
MB001–022–00–00
Doc. ver.: 1.6

68K/ColdFire v10.0

C Compiler/Assembler

Reference Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Motorola is a trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

RUN-TIME LIBRARY 2-1

2.1 Introduction 2-3.

2.2 System Initialization 2-4.

2.3 I/O System 2-6.

2.4 Time Functions 2-8.

2.4.1 Time Conversion Routines 2-8.

2.4.2 Low�level Time/Timer Routines 2-8.

2.5 Storage Allocation 2-9.

2.6 Support for the M68302ADS Development System 2-9. . . .

2.7 Support for the M68340BCC Development System 2-10. . . .

2.8 Support for the M68360QUADS Development System 2-11.

2.9 Modifying the Libraries 2-11.

2.9.1 Integrating New Routines Into an Existing Library

Without Using make on Unix Hosts 2-12.

2.10 Library Object Modules 2-13.

2.11 Summary of Library Routines 2-14.

2.11.1 Standard Functions 2-14.

2.11.2 Mathematical Functions 2-16.

2.11.3 Standard I/O Functions 2-17.

2.11.4 String Manipulation Functions 2-19.

2.11.5 Non-local Goto Functions 2-20.

2.11.6 Date and Time Routines 2-21.

2.11.7 ASCII Character Set Macros and Functions 2-21.

2.11.8 Global Definitions 2-22.

2.11.9 Compile-time Assertions 2-23.

2.11.10 Formatting of Numeric Values 2-23.

2.11.11 Variable Length Argument List Access 2-23.

2.11.12 Signal Handling 2-24.

2.11.13 C Library Extensions 2-24.

2.12 Run-Time Library Routines 2-26.

Table of ContentsVI
C
O
N
T
E
N
T
S

ASSEMBLY LANGUAGE REFERENCE 3-1

3.1 Preface 3-3.

3.2 Related Publications 3-3.

3.3 Using Assembly Language 3-4.

3.4 Elements of Assembly Language 3-4.

3.5 Notation 3-5.

SOURCE PROGRAM CODING 4-1

4.1 Introduction 4-3.

4.2 Comments 4-3.

4.3 Source Line Format 4-4.

4.3.1 Label Field 4-4.

4.3.2 Operation Field 4-5.

4.3.3 Operand Field 4-7.

4.3.4 Comment Field 4-7.

4.4 Symbols 4-7.

4.4.1 Symbol Syntax 4-8.

4.4.2 Symbol Definition Classes 4-8.

4.4.3 User-Defined Labels 4-9.

4.4.4 Location Counter Symbol "*" 4-9.

4.5 Constants 4-9.

4.5.1 Integer Constants 4-9.

4.5.2 Character Constants 4-11.

4.5.3 Floating Point Constants

(68881/68882/68040/68060 only) 4-11.

4.6 Operators 4-12.

4.7 Expressions 4-14.

4.8 Addressing Modes 4-16.

ASSEMBLER DIRECTIVES 5-1

5.1 Assembly Control 5-3.

5.1.1 COMMON - Enter Named Common Section 5-4.

5.1.2 END - Program End 5-5.

Table of Contents VII

• • • • • • • •

5.1.3 INCLUDE - Include Secondary File 5-6.

5.1.4 OFFSET - Define Offsets 5-6.

5.1.5 ORG - Absolute Origin 5-7.

5.1.6 RESERVE - Reserve storage 5-8.

5.1.7 RESUME - Resume defined section 5-9.

5.1.8 RORG - Relocatable ORG 5-9.

5.1.9 SECTION - Relocatable Program Section 5-10.

5.2 Symbol Definition 5-11.

5.2.1 EQU - Equate Symbol Value 5-12.

5.2.2 FEQU - Equate Floating Point Symbol Value 5-12.

5.2.3 REG - Define Register List 5-13.

5.2.4 SET - Set Symbol Value 5-13.

5.3 Data Definition/Storage Allocation 5-14.

5.3.1 COMLINE - Unimplemented 5-14.

5.3.2 DC - Define Constant 5-14.

5.3.3 DCB - Define Constant Block 5-17.

5.3.4 DS - Define Storage 5-17.

5.4 Listing Control and Output Options 5-18.

5.4.1 FAIL - Programmer Generated Error 5-19.

5.4.2 FORMAT/NOFORMAT - Unimplemented 5-19.

5.4.3 LIST/NOLIST - Control Listing Generation 5-19.

5.4.4 LLEN - Unimplemented 5-19.

5.4.5 NOOBJ - Unimplemented 5-19.

5.4.6 OPT - Assembler Options 5-20.

5.4.7 PAGE/NOPAGE - Control Pagination 5-23.

5.4.8 SPC - Space Between Source Lines 5-23.

5.4.9 STTL - Set Subtitle 5-23.

5.4.10 TTL - Set Title 5-23.

5.5 External Symbol Controls 5-24.

5.5.1 IDNT - Relocatable Identification Record 5-24.

5.5.2 XDEF - External Symbol Definition 5-24.

5.5.3 XREF - External Symbol Reference 5-25.

5.6 Internal Assembly Controls 5-25.

5.6.1 _BRINGIN Declare external symbol 5-26.

5.6.2 _DEBSYM Put out debugging information 5-26.

Table of ContentsVIII
C
O
N
T
E
N
T
S

5.6.3 _DGROUP Define data group 5-26.

MACRO OPERATIONS AND CONDITIONAL

ASSEMBLY 6-1

6.1 Macro Operations 6-3.

6.1.1 Macro Definition 6-4.

6.1.2 Macro Invocation 6-4.

6.1.3 Macro Parameter Definition and Use 6-5.

6.1.4 Labels Within Macros 6-6.

6.1.5 The MEXIT Directive 6-6.

6.1.6 The NARG Symbol 6-7.

6.1.7 Implementation of Macro Definition 6-7.

6.1.8 Implementation of Macro Expansion 6-7.

6.2 Conditional Assembly 6-8.

6.2.1 Conditional Assembly Structure 6-9.

6.2.2 Example of Macro and Conditional Assembly Usage 6-11. .

STRUCTURED CONTROL STATEMENTS 7-1

7.1 Keyword Symbols 7-3.

7.2 Syntax 7-3.

7.2.1 IF Statement 7-5.

7.2.2 Floating-Point Structured Assembler Syntax for

the IF Statement 7-6.

7.2.3 FOR Statement 7-7.

7.2.4 REPEAT Statement 7-8.

7.2.5 WHILE Statement 7-8.

7.3 Simple and Compound Expressions 7-9.

7.3.1 Simple Expressions 7-9.

7.3.2 Condition Code Expressions 7-9.

7.3.3 Operand Comparison Expressions 7-10.

7.3.4 Compound Expressions 7-12.

7.4 Source Line Formatting 7-12.

7.4.1 Class 1 Symbol Usage 7-12.

Table of Contents IX

• • • • • • • •

7.4.2 Nesting of Structured Statements 7-13.

7.5 Effects on the User's Environment 7-14.

POSITION- INDEPENDENT CODE 8-1

8.1 Forcing Position Independence 8-3.

8.2 Base-Displacement Addressing 8-4.

8.3 Base-Displacement in Conjunction with Forced Position

Independence 8-4.

CHARACTER SET A-1

1 Characters Recognized A-3.

2 ASCII Character Set A-3.

INDEX

Table of ContentsX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is for users of the 68K/ColdFire C compiler/assembler.

MANUAL STRUCTURE

1. Introduction

Introduces the structure and conventions of the manuals

2. Run-Time Library

Covers installing and changing run-time libraries.

3. The Assembly Lanuage Reference

Summarizes the structure of the assembly language and gives an

assembly language overview.

4. Source Program Coding

Discusses source program coding including source line format,

symbols, constants, registers, operators, expressions, addressing modes,

instruction mnemonics, and other instruction types.

5. Assembler Directives

Describes and gives examples of the basic forms of the most frequently

used assembler directives.

6. Macro Operations and Conditional Assembly

Describes the macro and the conditional assembly capabilities of the

assembler.

7. Structured Control Statements

Describes how to use structured control statements with assembly

language to improve readability of assembly language.

8. Position-independent Code

Describes Forcing Position Independence, Base-Displacement

Addressing, and Base-Displacement in Conjunction with Forced

Position Independence.

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

APPENDICES

A. Character Set

Contains a list of the ASCII characters recognized by the assembler.

INDEX

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Manual Purpose and Structure XIII

• • • • • • • •

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

INTRODUCTION
C
H
A
P
T
E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H
A
P
T
E
R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This C Compiler/Assembler Reference Manual contains run-time library and

assembly language information. This chapter contains an overview of the

68K/ColdFire documentation. Please refer to the Introduction chapter in

the Getting Started Manual for information concerning the 68K/ColdFire

development system and for additional help.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Getting Started Manual contains an introduction to the development

system, an installation guide, and a tutorial which contains sample code

and exercises which lead you step-by-step through the powerful features

of each software tool.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

2

RUN–TIME LIBRARY
C

H
A

P
T

E
R

Chapter 22–2
L
IB
R
A
R
IE
S

2

C
H

A
P

T
E

R

Run–Time Library 2–3

• • • • • • • •

This chapter contains the following sections:

• Introduction

• System Initialization

• I/O System

• Storage Allocation

• Support for the M68302ADS Development System

• Support for the M68340BCC Development System

• Support for the M68360QUADS Development System

• Modifying the Libraries

• Library Object Modules

• Summary of Library Routines

• Run-Time Library Routines

2.1 INTRODUCTION

This section identifies the parts of the run-time library which you may

need to modify to integrate with your hardware and software. It also

describes in some detail the nature of the required changes and how to

install them in the library. Finally, this appendix describes each library

routine. The overall organization of the run-time library is discussed in the

Compiler Library Organization section in the Linking Locator chapter of

the User's Manual.

The source code for most of the library routines, including the

environment-dependent routines, is supplied. However, software

floating-point emulation routines are not supplied.

The run-time library is primarily written in C, but the lowest level

functions are written in assembly language.

The run-time library routines supplied can be used to interface to most

target systems. In addition, there are routines written specifically for the

M68302ADS, M68340BCC, and M68360QUADS Development Systems.

These will be discussed later.

You can code your replacement routines in C or assembly language.

Remember, any routines you code in assembly language must adhere to

the conventions described in the Linking C and Assembly application note

in the User's Manual.

Chapter 22–4
L
IB
R
A
R
IE
S

As noted in the Linking Locator chapter in the User's Manual, there are

multiple versions of object modules in the library. You must decide which

library(ies) will be used before deciding what changes to make to the

source modules.

You must supply replacement modules suitable for inclusion in your

libraries. If you code a replacement module in C, you need to compile it

with the appropriate options for each library you will use. However, if you

code your module in assembly language, you must be sure the assembly

language routine is correct for each library.

2.2 SYSTEM INITIALIZATION

Three features must be provided to establish an execution environment:

• The power-on condition on your target system must somehow transfer

control to user code.

• The run-time environment must be appropriately initialized before

compiled code is activated.

• An appropriate action should be taken when the top-level compiled

routine exits.

These functions are provided by a run-time library routine. You can find

the source for this routine in the run-time library source directory of the

product.

Target Initialization
File

68K targets with VME 105/107 pmainr.68k

68030 with VME143 pmn030r.68k

68040, hardware floating–point pmn040fp.68k

68060, hardware floating–point pmainf.68k

68060, no floating–point, with ROM monitor pmn060r.68k

68060, hardware floating–point, with ROM monitor pmn06rf.68k

68302 with M68302ADS pmn302a.68k

68332 (MC68330, MC68331, MC68332, MC68336) pmn332.68k

68332 with M68332EVS pmn332r.68k

68340 pmn340.68k

68340 with M68340BCC pmn340b.68k

Run–Time Library 2–5

• • • • • • • •

Initialization
File

Target

68360 pmn360.68k

68360 with M68360QUADS pmn360b.68k

All other 68K targets pmain.68k

ColdFire targets without ROM Monitor pmain.asm

ColdFire targets with ROM Monitor pmainr.asm

Table 2-1: Initialization files

When the 68000 hardware starts execution after a power on (cold start), it

loads the SSP and PC registers from absolute locations 0 and 4. The 68020

behaves similarly, except that the ISP register replaces SSP. pmain defines

eight bytes of data which are absolutely assembled at location 0. The

initial PC value is the address of the __main routine. This address is also

designated as the ``start'' address of the system. The initial SSP (ISP) value

is 7FFC.

pmain performs the setup operations required by the compiled code, and

then executes a long call to the external label _main . By default the

compiler generates the global label _main at the start of your C main
routine.

Of course, you can name the main routine whatever you like, but the

initialization module pmain must be adjusted accordingly. The required

setup operations are enumerated below:

1. Provide a stack area and initialize the USP and SSP (user and system stack

pointer) registers accordingly. For the 68020, the USP, ISP, and MSP (user,

interrupt, and master stack pointers) are set.

2. Initialize A6 (frame pointer) to zero.

3. Initialize A5 to point to the global data area.

The compiler assumes that the A5 register always contains the base

address of the global data area. The global data area is a group named

data , which consists of the idata and udata segments. In a real time

system where re-entrancy is necessary, a program must dynamically

allocate its stack and global data area. This ensures that multiple real time

tasks running the same program will use different A5 and A7 register

values.

Chapter 22–6
L
IB
R
A
R
IE
S

If your system dynamically allocates the data area, remember that the base

address (in A5) is the actual address of the data area if its size is less than

or equal to 32K, otherwise it is the address of the data area plus 32K. The

linking locator creates a global symbol named ``ldata'' whose value is the

size of the data group. This symbol may be useful in coding the call to

dynamically allocate memory.

It is possible to configure your system so that the A5 register is not used.

You must rebuild the libraries and use the command line –sd option on

all compilations. See the Building Libraries That Do Not Use A5 application

note in the User's Manual for more details.

4. In the hardware floating-point libraries, the 68881 floating-point

coprocessor is initialized by setting both the floating-point status register,

FPSR, and floating-point control register, FPCR, to zero.

5. You will have to define what happens when the user program returns (if

that is possible). This decision is reflected in two places: in the exit
routine, and just after the call to _main in the initizlization code. Our

sample routines contain an infinite loop. You may want your exit routine

to deliver a return code and close any I/O channels.

Please refer to the initialization file appropriate to the target you are using

for more information.

2.3 I/O SYSTEM

You will have to change the low level routines that �put" and �get"

characters to interface with the character I/O on your target system. If you

do not intend to support multiple files then this is all you need to do. If

you do intend to support multiple files (our sample implementation does

not) then you must modify the next higher level of I/O routines (getc and

putc). You must also define what a �file control block" looks like, and

what it means to �open" and �close" files.

The entire I/O system assumes some underlying structure that contains a

file control block of some sort; however, only the routines mentioned

below actually manipulate the contents of that structure. The only things

ever passed to these routines or returned by them are pointers to the file

control structure.

Here is a list of the routines you will have to provide:

• FILE* fopen (char *filename, char * mode);

Run–Time Library 2–7

• • • • • • • •

The first argument can be something defined by your installation:

maybe a port address, maybe a pointer to a string of characters. It

must be the same size as a pointer. The second argument must

definitely be a pointer to a character that specifies the mode to open

the file.

If the mode character is r , it is open for reading, w means write, and a
means append. fopen returns a pointer to a file control block.

• void fclose (FILE * stream) ;

The argument is the kind of pointer returned by fopen . This routine

performs cleanup tasks, for example, flushing buffers.

• int getc (FILE * stream);

This function returns the next character (8-bit quantity) from the given

I/O stream. The result is returned in an integer variable. It must return

-1 (all bits on) when it finds an end-of-file condition.

Our getc calls an external assembly language routine _getc which

does the actual input.

• int ungetc (char c, FILE *stream);

Pushes the given character back into the stream. The character is

returned in an integer variable. Only one ``ungetc-ed'' character at a

time need be supported.

• int putc (char c, FILE *stream);

Writes the given character onto the given file stream. The character

written is returned in an integer variable.

Our putc calls an external assembly language routine _putc which

does the actual output.

Chapter 22–8
L
IB
R
A
R
IE
S

The file stdio.c contains three global variables of type FILE *:
stdin, stdout, stderr . These represent the default input, output, and

error reporting I/O streams.

Sample code to perform these functions is provided in the following

library modules:

Source Object
putc.c → putc.ln, putc.lln
getc.c → getc.ln, getc.lln
fopen.c → fopen.ln, fopen.lln
stdio.c → stdio.ln, stdio.lln
stdio.h (include file)

2.4 TIME FUNCTIONS

The current default libraries provide all of the time conversion and

low�level time/timer routines described in Section 4.12 of the ANSI

Standard. However, all low�level timer functions return ANSI values, stating

that the timer function is not implemented.

If your application requires current low�level time/timer information, in

addition to time conversion, you must modify the low�level time/timer

routines to use the time hardware. These modifications are discussed

below.

2.4.1 TIME CONVERSION ROUTINES

The gmtime routine is the only time conversion routine that returns the

value of (struct tm *) NULL, which requires a low�level time function.

You should modify this routine so that it returns the current UTC time, as

prescribed in ANSI.

2.4.2 LOW�LEVEL TIME/TIMER ROUTINES

The clock in the time.c routine currently returns the value of

(clock_t)–1 . You should modify this routine so that it returns the

elapsed clock count, as prescribed in ANSI.

Run–Time Library 2–9

• • • • • • • •

The time in the time.c routine currently returns the value of

(time_t)–1 . You should modify this routine so that it returns the current

calendar time, as prescribed in ANSI.

2.5 STORAGE ALLOCATION

The library storage allocation routines request �system" storage when they

do not possess enough free storage to satisfy an allocation request. The

routine which provides system storage is called _alloc .

char * _alloc (size_t request , size_t * given);

The first parameter is an integer: the number of words requested. The

second parameter is a pointer to an integer. The routine returns the null

pointer if it cannot provide at least as many words as were requested.

Otherwise, it returns a pointer to a chunk of storage and sets the integer

pointed to by the second parameter to the number of words actually

allocated. This might be more than was actually requested.

A sample implementation is provided by the xalloc module for most

targets. It implements a 4K heap.

xalloc.c → xalloc.ln, xalloc.lln

2.6 SUPPORT FOR THE M68302ADS DEVELOPMENT

SYSTEM

There are two libraries that support the 68302 target with the M68302ADS

Development System. lib302ap contains modules to support the

M68302ADS with parallel I/O; lib302at contains modules to support the

M68302ADS with trap-based I/O. The source files written specifically for

this environment have the characters 302a in their names.

In addition to the extra source files, a locator command file, ads302.cmd ,

is supplied to specify the memory map of the M68302ADS card. This file

results in the following:

• A MEMORY command defines the maximum size of memory on the

M68302ADS as 512 kilobytes of RAM.

• A RESERVE command ensures that the first 0x4000 bytes are reserved

for use by the monitor, bug302 .

Chapter 22–10
L
IB
R
A
R
IE
S

• The startup module, defined in pmn302a.68k , is in segment init and

is located at address 0x4000.

• The remaining segments are placed in memory starting at address

0x4080.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

ads302.cmd for more details.

2.7 SUPPORT FOR THE M68340BCC DEVELOPMENT

SYSTEM

The lib340b library supports the 68340 target with the M68340BCC

Development System. The source files written specifically for this

environment have the characters 340b in their names.

In addition to the extra source files, a locator command file, bcc340.cmd ,

is supplied to specify the memory map of the M68340BCC card. This file

results in the following:

• A MEMORY command defines the maximum size of memory on the

M68340BCC as 64 kilobytes of RAM.

• A RESERVE command ensures that the first 0x3000 bytes are reserved

for use by the monitor program, 340bug.

• The startup module, defined in pmn340b.68k , is in segment init and

is located at address 0x3000.

• The remaining segments are placed in memory starting at address

0x3080.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

bcc340.cmd for more details.

Run–Time Library 2–11

• • • • • • • •

2.8 SUPPORT FOR THE M68360QUADS DEVELOPMENT

SYSTEM

The lib360b library supports the 68360 target with the M68360QUADS

Development System. The source files written specifically for this

environment have the characters 360b in their names. The lib360b
library also uses some M68340BCC sources files (which are

M68360QUADS-compatible). These files have the characters 340b in their

names.

In addition to the extra source files, a locator command file,

quads360.cmd , is supplied to specify the memory map of the

M68360QUADS card. This file results in the following:

• A MEMORY command defines the maximum size of memory on the

M68360QUADS as 0x4E0000 of RAM.

• A RESERVE command ensures that locations between 0x0 - 0x20000

and 0x21800 - 0x400000 are reserved.

• The startup module, defined in pmn360b.68k , is in segment init and

is located at address 0x400000.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

quads360.cmd for more details.

2.9 MODIFYING THE LIBRARIES

Once you know what your low-level routines are going to look like, you

can begin editing your replacement files. When you have completed your

replacement routines, refer to the following procedure to integrate your

new routines into the library.

The calling convention with which the run-time library you are modifying

was built affects the way you assemble or compile any new library

routines. All routines in a library must use the same calling convention.

Given the number of different run-time libraries, it is possible that you

may have to go through this entire procedure several times. That is, once

for the each target and once for both the hardware and software

floating-point libraries, if you are using both. The integration procedure is

identical in all cases. Of course, if you never intend to use a library you

need not update it.

Chapter 22–12
L
IB
R
A
R
IE
S

The only time the hardware/software library pairing affects the coding of

your low-level routines is with the system initialization routine. You may

need two slightly different pmain routines: one which contains

instructions to initialize the 68881/68882 floating-point coprocessor and

one which does not. Of course, the one which initializes the coprocessor

goes in the hardware floating-point library.

From now on, we will describe the process of integrating with the library

as if only the 68000 library exists.

2.9.1 INTEGRATING NEW ROUTINES INTO AN

EXISTING LIBRARY WITHOUT USING MAKE ON UNIX

HOSTS

1. Save the original versions of the sources and object modules for all the

routines you will change.

2. Copy your new source files into the run-time library directory.

3. Assemble any new assembly language source modules.

4. Link each of the resulting .ol object module files with itself to produce

the new .ln files. Use the llink utility and supply the –lo , –o and –w
options.

5. 68K only: Compile all the new C source modules supplying the –L option.

6. 68K only: Link each of the resulting object modules with itself. Supply the

–lo , –o and –w options to the llink utility to produce a .ln module for

each new object module.

7. 68K only: Rename each linked C module from – – –.ln to – – –.lln .

8. Compile all the new C source modules again, but this time without –L .

9. Link each of the resulting object modules with itself. Supply the –lo , –o
and –w options to the llink utility to produce a .ln module for each

new object module.

10. Update the library index files using the librarian utility. This process is

described in more detail below.

To update each library, you must use the librarian to:

• Delete the old object module, unless the new one has the same name.

Run–Time Library 2–13

• • • • • • • •

• Add/replace the appropriate new module(s).

Example: Updating _alloc

Suppose you have coded a replacement for xalloc.c and your

replacement routine is also called xalloc.c . You have compiled and

linked your routine twice, once with the –L option and once without,

producing xalloc.lln and xalloc.ln .

Enter the following librarian invocations:

libr xalloc.ln –v –L lib000
libr xalloc.ln –v –L lib000.nf
libr xalloc.lln –v –L lib000.l
libr xalloc.lln –v –L lib000.lnf

There is no need to delete the old library member, since the new member

has the same name.

You can use the librarian utility to list all library entries.

2.10 LIBRARY OBJECT MODULES

Depending upon which run-time libraries have been installed on your

system, your run-time library may include several directories containing

library index files and library object modules. A single linked object

module may be named in more than one library index file in its directory.

For ease in building and modifying run-time libraries, a standard naming

convention is used for the linked object modules.

When you modify a library source, you must rebuild all the corresponding

object modules. This may be done by following the steps outlined above,

in the section Modifying the Libraries.

Not all sources are compiled into all possible suffix combinations; you

need only replace the ones which exist. For example, the .in suffix only

applies to two modules: xprintf.c and xscanf.c . This special suffix is

produced from compiling these modules with the –P NO_FP_IO option.

This option defines a preprocessor variable which causes the compiler to

exclude the code printing or scanning floating-point data. The resulting

module can only be used in a ``no-floats'' library index file.

Chapter 22–14
L
IB
R
A
R
IE
S

The following table summarizes the correct compiler options to supply

when recompiling a library module and the meaning of the object

module`s utilities:

Suffix Meaning Compiler Options

.ln Default

.in No Floats –P NO _FP _IO

.lln Long Ints –L

.iln Long Ints, No Floats –L –P NO _FP _IO

Table 2-2: Options for recompiling a library module

2.11 SUMMARY OF LIBRARY ROUTINES

Run-time library routines can be accessed from C source code, via

#include statements to resolve references such as simple math and I/O

functions. The library routines follow the ANSI specification. In addition,

TASKING has its own set of library routines described in the include file

extended.h .

