE

 0 #line 1 ”eg.asm”
 1 @DEFINE RDF
 2 REGDEF R0–R15
 3 @ENDD
 +0
 4
 5 @RDF
 +1 REGDEF R0–R15
 6
 7 seg1 SECTION CODE
 8
 9 fun PROC NEAR
 10 NOP
 11 MOV r1, r2
 12 RET
 13 fun ENDP
 14
 15 seg1 ENDS
 16
 17 END

total errors: 0, warnings: 0

Macro Preprocessor Output Files B–5

• • • • • • • •

2.1 PAGE HEADER

Header information is printed at the top of the first page. The page header

consists of three lines.

The first line contains the following information:

- information about macro preprocessor name

- version and serial number

- invocation date and time

- page number

The second line contains name of the module.

The third line is an empty line.

Example:

C166/ST10 macro preprocessor va.b rc SNzzzzzz Date: Jun 10 1997
Time: 17:29:23 Page: 1
eg

2.2 SOURCE LISTING

The following line appears below the header lines:

 LINE SOURCELINE

The different columns are discussed below.

LINE This column contains the line number. This is a decimal

number indicating each input line, starting from 1 and

incrementing with each source line. +0 indicates macro

preprocessor lines that will be deleted. +1 indicates lines

inserted in the assembly file.

SOURCELINE

This column contains the source text. This is a copy of the

source lines from the assembly file.

Lines below +1 indicate expanded source lines. For ease of

reading the list file, tabs are expanded with sufficient

numbers of blank spaces.

Appendix BB–6
M

1
6
6
 O

U
T

P
U

T

If the source column in the listing is too narrow to show the

whole source line, the source line is continued in the next

listing line.

Errors and warnings are included in the list file following the

line in which they occurred. Errors/Warnings are documented

by error/warning numbers and error/warning messages and

are marked with '****' in the first 4 positions of the line in the

list file. E is an error, W is a warning.

Example:

 LINE SOURCELINE

 0 #line 1 ”eg.asm”
 1 @DEFINE RDF
 2 REGDEF R0–R15
 3 @ENDD
 +0
 4
 5 @RDE
**** E: error message

2.3 TOTAL ERROR/WARNING PAGE

The last page of the list file contains a line indicating the total number of

errors and warnings found. If everything went well, this page must look

like this:

total errors: 0, warnings: 0

3 ERROR PRINT FILE

This is an output file with errors and warnings detected during macro

preprocessing. This file must be defined by the ERRORPRINT control.

Errors and warnings are also printed to standard output. The default file

name for the error print file is the source file name with extension .mpe .

The error print file starts with a header.

Then the text �Error report:" is printed. On the next line the name of the

source module is printed: name: Under this line, the source lines

containing errors are printed with their errors. The last line contains the

total number of errors found.

Macro Preprocessor Output Files B–7

• • • • • • • •

Example:

C166/ST10 macro preprocessor v a. b r c SNzzzzzzzz–zzz (x) year TASKING, Inc.

Error report :

tst.asm:

4: @define true

E 252: Definition–terminating keyword ENDD expected

total errors: 1, warnings: 0

Appendix BB–8
M

1
6
6
 O

U
T

P
U

T

C

ASSEMBLER
OUTPUT FILES

A
P

P
E

N
D

IX

Appendix CC–2
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

C

A
P

P
E

N
D

IX

Assembler Output Files C–3

• • • • • • • •

1 LIST FILE

The list file is the output file of the assembler which contains information

about the generated code. The amount and form of information depends

on the use of several controls. By default the name is the basename of the

assembly source file with the extension .lst . The name can also be user

defined by the PRINT control.

1.1 LIST FILE HEADER

If the HEADER control is in effect, a header page is printed as the first

page in the list file. A header page consists of a page header (see

explanation below), information about the invocation of the assembler and

a status list of the primary assembler controls.

Page Header

If the PAGING control is in effect, header information is printed at the top

of each page. The page header is always printed on the header page if the

HEADER control is active. The page header consists of three lines.

The first line contains the following information:

- information about assembler name

- version and serial number

- invocation date and time

- page number

The second line contains a title specified by the TITLE control.

The third line is an empty line.

Example:

C166/ST10 assembler va.b rc SNzzzzzzzz–zzz Date: Jun 10 1997
Time: 17:29:23 Page: 1
Title for demo use only

Appendix CC–4
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

1.2 SOURCE LISTING

The following line appears below the header lines:

 LOC CODE LINE SOURCELINE

The different columns are discussed below.

LOC This is the location counter or the resulting value of an ORG

directive. The location counter is the hexadecimal number

that represents the offset from the beginning of the SECTION

being assembled. In lines that generate object code, the value

is at the beginning of the line. For ORG lines, the value

shown is the new value. For any other line there is no

display. Absolutely located sections start counting at the

specified address, using a relevant mask for page or segment

bound section types.

Example:

 LOC CODE LINE SOURCELINE
 .
 .
 .
 11 Sec1 SECTION DATA

0000 0001 12 Value1 DW 100H
0002 0002 13 Value2 DW 200H
0004 14 ORG $ + 10
000E 0300 15 Value3 DW 3

 16 Sec1 ENDS

CODE This is the object code generated by the assembler for this

source line, displayed in hexadecimal format. The displayed

code need not be the same as the generated code that is

entered in the object module. The code can also be

relocatable code or a relocatable part and external part. In

this case the letter 'R' is printed at the end of the code field.

In case the code only contains an external part, the letter 'E'

is printed at the end of the code field. A number is printed at

the end of the code to countdown Extend instructions.

Assembler Output Files C–5

• • • • • • • •

Example:

 LOC CODE LINE SOURCELINE

 1 RBank REGDEF R0 – R5
 2
 3 DSEC SECTION DATA

0000 4 VARX DS 2
0002 0000 R 5 AWORD DW PAG VARX

 6 DSEC ENDS
 7
 8 CodeSec SECTION CODE
 9
 10 Task1 PROC TASK ATask INTNO = 0
 11

0000 12 Start:
0000 F2080000 R 13 MOV CP, RBank
0004 E60940FA 14 MOV SP, #0FA40H
0008 CC00 15 NOP

 16
000A FB88 17 RET

 18
 19 Task1 ENDP
 20
 21 CodeSec ENDS
 22
 23 END

LINE This column contains the line number. This is a decimal

number indicating each input line, starting from 1 and

incrementing with each source line. If listing of the line is

suppressed (i.e. by NOLIST), the number increases by one

anyway.

Example:

The following source part,

MOV R0, Value1
$NOLIST

MOV R1, Value2
$LIST

CALL AddProc

Appendix CC–6
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

results in the following list file part:

 LOC CODE LINE SOURCELINE

 .
 .

0008 F2F00000 R 28 MOV R0, Value1
 29 $NOLIST

0010 BB03 32 CALL AddProc

SOURCELINE

This column contains the source text. This is a copy of the

source lines from the source module. For ease of reading the

list file, tabs are expanded with sufficient numbers of blank

spaces.

If the source column in the listing is too narrow to show the

whole source line, the source line is continued in the next

listing line.

Errors and warnings are included in the list file following the

line in which they occurred. Errors/Warnings are documented

by error/warning numbers and error/warning messages and

are marked with '****' in the first 4 positions of the line in the

list file. E is an error, W is a warning.

Example:

 LOC CODE LINE SOURCELINE

 .
 .

0016 F2F00000 R 46 MOV R0, ABYTE
**** E 45: undefined symbol ’ABYTE’

Assembler Output Files C–7

• • • • • • • •

1.3 SECTION MAP

If the SYMBOLS control is in effect, a section map is printed after the

source listing. The section map starts on a new page. The section map

contains information about section names, start addresses, section types,

align types, combine types, groups and classes.

The section map is sorted by the section names. An example is given

below.

Sections:

Name Start bit Length Type Algn Comb Group Class

––

CSEC......... 000000h 00001eh CODE WORD PRIV

DSEC1........ 000000h 000006h DATA WORD PRIV GROUPC....

DSEC2........ 000000h 000002h DATA WORD PRIV GROUPC....

BSEC......... 00FFE0h 00h 000002h BIT BIT PRIV

Explanation of terms used in the section map:

Name The section name.

Start The start address of the section.

bit The bit position, counted from the start position.

Length The length of the section.

Type The section type. The following types are possible:

CODE CODE section
DATA DATA section
LDAT Large DATa section
HDAT Huge DATa section
PDAT Paged DATa section
BIT BIT section

Appendix CC–8
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

Algn The section align type. The following align types are

possible:

BIT BIT alignment
BYTE BYTE alignment
WORD WORD alignment
DWORD Double word alignment
PAGE PAGE alignment
SEGM SEGMENT alignment
BITA BITADDRESSABLE

(word alignment)
PECA PECADDRESSABLE

(word alignment)
IRAM IRAMADDRESSABLE

(word alignment)

Comb The section combine type. The following combine types are

possible:

PRIV PRIVATE
PUBL PUBLIC
GLOB GLOBAL
COMM COMMON
SSTK SYSSTACK
USTK USRSTACK
GUSTK GLBUSRSTACK
AT.. Absolute section

Group A user defined group name. This is the name of the group,

the section belongs to.

Class A user defined class name. This is the class assigned to the

named section.

Assembler Output Files C–9

• • • • • • • •

1.4 GROUP MAP

After the section map, the group map is written to the list file if the control

SYMBOLS is active.

Sorted by the groups' names, the following information is provided:

Groups:

Name Type Member

DGRP DATA DSEC
ESEC

CGRP CODE FSEC

where,

Name Is the name of the group.

Type Indicates the type of the group. The following types are

possible:

CODE CODE group
DATA DATA group

Member Lists the section name(s) which are member of the group

specified under Name.

The printing is accomplished in accordance with the page width. This

occurs by adjusting the group name and member columns. If the

respective names exceed the column width, they are wrapped

automatically, one time only. Any remaining excessive characters are

truncated.

1.5 SYMBOL TABLE

If the SYMBOLS control is in effect, a symbol table is printed after the

group map. The symbol table is titled by 'Symbols'. Below this title are the

columns of information. An example of a symbol table is listed below.

The printing is accomplished in accordance with the page width. This

occurs by adjusting the name and attribute columns. If the respective

names exceed the column width, it is wrapped automatically, one time

only. Any remaining excessive characters are truncated.

Appendix CC–10
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

Symbols:

Name Id Type Value Attribute Block

BVA1 V BYTE 0040 L DSEC
EVAR V WORD E

where,

Name Is the name of the symbol. User-defined symbols are listed in

alphabetical order using the ASCII ordering of characters.

Id Type Is the Id / Type of the symbol you have defined, and it may

be any of the following:

V BIT A variable of type BIT
V BYTE A variable of type BYTE
V WORD A variable of type WORD
L NEAR A label of type NEAR
L FAR A label of type FAR
P NEAR A procedure of type NEAR
P FAR A procedure of type FAR
P TASK An interrupt procedure
C DATA3 A number of maximum size 3–bit
C DATA4 A number of maximum size 4–bit
C DATA8 A number of maximum size 8–bit
C DATA16 A number of maximum size 16–bit
I INTNO An interrupt number
R REGBANKA register bank name
B name A name defined with BIT
E name A name defined with EQU
S name A name defined with SET

External symbols have the type that appears in the EXTERN

declaration.

Value Is the value of the symbol. This information depends on the

type of the symbol that is represented in the name column.

For variable and labels this value is the offset from the begin

of the section, written as a hexadecimal number:

Name Id Type Value Attribute Block

BVA1 V BYTE 0040 L DSEC
NPRC P NEAR 0002 L CSEC 0004

Assembler Output Files C–11

• • • • • • • •

For external symbols, register bank names and only declared

interrupt names '....' are entered in this field. This means that

the information is available, but not known during assembly:

Name Id Type Value Attribute Block

EVAR V WORD E

For numbers this field indicates the value of the number,

written as a hexadecimal number:

Name Id Type Value Attribute Block

CONST C DATA16 03FF L

For symbols defined with EQU or SET this field contains the

corresponding result.

Name Id Type Value Attribute Block

EQUNAME E BYTE 0002 L
SETNAME S DATA4 000F L

For symbols defined with BIT have the bit word offset and

the bit position in this field.

Name Id Type Value Attribute Block

BITNAME E BIT 0002.3 L

Attribute In the first column the id P, E, L or G is entered, representing

the scope of the symbol (P=PUBLIC, E=EXTERNAL,

L=LOCAL, G=GLOBAL).

If the symbol is a variable, label or procedure, the attribute

field additionally contains the name of the section where that

symbol is defined.

Name Id Type Value Attribute Block

BVA1 V BYTE 0040 L DSEC

Block If the symbol is a procedure, its length is entered in this

column.

Appendix CC–12
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

1.6 REGISTER AREA TABLE

The register area table is printed at the bottom of the list file if SYMBOLS

is in effect. This table contains the register area for all procedures. An

example is listed below.

Register area:

Name R R R R R R R R R R R R R R R R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PROC1 + + + +
PROC2 + + + +
PROC3 + + + + +

+ + + + + + + + +

1.7 XREF TABLE

If the XREF control is in effect, the table with the structure illustrated

below is added to the list file on a new page. The column 'Defined'

contains the number of the source line where the respective symbol is

defined, followed by the number(s) of the source line(s) where this

symbol is used.

Symbol Xref Table:

Name Defined – used in line(s)

BITSEC 67 88 172
BITVAR1 75 123 175 293 303
BITVAR2 86 124 306
BVAR 61 176
CSEC 34 55 174 190 201 207
DSEC 58 64 173 195 196 202 208
EBITVAR 27 107 125 183 219 294 303 306 334
EBVAR 27 184
ECON16 26 161 220 221 222 223 230 258
ECON3 26 98 237
ECON4 26 106 218 244 334

Assembler Output Files C–13

• • • • • • • •

1.8 TOTAL ERROR/WARNING PAGE

The last page of the list file contains a line indicating the total number of

errors and warnings found. If everything went well, this page must look

like this:

total errors: 0, warnings: 0

2 ERROR PRINT FILE

This is an output file with errors and warnings detected during assembly.

This file must be defined by the ERRORPRINT control. Errors and warnings

are also printed to standard output. The default file name for the error

print file is the source file name with extension .erl .

The error print file starts with a header.

Then the text �Error report:" is printed. On the next line the name of the

source module is printed: name: Under this line, the source lines

containing errors are printed with their errors. The last line contains the

total number of errors found.

Example:

C166/ST10 assembler va.b rc SNzzzzzzzz–zzz (c) year TASKING, Inc.

Error report :
tst.src:
 42: MOV FIRSTREG, BN ; register contains value of FIRSTBIT
E 103: invalid operand type

total errors: 1, warnings: 0

Appendix CC–14
A

S
S

E
M

B
L

E
R

 O
U

T
P

U
T

D

LINKER/LOCATOR
OUTPUT FILES

A
P

P
E

N
D

IX

Appendix DD–2
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

D

A
P

P
E

N
D

IX

Linker/Locator Output Files D–3

• • • • • • • •

1 PRINT FILE

The print file is the output file of l166 which contains textual information

about the linking/locating. The amount and form of information depends

on the use of several controls. The following information can be present in

the print file:

- Header page

- Page header

- Invocation information

- Memory map

- Symbol table

- Interrupt table

- Register map

- Error report

For the link stage the default filename is the basename of the output file

with the extension .lnl . For the locate stage the default filename is the

basename of the output file with the extension .map . The name can also

be user defined by the PRINT control. If NOPRINT is specified, no print

file is generated.

1.1 PRINT FILE HEADER

If the HEADER control is in effect, a header page is printed as the first

page in the print file. A header page consists of a page header (see

explanation below), information about the invocation of l166 and a status

list of all link/locate controls.

Page Header

If the PAGING control is in effect, header information is printed at the top

of each page. The page header is always printed on the header page if the

HEADER control is active. The page header consists of three lines.

The first line contains the following information:

- information about linker/locator name

- version and serial number

- invocation date and time

- page number

Appendix DD–4
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

The second line contains a title specified by the TITLE control.

The third line is an empty line.

Example:

166 linker/locator va.b rc SNzzzzzz–zzz Date: Aug 25 1993 Time: 16:20:29 Page: 1

listex

Action

Under the page header this line indicates the stage of l166: Linking or

Locating.

Examples:

Action : Linking

or

Action : Locating

Invocation

This part contains information about the invocation.

Example:

Invocation: l166 LOC PTOG listex.obj listexf.obj
TO listex.out MEMORY(ROM(0 TO 3fffh)
RAM(0C000h TO 0FFFFh)) LSY LRG HEADER

Output file

This part prints the name of the output file. Behind the output filename,

the module name is printed within parentheses.

Example:

Output to : listex.out (listex)

Input files

This part lists the names of the input files. Behind the input filename, the

module name is printed within parentheses. Then the keyword TASK: is

printed, followed by the task name of the input module.

Example:

Input from: listex.obj (listex) TASK: ?TASK0001_listex
 listexf.obj (listexf)

Linker/Locator Output Files D–5

• • • • • • • •

1.2 MEMORY MAP

When the MAP control is in effect, l166 generates a memory map, and

and interrupt table in the print file. In the print file for the link stage, the

memory map contains information about sections only. The memory map

in the print file for the locate stage also contains information about register

bank addresses, interrupt vectors, SFR area. The memory map is sorted by

names in alphabetical order.

Example:

Memory map :

Name No. Start End Length Type Algn Comb Mem T Group Class Module

–––

?INTVECT...... ... 000000h 0001FFh 000200h ROM

OPTEXT_2_CO... 1 000200h 000207h 000008h LDAT WORD GLOB ROM D_CLASS. listex.

 listexf

OPTEXT_1_PR... 0 000208h 000245h 00003Eh CODE WORD GLOB ROM F_CLASS. listex.

OPTEXT_3_IO... 2 000246h 000249h 000004h DATA WORD PRIV ROM listex.

EXF........... 3 00024Ah 000371h 000128h CODE WORD PRIV ROM F_CLASS. listexf

System Stack.. ... 00FA00h 00FBFFh 000200h RAM

Reg. bank 0... ... 00FC00h 00FC1Fh 000020h WORD RAM

PECC Pointer.. ... 00FDE0h 00FDEBh 00000Ch RAM

SFR Area...... ... 00FE00h 00FFFFh 000200h RAM

Explanation of terms used in the memory map:

Name The name of the item.

No. The section number, used in the symbol table. A ! between

the Name and the No. field indicates that an error message or

a warning message was issued on this item.

Start The start address of the item.

End The end address of the item.

Length The length of the item.

Type The section type. The following types are possible:

CODE CODE section
DATA DATA section
LDAT Large DATa section
HDAT Huge DATa section
PDAT Paged DATa section
BIT BIT section

Appendix DD–6
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

Algn The section align type. The following align types are

possible:

BIT BIT alignment
BYTE BYTE alignment
WORD WORD alignment
DWORD Double word alignment
PAGE PAGE alignment
SEGM SEGMENT alignment
BITA BITADDRESSABLE

(word alignment)
PECA PECADDRESSABLE

(word alignment)
IRAM IRAMADDRESSABLE

(word alignment)

Comb The section combine type. The following combine types are

possible:

PRIV PRIVATE
PUBL PUBLIC
GLOB GLOBAL
COMM COMMON
SSTK SYSSTACK
USTK USRSTACK
GUSTK GLBUSRSTACK
AT.. Absolute section

Mem The kind of memory in which the section should be located:

ROM or RAM.

T The type of the group, if the section has a group. This field

can have two values:

P PUBLIC group
G GLOBAL group

Group A user defined group name. This is the name of the group,

the section belongs to.

Class A user defined class name. This is the class assigned to the

named section.

Module This field contains the module name of the module the

section belongs to. If a section is combined the linker/locator

shows all module names of the module the section is

combined from.

Linker/Locator Output Files D–7

• • • • • • • •

1.3 SYMBOL TABLE

If the LISTSYMBOLS control is in effect, a symbol table is printed after the

memory map. The symbol table contains information about the name of

the symbol, the number of the symbol, the value of the symbol and the

type of the symbol. The symbols are listed in alphabetical order. An

example of a symbol table is listed below.

Symbol table : listex.obj(listex)

Symbol No. Value Type Symbol No. Value Type

–– –––

 <NO NAME>.... ... 0000001h INT GLB ?TASK0001_listex. 0 0000208h TSK LOC

BANK1......... ... 000FC00h REG LOC COMR1............ ABS 000FC0Eh REG LOC

COMR2......... ... 000FC1Ch REG LOC _main............ 0 0000208h NEA GLB

_putchar...... 0 0000236h NEA LOC _textout......... 0 0000216h NEA GLB

loop.......... 0 0000228h NEA LOC msg.............. 1 0000200h BYT GLB

stdbuf........ 2 0000248h WOR GLB stdio............ 2 0000246h WOR GLB

write......... 0 0000218h NEA LOC

Symbol table : listexf.obj(listexf)

Symbol No. Value Type Symbol No. Value Type

–– –––

 <NO NAME>.... ... 000FC0Eh REG LOC COMR1............ ... 000FC0Eh REG LOC

F_PROC........ 3 000024Ah NEA LOC lab0............. 3 000024Ah NEA LOC

lab1.......... 3 0000370h NEA LOC

where,

Symbol Is the name of the symbol.

