
MC001–022–00–00
Doc. ver.: 1.10

68K/ColdFire v10.0

Getting Started

Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

1.2.1 How to Use This Documentation Set 1-4.

1.3 The Development System 1-4.

1.3.1 The Compiler 1-6.

1.3.2 The Optimizer 1-6.

1.3.3 The Run-Time Library 1-6.

1.3.4 The Assembler 1-7.

1.3.5 Utilities 1-7.

1.3.6 The Linking Locator 1-7.

1.3.7 The Formatters 1-8.

1.3.8 The Librarian 1-9.

1.3.9 The Global Symbol Mapper 1-9.

1.3.10 The Object Size List Utility 1-9.

1.3.11 The Symbol List Utility 1-9.

1.3.12 CrossView Pro Debugger 1-10.

1.4 Before You Start 1-10.

1.4.1 Usage Conventions 1-10.

1.4.2 Tool Versions 1-10.

1.4.3 Driver Options 1-11.

1.4.4 Invocation Conventions 1-11.

1.4.5 Error Message Output (PC only) 1-12.

1.5 Additional Help 1-12.

1.5.1 Tutorial 1-12.

1.5.2 On-line Help 1-12.

INSTALLATION GUIDE 2-1

2.1 Introduction 2-3.

2.2 Software Installation 2-3.

2.2.1 Installation for Windows 2-3.

2.2.2 Installation for UNIX Hosts 2-4.

2.3 Software Configuration 2-5.

2.3.1 Configuring the Embedded Development Environment 2-5

Table of ContentsVI
C
O
N
T
E
N
T
S

2.3.2 Configuring the Command Line Environment 2-7.

2.4 Licensing TASKING Products 2-10.

2.4.1 Obtaining License Information 2-10.

2.4.2 Installing Node-Locked Licenses 2-11.

2.4.3 Installing Floating Licenses 2-12.

2.4.4 Starting the License Daemon 2-14.

2.4.5 Setting Up the License Daemon to Run Automatically 2-15.

2.4.6 Modifying the License File Location 2-16.

2.4.7 How to Determine the Hostid 2-17.

2.4.8 How to Determine the Hostname 2-17.

TUTORIAL 3-1

3.1 Introduction 3-3.

3.2 Finding the Programs and Setting Up the Path 3-3.

3.2.1 bin Directory 3-4.

3.2.2 rtlibs Directory 3-6.

3.2.3 examples Directory 3-7.

3.2.4 Derivatives Overview 3-8.

3.3 Invoking the Tools 3-10.

3.3.1 Invoking the Tools from EDE 3-10.

3.3.1.1 Using the Sample Projects in EDE 3-12.

3.3.1.2 Create a New Project Space with a Project 3-13.

3.3.1.3 Set Options for the Tools in the Toolchain 3-17.

3.3.1.4 Build your Application 3-19.

3.3.2 Invoking the Tools Using Command Line 3-20.

3.4 Tutorial Examples 3-21.

3.4.1 Example 1: Building Your First Application Executable 3-21

3.4.2 Example 2: Listings and Non-Default Output Files 3-23. . .

3.4.3 Example 3: Non-Default Memory Models and

Linking Options 3-30.

3.4.4 Example 4: Locator Options 3-34.

3.4.5 Example 5: Formatting Options and Saving Symbol

Information 3-38.

3.5 Introduction to System Building Concepts 3-41.

Table of Contents VII

• • • • • • • •

3.5.1 System Initialization 3-41.

3.5.2 A5-Relative vs. Separate Data Addressing 3-42.

3.5.3 Linking and Locating 3-42.

3.5.4 Linking C and Assembly 3-50.

3.6 Tutorial Conclusion 3-53.

FLEXIBLE LICENSE MANAGER (FLEXlm) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-7.

3 License Administration Tools A-8.

3.1 lmcksum A-10.

3.2 lmdiag (Windows only) A-11.

3.3 lmdown A-12.

3.4 lmgrd A-13.