2.11.1 STANDARD FUNCTIONS

The standard functions are described in the ANSI C specification. Their

external declarations are available in the library include file stdlib.h . A

table summarizing the standard routines appears below:

 Name Definition

abort terminate program

abs absolute value

atexit register functions to be called at normal program
termination

atof string to double conversion

atoi string to integer conversion

atol string to long integer conversion

bsearch search an array of objects

calloc allocate and zero dynamic storage

Run–Time Library 2–15

• • • • • • • •

 Definition Name

div compute integer quotient and remainder

exit terminate a process

free free previously allocated storage

getenv get an environment variable

labs long integer absolute value

ldiv compute long quotient and remainder

malloc allocate but do not zero dynamic storage

mblen return multi–byte character length

mbstowcs convert multi–byte string to wide–char string

mbtowc convert multi–byte char to wide–char char

qsort sort an array of elements

rand return a random number between 0 and 32767

realloc change the size of an object

srand reset the seed for rand , the random number
generator

strtod convert a string into a double

strtol convert a string into a long integer

strtoul convert a string into an unsigned long integer

system pass a string to the host environment’s command
processor

wcstombs convert wide–char string to multi–byte string

wctomb convert wide–char char to multi–byte char

Table 2-3: Standard functions

Chapter 22–16
L
IB
R
A
R
IE
S

2.11.2 MATHEMATICAL FUNCTIONS

Mathematical functions compute and return a value based on the given

argument(s). Their external declarations are available in the library include

file math.h . A table summarizing the mathematical routines appears

below:

Name Definition

acos arccosine

asin arcsine

atan arctangent in range -π/2 to π/2

atan2 arctangent of x/y in range -π to π
ceil round to more positive integer

cos cosine

cosh hyperbolic cosine

exp exponential

fabs floating–point absolute value

floor round to more negative integer

fmod floating–point modulus

frexp extract fraction from exponent

ldexp scale double exponent

log natural logarithm

log10 common (base 10) logarithm

modf extract fraction and integer from double

pow raise x to the y power

sin sine

sinh hyperbolic sine

sqrt real square root

tan tangent

tanh hyperbolic tangent

Table 2-4: Mathematical functions

Run–Time Library 2–17

• • • • • • • •

2.11.3 STANDARD I/O FUNCTIONS

The I/O system assumes some underlying structure that contains a file

control block of some sort. Some files actually manipulate the contents of

that structure. The include file stdio.h contains external declarations for

these functions. A summary of standard I/O functions appears below:

Name Definition

clearerr clear the end–of–file and error indicators

fclose close the specified file

feof test the end–of–file indicator for a file

ferror test the error indicator for a file

fflush flush output buffer

fgetc read a character from the specified file

fgetpos store the current value of the file position
indicator

fgets read a string from the specified file

fopen open a file

fprintf write formatted output to the specified file

fputc write a character to the specified file

fputs write a string to the specified file

fread block read from file

freopen close, then open the specified file

fscanf read formatted input from specified file

fseek set the file position indicator for a file

fsetpos set the file position indicator for a file to a specific
value

ftell return the current file position indicator for a
specific stream

fwrite block write to file

getc same as fgetc

getchar read a character from standard input

gets read a line from standard input

perror map the error number in an integer expression to
an error message

Chapter 22–18
L
IB
R
A
R
IE
S

DefinitionName

printf write formatted output to standard output

putc same as fputc

putchar write a character to standard output

puts write a string to standard output

remove delete a file

rename rename a file

rewind rewind a file

scanf read formatted input from standard input

setbuf set I/O buffer

setvbuf set the buffering mode

sprintf write formatted output to the specified string

sscanf read formatted input from the specified string

tmpfile create a temporary file

tmpnam return a valid, unused filename

ungetc push a character back into the specified file

vfprintf write formatted output to specified file using
variable arguments

vprintf write formatted output to standard output using
variable arguments

vsprintf write formatted output to the specified string
using variable arguments

Table 2-5: Standard I/O functions

Run–Time Library 2–19

• • • • • • • •

2.11.4 STRING MANIPULATION FUNCTIONS

String manipulation functions copy and test character strings in memory.

The include file string.h contains external declarations for these

functions. A summary of string manipulation functions appears in the table

below:

Name Definition

memchr search for a character in a buffer

memcmp compare two buffers for lexical order

memcpy copy one buffer to another

memmove copy characters

memset propagate a fill character throughout a buffer

strcat concatenate two strings

strchr scan a string for the first occurrence of a
character

strcmp compare two strings for lexical order

strcoll compare two strings according to the current
locale

strcpy copy one string to another

strcspn find the end of a span of characters in a set

strerror map the error number to an error message

strlen find the length of a string

strncat concatenate two strings; append up to n
characters

strncmp compare two strings, up to n characters

strncpy copy n length string

strpbrk find occurrence in string of character in set

strrchr scan string for the last occurrence of a
character

strspn find the end of a span of characters not in a
set

Chapter 22–20
L
IB
R
A
R
IE
S

DefinitionName

strstr find the first instance of a string

strtok break string into tokens

strxfrm transform string according to the current
locale

Table 2-6: String manipulation functions

2.11.5 NON-LOCAL GOTO FUNCTIONS

Non-local goto functions are used to define and restore an �environment."

In this implementation, an �environment" consists of a set of values in the

non-volatile machine registers. These functions are useful for dealing with

errors and interrupts encountered in a low-level subroutine of a program.

The include file setjmp.h contains external declarations for non-local

goto functions. A summary of the functions appears below:

Name Definition

longjmp returns an environment established earlier by setjmp

setjmp establishes an environment for later use by longjmp

Table 2-7: Non-local Goto functions

Run–Time Library 2–21

• • • • • • • •

2.11.6 DATE AND TIME ROUTINES

A summary of date and time functions appears below. The include file

time.h contains external declarations for date and time routines. The

following table summarizes date and time functions:

Name Definition

asctime convert time to a string

clock return the processor time used

ctime convert calendar time to local time

difftime compute the difference between two times

gmtime convert calendar time to Coordinated Universal Time

localtime convert calendar time to local time

mktime convert broken–down time into calendar time

strftime put characters into an array

time return the current calendar time

Table 2-8: Date and time routines

2.11.7 ASCII CHARACTER SET MACROS AND

FUNCTIONS

ASCII character set macros are of two general types: �is" and �to."

Macros with the prefix is take a character type parameter and evaluate to

0 or 1, acting as predicates. These macros can be used in if , while and

for constructs. Macros with the prefix to convert between upper and

lower-case.

Chapter 22–22
L
IB
R
A
R
IE
S

The library include file ctype.h contains the ASCII character set macro

and function definitions. A summary appears below:

Name Definition

isalnum test for alphanumeric character

isalpha test for alphabetic character

iscntrl test for control character

isdigit test for digit

isgraph test for graphic character

islower test for lowercase character

isprint test for printing character

ispunct test for punctuation character

isspace test for whitespace character

isupper test for uppercase character

isxdigit test for hexadecimal digit

tolower convert character to lowercase, if necessary

toupper convert character to uppercase, if necessary

Table 2-9: ASCII character set macros and functions

2.11.8 GLOBAL DEFINITIONS

The include file stddef.h contains global definitions for use in C

programs. stddef.h defines one macro whose summary appears below:

Name Definition

offsetof return offset of member in structure

Table 2-10: Global definitions

Run–Time Library 2–23

• • • • • • • •

2.11.9 COMPILE-TIME ASSERTIONS

The include file assert.h defines the macro assert which allows

compile-time testing of expressions. If the expression is false, the assert

macro writes information about the call that failed on the standard error

file and then aborts the program. A summary of the assert macro appears

below:

Name Definition

assert check run–time expressions

Table 2-11: Compile-time assertions

2.11.10 FORMATTING OF NUMERIC VALUES

Two functions, setlocale and localeconv , allow the setting of defaults

for the formatting of numeric values that depend on country and/or

language. Their external declarations are available in the library include

file locale.h . A table summarizing these functions appears below:

Name Definition

localeconv set numeric formatting values for locale

setlocale select or query the current locale

Table 2-12: Formatting of numeric values

2.11.11 VARIABLE LENGTH ARGUMENT LIST ACCESS

The argument list macros facilitate the access of items on a variable length

argument list. The macros are defined in the library include file stdarg.h
and are summarized in the table below:

Name Definition

va_arg retrieve the next item on a variable length argument
list.

va_end finish access of variable length argument list

va_start prepare to access a variable length argument list

Table 2-13: Variable length argument list access

Chapter 22–24
L
IB
R
A
R
IE
S

2.11.12 SIGNAL HANDLING

The library include file signal.h contains external declarations for

dealing with internal and external events, or signals. A table summarizing

these functions appears below:

Name Definition

raise generate a signal

signal designate a function as a signal handler

Table 2-14: Signal handling

2.11.13 C LIBRARY EXTENSIONS

Several extensions to the ANSI C library are available for use. These

functions and macros are distributed with TASKING compilers for use in

cases where their functionality may be helpful for embedded systems

programming. Note however, that these functions are not part of the ANSI

C standard, and their use may cause portability problems. The

pre-processor macro _EXTENSIONS must be defined to make these

external function declarations and macro definitions available. These

functions are found in extended.h . The functions and macros are

summarized in the following table.

Name Definition

__tolower a macro to convert character to lowercase. The
character must be a valid uppercase ASCII letter.

__toupper a macro to convert character to uppercase. The
character must be a valid lowercase ASCII letter.

atanh inverse hyperbolic tangent

log2 base 2 logarithm

getl direct long integer input

getw direct integer input

putl direct long integer output

putw direct integer output

memccpy copy memory up to marker character

Table 2-15: C library extensions

Run–Time Library 2–25

• • • • • • • •

Standard UNIX I/O Functions

Other extensions to the ANSI C library are the include files unistd.h and

fcntl.h . This functions contain external declarations of the standard

UNIX I/O functions. They are implemented using the file system

simulation feature of CrossView Pro. A summary of these functions

appears below:

Name Definition

access check the permissions of a file on the host

chdir change the current directory on the host

close close a file on the host

getcwd retrieve the current directory on the host

lseek seek in a file on the host

open open a file on the host

read read a sequence of characters from a file

rename rename a file on the host

stat stat() a file on the host platform

unlink remove a file from the host

write write a sequence of characters to a file

Table 2-16: Standard UNIX I/O functions

Other include files

Three additional include files are distributed in ANSI C compliant

TASKING compiler releases. These library include files contain definitions

only, they do not contain any external function declarations. The files are:

errno.h which contains variables used to process errors in the C

language, limits.h which contains various defined CPU specific

limitations, and float.h which defines various floating-point hardware

limits and values.

In addition, there are several include files distributed that are used only in

conjunction with building libraries. Under normal circumstances, these

library include files will not be used. However, if the embedded

application requires changes to the run-time library source, you may need

to modify these files as required.

Chapter 22–26
L
IB
R
A
R
IE
S

2.12 RUN-TIME LIBRARY ROUTINES

The following pages describe each of the run-time routines in reference

format. The descriptions are in alphabetical order by function name.

__tolower

#define _EXTENSIONS
#include <stdio.h>
#define __tolower(c) ((c) + ’a’ – ’A’)

__tolower is a macro which converts an uppercase letter, c, to its

lowercase equivalent. __tolower returns the corresponding lowercase

character.

__tolower should only be used when c is known to be an uppercase

letter (presumably checked via the isupper macro). Unlike the ANSI

tolower function, __tolower is not guaranteed to return its argument if

the argument is not an uppercase character.

__tolower is a TASKING extension.

__toupper

#define _EXTENSIONS
#include <stdio.h>
#define __toupper(c) ((c) + ’A’ – ’a’)

__toupper is a macro which converts a lowercase letter, c, to its

uppercase equivalent. __toupper returns the corresponding uppercase

character.

__toupper should only be used when c is known to be a lowercase

letter (presumably checked via the islower macro). Unlike the ANSI

toupper function, __toupper is not guaranteed to return its argument if

its argument is not a lowercase letter.

__toupper is a TASKING extension.

Run–Time Library 2–27

• • • • • • • •

abort

#include <stdlib.h>
void abort(void);

abort raises a SIGABRT condition.

abs

#include <stdlib.h>
int abs(int x);

abs calculates | x |, the absolute value of the integer argument, x.

abs returns its input if x is the most negative int value.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the

permissions of a file on the host. mode specifies the type of access and is a

bit pattern constructed by a logical OR of the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.

F_OK Checks to see if the file exists.

access returns zero if successful or -1 on error.

acos

#include <math.h>
double acos(double x);

acos computes the value whose cosine is x. The inverse cosine is in

radians and in the range from zero to π.

If x is outside the range [-1,1], acos sets errno to EDOM. The return

value is undefined in this case.

Chapter 22–28
L
IB
R
A
R
IE
S

asctime

#include <time.h>
char * asctime(const struct tm *timeblock);

The function asctime converts the time stored in *timeblock into a 26

character string of the form:

Mon Jan 01 01:01:01 1999\n\0

asctime returns a pointer to the character string.

The string returned by asctime may be overwritten by subsequent calls

to asctime or ctime .

asin

#include <math.h>
double asin(double x);

asin computes the value whose sine is x. The inverse sine is in radians

and is in the range from -π/2 to π/2.

If x is outside the range [-1,1], asin sets errno to EDOM. The return

value is undefined in this case.

assert

#include <assert.h>
void assert(int expression);

The assert macro puts diagnostics into programs. When it is executed, if

expression is false the assert macro writes information about the

particular call that failed, including the text of the argument, the name of

the source file, and the source line number. It then aborts the program by

using abort() .

If the preprocessor variable NDEBUG is defined before including

assert.h , the assert macro will have no effect.

Run–Time Library 2–29

• • • • • • • •

atan

#include <math.h>
double atan(double x);

atan computes the value whose tangent is x. The inverse tangent is in

radians, and is in the range from -π/2 to π/2.

atan2

#include <math.h>
double atan2(double x, double y);

atan2 computes the principal value of the arctangent of x/y, using the

signs of both arguments to determine the quadrant of the return value. If

both x and y are zero, errno is set to EDOM and π/2 is returned.

The return value is in radians and is in the range -π to π. Here is a chart

showing how the sign of the arguments determines the range of the return

value:

Sign of arguments Return range
x<0, y<0 –π to – π/2
x<0, y>0 –π/2 to 0
x>0, y >0 0 to π/2
x>0, y<0 π/2 to π

atanh

#define _EXTENSIONS
#include <math.h>
double atanh(double x);

atanh computes the inverse hyperbolic tangent of x.

atanh is a TASKING extension.

Chapter 22–30
L
IB
R
A
R
IE
S

atexit

#include <stdlib.h>
int atexit(void (* func)(void));

The atexit function causes the function pointed to by func to be called

without arguments at normal program termination. Up to 32 functions can

be remembered. atexit returns 0 if successful, and non-zero if it fails.

The functions are called in a last in, first out basis. Functions may be

recorded more than once. Normal termination means exit was called.

atof

#include <stdlib.h>
double atof(const char * s);

atof converts the ASCII string s to a double and returns the new value.

The ASCII string is examined with respect to the following pattern: any

number of leading white-space characters (as specified by the isspace
function), an optional plus or minus sign, any number of decimal digits, an

optional decimal point followed by any number of decimal digits, an

optional �e" or �E", an optional plus or minus sign or blank, and any

number of decimal digits. Input which matches this pattern is converted

into the double return value. Input after the end of the pattern is ignored.

In case of error, atof is not required to set errno, and its return value is

undefined. In this implementation, atof is implemented via strtod , as

follows:

strtod(s, (char **) NULL)

Run–Time Library 2–31

• • • • • • • •

atoi

#include <stdlib.h>
int atoi(const char * s);

atoi converts the ASCII string s into an integer. The ASCII string is

examined with respect to the following pattern: any number of leading

white-space characters (as specified by the isspace function), an

optional plus or minus sign, and any number of decimal digits. Characters

which match this pattern are converted to the integer return value.

Characters after the end of the pattern are ignored. atoi returns the

converted integer value. Except in the case of errors, atoi is equivalent

to:

(int) strtol(s, (char **) NULL, 10)

atol

#include <stdlib.h>
long atol(const char * s);

atol converts the ASCII string s to a long integer. The ASCII string is

examined with respect to the following pattern: any number of

white-space characters (as defined by the isspace function), an optional

plus or minus sign, and any number of decimal digits. Characters which

match this pattern are converted to the long return value. Characters after

the end of the pattern are ignored. atol returns the converted long

integer.

Overflows are ignored. Except for the behavior on errors, atol is

equivalent to:

strtol(s, (char **)NULL, 10)

Chapter 22–32
L
IB
R
A
R
IE
S

bsearch

#include <stdlib.h>
void *bsearch(const void * key , const void * base ,

size_t nummembr, size_t size ,
int (* comp)(const void *, const void *));

bsearch searches an array of nummembr objects, the first element of

which is pointed to by base, for an element that matches the object

pointed to by key. The size of each array element is specified by size.

The function pointed to by comp is called with two arguments that point

to the key object and to an array element, in that order. The comp function

shall return an integer less than, equal to, or greater than zero if the key
object is considered to be less than, equal to, or to be greater than the

array element. The array should consist of all elements that compare less

than, all elements that compare equal to, and all elements that compare

greater than the key object, in that order. bsearch returns a pointer to the

item if found, or NULL if not found.

calloc

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

calloc allocates memory for the nmemb elements of size size and returns

a pointer to the start of the allocated memory space. Allocated memory is

initialized to zero.

If memory is exhausted, calloc returns a null pointer.

ceil

#include <math.h>
double ceil(double x);

ceil computes and returns the smallest integer value greater than or

equal to x, expressed as a double value.

Run–Time Library 2–33

• • • • • • • •

chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the

current directory on the host to the directory indicated by path .

chdir returns zero if successful or -1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE * str);

This function clears the end-of-file and error indicators for the the stream

pointed to by str.

Users should implement this routine themselves.

clock

#include <time.h>
clock_t clock(void);

clock returns the processor time used. If the processor time is

unavailable, the return value is (clock_t)-1.

Users should implement this routine themselves. The current return value

is (clock_1)-1.

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.

This function calls the low-level routine _close.

close returns zero if successful or -1 on error.

Chapter 22–34
L
IB
R
A
R
IE
S

cos

#include <math.h>
double cos(double x);

cos computes the cosine of x, expressed in radians.

cosh

#include <math.h>
double cosh(double x);

cosh computes the hyperbolic cosine of x.

ctime

#include <time.h>
char *ctime(const time_t * time);

The ctime function converts the calendar time pointed to by time to local

time in the form of a string.

This function is equivalent to:

asctime(localtime(time))

The value returned by ctime will be overwritten by the next call to

ctime or asctime .

difftime

#include <time.h>
double difftime(time_t time1 , time_t time2);

difftime computes the difference between two times: time1 and time2.

difftime returns the difference in seconds, expressed as a double.

Run–Time Library 2–35

• • • • • • • •

div

#include <stdlib.h>
div_t div(int numerator , int denominator);

div computes the quotient and remainder of the numerator divided by the

denominator. The type div_t is a structure that contains two components,

quot and rem , both of type int .

When denominator equals zero div returns zeroes in quot and rem.

If the result cannot be represented, the behavior is undefined. Otherwise

quot * denominator + rem shall equal numerator.

exit

#include <stdlib.h>
void exit(int status);

exit caused normal program termination. exit never returns to its caller.

First, any functions recorded by atexit are called, in reverse order of

their presentation via atexit . Next, all open output streams are flushed,

all open streams are closed, and all files created by the tmpfile function

are removed. Finally, the return status is returned to the host environment.

exit calls __exit to return to the host environment. The __exit
routine must be coded by the user.

exp

#include <math.h>
double exp(double x);

exp computes the exponential function of x.

On overflow exp returns an IEEE infinity.

fabs

#include <math.h>
double fabs(double x);

fabs computes |x|, the absolute value of the double x.

Chapter 22–36
L
IB
R
A
R
IE
S

fclose

#include <stdio.h>
int fclose(FILE * stream);

fclose flushes any buffers for the named stream and causes the file to be

closed. The return value indicates the presence of an I/O error.

fclose must be implemented by the user.

feof

#include <stdio.h>
int feof(FILE * str);

This function tests the end-of-file indicator for the stream pointed to by

str. feof returns nonzero only if the end-of-file indicator is set for str.

feof must be implemented by the user.

ferror

#include <stdio.h>
int ferror(FILE * stream);

This routine tests the error indicator for the the stream pointed to by

stream. ferror returns nonzero only if the error indicator is set for

stream.

ferror must be implemented by the user.

fflush

#include <stdio.h>
int fflush(FILE * stream);

fflush forces out any buffered output on an I/O channel. fflush
returns zero, if successful. If an I/O error was encountered, fflush sets

the global integer errno to indicate the error code and returns negative

one.

The release version of fflush is a stub routine which always returns zero.

The standard I/O library does not buffer output.

Run–Time Library 2–37

• • • • • • • •

fgetc

#include <stdio.h>
int fgetc(FILE * stream);

fgetc returns the next character from the named input stream pointed to

by stream.

fgetpos

#include <stdio.h>
int fgetpos(FILE * stream , fpos_t * pos);

fgetpos stores the current value of the file position indicator for the

stream pointed to by stream in the object pointed to by pos. The

information stored can be used by fsetpos for resetting the stream to the

time of the call to fgetpos . fgetpos returns zero on success; on failure

fgetpos returns a nonzero number and sets errno .

fgetpos must be implemented by the user.

fgets

#include <stdio.h>
char *fgets(char * s, int n, FILE *stream);

fgets reads characters from the specified input stream into the string s
until either n-1 characters are read, end-of-file is reached, or a newline

character is read. If a newline character is read, it is retained. The stream is

then terminated by a null. The associated file pointer is incremented by

the number of bytes read.

If end-of-file is reached before any characters have been read, s remains

unchanged, and fgets returns NULL.

floor

#include <math.h>
double floor(double x);

floor computes the largest integer value less than or equal to x,

expressed as a double value.

Chapter 22–38
L
IB
R
A
R
IE
S

fmod

#include <math.h>
double fmod(double x, double y);

fmod calculates the floating-point remainder of x/y. That is, fmod returns

the value x-i*y, for some integer i such that the result has the same sign as

x and magnitude less than the magnitude of y. If y is zero, fmod returns

zero under software floating-point and IEEE NaN (Not a Number) under

hardware floating-point.

fopen

#include <stdio.h>
FILE *fopen(const char * filename , const char * mode);

fopen opens the file filename and returns an associated input or output

stream, depending on mode.

fopen must be implemented by the user.

fprintf

#include <stdio.h>
int fprintf(FILE * stream , const char *format , ...);

See printf.

fprintf is identical to printf , but directs its output to the specified

output stream.

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

fputc writes a character specified by c (converted to an unsigned char),

onto the named output stream. fputc returns the character written.

Run–Time Library 2–39

• • • • • • • •

fputs

#include <stdio.h>
int fputs(const char * s, FILE *stream);

fputs copies the string s to the specified output stream. The terminating

null byte is not copied. The fputs function returns EOF if a write error

occurs; otherwise it returns a non-negative value.

fread

#include <stdio.h>
size_t fread(void * ptr , size_t size ,

size_t n, FILE *stream);

fread reads n items of size size from the specified input stream into a

buffer at ptr. fread returns the number of items successfully read, which

may be less than n if a read error or end-of-file is encountered. If size or

n is zero, fread returns zero and the contents of the array and the state of

the stream remain unchanged.

free

#include <stdlib.h>
void free(void * ptr);

free deallocates storage allocated by previous malloc , calloc , or

realloc routines.

In ANSI C, free replaces the Unix cfree routine.

freopen

#include <stdio.h>
FILE *freopen(const char * filename ,

const char * mode, FILE * stream);

freopen closes the specified stream and then opens it in the same way

that fopen does. Failure to close the file is ignored. The error and

end-of-file indicators for the stream are cleared. freopen returns a null

pointer if not successful. Upon success freopen returns stream.

Chapter 22–40
L
IB
R
A
R
IE
S

freopen must be implemented by the user. The primary use of freopen
is to change the file associated with the standard text streams stdin ,

stdout , and stderr .

frexp

#include <math.h>
double frexp(double x, int *eptr);

frexp breaks a floating-point number into a normalized fraction and an

integral power of two. It stores the integer in the int object pointed to by

eptr and returns the fraction.

After calling the function

y = frexp(x, & n)

the following identity is true:

x = y * 2 n.

fscanf

#include <stdio.h>
int fscanf(FILE * stream ,
const char *format , ...);

See scanf.

fscanf is identical to scanf, except that it reads its input from the

specified input stream.

fseek

#include <stdio.h>
int fseek(FILE * stream , long int offset , int mode);

fseek sets the file position indicator for the stream pointed to by stream.
fseek returns zero on success and nonzero on failure.

Run–Time Library 2–41

• • • • • • • •

For binary streams, fseek calculates the new position by adding the offset
(in bytes) to the position specified by mode. The specified position is the

beginning of the file if mode is SEEK_SET, the current file position if mode
is SEEK_CUR, or end of file if mode is SEEK_END.

For text streams, offset is either zero or a value returned by a previous call

to ftell , using the same stream, and mode is set to SEEK_SET.

fseek must be implemented by the user.

fsetpos

#include <stdio.h>
int fsetpos(FILE * stream , const fpos_t * pos);

fsetpos sets the file position indicator for the stream pointed to by

stream to the value stored in pos. It also clears the end-of-file indicator for

stream. fsetpos returns zero if successful, and returns a nonzero and sets

errno to a positive value if unsuccessful.

fsetpos must be implemented by the user.

ftell

#include <stdio.h>
long int ftell(FILE * stream);

ftell returns the current file position indicator for the stream pointed to

by stream. For binary streams this is the number of characters since the

beginning of the file. For text streams this is some value that is meaningful

to fseek , but does not necessarily have any relation to the number of

characters. On failure ftell returns -1L and stores a positive value in

errno .

ftell must be implemented by the user.

Chapter 22–42
L
IB
R
A
R
IE
S

fwrite

#include <stdio.h>
size_t fwrite(const void * ptr , size_t size ,

size_t n, FILE *stream);

fwrite writes n items of size size from a buffer at address ptr to the

specified output stream. fwrite returns the number of items written.

fgetc

#include <stdio.h>
int getc(FILE * stream);

getc reads a character from the specified input stream and increments

the associated file pointer by one byte. getc returns the next character

from the specified input stream.

If end-of-file is encountered or a read error occurs, getc returns EOF.

getchar

#include <stdio.h>
int getchar(void);

getchar is a macro defined as getc(stdin) . getchar returns the next

character from standard input.

getcwd

#include <unistd.h>
char * getcwd(char * buf, size_t size);

Use the file system simulation feature of CrossView Pro to retrieve the

current directory on the host.

getcwd returns the directory name if successful or NULL on error.

Run–Time Library 2–43

• • • • • • • •

getenv

#include <stdlib.h>
char *getenv(const char * name);

The getenv function searches an environment list, provided by the host

environment, for the environment variable name. It returns the variable

definition, or NULL if no definition exists.

getenv must be implemented by the user.

getl

#define _EXTENSIONS
#include <stdio.h>
long getl (FILE * stream);

getl reads and returns a long from the specified file stream.

getl is a TASKING extension. The first byte read is the high-order byte of

the result.

gets

#include <stdio.h>
char *gets(char * s);

gets reads a string from standard input (stdin) into s. The read terminates

when a newline character is read or end-of-file is encountered. Any

newline character is then discarded and the string is terminated with a

null. gets returns s.

fgets does not discard the newline character. If end-of-file is

encountered and no characters have been read, gets returns NULL.

getw

#define _EXTENSIONS
#include <stdio.h>
int getw(FILE * stream);

getw reads and returns an integer from the specified input stream.