<NO NAME> is entered for internally used symbols or if the

name of the symbol is not known.

No. Is the number of the section in which the symbol is defined.

The value ABS is used for EQUates and SET symbols.

Value Is the value of the symbol. This information depends on the

type of the symbol.

Type Indicates the type of the symbol. It consists of two columns.

The first column can have the following values:

Appendix DD–8
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

BYT Variable of type BYTE
WOR Variable of type WORD
BTW Variable of type BITWORD
BIT Variable of type BIT
FAR Label of type FAR
NEA Label of type NEAR
TSK Interrupt procedure name
REG Register bank name
INT Interrupt number
DT3 Number of maximum 3–bit
DT4 Number of maximum 4–bit
DT8 Number of maximum 8–bit
D16 Number of maximum 16–bit

The second column can have the following values:

?FI ?FILE debug symbols
?LI ?LINE debug symbols
?SY ?SYMB debug symbols
EXT External symbols
GLB Global symbols
LOC Local symbols
PUB Public symbols

1.4 INTERRUPT TABLE

If the MAP control is in effect, an interrupt vector table is printed after the

symbol table. The interrupt vector table contains information about the

interrupt vector address, the interrupt number, the interrupt name and the

name of the task. An example of a symbol table is listed below.

Interrupt table:

Vector Intno Start Intnoname Taskname
–––
0000004h 0001h 0000208h ?TASK0001_listex........

where,

Vector Is the interrupt vector address.

Intno Is the interrupt number.

Start Is the start address of the task.

Intnoname Is the name of the interrupt.

Linker/Locator Output Files D–9

• • • • • • • •

Taskname Is the name of the task where the interrupt belongs to.

1.5 REGISTER BANK MAP LINK STAGE

If the LISTREGISTERS control is in effect, a register bank map is generated

in the print file. A register bank map contains information about all

common and private areas in a register bank. The length of a register bank

never exceeds 16 registers.

Examples:

Register banks : REGB0
01234##–––#####–
 ^ ^
 | |....... COM_A2
 |............ COM_A1

Register bank : no definitions, only declarations
–––345––––––––––

Explanation:

If a register bank is defined (first example), the name of the register bank

is given (REGB0). If a register bank is declared, the line "no definitions,

only declarations" is given. The line below indicates the register bank

usage:

0 ... F Private part

Common part

- Not used

An arrow points to the start of a common part of the register bank. Each

time a common part starts, another arrow is introduced. The names behind

the arrows are the names of the common parts.

Appendix DD–10
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

1.6 REGISTER MAP LOCATE STAGE

If the LISTREGISTERS control is in effect, a register map is generated in the

print file. A register map contains information about all register bank

combinations. It indicates which part is common, which part is private and

which part is not used. The register banks can be longer than 16 because

the private and common register banks are combined by the locate stage

into one register bank.

Example:

Register banks : combination of register definitions

Reg. bank 0
0123456######–##–––––––
^ ^ ^
| | |.. COMR2 FC1Ch
| |......... COMR1 FC0Eh
|................ BANK1 (listex) FC00h

Explanation:

In this example Reg. bank 0 and Reg. bank 1 are the names of register

banks created by the locate stage of l166. These names are also used in

the memory map. The line below the register bank names indicate the

registers of the combined register bank:

0 ... F Private part

Common part

- Not used

! Error

The arrows point to a private or common part of the register bank. Each

time a new part starts, another arrow is introduced. The address in the last

column indicates the address of a register pointed to by an arrow.

The first column contains the name of a private or common part, between

parentheses the task name is printed.

Linker/Locator Output Files D–11

• • • • • • • •

1.7 SUMMARY CONTROL

When the SUMMARY control is up, the linker/locator will print a

class/group/section summary. Additionally, some statistics on the linking

or locating process are generated as well.

Example:

Locate summary :

Class Name Size Start
<NO NAME> ?INTVECT 00512 000000h
 Total class size: 0000512

CNEAR VARIAB_1_NB 00018 000200h
 Total class size: 0000018

CINITROM C166_BSS 00008 00024Ah
 Total class size: 0000008

CPROGRAM VARIAB_2_PR 00056 000212h
 Total class size: 0000056

Total size: 0000594

 Number of symbols : 15
 Number of sections : 4
 Number of groups : 0
 Number of classes : 3
 Number of modules : 1
 Total section size : 594
 Total RAM size : 0ffffffh
 Total RAM filled : 0252h
 Total ROM size : 0fff9feh
 Total ROM filled : 00h
 System stack size : 0
 Heap size : 0
 User stack size : 0
 Time spent : 00:00:2.20

Explanation: In this example, three classes were defined (CNEAR,

CINITROM and CPROGRAM). None of the classes contained groups and

all sections inside the classes were thus part of the same group. In that

case, only a total section size is printed and the total group information is

skipped.

Appendix DD–12
L

IN
K

E
R

/L
O

C
A

T
O

R
 O

U
T

P
U

T

1.8 ERROR REPORT

The last part of the print file contains an error report with all error and

warning messages, depending on the WARNING/NOWARNING control.

The last line contains the total number of errors and warnings found.

Example:

Error report : W 130: missing system stack definition
total errors: 0, warnings: 1

 E

GLOBAL STORAGE
OPTIMIZER ERROR
MESSAGES

A
P

P
E

N
D

IX

Appendix EE–2
G

S
O

1
6
6
 E

R
R

O
R

S E

A
P

P
E

N
D

IX

Global Storage Optimizer Error Messages E–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E), fatal errors (F) and

system errors (S) of gso166.

2 ERRORS AND WARNINGS

E 001: syntax error reading file: 'file' (line line_number): 'string'

expected

Check the syntax in your file.

E 002: syntax error reading file: 'file' (line line_number): unexpected

'string'

Check the syntax in your file.

E 003: object: 'object' is qualified in memory 'AUTO' in optimized SIF

file

Objects in .sif files cannot be classified as 'AUTO'. Check the .sif file

and change 'AUTO' into one of the following memory spaces: NEAR,

SYSTEM, IRAM, XNEAR, FAR, SHUGE, HUGE, BIT or BITA.

F 004: memory allocation error

Probably the memory is full. Try to free some memory.

E 006: bad numerical constant in SIF file (line line_number)

Check the syntax of the numerical constant.

E 007: newline character in string constant: SIF file (line line_number)

String constants in .sif files cannot have a '\n' newline character.

E 008: identifier too long: SIF file (line line_number)

The identifiers can have a maximum length of 500 characters.

F 012: sorry, more than number errors

gso166 exits when 40 or more errors have been reported.

F 013: illegal argument 'argument' to option: '-option'

The argument specified with this option is invalid.

F 014: illegal option: 'option'

This option is not known to gso166.

Appendix EE–4
G

S
O

1
6
6
 E

R
R

O
R

S

F 015: missing 'argument' to option: '-option'

This option requires an argument.

F 016: cannot open file: 'file'

gso166 is unable to read or write to file. Check whether the file exists

and whether you have writing and/or reading rights for this file.

F 017: no SIF files

There are no files to be processed. Specify one or more files.

F 018: missing -o<file> option

You must always specify the -ofile option.

E 019: memory models cannot be mixed (file: 'file')

All .sif and .gso files must have the same memory model.

E 020: memory limit cannot be greater than: max_size

With the -mspace=size option, the size of the memory space was set

greater than the maximum allowed value.

E 022: unresolved symbol: 'symbol' in module: 'module' (file: 'file')

No public or global symbol definition was found to resolve the symbol.

E 023: object 'object' has zero size (module: 'module', file: 'file')

After linking the application objects are not allowed to have zero size.

W 024: unreferenced object 'object' (module: 'module', file: 'file')

The object is not referenced by any C-code. Note that references made

by static initializations are not taken into account.

E 025: multiple memory spaces for object 'object'

• An object is allocated in different memory spaces (cross module).

• The memory of an object already allocated in a particular memory

space cannot be overruled by some other memory in a

pre-allocation file.

W 026: duplicate module: 'module' in file: 'file' original declaration in

file: 'file' - ignored

There are two modules with the same name in the application. This

warning typically shows up when one wants to overrule a module in a

library.

Global Storage Optimizer Error Messages E–5

• • • • • • • •

E 027: threshold cannot be larger than max available space

(max_space)

The threshold in the -Tspace=threshold option cannot be larger than

the size of the memory space.

F 028: Evaluation expired

Only used in evaluation versions of gso166.

F 029: protection error: message

The C166/ST10 global storage optimizer is a protected program. Check

for correct installation.

E 030: attempt to overwrite source file: 'file'

An output file has the same file name as an input file.

E 031: cannot allocate 'object' in default pointer memory space

In the SMALL and TINY memory models, all objects referenced by their

address must be allocated in the default pointer memory space.

E 032: no space left for pre-allocated object: 'object'

A pre-allocated object cannot be located due to little memory in your

target.

W 033: duplicate pre-allocated global object definition: 'object'

There is a double entry for a global object in the pre-allocation files.

W 034: duplicate global object definition: 'object' in module: 'module'

An object is defined more than once in a module.

W 035: pre-allocated object: 'object' not found in application - ignored

A pre-allocation file specifies the memory of an object that cannot be

found in the application. Check the pre-allocation file.

W 036: pre-allocated object 'object' is referenced by its address and not

allocated in default pointer memory space

A pre-allocated object is referenced by its address and its memory is

not set to the default pointer memory space. Change the memory space

in the pre-allocation file.

E 038: pre-allocated object 'object' cannot have memory: 'AUTO'

You cannot assign memory AUTO to an object in a pre-allocation file.

Appendix EE–6
G

S
O

1
6
6
 E

R
R

O
R

S

W 039: there are errors - no files updated

Except for the .asif file, gso166 will not update any file in case an

error has occurred.

E 040: different sizes for object: 'object'

A public object was defined with different sizes in two modules.

W 041: memory space 'XNEAR' can only be used in segmented memory

models - ignored

You can use the memory space XNEAR only with the MEDIUM or

LARGE memory model. The variable definition is ignored now.

E 042: public/local object: '%s' with size 'NOTSET' can not be a

candidate for automatic allocation

After linking, objects with an unknown size must be in a valid memory

space other than AUTO.

E 043: cannot allocate storage for: 'object'

gso166 is unable to allocate storage for a particular object. The

memory of your target is probably all used.

F 044: unknown linkage for object: 'object' file: 'file'

The linkage field in a .sif or .gso file is set to "UNKNOWN". Change

the linkage field to PUBLIC, LOCAL or EXTERN.

W 045: memory space 'mem_space' cannot be used in TINY memory

model - ignored

The memory spaces: FAR, HUGE, SHUGE or XNEAR are only allowed

in the MEDIUM or LARGE memory model.

E 046: pre-allocated object 'object' has illegal memory space for

memory model

In the TINY memory model an object cannot be allocated in one of the

memory spaces FAR, HUGE, SHUGE or XNEAR in a pre-allocation file.

W 047 External object size differs from definition: 'object'

Example:

mod1.c mod2.c
int array[5]; extern int array[3];

Global Storage Optimizer Error Messages E–7

• • • • • • • •

W 048: different sizes for external object: 'object'

Example:

mod1.c mod2.c
extern int array[5]; extern int array[10];

W 049: illegal memory space: 'mem_space' in reserve control - ignored

The specified memory space in the $RESERVE control is illegal. The

memory space must be one: BIT, BITA, NEAR, SYSTEM, IRAM, XNEAR,

FAR, HUGE or SHUGE.

S xxx: assertion failed - please report

An internal consistency check has failed. This error is an internal error

which should not occur. However if it occurs, please contact your sales

representative. Remember the situation and invocation in which the

error occurs and make a copy of the source file.

Appendix EE–8
G

S
O

1
6
6
 E

R
R

O
R

S

F

MACRO
PREPROCESSOR
ERROR MESSAGES

A
P

P
E

N
D

IX

Appendix FF–2
M

1
6
6
 E

R
R

O
R

S

F

A
P

P
E

N
D

IX

Macro Preprocessor Error Messages F–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E), fatal errors (F) and

internal errors (I) of m166.

2 WARNINGS (W)

W 100: Illegal binary number detected - value set to 0

An invalid binary number was detected. Its value is replaced with 0 for

further processing

W 101: Illegal octal number detected - value set to 0

An invalid octal number was detected. Its value is replaced with 0 for

further processing

W 102: Illegal decimal number detected - value set to 0

An invalid decimal number was detected. Its value is replaced with 0

for further processing

W 103: Illegal hexadecimal number detected - value set to 0

An invalid hexadecimal number was detected. Its value is replaced with

0 for further processing

W 104: New-Line in string detected - string truncated

All characters following the line-feed are truncated for a line feed

within a string which has not been terminated

W 105: Illegal character detected - is ignored

Characters that do not exist in the character set of the macro processor

are interpreted as a delimiter

W 106: Label "name" unreferenced in macro definition

A macro label was defined in the local list that is not used in the macro

body

W 107: Formal parameter "name" unreferenced in macro definition

Parameter is defined in the parameter list of a macro that is not used in

the macro body

W 108: Redefinition of macro name: name

The macro displayed was redefined

Appendix FF–4
M

1
6
6
 E

R
R

O
R

S

W 109: Redefinition of macro variable: name

The macro variable displayed was redefined

W 110: Redefinition of macro string: "string"

The macro string was redefined

W 112: Non expanding macro calls are only possible as actual

parameters

The call of a macro in literal mode is only possible when this occurs as

an actual parameter of another macro

W 113: Input-string too long - succeeding characters are truncated

A string read by the IN function from the console can not be longer

than 2560 characters. Strings longer than this are truncated

W 114: number: invalid warning level

Warning level must be 0, 1 or 2

W 115: no source module

No input module was found in the invocation.

W 116: illegal pagewidth, set to 120

The PAGEWIDTH control must be supplied with a number between 60

and 255

W 117: invalid tab size, set to 8

The size given with the TABS control must be between 1 and 20

W 121: macro is used but not defined (assuming '0')

Macro Preprocessor Error Messages F–5

• • • • • • • •

3 ERRORS (E)

E 200: syntax error

A statement in the source file was not according the defined syntax.

E 201: syntax error on file

A statement in the source file was not according the defined syntax.

E 202: non terminated string

E 203: arithmetic overflow in numeric constant

The number was too long.

E 204: illegal character in numeric constant

The format of the number is not according to the base, a character was

found not belonging to the base.

E 206: missing quote '

An expected single quote was missing.

E 207: missing brace

An expected brace was missing

E 208: empty string

An empty string was found which is not valid

E 209: too much pushed back on the stream

Because of long expansions of LIT replacement the scanner pushed too

much characters back on the stream

E 220: illegal control 'name'

The named control is not valid.

E 221: numerical argument expected for control 'name'

The argument for the control was expected to be a number.

E 222: string argument expected for control 'name'

The argument for the control was expected to be a string.

E 223: primary control 'name' not valid at this place

Primary controls are only allowed at the beginning of the file before

any general control, directive or instruction was seen.

Appendix FF–6
M

1
6
6
 E

R
R

O
R

S

E 224: primary control 'name' already set

The primary control was previously set.

E 225: Include file and source file are identical

Include file may not be identical to the source-file

E 226: Include file and list file are identical

Include file may not be identical to the list-file

E 227: Include file and output file are identical

Include file may not be identical to the output-file

E 228: Include files nested too deeply (max. 32)

Include files may be nested up to level 32

E 240: division by zero

A division by zero was found in an expression

E 250: Macro name expected

An invalid or missing identifier was specified after the keyword DEFINE

E 251: Define in Define not allowed

Definition of a macro inside another user defined macro is not allowed

E 252: Definition-terminating keyword ENDD expected

The actual macro definition was not terminated with the keyword

ENDD

E 253: Label "name" was not specified in LOCAL-list

The macro label used in the actual macro body was not specified in the

LOCAL list of this macro

E 254: Actual parameter expected

A valid actual macro parameter is expected

E 255: Formal parameters as actual parameters in expanding macro

definitions are not allowed

For a macro definition whose macro body is to be fully expanded at

the definition time (definition in normal mode), a formal parameter can

not be used as an actual parameter of a macro called in this macro

body.

Macro Preprocessor Error Messages F–7

• • • • • • • •

E 256: Macro is defined without parameters

Attempt was made to return an actual parameter to a macro that was

defined without parameters

E 257: Missing actual parameter

A valid actual parameter is missing

E 258: Too many macro parameters

More parameters were returned than specified in the definition of a

macro during a call

E 259: Too few macro parameters

Too few parameters were returned than specified in the definition of a

macro during a call

E 260: Recursive macro call in expanding definition not possible

Recursive macro calls are not possible in a macro body which is to be

fully expanded at the time of the definition

E 261: String expected (text enclosed in "...")

A string is expected at the designated position

E 262: Specifying two MATCH identifiers with the same name is not

allowed

Attempt was made to use one name for both macro strings to be

defined within a MATCH instruction

E 263: Nested MATCH-calls are not possible

Calls of MATCH functions can not be nested

E 264: Control-structure-terminating keyword @ENDW expected

The statement block of the actual WHILE loop was not terminated with

the keyword ENDW

E 265: Control-structure-terminating keyword @ENDR expected

The statement block of the actual REPEAT loop was not terminated

with the keyword ENDR

E 266: Control-structure-terminating keyword @ENDI expected

The statement block of the actual IF structure was not terminated with

the keyword ENDI

Appendix FF–8
M

1
6
6
 E

R
R

O
R

S

E 267: Error in expression

An error was detected in the expression displayed

E 268: Formal parameters in expressions used in expanding macro

definitions are not allowed

Use of formal parameters in expressions that exist in a fully expanded

macro body prior to the definition time is not possible

E 269: Expression-operand expected

An operand must follow the operator

E 270: '(' expected

An open round bracket is expected

E 271: ')' expected

A closing round bracket is expected

E 272: Identifier expected

A valid identifier is expected

E 273: Identifier "name" not defined as macro name, -variable,

-parameter, or -label

The identifier found is not a macro symbol

E 274: Separator ',' expected

A comma is expected

E 275: Separator ',' or ')' expected

A comma or left brace is expected

E 276: Source line too long - line truncated

A source line can be a maximum of 2560 characters in length. All

characters exceeding this length are truncated

E 277: MACRO syntax error

General syntax error in the macro procedure.

E 278: Parser error

The parser encountered an error.

Macro Preprocessor Error Messages F–9

• • • • • • • •

E 279: Illegal first character for identifier detected

The first character does not belong to the valid character set of an

identifier.

E 280: Illegal number detected

The number displayed does not agree with the valid specification of

number values and their suffixes.

E 281: 'name' is already defined as parameter or local

A local macro name is used more than once while defining the macro.

Local macro names are arguments and labels defined with the @LOCAL

function.

Example:

@DEFINE MAC(A1, A1) @LOCAL(A1) . . .

This error now is issued on the second 'A1' argument and on the

LOCAL A1.

E 283: Number expected

A number is expected at the designated position.

4 FATAL ERRORS (F)

F 300: user abort

The macro preprocessor is aborted by the user.

F 301: too much errors

The maximum number of errors is exceeded.

F 302: protection error: message

error message received from ky_init

F 303: can't create "file"

Cannot create the file with the mentioned name.

F 304: can't open "file"

Cannot open the file with the mentioned name.

F 305: can't reopen 'file'

The file file could not be reopened

Appendix FF–10
M

1
6
6
 E

R
R

O
R

S

F 306: read error while reading "file"

A read error occurred while reading named file.

F 307: write error

A write error occurred while writing to the output file.

F 308: out of memory

An attempt to allocate memory failed.

F 309: illegal character

A character which is not allowed was found.

5 INTERNAL ERRORS (I)

The next errors are internal errors which should not occur. However if

they occur, please contact your sales representative. Remember the

situation and invocation in which the error occurs and make a copy of the

source file.

I 400: message

I 401: assertion failed (%s,%d)

I 402: internal error: general failure (%s,%d)

I 403: internal error: unexpected control

G

ASSEMBLER ERROR
MESSAGES

A
P

P
E

N
D

IX

Appendix GG–2
A

1
6
6
 E

R
R

O
R

S

G

A
P

P
E

N
D

IX

Assembler Error Messages G–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E), fatal errors (F) and

internal errors (I) of a166.