3.5 lmhostid A-15.

3.6 lmremove A-16.

3.7 lmreread A-17.

3.8 lmstat A-18.

3.9 lmswitchr (Windows only) A-20.

3.10 lmver A-21.

3.11 License Administration Tools for Windows A-22.

3.11.1 LMTOOLS for Windows A-22.

3.11.2 FLEXlm License Manager for Windows A-23.

4 The Daemon Log File A-25.

4.1 Informational Messages A-26.

4.2 Configuration Problem Messages A-29.

4.3 Daemon Software Error Messages A-31.

5 FLEXlm License Errors A-33.

6 Frequently Asked Questions (FAQs) A-37.

6.1 License File Questions A-37.

6.2 FLEXlm Version A-37.

Table of ContentsVIII
C
O
N
T
E
N
T
S

6.3 Windows Questions A-38.

6.4 TASKING Questions A-39.

6.5 Using FLEXlm for Floating Licenses A-41.

INDEX

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual introduces the TASKING 68K/ColdFire toolchain to the new

user. This Getting Started manual allows you to start using the tools right

away.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Introduction

Introduces the documentation conventions and organization. Gives an

overview of the TASKING 68K/ColdFire toolchain.

2. Installation Guide

Describes how to install the 68K/ColdFire C Compiler/Assembler on

your system.

3. Tutorial

Guides you through a brief tutorial to get you started using the tools.

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

INDEX

Manual Purpose and StructureX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• TASKING 68K/ColdFire C Compiler/Assembler User's Manual

• TASKING 68K/ColdFire C Compiler/Assembler Reference Manual

Manual Purpose and Structure XI

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

INTRODUCTION
C

H
A

P
T

E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H

A
P

T
E

R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This introduction consists of a brief summary of the software

documentation package, how to use the package, conventions used in the

documentation, an explanation of each of the tools in the 68K/ColdFire

cross-development system, and technical information for reference before

you start using the tools.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Introduction chapter in this manual contains a summary of the

development system, and valuable technical information about the

software in the Before You Start section.

The Installation Guide chapter in this manual is primarily for the initial

installation of the software on your computer system.

The Tutorial chapter in this manual contains sample code and exercises

which lead you step-by-step through the powerful features of each

software tool. This material is useful for investigating a particular function

using the sample code provided in the examples\tutor directory.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

1.2.1 HOW TO USE THIS DOCUMENTATION SET

The documentation is organized to be as flexible and useful as possible.

We have considered the varying levels of our users in organizing and

writing this manual set. For the inexperienced user of the development

system, we have included an Tutorial with exercises and sample code

illustrating the basic features of the tools. By �inexperienced users," we

mean those who have a working knowledge of the C programming

language, assembly language, and the host computer system they are

using, but have limited experience using cross compilers, assemblers, and

debuggers.

For the experienced user, the User's Manual offers detailed explanations of

the tools and their use. By ``experienced users,'' we mean those who are

conversant with the processes of compiling, assembling and debugging for

embedded systems software applications. Of course, beginning users will

find the User's Manual useful for exploring the features of the tools once

the Tutorial has been mastered.

1.3 THE DEVELOPMENT SYSTEM

The TASKING 68K/ColdFire toolset is a fully integrated development

system. The tools work seamlessly together and share a common object

language. The tools produce object language files in ASCII format, while

the formatter can produce either binary or ASCII files. Source code and

TASKING object modules are portable from host to host, and are

interchangeable between all supported hosts. The flexibility of the

TASKING solution allows quick and efficient hardware upgrades.

Introduction 1–5

• • • • • • • •

Assembly
Source Code

C
Source Code

Assembler Compiler

Olsize

Symlist

Gsmap

Module

Object

Librarian Linking

CrossView Pro

Absolute Object

IEEE695
Formatter

Download File

Target

Environment

Module

Object

Module

Locator

Microprocessor

Execution

Object

Module

Assembly
Source Code

C
Source Code

DebuggerSymbol File

C++
Source Code

C++
Source Code

Figure 1-1: Toolchain overview

Chapter 11–6
IN
T
R
O
D
U
C
T
IO
N

1.3.1 THE COMPILER

The compiler translates C source into machine instructions for the target

microprocessor. The input is one or more source programs. The C

language implemented conforms to the ANSI C standard ANSI/ISO

9899-1990.