Chapter 22–44
L
IB
R
A
R
IE
S

getw is a TASKING extension. The first byte read is the high order byte of

the result.

gmtime

#include <time.h>
struct tm *gmtime(const time_t * time);

gmtime converts a time value represented by a time_t into a time value

represented as a tm structure, expressed as Coordinated Universal Time

(UTC). If UTC is not available, then gmtime returns NULL.

This function must be implemented by the user. The current return value

is NULL pointer.

isalnum

#include <ctype.h>
int isalnum(int c);

isalnum tests whether c is an alphabetic character (either upper or lower

case) or a decimal digit. If c is an alphanumeric character, isalnum
returns TRUE. If c is not an alphanumeric character, isalnum returns

FALSE.

If c is outside the range [-1, 255], the result is undefined.

isalpha

#include <ctype.h>
int isalpha(int c);

isalpha tests whether c is an alphabetic character (either upper or lower

case). If c is a letter, isalpha returns TRUE. If c is not a letter, isalpha
returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

Run–Time Library 2–45

• • • • • • • •

iscntrl

#include <ctype.h>
int iscntrl(int c);

iscntrl tests whether c is a delete or control character. iscntrl returns

TRUE if c is a control character; FALSE if c is not a control character.

If c is outside the range [-1, 255], the result is undefined. The control

characters are those whose hex values are between 0 and 1F or equal to

7F.

isdigit

#include <ctype.h>
int isdigit(int c);

isdigit tests whether c is a decimal digit. isdigit returns TRUE if c is
a digit; FALSE if c is not a digit.

If c is outside the range [-1, 255], the result is undefined.

isgraph

#include <ctype.h>
int isgraph(int c);

isgraph tests whether c is a graphic character; that is, any printing

character except a space. isgraph returns TRUE if c is a graphic

character. isgraph returns FALSE if c is not a graphic character.

If c is outside the range [-1, 255], the result is undefined. Graphic

characters are those whose hex values are between 21 and 7E. The DEL

character is not a graphic character.

Chapter 22–46
L
IB
R
A
R
IE
S

islower

#include <ctype.h>
int islower(int c);

islower tests whether c is a lowercase alphabetic character. If c is a
lowercase letter, islower returns TRUE. If c is not a lowercase letter,

islower returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

isprint

#include <ctype.h>
int isprint(int c);

isprint tests whether c is any printable character, including space.

isprint returns TRUE if c is a printable character; FALSE if c is not a

printable character.

If c is outside the range [-1, 255], the result is undefined. The printable

characters are those whose hex values are between 20 and 7E.

ispunct

#include <ctype.h>
int ispunct(int c);

ispunct tests whether c is a punctuation character. Punctuation characters

include any printable character except a space, a digit or a letter. If c is a
punctuation character, ispunct returns TRUE. If c is not a punctuation

character, ispunct returns FALSE.

If c is outside the range [-1, 255], the result is undefined. The punctuation

characters are those whose hex values are between 21 and 2f, 3A and 40,

5B and 60, or 7B to 7E.

Run–Time Library 2–47

• • • • • • • •

isspace

#include <ctype.h>
int isspace(int c);

isspace tests whether c is a white-space character: a space, tab, carriage

return, newline, vertical tab or formfeed. If c is a white-space character,

isspace returns TRUE. If c is not a white-space character, isspace
returns FALSE.

If c is outside the range [-1, 255], the result is undefined. The white-space

characters are those whose hex values are between 9 and D or equal to

20.

isupper

#include <ctype.h>
int isupper(int c);

isupper tests whether c is an upper-case alphabetic character. isupper
returns TRUE if c is an upper-case letter. If c is not an upper-case letter,

isupper returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

isxdigit

#include <ctype.h>
int isxdigit(int c);

isxdigit tests whether c is a hexadecimal digit, that is, in the set

[0123456789abcdefABCDEF]. isxdigit returns TRUE if c is a hex digit;

FALSE if c is not a hex digit.

If c is outside the range [-1, 255], the result is undefined.

labs

#include <stdlib.h>
long labs(long x);

labs calculates |x|, the absolute value of the long integer x.

Chapter 22–48
L
IB
R
A
R
IE
S

labs returns its input if x is the most negative long value.

ldexp

#include <math.h>
double ldexp(double x, int exp);

ldexp returns the product of x and 2 raised to the integer power exp.

That is, ldexp returns the quantity x*(2exp).

ldexp returns IEEE infinity in case of overflow; zero in case of

underflow.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long int numerator , long int denominator);

ldiv computes the quotient and remainder of the division of the

numerator by the denominator. The type ldiv_t is a structure that contains

two components, quot and rem , both of type long int .

If the result cannot be represented the behavior is undefined. Otherwise

quot * denominator + rem shall equal numerator.

localeconv

#include <locale.h>
struct lconv *localeconv(void);

localeconv returns a pointer to a filled-in structure that contains

numeric formatting information for the current locale. The values in the

structure cannot be changed by the program except by later calls to

localeconv or on calls to setlocale that change the categories

LC_ALL, LC_MONETARY, or LC_NUMERIC.

The locale is the ANSI C method of specifying culturally-dependent

information. Currently the library supports only the default or �C" locale.

Run–Time Library 2–49

• • • • • • • •

localtime

#include <time.h>
struct tm *localtime(const time_t * time);

localtime breaks down a time value expressed as a time_t into a time

value expressed as a tm structure.

The tm structure pointed to by the return value may be overwritten by

subsequent calls to localtime or gmtime .

log

#include <math.h>
double log(double x);

log computes the natural logarithm of x. If x is zero, then log returns

IEEE negative infinity. If x is less than zero, log returns IEEE NaN (Not a

Number) and sets errno to EDOM.

log2

#define _EXTENSIONS
#include <math.h>
double log2(double x);

log2 computes the base 2 logarithm of the double x. If x is zero then

log2 returns IEEE negative infinity. If x is less than zero, log2 returns

IEEE NaN (Not a Number) and sets errno to EDOM.

log2 is a TASKING extension.

log10

#include <math.h>
double log10(double x);

log10 computes the base 10 logarithm of x. If x is zero, then log10
returns IEEE negative infinity. If x is less than zero, log10 returns IEEE

NaN (Not a Number) and sets errno to EDOM.

Chapter 22–50
L
IB
R
A
R
IE
S

longjmp

#include <setjmp.h>
void longjmp(jmp_buf x, int n);

longjmp returns to an environment established by setjmp using n as the

return value, except that 1 is returned if n is zero. If setjmp was not

invoked with this environment or if the function containing the invocation

has terminated, then the results are undefined.

The values of non-volatile objects of automatic storage class (that is,

non-volatile local variables) local to the function calling setjmp are

indeterminate if they were modified between the setjmp and longjmp
calls.

After longjmp is completed, program execution continues as if the

corresponding invocation of setjmp had just returned n (or 1, if n is

zero).

lseek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

Moves read-write file offset. This function calls the low-level routine

_lseek.

lseek returns the resulting pointer location if successful or -1 on error.

malloc

#include <stdlib.h>
void *malloc(size_t nwords);

malloc allocates space of the size nwords on the heap. Allocated

memory is not initialized to zero.

If memory space is exhausted, malloc returns a null pointer.

Run–Time Library 2–51

• • • • • • • •

mblen

#include <stdlib.h>
int mblen(const char * s, size_t n);

If s is a null pointer or points to a null character, then mblen returns 0.

Otherwise, mblen returns the number of bytes comprising the multi-byte

character s. If s points to an invalid multibyte character, then mblen
returns -1.

mblen assumes the Shift JIS convention for Japanese character encoding.

Values between 1 and 127 (hex 7F) are treated as one-byte ASCII codes.

Values between 160 and 223 (hex A0 to DF) are treated as one-byte kana

codes. Kanji characters are encoded as two-byte sequences where the first

byte is between 129 and 159 (hex 81 to 9F) or 224 to 252 (hex E0 to FC)

and the second byte is between 64 and 252 (hex 40 to FC).

Here is a summary:

ASCII (one byte) 0 through 0x7F

Kana (one byte) 0xA0 through 0xDF

Kanji (two bytes) first byte: 0x81 through 0x9F and 0xE0
through 0xFC
second byte: 0x40 thorugh 0xFC

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t * pwcs ,
const char * s, size_t n);

mbstowcs converts a sequence of multi-byte characters pointed to by s to
wide characters, and stores no more than n of them in the array of wide

characters pointed to by pwcs. It copies up to to n characters from s to
pwcs, until it reaches a null character. If an invalid character is found,

mbstowcs returns -1. Otherwise, the number of characters written is

returned. The mbstowcs routine assumes the Shift JIS convention for

Japanese characters. See mblen for more details.

Chapter 22–52
L
IB
R
A
R
IE
S

mbstowc

#include <stdlib.h>
int mbtowc(wchar_t * pwc, const char * s, size_t n);

mbtowc converts the multi-byte character pointed to by s to a wide

character, and stores the wide character in the location pointed to by pwc.
It returns 0 if either s is null or points to the null character and returns -1

if the character is invalid. Otherwise, if pwc is not null, the character at s is
stored at pwc and mbtowc returns 1 if the character is a one-byte ASCII

or kana code and returns 2 if it is a two-byte Kanji code. The mbstowcs
routine assumes the Shift JIS convention for Japanese characters. See

mblen for more details.

memccpy

#include <extended.h>
void *memccpy(void * s1 , void *s2 , char c, size_t n);

memccpy copies characters from s2 to s1, stopping after the first

occurrence of character c has been copied, or after n characters have been

copied, whichever comes first. memccpy returns a pointer to the character

after the copy of c in s1, or NULL if c was not encountered.

memccpy is a TASKING extension.

memchr

#include <string.h>
void *memchr(const void * s, int c , size_t n);

memchr searches an n word memory area at address s for the character c.
memchr returns a pointer to the first occurrence of c. If c is not found,

memchr returns NULL.

memchr is equivalent to strchr , except it does not stop at nulls.

Run–Time Library 2–53

• • • • • • • •

memcmp

#include <string.h>
int memcmp(const void * s1 , const void *s2 , size_t n);

memcmp compares n words of memory at addresses s1 and s2. memcmp
returns zero if the memory areas are equal, an integer greater than zero if

s1 is lexically larger than s2; else memcmp returns an integer less than zero.

memcmp is equivalent to the strcmp routine, except it does not stop at

nulls.

memcpy

#include <string.h>
void *memcpy(void * s1 , const void *s2 , size_t n);

memcpy copies n words of memory from s2 to s1. memcpy returns its first

argument, s1.

memcpy is equivalent to strncpy except that it does not stop at nulls. If

the two memory areas overlap then the results are undefined. See also

memmove.

memmove

#include <string.h>
void *memmove(void * s1 , const void *s2 , size_t n);

memmove copies n words of memory from s2 to s1. If the two memory

areas overlap, then the copy is done as if the characters are first copied

from s2 into a temporary area of size n, and then copied to s1. memmove
returns its first argument, s1.

memset

#include <string.h>
void *memset(void * s, int c , size_t n);

memset fills n words of memory at s with a fill character c and returns its

first argument, s.

Chapter 22–54
L
IB
R
A
R
IE
S

mktime

#include <time.h>
time_t mktime(struct tm * time);

mktime converts a time value, expressed as a tm structure, into a time

value expressed as a time_t . The original values of the tm_wday and

tm_yday components of the tm structure are ignored, and the other

values are not restricted to their usual ranges.

On successful completion the values of the tm_wday and tm_yday
components of the tm structure are set appropriately, and the other values

are normalized to be in their usual ranges.

Some time values which can be expressed as tm structures cannot be

expressed as time_t values. In that case (time_t) -1 is returned.

modf

#include <math.h>
double modf(double x, double * intptr);

modf returns the fractional part of x and stores the integral part indirectly

through the pointer intptr. In effect, this breaks the double x into an

integer and fractional part. The breakdown into integer and fractional part

is defined by truncation (round towards zero).

For example, the integer part of -3.9 is -3.0, and the fractional part is -.9.

offsetof

#include <stddef.h>
size_t offsetof(type , member);

The macro offsetof returns the offset in bytes from the beginning of the

structure type to the structure member member.

The offset macro is defined as follows:

#define offsetof(type , member)
(size_t) & (((type *)0) –> member)

Run–Time Library 2–55

• • • • • • • •

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls the low-level

routine _open.

open returns the file descriptor if successful (a non-negative integer), or

-1 on error.

perror

#include <stdio.h>
void perror(const char * s);

perror maps the error number in the integer expression errno to an error

message. It writes a sequence of characters to the standard error stream as

follows. First, if s is not a null pointer and does not point to a null

character, the string pointed to by s is printed, followed by a colon and a

space. Next, the appropriate error string is printed, followed by a newline.

strerror.

pow

#include <math.h>
double pow(double x, double y);

pow returns x raised to the y power.

If x is zero and y is non-positive, then IEEE infinity is returned and errno
is set to EDOM.

If x is negative and y is not an integer, then IEEE infinity is returned and

errno is set to EDOM.

To avoid errors, x must be greater than or equal to zero, unless y is an

integer.

Chapter 22–56
L
IB
R
A
R
IE
S

printf

#include <stdio.h>
int printf(const char * format , ...);

printf converts and formats its arguments and prints them to stdout,

following specifications of format. format may contain ordinary

characters, which are simply copied to standard output, and conversion

specifications, each of which causes conversion and printing of the next

successive argument to printf .

The following description is taken from the ANSI C standard.

Each conversion specification is introduced by the character %. After the %,

the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the

conversion specification.

• An optional minimum field width. If the converted value has fewer

characters than the field width, it will be padded with spaces (by

default) to the left (or right, if the left adjustment flag, described later,

has been given) to the field width. The field width takes the form of an

asterisk * (described later) or a decimal integer. Note that zero (0) is

taken as a flag, not as the beginning of a field width.

• An optional precision that gives the minimum number of digits to

appear for the d, i , o, u, x and X conversion, the number of digits to

appear after the decimal-point character for e, E and f conversions,

the maximum number of significant digits for the g and G conversions,

or the maximum number of characters to be written from a string in s
conversion. The precision takes the form of a period (.) followed either

by an asterisk * (described later) or by an optional decimal integer; if

only the period is specified, the precision is taken as zero. If a

precision appears with any other conversion specifier, the behavior is

undefined.

Run–Time Library 2–57

• • • • • • • •

• An optional h specifying that a following d, i , o, u, x or X conversion

specifier applies to a short int or unsigned short int argument

(the argument will have been promoted according to integral

promotions, and its value shall be converted to short int or

unsigned short int before printing) an optional h specifying that a

following n conversion specifer applies to a pointer to a short int
argument; an optional l specifying that a following d, i , o, u, x or X
conversion specifier applies to a long int or unsigned long int
argument; an optional l specifying that a following n conversion

specifier applies to a pointer to a long int argument; or an optional

L specifying that a following e, E, f , g or G conversion specifier applies

to a long double argument. If an h, l or L appears with any other

conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by

an asterisk. In this case, an int argument supplies the field width or

precision. The arguments specifying field width, or precision or both, shall

appear (in that order) before the argument (if any) to be converted. A

negative field width argument is taken as a - flag followed by a positive

field width. A negative precision argument is taken as if the precision were

omitted.

The flag characters and their meanings are:

– The result of the conversion will be left-justified within the

field. (It will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a

plus or minus sign. (It will begin with a sign only when a

negative value is converted if this flag is not specified).

space If the first character of a signed conversion is not a sign, or if

a signed conversion results in no characters, a space will be

prefixed to the result. If the space and + flags both appear,

the space flag will be ignored.

Chapter 22–58
L
IB
R
A
R
IE
S

The result is to be converted to an �alternate form." For o
conversion, it increases the precision to force the first digit of

the result to be a zero. For x (or X) conversion, a nonzero

result will have 0x (or 0X) prefixed to it. For e, E, f , g and G
conversions, the result will always contain a decimal-point

character, even if no digits follow it. (Normally, a

decimal-pointer character appears in the result of these

conversions only if a digit follows it.) For g and G
conversions, trailing zeros will not be removed from the

result. For other conversions, the behavior is undefined.

0 For d, i , o, u, x , X, e, E, f , g and G conversions, leading

zeros (following any indication of sign or base) are used to

pad to the field width; no space padding is performed. If the

0 and - flags both appear, the 0 flag will be ignored. For d,

i, o, u, x and X conversions, if a precision is specified, the

0 flag will be ignored. For other conversions, the behavior is

undefined.

The conversion specifiers and their meanings are:

d, i The int argument is converted to signed decimal in the style

[-]dddd. The precision specifies the minimum number of

digits to appear; if the value being converted can be

represented in fewer digits, it will be expanded with leading

zeros. The default precision is 1. The result of converting a

zero value with a precision of zero is no characters.

o, u, x , X The unsigned int argument is converted to unsigned octal

(o), unsigned decimal (u) or unsigned hexadecimal notation

(x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The

precision specifies the minimum number of digits to appear;

if the value being converted can be represented in fewer

digits, it will be expanded with leading zeros. The default

precision is 1. The result of converting a zero value with a

precision of zero is no characters.

Run–Time Library 2–59

• • • • • • • •

f The double argument is converted to decimal notation in

the style [-]ddd.ddd, where the number of digits after the

decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the

precision is zero and the # flag is not specified, no

decimal-point character appears. If a decimal-point character

appears, at least one digit appears before it. The value is

rounded to the appropriate number of digits.

e, E The double argument is converted in the style [-]d.ddde±dd,

where there is one digit before the decimal-point character

(which is nonzero if the argument is nonzero) and the

number of digits after it is equal to the precision; if the

precision is missing it is taken as 6; if the precision is zero

and the # flag is not specified, no decimal point character

appears. The value is rounded to the appropriate number of

digits. The E conversion specifier will produce a number with

E instead of e introducing the exponent. The exponent

always contains at least two digits. If the value is zero, the

exponent is zero.

g, G The double argument is converted in style f or e (or in style

E in the case of a G conversion specifier) with the precision

specifying the number of significant digits. If the precision is

zero, it is taken as 1. The style used depends on the value

converted; style e (or E) will be used only if the exponent

resulting from such a conversion is less than -4 or greater

than or equal to the precision. Trailing zeros are removed

from the fractional portion of the result; a decimal-point

character appears only if it is followed by a digit.

c The int argument is converted to an unsigned char , and

the resulting character is written.

s The argument shall be a pointer to an array of character type.

(No special provisions are made for multibyte characters.)

Characters from the array are written up to (but not

including) a terminating null character. If the precision is

specified, no more than that many characters are written. If

the precision is not specified or is greater than the size of the

array, the array shall contain a null character.

Chapter 22–60
L
IB
R
A
R
IE
S

p The argument shall be a pointer to void . The value of the

pointer is converted to a sequence of hex characters, just like

the x format.

n The argument shall be a pointer to an integer into which is

written the number of characters written to the output stream

so far by this call to printf . No argument is converted.

% A % is written. No argument is converted. The complete

conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an

array of character type using %s conversion, or a pointer using %p
conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a

field; if the result of a conversion is wider than the field width, the field is

expanded to contain the conversion result.

Notes

• printf uses its first argument to decide how many arguments follow

and what their types are. printf normally returns the number of

characters printed. If there are not enough arguments, or arguments are

of the wrong type, the results are undefined.

• printf returns the number of characters printed, or a negative

number if an output error occurred. No more than 509 characters shall

be produced for any single conversion.

• fprintf and sprintf are identical to printf , except that fprintf
directs its output to the specified output stream; sprintf directs its

output to the string s.

putc

#include <stdio.h>
int putc(int c, FILE *stream);

putc writes the character c to the specified output stream.

Run–Time Library 2–61

• • • • • • • •

putchar

#include <stdio.h>
int putchar(int c);

putchar is equivalent to putc with the second argument of stdout.
putchar returns the character written. If an error occurs, putchar returns

EOF.

putl

#define _EXTENSIONS
#include <stdio.h>
long putl(long l , FILE *stream);

putl writes a long, l, to the specified output stream and returns its first

argument.

putl is equivalent to putw if integers are 32 bits. The first character

written is the high-order byte of l.

putl is a TASKING extension.

puts

#include <stdio.h>
int puts(const char * s);

puts copies the string s to standard output (stdout). puts returns 0, the

success code.

putw

#define _EXTENSIONS
#include <stdio.h>
int putw(int w, FILE *stream);

putw writes an integer w to the specified output stream and returns its

first argument.

The first character written is the high-order byte of w.

Chapter 22–62
L
IB
R
A
R
IE
S

qsort

#include <stdlib.h>
void qsort(void * base , size_t

nummembr, size_t size ,
int (* comp)(const void *,
const void *));

qsort sorts an array of nummembr elements, the first element of which is

pointed to by base. The size of each object is specified by size. The

contents of the array are sorted into ascending order according to the

comparison function pointed to by comp, which takes two arguments that

point to the objects being compared. The comparison function should

return an integer less than, equal to, or greater than zero if the first

argument is considered to be less than, equal to, or greater than the

second.

raise

#include <signal.h>
int raise(int sig);

The raise function sends the signal sig to the executing program. raise
returns zero if successful, and nonzero if unsuccessful.

See signal for more details.

rand

#include <stdlib.h>
int rand(void);

rand computes and returns pseudo-random integers in the range [0,

32767]. The pseudo-random number is computed via a simple

multiplicative congruence algorithm based on a �seed" value (initially

one). At any time the seed value may be reset using the srand routine.

The low bits of the numbers generated are not very random; use the

middle bits. Specifically, the lowest bit alternates between 0 and 1.

Run–Time Library 2–63

• • • • • • • •

rcopy

#include <rcopy.h>
void rcopy(struct hdr * addr)

rcopy is a ROM initialization utility, called at the start of a new C

program. Its argument addr is the address of an initialization segment

created by the llink utility.

rcopy should be called at the start of a new program or during system

restart. The argument to rcopy is typically the address of a fictitious

external variable. The name of this variable is carefully chosen to match

that generated by llink for the initialization segment itself. The name of

the initialization segment can be determined by llink options. Note that

the C compiler prepends an underscore to the names of external variables,

so an external variable named x would match with an initialization

segment named _x .

rcopy should be called once for each initialization segment created by

llink . Refer to the Linking Locator chapter in the User's Manual for more

details.

rcopy is a TASKING extension.

realloc

#include <stdlib.h>
void *realloc(void * ptr , size_t size);

realloc changes the size of the object pointed to by ptr to the size

specified by size. The contents of the object will remain unchanged up to

the lesser of the new and old sizes. If ptr is a null pointer, realloc
behaves like the malloc function for the specified size. If size is zero and

ptr is not a null pointer, the object is freed.

Chapter 22–64
L
IB
R
A
R
IE
S

read

#include <unistd.h>
size_t read(int fd, char * buffer, size_t count);

Reads a sequence of characters from a file. This function calls the

low-level routine _read, which interfaces to CrossView Pro's file system

simulation.

read returns the number of characters read.

remove

#include <stdio.h>
int remove(const char * filename);

remove deletes filename and returns zero upon successful completion.

remove must be implemented by the user.

rename

#include <stdio.h>
int rename(const char * old , const char * new);

This routine renames the file old to the filename new and returns zero if

successful.

rename is implemented using CrossView Pro's file system simulation.

rewind

#include <stdio.h>
void rewind(FILE * stream);

The rewind function sets the file position indicator for the stream pointed

to by stream to the beginning of the file. It is equivalent to:

(void) fseek(stream , 0L, SEEK_SET)

• except that the error indicator for the steam is also cleared.

• The rewind function returns no value.

• rewind must be implemented by the user.

Run–Time Library 2–65

• • • • • • • •

scanf

#include <stdio.h>
int scanf(const char * format , ...);

scanf reads input from standard input under control of the string pointed

to by format. The format string specifies admissible input sequences and

how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted values. If there are

insufficient arguments or the types of the arguments do not match the

converted values the behavior is undefined. scanf returns EOF if an input

failure occurs before any conversion. Otherwise scanf returns the

number of items assigned.

The following description of the format specification is taken from the

ANSI C standard.

The format is composed of zero or more directives: one or more

white-space characters; an ordinary multibyte character (neither % nor a

white-space character); or a conversion specification. Each conversion

specification is introduced by the character %. After the %, the following

appear in sequence:

• An optional assignment-suppressing character * .

• An optional nonzero decimal integer that specifies the maximum field

width.

• An optional h, l or L indicating the size of the receiving object. The

conversion specifiers d, i , and n shall be preceded by h if the

corresponding argument is a pointer to short int rather than a

pointer to int , or by l if it is a pointer to long int . Similarly, the

conversion specifiers o, u, and x shall be preceded by h if the

corresponding argument is a pointer to unsigned short int rather

than a pointer to unsigned int , or by l if it is a pointer to

unsigned long int . Finally, the conversion specifiers e, f , and g
shall be preceded by l if the corresponding argument is a pointer to

double rather than a pointer to float , or by L if it is a pointer to

long double . If an h, l , or L appears with any other conversion

specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The

valid conversion specifiers are described below.

Chapter 22–66
L
IB
R
A
R
IE
S

The scanf function executes each directive of the format in turn. If a

directive fails, as detailed below, the scanf function returns. Failures are

described as input failures (due to the unavailability of input characters) or

matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading

input up to the first non-white-space character (which remains unread),

or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading

the next character of the stream. If one of the characters differs from one

comprising the directive, the directive fails, and the differing and

subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching

input sequences, as described below for each specifier. A conversion

specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are

skipped, unless the specification includes a [, c , or n specifier. (These

white-space characters are not counted against a specified field width.)

An input item is read from the stream, unless the specification includes an

n specifier. An input item is defined as the longest matching sequence of

input characters, unless that exceeds a specified field width, in which case

it is the initial subsequence of that length in the sequence. The first

character, if any, after the input item remains unread. If the length of the

input item is zero, the execution of the directive fails: this condition is a

matching failure, unless an error prevented input from the stream, in

which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of the %n
directive, the count of input characters) is converted to a type appropriate

to the conversion specifier. If the input item is not a matching sequence,

the execution of the directive fails: this condition is a matching failure.

Unless assignment suppression was indicated by a * , the result of the

conversion is placed in the object pointed to by the first argument

following the format argument that has not already received a conversion

result. If this object does not have an appropriate type, or if the result of

the conversion cannot be represented in the space provided, the behavior

is undefined.