2 WARNINGS (W)

W 100: no source module

No input module was found in the invocation.

W 101: primary control 'name' already set

The primary control was previously set.

W 102: invalid warning level

Warning level must be 0, 1 or 2.

W 103: control 'name' implemented with m166

The control is implemented by the macro preprocessor 'm166'.

Use m166 first for getting the desired result.

W 104: illegal pagewidth, set to 120

The PAGEWIDTH control must be supplied with a number between 60

and 255.

W 105: invalid tab size, set to 8

The size given with the TABS control must be between 1 and 20.

W 106: text after END

There was text found after the END directive.

W 107: STDNAMES used while MOD166 is active - ignoring MOD166

The STDNAMES control only should be used when NOMOD166 is

active.

W 108: missing END

The END directive is missing.

W 109: only one PECDEF per module

A second PECDEF directive was found while only one is allowed, the

first one will be used.

Appendix GG–4
A

1
6
6
 E

R
R

O
R

S

W 110: only one SSKDEF per module

A second SSKDEF directive was found while only one is allowed, the

first one will be used.

W 111: nesting of CODE sections, first CODE section was 'name'

Sections of memory type CODE cannot be nested.

W 112: overlapping COMMON and PRIVATE registers

One or more registers defined with the REGBANK directive or defined

as PRIVATE with the REGDEF directive also are defined as COMMON

with the REGDEF directive or the COMREG directive is used to define

these registers.

W 113: location counter not on an even address

DW issued on an odd address.

W 114: missing register bank definition

When using GPR you should have a REGDEF, REGBANK or COMREG

directive.

W 116: REG address aligned to word boundary

REG is 8-bit word address (so e.g., sfr + 1 must be aligned).

W 117: normally RETN is used for NEAR procedures

W 118: normally RETS is used for FAR procedures

W 119: SFR accessed with unknown page or segment extension

An SFR from the standard or from the extended SFR-area is used as

MEM operand within a page or segment extend block (EXTP, EXTPR,

EXTS, EXTSR), but the page or segment number used as extension is

not known at assembly time. The page number should be the

system-page (page 3) and the segment number should be the system

segment (segment 0). The warning can be ignored if the page or

segment number is correct after locating.

Assembler Error Messages G–5

• • • • • • • •

W 120: procedure "name" contains no RETurn instruction

W 121: code label used in data section

W 122: data label used in code section

W 123: section is in the range of SFR's

W 124: register definition expanded by declaration with:

list_of_regnames

One or more register declarations with registers not in this register

definition were used in the assembly file. These registers are added to

the declaration.

Example:

RGBNK REGBANK R0–R3 ; warning 124 will be issued on R4
REGBANK R0–R4

W 125: used registers not in definition: list_of_regnames

The listed registers are used in the code but not in the register

definition with the REGBANK, COMREG or REGDEF directive. The

assembler adds them for the REGDEF directive.

W 126: read access to a write only system address

W 127: write access to a read only system address

W 128: read access to a write only system bit

W 129: write access to a read only system bit

W 130: a BYTE-GPR cannot hold values greater than DATA8

W 131: illegal pagelength, set to 60

The PAGELENGTH control must be supplied with a number between

20 and 255.

W 132: symbol-type of 'name' already defined

Symbol has gotten a type more than once.

W 133: undefined and unused symbol 'name'

A symbol typed by use of TYPEDEC was never defined nor used.

W 135: no section type was specified - default DATA is assigned

Default section type is DATA.

W 137: no procedure type was specified - NEAR is assigned

Default procedure type in non-segmented mode is NEAR.

Appendix GG–6
A

1
6
6
 E

R
R

O
R

S

W 137: no procedure type was specified - FAR is assigned

Default procedure type in segmented mode is FAR.

W 138: FAR procedures in NONSEGMENTED mode not necessary

FAR procedures in NONSEGMENTED mode are not necessary because

the entire code is located in segment 0, so any jump or call can be

NEAR.

W 140: TASK procedures and interrupt names are automatically declared

GLOBAL

A public declaration of a TASK procedure or interrupt names is

redundant.

W 141: output file not built in memory

a166 builds the object file in memory instead of building it on disk.

This increases speed when seeking through the object file. When the

object file in memory is finished, it is written to disk as a whole. When

the assembler cannot allocate enough memory to build the object file

in memory, this warning is issued and the file is built on disk, which

increases assembly time.

W 142: the attribute of this read-only system address cannot be

modified

W 143: the attribute of this write-only system address cannot be

modified

W 144: nested extend instructions

One of the ATOMIC, EXTR, EXTS, EXTP or EXTPR instructions is used

within the range of one of these instructions.

W 145: branch from extend instruction block

A branch from the range of one of the extend instructions ATOMIC,

EXTR, EXTS, EXTP or EXTPR, causes a virtual extend instruction range.

A branch instruction is only allowed as the last instruction of an extend

instruction range.

W 146: code label in extend instruction block

A code label in the range of one of the extend instructions ATOMIC,

EXTR, EXTS, EXTP or EXTPR, can cause erroneous situation when a

branch to this label is made.

Assembler Error Messages G–7

• • • • • • • •

W 147: return from extend instruction block

A return from the range of one of the extend instructions ATOMIC,

EXTR, EXTS, EXTP or EXTPR, causes a virtual extend instruction range.

A RET instruction is only allowed as the last instruction of an extend

instruction range.

W 148: ENDP in extend instruction block

The ENDP is in the range of one of the extend instructions ATOMIC,

EXTR, EXTS, EXTP or EXTPR.

W 149: DPP prefix used in page or segment extend block

When the EXTP, EXTPR, EXTS or EXTSR is in effect this warning is

issued if an operand is used with a DPP prefix or assume, unless the

POF (extended page) or SOF (extended segment) operator is used.

W 150: external DPP assignment has priority, assume on 'name' ignored

An assume on an external is ignored if the external is declared with a

DPP prefix: EXTERN DPPx:label:type

W 151: page or segment extend instruction used in NONSEGMENTED

mode

An EXTP, EXTPR, EXTS or EXTSR instruction is used while

$NONSEGMENTED is active and the model is not set to SMALL.

W 152: DPP-prefix ignored

A DPP-prefix (DPPn:) can only be used for instructions and for a DW.

In all other situations the prefix is ignored.

W 153: possible conflict between jump chaining and PEC transfers.

Target instruction might be erroneously fetched when

$CHECKBUS18

When a PEC transfer occurs after a jump chain, where the last jump in

the chain is a JMPR instruction that jumps backwards, the instruction at

the target address will be erroneously fetched and executed. This

happens the (n+1)th loop iteration (jump with cache hit) when in

iteration n+1 no conditional jumps are taken nor an interrupt occurs

nor a CALLS/CALLR/PCALL/JMPS/RETx instruction is executed.

This warning is generated when:

1. A JMPR instruction which jumps backwards is found at the same

address as a label, indicating a jump chain and a loop.

Appendix GG–8
A

1
6
6
 E

R
R

O
R

S

2. And, between the target label and the JMPR instruction no

CALLS/CALLR/PCALL/JMPS/RETx instructions nor any unconditional

jumps/calls are found.

If the target of the JMPR instruction is not at a label position the

intermediate instructions are not checked and the warning will be

generated if the first condition is true.

Workaround: Use a JMPA instead of a JMPR instruction.

W 154: possible PEC address corruption in case of PEC transfer after this

JMPS

When a PEC transfer occurs after a JMPS instruction, the PEC source

address will be false. This warning is generated when a JMPS

instruction is encountered that is not shielded by an ATOMIC

instruction earlier in the program.

Please check the Erroneous PEC Transfers section in the CPU
Functional Problems appendix in the C Cross-Compiler User's Guide

for a workaround for the ST_BUS.1 CPU functional problem. Check the

errata sheet of the used ST10 derivative to determine whether it

contains the ST_BUS.1 CPU functional problem.

W 155: bits set in OR data field that are not masked by AND mask

The BFLDH and BFLDL instructions allow bits to be set by the third

operand even if those bits are masked by the second operand. This

may not work properly in future processor derivatives.

W 156: value of expression will be truncated if used in operation

Internally, the assembler keeps track of expressions in 32 bit format.

However, if such a value is used in an operation, the linker/locator has

no choice but to truncate the value until it fits in the space reserved for

it by the assembler. This warning occurs only if a constant expression

was found that exceeds the maximum magnitude for this variable type.

If you want to refer to addresses, refer to labels instead of using a

constant expression.

Assembler Error Messages G–9

• • • • • • • •

W 157: possible destruction of result of unprotected DIV

The C166S v2.0 / Super10 core has a problem with reading a core SFR

register like PSW, MSW, MAH and MAE during a DIV(L)(U) instruction.

The read operation can destroy the DIV(L)(U) result and so the

DIV(L)(U) must be protected. This is done by the compiler using an

ATOMIC #2 in front and a MOV Rx, MDL or MOV Rx, MDH after it. The

ATOMIC prevents interrupts and the MOV stalls the pipeline until the

division is finished. This warning only indicates that this sequence has

not been encountered. That does not mean the problem actually

occurs here, but the engineer should inspect the code carefully and

determine that manually.

W 161: unprotected MUL/DIV detected

Several cores have problems with the MUL and DIV operations. As a

workaround, all MUL and DIV operations have to be protected by an

ATOMIC sequence.

W 163: possible BFLDx result corruption due to CPU21

The CPU21 problem occurs when a BFLDx instruction references the

same address as a previous write operation or PEC transfer. To prevent

PEC, use ATOMIC sequences.

If the previous operation was a write operation and the assembler

cannot determine both the BFLDx reference and the write destination,

this warning is generated as well.

W 164: ignoring directive directive while generating debug info

The compiler generates debugging info using ?FILE and ?LINE

directives. When the assembler is instructed to generate debugging

info with the ASMLINEINFO command, the compiler generated

debugging info is disregarded.

Likewise, when ASMLINEINFO is not active, #line directives are

ignored for generating debugging info. If you want to add line or file

information inside #pragma asm blocks, you need to use #line

directives. ?SYMB directives can be used inside and outside of

#pragma asm blocks.

Appendix GG–10
A

1
6
6
 E

R
R

O
R

S

W 165: instructions found between instruction on line line_number and

ENDP directive

Executable instructions were found between the last return or jump

directive and the ENDP directive. Either this code can never be reached

or it will fall through to the next procedure in the section. If this is

intended, you can add a RETV instruction at the end or switch off this

warning.

W 166: detected CPU.3 problem at end of EXTEND sequence

Early steps of the extended architecture core have a problem with the

MOV Rn, [Rm + #data16] instruction at the end of an EXTEND

sequence (EXTP, EXTPR, EXTS, EXTSR). In this case, the DPP addressing

mechanism is not bypassed and an invalid code access can occur.

W 167: converting to bit value

A byte value is specified where a bit value was expected. The

assembler tries to convert the value to the intended address.

W 168: using external class name in predefined variable

The ?CLASS_name_TOP or ?CLASS_name_BOTTOM predefined

variables are used with a class name that is not defined in this module.

The assembler assumes this is an external class name. The locator will

issue an error when this class is not defined at that stage.

W 169: unprotected DIV detected

The C166Sv1 architecture has a problem with DIV operations. When a

DIV is interrupted and another DIV is executed inside the interrupt,

the old state values of the division operation are overwritten which

will lead to a corrupted result. To avoid this, protect the DIV operation

with atomic sequences.

W 170: explicitly modified SP register possibly not available

The C166Sv1 processor architecture has a pipeline problem with the SP

register. If the SP register is modified explicitly, the next two

instructions cannot contain RETI, RETP or RETS, because they will read

a corrupt SP value in the pipeline. Insert an extra NOP instruction.

W 171: explicitly modified CP register possibly not available

The C166Sv1 processor architecture has a pipeline problem with the CP

register. If the CP register is modified explicitly, the next two

instructions cannot contain any instruction that uses the CP to calculate

a physical GPR address. Insert an extra NOP instruction.

Assembler Error Messages G–11

• • • • • • • •

3 ERRORS (E)

E 200: illegal character

A character which is not allowed was found.

E 202: non terminated string

A class name is enclosed in single quotes and does not contain any

spaces or new-lines. The second quote could not be found. It is

missing or a space or new-line was found.

E 203: illegal character in numeric constant

The format of the number is not according to the base, a character was

found not belonging to the base.

E 204: syntax error on token name in line number

A statement in the source file was not according the defined syntax.

E 205: SFR accessed with non-system page or segment extension

An SFR from the standard or from the extended SFR-area is used as

MEM operand within a page or segment extend block (EXTP, EXTPR,

EXTS, EXTSR), but the page or segment number used as extension is

not the system-page (page 3) or system segment (segment 0).

E 206 : invalid PECC name 'name'

The name is not a valid PECC name.

E 207 : forward reference to LIT symbol 'name'

Forward references to LIT definitions are not allowed.

Example:

DW LITSYMBOL ; not allowed
LITSYMBOL LIT ’01h’

E 209 : illegal control 'name'

The named control is not valid.

E 210: numerical argument expected for control 'name'

The argument for the control was expected to be a number.

E 211: string argument expected for control 'name'

The argument for the control was expected to be a string.

Appendix GG–12
A

1
6
6
 E

R
R

O
R

S

E 212: arithmetic overflow in numeric constant

The number was too long.

E 214: primary control 'name' not valid at this place

Primary controls are only allowed at the beginning of the file before

any general control, directive or instruction was seen.

E 215: missing quote '

An expected single quote was missing.

E 216: missing brace

An expected brace was missing.

E 218: empty string

An empty string was found which is not valid.

E 219: multiple LIT definition of 'name'

The name was already defined.

E 220: LIT replacements nest too deep

The scanner tried to expand LIT replacements which would yield an

expansion which is too large.

E 221: missing '}'

A { was found without a }

E 222: undefined LIT name 'name'

The partial string name is not defined with a LIT directive.

E 223: unrecoverable syntax error

The syntax error could not be recovered.

E 224: undefined symbol 'name'

The symbol name was not defined.

E 225: too much pushed back on the stream

Because of long expansions of LIT replacement the scanner pushed too

much characters back on the stream.

Assembler Error Messages G–13

• • • • • • • •

E 226: invalid PECC range

The range given with a PECDEF directive was not valid, the first PECC

number was higher than the second.

E 227: invalid SSKDEF number

The stack size number with a SSKDEF must be 0,1,2 or 3.

E 228 : external 'name' is not defined in current module and can

therefore not be made PUBLIC or GLOBAL

An attempt was made to define a symbol which was already declared

extern use another name for the symbol.

E 229: symbol 'name' already defined

An attempt was made to define a symbol which was previously defined

use another name for the symbol.

E 230: section name 'name' is already defined as another symbol

The name was previously defined, but not as a section. Choose another

name for the section.

E 231: ENDS without SECTION

An ENDS directive was found without a definition of a section by a

SECTION directive.

E 232: ENDS/SECTION name mismatch section name was 'name'

An ENDS directive was found with a name which is not the same as

the section name with the previous SECTION directive.

E 233: sections nest too deep

The nesting of sections exceeded the maximum.

E 234: no ENDS directive

A SECTION directive was found but no ENDS directive was seen before

the END directive.

E 235: too many classes

The number of classes exceeded the maximum.

E 236: class name 'name' is already defined as another symbol

The name was previously defined, but not as a class. Choose another

name for the class.

Appendix GG–14
A

1
6
6
 E

R
R

O
R

S

E 237: section-type does not match original section definition

The section was previously defined with another section-type.

E 238: align-type does not match original section definition

The section was previously defined with another align-type.

E 239: combine-type does not match original section definition

The section was previously defined with another combine-type.

E 240: class-name does not match original section definition

The section was previously defined with another or no class-name.

E 241: absolute address does not match original section definition

The section was previously defined with another AT address.

E 242: too many groups

The number of groups exceeded the maximum.

E 243: group name 'name' is already defined as another symbol

The name was previously defined, but not as a group. Choose another

name for the group.

E 244: group-type does not match original definition

A group name was now type to be a code-group while it was defined

as a data-group or vice versa.

E 245: 'name' is no section name

The section used with the group directive was not defined to be a

section.

E 246: the section-type of 'name' does not match the group type

The section was defined as a CODE section and is tried to be

appended to a DATA group or vice versa. Or the section was of the

type BIT.

E 247: section 'name' is already grouped

The section was previously grouped by another group directive. A

section can belong to only one group.

Assembler Error Messages G–15

• • • • • • • •

E 248: invalid register range

The range given with a REGDEF directive was not valid, the first

register number was higher than the second.

E 250: no section for 'name'

No current section is defined for the symbol.

E 251: expression too long

The expression consists of too many items to be evaluated.

E 252: expression syntax error

An expression in the source file was not according the defined syntax.

E 253: string in expression longer than 2 characters

A string in an expression must be 0, 1 or 2 characters.

E 254: division by zero

A division by zero was found in an expression.

E 255: absolute expression expected

The expression evaluated to a non absolute value.

E 256: value will not fit in byte

DB initialization with more than one byte of memory.

E 257: value will not fit in word

DB initialization with more than one word of memory.

E 258: operation invalid in this section

Directive can not be used in current section.

E 259: external has invalid type

External defined with illegal type field.

E 261: trap number too large

Definition of "TASK" with a trap number outside the range of 0 - 127.

E 262: directive defined outside section

Directive should be defined inside section.

Appendix GG–16
A

1
6
6
 E

R
R

O
R

S

E 267: a relocatable or external symbol is not allowed as operand

The expression of an ORG directive contained externals or

relocatables.

E 268: ORG directive cannot be used outside a section

ORG can only be used inside sections.

E 269: location counter below section base-address not allowed

The location counter must be above section base-address.

E 270: the EVEN directive isn't allowed in a BIT section

EVEN directive can not be used in a BIT section.

E 271: the EVEN directive isn't allowed in a byte aligned section

EVEN directive can not be used in a byte section.

E 272: DPP-prefix expected

Initialization inside a not assumed section in segmented mode without

use of a DPP register is not allowed.

E 273: type BYTE or WORD is expected for DPP-prefixed operand

Initialization of DPP-prefixed variables must be of type BYTE or

WORD.

E 274: address hexvalue too high

An absolute section is not allowed with address outside the ranges:

0..3FFFFh not extended memory

0..0FFFFFFh extended memory

E 276: value of bitposition out of range (0 - 15)

Bit position must be inside the range 0 - 15.

E 277: bits cannot be part of EQUate expressions

Expression following EQU may not contain bits.

E 278: redefinition of equates is not allowed

EQU names may not be redefined.

E 279: FAR PTR cannot be applied to constants

The segment number of constants cannot be determined, so a cast to

far is not granted.

Assembler Error Messages G–17

• • • • • • • •

E 280: BIT PTR can only be applied to bits

Conversion to bits of labels and variables cannot be established by use

of a type operator, therefore the operand of a BIT PTR must be a BIT

variable.

E 281: SHORT operand has invalid type

Type of SHORT operand must be S_LAB (check on S_NEAR not done).

E 282: invalid symbol type detected

Reference of a TASK or CLASS name is not allowed.

E 283: segment offset not applicable to groups

If, at assembly time, a group is detected to be absolute, the assembler

cannot determine the start address of the group because it is not

known in which order the sections are located inside the group.

E 284: page offset not applicable to groups

If, at assembly time, a group is detected to be absolute, the assembler

cannot determine the start address of the group because it is not

known in which order the sections are located inside the group.

E 285: the same DPP register can only be used once in an ASSUME

directive

DPP registers must be unique in the ASSUME directive.

E 286: nesting of procedures is not allowed

Procedures may not be nested.

E 287: there is no corresponding PROC definition for this ENDP

An ENDP was detected without a corresponding PROC.

E 288: "name" is not the name of the actual procedure

Name of ENDP is not equal to the name of the corresponding PROC.

E 289: procedures can only be defined inside CODE sections

PROC directive was used inside a non-CODE section or outside a

section.

E 290: only BIT, BYTE or WORD are valid data LABEL types

name: implies data label.

Appendix GG–18
A

1
6
6
 E

R
R

O
R

S

E 291: only NEAR or FAR are valid code LABEL types

name implies code label.

E 292: illegal operand combination

The virtual addressing modes could not be converted to existing actual

addressing modes (e.g. MEM,MEM cannot be converted).

E 293: result of expression doesn't fit

DATA[n] cast on expression, which value doesn't fit in n bytes.

E 294: invalid type for a DATAn operator

E 295: only one TASK-procedure per module can be defined

E 296: invalid label type for bit section

E 297: labels can only be defined inside DATA or CODE sections

Labels cannot be defined outside of a CODE or DATA section.

E 298: bit label definition only allowed in BIT sections

A bit label definition was used in a section with a section-type other

than BIT.