Compiler output is an object module suitable for linking with other

modules. These object modules can also be catalogued in a library using

the librarian utility. The compiler has optional listings which show

interleaved source and generated machine instructions, along with

cross-reference listings. A pseudo-assembly listing is also available to

allow you to view code emitted by the compiler at the assembly language

level.

1.3.2 THE OPTIMIZER

The TASKING global optimizer improves the speed and reduces the size of

the code generated by the TASKING compiler. The global optimizer runs

after the compiler front end and before the code generator. It is

completely integrated into the compiler system, but its use is entirely

optional. Code compiled with the global optimizer can be freely combined

with non-optimized code.

The global optimizer performs a variety of optimizations. These

optimizations include automatic register allocation, loop optimization,

code hoisting, loop rotation, and common subexpression elimination.

Please refer to the C Compiler chapter in the User's Manual for a complete

description of usage and options.

1.3.3 THE RUN-TIME LIBRARY

The TASKING 68K/ColdFire toolset includes full run-time libraries: math

functions, memory allocation functions, standard I/O functions, string

manipulation functions, and floating point routines.

See the Run-Time Library chapter in the Reference Manual for listings and

more detailed information about integrating run-time library modifications.

Introduction 1–7

• • • • • • • •

1.3.4 THE ASSEMBLER

The TASKING 68K/ColdFire toolset includes a macro assembler. The

source format is manufacturer-compatible. That is, existing

manufacturer-compatible assembly code is easily reassembled using the

TASKING assembler. Minor changes may be needed if the assembled

modules are to be invoked by compiled modules. Refer to the Linking C
and Assembly application note in the User's Manual for more information.

The input to the assembler is one or more source programs. The output is

a corresponding number of object modules suitable for linking to other

modules. The object modules can be catalogued in a library. Assembler

object modules are compatible with C compiler object modules. Source,

cross-reference, and symbol table listings are available from the assembler.

1.3.5 UTILITIES

The TASKING compiler and assembler software includes a full set of

utilities. These tools increase programming productivity by reducing the

time spent on repetitive software building tasks. A brief description of the

utilities is given below. The linking locator and formatter must be run in

order to produce a download module. These utilities are described first,

followed by optional utilities. Each utility is explained in more detail in the

appropriate chapter of the User's Manual.

1.3.6 THE LINKING LOCATOR

The linking locator integrates the results of separate compilations and

assemblies into a single absolute module. This is done in three separate

steps, any or all of which can be performed in a single invocation of the

linking locator. The first step, called �linking," consists of combining

separate object modules into a composite module by resolving references.

Usually these object modules are produced by the assembler and/or

compiler, but pre-linked object modules may also be used as input. The

linking locator searches libraries to satisfy any unresolved references in the

module it is constructing.

Chapter 11–8
IN
T
R
O
D
U
C
T
IO
N

The second (optional) step, called ROM processing, consists of building

initialization segments used to initialize read-write data. All ROM-based

systems must execute code to initialize their read-write data, since the

initial values cannot be maintained in RAM (random-access memory), and

read-write data cannot be allocated in ROM (read only memory). This data

could be initialized by large numbers of assignment statements, but it is

more convenient and efficient to employ ROM processing instead. Unlike

the read-write data, the initialization segment is suitable for placement in

ROM. The initial data values are copied from ROM to RAM at the time of

initialization by the library routine rcopy .