The following conversion specifiers are valid:

Run–Time Library 2–67

• • • • • • • •

d Matches an optionally signed decimal integer, whose format

is the same as expected for the subject sequence of the

strtol function with the value 10 for the base argument.

The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the

same as expected for the subject sequence of the strtol
function with the value 0 for the base argument. The

corresponding argument shall be a pointer to integer.

o Matches an optionally signed octal integer, whose format is

the same as expected for the subject sequence of the

strtoul function with the value 8 for the base argument.

The corresponding argument shall be a pointer to unsigned

integer.

u Matches an optionally signed decimal integer, whose format

is the same as expected for the subject sequence of the

strtoul function with the value 10 for the base argument.

The corresponding argument shall be a pointer to unsigned

integer.

x Matches an optionally signed hexadecimal integer, whose

format is the same as expected for the subject sequence of

the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to

unsigned integer.

e, f , g Matches an optionally signed floating-point number, whose

format is the same as expected for the subject string of the

strtod function. The corresponding argument shall be a

pointer to floating.

s Matches a sequence of non-white-space characters. The

corresponding argument shall be a pointer to the initial

character of an array large enough to accept the sequence

and a terminating null character, which will be added

automatically.

Chapter 22–68
L
IB
R
A
R
IE
S

[Matches a nonempty sequence of characters from a set of

expected characters (the scanset). The corresponding

argument shall be a pointer to the initial character of an array

large enough to accept the sequence and a terminating null

character, which will be added automatically. The conversion

specifier includes all subsequence characters in the format
string, up to and including the matching right bracket (]).

The characters between the brackets (the scanlist) comprise

the scanset, unless the character after the left bracket is a

circumflex(^), in which case the scanset contains all

characters that do not appear in the scanlist between the

circumflex and the right bracket. If the conversion specifier

begins with [] or [^] , the right bracket character is in the

scanlist and the next right bracket character is the matching

right bracket that ends the specification; otherwise the first

right bracket character is the one that ends the specification.

c Matches a sequence of characters of the number specified by

the field width (1 if no field width is present in the directive).

The corresponding argument shall be a pointer to the initial

character of an array large enough to accept the sequence.

No null character is added. No special provisions are made

for multibyte characters.

p Matches a sequence of hexadecimal characters whose format

is the same as expected for the subject sequence of the

strtoul function with the value 16 for the base argument.

The corresponding argument shall be a pointer to a pointer

to void . This matches the %p conversion by printf .

n No input is consumed. The corresponding argument shall be

a pointer to integer into which is to be written the number of

characters read from the input stream so far by this call to the

scanf function. Execution of a %n directive does not

increment the assignment count returned at the completion

of execution of the scanf function.

% Matches a single %; no conversion or assignment occurs. The

complete conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G and X are also valid and behave the same

as, respectively, e, g and x .

Run–Time Library 2–69

• • • • • • • •

If end-of-file is encountered during input, conversion is terminated. If

end-of-file occurs before any characters matching the current directive

have been read (other than leading white space, where permitted),

execution of the current directive terminates with an input failure;

otherwise, unless execution of the current directive is terminated with a

matching failure, execution of the following directive (if any) is terminated

with an input failure.

If conversion terminates on a conflicting input character, the offending

input character is left unread in the input stream. Trailing white-space

(including new-line characters) is left unread unless matched by a

directive. The success of literal matches and suppressed assignments is not

directly determinable other than via the %n directive.

Notes

• The scanf function returns the value of the macro EOF if an input

failure occurs before any conversion. Otherwise, the scanf function

returns the number of input items assigned, which can be fewer than

provided for, or even zero, in the event of an early matching failure.

• scanf is identical to the fscanf and sscanf routines, except

fscanf reads its input from the specified input stream; sscanf
reads its input from the string s.

setbuf

#include <stdio.h>
void setbuf(FILE * stream , char * buf);

setbuf may be used only after the stream pointed to by stream has been

opened but before any other operation is performed on the stream. If buf
is NULL, then it causes the stream to be unbuffered. Otherwise buf must

point to an array of size BUFSIZE and buf is used as the buffer in a fully

buffered file.

setbuf must be implemented by the user.

setjmp

#include <setjmp.h>
int setjmp(jum_buf x);

setjmp establishes an environment for later use by longjmp. The type of

the argument, jmp_buf , is provided in the setjmp.h include file.

Chapter 22–70
L
IB
R
A
R
IE
S

See longjmp for more details.

setlocale

#include <locale.h>
char *setlocale(int category , const char * locale);

setlocale returns a pointer to a string that describes the new locale, or

a null pointer if locale cannot be changed. The value of category must

match the value of one of the macros defined in the header file

locale.h . These macros begin with LC_.

If locale is a null pointer, setlocale does not change the current locale.
If locale points to the string �C", the new locale is the �C" locale for the

category specified. If locale points to the string � ", the locale is the native

locale for the category specified. locale can point to strings returned from

previous calls to setlocale .

At program startup, the target environment acts as if the call

setlocale (�LC_ALL","C") was called before it called main.

The supplied setlocale only works for the �C" locale.

setvbuf

#include <stdio.h>
int setvbuf(FILE * stream , char * buf ,
 int mode, size_t size);

setvbuf sets the buffering mode for the stream pointed to by stream,

according to buf, mode and size. If buf is not a null pointer, then buf is
the address of the first element of an array of chars of size size that can be

used as a stream buffer. mode must be one of the following macros:

_IOFBF (full buffering), _IOLBF (line buffering) _IONBF (no buffering).

setvbuf must be called immediately after a call to fopen to associate a

file with that stream.

setvbuf must be implemented by the user.

Run–Time Library 2–71

• • • • • • • •

signal

#include <signal.h>
void (*signal(int sig , void (* func)(int)))(int);

The signal function allows a program to specify what action shall be

taken upon receipt of the signal sig, which may be generated externally, or

may be explicitly generated with the raise function. If the value of func
is SIG_DFL, default handling for that signal will occur. If the value of func
is SIG_IGN , the signal will be ignored. Otherwise, the signal handler

pointed to by func will be called upon receipt of signal sig. If no errors

are detected, signal returns the value of func for the most recent call to

signal for the specified flag sig. Otherwise, a value of SIG_ERR is

returned and a positive value is stored in errno .

Since most embedded applications will not want to abort when errors are

detected, the library as distributed does not raise signals under any

circumstances.

sin

#include <math.h>
double sin(double x);

sin computes the sine of x, expressed in radians.

sinh

#include <math.h>
double sinh(double x);

sinh computes the hyperbolic sine of x.

sprintf

#include <stdio.h>
int sprintf(char * s, const char *format , ...);

printf.

Chapter 22–72
L
IB
R
A
R
IE
S

sprintf is identical to printf , but directs its output to the string s. See

printf for more details.

sqrt

#include <math.h>
double sqrt(double x);

sqrt computes the square root of x. If x is less than zero, errno is set to

EDOM and an IEEE NaN (Not a Number) is returned.

srand

#include <stdlib.h>
void srand(unsigned int seed)

srand resets the seed for the random number generator rand with the

value seed.

sscanf

#include <stdio.h>
int sscanf(const char * s,

const char *format , ...);

See scanf.

sscanf is identical to fscanf and scanf , but reads its input from the

string s. See scanf for more details.

Run–Time Library 2–73

• • • • • • • •

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on

the host platform. Returns zero if successful or -1 on error.

strcat

#include <string.h>
char *strcat(char * s1 , const char *s2);

strcat appends a copy of the string pointed to by s2 (including the

terminating null character) to the end of the string pointed to by s1. The

initial character of s2 overwrites the null characters at the end of s1.

s1 must contain enough room to hold the resulting string.

strchr

#include <string.h>
char *strchr(const char * s, int c);

strchr looks for the first occurrence of a specific character, c, in a null

terminated target string, s. strchr returns a pointer to the first character

that matches c. If no character matches c, strchr returns NULL.

In ANSI C, strchr replaces the Unix index routine.

strcmp

#include <string.h>
int strcmp(char * s1 , const char *s2);

strcmp compares the strings s1 and s2, character by character, for lexical

order in the character collating sequence. strcmp returns zero if the

strings are equal; an integer greater than zero if s1 is lexically larger than

s2. If s1 is lexically smaller than s2, strcmp returns an integer less than

zero.

Chapter 22–74
L
IB
R
A
R
IE
S

strcoll

#include <string.h>
int strcoll(const char * s1 , const char * s2);

strcoll compares the string s1 to the string s2, and with both strings

interpreted as appropriate to the LC_COLLATE setting of the current locale.

The routine returns an integer greater than, equal to, or less than zero, if

s1 is greater than, equal to, or less than s2, interpreted according to the

locale.

In the �C" locale, strcoll is equivalent to strcmp .

strcpy

#include <string.h>
char *strcpy(char * s1 , const char *s2);

strcpy copies the string s2 and its terminating null to s1 and returns s1.

s1 must contain enough room to hold the result.

strcspn

#include <string.h>
size_t strcspn(char * s1 , const char *s2);

strcspn scans the string starting at s1 for the first occurrence of a

character in the string starting at s2. strcspn returns the length of the

initial segment of s1, which consists entirely of characters not in s2.

strerror

#include <string.h>
char *strerror(int errnum);

strerror maps the error number in errnum to an error message which

strerror returns. The message buffer is static and is overwritten by

subsequent calls to strerror.

Run–Time Library 2–75

• • • • • • • •

strftime

#include <time.h>
size_t strftime(char * s, size_t maxsize ,

const char * format ,
const struct tm * timeptr);

strftime puts characters into the array, s, as specified by the format

string, format. The format string consists of zero or more conversion

specifiers and ordinary characters. The conversion specifiers are given

below. Any ordinary characters including the terminating null character are

copied unchanged into the array. No more than maxsize characters are

placed into the array. The values used in the conversions are contained in

the structure timeptr.

If the total number of resulting characters is not more that maxsize, then

strftime returns the number of characters copied into the array, s,
otherwise strftime puts maxsize characters in the array s and returns the

value zero.

Format specifiers:

%a is replaced by the locale's abbreviated weekday name.

%A is replaced by the locale's full weekday name.

%b is replaced by the locale's abbreviated month name.

%B is replaced by the locale's full month name.

%c is replaced by the locale's appropriate date and time

representation.

%d is replaced by the day of the month (01-31).

%H is replaced by the hour of the day, 24 hour clock (00-23).

%I is replaced by the hour of the day, 12 hour clock (01-12).

%j is replaced by the day of the year (001-366).

%m is replaced by the month (01-12).

%M is replaced by the minute (00-59).

Chapter 22–76
L
IB
R
A
R
IE
S

%P is replaced by the locale's AM/PM designation associated

with a 12 hour clock.

%S is replaced by the seconds (00-59).

%U is replaced by the week number of the year, with the first

Sunday of the year as the first day of week 1 (00-53).

%w is replaced by the weekday, Sunday = 0, Saturday = 6.

%W is replaced by the week number of the year, with the first

Monday of the year as the first day of week 1 (00-53).

%x is replaced by the date representation.

%X is replaced by the time representation.

%y is replaced by the year without the century (00-99).

%Y is replaced by the year with the century.

%Z is replaced by no characters.

%% is replaced by %.

strlen

#include <string.h>
size_t strlen(const char * s);

strlen scans the text string starting at s and returns the number of

characters it encounters before the first null character.

strncat

#include <string.h>
char *strncat(char * s1 , const char *s2, size_t n);

strncat appends up to n characters from the string s2 to the end of

string s1, and then terminates the string with a null. strncat returns its

first argument, s1.

strncat is identical to strcat , except it appends a limit of n characters,

plus one for the null.

Run–Time Library 2–77

• • • • • • • •

strncmp

#include <string.h>
char *strncmp(char * s1 , const char *s2 , size_t n);

strncmp compares two text strings, s1 and s2, character by character, for

lexical order in the character collating sequence. The first string starts at s1,

the second at s2. n specifies the maximum number of characters to be

compared, unless the terminating null in s1 or s2 is encountered first. The

strings must match, including any terminating null characters that may be

encountered, in order for them to be equal. strncmp returns an integer

greater than zero if s1 is lexically greater than s2, zero if s1 is lexically

equal to s2, and an integer less than zero if s1 is lexically less than s2.

strncmp is identical to strcmp , except it compares a maximum of n
characters.

strncpy

#include <string.h>
char *strncpy(char * s1 , const char *s2 , size_t n);

strncpy copies characters from s2 to s1 until it reaches the end of s2 or

until n characters have been copied. strncpy pads with zeros, if

necessary, to copy n characters total. strncpy returns its first argument,

s1.

If the string s2 is longer than n characters, s1 may not end with a null

character.

strpbrk

#include <string.h>
char *strpbrk(const char * s1 , const char * s2);

strpbrk scans the string s1 for the first occurrence of a character in the

string s2. strpbrk returns a pointer to the first character in s1 that is also

in s2, or null if s1 has no characters from s2.

Chapter 22–78
L
IB
R
A
R
IE
S

strrchr

#include <string.h>
char *strrchr(const char * s, int c);

strrchr looks for the last occurrence of a specific character, c, in a null

terminated target string, s. strrchr returns a pointer to the last character

that matches c. If no character matches c, strrchr returns NULL.

In ANSI C, strrchr replaces the Unix rindex routine.

strspn

#include <string.h>
size_t strspn(char * s1 , const char *s2);

strspn scans the string s1 for the first occurrence of a character not in the

string s2. strspn returns the length of the initial segment of s1 which

consists entirely of characters in s2.

strstr

#include <string.h>
char *strstr(const char * s1 , const char *s2);

strstr finds the first instance of the string s2 in the string s1. strstr
returns a pointer to the occurrence of s1 if found or a null pointer if the

string was not found. If s2 points to a string of zero length, strstr
returns s1.

strtod

#include <stdlib.h>
double strtod(const char * s, char ** endptr);

strtod converts a string s, into a double floating-point type. strtod is

identical to atof , except that it stores a pointer to the remainder of the

string in the object pointed to by endptr, providing that endptr is not

NULL. Leading white-space characters (as defined by the isspace
function) are allowed.

Run–Time Library 2–79

• • • • • • • •

If strtod detects a format error in the string, it returns zero. If the correct

value is outside the range of representable values, plus or minus

HUGE_VAL is returned and the value of the macro ERANGE is stored in

errno .

strtok

#include <string.h>
char *strtok(char * s1 , const char *s2);

strtok breaks a string into tokens. Consider s1 as a sequence of zero or

more tokens separated by spans of one of more characters from the

�separator" string, s2. The first call to strtok returns a pointer to the first

token in s1, and will have a null written at the end of the token. The

function keeps track of its position in s1, and subsequent calls work

through s1 after the last token returned. When no tokens remain, strtok
returns NULL. The s2 string may be different from call to call.

This routine will not operate correctly if s1 points to ROM (read-only

memory).

strtol

#include <stdlib.h>
long strtol(const char * s, char ** endptr , int base);

strtol converts a string, s, into a long integer. The string that will be

converted is the longest string which matches the following pattern:

optional white–space
optional +/– sign,
optional 0x or 0X,
0–9, a–z, A–Z

Here a-z represent 10 to 35 for bases greater than 10. The 0x or 0X are

only allowed when the base is zero or 16. strtol only understands letters

that are less than the base. If base equals 0, and there is a leading 0x or

0X, the base is assumed to be 16. If there is a leading 0, the base is octal

(8). Any other initial patterns are considered to be decimal (base 10)

numbers.

*endptr is set to the remainder of the string that was not converted to a

long.

Chapter 22–80
L
IB
R
A
R
IE
S

If s does not contain a valid pattern, then *endptr is set equal to s, and the

strtol returns zero. If the value is too large to be represented by a long,

strtol sets errno to ERANGE, returns LONG_MAX for positive numbers,

and returns LONG_MIN for negative numbers.

strtoul

#include <stdlib.h>
unsigned long strtoul(const char * s,
 char ** endptr , int base);

strtoul converts a string, s, into an integer of type unsigned long

integer. strtoul is identical to strtol, except that it converts the string

to an unsigned long int.

*endptr is set to the remainder of the string that was not converted to a

long.

If s does not contain a valid pattern, *endptr is set equal to s, and the

strtoul returns zero. If the value is too large to be represented by an

unsigned long, strtoul sets errno to ERANGE, and returns ULONG_MAX.

strxfrm

#include <string.h>
size_t strxfrm(char * s1 , const char * s2 , size_t n);

strxfrm transforms the input string pointed to by s2 and places the result

in s1. No more than n characters are stored in s1, including the

terminating null character. The transformation is such that strcmp on the

transformed strings yields the same value as strcoll on the

untransformed strings.

If n is zero, then s1 may be null. strxfrm returns the length of the

transformed string, not including the null character. If the value returned is

n or more, then no characters are copied.

Run–Time Library 2–81

• • • • • • • •

swab

#include <extended.h>
void swab(char * from , char * to , int nbytes);

swab copies nbytes bytes pointed to by from to the position pointed to by

to, exchanging adjacent even and odd bytes.

nbytes should be an even number.

If from and to data areas overlap, the results are undefined.

swab is a TASKING extension.

system

#include <stdlib.h>
int system(const char * str);

system passes the string str to the host environment's command

processor. If str is a null pointer, system can be used to inquire whether a

command processor exists, in which case system returns nonzero only if

a command processor exists.

system must be implemented by the user.

tan

#include <math.h>
double tan(double x);

tan computes the tangent of x, expressed in radians.

tanh

#include <math.h>
double tanh(double x);

tanh computes the hyperbolic tangent of x.

Chapter 22–82
L
IB
R
A
R
IE
S

time

#include <time.h>
time_t time(time_t * timer);

time returns the current calendar time, expressed as the number of

seconds that have elapsed since Jan 1, 1970 12:00 A.M.

time must be implemented by the user. The current return value is

(time_t)-1.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

tmpfile creates a file that will be automatically be removed when the file

is closed or the program exits.

tmpfile must be implemented by the user.

tmpnam

#include <stdio.h>
char *tmpnam(char * s);

tmpnam returns a valid file name that will not conflict with any existing file

names.

tolower

#include <ctype.h>
int tolower(int c);

tolower converts an upper-case letter c to its lower-case equivalent,

leaving all other characters unmodified. tolower returns the

corresponding lower-case character or the unchanged character.

tolower is a function, not a macro. If c is known to be an upper-case

character, then __tolower is faster.

Run–Time Library 2–83

• • • • • • • •

toupper

#include <ctype.h>int toupper(int c);

toupper converts a lower-case character c to its upper-case equivalent,

leaving all other characters unmodified. toupper returns the

corresponding upper-case letter or the unchanged letter.

toupper is a function, not a macro. If c is known to be a lower-case

character, then __toupper is faster.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *stream);

ungetc �puts back" the character c into the specified input stream.

The ANSI C standard only guarantees that one character can be �ungotten"

without an intervening read.

unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This

function calls the low-level routine _unlink.

unlink returns zero if file is successfully removed, or a non-zero value, if

the attempt fails.

va_arg

#include <stdarg.h>
type va_arg(va_list ap, type);

The va_arg macro expands to an expression that has the type type and

value of the next varying argument in the call. The parameter ap must be

the same as that returned by va_start . Each invocation of va_arg
modifies ap so that the values of successive arguments are returned.

Chapter 22–84
L
IB
R
A
R
IE
S

va_end

#include <stdarg.h>
void va_end(va_list ap);

The va_end macro is used after all parameters on a variable length

parameter list have been accessed with va_arg . It must be referenced

before return from the function that contains the variable length argument

list.

va_end generates no code; it is only used to guarantee portability to other

compiler systems.

va_start

#include <stdarg.h>
void va_start(va_list ap, parameter);

The macro va_start is used to initialize the reading of variable length

arguments. It initializes ap for subsequent use by va_arg and va_end .

parameter is the rightmost identifier in the variable parameter list in the

function definition (the one just before the ellipsis).

vfprintf

#include <stdio.h>
int vfprintf(FILE * stream , const char * format ,
 va_list arg);

vfprintf is equivalent to fprintf, with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vfprintf returns the number of

characters transmitted or a negative number if an output error occurred.

vfprintf does not invoke the va_end macro.

Run–Time Library 2–85

• • • • • • • •

vprintf

#include <stdio.h>
int vprintf(const char * format , va_list arg);

vprintf is equivalent to printf, with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vprintf returns the number of

characters transmitted or a negative number if an output error occurred.

__yvprintf and vprintf are identical.

vprintf does not invoke the va_end macro.

vsprintf

#include <stdio.h>
int vsprintf(char * s, const char * format ,
 va_list arg);

vsprintf is equivalent to sprintf , with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vsprintf returns the number of

characters written to the array, not including the terminating null character.

vsprintf does not invoke the va_end macro.

wcstombs

#include <stdlib.h>
size_t wcstombs(char * s, const wchar_t * pwcs ,
 size_t n);

wcstombs copies n wide characters from pwcs to the multi-byte character

string s. wctombs returns 0 if pwcs is null, and returns -1 if pwcs contains

an invalid character. Otherwise, up to n characters are copied from pwcs to
s and the number of characters copied is returned. The wcstombs routine

assumes the Shift JIS convention for Japanese characters. See mblen for

more details.

Chapter 22–86
L
IB
R
A
R
IE
S

wctomb

#include <stdlib.h>
int wctomb(char * s, wchar_t wc);

wctomb copies the wide character wc to s. It returns 0 if s is a null pointer

and returns -1 if wc is an invalid character. Otherwise wc is written at s
and 1 is returned if the character is a one-byte ASCII or kana code and 2

is returned if it is a two-byte Kanji code. wctomb assumes the shift JIS

convention for Japanese characters. See mblen for more details.

write

#include <unistd.h>
size_t write(int fd, char * buffer, size_t count);

Write a sequence of characters to a file. This function calls the low-level

routine _write, which interfaces to CrossView Pro's file system simulation.

write returns the number of characters correctly written.

3

ASSEMBLY
LANGUAGE
REFERENCE

C
H

A
P

T
E

R

Chapter 33–2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

Assembly Language Reference 3–3

• • • • • • • •

The assembly language implemented by the 68K/ColdFire family

assembler was designed by Motorola, Inc. It has the features commonly

found in modern macro assembly languages. These features include

absolute/relocatable code generation, complex relocatable expressions,

macros, conditional assembly, and structured syntax. This chapter

summarizes the basic structure of the assembly language, and gives an

overview of the assembly language features.

3.1 PREFACE

The 68K/ColdFire family assembler translates assembly language source

programs into object modules. It is part of the TASKING 68K/ColdFire

toolkit, an integrated set of cross-compilers, assemblers, source level

debugger and other utilities. The other parts of the development system

are described in the User's Manual, which gives information on how to

invoke the assembler on your host system.

The TASKING 68K assembler was designed to be compatible with the

Motorola 68000 assembler. Most programs developed for the Motorola

assembler should be readily portable and source-compatible with the

TASKING 68K assembler.

This document provides information necessary to use the assembler to

develop assembly language programs for the Motorola 68K/ColdFire family

of microprocessors. It is not a comprehensive guide to the instruction set

and architecture of the 68K/ColdFire family of microprocessors.

Portions of this document are copyrighted by and used with the

permission of Motorola, Inc.

3.2 RELATED PUBLICATIONS

The following Motorola Inc. publications provide a comprehensive

treatment of microprocessor architecture and the instruction set. They may

be ordered from Motorola.

• M68000 Family Programmers Reference Manual (Motorola, Inc.)

• CPU32 Reference Manual (Motorola, Inc.)

• MC68xxx User's Manuals (Motorola, Inc.)

• ColdFire Family Programmers Reference Manual (Motorola, Inc.)

• MCF5xxx User's Manuals (Motorola, Inc.)

Chapter 33–4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

See the Motorola Semiconductor website (http://e-www.motorola.com) for

the complete documentation list for your derivative.

3.3 USING ASSEMBLY LANGUAGE

High-level languages (e.g., C and Pascal) can decrease the development

time needed for a program or system. All things being equal, a high-level

language program is likely to be more reliable, easier to understand, and

easier to maintain. However, high-level languages do not permit the

programmer to directly access all the microprocessor's features, such as

registers, processor flags, and special instructions.

As a result, an assembly language program, while sometimes taking longer

to code and debug, can run much faster and occupy less memory than the

equivalent program written in a high-level language. Since program

development time is expensive, the trade-off between development time

and program performance should be analyzed for each application. The

optimal solution is usually found in writing most routines in a high-level

language and in writing the time-critical, space-critical, and special

routines (e.g., I/O routines) in assembly language.

3.4 ELEMENTS OF ASSEMBLY LANGUAGE

The lines in an assembly language source file can be classified in four

general categories: instruction statements, data allocation statements,

assembler directives, and assembler controls.

An instruction statement uses an easily remembered name, a

mnemonic, and possibly one or two operands+ to specify a machine

instruction to be generated.

A data allocation statement reserves, and optionally initializes, memory

space for program data.

An assembler directive is a statement that gives special instructions to

the assembler. Although directives may produce something in the object

file, they are unlike the instruction and data allocation statements in that

they do not specify the actual contents of memory.

An assembler control is also a statement that gives special instructions to

the assembler. Assembler controls are used to control the assembly process

rather than to define the meaning of the program being assembled.

Assembly Language Reference 3–5

• • • • • • • •

Here are some examples of the different kinds of statements:

 Statement Type Examples

 Instruction MOVE D2,D4
JSR SORT_PROCEDURE

 Data Allocation DS.W 0
DC.B ‘H’

 Assembler Directive SECTION MYSEC
COUNT EQU 5

 Assembler Control NOPAGE
INCLUDE source.inc

Table 3-1: Statements

In addition, the language is composed of the following symbolic elements:

• Symbolic names or labels, which are instructions, directives, register

mnemonics, user-defined memory labels, and macros.

• Numbers, which may be represented in binary, octal or decimal.

• Arithmetic and logical operators, which are used in complex

expressions.

• Special purpose characters, which are used for macro functions, source

line fields, and numeric bases.

3.5 NOTATION

A small amount of specialized notation is used in this document to specify

the general format for instructions and directives. It is based on fairly

standard additions to the Backus-Naur Form (BNF) formalism. The four

�metasymbols" described below are used throughout this manual to

indicate that the user must replace the metasymbols and the characters

they enclose with some legal text. The actual text that can be substituted

will be different in each case, and depends on what type of assembly

language statement is being described.