E 299: a byte GPR is not allowed in word instructions

E 300: a word GPR is not allowed in byte instructions

E 301: an address in the bit-addressable ranges expected

E 302: address in non bit-addressable SFR area

E 303: absolute address out of range

E 304: illegal code alignment

E 305: page alignment expected

E 306: segment alignment expected

E 307: word alignment expected

E 309: bit alignment not allowed for this section

E 311: operand must be a bit variable

E 312: a bitword address or bitword number has to be word bound

E 313: mask value to large - must be in range 0 - 255

E 314: TRAP number too large

Trap number must be inside the range 0..7fh

Assembler Error Messages G–19

• • • • • • • •

E 315: invalid PECDEF operand

E 316: CALL out of range

E 317: procedure defined outside the actual section

E 318: CALLA, PCALL or CALLR of a FAR procedure is not allowed

Use a CALLS for FAR procedures or labels or use a near label.

E 319: no inter-segment calls or jumps of/to NEAR labels allowed

E 320: invalid segment number

E 321: operand combination: operand invalid for this mnemonic

E 322: DDP[x] (x=0..3) must be used for page override

An invalid sfr_register was used for a page override.

E 323: section boundary (length) overflow (underflow)

The value of DOTVAL goes outside the range that is allowed for the

memory type of this section.

E 324: memory type 'name' can only be used in non-segmented mode

LDAT and PDAT may only be used in non-segmented mode.

E 325: invalid page number: hexnumber

E 326: invalid segment number: hexnumber

A page or segment number was used which is outside the highest

memory limit. This limit depends on the controls:

$EXTMEM/$NOEXTMEM

- select memory range of maximum 16M or 256k

$EXTEND/$NOEXTEND

- same as $EXTMEM/$NOEXTMEM

$SEGMENTED/$NONSEGMENTED

- select non-segmented (max. 64k) or segmented (max 256k or

16M) memory approach $MODEL - if the SMALL model is used

$NONSEGMENTED also has 256k or 16M

E 327: invalid number atomic instructions

The right operand of an ATOMIC, EXTR, EXTP, EXTS, EXTSR or EXTPR

instruction is the number of atomic instructions. This number must be

in the range 1 - 4. A relocatable is not allowed for this operand.

Appendix GG–20
A

1
6
6
 E

R
R

O
R

S

E 328: illegal type of bitposition (has to be a number between 0 and

15)

E 329: JMP out of range - a relative displacement must be in the range

-128 .. +127

E 330: an absolute bitnumber must be in the range 0 .. 2047

E 331: relative JMP to a FAR label is not allowed

E 332: an address in the bit-addressable SFR range expected

E 333: system addresses of the smallest configuration cannot be

assigned by DEF

E 334: system-address hexnumber is already defined - redefinition is

not allowed

E 335: bit hexnum.bitnumber is already defined - redefinition is not

allowed

E 337: SFR-address hexaddress is already defined - redefinition is not

allowed

E 338: invalid SFR-address

E 339: address not at word boundary

Addresses must always be on word boundaries.

E 340: different DPP-prefixes

A part of the expression contains a DPP-prefix (or an EXTERN

DPPn:.....) which is different from DPP-prefix of the part at the other

side of the operator.

Example:

DW DPP1:labl2 + DPP2:0000h

E 341: no DPP assigned to system, cannot convert system address to

MEM address

If in SEGMENTED mode a REG or bit offset is used as MEM operand,

one of the DPPs needs to be assumed to SYSTEM or a DPPn: prefix

should be used.

Example:

MOV R0, SYSCON

Assembler Error Messages G–21

• • • • • • • •

The 'SYSCON' operand is converted to MEM, E 341 is not issued if e.g.

the following line is placed before the MOV:

ASSUME DPP3:SYSTEM

E 342: REGBANK directive not allowed in absolute mode

In absolute mode register can't be used because they are located by the

locator.

E 343: only align type AT ... allowed in absolute mode

Relocatable sections in absolute mode are forbidden.

E 344: illegal address operation

The operation in the expression cannot be used for address types.

Address types are FAR, NEAR, WORD, BYTE, GROUP, BIT, BITWORD,

REG. Constant types are DATAn and INTNO.

This message is issued when the following combination is used:

address type operator address type

Where operator is not -, ==, !=, >, < >=, <=, ULT, UGT, ULE, ULE.

Or when

operator address type

is used and the operator is not a cast: SEG, SOF, PAG, SEG or BOF.

E 345: illegal RAM range - address has to be inside FA00 - FDFE

E 346: generated code exceeds the maximum number of 40 bytes per

sourceline

The DB initializer string cannot exceed 40 characters

E 348: double word alignment expected

E 350: type mismatch

Symbol already has a different type assigned.

E 351: bad argument of FLOAT control

The argument of the float control must be NONE, SINGLE or ANSI.

E 352: A RETurn instruction outside of a procedure is not allowed

A RETurn instruction outside of a procedure has no sense.

Appendix GG–22
A

1
6
6
 E

R
R

O
R

S

E 353: wrong RETurn mnemonic - for TASK procedures use RETI

The RETurn type for the actual procedure does not correspond with

the procedure's type specified in the PROC definition. This error

message can be suppressed with the NORETCHECK control.

E 354: wrong RETurn mnemonic - for FAR procedures use RETS

The RETurn type for the actual procedure does not correspond with

the procedure's type specified in the PROC definition. This error

message can be suppressed with the NORETCHECK control.

E 355: invalid operand type

E 356: expression result out of range for use in an instruction

E 357: PUBLIC / GLOBAL declaration of SET-constants not allowed

Due to the fact that SET symbols may be redefined they can not be

declared PUBLIC or GLOBAL.

E 358: wrong type of PUBLIC or GLOBAL symbol

A literal name can not be made PUBLIC or GLOBAL.

E 359: redefinition of a relocatable SET symbol not allowed

SET symbols maybe redefined as long as they are not relocatable.

E 360: date string too long

The date string is longer than 11 characters.

E 361: GPRs are not allowed in expressions

General purpose registers cannot be used in expressions.

E 362: only a BIT PTR can be applied to bits

A bit variable or a label was subject to a non-bit PTR operator.

E 363: illegal operand type for a PTR operation. Section-, group- and

ext. constant-names are not allowed

PTR operator can not be applied to a section, group or external

constant name.

E 364: illegal bitbase detected

Combination of bitword with byte/word etc.

Assembler Error Messages G–23

• • • • • • • •

E 365: unknown memory model name

A memory model must be one of: NONE, TINY, SMALL, MEDIUM,

LARGE.

E 366: section-, group-, variable- or label-name expected

Assume on invalid symbol type detected.

E 367: instructions can only be used inside procedures

Instructions used outside procedures are not allowed.

E 368: extern not allowed on system addresses

The extern keyword was used on a system address defined with DEFA

or on an assembler internal system address, such as SRCP0.

E 369: expression result out of range for name

Value operand of DS out of range

E 370: syntax error in invocation

A statement in the invocation or invocation file was not according to

the defined syntax.

E 371: extended instruction set not enabled

An instruction of the extended instruction set was used while the

EXTINSTR control is not active.

E 372: invalid bit constant

When the EXTSFR control is 'on', it is not possible to use a processor

bit offset in the sfr range 080h..0F0h. Use the complete address or

define the address with a DEFB directive.

E 373: SFR address used in extend SFR block

An SFR address NOT from the extended SFR area is used within the

range of an EXTR, EXTPR or EXTSR instruction.

E 374: extended SFR address used outside extend SFR block

An SFR address from the extended SFR area is outside the range of an

EXTR, EXTPR or EXTSR instruction.

E 375: COMMON register symbol 'name' cannot be PUBLIC or GLOBAL

The symbol, defined with the COMREG directive or the REGDEF

directive with a COMMON type, cannot be made PUBLIC or GLOBAL.

Appendix GG–24
A

1
6
6
 E

R
R

O
R

S

E 376: only one register definition per module

A register definition is done by the REGDEF or the REGBANK directive,

if a register bank name is supplied. If no name is supplied, the

directive indicates a register bank declaration. All declarations are

matched against the single definition.

E 377: overlapping COMMON registers

One ore more registers are already defined as COMMON by a previous

COMREG or REGDEF directive.

E 378: mac: repeat value too big

The repeat value of a MAC instruction is limited to 31 (5 bits). Repeat

values up to 32768 can be obtained using the MRW register explicitly.

Example:

 MOV MRW, #1FFh

NOP

instruction

E 379: mac: invalid MAC SFR in addressing mode

One of the MAC SFRs in the addressing modes is illegal, probably a

typo e.g. [IDX0 + QR1] instead of [IDX0 + QX1]

E 380: mac: invalid MAC register

The MAC register (e.g. MRW, MSW, MAL etc.) specified in this

expression is not valid.

E 381: mac: instruction not repeatable

The instruction specified after the "repeat #data5 times" expression is

not repeatable, check the function and its operand combination.

E 382: scaling factor of this magnitude is not supported

The scaling factor provided for this task is not supported by the

assembler.

E 383: the inline vector exceeds the maximum vector size with current

scaling

The scaling defined for this module does not allow inline vectors of

this magnitude. Either increase the scaling of this vector or decrease the

code size.

Assembler Error Messages G–25

• • • • • • • •

E 384: condition code not supported by this instruction

The cc_(n)USRx condition codes are only supported for the JMPA(+/-)

and CALLA(+/-) instructions. Use with other condition checking

instructions is unsupported by the hardware.

E 385: CALLI and JMPI must be protected by ATOMIC

The C166S v2.0/Super10 CALLI instruction requires an ATOMIC

instruction directly in front of it, due to hardware requirements.

E 386: result will be corrupted due to CPU21

The CPU21 problem results in corrupted BFLDx results if the previous

write operation references the same IRAM memory address as the mask

(BFLDL) or data (BFLDH) short address.

E 387: duplicate names for common registers

Two common register definitions or declarations were found with the

same name. This will cause combining errors in the linker/locator

phase.

E 388: explicitly modified SP register not available

The C166Sv1 processor architecture has a pipeline problem with the SP

register. If the SP register is modified explicitly, the next two

instructions cannot contain RETI, RETP or RETS, because they will read

a corrupt SP value in the pipeline. Insert an extra NOP instruction.

E 389: explicitly modified CP register not available

The C166Sv1 processor architecture has a pipeline problem with the CP

register. If the CP register is modified explicitly, the next two

instructions cannot contain any instruction that uses the CP to calculate

a physical GPR address. Insert an extra NOP instruction.

E 391: control has been renamed to control

The control has been renamed. Please change your sources

accordingly.

E 500 - E 600: Reserved for gso166 error messages.

E 000 from gso166 maps on assembler error E 500;

E 001 from gso166 maps on assembler error E 501;

etc.

Appendix GG–26
A

1
6
6
 E

R
R

O
R

S

4 FATAL ERRORS (F)

F 400: user abort

The assembler is aborted by the user.

F 401: protection error: message

error message received from ky_init.

F 402: too many errors

The maximum number of errors is exceeded.

F 403: can't create "name"

Cannot create the file with the mentioned name.

F 404: can't open "name"

Cannot open the file with the mentioned name.

F 406: read error while reading "name"

A read error occurred while reading named file.

F 407: write error

A write error occurred while writing to the output file.

F 408: invocation files nest too deep

The nesting of invocation files was too deep.

F 409: out of memory

An attempt to allocate memory failed.

F 410: parser: message

Parsing error.

F 411: can't reopen 'name'

The file name could not be reopened.

F 412: too many sections

The number of sections exceeded the maximum of 254.

F 413: input and output file name are identical

F 414: input and list file name are identical

F 415: input and errorprint file name are identical

Assembler Error Messages G–27

• • • • • • • •

F 416: output and list file name are identical

F 417: output and errorprint file name are identical

F 418: list and errorprint file name are identical

F 419: too many symbols

The number of symbols exceeds the maximum (16 million). This is an

inherit limitation of the a.out object format. Try to reduce the number

of labels that are exported or try the NOLOCALS control.

F 420: invalid instruction/addressing mode when $CHECKCPU16

F 421: too many relocation items

The a.out object format cannot handle more than 16 million

relocation items per file. Try to use some absolute sections instead.

F 422: invalid instruction/addressing mode when $CHECKCPU1R006

The MOV (B) Rn, [Rm+#data16] instruction causes the CPU to hang

when the source operand refers to program memory. The problem

occurs in the C163-24D derivative.

F 423: input and SIF file name are identical

An attempt was made to overwrite the input file.

5 INTERNAL ERRORS (I)

The next errors are internal errors which should not occur. However if
they occur, please contact your sales representative. Remember the
situation and invocation in which the error occurs and make a copy of the
source file(s).

I 497: message

I 499: internal error: general failure (file,line)

I 199: internal error: unexpected control

Appendix GG–28
A

1
6
6
 E

R
R

O
R

S

H

LINKER/LOCATOR
ERROR MESSAGES

A
P

P
E

N
D

IX

Appendix HH–2
L

1
6
6
 E

R
R

O
R

S

H

A
P

P
E

N
D

IX

Linker/Locator Error Messages H–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E), fatal errors (F) and

internal errors (I) of l166.

2 WARNINGS (W)

W 101: illegal character 'char'

A character which is not allowed in the invocation was found.

W 102: output name renamed to 'name'

A second TO <name> was found.

W 103: invalid characters in identifier 'name'

An identifier must consist of the characters _underscore, A-Z, a-z or

0-9.

W 104: invalid number of symbol columns number, using number

The number of symbol columns must be 1, 2, 3 or 4.

W 105: TASK procedure 'name' not found

The TASK procedure specified in the invocation is not found in the

object files. Check if the name is correct and if the procedure is a

TASK procedure.

W 106: TASK 'name' not found

The TASK name specified in the invocation is not present in the object

files. Check if the name is correct or if the TASK name is not already

redefined with previous controls.

W 107: ADDRESSES RBANK: register bank not in internal RAM

A register bank address was located outside the internal RAM area. The

ADDRESSES RBANK control is ignored.

W 108: no EXCEPT in PRINTCONTROLS

The EXCEPT with PUBLICS or NOPUBLICS in a print control is not

allowed. The except is only valid for object controls.

Appendix HH–4
L

1
6
6
 E

R
R

O
R

S

W 109: module name 'name' not unique

The module name found in the object file was already found in a

previous read object file. Possibly linking or locating the same object

twice.

W 110: section 'name': private section multiply defined

A section with the name name was defined in two modules where one

of these definitions was private.

W 111: CASE/NOCASE mismatch with first_file/(first_module)

The source files are assembled with different CASE/NOCASE controls.

Linking these files may result in unexpected combinations or errors if

the linker is invoked with the CASE control. Reassemble the source

files with equal CASE/NOCASE controls.

W 112: existing system stack definition expanded

The module contains a SSKDEF with larger size than any previous

module. The largest size is used.

W 113: existing system stack already defined with larger size

The module contains a SSKDEF with smaller size than any previous

module. The largest size is used.

W 114: PECDEF combined

The currently linked module contains PECDEF directive which is

different from the PEC channels defined in previous linked modules.

W 115: group 'name': group expanded with different type

The group name was defined with different CODE/DATA attribute. A

CGROUP directive must be changed to DGROUP in the assembly

source file. Or a different grouping must be chosen.

W 116: task name 'name' not unique

The task name found in the object file or on the command line was

already used for another task.

W 117: symbol 'name': external multiply defined with type mismatch

The external symbol name is defined with different types. Take care

that the types are equal. The symbol will get the type of the symbol

which was read first.

Linker/Locator Error Messages H–5

• • • • • • • •

W 118: symbol 'name': unresolved

No public or global symbol definition was found to resolve the symbol.

This is the linker message. Unresolved externals are allowed to remain

after linking.

W 119: symbol 'name': external/public type mismatch

A symbol was resolved with a mismatch between the type of the public

definition and the external declaration in another module. Take care

that both types are equal. The symbol will get the type of the PUBLIC

symbol.

W 120: symbol 'name': external/global type mismatch

A symbol was resolved with a mismatch between the type of the global

definition and the external declaration in another module. Take care

that both types are equal. The symbol will get the type of the GLOBAL

symbol.

W 121: taskname multiply defined

The task was already defined. This definition is ignored.

W 122: interrupt number already defined

The interrupt was already defined. This definition is ignored.

W 123: private registers multiply defined

There are several private register definitions.

W 124: private register definition 'name' combined with definition in

name

Definitions of the same name are combined and expanded.

W 125: illegal pagewidth

The pagewidth must be between 78 and 255.

W 126: number symbol columns will not fit within the pagewidth, using

number columns

The number of columns specified by the SYMBOLCOLUMNS control

will not fit in the specified page width. The number of columns is

adjusted to the page width.

Appendix HH–6
L

1
6
6
 E

R
R

O
R

S

W 127: environment variable 'name' not set

When a $name or ${name} is found in the invocation, l166 starts

reading the invocation from the environment variable name. If this

environment variable is not set in your current command shell of the

operating system, l166 will issue this warning.

W 128: SEGMENTED/NONSEGMENTED mismatch with

firstfile/(firstmodule)

The source files are assembled with different

SEGMENTED/NONSEGMENTED controls. Linking these files possibly

will yield unexpected results. Reassemble the source files with equal

SEGMENTED/NONSEGMENTED controls.

W 129: RENAMESYMBOLS name: symbol 'name' not found

The symbol which has to be renamed was not found or was not found

with the expected type

W 130: missing system stack definition

No definition of the system stack was found in one of the object files.

W 131: interrupt name 'name' on command-line overrides 'name' in
object file

The interrupt name on the command line will be used, even if the task

defines another name.

W 132: task name 'name' on command-line overrides 'name' in object

file

The task name on the command line will be used, even if the task

defines another name.

W 133: interrupt number number on command-line overrides number
in the object file

The interrupt number on the command line will be used, even if the

task defines another number.

W 134: missing register definition

Add register definition to your input source file.

W 135: name element overlaps previously reserved element

The mentioned element overlaps an element reserved by the RESERVE

control.

Linker/Locator Error Messages H–7

• • • • • • • •

W 136: ORDER GROUPS control: cannot locate group order starting with

group 'name'

The order as indicated by ORDER GROUPS control cannot be located.

W 137: class 'name' overrides 'name' for group 'name'

The sections in a group should have the same class. If not the class of

the last section will be used.

W 138: ADDRESSES control: section 'name' already absolute (control

ignored)

The section indicated by the ADDRESSES control was already defined

as an absolute section in the assembly source, or by a previous

ADDRESSES control.

W 139: ADDRESSES control: group 'name' already absolute (control

ignored)

The group indicated by the ADDRESSES control was already defined as

an absolute group by a previous ADDRESSES control.

W 140: control/NOcontrol mismatch with first_file/(first_module)

The source files are assembled with different EXTEND/NOEXTEND

controls. If they are intentionally assembled this way, you can ignore

this warning, otherwise you should disassemble the source files with

equal EXTEND/NOEXTEND controls.

W 141: overlapping memory ranges 'name' and 'name'

The two elements will have overlapping areas. Check all absolute

addresses including the ADDRESSES control. See the created map file

for more information.

W 142: reserved area overlaps previously reserved area

Two areas indicated by the RESERVE control have overlapping parts.

Both areas will be marked as reserved. Adjust the ranges with the

RESERVED control.

W 143: PECCn already defined in other task

The PEC channel in the located module is already defined by a

PECDEF directive in one of the modules located before this module

The order of locating is the order of the modules in the invocation.

Check the PECDEF directives in the modules.

Appendix HH–8
L

1
6
6
 E

R
R

O
R

S

W 144: control control: class name 'name' not found

The class name was not found in the object file. The control will be

ignored.

W 145: control control: section name 'name' not found

The section name was not found in the object file. The control will be

ignored.

W 146: control control: group name 'name' not found

The group name was not found in the object file. The control will be

ignored.

W 147: control control: section name 'name' not in class 'class_name'

The section did not belong to the class mentioned in the ORDER

control. The ORDER control will be ignored.

W 148: ORDER control: section 'name' has different group

The group of the section ordered by the ORDER control did not match

previous section in the order. The ORDER control will be ignored.

W 149: ORDER control: section 'name' has different class

The class of the section ordered by the ORDER control did not match

previous section in the order. The ORDER control will NOT be ignored.

W 150: ORDER control: invalid order caused by section 'name'. ORDER

control ignored

The named section caused an error. For example:

- section appears more than once in an order control.

- conflict with previous order control.

The ORDER control will be ignored.

W 151: ORDER control: group 'name multiply ordered

The named group appears more than once in an order control. The

ORDER control will be ignored.

W 152: CLASSES control: class name 'name' not found

The class name was not found in a object file. The CLASSES control

will be ignored for this class.

Linker/Locator Error Messages H–9

• • • • • • • •

W 153: CLASSES control: class 'name' multiply used.

The class name was used more than once within a CLASSES control.