The final step, called locating, consists of assigning absolute

target-memory locations to relocatable segments and resolving address

references. The linking locator gives you complete control over placement

of all code and data, but it also has the capacity to automatically locate

collections of segments in bounded areas of the target memory. The

output is an object module with absolute addresses substituted where

appropriate. A completely located module contains all the information

necessary to load and execute the code on the target microprocessor. The

linking locator can resolve the problem of storing a program into a

fragmented memory space consisting of ROM, RAM, and I/O mapped

device addresses.

1.3.7 THE FORMATTERS

form and form695 convert the contents of an absolute object module

into one of the industry standard formats, in either an ASCII hex or a

binary format. The formats provide for loading of object text, that is, code

and data, into the memory of the target processor using a loader. The

loader is generally provided by an emulator or other instrumentation

system, or by a ROM-resident monitor program. The formatter offers many

different formats in order to be compatible with a wide range of loaders.

The input is a module from the linking locator and the output is a

formatted load file. The formats may also be used as input to a PROM

burner to program read-only memory. See the Formatter chapter in the

User's Manual for a list of supported formats. The Object Module Formats
appendix in the User's Manual gives detailed information on each of the

supported formats.

Introduction 1–9

• • • • • • • •

1.3.8 THE LIBRARIAN

The librarian is a tool for managing libraries of program modules at the

pre-link or post-link phase of development. The librarian creates,

maintains, and selectively lists library index files. A library index file is a

text file defining an indexing structure which describes a collection of

object modules. It consists of a series of index entries, one for each object

module. The librarian's input is taken from the library and/or object

modules named on the command line or through options specified on the

command line. The object modules named on the command line or in a

file are added to the library. Libraries simplify the task of linking modules,

since the linking locator can automatically search libraries for required

modules.

1.3.9 THE GLOBAL SYMBOL MAPPER

The global symbol mapper (gsmap) displays global symbols either

alphabetically or by address. Gsmap can be used before or after linking or

locating to list external names and the definitions of global symbols. The

gsmap listing shows an absolute address (after locating), length, class, and

alignment for each segment.

1.3.10 THE OBJECT SIZE LIST UTILITY

The object size list utility (olsize) lists the total number of words of code,

data, and constant data in an object module.

1.3.11 THE SYMBOL LIST UTILITY

The symbol list utility (symlist) produces a listing of all global and local

symbols. When the debugger option, (–d), is used in compilation or

assembly, target locations for source lines of input code are included in

the listing. (See the C Compiler and Assembler chapters in the User's
Manual for details on compiler and assembler options.) The input may be

any combination of unlinked object modules, linked object modules, and

absolute modules. The symlist listing is composed of three parts: a table of

executable line numbers and code addresses, a listing of all symbols and

their attributes, and an alphabetical list of all symbols with pointers to each

symbol's definition and attributes.

Chapter 11–10
IN
T
R
O
D
U
C
T
IO
N

1.3.12 CROSSVIEW PRO DEBUGGER

The source-level debugger, CrossView Pro provides you with a means of

monitoring and controlling execution of the embedded software using the

same terms, definitions, and structures found in the original source

program. CrossView Pro has complete access to the symbol tables

produced by the compiler, and also knows the compiler's register,

parameter passing and run-time stack layout conventions. This means that

any data, including structured and dynamic data, can be viewed or set.

Other features include breakpoint and assertion modes with which you

can control the debugging of the target program. A �transparency" mode

allows direct communication with the target system without exiting

CrossView Pro. As a Windows debugger it gives you full control of

window placement and size. You can customize the interface to suit you

requirements.

1.4 BEFORE YOU START

This section contains technical information that you may wish to review

before installing and starting to use the TASKING software.

1.4.1 USAGE CONVENTIONS

The common conventions for the TASKING 68K/ColdFire toolset are

described here to avoid duplication in subsequent sections.

In this documentation set, we use M68000 to refer to any microprocessor

in the 68K/ColdFire family. The supported targets within this

microprocessor family are listed in section Derivatives Overview of the

Tutorial chapter.

1.4.2 TOOL VERSIONS

Every TASKING executable has a version number. To display the version

information, invoke the program with the –V option.