Chapter 33–6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

When symbols or metasymbols represent the actual commands or text to

be supplied, they will be in boldface. When symbols or metasymbols

must be replaced by commands or text, they will be in italics. In some

cases, the characters used as metasymbols are required characters in a

statement rather than metasymbols. In those cases they will appear in

boldface rather than italics. The four metasymbols and their meanings are:

< > Angular brackets enclosing a name indicate that one element

of the general category specified by the name is to be

selected.

| The pipe (vertical bar) indicates that a choice is to be made.

One of the symbols separated by the pipe character(s) should

be selected.

[] Square brackets indicate that the enclosed sequence is

optional. The enclosed sequence may occur one time or not

at all.

[]... Square brackets followed by periods enclose a symbol that is

optional but repetitive. The symbol may appear zero or more

times.

For example,

MOVE[.<size>] <source>,<destination>

where:

<size> = B | W | L

BFEXTS <ea>{<offset>:<width>},Dn

where:

<offset> = #<expr> | Dn
<width> = #<expr> | Dn

In the first example, the [.<size>] notation implies the user may supply

MOVE.L, MOVE.W, MOVE.B, or MOVE as legal mnemonics.

In the second example, the user must supply either an immediate value or

a data register for the �offset" and �width" symbols. The curly braces must

appear in the instruction. Thus, a legal instruction would be:

BFEXTS LAB{0:8},D1.

n

4

SOURCE PROGRAM
CODING

C
H

A
P

T
E

R

Chapter 44–2
C
O
D
IN
G

4

C
H

A
P

T
E

R

Source Program Coding 4–3

• • • • • • • •

A source program is a sequence of source statements arranged in a logical

way to perform a predetermined task. The assembler interprets and

processes each source line, generating object code or performing a

specific assembly time process. This chapter discusses some facets of

source program coding including source line format, symbols, constants,

operators and expressions. For other facets such as registers, addressing

modes, instruction mnemonics, and other instruction types refer to the

Microprocessor Manual for your particular processor.

4.1 INTRODUCTION

A source program is a sequence of source statements arranged in a logical

way to perform a predetermined task. The assembler interprets and

processes each source line, generating object code or performing a

specific assembly time process. Each source statement occupies a line of

printable text, where each line may be one of the following:

• Comment

• Executable instruction

• Assembler directive

• Macro invocation

The TASKING 68K/ColdFire cross-assemblers are case insensitive to source

input except as noted under the INCLUDE directive or for ASCII strings.

4.2 COMMENTS

Comments are strings of characters that are inserted only to identify or

clarify the program. Comments are included in the assembly listing but are

otherwise ignored by the assembler.

A comment may be inserted in one of two ways:

• As a line, starting in column one, where an asterisk (*) is the first

character in the line. The entire line is a comment, and an instruction

or directive in this line will not be recognized.

• Following the operation and operand fields of an assembler instruction

or directive, where it is preceded by at least one blank or tab character.

Example

* THIS ENTIRE LINE IS A COMMENT.
BRA LAB2 THIS COMMENT FOLLOWS AN INSTRUCTION

Chapter 44–4
C
O
D
IN
G

4.3 SOURCE LINE FORMAT

Each source statement has an overall format that is some combination of

the following fields:

• Label

• Operation

• Operand

• Comment

The statement lines in the source file must not be numbered. However, in

the listing file the assembler prefixes each line with a sequential number,

up to four decimal digits.

The format of each line of source code is described in the following

paragraphs.

4.3.1 LABEL FIELD

The label field is the first field in the source line. A label which begins in

the first column of the line may be terminated by either a blank, a tab, or a

colon. A label may be preceded by one or more blanks or tabs, provided

it is then terminated by a colon. In either case, the colon is not considered

to be part of the label.

Labels are allowed on all instructions and on all assembler directives

which define data structures. For such operations, the label is defined with

a value equal to the location counter for the beginning of the instruction

or directive, including a designation for the program section (if there is

one) in which the definition appears.

Labels are required on the assembler directives which define symbol

values (SET, EQU, REG). For these directives, the label is defined to be the

value of the expression in the operand field. This value consists of a

constant and, if the expression is relocatable, a section designation.

Labels are required on macro definitions and serve as the mnemonic by

which that macro is subsequently invoked. No memory address is

associated with such labels. A label is also required on the IDNT directive.

This label is passed on to the relocatable object module but it has no
associated internal value. The IDNT statement, therefore, cannot be used

to define program entry points.

Source Program Coding 4–5

• • • • • • • •

Labels which are the only field in the source line are defined equal to the

current location counter value plus, if the section is relocatable, the

program section.

4.3.2 OPERATION FIELD

The operation field follows the label field and is separated from it by at

least one blank or tab. If the label field is not being used, the operation

field must be at least one blank or tab from the left margin. The operation

field specifies the action to be performed by the statement. Entries in this

field fall under one of the following categories:

• Instruction mnemonics: The M68000-family processor

 instruction set.

• Directive mnemonics.: These control the assembly process.

• Macro calls.: These are invocations of previously

 defined macros.

The size of the data field affected by an instruction is determined by the

data size code. Some instructions and directives can operate on more than

one data size. For these operations, the data size code must be specified or

a default size is assumed. The size code need not be specified if only one

data size is permitted by the operation. The data size code is specified by

appending a period (.) to the operation field, followed by B, W, L, S, D, X,

or P, where the appended character is interpreted as described below:

B Byte (8-bit data)

W Word (16-bit data)

L Longword (32-bit data)

S Byte (8-bit signed offset for certain branch instructions)

Single precision binary real (IEEE Standard, 32-bit: 1-bit sign,

8-bit exponent, 23-bit mantissa) (68881/68882/68040/68060

only)

D Double word (64-bit data) (68030, 68040, 68060, and 68851

only)

Double precision binary real (IEEE Standard, 64-bit: 1-bit

sign, 11-bit exponent, 52-bit mantissa)

(68881/68882/68040/68060 only)

Chapter 44–6
C
O
D
IN
G

X Extended precision binary real (96-bit: 15-bit exponent, 1-bit

sign, 64-bit mantissa), (16 bits are reserved)

(68881/68882/68040/68060 only)

P Packed Binary Coded Decimal (BCD) real string (96-bit:

3-decimal digit exponent and 17-decimal digit mantissa)

(68881/68882/68040/68060 only)

The data size code is not permitted, however, when the instruction or

directive does not have a data size attribute.

Examples (legal)

 LEA 2(A0),A1 Longword size is assumed.
* (.B, .W not allowed) This
* instruction loads the
* effective address pointed
* to by A0+2 into A1.
*
 ADD.B ADDR,D0 This adds the byte whose
* address is ADDR to
* the low order byte in DO.
*
 ADD D1,D2 This adds the low order
* word of D1 to the low
* order word of D2. (W is
* the default size code.)
*
 ADD.L A3,D3 This adds the 32–bit
* contents of A3 to D3.
*

Example (illegal)

SUBA.B #5,A1 Illegal size specification
* (.B not allowed on SUBA)
* This instruction attempts
* to subtract the value 5
* from the low order byte
* of A1; but byte operations
* on address registers are
* not allowed.
*

Source Program Coding 4–7

• • • • • • • •

4.3.3 OPERAND FIELD

If present, the operand field follows the operation field and is separated

from the operation field by at least one blank or tab. When two or more

operand subfields appear within a statement, they must be separated by a

comma but may not contain embedded blanks or tabs;

e.g., �ADD D1, D2" is illegal.

For most two operand instructions, the general format �opcode
source,destination" applies. For example, in an instruction like �ADD

D1,D2", the contents of D1 are added to the contents of D2 and the result

is saved in register D2. In the instruction �MOVE D1,D2", the first operand

(D1) is the sending operand and the second operand (D2) is the receiving

operand.

4.3.4 COMMENT FIELD

The last field of a source statement is an optional comment field. This field

is ignored by the assembler, but is included in the listing. The comment

field is separated from the operand field (or the operation field, if there is

no operand) by at least one blank or tab, or by a semicolon (;), and may

consist of any ASCII characters.

4.4 SYMBOLS

Symbols can correspond to either a specific numerical value by using an

EQU or SET directive, or the address of a memory location. The memory

location can represent the destination of a branch instruction or the start of

a data area. This use of symbolic references to memory allows statements

to be written without specifying actual memory locations. An entry in the

label field is required for all statements that are the destination of jump

and branch instructions and in statements using the EQU or SET directives.

Chapter 44–8
C
O
D
IN
G

4.4.1 SYMBOL SYNTAX

Symbols recognized by the assembler consist of one or more valid

characters (refer to the Character Set appendix), all of which are

significant. The first character must be an upper case or lower case letter,

(A-Z or a-z), a period (.) or an underscore (_). Each remaining character

may be an upper case or lower case letter (A-Z, a-z), a period (.), an

underscore (_), a digit (0-9), a dollar sign ($), or a question mark (?).

4.4.2 SYMBOL DEFINITION CLASSES

Symbols may be differentiated by usage into two classes. Class 1 symbols

are used in the operation field of an instruction. Class 2 symbols occur in

the label and operand fields of the instruction. Assembler directives

(including those for structured assembly), instruction mnemonics, and

macro names comprise Class 1 symbols; Class 2 symbols consist of user

defined labels and register mnemonics.

A Class 1 symbol may be redefined and used independently as a Class 2

symbol, and vice versa. As long as each symbol is used correctly, no

conflict will result from the existence of two symbols of different classes

with the same name. For example, the following is a legal instruction

sequence:

ADD D1,ADD
.
.
.

ADD DS 2

By its usage as a Class 1 symbol, the first ADD is recognized as an

instruction mnemonic; the second ADD is recognized as a Class 2 symbol

identifying a reserved storage area. The assembler differentiates a Class 1

symbol from a Class 2 symbol with the same name, thereby allowing two

symbol table entries with the same name but different class.

Macro labels are a special case because the same symbol will appear as

the label (Class 2) in the MACRO definition and, subsequently, as an

operation code mnemonic (Class 1) in invocation of that same macro.

Macro labels are defined to be Class 1 symbols; their presence in the label

field of a MACRO directive is ignored as a Class 2 symbol. Therefore,

macro names may be redefined as Class 2 symbols without conflict.

Source Program Coding 4–9

• • • • • • • •

Except for the SET directive, which allows multiple redefinition of a Class

2 symbol, a symbol may not be redefined within the same class. For

example, SUB (reserved Class 1 symbol) may not be redefined as a macro

label (also Class 1), nor may A5 (reserved Class 2 symbol) be redefined as

a statement or storage location label (also Class 2).

4.4.3 USER-DEFINED LABELS

Labels are symbols that are defined by the user to identify memory

locations in program or data areas of the assembly module.

Labels may have an absolute or relocatable value, depending upon the

section in which the labeled memory location is found. If the memory

location is within a relocatable section, the label has a relocatable value,

i.e., it depends on where the section is placed. If the memory location is in

an absolute section, the label has an absolute value.

Labels may be defined in the label field of an executable instruction or a

data definition directive source line. It is also possible to define a label

with the SET or EQU directive to an arbitrary value.

4.4.4 LOCATION COUNTER SYMBOL "*"

The special symbol "*" may be used to refer to the current location counter

value.

4.5 CONSTANTS

4.5.1 INTEGER CONSTANTS

Numeric constants recognized by the assembler may be expressed in

decimal, hexadecimal, octal, and binary form. They must have integral

values and must be expressible in 32 bits.

Decimal Constants

Decimal is the default base used for evaluating numeric values and

consists of a string of numeric digits.

Chapter 44–10
C
O
D
IN
G

Example:

12345 Valid
12.3 Invalid: can consist only of digits

Hexadecimal Constants

A hexadecimal constant consists of characters from the set of decimal

digits (0-9) and the alphabetic characters (A-F, a-f) and is preceded by a

dollar sign ($) or followed by an H.

If the suffix form is used, the first character must be a digit to distinguish

the hexadecimal constant from a symbol name.

Example:

$12 Valid
01CFH Valid
$01CF Valid
ABCDH Invalid: no preceding $

* This would be interpreted as
* symbol ABCDH

Octal Constants

An octal constant consists of characters from the set of digits (0-7),

preceded by a commercial at sign (@) or followed by a Q.

Example:

@17634 Valid
275Q Valid
@27832 Invalid: character 8 not

* allowed

Binary Constants

A binary constant consists of 1's and 0's, preceded by a percent sign (%)

or suffixed by a B.

Example:

%10100 Valid
10111B Valid
%21001 Invalid: character 2 not

* allowed

Source Program Coding 4–11

• • • • • • • •

4.5.2 CHARACTER CONSTANTS

One or more printable ASCII characters enclosed by apostrophes (')

constitute a character constant. Character constants longer than four

characters may only be stored in memory, e.g., using the DC (define

constant) directive. Shorter character constants may also be used as

immediate operands, in which case they are treated as an integer

according to the rules described below.

Character constants are left justified and zero filled, if necessary, whether

stored or used as immediate operands. Constants with four or three

characters are aligned to a longword. Constants with two characters are

aligned to a word. Single character constants are word aligned if the

operand size is larger than a byte, and byte aligned if the operation size is

a byte.

In order to specify an apostrophe within a character constant, two

successive apostrophes must appear where the single apostrophe is

intended to appear.

Examples

tB_DIG_1 EQU.B ’1’ Equates B_DIG_1 with
* hex 31
W_DIG_1 EQU ’1’ Equates W_DIG_1 with
* hex 3100
 DC.L ’79’ Stores hex 37390000
* in memory
 MOVE.L #’1’,D0 Moves hex 00003100
* into D0
 MOVE.B #’1’,D0 Moves hex 31 into
* low byte of D0
 MOVE.L #’123’,D0 Moves hex 31323300
* into D0

4.5.3 FLOATING POINT CONSTANTS

(68881/68882/68040/68060 ONLY)

IEEE standard floating-point numbers can be specified by an optionally

signed fraction string of up to 17 decimal digits (0-9) containing a required

decimal point, the constant �E" an optional sign, and an exponent up to 3

decimal digits. The exponent section �E<sign>yyy" is optional; underscores

can occur for readability.

Chapter 44–12
C
O
D
IN
G

Floating Point Constant Notation

[<sign>|x.xxxxxxxxxxxxxxxx[E[<sign>]yyy]
(maximum size)

where:

<sign> is + | -

x and y are decimal digits

Example:

DC.X 1234.56E–33
DC.X –12345.67

Floating point numbers can also be specified explicitly as a series of

hexadecimal digits preceded by a colon (:). This floating-point hex format

can be used to exactly represent the mantissa, exponent, and sign bit for a

given floating-point number.

Floating Point Hex Constant Notation

:hhhhh[h]...

where:

h is a hex digit

Up to 8 digits are allowed for .S precision, up to 16 for .D, and up to 24

for .X or .P.

Example:

DC.S :124F67B STORES HEX 124F67B0
* IN MEMORY

4.6 OPERATORS

Operators recognized by the assembler include, in order of operator

precedence (from highest to lowest):

1. Parenthetical Expression (innermost first)

2. Unary Minus, Plus, SEGSIZE, SEGBASE

3. Shift Right, Shift Left

4. And, Or

Source Program Coding 4–13

• • • • • • • •

5. Multiplication, Division, Remainder

6. Addition, Subtraction

Expressions involving operators with the same precedence are evaluated

from left to right. All expressions are evaluated using 32-bit values and all

intermediate results are stored internally as 32-bit integers.

All examples are shown using constants. Absolute labels, however, may be

used in any expression where a constant is shown below. Absolute labels

include labels of data or code located in absolute sections, or labels on

EQU or SET directives which have an expression that evaluates to a

constant value. In addition, labels on DS directives in the table associated

with an OFFSET directive are absolute. Relocatable labels and SEGSIZE or

SEGBASE values may only be used in expressions involving addition and

subtraction.

Arithmetic Operators:

addition (+)

subtraction (–)

multiplication (*)

division (/) Produces a truncated integer result.

remainder (%)

unary minus (–)

segment size SEGSIZE(seg)

segment
base

SEGBASE(seg)

Shift Operators (binary):

shift right (>>) The left operand is shifted to the

right (and zero filled) by the number

of bits specified by the right operand.

shift left (<<) Analogous to >.

Logical Operators (binary):

and (&)

or (!)

Table 4-1: Operators

Chapter 44–14
C
O
D
IN
G

The percent (remainder) operator is only valid if the �select TASKING

extensions" option is in effect. See the Assembler chapter in the User's
Manual for more information about this option. The same is true of the

SEGSIZE and SEGBASE operators.

SEGSIZE 	 Get Segment Size

Syntax

SEGSIZE(<name>)

The SEGSIZE operator returns the size in bytes of the named section. It is

necessary to XREF the section name if it is not defined in the current

module.

SEGBASE 	 Get Base Address of Segment

Syntax

SEGBASE(<name>)

The SEGBASE operator returns the base address of the named section. It is

necessary to XREF the section name if it is not defined in the current

module.

Example

 XREF udata

 SECTION foo,,”code”

 MOVEA.L #SEGBASE(udata),A0 load base address of udata

 MOVE.L #SEGSIZE(udata)–1,D0 load size of udata – 1

 (for dbf)

loop CLR.B (A0)+

 DBF D0,loop zero out udata segment

4.7 EXPRESSIONS

Expressions are composed of one or more symbols and/or constants that

may be combined with unary or binary operations. Expressions are

evaluated according to precedence rules left to right.

Source Program Coding 4–15

• • • • • • • •

Subexpressions which involve relocatable symbols may use only the �+"

and �-" operators. It is possible for a subexpression involving the

difference between two relocatable symbols to evaluate to an absolute

value. For example, let R1 represent a memory location at OFFSET1 bytes

beyond the start of section S1, and let R2 represent a memory location at

OFFSET2 bytes beyond the start of section S2. That is:

R1 = OFFSET1 + <start of S1>
R2 = OFFSET2 + <start of S2>

The difference between R1 and R2 may then be:

R1–R2 = OFFSET1–OFFSET2
+ <start of SI> – <start of S2>

If sections S1 and S2 are the same, then:

R1–R2 = OFFSET1–OFFSET2

which is an absolute (non-relocatable) value. Of course, if sections S1 and

S2 are separate and distinct, the expression remains a complex relocatable

expression.

When an expression has been fully evaluated by the assembler, it may be

categorized as one of three types of expressions:

• Absolute Expression:

The expression has reduced to an absolute value that is independent of

the start address of any relocatable section.

• Simple Relocatable Expression:

The expression has reduced to an absolute offset from the start of a

single relocatable section.

• Complex Relocatable Expression:

The expression has reduced to a constant, absolute offset in

conjunction with either of the following relocatable terms:

A single, negated start address of a relocatable section.

or

An expression of two or more relocatable symbols,

or containing a SEGSIZE or SEGBASE value.

Only absolute expressions with no forward references are legal in ORG,

OFFSET, DCB, and DS directives. SET and EQU can take any expression.

Chapter 44–16
C
O
D
IN
G

By themselves, all user-defined labels on memory locations are either

absolute or simple relocatable expressions. This includes XREF labels,

which are assumed to be absolute symbols unless their program section is

specified. Complex relocatable expressions may arise only from the

addition or subtraction of two relocatable expressions.

The following are examples of each type of expression:

 ORG $1000 absolute section
ARRAY DS $20 ARRAY is absolute
ENDARRY EQU *–2 ENDARRY
* is absolute
 SECTION 2 relocatable
* table section
L1 CLR.L D2 L1 is simple
* relocatable
L2 MOVE D3,(A0) L2 is simple
* relocatable
 MOVE.L ARRAY+10,D7 absolute source
* operand
 MOVE.L L1+10,D7 simple relocatable
* source operand
 MOVE.L L2–L1,D7 absolute source
* operand
 MOVE.L L1+L2,D7 complex relocatable
* source operand

4.8 ADDRESSING MODES

Effective address modes, combined with operation codes, define the

particular function to be performed by a given instruction. Effective

addresses and data organization are described in detail in the Data
Organization and Addressing Capabilities section of the Microprocessor
Manual for the appropriate processor.

5

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 55–2
D
IR
E
C
T
IV
E
S

5

C
H

A
P

T
E

R

Assembler Directives 5–3

• • • • • • • •

All assembler directives (pseudo-ops), with the exception of DC and DCB,

are instructions to the assembler rather than instructions to be translated

into object code. This section contains descriptions and examples of the

basic forms of the most frequently used assembler directives. See also the

Macro and Conditional Assembly and Structured Control Statements
sections about directives. The most commonly used directives supported

by the assembler are Assembly Control, Symbol Definition, Data

Definition/Storage Allocation, Listing Control and Output Options, External

Symbol Control, and Internal Assembly Control.

5.1 ASSEMBLY CONTROL

The TASKING 68K/ColdFire assembler contains the following assembly

control directives:

COMMON Named Common

END Program End

INCLUDE Include Secondary File

OFFSET Define Offsets

ORG Absolute Origin

RESERVE Reserve room in section

RESUME Resume section

RORG Relocatable Org

SECTION Relocatable Program Section

BRINGIN Declare external symbol

DEBSYM Put out debugging information

DGROUP Define data group

Chapter 55–4
D
IR
E
C
T
IV
E
S

5.1.1 COMMON - ENTER NAMED COMMON SECTION

Syntax

[label]COMMON[.S]<name> [,[ABSOLUTE[:[<location>]],"<class>"]

Description

The COMMON directive performs the same functions as the SECTION

directive which is described later in this chapter, except that the generated

section is marked as "common" in the object module. When the linker

encounters the same common section name in two object modules, it

combines them by overlay; the length of the resulting section is the

maximum of the lengths of the input sections.

In contrast, when the linker encounters the same non-common section in

two object modules, in combines them by concatenation; the length of the

resulting section is then the sum of the lengths of the input sections.

This directive can only be used if the "select TASKING extensions" option

is in effect.

If the ABSOLUTE specification is selected, the segment defined by the

COMMON statement will be located at the indicated absolute address (or

zero, if <location> is omitted). If the same absolute common section is

defined in more than one assembly, then the same <location> must be

specified at every definition.

If present, the .S indicates the section will be placed completely within low

address memory, i.e., between addresses 0 and hex 7FFF or between hex

FFFF8000 and FFFFFFFF. This allows the assembler to generate more

efficient addressing to items within the section. In particular, it can

implement direct addressing through the �absolute short" addressing

mode. Unlike the ABSOLUTE attribute described above, this information is

not passed on in the object module; the user must take responsibility for

placing the section in low memory with the TASKING locator.

Assembler Directives 5–5

• • • • • • • •

<class> is an arbitrary string that will be associated with the section in the

object module. The locator can locate all the sections with a given class

name with a single command, so a consistent use of class names may

make it easier to locate your program in memory. Please see the Linking
Locator chapter in the User's Manual for more details.

Example

clab1 COMMON sect1,,”cclass”
clab2 COMMON sect2,ABSOLUTE:3000
clab3 COMMON sect3,ABSOLUTE:100,”myclass”

5.1.2 END - PROGRAM END

Syntax

END [<start address>]

The END directive indicates to the assembler that the source is finished.

Subsequent source statements are ignored. The END directive encountered

at the end of the first pass through the source program causes the

assembler to start the second pass. The start address should be specified

unless it is external to the module. If no start address is specified, it is still

possible to include a comment field, provided the comment field is set off

by the exclamation point (!).

This syntax indicates to the assembler that the operand field is null and

that a comment field follows.

The END statement is optional.

Example

in file1.68k:
SECTION FOO
NOP
END ! end of program, no

* starting point defined

in file2.68k:
SECTION BAR
__BEGIN
NOP
END __BEGIN

* end of program, program starts at __begin

Chapter 55–6
D
IR
E
C
T
IV
E
S

5.1.3 INCLUDE - INCLUDE SECONDARY FILE

Syntax

INCLUDE <file> Include file from system directory.

INCLUDE file Include file from user directory.

The INCLUDE directive is inserted in the source program at any point

where a secondary file is to be included in the source input stream. The

first column on the line with the INCLUDE directive must be white space.

The search algorithm for finding the <file> depends on whether the file is

to be found in the system directory list (specified in a command line

option) or the standard include directory list (specified in a command line

option).

Directories Searched:

<file> System directories only.

file User and System directories.

* Current directory.

Example

* The first column in the include line must be
* ”white space”

INCLUDE local_file.inc
*
* Now include a system level include file

INCLUDE <system_file.inc>

5.1.4 OFFSET - DEFINE OFFSETS

Syntax

OFFSET <expression>

The OFFSET directive is used to define a table of offsets via the Define

Storage (DS) directive without actually declaring storage for the table, in

effect creating a dummy section. Symbols defined in an OFFSET table are

kept internally, but will not appear in the output object module. No code

producing instructions or directives may appear. SET, EQU, REG, XDEF

directives are allowed.

Assembler Directives 5–7

• • • • • • • •

<expression> is the value at which the offset table is to begin. The

expression must be absolute and may not contain forward, undefined, or

external references.

OFFSET must be terminated by an ORG or SECTION directive before

further code producing instructions are generated. If not, the assembler

produces an error message.

Example

OFFSET $7FFF
OFF1 DS.W 1 * OFF1 is defined to

* be 8000 hex
OFF2 DS.W 1 * OFF2 is defined to

* be 8002 hex

OFFSET $0
OFF3 DS.W 1 * OFF3 is defined to

* be 0
OFF4 DS.W 1 * OFF4 is defined to

* be 2

SECTION MORECODE
LEA OFF1,A1 * LEA 8000,A1
LEA OFF2,A1 * LEA 8002,A1
LEA OFF3,A1 * LEA 0,A1
NOP
END

5.1.5 ORG - ABSOLUTE ORIGIN

Syntax

ORG[.<qualifier>]<expression>[<comment>]

where:

<qualifier> is S | L

The ORG directive changes the program counter to the value specified by

the expression in its operand field. Subsequent statements are assigned

absolute memory locations starting with the new program counter value.

<expression> must be absolute and may not contain any forward,

undefined, or external references.

Chapter 55–8
D
IR
E
C
T
IV
E
S

ORG.S is interpreted as both ORG and OPT FRS (Forward Reference Short

Option). ORG.L is interpreted as both ORG and OPT FRL (Forward

Reference Long Option). Regardless of the forward reference option,

references to previously defined absolute symbols will always generate the

appropriate short or long addressing form, based upon the size of a

symbol's absolute address.