The first occurrence of the class will be used. Check the CLASSES

control in the invocation.

W 154: CLASSES control: address range (hexnum, hexnum) overlaps

another address range in a CLASSES control

The CLASSES controls have overlapping ranges. Check the CLASSES

control in the invocation.

W 155: ASSIGN control: symbol 'name' not found as an external

The symbol assigned by the ASSIGN control was not found as an

external in one of the objects. Check the invocation.

W 156: ORDER control: section name 'name' not in group 'name'

The section did not belong to the group mentioned in the ORDER

GROUPS control. The ORDER control will be ignored for this section.

W 157: system stack defined by both SSKDEF directive and SYSSTACK

sections

System stack must be defined by either a SSKDEF directive or

SYSSTACK sections.

W 158: ADDRESSES LINEAR: address hexnum too low

An address lower than 010000h (page 4) for the linear (LDAT) sections

is not allowed. An exception is address 0000000h, which is the default.

W 159: interrupt for this task multiply defined, using interrupt

namenumber

The locater encounters more than one interrupt record in the object file

while the STRICTTASK control is set. Only one interrupt per module is

allowed when this control is set.

The explanation for message W 160 - W 170:

The next messages concern not fitting relocations. The calculated value

does not fit in the number of bits as indicated. Adjust the expression

responsible for the relocation.

Example: using in the assembly a line like

MOV R0, #lab + 20000h

Causes W 161 because lab + 20000h does not fit in 16 bit (1 word)

Appendix HH–10
L

1
6
6
 E

R
R

O
R

S

W 160: section 'name', location hexaddress: value number does not fit

in one byte

W 161: section 'name', location hexaddress: value number does not fit

in one word

W 162: section 'name', location hexaddress: bad segment number

hexnumber

W 163: section 'name', location hexaddress: bad page number

hexnumber

W 164: section 'name', location hexaddress: bit offset hexnumber does

not fit

W 165: section 'name', location hexaddress: bad trap number

hexnumber

W 166: section 'name', location hexaddress: value hexnumber does not

fit in 3 bit

W 167: section 'name', location hexaddress: value hexnumber does not

fit in 4 bit

W 168: section 'name', location hexaddress: bit address hexnumber does

not fit

W 169: section 'name', location hexaddress: bad page number

hexnumber in expression

W 170: section 'name', location hexaddress: bad segment number

hexnumber in expression

W 171: SECSIZE control: negative size for section 'sectname'class

Due to SECSIZE control, the size of the mentioned section becomes

lower than zero. The size is set to zero. The section size can be

negative when the SECSIZE(sectname(- value)) is used, where the

value is subtracted from the original size. When value is higher than

the original section size, the section size becomes negative.

W 172: no input module

No input modules were found in the invocation.

W 173: cannot order section 'name'; ORDER control ignored

Check absolute sections within the order.

W 174: absolute order with section 'name' cannot be located; ignoring

ORDER control

There is no space left in the processor memory to locate the order.

Linker/Locator Error Messages H–11

• • • • • • • •

W 175: [NO]PUBLICS EXCEPT control: symbol 'name' not found

The symbol in the PUBLICS EXCEPT or NOPUBLICS EXCEPT control is

not found in any of the object modules

W 176: SECSIZE control: size of section 'name'class decreased

Decreasing the size of a section can destroy its contents.

W 177: SECSIZE control: section 'name'class not found

The named section was not found in the task.

W 178: private register declaration extends definition 'name' in name

The declaration in the module contains registers not included in the

definition of the register bank.

W 179: private register declaration extends declaration in name

The declaration in the module contains registers not included in the

definition of the register bank. Note: this warning is by default

disabled. Use the WARNING(179) control to enable the warning.

W 180: mismatch in expected count on warning W number

The number of counts on the warning which was expected as stated by

the WARNING EXPECT control was not equal to the actual number of

counts.

W 181: registerbank on odd address hexaddress not allowed; aligning to

even address

The address of a register bank must be an even address. Assigning an

odd address to the bank with the ADDRESSES RBANK control will

cause this message to be issued.

W 182: [NO]PUBLICS EXCEPT control: symbol 'name' not public

The symbol in the PUBLICS EXCEPT or NOPUBLICS EXCEPT control is

found, but not as a public symbol. The symbol is extern or global.

W 183: output file not build in memory

The size of the object file was to big to be allocated in one time. The

file will be created on disk and not first in memory. This causes the

linker/locator to be slower; it has no effect on the final output.

W 184: register bank already absolute

The register bank was already made absolute by an ADDRESSES

RBANK control. The first assignment is used.

Appendix HH–12
L

1
6
6
 E

R
R

O
R

S

W 185: linear base address already set

The linear base address was already set by an ADDRESSES LINEAR

control. The first assignment is used.

W 186: SETNOSGNPP control: 'name' was previously assigned to page

number

The new value for the DPP is used.

W 187: system stack definition 7 overruled by number

A system stack definition of 7 indicates the entire internal RAM is used

as system stack. The locator will not reserve this space but expects the

usage of SYSSTACK sections. If a system stack definition in the range 0

- 4 is used in an other module, this definition is used.

W 188: system stack size decreased: definition number overruled by

number in invocation

The system stack number supplied with the control

RESERVE(SYSSTACK()) overrules the number in the object file, defined

with the assembler directive SSKDEF. This warning is issued if the stack

size is decreased.

W 189: expecting system stack sections for system stack definition 7

When the system stack definition is set to 7 by the assembler SSKDEF

directive or the locator RESERVE(SYSSTACK()) control, you need to

define the system stack by means of SYSSTACK sections.

W 190: OVERLAY control: class name 'name' not found

The class name was not found in an object file. The OVERLAY control

will be ignored for this class.

W 191: OVERLAY control: class 'name' multiply used.

The class name was used more than once within the OVERLAY control.

Only one occurrence of the class will be used. Check the OVERLAY

control in the invocation.

W 192: control control: no LDAT sections found

One of the ADDRESSES LINEAR or SETNOSGDPP controls is used, but

no LDAT sections were used in the object modules. Both controls

affect the location of LDAT sections. The control is ignored.

Linker/Locator Error Messages H–13

• • • • • • • •

W 193: class 'name' without CLASSES control

If the CHECKCLASSES control is active each class must have a range

specified with the CLASSES control. The locator will not check if each

class has a CLASSES control, if the NOCHECKCLASSES control is set or

when the MEMORY ROM or MEMORY RAM control is set.

W 194: ADDRESSES RBANK: register bank 'name' not found

The register bank name specified with the ADDRESSES RBANK control

is not found in the input modules.

W 195: control control: section 'name' multiple in input module(s),

using first occurrence

The section was found more than once in the current input module or

in the input modules when the control is general. Note that module

scope controls can be general when the GENERAL control or scope

switch is used. The first occurrence of the section in the first input

module is used. Note the library modules are read after all other

modules.

W 196: control control: group 'name' multiple in input module(s), using

first occurrence

The group was found more than once in the current input module or

in the input modules when the control is general. Note that module

scope controls can be general when the GENERAL control or scope

switch is used. The first occurrence of the group in the first input

module is used. Note the library modules are read after all other

modules.

W 197: ORDER SECTIONS control: cannot locate order starting with

'name'

The sections cannot be located in the order specified with the ORDER

SECTIONS control. The ORDER control will be ignored.

W 198: name does not fit into the lower 64K. Switching to SND memory

configuration

When using the _at() keyword in the small memory model to place a

variable outside the lower 64K range, you should add the _far
keyword or use the SND memory configuration.

W 199: same page assigned to DPPn and DPPm

When using the SND control, the same page is assigned to two

different DPP registers.

Appendix HH–14
L

1
6
6
 E

R
R

O
R

S

W 500: page number assigned to DPPn due to absolute near section

When using the _at() keyword in the small memory model to place a

variable outside the lower 64k range, the correct page must be

assigned to the correct DPP register.

W 501: value 0xhexnumber has been resolved as DPPn:0xhexnumber

The RESOLVEDPP keyword forces the locator to try and find a base

DPP register able to address values. This warning indicates that such a

value has been found and resolved succesfully. This does not mean

this was supposed to happen; non-address values are not supposed to

be referenced through a DPP register. Check these warnings carefully.

Use the SETNOSGDPP control to set the base DPP registers to the

desired settings.

W 502: value 0xhexnumber could not be resolved using a DPPx register

The RESOLVEDPP keyword forces the locator to try and find a base

DPP register able to address values. In this case, a value was

encountered for which no suitable base DPP address could be found.

This does not mean this is wrong, because non-address values should

not be reference through a DPP register.

Use the SETNOSGDPP control to set the base DPP registers to the

desired settings.

W 503: linking empty heap section

 When dynamic memory allocation routines from the library are used, a

heap section is created by default, but of size 0. The section size can

be adjusted in the locate stage

To Allow for run-time memory allocation without running out of heap

space.

W 504: code section name (partially) located in data page 2/3 by the

user

The C166S v2.0/Super10 architecture does not allow executable code to

be located inside data page 2 and 3 (00'8000h TO 00'FFFF). As long as

this code is never executed, locating the code there will not pose

problems. This code could, for example, be moved at run-time to

another location.

Linker/Locator Error Messages H–15

• • • • • • • •

W 505: vector table address at 0hexnumberh not aligned on segment

boundary

The C166S v2.0/Super10 architecture allows the vector table to be

located elsewhere in memory, but it must be at a segment boundary

and not in segment 191. Relocating the vector table to a non-aligned

address is only allowed when using it for debugging purposes. A

non-debug vector table must always be aligned at a segment

boundary.

W 506: scaling of vector tables differs between modules

Seperate modules declared a different scaling for the vector table. The

locator will use the largest scaling declared, or the scaling declared on

the command line if that is larger. This warning is only generated when

no scaling is defined on the command-line and two or more modules

declare a different scaling.

W 508: maximum number of configurable groups is 255

W 509: maximum number of configurable classes is 255

W 511: minimum number of configurable groups is 1

W 512: minimum number of configurable classes is 1

W 513: control name is deprecated

This control has no effect anymore. It is supported for backwards

compatibility, but in the future it may cause a syntax error.

W 514: userstack section name is truncated to number bytes

The linker / locater will automatically truncate a userstack section to

the maximum value allowed for this type of section.

W 515: section section is removed, because it is never used

With the smart linking control in effect, the linker/locator tries to

identify sections that are never used. Together with the compiler smart

linking pragma which will put all functions in a seperate section, this

eliminates unused functions from the output file.

W 516: resolving variable, but control control not specified

Some predefined variables must be accompanied by certain controls.

For example, the ?USRSTACK1_TOP predefined variable is an

EXTEND2 architecture variable. The locator will resolve this variable

but other effects of the missing control will not be applied. This may

result in a non-executable output file.

Appendix HH–16
L

1
6
6
 E

R
R

O
R

S

W 517: using existing definition of symbol

With the RENAMESYMBOLS control, existing symbols can be renamed.

If the locator finds a definition of a predefined symbol which may be

the result of RENAMESYMBOLS, it does not create a new symbol with

that name, but uses the existing value. This can be used to define your

own user stack location.

Linker/Locator Error Messages H–17

• • • • • • • •

3 ERRORS (E)

E 200: name too long

The length of a name in the invocation exceeded the limit of 128

characters.

E 201: non terminated string: missing '.

A class name is enclosed in single quotes and does not contain any

spaces or new-lines. The second quote could not be found. It is

missing or a space or new-line was found.

E 202: number too long

The length of a number in the invocation exceeded the limit of 128

digits.

E 203: digit exceeds radix

The format of the number is not according to the base, a character was

found not belonging to the base.

E 204: syntax error

A statement in the invocation file was not according the defined syntax.

E 205: brace mismatch

A required brace was missing.

E 206: too many excepts

The number of excepts exceeds 40.

E 207: invalid file extension in 'name'

The extension must be .lib or .obj for linking and .lno for locating.

E 208: mixed single precision and ANSI floating point

The FLOAT control of the assembler is used to indicate which floating

point type is used, single precision (FLOAT(SINGLE)) or ANSI

(FLOAT(ANSI)). The 166 C-compiler sets this control if floating point

was used in the C source:

$FLOAT(SINGLE) if the source is compiled with -F

$FLOAT(ANSI) if the source is not compiled with -F

Appendix HH–18
L

1
6
6
 E

R
R

O
R

S

Using mixed floating point types is not possible. This error message is

issued if the float control of the current module is not equal to the

float control of previous modules. The error message is not issued if:

- no floating point is used

- all modules are compiled without -F and the C library with ANSI

floating point is used (c166?.lib)

- all modules are compiled with -F and the C library with single

precision floating point is used (c166?s.lib)

E 209: module scope name: file not in invocation

The filename in the module scope switch is not found in the list of

input files check if the filename exactly matches the name as entered

before. Note that when the filename does not have a suffix it will be

added by l166. the linker stage will add .obj and the locator stage will

add .lno.

A module scope switch has the following syntax: {filename}
A temporary module scope switch has the following syntax: {filename
... }

E 209: no controls allowed in task definition

No controls are allowed between INTNO, TASK and object filename.

E 210: no object file defined for control control

A control affecting a single object file was used while no object file was

defined.

E 211: invalid address range

An address range (address1, address2) with address1 higher than

address2 was detected.

E 212: invalid PECC name 'name'

The name is not a valid PECC name.

E 213: invalid interrupt number

Interrupt number is not valid.

E 214: invalid SYSSTACK value

The value with the SYSSTACK control must be in the range 0-3. If the

assembler EXTSSK control is set the value can also be 4 or 7.

Linker/Locator Error Messages H–19

• • • • • • • •

E 215: section 'name': combining different combine types

A section with the name name was defined in another module with

another combine type.

E 216: section 'name': combining different memory types

A section with the name name was defined in another module with

another memory type (DATA, LDAT, HDAT, PDAT, CODE, BIT).

E 217: section 'name': combining different align types

A section with the name name was defined in another module with

another align type.

E 218: ADDRESSES RBANK: no bank name allowed when STRICTTASK

is active

When the STRICTTASK control is set only one register bank per input

module is allowed and only the syntax 'ADDRESSES RBANK(value)'

is valid. The syntax 'ADDRESSES RBANK(name(value), ...)' is not

accepted in that case.

E 219: SEGMENTED/NONSEGMENTED mismatch with

first_file(first_module)

The source files are assembled with different SEGMENTED/

NONSEGMENTED controls. Linking these files possibly will yield

unexpected results. Reassemble the source files with equal

SEGMENTED/NONSEGMENTED controls.

E 220: control/NOcontrol mismatch with first_file(first_module)

The source files are assembled with different EXTEND/NOEXTEND

controls. Linking or locating these files possibly will yield unexpected

results. Reassemble the source files with equal EXTEND/NOEXTEND

controls.

E 221: message number number is not a warning or does not exist

The message with the mentioned number does not exist or is not a

warning (W number). It cannot be disabled or enabled with the

WARNING control.

E 222: symbol 'name': unresolved

No global symbol definition was found to resolve the symbol while

locating

Appendix HH–20
L

1
6
6
 E

R
R

O
R

S

E 223: section 'name': intra segment JMP or CALL at location

hexaddress crosses segment border

The address calling to is not in the same segment as the location of the

instruction.

E 224: illegal combination of local and PUBLIC or GLOBAL register

bank 'name' in name and name

The mentioned register bank is in one of the module a local register

bank and in the other module the bank is made GLOBAL or PUBLIC.

The linker can only combine register banks with equal names if they

are local.

Example:

Object file 1 has: bank1 REGBANK R0-R15

PUBLIC bank1

Object file 2 has: bank1 REGBANK R0-R15

E 225: bad combination of common registers 'name' and 'name'

This error is issued when two COMMON register ranges with different

names have an overlapping range in one task. Example:

Object file 1 has: COM1 COMREG R0-R3

Object file 2 has: COM2 COMREG R2-R4

When these two objects are linked the register ranges cannot be

combined to one bank.

E 226: bad combination of private/common registers in 'name'

Avoid overlapping of private and common register banks.

E 227: expression syntax error

An invalid expression was found in the invocation

E 228: section 'name' already belongs to group 'name'

The section is grouped in this object file to another group than it was

previously grouped.

E 229: bad expression relocation

The relocation of an expression did not have the right format. This is

possibly due to assembly errors.

Linker/Locator Error Messages H–21

• • • • • • • •

E 230: too much bytes in relocatable expression

This error is caused by a badly formatted object file. Try to assemble

the assembly source file again.

E 231: index in symbol table out of range

Caused by a bad formatted object file. Assemble your assembly source

again and check for errors.

E 232: relocation record error

Caused by a bad formatted object file. Assemble your assembly source

again and check for errors.

E 233: section 'name': section base mismatch: header hexnumber,
symbol hexnumber

The section base address in the header record of the section does not

match the address found in the symbol record of the section. This is

probably due to errors during assembly or due to internal errors of

assembler or linker.

E 234: cannot solve nested equate 'name'

The symbol, defined with one of the assembler EQU, SET or BIT,

cannot be solved probably due to an invalid nesting of the symbol.

Example:

AA EQU BB

BB EQU AA + 5

Cannot be solved.

E 235: section 'name': combination exceeds page size

Reduce the size of this DATA/BIT section.

E 236: section 'name': combination exceeds segment size

Reduce the size of this CODE section.

E 237: ASSIGN control: public symbol 'name' multiply defined.

An assign control introduces a symbol which is already defined in one

of the object or library modules.

E 238: section 'name', location hexaddress: value hexnum.num is not

in the bitaddressable range.

The result of a relocation for a bit value was not in the bitaddressable

range.

Appendix HH–22
L

1
6
6
 E

R
R

O
R

S

E 239: memory model name: conflict with previous modules in

memory model name

The memory models of the linked or located objects have to be equal.

E 240: ADDRESSES RBANK: name has more than one register bank

E 240: ADDRESSES RBANK: more than one register bank

The ADDRESSES RBANK control was used in the syntax 'ADDRESSES

RBANK(value)' but he current module contains more than one

register bank definition. The locator does not know to which bank the

address should be assigned. Use the syntax 'ADDRESSES RBANK(

name(value),...)' for assigning each register bank to an absolute

address.

The second format is issued when no module scope is set and the total

number of register banks in the modules is more than one. No module

scope is set when the GENERAL (abbr. GN) control is used or between

the LOCATE control and the first file name.

E 241: BIT section 'name': too large

The size of a BIT section must be lower than 0800h (bits). Decrease

section size.

E 242: BIT section 'name': calculated base address hexaddress (bit) out

of range

The bit address calculated by the linker was out of the range 0h -

0ff0h Causes can be: an invalid ORG directive, an invalid base address,

or an internal error.

E 243: symbol 'name': multiply defined

The symbol name is multiply defined as public or as global. Remove

the multiple public.

E 244: interrupt symbol 'name': multiply defined

The symbol name is multiply defined as public or as global. Remove

the multiple public.

E 245: common register area 'name' has mismatching length

The named area was previously defined with another length. Check

common register definitions.

Linker/Locator Error Messages H–23

• • • • • • • •

E 246: private registers (name/name) will overlap

The overlaying of the common registers is not possible. Check

common and private register definitions.

E 247: common register areas (name/name) will overlap

The overlaying of the common registers is not possible. Check

common and private register definitions.

E 248: common register area and private registers will overlap

(name/name)

The overlaying of the common registers is not possible. Check

common and private register definitions.

E 249: cannot combine COMMON register area 'name'

The combination of register banks failed. Addresses could not be

assigned. Check your register definitions. The given name is an

indication of the common register range causing this error.

E 250: cannot assign addresses to register banks

Addresses could not be assigned. Check your register definitions and

the addresses supplied via the ADDRESSES control.

E 251: invalid name range

The RESERVE or MEMORY control was called with a range addr1 -

addr2 where addr2 was lower than addr1. The range can be an

MEMORY range, INTTABL range or PECPTR range for the RESERVE

control. It is a RAM or ROM range for the MEMORY control.

E 252: interrupt number number is multiply used

The named interrupt number is used for more than one task. Check

your source files and the invocation of the locator.

E 253: missing interrupt number for task name

The task must be supplied with an interrupt number.

E 254: relocation: expression stack overflow

The expression read for relocation was not correct. The assembler

possibly generated a bad expression. Check for assembly errors.

E 255: relocation: expression stack underflow

The expression read for relocation was not correct. The assembler

possibly generated a bad expression. Check for assembly errors.

Appendix HH–24
L

1
6
6
 E

R
R

O
R

S

E 256: relocation: unknown operator (hexnumber) in expression

The expression read for relocation was not correct. The assembler

possibly generated a bad expression. Check for assembly errors.

E 257: unknown predefined symbol 'name'

The named symbol (starting with a question-mark '?') in not known by

the locator. The assembler should check for valid symbols. Check for

assembly errors.