Introduction 1–11

• • • • • • • •

The Customer Support department keeps a record of the version numbers

of all the executables which have been shipped to you. However, if you

report a problem, a support engineer may ask you to run the program

with this option to verify that you are in fact executing the latest version

you were sent.

1.4.3 DRIVER OPTIONS

There are some additional driver options used primarily for customer

support. Please see the Compiler/Assembler Driver appendix in the User's
Manual for details.

1.4.4 INVOCATION CONVENTIONS

All TASKING programs accept two kinds of arguments: primary arguments

and options.

All options are preceded by a hyphen (`-').

All primary arguments must precede all options and options are case

sensitive.

For example,

form695 xx.ab –o xx.abs

is correct, but

form695 –o xx.abs xx.ab

is not.

Furthermore, options cannot be combined as one option. For example, the

following is correct:

gsmap object.ln –a –n

This is not:

gsmap object.ln –an

Chapter 11–12
IN
T
R
O
D
U
C
T
IO
N

1.4.5 ERROR MESSAGE OUTPUT (PC ONLY)

MS-DOS does not provide a mechanism for redirecting error output from

the command line. The following two options are accepted by all

TASKING programs on the PC:

-err [file] Write error messages to file file. If file does not exist, it will

be created. If file does exist, it will be overwritten. If file is
omitted, then error output will be redirected to standard

output.

-err+ [file] Just like -err, except output will be appended if file exists.

1.5 ADDITIONAL HELP

The TASKING system provides several additional sources for further

information on the toolkit, including on-line help. What follows is a

summary of each of these sources with references to more detailed

information provided in other sections of the documentation.

1.5.1 TUTORIAL

The tutorial introduces you to the compiler, assembler and utilities. Sample

C and assembly source files are included with this release. By following

the tutorial examples while invoking the tools on sample code, you

generate listings and learn various options.

1.5.2 ON-LINE HELP

From Command Line

An on-line reference function produces a detailed listing of options

available for the compilers and assemblers. For example, if you type:

c68000

Introduction 1–13

• • • • • • • •

function: compile one or more C programs

usage: c68000 prog.c [prog2.c ...] [options]

Options Summary

Listing Options

–a expanded source listing, including #include
 files
–i interleaved (pseudo–)assembly listing
–l put all listings in optional list file name,
 e.g. –l filename
–nf narrow format pseudo–assembly listing
–p pseudo–assembly listing
–q real–assembly listing
–s basic source listing
–x cross–reference listing

Include Options

–I specifies user include directories,
 e.g. –I dir1 [dir2 ...]
–S specifies system include directories,
 e.g. –S dir1 [dir2 ...]

 ––Hit <RETURN> to continue; q to quit––

From EDE

All on-line manuals have a corresponding icon located on the right side of

the menu bar. Click on the appropriate icon to access.

Please refer to this manual for help with the software, if the on-line help

does not answer your questions.

Chapter 11–14
IN
T
R
O
D
U
C
T
IO
N

2

INSTALLATION
GUIDE

C
H

A
P

T
E

R

Chapter 22–2
IN
S
TA

L
L
A
T
IO
N

2

C
H

A
P

T
E

R

Installation Guide 2–3

• • • • • • • •

2.1 INTRODUCTION

This chapter guides you through the procedures to install the software on

a Windows system or on a UNIX host.

The software for Windows has two faces: a graphical interface (Embedded

Development Environment) and a command line interface. The UNIX

software has only a command line interface.

After the installation, it is explained how to configure the software and

how to install the license information that is needed to actually use the

software.

2.2 SOFTWARE INSTALLATION

2.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for

your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the Start-up kit envelope, delivered

with the product.

7. License the software product as explained in section 2.4, Licensing
TASKING Products.

Chapter 22–4
IN
S
TA

L
L
A
T
IO
N

2.2.2 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.

By default it will be installed in /usr/local .

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a

directory, for example /cdrom .