5.1.6 RESERVE - RESERVE STORAGE

Syntax

[label] RESERVE <name>, <length> [,�<class>"]

The RESERVE directive is similar to the OFFSET directive. It defines a

segment and gives it the specified length, but leaves the user in the

previous segment. Subsequent RESERVE directives with the same <name>
add to the segment length.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

<class> is an arbitrary string that will be associated with the section in the

object module. The TASKING locator can locate all the sections with a

given class name with a single command, so a consistent use of class

names may make it easier to locate your program in memory. See the

Linking Locator chapter in the User's Manual for more details.

Example

SECTION DSCT
TOP RESERVE RSECT,2

DC.L TOP
HERE RESERVE RSECT,3

DC.L HERE
THERE RESERVE RSECT,1

DC.L THERE

This creates a segment, RSECT, of length six and defines labels at locations

0, 2, and 5 within it. The addresses of the labels are stored in DSCT.

Assembler Directives 5–9

• • • • • • • •

5.1.7 RESUME - RESUME DEFINED SECTION

Syntax

RESUME <name>

The RESUME directive resumes the named section. If no argument is

given, the PSCT section is resumed.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

Example

SECTION TOP
NOP
SECTION BOTTOM
NOP
RESUME TOP
NOP

5.1.8 RORG - RELOCATABLE ORG

Syntax

RORG <expression> [<comment>]

The RORG directive has an effect similar to ORG, but it is intended for use

in relocatable sections. The location counter is set to the value of the

expression but remains in the current section. This is different from ORG,

which switches to absolute assembly.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

Chapter 55–10
D
IR
E
C
T
IV
E
S

Example

DIGINX EQU.B 0
ISDIGIT DCB.B 256,0 Define table of 256 zeros.
* Reset location counter back to ISDIGIT

RORG ISDIGIT
* Advance to index of first ASCII digit

RORG *+DIGINX
* Redefine table contents to be 1’s at index of
* ASCII digits

DCB.B 10,1
RORG ISDIGIT+256 Reset location

* counter past
* ISDIGIT

...
LEA ISDIGIT,A1 Load address of

* table
MOVEQ.L #0,D0
MOVE.B NEXTCHAR,D0 Pick up a

* character
BNZ (A1,D0.W),L1 Goto L1 if it’s a

* digit
BRA L2 Goto L2 otherwise

5.1.9 SECTION - RELOCATABLE PROGRAM SECTION

Syntax

SECTION[.S] <name>[,[ABSOLUTE [:<location>]][,"<class>"]]

SECTION[.S] <number>

This directive causes the program counter to be restored to the address

following the last location allocated in the indicated section, or to zero if

used for the first time with this <name>.

<location> and �class" can only be supplied if the �select TASKING

extensions" option is in effect. See the Assembler chapter in the User's
Manual for more information on the TASKING extensions.

If the ABSOLUTE specification is selected, the segment defined by the

SECTION statement will be located at the indicated absolute address (or

zero, if <location> is omitted).

Assembler Directives 5–11

• • • • • • • •

Absolute sections are �uncombinable", so it will cause an error if the same

section is defined in another assembly or compilation. See the Linking
Locator chapter in the User's Manual for a description of segment

combinability.

The .S indicates the section will be placed completely within low address

memory, i.e., between addresses 0 and 32767. This allows the assembler to

generate more efficient addressing to items within the section. In

particular, it can implement direct addressing through the absolute short

addressing mode. Unlike the absolute attribute described above, this

information is not passed on in the object module; the user must take

responsibility for placing the section in low memory with the TASKING

locator.

<number> causes a segment named $$seg<number> to be created.

<class> is an arbitrary string that will be associated with the section in the

object module. The TASKING locator can locate all the sections with a

given class name with a single command, so a consistent use of class

names may make it easier to locate your program in memory. Please see

the Linking Locator chapter in the User's Manual for more details.

Example

SECTION lost
SECTION abs1,ABSOLUTE,”abclass”
SECTION abs2,ABSOLUTE
SECTION found2,,”foundclass”
SECTION 2

5.2 SYMBOL DEFINITION

Symbol definition directives EQU, FEQU, REG, and SET provide the only

method by which a symbol appearing in the label field may be assigned a

'value' other than that corresponding to the current location counter. The

following Symbol Definition Directives are described in this section:

EQU Equate Symbol Value

FEQU Equate Floating Point Symbol Value

REG Define Register List

SET Set Symbol Value

Chapter 55–12
D
IR
E
C
T
IV
E
S

5.2.1 EQU - EQUATE SYMBOL VALUE

Syntax

<label> EQU <expression> [<comment>]

The EQU directive assigns the value of the expression in the operand field

to the symbol in the label field. The label and expression follow the rules

given in the Source Program Coding chapter. The label and operand fields

are both required, and the label cannot be defined anywhere else in the

program.

Any valid expression is allowed in the operand field of an EQU, including

forward and complex.

Example

STRT EQU * This is the start location

5.2.2 FEQU - EQUATE FLOATING POINT SYMBOL

VALUE

Syntax

<label> FEQU[.<size>] <value> [<comments>]

where:

<size> = S | D | X | P (S is default)

FEQU directive assigns the floating-point value in the operand field to the

symbol in the label field. The label and value follow the rules given in the

Source Program Coding chapter. The operand fields are both required,

and the label cannot be defined anywhere else in the program. Note that

<value> is stored as a string and only converted to its binary format when

it is used in instructions. <value> may be a floating-point decimal string or

a floating-point hexadecimal value as defined in the Source Program
Coding chapter. A warning is generated whenever the number of bits

required to represent the specified precision is exceeded.

Example

OP1 FEQU.X 2.3444
OP2 FEQU.S :23444

Assembler Directives 5–13

• • • • • • • •

5.2.3 REG - DEFINE REGISTER LIST

Syntax

<label> REG <reg_list> [<comment>]

The REG directive assigns a value to <label> that can be translated into the

register list mask format used in the MOVEM instruction. The label cannot

be redefined as a Class 2 symbol anywhere else in the program.

<reg_list> is of the form R1[-R2][/R3[-R4]]...

Example

SAVE REG A1–A5/D0/D2–D4/D7
* Following two statements are then equivalent

MOVEM.L SAVE,–(A7)
MOVEM.L A1–A5/D0/D2–D4/D7,–(A7)

5.2.4 SET - SET SYMBOL VALUE

Syntax

<label> SET <expression> [<comments>]

SET directive assigns the value of the expression in the operand field to

the symbol in the label field. Thus, the SET directive is similar to the EQU

directive. However, the SET directive allows the symbol in the label field

to be redefined by other SET directives in the program. The label and

operand fields are both required.

As with EQU, any valid expression is allowed in the operand field of a

SET, including forward and complex.

Example

THIRTY SET LAB_AT_30

Chapter 55–14
D
IR
E
C
T
IV
E
S

5.3 DATA DEFINITION/STORAGE ALLOCATION

The directives in this section provide the only means by which object code

may begin or end on odd byte boundaries. All instructions and all word or

longword size data must begin and end on even byte boundaries. Odd

byte alignment is allowed only for the DC.B, DS.B, and DCB.B directives.

All other operations which generate object code are preceded by a zero fill

byte if word boundary alignment is required.

The following directives are described in this section:

COMLINE Command Line (unimplemented)

DC Define Constant

DCB Define Constant Block

DS Define Storage

5.3.1 COMLINE - UNIMPLEMENTED

The COMLINE directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to specify the command line.

5.3.2 DC - DEFINE CONSTANT

Syntax

[<label>] DC[.<fmt>] <operand>[,<operand>...]

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<operand> = link-time constant expression

The DC directive defines a constant in memory. The DC directive may

have one or more operands, which are separated by commas. The

operand field may contain the actual value (decimal, hexadecimal, or

ASCII). Alternatively, the operand may be a symbol or expression which

can be evaluated either by the assembler or the linker. The constant is

aligned on a word boundary if word (.W), longword (.L), single precision

(.S), double precision (.D), extended precision floating-point (.X) or

packed BCD (.P) is specified. Alignment is on a byte boundary if byte (.B)

is specified. The type of the operand must be floating-point if and only if

the format is S, D, X, or P.

Assembler Directives 5–15

• • • • • • • •

The following rules apply to size specifications on DC directives with

ASCII strings as operands:

• DC.B

One byte is allocated per ASCII character.

• DC.W

The string begins on a word boundary. If the string address contains an

odd number of characters, a zero fill byte follows the last character.

• DC.L

The string begins on a word boundary. If the string length is not a

multiple of four bytes, the last longword is zero filled.

Examples of ASCII Strings

Directive Result

DC.B 'ABCDEFGHI'

Memory has nine contiguous bytes with the ASCII characters

A through I.

DC.B 'E' Memory has characters �EJ" ($454A) in

DC.B 'J' contiguous bytes.

DC.B 'E' Memory has $45004500 in contiguous bytes,

DC.W 'E' the first zero byte being an odd byte fill as outlined

above.

DC 'X' Memory has $5800 in contiguous bytes.

DC.L '12345' Memory has $3132333435000000 in contiguous bytes.

Chapter 55–16
D
IR
E
C
T
IV
E
S

Examples of Numeric Constants

Directive Result

DC.B 10,5,7

Memory has three contiguous bytes with the decimal values

10, 5, and 7 in their respective bytes.

DC.W 10,5,7

Each operand is contained in a word. The value 10 is

contained in the first word, right justified. The value 5 is in

the second word, and the value 7 is in the third word.

DC.L 10,5,7

Each operand is contained in a longword. The value 10 is

contained in the first longword (4bytes) right justified. The

value 5 is in the second longword, and the value 7 is in the

third longword.

DC LABEL+1

The generated value is the address of LABEL plus 1 in a word

size operand.

DC $FF,$10,$AE

Rules for hexadecimal are the same as decimal.

DC.S 3.1415

A single precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.D 2.54

A double precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.X 6.0224E23

An extended precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.X :ABCD10

An extended precision floating-point hex value is created.

(68881/68882/6804068060 only)

DC.P 3.00E9 A packed BCD value is created.

For DC.X, �E" can only be a hex digit, not an exponent.

Assembler Directives 5–17

• • • • • • • •

If the resulting value in an operand expression exceeds the size of the

operand, an error is generated. For example,

DC.B $FFF This causes an error because $FFF cannot be represented in 8

bits.

DC $FFF6F This causes an error because $FFF6F cannot be represented

in 16 bits.

5.3.3 DCB - DEFINE CONSTANT BLOCK

Syntax

[<label>] DCB[.<size>] <length>,<value>

where:

<size> = B | W | L | S | D | X | P (W is default)

<value> = integer, character, or floating-point value

DCB directive causes the assembler to allocate a block of bytes, words, or

long words, quad words (.D), or hex words (.X or .P) depending upon the

<size> specified. If <size> is omitted, word (.W) is the default size. The

block length is specified by the absolute expression <length>, which may

not contain undefined, forward, or external references. The initial value of

each storage unit allocated will be the sign-extended expression <value>.
<value> may be relocatable and may contain forward references. <length>
must be greater than zero.

Example

CLEAR DCB 80,0 Clears one line to spaces

5.3.4 DS - DEFINE STORAGE

Syntax

[<label>] DS[.<fmt>] <objects>

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<objects> = The number of objects to be reserved (a pass 1 constant).

Chapter 55–18
D
IR
E
C
T
IV
E
S

The DS directive is used to reserve memory locations. The contents of the

memory reserved are not initialized in any way. The <fmt> values of S, D,

X, and P are only used for floating-point values, and so only apply when

assembling for the 68881/68882/68040/68060.

Example

DS.B 10 Reserve 10 bytes
PT1 DS $10 Reserve 16 words
PT2 DS.L 100 Reserve 100 long words

DS.D 10 Reserve 10 8–byte
* double words

The label will reference the lowest address of the defined storage area.

The storage area is aligned to a word boundary unless <fmt> is �B".

DS.B 1 Reserve one byte
DS 0 Set location counter

* to even boundary

The operand must be absolute and may not contain forward, undefined,

or external references.

5.4 LISTING CONTROL AND OUTPUT OPTIONS

The following Listing Control and Output Options are described in this

section:

FAIL Programmer Generated Error

FORMAT/NOFORMAT Format Options

LIST/NOLIST List Options

LLEN Line Length

NOOBJ No Object

OPT General Option Selection

PAGE/NOPAGE Pagination Options

SPC Space Between Source Lines

STTL Subtitle

TTL Title

Assembler Directives 5–19

• • • • • • • •

5.4.1 FAIL - PROGRAMMER GENERATED ERROR

Syntax

FAIL <message>

The FAIL directive causes a warning message to be printed by the

assembler. The FAIL directive is normally used in conjunction with

conditional assembly directives for exceptional condition checking. The

assembly proceeds normally after the warning has been printed. The

argument is printed as the warning message.

5.4.2 FORMAT/NOFORMAT - UNIMPLEMENTED

FORMAT and NOFORMAT are not implemented. They are read and

ignored. In the Motorola assembler it allows the user to control the

formatting of the assembler's listing file.

5.4.3 LIST/NOLIST - CONTROL LISTING GENERATION

Syntax

LIST

NOLIST

NOL

Print or do not print the assembly listing on the output device. The LIST

option is selected by default. The source text following the LIST directive

is printed until an END or NOLIST directive is encountered.

5.4.4 LLEN - UNIMPLEMENTED

The LLEN directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to specify the length of a listing line.

5.4.5 NOOBJ - UNIMPLEMENTED

The NOOBJ directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to request that no object module be

produced.

Chapter 55–20
D
IR
E
C
T
IV
E
S

5.4.6 OPT - ASSEMBLER OPTIONS

Syntax

OPT <option>[,<option>...] [<comment>]

Follows the command format. The available options are:

 A Absolute address. All non-indexed operands which reference

either labels or the current assembler location counter (*) is

resolved as absolute.

NOA Disable A (default).

BRB

BRW Generates default branch size of 16 bits.

BRL Forward branch long (default). Forward references in relative

branch instructions (Bcc, BRA, BSR) will assume the longer

form (16-bit displacement, yielding a 4-byte instruction).

A 32-bit displacement is assumed unless the directive OPT

OLD is in effect (68020-plus/CPU32 only).

BRS Forward branch short. As with BRL, but using the shorter or

form (8-bit displacement, yielding a 2-byte instruction).

CRE Print cross-reference table at end of source listing. This

option must precede first symbol in source program. If this

option is not in effect, only the symbol table is printed.

EXT Not implemented.

NOEXT Not implemented.

FRL Forward reference long (default). Forward references in the

absolute format assumes absolute long mode (32-bit).

FRS Forward reference short. Forward references in the absolute

format assumes absolute short mode (16-bit).

L Turn on source listing.

NOL Turn off source listing.

MC Print macro calls (default).

Assembler Directives 5–21

• • • • • • • •

NOMC Opposite of MC.

MD Print macro definitions (default).

NOMD Opposite of MD.

MEX Print macro expansions.

NOMEX Opposite of MEX (default).

MEXG List only those macro expansions that generate code.

NOMEXG Turn off MEXG flag.

OLD Interpret the branch size code .L as being a 16-bit branch.

Also interpret future uses of OPT BRL as referring to forward

16-bit branches.

NOOLD Change back to new branch size meanings for size .L

(68020-plus/CPU32 only).

P Turn on listing paging.

NOP Turn off listing paging.

PCO PC relative addressing within ORG. Employ relative

addressing, when possible, on backward references occurring

in an ORG section.

NOPCO Disable PCO (default).

PCS Force PC relative addressing within SECTION. Forces PC

relative addressing (whenever such an addressing mode is

legal) in an instruction which occurs within a relocatable

SECTION and references an operand in a relocatable

SECTION (need not be the same SECTION as the instruction).

Failure to resolve such a reference into a 16-bit displacement

from the PC results in an error. This option may be used to

force position-independent code (refer to the

Position-independent Code chapter); however, this option

does not force PC relative addressing of absolute operands

(defined in ORG section) or unknown forward references.

NOPCS Disable PCS (default).

P=<type> Not implemented.

Chapter 55–22
D
IR
E
C
T
IV
E
S

S Turn on symbol table listing.

NOS Turn off symbol table listing.

PSA List expanded instructions from structured assembler

constructs.

NOPSA Turn off expanded instruction listing.

TRM Trim comments from listing.

NOTRM Do not trim comments from listing.

U Turn on listing of unassembled lines in conditional assembly.

NOU Turn off listing of unassembled lines in conditional assembly.

The following options are not implemented:

ASM

NOASM

CEX

NOCEX

CL

NOCL

D To generate debug output, use the command-line debugging

option. See the Tutorial chapter of the Getting Started
Manual for more information.

EQU

NOEQU

FMT

NOFMT

G

NOG

LLE

O

NOO

REL

Assembler Directives 5–23

• • • • • • • •

5.4.7 PAGE/NOPAGE - CONTROL PAGINATION

Syntax

PAGE [size]
NOPAGE

Advance the paper to the top of the next page. The PAGE directive does

not appear on the program listing. No label is used, and no machine code

results. The optional size argument is used as the number of lines per

page. A negative value for <size> turns off paging.

NOPAGE turns off pagination. Output lines are printed continuously with

no page headings or top and bottom margins.

5.4.8 SPC - SPACE BETWEEN SOURCE LINES

Syntax

SPC [n]

Output n blank lines on the assembly listing. This has the same effect as

putting n blank lines in the assembly source. The default value for n is 1.

5.4.9 STTL - SET SUBTITLE

Syntax

STTL <subtitle string>

Print the <subtitle> string on the second line of each page. A subtitle

consists of up to 60 characters. The same subtitle will appear on all

successive pages until another STTL directive is encountered. In order to

print a subtitle on the first listing page, the STTL directive must precede

the first source line which will appear on the listing.

5.4.10 TTL - SET TITLE

Syntax

TTL <title string>

Chapter 55–24
D
IR
E
C
T
IV
E
S

Print the <title> string at the top of each page. A title consists of up to 60

characters. The same title will appear at the top of all successive pages

until another TTL directive is encountered. In order to print a title on the

first listing page, the TTL directive must precede the first source line which

will appear on the listing.

5.5 EXTERNAL SYMBOL CONTROLS

The following External Symbol Controls are described in this section:

IDNT Relocatable Identification Record

XDEF External Symbol Definition

XREF External Symbol Reference

5.5.1 IDNT - RELOCATABLE IDENTIFICATION RECORD

Syntax

<name> IDNT <version_string>

The assembler takes the provided information and puts it in the object

module as a .ID statement. This statement is ignored by subsequent

processors, but is passed on for informational purposes only. <version>
must be supplied as a quoted string.

<name> is NOT considered a label, and may not be used elsewhere in the

assembly.

5.5.2 XDEF - EXTERNAL SYMBOL DEFINITION

Syntax

XDEF <symbol>[,<symbol>...] [<comment>]

The XDEF directive specifies symbols defined in the current module that

are to be globally visible, and can therefore be referenced by other

modules.

Assembler Directives 5–25

• • • • • • • •

Example

XDEF var1,var2,var2
* These names may now be referenced in other
* modules

5.5.3 XREF - EXTERNAL SYMBOL REFERENCE

Syntax

XREF[.S] [[<section>:]<symbol>[,<symbol>]...]

This directive specifies symbols referenced in the current module but

defined in other modules. Each symbol is associated with the specified

<section> number which it follows. Symbols may occur in any section,

including an absolute ORG section, if no <section> designation is

specified.

�.S" indicates the XREF symbols should be directly addressed through

absolute short mode. Remember, however, that the location of the symbols

in low memory is the responsibility of the user.

Example

XREF Simple_var
XREF AA,2:E2,3:E3,B3,C3

The symbol AA can be in any section; E2 is in section 2; and E3, B3, and

C3 are in section 3.

5.6 INTERNAL ASSEMBLY CONTROLS

The directives that are described in this section are put out by our 68K C

compiler. Compiling with the �-ia" option, the compiler will produce real

assembly language output. These directives are needed to provide the

connection between the compiler produced assembly and the compiler

libraries and to pass symbolic debug information through the assembler:

_BRINGIN

_DEBSYM

_DGROUP

Chapter 55–26
D
IR
E
C
T
IV
E
S

5.6.1 _BRINGIN DECLARE EXTERNAL SYMBOL

Syntax

_BRINGIN <symbol>

This directive tells the assembler to emit an external reference for the

named symbol into the object module. This causes the link editor to bring

the object module that defines this symbol into the link.

5.6.2 _DEBSYM PUT OUT DEBUGGING INFORMATION

Syntax

_DEBSYM <string>[,<operand>]

This directive causes the assembler to generate a line of symbolic

debugging information. Lines that describe data symbol positions are

written to a temporary file which is later combined into the object module

by the compiler utility. Line that describe C source line positions are

written directly into the object module.

5.6.3 _DGROUP DEFINE DATA GROUP

Syntax

_DGROUP <symbol>

The compiler addresses global data via the A5 register. The global data is

divided into two segments, idata for initialized data and udata for

unitialized data. In order to address two different segments off one

register, a virtual segment or �group" called �data" is used. The A5 register

points at data, and the link editor ensures that idata and udata are located

in one 64k byte area.

This directive causes the assembler to emit a group definition into the

object module. The name symbol (always �data") is the group name. The

statement puts the udata and/or idata segments into the group data if they

are present.

6

MACRO
OPERATIONS AND
CONDITIONAL
ASSEMBLY

C
H

A
P

T
E

R

Chapter 66–2
M
A
C
R
O
S

6

C
H

A
P

T
E

R

Macro Operations and Condional Assembly 6–3

• • • • • • • •

This chapter describes the macro and the conditional assembly capabilities

of the assembler. These features can be used in any program.

6.1 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated

pattern of instructions that, within themselves, contain variable entries at

each iteration of the pattern, or basic coding patterns subject to

conditional assembly at each occurrence. In either case, macros provide a

shorthand notation for handling these patterns. Having determined the

iterated pattern, the programmer can, within the macro, designate fields of

any statement as variable. Thereafter, by invoking a macro, the

programmer can use the entire pattern as many times as needed,

substituting different parameters for the designated variable portions of the

statements.

Macro usage can be divided into two basic parts: definition and expansion.

When the pattern is defined, it is given a name. This name becomes the

mnemonic by which the macro is subsequently invoked (called). The

name of a macro definition should not be the same as an existing

instruction mnemonic an assembler directive, or a previously defined

macro.

Expansion occurs when the previously defined macro is called (invoked).

The macro call causes source statements to be generated. The generated

statements may contain substitutable arguments. The statements that may

be generated by a macro call are relatively unrestricted as to type. They

can be any processor instruction, almost any assembler directive, or any

previously defined macro. Source statements generated by a macro call are

subject to the same conditions and restrictions as programmer-generated

statements.

The invocation of a macro requires that the macro name appear in the

operation field of a source statement. Most arguments are placed in the

operand field. Appropriate arguments selected according to the macro

definition cause the assembler to produce in-line coding variations of the

macro definition.

Chapter 66–4
M
A
C
R
O
S

The effect of a macro call is the same as an open subroutine in that it

produces in-line code to perform a predefined function. The in-line code

is inserted in the normal flow of the program so that the generated

instructions are executed in-line with the rest of the program each time

the macro is called.

6.1.1 MACRO DEFINITION

The definition of a macro consists of three parts:

1. The header: <label> MACRO

The <label> of the MACRO statement is the �name" by which the macro is

later invoked. This name must be a unique class 1 symbol. A macro name

may not have a period (.) as any character other than the first.

2. The body

The body of a macro is a sequence of standard source statements. Macro

parameters are defined by the appearance of argument designators within

these source statements. Legal macro-generated statements include the set

of Motorola 68000 family assembly language instructions, assembler

directives, structured syntax statements, and calls to other, previously

defined macros. However, macro definitions may not be nested.

3. The terminator: ENDM

6.1.2 MACRO INVOCATION

The form of a macro call is:

[<label>] <name>[.<qualifier>] [<parameters>]

Although a macro may be referenced by another macro prior to its

definition in the source module, the macro must be defined before its first

in-line expansion. The name of the called macro appears in the operation

field of the source statement; parameters may appear as qualifiers to the

macro name and/or in the operand field of the source statement, separated

by commas.

Macro Operations and Condional Assembly 6–5

• • • • • • • •

The macro call produces in-line code at the location of the invocation,

according to the macro definition and the parameters specified in the

macro call. The source statements so generated are then assembled,

subject to the same conditions and restrictions affecting any source

statement. Nested macro calls are also expanded at this time.

6.1.3 MACRO PARAMETER DEFINITION AND USE

Up to 36 different, substitutable arguments may appear in the source

statements which constitute the body of a macro. These arguments are

replaced by the corresponding parameters in a subsequent call to that

macro.

Arguments are designated by a backslash character (\), followed by a digit

(0 through 9) or an upper case letter (A through Z). Argument designator

\0 refers to the qualifier appended to the macro name; parameters in the

operand field of the macro call refer to argument designations \1 through

\9 and \A through \Z, in that order.

Argument substitution at the time of a macro call is handled as a literal

(string) substitution. The string corresponding to a given parameter is

substituted literally whenever that argument designator occurs in a source

statement as the macro is expanded. Each statement generated in this

expansion is assembled in-line. (Note that, if a qualifier is present,

argument 0 begins with the first character following the period which

separates the qualifier from the macro name).

It is possible to specify a null argument in a macro call by an empty string

(not a blank); except for 0, it must still be separated from other parameters

by a comma. In the case of a null argument referenced as a size code, the

default size code (W) is implied; when a null argument itself is passed as

an argument in a nested macro call, a null argument is passed. All

parameters have a default value of null at the time of macro call.

If an argument has multiple parts or contains commas or blanks, the entire

argument must be enclosed within angle brackets (< and >). Such

arguments must still be separated from other arguments by commas. A

bracketed argument with no intervening character is treated as a null

argument. Embedded brackets must occur in pairs. Parameter 0 may not

be bracketed and, hence, may not contain blanks (although commas are

legal). Note that a macro argument may not contain the characters �<" or

�>" unless they occur as part of the argument bracketing.