E 258: address (hexaddress) too high

The address was outside the processor memory.

E 259: expected range specifier missing

A range was expected : expression - expression.

E 260: task 'name' not found

You tried to specify a section or group from a certain task by using the

optional 'TASK(taskname)' specifier, but the taskname is not found in

the invocation or in one of the object files. A taskname can be defined

with the assembler 'PROC TASK taskname' directive, or with the locator

TASK control. The 'TASK(taskname)' specifier can be used in the

ORDER control, in the ADDRESSES SECTIONS or in the ADDRESSES

GROUPS control.

E 261: section 'name', location hexaddr: division by zero in relocatable

expression

A relocatable expression contained a division by zero. Check the

expression used in the section at the indicated location.

E 262: invalid stack size hexsize

The stack size used with a FPSTACKSIZE control must be in the range 0

to 3fe0h (one page - 32 bytes).

E 263: no bit address allowed for this control

The address for this control cannot be a bit address.

E 264: invalid bit position number

The .bitpos must be between 0 and 15

E 265: address hexnum.num not in bitaddressable area

An address containing a . must be in the bitaddressable area.

Linker/Locator Error Messages H–25

• • • • • • • •

E 266: type bit element 'name name' cannot be located in

bitaddressable area

There is no space left in the processor memory for locating the

mentioned bit element.

E 267: type system stack element 'name name' cannot be located in

system stack area

There is no space left in the processor memory for locating the

mentioned system stack element.

E 268: type linear element 'name name' cannot be located within 4

pages

There is no space left in the processor memory for locating the

mentioned linear (LDAT) element. Note that an LDAT section is paged

when the SND control is used, and that it can be 3 pages + 1 page

linear when ADDRESSES LINEAR is used (default).

E 269: type nonsegmented element 'name name' cannot be located in

first 64k segment

There is no space left in the processor memory for locating the

mentioned nonsegmented element.

E 270: type segmented element 'name name' cannot be located

There is no space left in the processor memory for locating the

mentioned segmented element.

E 271: type register bank 'name' cannot be located in internal memory

There is no space left in the processor memory for locating the

mentioned register bank.

E 272: cannot locate absolute element 'name' at 0xhexnumber

There is no space left in the processor memory for locating the

mentioned element.

E 273: address hexaddr for section 'name' is not in the bit addressable

area

The section appears to have an absolute address outside the processor

bitaddressable area.

E 274: bit address hexaddr found for not BIT section 'name'

The section is not of the type BIT but is aligned to an address having a

bit position.

Appendix HH–26
L

1
6
6
 E

R
R

O
R

S

E 275: module 'name' not found in library

The extraction of the module from the library as specified in the

invocation failed because the module was not found in the library

E 276: invalid heap size hexsize

The heap size used with a HEAPSIZE control must be in the range 0 to

3fffh (one page) in non segmented mode or 0 to 01000000h in

segmented mode. The size must be even, because the heap section is

word aligned.

E 277: section 'name' with a global combine type has different class

attribute

Sections with equal names and a global combine type must have equal

class attribute.

E 278: COMMON section 'name' has different sizes

Sections with equal names and combine type COMMON must have

equal sizes. Not equal sizes indicate different sections.

E 279: section 'name': combining different class attributes 'name' and

'name'

Sections with equal names cannot be combined if the classes are

different.

E 280: module 'name' is not a TASK module

The TASK control cannot be used for modules containing none or

more than one TASK procedure. Please use the INTERRUPT control to

assign TASK names, interrupt names and interrupt numbers.

E 281: ADDRESSES control: start address of section 'name' is not

aligned

The start address of a section as to aligned as stated by the section

align type.

E 282: data group 'name' cannot be located in one page

E 283: code group 'name' cannot be located in one segment

The locator failed to locate all sections of the data/code group in one

page/segment. Possible causes are:

- The sum of the section sizes in the group is larger than one

page/segment, including the gaps caused by alignment of

sections.

Linker/Locator Error Messages H–27

• • • • • • • •

- Other already located sections occupy the needed space.

E 284: RENAMESYMBOLS control: too many symbols to be renamed

(maximum =number)

The total number of symbols to be renamed is limited

E 285: SETNOSGDPP control: invalid DPP name 'name'.

The DPP name is one of DPP0, DPP1, DPP2 or DPP3.

E 286: SETNOSGDPP control: invalid page number number for name.

The page number assigned top a DPP is lower than 0 or higher than

the last page number. Remind that DPP3 only can be assigned to page

3.

E 287: cannot use both SETNOSGDPP and ADDRESSES LINEAR

It is not possible to use these controls in combination. Use either one

of them.

E 288: control control: invalid internal RAM size

The value for the IRAMSIZE control has to be larger or equal to zero or

the address range for the MEMORY IRAM is too small.

E 289: invalid value for MEMSIZE control

The value for the MEMSIZE control has to be greater or equal to zero.

E 290: only one OVERLAY control allowed

This error is issued on each OVERLAY control which is not the first.

E 291: non CODE section 'name' in overlay class 'name'

An overlay can only be used for CODE memory banking. Only CODE

sections are allowed in an overlay. The mentioned section belongs to

a class used in the overlay. Check input source and the OVERLAY

control in the invocation.

E 292: class 'name' in the OVERLAY control has no CLASSES control

It is not possible to overlay classes if the base address of the class is

not known. For this reason it is required to have a range, specified

with the CLASSES control, for each class in the overlay control.

E 293: OVERLAY area too small for class 'name'

The range specified with the CLASSES control for the mentioned class

is larger than the range specified with the OVERLAY control.

Appendix HH–28
L

1
6
6
 E

R
R

O
R

S

E 294: module has more than one TASK

When the STRICTTASK control is set only one TASK per module is

allowed. Do not set the STRICTTASK control or create only one TASK

per module.

E 295: module scope {name ... : nesting too deep

The nesting of module scope operators is restricted to 8 levels. A new

module scope operator starts with a '{'.

E 296: illegal module switch {name}

It is not allowed to switch the current module in the invocation nested

in a temporary module scope switch.

Example:

{moda.obj ADDRESSES SECTIONS({modb.obj} SECT1 (300h))
}

The '{moda.obj' starts a temporary module scope switch. '{modb.obj}'

starts a definitive module switch which will yield this error.

The following nesting is correct:

{moda.obj ADDRESSES SECTIONS({modb.obj SECT1 (300h)})

E 297: module scope: too many '}'

A new module scope operator starts with a '{' and ends with a '}'. When

there are more close braces than open braces this error is issued.

E 298: module scope {name ... : missing '}'

When a temporary module scope switch is started within a control the

matching close brace should also be placed within that control.

Example:

ADDRESSES SECTIONS({mod1.obj sect1 (200h)) ; error !
ADDRESSES SECTIONS(sect2 (300h) })

The closing brace must be placed within the first control. The following

is correct:

ADDRESSES SECTIONS({mod1.obj sect1 (200h)})
ADDRESSES SECTIONS({mod1.obj sect2 (300h)})

Linker/Locator Error Messages H–29

• • • • • • • •

E 299: MEMORY control: ROM range hexnum to hexnum overlaps a

previous RAM range

E 299: MEMORY control: RAM range hexnum to hexnum overlaps a

previous ROM range

E 299: MEMORY control: IRAM range hexnum to hexnum overlapped

by a ROM range

A range in the MEMORY ROM control overlaps a range in MEMORY

RAM control or vice versa.

The first two errors are generated with following example:

MEMORY(ROM(0–200h) RAM(100h–300h) ROM(2A0h–400h))

The last error is generated with the following example:

MEMORY(ROM(0fa00h – 0ffffh))

E 400: group 'name' with SYSTEM section has absolute address outside

system page

E 400: group 'name' with SYSTEM section has absolute address outside

system page

E 401: locating empty heap section

When dynamic memory allocation routines from the library are used, a

heap section is created by default, but of size 0. This means that if

these routines are used at run-time, there will never be heap space

available and all allocations will fail. Because the existance of this

section indicates at least one routine could make use of dynamic

allocation, you should allocate sufficient heap space or remove all

dynamic memory allocation.

E 402: system stack location is invalid

The C166S v2.0 / Super10 architectures allow relocating the system

stack, but only in either the internal ram or the IO area (DMU-sram).

E 403: system stack too small to fit sections

When allocating the system stack, enough space must be reserved to fit

all system stack sections. Allocate the system stack higher in memory or

eliminate some system stack sections.

Appendix HH–30
L

1
6
6
 E

R
R

O
R

S

E 404: vector table scaling number is not supported

The linker / locator does not support this scaling factor. This can be

caused by an assembler that does support a larger range or an invalid

scaling factor was provided through a control.

E 405: inline vectors should be inside section C166_INT

The linker / locator demands that all inline vectors are gathered in

section C166_INT. A vector was found that was declared inline, but not

inside section C166_INT.

E 406: symbol type invalid for DPP assignment

When using symbol names to assign DPP values, the symbol type must

be a valid address or constant type.

E 407: class 'class' not found

A class was specified using a predefined variable like

?CLASS_name_TOP or ?CLASS_name_BOTTOM. This class was not

found by the locator so the variable cannot be resolved.

E 408: symbol 'symbol': external multiply defined with type mismatch

The external symbol symbol is defined with different types. Make sure

that the types are equal.

E 409: symbol 'symbol': external/public type mismatch

A symbol was resolved with a mismatch between the type of the public

definition and the external declaration in another module. Make sure

that both types are equal.

E 410: symbol 'symbol': external/global type mismatch

A symbol was resolved with a mismatch between the type of the global

definition and the external declaration in another module. Make sure

that both types are equal.

Linker/Locator Error Messages H–31

• • • • • • • •

The explanation for message E 4111 - E 421:

The next messages concern not fitting relocations. The calculated value

does not fit in the number of bits as indicated. Adjust the expression

responsible for the relocation.

Example: using in the assembly a line like

MOV R0, #lab + 20000h

Causes E 411 because lab + 20000h does not fit in 16 bit (1 word)

E 411: section 'name', location hexaddress: value number does not fit

in one byte

E 412: section 'name', location hexaddress: value number does not fit

in one word

E 413: section 'name', location hexaddress: bad segment number

hexnumber

E 414: section 'name', location hexaddress: bad page number

hexnumber

E 415: section 'name', location hexaddress: bit offset hexnumber does

not fit

E 416: section 'name', location hexaddress: bad trap number

hexnumber

E 417: section 'name', location hexaddress: value hexnumber does not

fit in 3 bit

E 418: section 'name', location hexaddress: value hexnumber does not

fit in 4 bit

E 419: section 'name', location hexaddress: bit address hexnumber does

not fit

E 420: section 'name', location hexaddress: bad page number

hexnumber in expression

E 421: section 'name', location hexaddress: bad segment number

hexnumber in expression

Appendix HH–32
L

1
6
6
 E

R
R

O
R

S

4 FATAL ERRORS (F)

F 300: can't create 'name'

Cannot create the file with the mentioned name.

F 301: can't open 'name'

Cannot open the file with the mentioned name.

F 302: can't open 'name' twice

Cannot open the file with the mentioned name for the second time.

F 303: read error

A read error occurred while reading named file.

F 304: write error

A write error occurred while writing to the output file.

F 305: out of memory while allocating memory for name

An attempt to allocate memory failed.

F 307: offset not in string area

The offset to a string, found in the module was outside the modules

string area.

F 308: file is not in archive format

The named file is not in the proper archive format.

F 309: invocation files nest too deep

The nesting of invocation files was too deep.

F 310: keyword 'name' only valid while locating

The keyword read from the invocation can only be used while locating

F 311: keyword 'name' only valid while linking

The keyword read from the invocation can only be used while linking.

F 314: too many address ranges

The number of address ranges in a CLASSES control could not be

stored. Reduce the number of ranges.

Linker/Locator Error Messages H–33

• • • • • • • •

F 315: not an object file

The linker/locator did not found the magic number for an object file

F 316: not an archive file

The linker/locator did not found the magic number for an archive file

F 317: not a 166 object file

An attempt was made to link or locate with a file which is not an object

file in the 166 interpretation of a.out

F 318: wrong object format version

The file contained a version number which was not correct. The file is

produced by an assembler version not belonging to this linker/locator

version.

F 319: invalid input module (record type = name)

The module contains information which is invalid. The assembler was

possibly stopped on errors and created a bad object. Try to to

reassemble the source file.

F 320: too many sections

The maximum number of sections is exceeded. Try to combine

sections in the assembly source.

F 321: extension record error

The linker always expects one extension record. If not present, a

wrong type field number is found or more than one extension record is

found the object file is not valid. Possibly due to assembly errors.

F 322: symbol 'name': bad group name record

The name record with the name name was expected to be a group

record. The object file has a bad format probably due to assembly

errors. Translate your source file again.

F 323: symbol 'name': bad class name record

The name record with the name name was expected to be a class

record. The object file has a bad format probably due to assembly

errors. Translate your source file again.

F 324: too many classes

The total number of classes exceeded the maximum.

Appendix HH–34
L

1
6
6
 E

R
R

O
R

S

F 325: too many groups

The total number of groups exceeded the maximum.

F 326: can't reopen 'name'

Cannot reopen the file with the mentioned name.

F 327: unexpected end of file

Due to an error in the format of the object file the end of file was

reached where data was expected. This is possibly due to assembly

errors

F 328: input and output file name are equal

Choose another output file name

F 329: input and print file name are equal

Choose another print file name

F 330: output and print file name are equal

Choose another print or another output file name

F 331: library expected

The file was expected to be a library.

F 332: too many register banks

The number of combined register banks exceeded the limit. Reduce the

number of register banks.

F 333: protection error: message

The C166/ST10 linker/locator is a protected program. Check for correct

installation.

F 334: evaluation date expired !!

Only used in evaluation versions of l166

F 335: too many symbols

The number of symbols is limited by the object format to 65535. This

maximum is exceeded while reading the input object files. The total

number of symbols in the output file is too much. This problem can

be solved by reducing the number of symbols from the input file. Try

to compile without -g or assemble with the NODEBUG control. If this

error comes from the locator it is also possible to link with the

NODEBUG control or to locate some tasks with the PURGE control.

Linker/Locator Error Messages H–35

• • • • • • • •

F 336: restriction in demo version: message

The demo version has restrictions to number of input modules, number

of sections in output file, number of symbols in output file and number

of initialized (ROM) bytes in the output file.

F 337: cannot use the GLOBALSONLY and OVERLAY controls together

When you use the GLOBALSONLY control to import symbols from an

already located file you cannot use the OVERLAY control.

F 338: search path list too long

While appending a path to a search path list the total length became

too long. Try to remove unused paths or shorten directory names.

F 339: output and MISRA C file name are equal

Choose another MISRA C or another output file name

F 340: print and MISRA C file name are equal

Choose another print or another MISRA C file name

F 341: input and MISRA C file name are equal

Choose another input or another MISRA C file name

F 342: relocation error: message

There was an error while relocation code. Probably one of the input

modules is corrupt. Please recompile your code and check the output

for errors.

If the problem persists, please contact your sales representative.

Remember the situation and context in which the error occurred and

make a copy of the source file.

5 INTERNAL ERRORS (I)

I 900: internal error l166(file,line): message

If this error occurs, please contact your sales representative. Remember

the situation and context in which the error occurred and make a copy

of the source file.

Appendix HH–36
L

1
6
6
 E

R
R

O
R

S

I

LIMITS
A
P
P
E
N
D
IX

Appendix II–2
L
IM
IT
S

I

A
P
P
E
N
D
IX

Limits I–3

• • • • • • • •

1 ASSEMBLER

The assembler a166 has the following limits:

• Number of errors that can be processed 100

• Level of invocation file nesting 8

• Number of sections that can be defined in one module 65533

• Number of classes that can be defined in one module 50

• Number of groups that can be defined in one module 50

• Level of section nesting 10

2 LINKER/LOCATOR

The Linker/locator l166 has the following limits:

• Total number of sections 65533

• Total number of classes 250

• Total number of groups 250

• Level of invocation file nesting 8

• Number of register banks 250

• Number of common register ranges 20

• Number of EXCEPT symbols in the

PUBLICS/NOPUBLICS control 40

• Number of RENAMESYMBOLS controls 100

Appendix II–4
L
IM
IT
S

J

INTEL HEX
RECORDS

A
P
P
E
N
D
IX

Appendix JJ–2
IN

T
E

L
 H

E
X

J

A
P
P
E
N
D
IX

Intel Hex Records J–3

• • • • • • • •

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

The ihex166 program generates records in the 8-bit format by default.

When a section jumps over a 64k limit the program switches to 32-bit

records automatically. 16-bit records can be forced with the -i16 option.

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

type
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

content
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The locator outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than FFH.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Appendix JJ–4
IN

T
E

L
 H

E
X

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (20–bit)

03 Start segment address (20–bit)

04 Extended linear address (32–bit)

05 Start linear address (32–bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The locator computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The locator then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

Intel Hex Records J–5

• • • • • • • •

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Extended Segment Address Record

The Extended Segment Address Record specifies the two most significant

bytes (bits 4-19) of the absolute address of the first data byte in a

subsequent Data Record, where bits 0-3 are zero:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The 20-bit absolute address of a byte in a Data Record is calculated as:

address + ((offset + index) modulo 64K)

where:

address is the base address, where the 20 most significant bit are the

upper_address and the 4 least significant bits are zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

Example:

:0200000200FFFD
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Appendix JJ–6
IN

T
E

L
 H

E
X

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁ
ÁÁÁ
ÁÁÁ

00
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The locator has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

04

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

05

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000500FF0003F5
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

Intel Hex Records J–7

• • • • • • • •

Start Segment Address Record

The Start Segment Address Record contains the 20-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

03
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000300FF0003F7
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

Appendix JJ–8
IN

T
E

L
 H

E
X

K

MOTOROLA
S–RECORDS

A
P
P
E
N
D
IX

Appendix KK–2
M

O
T

O
R

O
L

A
 S

K

A
P
P
E
N
D
IX

Motorola S–Records K–3

• • • • • • • •

The srec166 program generates three types of S-records by default: S0, S1

and S9. S1 records are used for 16-bit addresses. With the -r2 option of

srec166 S2 records are used (for 24-bit addresses) and with -r3 S3

records are used (for 32-bit addresses). They have the following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

An srec166 generated S-record file starts with a S0 record with the

following contents:

length_byte : 14H

comment : (c) TASKING, Inc.

checksum : 72H

 (c) T A S K I N G , I n c .
S0140000286329205441534B494E472C20496E632E72

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0FFH.

Appendix KK–4
M

O
T

O
R

O
L

A
 S

S1 - record

With the -r1 option of srec166, which is the default for srec166, the

actual program code and data is supplied with S1 records, with the

following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

srec166 has an option that controls the length of the output buffer for

generating S1 records.

The checksum calculation of S1 records is identical to S0.

S9 - record

With the -r1 option of srec166, which is the default for srec166, at the

end of an S-record file, srec166 generates an S9 record, which contains

the program start address. S9 is the corresponding termination record for

S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Example:

S9030210EA
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S9 records is identical to S0.

Motorola S–Records K–5

• • • • • • • •

S2 - record

With the -r2 option of srec166 the actual program code and data is

supplied with S2 records, with the following layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

srec166 has an option that controls the length of the output buffer for

generating S2 records. The default buffer length is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S8 - record

With the -r2 option of srec166 at the end of an S-record file, srec166

generates an S8 record, which contains the program start address. S8 is the

corresponding termination record for S2 records.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S8 records is identical to S0.

Appendix KK–6
M

O
T

O
R

O
L

A
 S

S3 - record

With the -r3 option of srec166 the actual program code and data is

supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

srec166 has an option that controls the length of the output buffer for

generating S3 records.

The checksum calculation of S3 records is identical to S0.

S7 - record

With the -r3 option of srec166 at the end of an S-record file, srec166

generates an S7 record, which contains the program start address. S7 is the

corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S7 records is identical to S0.