Chapter 66–6
M
A
C
R
O
S

6.1.4 LABELS WITHIN MACROS

To avoid the problem of multiply-defined labels resulting from multiple

calls to a macro which employs labels in its source statements, the

programmer may direct the assembler to generate unique labels on each

call to a macro.

Assembler-generated labels include a string of the form .nnn, where nnn

is a 3-digit value. The programmer may request an assembler-generated

label by specifying \@ in a label field within a macro body. Each

successive label definition which specifies a \@ directive will generate

successive values of .nnn, thereby creating unique labels on repeated

macro calls. Note that \@ may be preceded or succeeded by additional

characters for clarity and to prevent ambiguity.

References to an assembler-generated label always refer to the label of the

given form defined in the current level of the current macro expansion.

Such a label is referenced as an operand by specifying the same character

string as that which defines the label.

6.1.5 THE MEXIT DIRECTIVE

The MEXIT directive terminates the macro source statement generation

during expansion. It may be used within a conditional assembly structure

to skip any remaining source lines up to the ENDM directive. All

conditional assembly structures pending within the macro currently being

expanded are also terminated by the MEXIT directive. The MEXIT

Directive takes an optional expression. It exits if the expression is true

(non-zero). If the MEXIT Directive is not given an argument, comments

must be delimited with a `!'.

Example

SAV2 MACRO
MOVE.L \1,SAVET SAVE 1ST ARGUMENT
MOVE.L \2,SAVET+4SAVE 2ND ARGUMENT
IFC 3, IS THERE A 3RD

* ARGUMENT?
FAIL 10000 DID THE ASSEMBLER

* FAIL THRU HERE?
MEXIT NOEXIT FROM MACRO
ENDC
MOVE.L \3,SAVET+8SAVE 3RD ARGUMENT

ENDM

Macro Operations and Condional Assembly 6–7

• • • • • • • •

6.1.6 THE NARG SYMBOL

The symbol NARG is a special symbol when referenced within a macro

expansion. The value assigned to NARG is the index of the last argument

passed to the macros in the parameter list (including nulls). NARG is

undefined outside of macro expansion and may be referenced as a Class 1

or 2 user-defined symbol outside of a macro expansion.

6.1.7 IMPLEMENTATION OF MACRO DEFINITION

When the sequence of source statements:

MAC1 MACRO
<stmt1>
<stmt2>
.
.
.
<stmtn>
ENDM

is encountered in a source program, the following actions are performed:

1. The symbol table is checked for a Class 1 symbol entry of �MAC1". If such

an entry is already present, a redefined symbol warning is generated;

otherwise, an entry is placed in the symbol table, identifying MAC1 as a

macro.

2. Starting with the line following the MACRO directive, each line of the

macro body is saved in a character sequence identified with MAC1. In the

example, stmt1 through stmtn are saved in this manner. No object code is

produced at this time.

3. Normal processing resumes with the line following the ENDM directive.

6.1.8 IMPLEMENTATION OF MACRO EXPANSION

When the statement:

 MAC1.< qualifier >
 < param1 >,< param2 >,...,< paramn >

Chapter 66–8
M
A
C
R
O
S

is encountered in a source program calling the previously defined macro

MAC1 (above), the following actions are performed:

1. The line is scanned for parameters which are saved as literals or null

values, one such value in each of the 36 parameter record fields. No object

code is produced.

2. Macro expansion consists of the retrieval of the source lines which

comprise the macro body. Each line is retrieved in turn, with special

character pairs replaced by parameter strings or assembler-generated label

strings.

If a backslash character \ is followed by either a digit (0 through 9) or an

upper case letter (A through Z), the two characters are replaced by the

literal string which corresponds to that parameter on the macro invocation

line(s).

A character sequence which includes \@ is replaced by an

assembler-generated label. An assembler-generated label is uniquely

identified by the characters preceding and/or appended to the \@

sequence and the macro invocation in which the reference occurs. Such

labels may appear anywhere in the source line and always refer to the

current macro expansion.

3. When a line has been completely expanded, it is assembled as any other

source input line. At this time, any errors in the syntax of the expanded

assembly code are found. Expanded lines longer than 80 characters are

truncated, and an error is generated.

If a nested macro call is encountered, the nested macro expansion takes

place recursively. There is no set limit to the depth of macro call nesting.

6.2 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive

source program that can cover many conditions. Assembly conditions may

be specified through the use of arguments in the case of macros and

through definition of symbols via the SET and EQU directives. Variations

of parameters can then cause assembly of only those parts necessary for

the specified conditions.

Macro Operations and Condional Assembly 6–9

• • • • • • • •

The I/O section of a program, for example, will vary, depending on the

target environment. Conditional assembly directives can include or exclude

an I/O section, based on a flag set at the beginning of the assembly.

6.2.1 CONDITIONAL ASSEMBLY STRUCTURE

There are two conditional assembly structures available: IFC-ELSEC-ENDC

and REPEATC-ENDR. IFC-ELSEC-ENDC blocks allow conditional assembly

and are valid in any part of an assembly language program.

REPEATC-ENDR blocks also allow conditional assembly, and are only

valid within a macro definition.

The ELSEC, REPEATC, and ENDR constructs are only allowed if the �select

TASKING extensions" option is in effect. See the 68000 Family Assembler
chapter in the User's Manual for a description of these extensions.

The IF conditional assembly structure consists of three parts:

1. The header. There are two conditional header clauses recognized by the

assembler. The first form compares the equality of two strings:

IF xx < string1>,< string2>

�xx" specifies either the string compare (C) condition or the string not

compare (NC) condition, representing string equality and inequality,

respectively. The result of the string comparison, along with the �xx"

condition, determines whether the body of the conditional structure will

be assembled. Either string may contain embedded commas or spaces. An

apostrophe that occurs within a string must be specified by double

apostrophes.

The second form of the conditional clause compares with an expression

against zero:

IFxx <expression>

Chapter 66–10
M
A
C
R
O
S

�xx" specifies a conditional relation between the expression and the value

zero. The result of this comparison at assembly time determines whether

the body of the conditional structure will be assembled. Valid conditional

relation codes include:

EQ expression= 0
NE expression<> 0
LT expression< 0
LE expression<= 0
GT expression> 0
GE expression>= 0

Because of the nature of this comparison, the expression must be absolute.

No forward references are allowed.

2. The body. The body of the conditional assembly structure consists of a

sequence of standard source statements. There is no set limit to the depth

of conditional assembly nesting; if such nesting occurs, an ENDC

terminator must be specified for each structure.

There may be an ELSE clause in the body. The keyword for for this is

ELSEC.

ELSEC may only be used if the �select TASKING extensions" option is in

effect. See the Assembler chapter in the User's Manual for more

information.

3. The terminator ENDC. When an IFxx directive is encountered, the

specified condition is evaluated. If the condition is true, the statements

constituting the body of the conditional assembly structure are each

assembled in turn. If the relation is false, the entire conditional assembly

structure is ignored; the ignored lines are not included in the assembly

listing. By specifying the OPT NOCL option, the header and terminator

lines are ignored for listing purposes.

IFxx and ENDC directives may not be labeled.

The REPEATC-ENDR construct has a similar structure:

Macro Operations and Condional Assembly 6–11

• • • • • • • •

1. The header: REPEATC <expr1>[,<expr2>]. Both <expr1> and <expr2> must

be assembly time absolute expressions. No forward references are

allowed. If <expr1> is equal to zero (false), then statements up to the

ENDR are ignored. Otherwise, the statements are assembled and the

assembler repeats the process again until <expr1> is equal to zero. A

REPEATC block stops iterating when the specified expression maximum,

<expr2> is reached. If <expr2> is not specified, then the REPEATC block

stops after 255 iterations.

2. The body. The body of a REPEATC-ENDR can contain any assembly

language statements, including complete IFC-ELSEC-ENDC and

REPEATC-ENDR constructs. IFC-ENDIF and REPEATC-ENDR blocks may

not cross the boundary of a macro expansion or the boundaries of each

other.

3. The terminator: ENDR. This terminates the body of the REPEATC

construct.

Testing for null parameters may be done via the string compare form of

the conditional assembly. To assemble conditionally if parameter 1 is null,

either of the following is correct:

IFC ”,’\1’

or

IFC ’\1’,”

To assemble conditionally if a parameter is present, use either of the IFNC

formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive. It

is an error if a conditional assembly block is not terminated in the same

macro call and at the same level that it was begun in.

6.2.2 EXAMPLE OF MACRO AND CONDITIONAL

ASSEMBLY USAGE

The following example illustrates most of the features of macro and

conditional assembly structures. The assembly code is shown as it appears,

without line numbers or object code. Note that angle brackets (< >) shown

in examples are required characters.

Chapter 66–12
M
A
C
R
O
S

Example of Nested Macros

MAC0 MACRO
MOVE.\0 \1
CLR.L \2
ENDM

MAC1 MACRO
MOVE.\ #\1,D\2
IF\3 \1 CONDITIONAL
ADD.\ #1,D\2
IF\3 \1–5 NESTED CONDITIONAL
ADD.\0 #2,D\2 \4
ENDC END NESTED CONDITIONAL
ENDC END CONDITIONAL

LAB\@ CLR.L D1
MOVE.\0 D\2,(A0)+
B\3 L\@END
BRA LAB\@

L\@END \5.\0 #1,D\2
IFLE \1
MAC0.\0 <D\2,(A0)>,A\2 NESTED MACRO CALL
ENDC
ENDM

OPT MEX,NOCL
MAC1.L 7,3,GT,<TEST PASSES>,ADD

* Expansion is equivalent to following lines
MOVE.L #7,D3
ADD.L #1,D3
ADD.L #2,D3 TEST PASSES

LAB.001 CLR.L D1
MOVE.L D3,(A0)+
BGT L.002END
BRA LAB.001

L.002END
ADD.L #1,D3

MAC1.W 0,6,NE,<ERROR HERE>,SUB
* Expansion is equivalent to following lines

MOVE.W #0,D6
LAB.003 CLR.L D1

MOVE.W D6,(A0)+
BNE L.004END
BRA LAB.003

L.004END
SUB.W #1,D6
MOVE.W D6,(A0)
CLR.L A6

Macro Operations and Condional Assembly 6–13

• • • • • • • •

Examples of REPEATC-ENDR

NUMSTR MACRO
X SET 1

IFGT X–9
FAIL “Argument to NUMSTR out of range”
ENDC
IFLT X
FAIL “Argument to NUMSTR out of range”
ENDC
REPEATC 1,X
DC.B 0+X SAME AS X IF 0<=X<=9

X SET X–1
ENDR
DC.B 0
ENDM

NUMST 3

* Expansion is equivalent to following lines
DC.B 0+3
DC.B 0+2
DC.B 0+1
DC.B 0

POWERS MACRO
X SET \2

REPEATC 1,\1
DC.\1 X

X SET X*\2
ENDR
ENDM

POWERS.W 4,4

* Expansion is equivalent to following lines
DC.W 4
DC.W 16
DC.W 64
DC.W 256

Chapter 66–14
M
A
C
R
O
S

7

STRUCTURED
CONTROL
STATEMENTS

C
H

A
P

T
E

R

Chapter 7
7–2

C
O
N
T
R
O
L

7

C
H

A
P

T
E

R

Structured Control Statements 7–3

• • • • • • • •

An assembly language provides an instruction set for performing certain

rudimentary operations. These operations, in turn, may be combined into

control structures -- such as loops (for, repeat, while) or conditional

branches (if-then, if-then-else). To simplify the process of coding these

constructs, this assembler accepts formal, high level directives that specify

these control structures, generating, in turn, the appropriate assembly

language instructions for their efficient implementation. This use of

structured control statement directives improves the readability of

assembly language programs, without compromising the desirable aspects

of programming in an assembly language.

7.1 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved

keywords (directives):

ELSE ENDW REPEAT

ENDF FOR UNTIL

ENDI IF WHILE

The following symbols are required in the structured syntax. All keywords

are reserved:

AND DOWNTO TO

BY OR

DO THEN

AND and OR are reserved instruction mnemonics, however.

7.2 SYNTAX

This section describes the formats for the IF, FOR, REPEAT, and WHILE

statements. They are spaced to show the line separations required for

Class 1 symbol usage. Syntactic variables used in the formats are as

follows:

<expression> A simple or compound expression (see the Simple and
Compound Expressions section).

Chapter 7
7–4

C
O
N
T
R
O
L

<stmtlist> Zero or more assembler directives, structured control

statements, or executable instructions.

An assembler directive (see the Assembler Directives chapter) occurring

within a structured control statement is examined exactly once - at

assembly time. Thus, the presence of a directive within a FOR, REPEAT, or

WHILE statement does not imply repeated occurrence of an assembler

directive; nor does the presence of a directive within an IF-THEN-ELSE

statement imply a conditional assembly structure (see the Structured
Control Statements chapter).

For correct recognition, the statements in <stmtlist> must not

appear on the same line as the structured syntax symbols.

<size> The value B, W, or L, indicating a data size of byte, word, or

longword, respectively. With the keyword FOR, <size> is a

single code applying to <op1>, <op2>, <op3>, and <op4>.

With the keywords IF, UNTIL, and WHILE, <size> indicates

the size of the operand comparison in the subsequent simple

expression (refer to paragraph 5.3.4 for a compound

expression). Note that structured syntax statements rely on

the underlying opcodes and the restrictions these opcodes

place on arguments to the statements. For example, the

structured syntax statement

 FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as

expected. This is because the comparison opcode CMP does

a signed comparison and hence deals with numbers in the

range -128 ... 127 instead of 0 ... 255.

<extent> The value S or L, indicating that the branch extent is short or

long, respectively. This is appended to the keywords THEN,

ELSE, and DO, to force the appropriate extent of the

generated forward branch over the subsequent <stmtlist>.

The default extent for the Motorola 68020-plus is determined

by the forward branch option directive (OPT BRS, OPT BRB,

OPT BRW, or OPT BRL) currently in effect.

<op1> A user-defined operand whose memory/register location

holds the FOR counter. This must be a data or address

register.

Structured Control Statements 7–5

• • • • • • • •

<op2> The initial value of the FOR counter. The effective address

may be any mode. Immediate operands must be preceded by

a # sign.

<op3> The terminating value for the FOR counter. The effective

address may be any mode. Immediate operands must be

preceded by a # sign.

<op4> The step (increment/decrement) for the FOR counter each

time through the loop. If not specified, it defaults to a value

of #1. The effective address may be any mode. Immediate

operands must be preceded by a # sign.

7.2.1 IF STATEMENT

Syntax

IF[.<size>] <expression> THEN[.<extent>]

 <stmtlist>
ENDI

OR:

IF[.<size>] <expression> THEN[.<extent>]

 <stmtlist>
ELSE[.<extent>]

 <stmtlist>
ENDI

If <expression> is true, execute the <stmtlist> following THEN;

If <expression> is false, execute <stmtlist> following ELSE, if present, or

advance to next instruction.

Notes

• If an operand comparison <expression> is specified, the condition

codes are set and tested before execution of <stmtlist>.

• In the case of nested IF-THEN-ELSE statements, each ELSE refers to the

closest IF-THEN.

Chapter 7
7–6

C
O
N
T
R
O
L

Example

IF.L D1 <LT> #10 THEN
MOVE D5, D6
ENDI

7.2.2 FLOATING-POINT STRUCTURED ASSEMBLER

SYNTAX FOR THE IF STATEMENT

Syntax

IF[.<fmt>] FPn <fpcc> <ea> THEN

IF[.<fmt>] <ea> <fpcc> FPn THEN

IF.X FPn <fpcc> FPm THEN

IF <fpcc> THEN

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<fpcc> = A floating-point condition code, as defined in Table

NO TAG.

This directive is similar to the non-floating-point IF syntax, except that the

floating-point condition codes are used. When the assembler expands the

structured IF statement with a floating-point condition code, <fpcc>, it

must choose the true IEEE inverse of <fpcc>. For example, the code

generated for:

IF.X FP3 <FGT> #3.3 THEN

(where GT is one value of fpcc and #3.3 is a required constant value)

would be:

FCMP.X #3.3,FP3
FBNGT ELSECLAUSE
.... true clause code
BRA PAST

ELSECLAUSE
.... false clause code

PAST
....

The branch following the FCMP is a FBNGT rather than a FBLE because

FBNGT is the IEEE inverse of FBGT.

Structured Control Statements 7–7

• • • • • • • •

7.2.3 FOR STATEMENT

Syntax

FOR[.<size>] <op1> = <op2> TO <op3>

[BY <op4>] DO[.<extent>] <stmtlist>
ENDF

OR:

FOR[.<size>] <op1>=<op2> DOWNTO

<op3> [BY <op4>] DO[.<extent>] <stmtlist>
ENDF

These counting loops utilize a user-defined operand, <op1>, for the loop

counter. FOR-TO allows counting upward, while FOR-DOWNTO allows

counting downward. In both loops, the user may specify the step size,

<op4>, or elect the default step size of #1. The FOR-TO loop is not

executed if <op2> is greater than <op3> upon entry. Similarly, the

FOR-DOWNTO loop is not executed if <op2> is less than <op3>.

Notes

• The condition codes are set and tested before each execution of

<stmtlist>. This happens even if <stmtlist> is not executed.

• A step size of #1 may not be meaningful if the counter, <op1>, is used

to index through word or longword size data.

• The FOR structure generates a move, a compare, and either an add or

subtract. Therefore, if any of the four operands is an address register,

<size> may not be B (byte).

• <op1> must be a data or address register.

Example

FOR COUNT = #4 TO #40 BY #4 DO
 NOP loop 10 times by steps of 4
ENDF

Chapter 7
7–8

C
O
N
T
R
O
L

7.2.4 REPEAT STATEMENT

Syntax

REPEAT

<stmtlist>
UNTIL[.<size>] <expression>

<stmtlist> is executed repeatedly until <expression> is true.

Notes:

• The <stmtlist> is executed at least once, even if <expression> is true

upon entry.

• If an operand comparison <expression> is specified, the condition

codes are set and tested following each execution of <stmtlist>.

Example

REPEAT
 MOVE (A6)+,(A5)+
UNTIL <EQ>

7.2.5 WHILE STATEMENT

Syntax

WHILE[.<size>] <expression> DO[.<extent>]

<stmtlist>
ENDW

The <expression> is tested before execution of <stmtlist>. While

<expression> is true, <stmtlist> is executed repeatedly.

Notes:

• If <expression> is false upon entry, <stmtlist> is not executed.

• If an operand comparison <expression> is specified, the condition

codes are set and tested before each execution of <stmtlist>. The

condition codes are set and tested even if <stmtlist> is not executed.

Example

WHILE.B (A3) <NE> D2 DO
 MOVE.B (A5)+,D3
ENDW

Structured Control Statements 7–9

• • • • • • • •

7.3 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. An

expression may be simple or compound. A compound expression consists

of no more than two simple expressions joined by AND or OR.

7.3.1 SIMPLE EXPRESSIONS

Simple expressions are concerned with the bits of the Condition Code

Register (CCR). These expressions are of two types. The first type merely

tests conditions currently specified by the contents of the CCR. The second

type set up a comparison of two operands to set the condition codes, and

afterwards tests the codes.

7.3.2 CONDITION CODE EXPRESSIONS

Fourteen tests (identical to those in the Bcc instruction) may be performed,

based on the CCR condition codes. The condition codes, in this case, are

preset by either a user-generated instruction or a structured

operand-comparison expression. Each test is expressed in the structured

control statement by a mnemonic enclosed in angle brackets (<\^>) as

follows:

<CC> <LS>
<CS> <LT>
<EQ> <MI>
<GE> <NE>
<GT> <PL>
<HI> <VC>
<LE> <VS>

Example

IF <EQ> THEN
 CLR.L D2
ENDI

REPEAT
 SUB D4,D3
UNTIL <LT>

Chapter 7
7–10

C
O
N
T
R
O
L

7.3.3 OPERAND COMPARISON EXPRESSIONS

Two operands may be compared in a simple expression, with subsequent

transfer of control based on that comparison. Such a comparison takes the

form:

<op1> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets,

specifying the relation to be tested between <op1> and <op2>. When

processed by the assembler, this expression translates to a compare

instruction. For example,

CMP <op1>,< op2>

followed by a branch instruction (Bcc) which tests the relation specified.

<op1> is normally, but not necessarily assigned to the first (leftmost)

operand and <op2> to the second (rightmost) operand of the compare

instruction.

Notes:

• A size may be specified for the comparison by appending a data size

code (B, W, or L) to the directive, with W being the default. The only

restriction is that a byte size code (B) may not be used in conjunction

with an address register direct operand.

• Compare instructions require certain effective addressing modes for

their operands. These modes are listed in Table 7-1. However, if the

operands, <op1> and <op2>, are not listed in an order that generates a

legal compare instruction (Table 7-1), but generates a legal compare if

the operand order is reversed, the assembler reverses the operands

when expanding the expression. To maintain the nature of the relation

specified, the condition operator is adjusted, if necessary. For example,

D2 <GT> #5

is adjusted by the assembler to the equivalent of

#5 <LE> D2

Structured Control Statements 7–11

• • • • • • • •

Likewise,

A2 <EQ> (A5)

is adjusted to the equivalent of

(A5) <NE> A2.

This processing allows the user the flexibility of specifying the most

meaningful operand order in the expression.

First Operand Second Operand

CMP (All) Data register direct

(All) Address register direct

CMPA Immediate (Data alterable)

CMPM Postincrement register Postincrement

indirect register indirect

Table 7-1: Effective Compare Instruction Addressing Modes

If the operands, either as stated or reversed, do not yield a legal compare

instruction, an error will result. For example, the statement:

IF (A1) <NE> (A2) THEN

results in an illegal address mode error during expansion. To avoid this

error, a MOVE is required to effect a legal operand, such as:

MOVE (A2),D2 IF (A1) <NE> D2 THEN

Example

WHILE.B (A3) <NE> D2 DO THIS EXPRESSION
 MOVE.B (A5)+,D2 IS LEGAL AS STATED.
ENDW

IF D7 <LT> #10 THEN THIS EXPRESSION
 BSR SUBR1 IS REVERSED
ELSE
 MULS #2,D7
ENDI

Chapter 7
7–12

C
O
N
T
R
O
L

7.3.4 COMPOUND EXPRESSIONS

A compound expression consists of two simple expressions joined by a

logical operator. The Boolean value of the compound expression is

determined by the Boolean values of the simple expressions and the

nature of the logical operator (AND or OR).

The two simple expressions are evaluated in the order in which they are

given. However, if an AND separates the expressions and the first

expression is false, the second expression is not evaluated. Likewise, if an

OR separates the expressions and the first expression is true, the second

expression does not need to be evaluated, and the condition codes reflect

the result of only the first simple expression.

A size may be specified for each operand comparison expression. The size

of the comparison for the first expression may be appended to the

directive, while the size of the comparison for the second expression may

be appended to the keyword AND or OR. For example, in the statement:

IF.L D3 <GT> (A0) OR.B #Q <EQ> BUFFER1

the first comparison (between D3 and (A0)) is a longword comparison,

and the second (between #Q and BUFFER1) is a byte comparison.

7.4 SOURCE LINE FORMATTING

The format of structured source statements is more restricted than the

format of basic statements. The following paragraphs discuss the

formatting requirements of structured statements as well as their

appearance in the assembly listing.

7.4.1 CLASS 1 SYMBOL USAGE

Class 1 symbols are the assembler directives (including macro names),

instruction mnemonics, and the structured control directives. Only one of

these symbols is recognized on each source line. Thus, each directive

(reserved keyword) of a structured control statement and each executable

instruction generated by the programmer must be written on a separate

source line. The following source line, for example, is in error:

REPEAT MOVE (A5),D2 UNTIL <EQ>

Structured Control Statements 7–13

• • • • • • • •

The MOVE and UNTIL symbols and their operands are not recognized as

class 1 symbols, but are treated as part of the comment field of the

REPEAT directive. Likewise, the following lines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) ENDI

The JSR, JMP, and ENDI symbols and their operands are not recognized

because they come after the THEN and ELSE keywords and are treated as

comments. The correct format for these lines is as follows:

REPEAT
 MOVE (A5),D2
UNTIL <EQ>

 and:

IF <VS> THEN
 JSR OVERFLOW
ELSE
 JMP (A3)
ENDI

7.4.2 NESTING OF STRUCTURED STATEMENTS

Structured statements may be nested as desired to create multilevel control

structures. An example of such nesting is the following:

IF <EQ> THEN
 REPEAT
 MOVE D0,(A5)+
 ADDQ #4,D0
 MOVE.L A4,(A4)+
 UNTIL.L A5 <LE> A4

ELSE.L

 FOR D2 = #10 TO #20 BY #2 DO
 WHILE D4 <LE> D2 AND D4 <LT> #100 DO
 MOVE.L 10 (A3,D4.W),(A5)+
 ADDQ #2,D4
 ENDW
 ENDF
ENDI

Chapter 7
7–14

C
O
N
T
R
O
L

The indention shown above is not necessary for nested structure

statements; it just makes the code easier to read.

7.5 EFFECTS ON THE USER'S ENVIRONMENT

If the –p option is passed on the command line, the generated code of the

structured control expansions is listed. There may be three items found in

this code that will affect the user's environment:

• During assembly, local labels beginning with | (pipe bar) are

generated. These labels use the same increment counter (.nnn) as local

labels in macros. They are stored in the symbol table, but can not be

duplicated in user-defined labels.

• In the FOR loop, <op1> is a user-defined symbol. When exiting the

loop, the memory/register assigned to this symbol contains the value

which caused the exit from the loop.

• Compare instructions (Table 7-1) are generated by the assembler

whenever two operands are tested relationally in a structured

statement. At run-time, however, these assembler-generated

instructions set the condition codes of the CCR (in the case of a

loop, the condition codes are set repeatedly). Users must keep in mind

the effects of this when writing code that references the CCR within or

following a structured statement.

8

POSITION–
INDEPENDENT
CODE

C
H

A
P

T
E

R

Chapter 88–2
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

8

C
H

A
P

T
E

R

Position–Independent Code 8–3

• • • • • • • •

This chapter contains sections on Forcing Position Independence,

Base-Displacement Addressing, and Base-Displacement in Conjunction

with Forced Position Independence.

8.1 FORCING POSITION INDEPENDENCE

When creating a relocatable program module, it is often desirable to

ensure that all references to operands in relocatable sections are

position-independent effective addresses, i.e., no absolute addresses occur

as effective addresses for such references. To avoid absolute effective

address formats, it is necessary to ensure that all memory operand

references are resolved by the assembler or the linker into one of the

program counter relative or address register indirect addressing modes.

The ORG directive should also be avoided.

To override an absolute address mode when resolving the effective

address format of an operand, the following formats may be used to force

program counter relative addressing:

• Forcing program counter with displacement:

An operand of the form:

LABEL(PC)

is resolved as a PC with displacement effective address, either by the

assembler or by the linker. If LABEL cannot be resolved into a 16-bit

displacement from the program counter, an error is generated.

• Forcing PC with index plus displacement:

An operand of the form:

LABEL(PC,Rn)

is resolved as a PC with index plus displacement effective address by

the assembler. If LABEL cannot be resolved into an 8-bit displacement

from the program counter, an error is generated.

Chapter 88–4
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

8.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position

independence, such address formats often are not the most meaningful to

the programmer when debugging an assembled module. There are many

times when a programmer would prefer to see an address relative to a

specified base -- i.e., in a base-displacement format. This is especially

true when addressing tables, arrays, and other data structures.

Base-displacement references to a given location are �base relative" and,

therefore, fixed with respect to a given base address; PC relative

references to that same location are different in each instruction.

Base-displacement addressing must be handled explicitly by the

programmer. For example, if the following data area is declared:

TEMP DS $40
CONST DC $10
ARRAY1 DS.L $10
ARRAY2 DS.L $10
RESULT DS.L $10

the programmer may choose to load A6 with the address of TEMP and

make references to the other data locations as displacements from this

base address. For example, to move the first element of ARRAY1 to D1, the

programmer may specify:

MOVE.L ARRAY1–TEMP(A6),D1

Indexing with the low order contents of D0 may be added (as the array

index):

MOVE.L ARRAY1–TEMP(A6,D0),D1

8.3 BASE-DISPLACEMENT IN CONJUNCTION WITH

FORCED POSITION INDEPENDENCE

Complete code-position independence can be achieved by using

base-displacement addressing in conjunction with the PCS option and the

forced PC relative addressing scheme outlined in the Forcing Position
Independence section. Although these techniques can be used to avoid all

undesired absolute address formats, there are significant limitations of PC

relative addressing in a position-independent program, as noted below:

Position–Independent Code 8–5

• • • • • • • •

• PC with displacement:
PC with displacement effective addresses (for the 68000 and 68010) are

restricted by the 16-bit displacement field. A displacement greater than

32K byte from the current PC cannot be resolved in this format.

• PC with index plus displacement:
The displacement field here is restricted to eight bits (for the 68000 and

68010), limiting the range of this format to a 128-byte displacement

from the current PC. The displacement may be relocatable.

• Operands in the alterable addressing category:
Neither PC relative mode is allowed as an alterable operand. This is a

significant limitation in instructions which require an alterable operand,

such as the destination operand in a MOVE instruction.

By appropriate use of base registers, these limitations can be overcome.

Chapter 88–6
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

A

CHARACTER SET
A

P
P

E
N

D
I
X

Appendix AA–2
C

H
A

R
A

C
T

E
R

 S
E

T A

A
P

P
E

N
D

I
X

Character Set A–3

• • • • • • • •

This appendix lists the ASCII characters recognized by the assembler.

1 CHARACTERS RECOGNIZED

The characters recognized by the assembler are listed below. The ASCII

codes for these characters are shown on the following pages:

• The upper case letters A through Z

• The lower case letters a through z

• The digits 0 through 9

• Five arithmetic operators: +, -, *, /, and %

• The logical operators: >>, <<, &, and !

• Parentheses used in expressions ()

• Characters used as special prefixes:

(pound sign) specifies the immediate modeof addressing

$ (dollar sign) specifies a hexadecimal number

@ (commercial �at") specifies an octal number

% (percent) specifies a binary number

' (apostrophe) specifies an ASCII literal character

• The special characters used in macros: <, >, /, and @

• Four separating characters:

(space)

(tab)

, (comma)

. (period)

• A comment in a source statement may include any characters with

ASCII values from (hexadecimal) 20 through 7E.

• Character used as a special suffix:

: (colon) specifies the end of a label

2 ASCII CHARACTER SET

Character Comments Hex Value

NUL Null or tape feed 00

SOH Start of Heading 01

STX Start of Text 02

ETX End of Text 03

Appendix AA–4
C

H
A

R
A

C
T

E
R

 S
E

T

Hex ValueCommentsCharacter

EOT End of Transmission 04

ENQ Enquire 05

ACK Acknowledge 06

BEL Bell 07

BS Backspace 08

HT Horizontal Tab 09

LF Line Feed 0A

VT Vertical Tab 0B

FF Form Feed 0C

RETURN Carriage Return 0D

SO Shift Out (to red ribbon) 0E

SI Shift In (to black ribbon) 0F

DLE Data Link Escape 10

DC1 Device Control 1 11

DC2 Device Control 2 12

DC3 Device Control 3 13

DC4 Device Control 4 14

NAK Negative Acknowledge 15

SYN Synchronous idle 16

ETB End of Transmission Block 17

CAN Cancel 18

EM End of Medium 19

SUB Substitute 1A

ESC Escape, prefix 1B

FS File Separator 1C

GS Group Separator 1D

RS Record Separator 1E

US Unit Separator 1F

SP Space or blank 20

! Exclamation point 21

“ Quotation mark 22

Character Set A–5

• • • • • • • •

Hex ValueCommentsCharacter

Number sign 23

$ Dollar sign 24

% Percent sign 25

& Ampersand 26

’ Apostrophe 27

(Opening parenthesis 28

) Closing parenthesis 29

* Asterisk 2A

+ Plus sign 2B

– Hyphen (minus) 2D

. Period (decimal point) 2E

/ Slant 2F

0 Digit 0 30

1 Digit 1 31

2 Digit 2 32

3 Digit 3 33

4 Digit 4 34

5 Digit 5 35

6 Digit 6 36

7 Digit 7 37

8 Digit 8 38

9 Digit 9 39

: Colon 3A

; Semicolon 3B

< Less than 3C

= Equals 3D

> Greater than 3E

? Question mark 3F

@ Commercial at 40

A Upper case letter A 41

B Upper case letter B 42

Appendix AA–6
C

H
A

R
A

C
T

E
R

 S
E

T

Hex ValueCommentsCharacter

C Upper case letter C 43

D Upper case letter D 44

E Upper case letter E 45

F Upper case letter F 46

G Upper case letter G 47

H Upper case letter H 48

I Upper case letter I 49

J Upper case letter J 4A

K Upper case letter K 4B

L Upper case letter L 4C

M Upper case letter M 4D

N Upper case letter N 4E

O Upper case letter O 4F

P Upper case letter P 50

Q Upper case letter Q 51

R Upper case letter R 52

S Upper case letter S 53

T Upper case letter T 54

U Upper case letter U 55

V Upper case letter V 56

W Upper case letter W 57

X Upper case letter X 58

Y Upper case letter Y 59

Z Upper case letter Z 5A

[Opening bracket 5B

\ Reverse slant 5C

] Closing bracket 5D

^ Circumflex 5E

– Underline 5F

’ Quotation mark 60

a Lower case letter a 61

Character Set A–7

• • • • • • • •

Hex ValueCommentsCharacter

b Lower case letter b 62

c Lower case letter c 63

d Lower case letter d 64

e Lower case letter e 65

f Lower case letter f 66

g Lower case letter g 67

h Lower case letter h 68

i Lower case letter i 69

j Lower case letter j 6A

k Lower case letter k 6B

l Lower case letter l 6C

m Lower case letter m 6D

n Lower case letter n 6E

o Lower case letter o 6F

p Lower case letter p 70

q Lower case letter q 71

r Lower case letter r 72

s Lower case letter s 73

t Lower case letter t 74

u Lower case letter u 75

v Lower case letter v 76

w Lower case letter w 77

x Lower case letter x 78

y Lower case letter y 79

z Lower case letter z 7A

{ Opening brace 7B

| Vertical line 7C

} Closing brace 7D

~ Equivalent 7E

DEL Delete 7F

Table A-1: ASCII character set

Appendix AA–8
C

H
A

R
A

C
T

E
R

 S
E

T

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
_tolower, 2-26

_toupper, 2-26�2-86

Numbers
68302, 2-9

68340, 2-10

68360, 2-11

68881, floating-point, 2-6, 2-12

A
A5 register, 2-5

A7 register, 2-5

abort, 2-27�2-86

abs, 2-27�2-86

access, 2-27

acos, 2-27�2-86

address modes, 4-16

asctime, 2-28�2-86

asin, 2-28�2-86

assert, 2-28

atan, 2-29�2-86

atan2, 2-29�2-86

atanh, 2-29�2-86

atexit, 2-30�2-86

atof, 2-30�2-86

atoi, 2-31�2-86

atol, 2-31�2-86

B
bsearch, 2-32�2-86

C
calloc, 2-32�2-86

ceil, 2-32�2-86

chdir, 2-33

clearerr, 2-33�2-86

clock, 2-33�2-86

close, 2-33

controls

external symbol, 5-24�5-26
external symbol definition (XDEF),

5-24
external symbol reference (XREF),

5-25
relocatable identification record

(IDNT), 5-24
internal assembly, 5-25�5-26

declare external symbol
(_BRINGIN), 5-26

define data group (_DGROUP),
5-26

put out debugging information
(_DEBSYM), 5-26

cos, 2-34�2-86

cosh, 2-34�2-86

ctime, 2-34

D
data initialization, 2-63

difftime, 2-34�2-86

directives

assembly control, 5-3�5-26
absolute origin (ORG), 5-7
define offsets (OFFSET), 5-6
enter named common section

(COMMON), 5-4

IndexIndex–4
IN
D
E
X

include secondary file (INCLUDE),
5-6

program end (END), 5-5
relocatable ORG (RORG), 5-9
relocatable program section

(SECTION), 5-10
reserve storage (RESERVE), 5-8
resume defined section (RESUME),

5-9
data definition/storage allocation,

5-14�5-26
define constant (DC), 5-14
define constant block (DCB), 5-17
define storage (DS), 5-17
specify command line (COMLINE),

5-14
symbol definition, 5-11�5-26

define register list (REG), 5-13
equate floating-point symbol value

(FEQU), 5-12
equate symbol value (EQU), 5-12
set symbol value (SET), 5-13

terminate macro source statement
generation (MEXIT), 6-6

div, 2-35�2-86

documentation, 1-3�1-4

E
exit, 2-35�2-86

exp, 2-35�2-86

expressions

absolute, 4-15
complex relocatable, 4-15
simple relocatable, 4-15

F
fabs, 2-35�2-86

fclose, 2-36�2-86

fcntl.h, open, 2-55

feof, 2-36�2-86

ferror, 2-36�2-86

fflush, 2-36�2-86

fgetc, 2-37

fgetpos, 2-37�2-86

fgets, 2-37�2-86

file control block, 2-6

floating-point

constant notation, 4-12
hex constant notation, 4-12

floor, 2-37

fmod, 2-38�2-86

fopen, 2-38�2-86

fprintf, 2-38�2-86

fputc, 2-38

fputs, 2-39�2-86

fread, 2-39�2-86

free, 2-39�2-86

freopen, 2-39�2-86

frexp, 2-40�2-86

fscanf, 2-40�2-86

fseek, 2-40�2-86

fsetpos, 2-41�2-86

ftell, 2-41�2-86

fwrite, 2-42�2-86

G
getc, 2-42�2-86

getchar, 2-42

getcwd, 2-42

getenv, 2-43

getl, 2-43

gets, 2-43�2-86

getw, 2-43�2-86

global

data, 2-5
variable, 2-8

Index Index–5

• • • • • • • •

gmtime, 2-44�2-86

I
I/O, system, 2-6�2-25

idata, 2-5

initialization, routine, 2-11

isalnum, 2-44�2-86

isalpha, 2-44�2-86

iscntrl, 2-45�2-86

isdigit, 2-45�2-86

isgraph, 2-45�2-86

islower, 2-46�2-86

isprint, 2-46�2-86

ispunct, 2-46�2-86

isspace, 2-47�2-86

isupper, 2-47�2-86

isxdigit, 2-47�2-86

L
labs, 2-47�2-86

ldata, 2-6

ldexp, 2-48�2-86

ldiv, 2-48�2-86

libraries that do not use A5, 2-6

library, modification, 2-3

localeconv, 2-48�2-86

localtime, 2-49�2-86

log, 2-49�2-86

log10, 2-49�2-86

log2, 2-49�2-86

longjmp, 2-50�2-86

lseek, 2-50

M
M68302ADS, 2-3, 2-4, 2-9

M68340BCC, 2-3, 2-4, 2-10

M68360QUADS, 2-11

macro calls, 4-5

malloc, 2-50�2-86

memccpy, 2-52�2-86

memchr, 2-52�2-86

memcmp, 2-53�2-86

memcpy, 2-53�2-86

memmove, 2-53�2-86

memset, 2-53�2-86

mktime, 2-54�2-86

mnemonics

directive, 4-5
instruction, 4-5

modf, 2-54�2-86

N
no-floats library, 2-13

O
offsetof, 2-54

open, 2-55

operators

arithmetic operators, 4-13
logical operators, 4-13
shift operators, 4-13

options, listing control and output,

5-18�5-26

assembler option (OPT), 5-20
control listing file format

(FORMAT/NOFORMAT), 5-19
control listing generation

(LIST/NOLIST), 5-19
control pagination (PAGE/NOPAGE),

5-23
produce no object module (NOOBJ),

5-19�5-20
programmer generated error (FAIL),

5-19

IndexIndex–6
IN
D
E
X

set subtitle (STTL), 5-23
set title (TTL), 5-23
space between source lines (SPC),

5-23
specify listing line length (LLEN),

5-19�5-20

P
perror, 2-55�2-86

pow, 2-55�2-86

printf, 2-56�2-86

putc, 2-60�2-86

putchar, 2-61�2-86

putl, 2-61�2-86

puts, 2-61�2-86

putw, 2-61�2-86

Q
qsort, 2-62�2-86

R
raise, 2-62

rand, 2-62�2-86

rcopy, 2-63�2-86

read, 2-64

realloc, 2-63�2-86

remove, 2-64�2-86

rename, 2-64�2-86

ROM, 2-79

run-time library, 2-1�2-25

index file, 2-13
modification, 2-3, 2-11�2-25
object modules, 2-13�2-25
routines, 2-14�2-25

source code, 2-3

run-time library routine

_tolower, 2-26
_toupper, 2-26
abort, 2-27
abs, 2-27
access, 2-27
acos, 2-27�2-86
asctime, 2-28
asin, 2-28
assert, 2-28
atan, 2-29
atan2, 2-29
atanh, 2-29
atexit, 2-30
atof, 2-30
atoi, 2-31
atol, 2-31
bsearch, 2-32
calloc, 2-32
ceil, 2-32
chdir, 2-33
clearerr, 2-33
clock, 2-33
close, 2-33
cos, 2-34
cosh, 2-34
ctime, 2-34
difftime, 2-34
div, 2-35
exit, 2-35
exp, 2-35
fabs, 2-35
fclose, 2-36
feof, 2-36
ferror, 2-36
fflush, 2-36
fgetc, 2-37, 2-42
fgetpos, 2-37
fgets, 2-37
floor, 2-37
fmod, 2-38
fopen, 2-38

Index Index–7

• • • • • • • •

fprintf, 2-38
fputc, 2-38
fputs, 2-39
fread, 2-39
free, 2-39
freopen, 2-39
frexp, 2-40
fscanf, 2-40
fseek, 2-40
fsetpos, 2-41
ftell, 2-41
fwrite, 2-42
getchar, 2-42
getcwd, 2-42
getenv, 2-43
getl, 2-43
gets, 2-43
getw, 2-43
gmtime, 2-44
isalnum, 2-44
isalpha, 2-44
iscntrl, 2-45
isdigit, 2-45
isgraph, 2-45
islower, 2-46
isprint, 2-46
ispunct, 2-46
isspace, 2-47
isupper, 2-47
isxdigit, 2-47
labs, 2-47
ldexp, 2-48
ldiv, 2-48
localeconv, 2-48
localtime, 2-49
log, 2-49
log10, 2-49
log2, 2-49
longjmp, 2-50
lseek, 2-50
malloc, 2-50
mblen, 2-51
mbstowc, 2-52

mbstowcs, 2-51
memccpy, 2-52
memchr, 2-52
memcmp, 2-53
memcpy, 2-53
memmove, 2-53
memset, 2-53
mktime, 2-54
modf, 2-54
offsetof, 2-54
open, 2-55
perror, 2-55
pow, 2-55
printf, 2-56
putc, 2-60
putchar, 2-61
putl, 2-61
puts, 2-61
putw, 2-61
qsort, 2-62
raise, 2-62
rand, 2-62
rcopy, 2-63
read, 2-64
realloc, 2-63
remove, 2-64
rename, 2-64
rewind, 2-64
roupper, 2-83
scanf, 2-65
setbuf, 2-69
setjmp, 2-69
setlocale, 2-70
setvbuf, 2-70
signal, 2-71
sin, 2-71
sinh, 2-71
sprintf, 2-71
sqrt, 2-72
srand, 2-72
sscanf, 2-72
stat, 2-73
strcat, 2-73

IndexIndex–8
IN
D
E
X

strchr, 2-73
strcmp, 2-73
strcoll, 2-74
strcpy, 2-74
strcspn, 2-74
strerror, 2-74
strftime, 2-75
strlen, 2-76
strncat, 2-76
strncmp, 2-77
strncpy, 2-77
strpbrk, 2-77
strrchr, 2-78
strspn, 2-78
strstr, 2-78
strtod, 2-78
strtok, 2-79
strtol, 2-79
strtoul, 2-80
strxfrm, 2-80
swab, 2-81
system, 2-81
tan, 2-81
tanh, 2-81
time, 2-82
tmpfile, 2-82
tmpnam, 2-82
tolower, 2-82
ungetc, 2-83
unlink, 2-83
va_arg, 2-83
va_end, 2-84
va_start, 2-84
vfprintf, 2-84
vprintf, 2-85
vsprintf, 2-85
wcstombs, 2-85
wctomb, 2-86
write, 2-86

S
scanf, 2-65�2-86

SEGBASE, 4-14

SEGSIZE, 4-14

setbuf, 2-69�2-86

setjmp, 2-69�2-86

setlocale, 2-70�2-86

setvbuf, 2-70�2-86

sin, 2-71�2-86

sinh, 2-71�2-86

sprintf, 2-71�2-86

sqrt, 2-72�2-86

srand, 2-72�2-86

sscanf, 2-72�2-86

stat, 2-73

statements

assembler control, 3-4�3-5
assembler directive, 3-4�3-5, 4-3
data allocation, 3-4�3-5
FOR, 7-7�7-14
IF, 7-5�7-14
instruction, 3-4�3-5
REPEAT, 7-8�7-14
source, 4-3, 4-4
WHILE, 7-8�7-14

storage allocation, 2-9�2-25

strcat, 2-73�2-86

strchr, 2-73�2-86

strcmp, 2-73�2-86

strcoll, 2-74�2-86

strcpy, 2-74�2-86

strcspn, 2-74�2-86

strerror, 2-74�2-86

strftime, 2-75�2-86

strlen, 2-76�2-86

strncat, 2-76�2-86

strncmp, 2-77

Index Index–9

• • • • • • • •

strncpy, 2-77�2-86

strpbrk, 2-77�2-86

strrchr, 2-78�2-86

strspn, 2-78�2-86

strstr, 2-78�2-86

strtod, 2-78

strtok, 2-79�2-86

strtol, 2-79�2-86

strtoul, 2-80�2-86

strxfrm, 2-80�2-86

swab, 2-81�2-86

symbols, NARG, 6-7

system, 2-81�2-86

initialization, 2-4�2-25

T
tan, 2-81�2-86

tanh, 2-81�2-86

time, 2-82�2-86

tmpfile, 2-82�2-86

tmpname, 2-82�2-86

tolower, 2-82�2-86

toupper, 2-83�2-86

U
udata, 2-5

ungetc, 2-83�2-86

unistd.h

access, 2-27
chdir, 2-33
close, 2-33
getcwd, 2-42
lseek, 2-50
read, 2-64
stat, 2-73
unlink, 2-83
write, 2-86

unlink, 2-83

updating library, 2-12

V
va_arg, 2-83

va_end, 2-84

va_start, 2-84

vfprintf, 2-84�2-86

vprintf, 2-85�2-86

vsprintf, 2-85�2-86

W
write, 2-86

IndexIndex–10
IN
D
E
X

	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Overview
	1.2 Documentation

	2. RUN-TIME LIBRARY
	2.1 Introduction
	2.2 System Initialization
	2.3 I/O System
	2.4 Time Functions
	2.4.1 Time Conversion Routines
	2.4.2 Lowlevel Time/Timer Routines

	2.5 Storage Allocation
	2.6 Support for the M68302ADS Development System
	2.7 Support for the M68340BCC Development System
	2.8 Support for the M68360QUADS Development System
	2.9 Modifying the Libraries
	2.9.1 Integrating New Routines Into an Existing Library Without Using make on Unix Hosts

	2.10 Library Object Modules
	2.11 Summary of Library Routines
	2.11.1 Standard Functions
	2.11.2 Mathematical Functions
	2.11.3 Standard I/O Functions
	2.11.4 String Manipulation Functions
	2.11.5 Non-local Goto Functions
	2.11.6 Date and Time Routines
	2.11.7 ASCII Character Set Macros and Functions
	2.11.8 Global Definitions
	2.11.9 Compile-time Assertions
	2.11.10 Formatting of Numeric Values
	2.11.11 Variable Length Argument List Access
	2.11.12 Signal Handling
	2.11.13 C Library Extensions

	2.12 Run-Time Library Routines

	3. ASSEMBLY LANGUAGE REFERENCE
	3.1 Preface
	3.2 Related Publications
	3.3 Using Assembly Language
	3.4 Elements of Assembly Language
	3.5 Notation

	4. SOURCE PROGRAM CODING
	4.1 Introduction
	4.2 Comments
	4.3 Source Line Format
	4.3.1 Label Field
	4.3.2 Operation Field
	4.3.3 Operand Field
	4.3.4 Comment Field

	4.4 Symbols
	4.4.1 Symbol Syntax
	4.4.2 Symbol Definition Classes
	4.4.3 User-Defined Labels
	4.4.4 Location Counter Symbol "*"

	4.5 Constants
	4.5.1 Integer Constants
	4.5.2 Character Constants
	4.5.3 Floating Point Constants (68881/68882/68040/68060 only)

	4.6 Operators
	4.7 Expressions
	4.8 Addressing Modes

	5. ASSEMBLER DIRECTIVES
	5.1 Assembly Control
	5.1.1 COMMON - Enter Named Common Section
	5.1.2 END - Program End
	5.1.3 INCLUDE - Include Secondary File
	5.1.4 OFFSET - Define Offsets
	5.1.5 ORG - Absolute Origin
	5.1.6 RESERVE - Reserve storage
	5.1.7 RESUME - Resume defined section
	5.1.8 RORG - Relocatable ORG
	5.1.9 SECTION - Relocatable Program Section

	5.2 Symbol Definition
	5.2.1 EQU - Equate Symbol Value
	5.2.2 FEQU - Equate Floating Point Symbol Value
	5.2.3 REG - Define Register List
	5.2.4 SET - Set Symbol Value

	5.3 Data Definition/Storage Allocation
	5.3.1 COMLINE - Unimplemented
	5.3.2 DC - Define Constant
	5.3.3 DCB - Define Constant Block
	5.3.4 DS - Define Storage

	5.4 Listing Control and Output Options
	5.4.1 FAIL - Programmer Generated Error
	5.4.2 FORMAT/NOFORMAT - Unimplemented
	5.4.3 LIST/NOLIST - Control Listing Generation
	5.4.4 LLEN - Unimplemented
	5.4.5 NOOBJ - Unimplemented
	5.4.6 OPT - Assembler Options
	5.4.7 PAGE/NOPAGE - Control Pagination
	5.4.8 SPC - Space Between Source Lines
	5.4.9 STTL - Set Subtitle
	5.4.10 TTL - Set Title

	5.5 External Symbol Controls
	5.5.1 IDNT - Relocatable Identification Record
	5.5.2 XDEF - External Symbol Definition
	5.5.3 XREF - External Symbol Reference

	5.6 Internal Assembly Controls
	5.6.1 _BRINGIN Declare external symbol
	5.6.2 _DEBSYM Put out debugging information
	5.6.3 _DGROUP Define data group

	6. MACRO OPERATIONS AND CONDITIONAL ASSEMBLY
	6.1 Macro Operations
	6.1.1 Macro Definition
	6.1.2 Macro Invocation
	6.1.3 Macro Parameter Definition and Use
	6.1.4 Labels Within Macros
	6.1.5 The MEXIT Directive
	6.1.6 The NARG Symbol
	6.1.7 Implementation of Macro Definition
	6.1.8 Implementation of Macro Expansion

	6.2 Conditional Assembly
	6.2.1 Conditional Assembly Structure
	6.2.2 Example of Macro and Conditional Assembly Usage

	7. STRUCTURED CONTROL STATEMENTS
	7.1 Keyword Symbols
	7.2 Syntax
	7.2.1 IF Statement
	7.2.2 Floating-Point Structured Assembler Syntax for the IF Statement
	7.2.3 FOR Statement
	7.2.4 REPEAT Statement
	7.2.5 WHILE Statement

	7.3 Simple and Compound Expressions
	7.3.1 Simple Expressions
	7.3.2 Condition Code Expressions
	7.3.3 Operand Comparison Expressions
	7.3.4 Compound Expressions

	7.4 Source Line Formatting
	7.4.1 Class 1 Symbol Usage
	7.4.2 Nesting of Structured Statements

	7.5 Effects on the User's Environment

	8. POSITION- INDEPENDENT CODE
	8.1 Forcing Position Independence
	8.2 Base-Displacement Addressing
	8.3 Base-Displacement in Conjunction with Forced Position Independence

	A. CHARACTER SET
	1 Characters Recognized
	2 ASCII Character Set

	INDEX