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
.DEFAULT, 12-56

.DONE, 12-56

.erl, file extension, 4-5

.IGNORE, 12-56

.INIT, 12-56

.lst, file extension, 4-4

.mpe extension, 3-12

.obj, file extension, 4-4

.PRECIOUS, 12-56

.SILENT, 12-56

.src, file extension, 4-4

.SUFFIXES, 12-56

?file, 8-6

?line, 8-6

?symb, 8-6

" ", 3-53

#line, 8-7

$, 8-5

$ location counter, 6-12

Numbers
18-bit address, 5-4

24-bit address, 5-4

A
a.out, file header, A-5

a166, 1-3

controls
absolute/noabsolute, 7-10
asmlineinfo/noasmlineinfo, 7-11
case/nocase, 7-12
checkbus18/nocheckbus18, 7-13
checkc166sv1cp/nocheckc166sv1cp,

7-16
checkc166sv1div/nocheckc166sv1di

v, 7-14

checkc166sv1sp/nocheckc166sv1sp,
7-15

checkcpu16/nocheckcpu16, 7-19
checkcpu1r006/nocheckcpu1r006,

7-20
checkcpu21/nocheckcpu21, 7-21
checkcpu3/nocheckcpu3, 7-18
checklondon1/nochecklondon1,

7-23
checklondon1751/nochecklondon1

751, 7-24
checklondonretp/nochecklondonret

p, 7-26
checkmuldiv/nocheckmuldiv, 7-27
checkstbus1/nocheckstbus1, 7-28
date, 7-29
debug/nodebug, 7-30
eject, 7-31
errorprint/noerrorprint, 7-32
extend/noextend, 7-33
extend2/noextend2, 7-34
extend22/noextend22, 7-35
extinstr/noextinstr, 7-36
extmac/noextmac, 7-37
extmem/noextmem, 7-38
extpec/noextpec, 7-41
extpec16/noextpec16, 7-42
extsfr/noextsfr, 7-39
extssk/noextssk, 7-40
float, 7-43
gen/genonly/nogen, 7-45
gso, 7-46
header/noheader, 7-47
include, 7-48
lines/nolines, 7-49
list/nolist, 7-50
listabsoffset/nolistabsoffset, 7-51
listall/nolistall, 7-52
locals/nolocals, 7-53
misrac, 7-54
mod166/nomod166, 7-55
model, 7-56
object/noobject, 7-57

IndexIndex–4
IN
D
E
X

optimize/nooptimize, 7-58
overview of, 7-6�7-77
pagelength, 7-59
pagewidth, 7-60
paging/nopaging, 7-61
pec/nopec, 7-62
print/noprint, 7-63
retcheck/noretcheck, 7-64
save/restore, 7-66
segmented/nonsegmented, 7-67
stdnames, 7-68
stricttask/nostricttask, 7-69
symb/nosymb, 7-70
symbols/nosymbols, 7-71
tabs, 7-72
title, 7-73
type/notype, 7-74
warning, 7-75
warningaserror/nowarningaserror,

7-76
xref/noxref, 7-77

general controls, 7-3
primary controls, 7-3

A166INC, 4-5, 12-20

abbreviations, 6-6

abort function, 3-45

absolute, a166 control, 7-10

adding files to a project, 1-13

addition, 6-18

addresses, locate control, 11-37

addressing modes, 6-3

branch target, 6-4
immediate, 6-4
indirect, 6-4
long, 6-4
short, 6-4

algorithm, evaluation of macro calls,

3-68

align type, 8-59

bit, 8-59
bitaddressable, 8-60
byte, 8-59
dword, 8-59

iramaddressable, 8-60
page, 8-59
pecaddressable, 8-60
segment, 8-60
word, 8-59

allocation specification records, A-11

ar166, 1-3, 12-4

archiver, 12-4

arithmetic instructions, 9-3

arithmetic operators, 6-18

asmlineinfo, a166 control, 7-11

assembler

error print file, C-13
group map, C-9
input files and output files, 4-4
invocation, 4-3
limits, I-3
list file, C-3
list file header, C-3
page header, C-3
register area table, C-12
section map, C-7
source listing, C-4
symbol table, C-9
total error/warning page, C-13
xref table, C-12

assembler controls, overview of,

7-6�7-77

assembler directives

?file, 8-6
?line, 8-6
?symb, 8-6
#line, 8-7
assume, 8-8
bit, 8-13
cgroup/dgroup, 8-14
db, 8-16
dbit, 8-16
ddw, 8-16
defr/defa/defb, 8-21
ds, 8-16
dsb, 8-16
dsdw, 8-16

Index Index–5

• • • • • • • •

dsptr/dpptr/dbptr, 8-27
dsw, 8-16
dw, 8-16
end, 8-30
equ, 8-31
even, 8-32
extern/extrn, 8-33
global, 8-36
label, 8-38
lit, 8-40
name, 8-41
org, 8-42
pecdef, 8-44
proc/endp, 8-45
public, 8-49
regdef/regbank/comreg, 8-51
section/ends, 8-58
set, 8-63
sskdef, 8-64
typedec, 8-65

assembly source file, 4-4

assign, l166 control, 11-40

assume, assembler directive, 8-8

at, combine type, 8-61

atomic, 5-7

attribute overriding operators, 6-24

attribute value operators, 6-28

B
base relocatability, 6-11

batch files, 1-22

binary operator, 6-17

bit, assembler directive, 8-13

bit addressable sfr, 6-33

bit alignment, 8-59

bit names, 6-33

bit pointer, 8-27

bit pointers, 2-45

bit section, 8-59

bitaddressable, 8-60

bitwise and operator, 6-21

bitwise not operator, 6-21

bitwise operators, 6-21

bitwise or operator, 6-21

bitwise xor operator, 6-21

bof operator, 6-31

boolean bit manipulation instructions,

9-4

break function, 3-43

built-in functions, 3-25

overview of m166, 3-55
byte alignment, 8-59

byte forwarding, 12-17, 12-21

C
C-escape sequence, 6-16

c166, 1-3

C166 memory model, 2-28

case

a166 control, 7-12
l166 control, 11-41
m166 control, 3-7

cc166, 1-3, 12-8

CC166BIN, 12-16

CC166OPT, 12-16

cgroup, assembler directive, 8-14

checkbus18, a166 control, 7-13

checkc166sv1cp, a166 control, 7-16

checkc166sv1div, a166 control, 7-14

checkc166sv1sp, a166 control, 7-15

checkclasses, locate control, 11-42

checkcpu16, a166 control, 7-19

checkcpu1r006, a166 control, 7-20

checkcpu21, a166 control, 7-21

checkcpu3, a166 control, 7-18

checkglobals, link control, 11-43

checklondon1, a166 control, 7-23

checklondon1751, a166 control, 7-24

checklondonretp, a166 control, 7-26

checkmismatch, l166 control, 11-44

checkmuldiv, a166 control, 7-27

checkstbus1, a166 control, 7-28

IndexIndex–6
IN
D
E
X

checkundefined, m166 control, 3-8

class, 2-26, 8-62

classes, 2-6

locate control, 11-45
code section, 8-58

combine type, 8-60

at, 8-61
common, 8-61
glbusrstack, 8-61
global, 8-60
private, 8-60
public, 8-60
sysstack, 8-61
usrstack, 8-61

command file, 12-10

command line options

assembler, 4-3
l166, 11-11
m166, 3-4

comment function, 3-53

comments, l166 control, 11-47

common

combine type, 8-61
registers, 2-19
sections, 2-18

common sections, combination of,

11-9

compare and loop control instructions,

9-5

comreg, assembler directive, 8-51

conditional assembly, 3-38

console I/O, built-in functions, 3-52

constants, 2-44

control flow, 3-38

control list, 4-4

control program, 12-8

control program options

-?, 12-9
-c, 12-10
-c++, 12-9
-cc, 12-10
-cf, 12-10
-cl, 12-10

-cm, 12-10
-cp, 12-10
-cs, 12-10
-f, 12-10
-gs, 12-12
-ieee, 12-12
-ihex, 12-12
-lib directory, 12-14
-libcan, 12-14
-libfmtiol, 12-14
-libfmtiom, 12-14
-libmac, 12-15
-noc++, 12-12
-nolib, 12-12
-notrap, 12-15
-o, 12-15
-srec, 12-12
-tmp, 12-15
-trap, 12-15
-V, 12-9
-v, 12-15
-v0, 12-15
-Wa, 12-9
-Wc, 12-9
-wc++, 12-15
-Wcp, 12-9
-Wf, 12-9
-Wl, 12-9
-Wm, 12-9
-Wo, 12-9
-Wpl, 12-9

CPU memory mode, 2-27

creating a makefile, 1-14

creating and calling macros, 3-25

creating macros with parameters, 3-31

D
d166, 1-3, 12-17

data

defining, 8-16

Index Index–7

• • • • • • • •

initializing, 8-16
data movement instructions, 9-6

data section, 8-58

data units, 2-39

datan operator, 6-26

date

a166 control, 7-29
l166 control, 11-48
m166 control, 3-9

db, 8-16

dbit, 8-17

dbptr, 8-27

ddw, 8-17

debug

a166 control, 7-30
l166 control, 11-49

debugger, starting, 1-12

debugging, 1-21, 8-5

defa, 8-21

defb, 8-21

define

built-in function, 3-25
m166 control, 3-10

defined function, 3-51

defining and initializing data, 8-16

defining labels, 8-38

code, 2-41
data, 2-43

definition and use of macro

names/types, 3-58

defr, 8-21

development flow, 1-5

dgroup, assembler directive, 8-14

directive, 5-3

directives, overview, 8-3

directory, default, 11-17

disassembler, 12-17

byte forwarding, 12-21
comments, 12-20
data and bit sections, 12-19
derivatives, 12-20
gaps, 12-19
register definition files, 12-20

division, 6-19

dmp166, 1-3, 12-23

dot operator, 6-22

dpp, 6-24

dpptr, 8-27

ds, 8-17

dsb, 8-17

dsdw, 8-18

dsptr, 8-27

dsw, 8-18

dw, 8-17

dword alignment, 8-59

E
EDE, 1-6

build an application, 1-8
load files, 1-8
open a project, 1-7
select a toolchain, 1-7
start a new project, 1-13
starting, 1-6

eject

a166 control, 7-31
m166 control, 3-11

else, 3-39, 12-50

embedded development environment.

See EDE

embedded sections, 5-5

end, assembler directive, 8-30

endi, 3-39

endif, 12-50

endr, 3-42

endw, 3-41

environment variable

A166INC, 4-5, 12-20
CC166BIN, 12-16
CC166OPT, 12-16
HOME, 12-49
LINK166, 11-15
LOCATE166, 11-15

IndexIndex–8
IN
D
E
X

M166INC, 3-4
overview of, 1-18
TMPDIR, 1-19, 3-4, 4-5, 11-15,

12-16
used by control program, 12-16
used by toolchain, 1-18
user defined, 11-16

eqs function, 3-50

equ, 8-31

equal operator, 6-20

error list file, 4-5

error messages, assembler, 1-21

errorprint

a166 control, 7-32
m166 control, 3-12

errors, E-3

escape sequence, 6-16

eval function, 3-37

even, 8-32

example

starting EDE, 1-6
using EDE, 1-6
using the control program, 1-14
using the makefile, 1-16

exit function, 3-43

expression records, A-7

expression string, 6-16

expressions, 6-11

absolute, 6-11
assembler, 6-13
l166, 11-26
operand types, 6-13
relocatable, 6-11

extend, a166 control, 7-33

extend block, 5-7, 10-8

nesting, 10-9
extend controls, 10-5

extend sfr instructions, 10-10

extend2

a166 control, 7-34
l166 control, 11-50

extend2_segment191, l166 control,

11-50

extend22, a166 control, 7-35

extended instruction set, 10-7

extended system stack, 10-13

extension enabling, 10-4

extension header, A-10

extension records, A-9

extensions, 1-20

extern-global connection, 2-16

extern/extrn, assembler directive, 8-33

externs, renamesymbols control, 11-93

extinstr, a166 control, 7-36

extmac, a166 control, 7-37

extmem, a166 control, 7-38

extp, 5-7

extpec, a166 control, 7-41

extpec16, a166 control, 7-42

extpr, 5-7

extr, 5-7

exts, 5-7

extsfr, a166 control, 7-39

extsr, 5-7

extssk, a166 control, 7-40

F
far procedure, 8-46

file extension, 4-4

file extensions, 1-20

file header, A-4

fixstbus1, locate control, 11-51

flat interrupt concept, 2-20

float, a166 control, 7-43

G
gen, 7-45

m166 control, 3-13
general, 11-25

locate control, 11-53
general controls, 11-24

Index Index–9

• • • • • • • •

genonly, 7-45

m166 control, 3-13
ges function, 3-50

glbusrstack, combine type, 8-61

global

assembler directive, 8-36
combine type, 8-60
groups, 11-9

global storage optimizer, 12-25

globals

locate control, 11-54
renamesymbols control, 11-93

globalsonly, locate control, 11-55

greater than operator, 6-20

greater than or equal operator, 6-20

group, 2-25

group directives, 8-14

groups, 2-5

renamesymbols control, 11-93
gso, 7-46

gso166, 12-25

gts function, 3-50

H
hdat section, 8-59

header

a166 control, 7-47
l166 control, 11-56

heap, 11-22, 11-57

heapsize, link control, 11-57

high, 6-22

HOME, 12-49

I
identifier, 5-3

ieee166, 1-3, 12-40

if function, 3-39

ifdef, 12-50

ifndef, 12-50

ihex166, 1-3, 12-41

in function, 3-52

include, 7-48

m166 control, 3-14
inline vector, 8-48

input specification, 5-3

instruction, 5-3

instruction set

extended, 10-7
hardware (80166), 9-3
software (80166), 9-9

instructions

arithmetic, 9-3
boolean bit manipulation, 9-4
call, 9-7
compare and loop control, 9-5
data movement, 9-6
jump, 9-7
logical, 9-4
miscellaneous, 9-9
prioritize, 9-6
return, 9-8
rotate, 9-5
shift, 9-5
system control, 9-8
system stack, 9-6

Intel hex, record type, J-3

internal RAM, 11-60

interrupt, locate control, 11-58

interrupt concepts, 2-10

interrupt routine, 8-48

interrupt table, D-8

interrupt vector table, 2-14

intnrs, renamesymbols control, 11-93

inttbl, reserve, 11-95

invocation

assembler, 4-3
l166, 11-11
m166, 3-4

invocation file, 4-4

iram, memory, 11-68

IndexIndex–10
IN
D
E
X

iramaddressable, 8-60

iramsize, 10-7

locate control, 11-60

J
jump and call instructions, 9-7

L
l166, 1-3

environment variables, 11-15
expressions, 11-26
module scope switch, 11-25
naming convention, 11-5
naming conventions, 11-5

l166 controls, 11-24

addresses, 11-37
groups, 11-37
linear, 11-37
rbank, 11-37
sections, 11-37

assign, 11-40
case/nocse, 11-41
checkclasses/nocheckclasses, 11-42
checkglobals, 11-43
checkmismatch/nocheckmismatch,

11-44
classes, 11-45
comments/nocomments, 11-47
date, 11-48
debug/nodebug, 11-49
description of, 11-37
extend2/noextend2/extend2_segment

191, 11-50
fixstbus1, 11-51
general, 11-53
globals/noglobals, 11-54
globalsonly, 11-55
header/noheader, 11-56
heapsize, 11-57

interrupt, 11-58
iramsize, 11-60
libpath, 11-61
lines/nolines, 11-62
link/locate, 11-63
listregisters/nolistregisters, 11-64
listsymbols/nolistsymbols, 11-65
locals/nolocals, 11-66
map/nomap, 11-67
memory, 11-68

iram, 11-68
noiram, 11-68
ram, 11-68
rom, 11-68

memsize, 11-70
misrac, 11-99
modpath, 11-71
name, 11-72
objectcontrols, 11-73
order, 11-74

groups, 11-74
sections, 11-74

overlay, 11-78
overview, 11-31
overview per category, 11-28
pagelength, 11-81
pagewidth, 11-82
paging/nopaging, 11-83
print/noprint, 11-84
printcontrols, 11-85
publics/nopublics, 11-86
publicsonly, 11-87, 11-88
purge/nopurge, 11-92
renamesymbols, 11-93

externs, 11-93
globals, 11-93
groups, 11-93
intnrs, 11-93
publics, 11-93

reserve, 11-95
inttbl, 11-95
memory, 11-95
pecptr, 11-95

Index Index–11

• • • • • • • •

sysstack, 11-95
resolvedpp/noresolvedpp, 11-97
secsize, 11-101
set, 11-103
setnosgdpp, 11-104
smartlink, 11-105
sortalign/nosortalign, 11-108
stricttask/nostricttask, 11-109
summary/nosummary, 11-111
symb/nosymb, 11-112
symbolcolumns, 11-114
symbols/nosymbols, 11-113
task, 11-115
title, 11-116
to, 11-117
type/notype, 11-118
vecinit/novecinit, 11-119
vecscale, 11-120
vectab/novectab, 11-121
warning/nowarning, 11-122
warningaserror/nowarningaserror,

11-124
l166 input/output files

link stage, 11-18
locate stage, 11-19

l166 invocation, 11-11

label, 2-40, 5-3

labels, 8-38

code, 2-41, 8-38
data, 2-43, 8-38
defining with LABEL, 8-38

ldat section, 8-59

len function, 3-46

les function, 3-50

less than operator, 6-20

less than or equal operator, 6-20

libpath, link control, 11-61

library, 11-5

library maintainer, 12-4

limits

assembler, I-3
linker/locator, I-3

line, m166 control, 3-15

lines

a166 control, 7-49
l166 control, 11-62

link, l166 control, 11-63

link controls, 11-34

link functions, 11-4

link stage, 11-3

link/locate controls, 11-31

LINK166, 11-15

linker invocations, 11-11

linker/locator

error report, D-12
interrupt table, D-8
limits, I-3
memory map, D-5
page header, D-3
print file, D-3
print file header, D-3
purpose, 11-4
summary control, D-11
symbol table, D-7

list

a166 control, 7-50
m166 control, 3-16

list file, 4-4

listabsoffset, a166 control, 7-51

listall, a166 control, 7-52

listregisters, l166 control, 11-64

listsymbols, l166 control, 11-65

lit, 8-40

literal mode, 3-61

local, 3-33

local symbols in macros, 3-33

locals

a166 control, 7-53
l166 control, 11-66

locate, l166 control, 11-63

locate algorithm, 11-6

locate controls, 11-34

locate functions, 11-4

locate stage, 11-3

LOCATE166, 11-15

IndexIndex–12
IN
D
E
X

locating

C167 applications, 10-13
GPRs, 10-14

location counter, 6-12, 8-5

locator invocations, 11-11

logical expressions, m166, 3-50

logical instructions, 9-4

logical not operator, 6-21

low, 6-22

lts function, 3-50

M
m166, 1-3

advanced concepts, 3-58
assembly file, B-3
built-in functions, 3-35

"", 3-53
@eval, 3-37
@set, 3-36
abort, 3-45
break, 3-43
define, 3-25
defined, 3-51
eqs, 3-50
exit, 3-43
ges, 3-50
gts, 3-50
if, 3-39
in, 3-52
len, 3-46
les, 3-50
lts, 3-50
match, 3-48, 3-60
nes, 3-50
out, 3-52
overview of, 3-55
repeat, 3-42
set, 3-60
substr, 3-47
while, 3-41

console I/O built-in functions, 3-52
control flow and conditional

assembly, 3-38
controls, 3-5

case/nocase, 3-7
checkundefined/nocheckundefined,

3-8
date, 3-9
define, 3-10
eject, 3-11
errorprint/noerrorprint, 3-12
gen/genonly/nogen, 3-13
include, 3-14
line/noline, 3-15
list/nolist, 3-16
pagelength, 3-17
pagewidth, 3-18
paging/nopaging, 3-19
print/noprint, 3-20
save/restore, 3-21
tabs, 3-22
title, 3-23
warning, 3-24

error print file, B-6
expressions, 3-35
general controls, 3-5
introduction, 3-3
invocation, 3-4
list file, B-4

page header, B-5
source listing, B-5
total error/warning page, B-6

literal vs. normal mode, 3-61
local, 3-33
logical expressions, 3-50
macro evaluation algorithm, 3-68
multi-token parameter, 3-64
operators, 3-36
overview controls, 3-6
parameter type string, 3-66
primary controls, 3-5
redefinition of macros, 3-61

Index Index–13

• • • • • • • •

scope of macro, 3-61
string comparison, 3-50
variable number of parameters, 3-65

M166INC, 3-4

macro processing language, 3-3

macros, 1-16

creating and calling, 3-25
definition and use of, 3-58
evaluation algorithm, 3-68
local symbols in, 3-33
parameterless, 3-25
redefinition of, 3-61
scope of, 3-61
test on undefined, 3-40
user-defined, 3-25
with parameters, 3-31

makefile, 12-47

automatic creation of, 1-14
updating, 1-14

map, l166 control, 11-67

match function, 3-48, 3-60

memory

locate control, 11-68
reserve, 11-95

memory banking, 11-79

memory model, 2-27, 7-56

nonsegmented, 2-28
nonsegmented/small, 2-29
segmented, 2-32

memory model (C)

large, 2-28
medium, 2-28
small, 2-28
tiny, 2-28

memory segmentation, 2-23

memory units, 2-39

memsize, locate control, 11-70

minus operator, 6-19

misrac, 11-99

a166 control, 7-54
mk166, 1-4, 12-47

.DEFAULT target, 12-56

.DONE target, 12-56

.IGNORE target, 12-56

.INIT target, 12-56

.PRECIOUS target, 12-56

.SILENT target, 12-56

.SUFFIXES target, 12-56
comment lines, 12-50
conditional processing, 12-50
exist function, 12-54
export line, 12-50
functions, 12-53
ifdef, 12-50
implicit rules, 12-58
include line, 12-50
macro definition, 12-49
macro MAKE, 12-51
macro MAKEFLAGS, 12-52
macro PRODDIR, 12-52
macro SHELLCMD, 12-52
macro TMP_CCOPT, 12-52
macro TMP_CCPROG, 12-52
macros, 12-51
makefiles, 12-49
match function, 12-53
nexist function, 12-55
protect function, 12-54
rules in makefile, 12-56
separate function, 12-54
special macros, 12-51
special targets, 12-56
targets, 12-55

mnemonics, 9-9

mod166, a166 control, 7-55

model

a166 control, 7-56
assembler control, 2-28

modpath, l166 control, 11-71

modular programming, 2-3

module, 11-5

module boundary, 2-7

module connections, 2-7

module name, 11-5

module scope controls, 11-24

IndexIndex–14
IN
D
E
X

module scope switch, 11-25

in addresses control, 11-38
in order control, 11-76
in renamesymbols control, 11-94
in secsize control, 11-102
with pubtoglb control, 11-89

module structure, 2-6

modulo, 6-19

multi-token parameter, 3-64

multiple definitions for a section, 5-4

multiplication, 6-19

N
name

assembler directive, 8-41
l166 control, 11-72

name records, A-7

near procedure, 8-46

nes function, 3-50

nested or embedded sections, 5-5

nesting extend blocks, 10-9

noabsolute, a166 control, 7-10

noasmlineinfo, a166 control, 7-11

nocase

a166 control, 7-12
l166 control, 11-41
m166 control, 3-7

nocheckbus18, a166 control, 7-13

nocheckc166sv1cp, a166 control, 7-16

nocheckc166sv1div, a166 control, 7-14

nocheckc166sv1sp, a166 control, 7-15

nocheckclasses, locate control, 11-42

nocheckcpu16, a166 control, 7-19

nocheckcpu1r006, a166 control, 7-20

nocheckcpu21, a166 control, 7-21

nocheckcpu3, a166 control, 7-18

nochecklondon1, a166 control, 7-23

nochecklondon1751, a166 control,

7-24

nochecklondonretp, a166 control, 7-26

nocheckmismatch, l166 control, 11-44

nocheckmuldiv, a166 control, 7-27

nocheckstbus1, a166 control, 7-28

nocheckundefined, m166 control, 3-8

nocomments, l166 control, 11-47

nodebug

a166 control, 7-30
l166 control, 11-49

noerrorprint

a166 control, 7-32
m166 control, 3-12

noextend, a166 control, 7-33

noextend2

a166 control, 7-34
l166 control, 11-50

noextend22, a166 control, 7-35

noextinstr, a166 control, 7-36

noextmac, a166 control, 7-37

noextmem, a166 control, 7-38

noextpec, a166 control, 7-41

noextpec16, a166 control, 7-42

noextsfr, a166 control, 7-39

noextssk, a166 control, 7-40

nogen, 7-45

m166 control, 3-13
noglobals, locate control, 11-54

noheader

a166 control, 7-47
l166 control, 11-56

noiram, memory, 11-68

noline, m166 control, 3-15

nolines

a166 control, 7-49
l166 control, 11-62

nolist

a166 control, 7-50
m166 control, 3-16

nolistabsoffset, a166 control, 7-51

nolistall, a166 control, 7-52

nolistregisters, l166 control, 11-64

nolistsymbols, l166 control, 11-65

Index Index–15

• • • • • • • •

nolocals

a166 control, 7-53
l166 control, 11-66

nomap, l166 control, 11-67

nomod166, 10-6

a166 control, 7-55
non bit addressable sfr, 6-32

nonsegmented

a166 control, 7-67
assembler control, 2-27

noobject, a166 control, 7-57

nooptimize, a166 control, 7-58

nopaging

a166 control, 7-61
l166 control, 11-83
m166 control, 3-19

nopec, a166 control, 7-62

noprint

a166 control, 7-63
l166 control, 11-84
m166 control, 3-20

nopublics, l166 control, 11-86

nopurge, l166 control, 11-92

noresolvedpp, l166 control, 11-97

noretcheck, a166 control, 7-64

normal mode, 3-61

nosortalign, l166 control, 11-108

nostricttask

a166 control, 7-69
l166 control, 11-109

nosummary, l166 control, 11-111

nosymb

a166 control, 7-70
l166 control, 11-112

nosymbols

a166 control, 7-71
l166 control, 11-113

not equal operator, 6-20

notype

a166 control, 7-74
l166 control, 11-118

novecinit, locate control, 11-119

novectab, locate control, 11-121

nowarning, l166 control, 11-122

nowarningaserror

a166 control, 7-76
l166 control, 11-124

noxref, a166 control, 7-77

null operation instruction, 9-9

number, 6-15

binary, 6-15
decimal, 6-15
hexadecimal, 6-15
octal, 6-15

O
object, a166 control, 7-57

object file, 4-4

objectcontrols, l166 control, 11-73

offset relocatable, 6-11

operand combinations, 6-5

abbreviations, 6-6
inside extend blocks, 10-11
outside extend blocks, 10-11
real, 6-8
virtual, 6-10

operands, 6-3

operators, 6-17

precedence list, 6-17
resulting operand types, 6-13, 6-14

optimize, a166 control, 7-58

options

assembler, 4-3
l166, 11-11
m166, 3-4

order, l166 control, 11-74

org, 8-42

out function, 3-52

out.h, A-12

overlay, locate control, 11-78

overlay area, 11-80

IndexIndex–16
IN
D
E
X

P
pag operator, 6-29

page alignment, 8-59

page extend instructions, 10-12

page override operator, 6-24

page pointer, 8-27

page pointers, 2-45

pagelength

a166 control, 7-59
l166 control, 11-81
m166 control, 3-17

pagewidth

a166 control, 7-60
l166 control, 11-82
m166 control, 3-18

paging

a166 control, 7-61
l166 control, 11-83
m166 control, 3-19

parameterless macros, 3-25

parameters, 3-31

multi-token, 3-64
string, 3-66
variable number of, 3-65

parentheses, 6-12

pdat section, 8-59

pec, a166 control, 7-62

pec channels, 8-44

PEC destination pointer locations,

10-14

PEC source pointer locations, 10-14

pecaddressable, 8-60

pecdef, assembler directive, 8-44

pecptr, reserve, 11-95

peripheral bit names, 6-34

plus operator, 6-19

pof operator, 6-30

pointers, 2-44, 8-27

bit, 2-45
page, 2-45
segment, 2-44

predefined sections, 11-22

predefined symbols, 11-21

print

a166 control, 7-63
l166 control, 11-84
m166 control, 3-20

printcontrols, l166 control, 11-85

prioritize instruction, 9-6

private, combine type, 8-60

proc task, 8-45

proc/endp, assembler directive, 8-45

procedure interfaces, 2-8

procedure types, 2-9

procedures, 2-5, 2-7

defining, 2-8
program, 11-5

program development, 1-4

program linkage directives, 8-5

program structure, 2-12

programming with C166/ST10

toolchain, 2-4

project files, adding files, 1-13

ptr operator, 6-25

public

assembler directive, 8-49
combine type, 8-60
groups, 11-9

publics

l166 control, 11-86
renamesymbols control, 11-93

publicsonly, link control, 11-87, 11-88

pubtoglb, 2-47

purge, l166 control, 11-92

R
RAM, internal, 11-60

ram, memory, 11-68

range specifier

rangep, 11-27
ranges, 11-28

rangep, range specifier, 11-27

ranges, range specifier, 11-28

Index Index–17

• • • • • • • •

real operand combinations, 6-8

redefinition of macros, 3-61

reg166.def, 10-7

reg167.def, 10-6

regbank, assembler directive, 8-51

regdef, assembler directive, 8-51

register

declaration, 2-15
definition, 2-15

register area table, C-12

register bank, 2-36

declaration, 2-37, 8-51
definition, 2-36, 8-51

register bank map

link stage, D-9
locate stage, D-10

register banks

combining by linker, 8-54
combining by locator, 8-54

registers, 2-34

relational operators, 6-20

relocation records, A-6

renamesymbols, l166 control, 11-93

repeat function, 3-42

reserve, locate control, 11-95

resolvedpp, l166 control, 11-97

restore

a166 control, 7-66
m166 control, 3-21

retcheck, a166 control, 7-64

return instructions, 9-8

rom, memory, 11-68

S
save

a166 control, 7-66
m166 control, 3-21

scope

global, 2-47
local, 2-46

public, 2-46
symbols, 2-46

scope of macros, 3-61

scripts, 1-23

secsize, locate control, 11-101

section, 2-23, 11-5

attributes, 2-24
generating addresses in a, 2-24

section fillers, A-6

section headers, A-5

section type, 8-58

bit, 8-59
code, 8-58
data, 8-58
hdat, 8-59
ldat, 8-59
pdat, 8-59

section/ends, assembler directive, 8-58

sections, 2-5, 5-4

predefined, 11-22
sections and memory allocation, 4-5

seg operator, 6-28

segment alignment, 8-60

segment extend instructions, 10-12

segment pointer, 8-27

segment pointers, 2-44

segment range specification records,

A-10

segmentation, 2-27

segmented

a166 control, 7-67
assembler control, 2-28

select high operator, 6-22

select low operator, 6-22

selection operators, 6-22

set, 8-63, 11-103

set function, 3-36, 3-60

setnosgdpp, locate control, 11-104

sfr, 8-22, 8-23

bit-addressable, 6-33
names, 6-32
non bit-addressable, 6-32

IndexIndex–18
IN
D
E
X

shift and rotate instructions, 9-5

shift left operator, 6-20

shift operators, 6-20

shift right operator, 6-20

short operator, 6-27

sign operators, 6-19

smartlink

link control, 11-105
locate control, 11-105

sof operator, 6-29

sortalign, l166 control, 11-108

source module, 2-6

special function registers, 6-32

srec166, 1-4, 12-60

sskdef, assembler directive, 8-64

stdnames, 10-6

a166 control, 7-68
stricttask

a166 control, 7-69
l166 control, 11-109

string, 6-16

parameter type, 3-66
string comparison, m166, 3-50

string manipulation functions, 3-46

subprograms, 2-3

substr function, 3-47

subtraction, 6-18

summary, l166 control, 11-111

symb

a166 control, 7-70
l166 control, 11-112

symbol, 6-17

symbol table

assembler, C-9
linker/locator, D-7

symbolcolumns, l166 control, 11-114

symbols, 11-21

a166 control, 7-71
l166 control, 11-113

syntax of an expression, 6-12

sysstack, 10-13

combine type, 8-61
reserve, 11-95

system bit names, 6-34

system control instructions, 9-8

system names, smallest configuration,

8-22

system stack instructions, 9-6

system stack size, 8-64

T
tabs

a166 control, 7-72
m166 control, 3-22

task, 11-5

attributes, 2-14
hardware support, 2-11
l166 control, 11-115
software definition, 2-13
software support, 2-12
structure, 2-13

task concept, 2-11

task connections, 2-15

extern-global, 2-16
task module, 2-15

tasks, 2-5

temporary files, 1-19, 3-4, 4-5, 11-15,

12-16

title

a166 control, 7-73
l166 control, 11-116
m166 control, 3-23

TMPDIR, 1-19, 3-4, 4-5, 11-15, 12-16

to, l166 control, 11-117

toolchain, 1-4

type

a166 control, 7-74
l166 control, 11-118

typedec, 8-65

Index Index–19

• • • • • • • •

U
unary operator, 6-17

UNIX, scripts, 1-23

unsigned greater than operator, 6-20

unsigned greater than or equal

operator, 6-20

unsigned less than operator, 6-20

unsigned less than or equal operator,

6-20

updating makefile, 1-14

usrstack, combine type, 8-61

utilities

cc166, 12-8
d166, 12-17
dmp166, 12-23
ar166, 12-4, 12-25
ieee166, 12-40
ihex166, 12-41
mk166, 12-47
srec166, 12-60

V
variable, 2-40

vecinit, locate control, 11-119

vecscale, locate control, 11-120

vectab, locate control, 11-121

vector table, 11-121

virtual operand combinations, 6-10

virtual return instruction, 9-10

W
warning

a166 control, 7-75
l166 control, 11-122
m166 control, 3-24

warningaserror

a166 control, 7-76
l166 control, 11-124

warnings, E-3

while function, 3-41

word alignment, 8-59

X
xfw166, 1-4

xref, a166 control, 7-77

xref table, C-12

IndexIndex–20
IN
D
E
X

	TABLE OF CONTENTS
	OVERVIEW
	Introduction
	C166/ST10 Program Development
	Sample Session
	Using EDE
	Using the Control Program
	Using the Makefile

	Environment Variables
	Temporary Files
	Formatting a File For CrossView Pro
	File Extensions
	Macro Preprocessing
	Assembler Listing
	Error Messages
	Symbolic Debugging
	Command Line Processing
	Batch Files
	UNIX Scripts

	SOFTWARE CONCEPT
	The Modular Concept
	Modular Programming
	Modular Programming with C166/ST10 Toolchain
	Module Structure
	Connections Between Modules

	Procedures
	Defining a Procedure
	Procedure Interfaces
	Procedure Types

	Interrupt Concepts
	The Task Concept
	Hardware Support of Tasks
	Software Support of Tasks
	Structure of a Task
	Software Definition of a Task
	Attributes of a Task

	Connections Between Tasks
	EXTERN-GLOBAL Connection
	COMMON Sections
	COMMON Registers
	Same Module in Several Tasks

	The Flat Interrupt Concept
	Logical Memory Segmentation (Section, Group, and Class)
	The Term 'Section'
	Attributes of a Section
	Generating Addresses in a Section

	The Term 'Group'
	The Term 'Class'

	Memory Models
	CPU Memory Mode
	Assembler Memory Models
	NONSEGMENTED Memory Model
	NONSEGMENTED/SMALL Memory Model
	SEGMENTED Memory Model

	Registers
	Location of Registers
	Accessing Registers
	Register Banks
	Defining Register Banks

	Use of the PEC (Peripheral Event Controller)
	Addressing as MEM Type
	Addressing as GPRs

	Defining and Addressing Memory Units
	Basic Data Units
	Defining Basic Data Units
	Addressing Basic Data Units

	Variables and Labels
	Defining Code Labels
	Defining Data Labels

	Constants
	Pointers
	Defining Pointers
	Segment Pointers
	Page Pointers
	Bit Pointers

	Scopes of Symbolic Names
	Scope of Memory Class LOCAL
	Scope of Memory Class PUBLIC
	Scope of Memory Class GLOBAL
	Promoting PUBLIC to GLOBAL

	MACRO PREPROCESSOR
	Introduction
	m166 Invocation
	Environment Variables
	m166 Controls
	Overview m166 Controls
	Description of m166 Controls

	Creating and Calling Macros
	Creating Parameterless Macros
	Creating Macros with Parameters
	Local Symbols in Macros

	The Macro Preprocessor's Built-In Functions
	Numbers and Expressions in m166
	SET Function
	EVAL Function
	Control Flow and Conditional Assembly
	IF Function
	WHILE Function
	REPEAT Function
	BREAK Function
	EXIT Function
	ABORT Function

	String Manipulation Functions
	LEN Function
	SUBSTR Function
	MATCH Function

	Logical Expressions and String Comparison in m166
	DEFINED Function
	Console I/O Built-In Functions
	Comment Function
	Overview Macro Built-In Functions

	Advanced m166 Concepts
	Definition and Use of Macro Names/Types
	Definition of a Macro Call with DEFINE
	Definition of a Macro Variable with SET
	Definition of a Macro String with MATCH

	Scope of Macro, Formal Parameters and Local Names
	Redefinition of Macros
	Literal vs. Normal Mode
	Multi-Token Parameter
	Variable Number of Parameters
	Parameter Type STRING
	Algorithm for Evaluating Macro Calls

	ASSEMBLER
	Description
	Invocation
	Input Files and Output Files

	Sections and Memory Allocation
	Environment Variables

	ASSEMBLY LANGUAGE
	Input Specification
	Sections
	Multiple Definitions for a Section
	'Nested' or 'Embedded' Sections

	Extend Blocks

	OPERANDS AND EXPRESSIONS
	Operands
	Operands and Addressing Modes
	Operand Combinations
	Abbreviations
	Real Operand Combinations
	Virtual Operand Combinations

	Expressions
	Expressions in the Assembler
	Number
	Expression String
	Symbol

	Operators
	Arithmetic Operators
	Addition and Subtraction
	Sign Operators
	Multiplication and Division
	Shift Operators
	Relational Operators
	Logical Operator
	Bitwise Operators
	Selection Operators
	Dot Operator

	Attribute Overriding Operators
	Page Override Operator
	PTR Operator
	DATAn Operator
	SHORT Operator

	Attribute Value Operators
	SEG Operator
	PAG Operator
	SOF Operator
	POF Operator
	BOF Operator

	SFR and Bit Names
	Special Function Registers (SFR)
	Bit Names

	ASSEMBLER CONTROLS
	Introduction
	Overview a166 Controls
	Description of a166 Controls

	ASSEMBLER DIRECTIVES
	Introduction
	Directives Overview
	Debugging
	Location Counter
	Program Linkage
	Directives

	INSTRUCTION SET
	Introduction
	The Hardware Instruction Set
	Arithmetic Instructions
	Logical Instructions
	Boolean Bit Manipulation Instructions
	Compare and Loop Control Instructions
	Shift and Rotate Instructions
	Prioritize Instruction
	Data Movement Instructions
	System Stack Instructions
	Jump and Call Instructions
	Return Instructions
	System Control Instructions
	Miscellaneous

	The Software Instruction Set

	DERIVATIVE SUPPORT
	Introduction
	Differences between C166 and C167
	Differences between C167 and C166S v2.0 / Super10
	Enabling the Extensions
	EXTEND Controls (assembler)
	STDNAMES and NOMOD166 Controls (assembler)
	IRAMSIZE Control (locator)

	Extended Instruction Set
	Extend Blocks
	Nesting Extend Blocks
	Extend SFR Instructions
	Operand Combinations in Extend SFR Blocks
	Page Extend and Segment Extend Instructions

	Locating C167 Applications
	Extended System Stack
	PEC Source and Destination Pointer Locations
	Locating GPRs

	Example: Building an C167 Application

	LINKER/LOCATOR
	Overview
	Introduction
	Linker/locator Purpose
	Linker/locator Functions

	Naming Conventions
	Locate Algorithm
	Public and Global Groups
	Combination of COMMON Sections

	Invocation
	Environment Variables
	User Defined Environment Variables

	Default Object and Library Directories
	Overview Input and Output files
	Predefined Symbols
	l166 Controls
	The Module Scope Switch
	Expressions
	Overview of Controls per Category
	Overview l166 Controls
	Description of Controls

	UTILITIES
	Overview
	ar166
	cc166
	d166
	dmp166
	gso166
	Description
	Memory Models
	Memory Spaces
	Pre-allocation Files
	Creating gso Libraries
	Reserved Memory Areas
	Ordering .sif / .gso Files on the Command Line
	Options
	.gso/.sif File Format
	Pre-allocation File Format
	Example makefile

	ieee166
	ihex166
	mk166
	srec166

	A.OUT FILE FORMAT
	Introduction
	File Header
	Section Headers
	Section Fillers
	Relocation Records
	Name Records
	Extension Records

	Format of a.out File as C Include File

	MACRO PREPROCESSOR OUTPUT FILES
	Assembly File
	List File
	Page Header
	Source Listing
	Total Error/Warning Page

	Error Print File

	ASSEMBLER OUTPUT FILES
	List File
	List File Header
	Source Listing
	Section Map
	Group Map
	Symbol Table
	Register Area Table
	XREF Table
	Total Error/Warning Page

	Error Print File

	LINKER/LOCATOR OUTPUT FILES
	Print File
	Print File Header
	Memory Map
	Symbol Table
	Interrupt Table
	Register Bank Map Link Stage
	Register Map Locate Stage
	Summary Control
	Error Report

	GLOBAL STORAGE OPTIMIZER ERROR MESSAGES
	Introduction
	Errors and Warnings

	MACRO PREPROCESSOR ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Internal Errors (I)

	ASSEMBLER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Internal Errors (I)

	LINKER/LOCATOR ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Internal Errors (I)

	LIMITS
	Assembler
	Linker/Locator

	INTEL HEX RECORDS
	MOTOROLA S-RECORDS
	INDEX