Be sure to use an ISO 9660 file system with Rock Ridge extensions

enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local .

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it otherwise the product will not work on

those hosts. See section 2.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Installation Guide 2–5

• • • • • • • •

Answer y (yes) to continue with the installation. The last message will be:

Installation of SW xxxxxx xxxx . xxxx completed.

5. If you purchased a protected TASKING product, license the software

product as explained in section 2.4, Licensing TASKING Products.

2.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the

Embedded Development Environment and the command line environment

for Windows and UNIX.

2.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation, the Embedded Development Environment is

automatically configured with default search paths to find the executables,

include files and libraries. In most cases you can use these settings. To

change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded

Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the

directory where the executables are located. The default directory is

$(PRODDIR)\bin . Where $(PRODDIR) refers to you installation

directory (default c:\Program Files\TASKING\c68k v x.y).

• In the Include Files Path field, add the pathnames of the

directories where the compiler and assembler should look for

include files. The default directory is

$(PRODDIR)\rtlibs\$(LIBSUBDIR)\inc . Separate pathnames

with a semicolon (;).

The first path in the list is the first path where the compiler and

assembler look for include files. To change the search order, simply

change the order of pathnames.

Chapter 22–6
IN
S
TA

L
L
A
T
IO
N

• In the Library Files Path field, add the pathname of the directory

where the linker should look for library files. The default directory

is $(PRODDIR)\rtlibs .

Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove

them again and change their order.

Installation Guide 2–7

• • • • • • • •

2.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either

using a Windows command prompt or using UNIX), you can set

environment variables.

You can set the following variables:

Environment
Variable

Description

PATH With this variable you specify the directory in which
the executables reside (default: c:\c68k\bin).
This allows you to call the executables when you
are not in the bin directory.

Usually your system already uses the PATH variable
for other purposes. To keep these settings, you
need to add (rather than replace) the path. Use a
semicolon (;) to separate pathnames.

INCLUDE
I2INCLUDE

With this variable you specify one or more additional
directories in which the C compiler looks for include
files. The compiler looks in these directories after
the –S directories, and then in the default
c:\c68k\include directory. You can also use
I2INCLUDE to avoid conflicts with other programs.

LIB
I2LIB

With this variable you specify one or more
alternative directories in which the linker looks for
library files. The linker first looks in these directories,
then always looks in the default rtlibs
directory.You can also use I2LIB to avoid conflicts
with other programs.

LM_LICENSE_FILE With this variable you specify the location of the
license data file. You only need to specify this
variable if your host uses the FLEXlm licence
manager.

TMP With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

Table 2-1: Environment variables

The following examples show how to set an environment variable using

the PATH variable as an example.

Chapter 22–8
IN
S
TA

L
L
A
T
IO
N

Example for Windows 95/98

Add the following line to your autoexec.bat file:

set PATH=%path%;c:\ installation directory \bin

You can also type this line in a Command Prompt window but you will

loose this setting after you close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Environment tab.

3. In the list of System Variables select Path.

4. In the Value field, add the path where the executables are located to the

existing path information. Separate pathnames with a semicolon (;). For

example: c:\c68k\bin .

5. Click on the Set button, then click OK.

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the list of System variables select Path.

5. Click on the Edit button.

The Edit System Variable dialog appears.

6. In the Variable value field, add the path where the executables are

located to the existing path information. Separate pathnames with a

semicolon (;). For example: c:\c68k\bin .

Installation Guide 2–9

• • • • • • • •

7. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C-shell):

setenv PATH $PATH:/usr/local/c68k/bin

Chapter 22–10
IN
S
TA

L
L
A
T
IO
N

2.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the licensing

information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

2.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License

Information Form" containing the license information for your software

product. If you have not received such a form follow the steps below to

obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the

computer where you will be using the product. See section 2.4.7, How to
Determine the Hostid.

2. When you order a TASKING product, provide the hostid to your local

TASKING sales representative. The License Information Form which

contains your license key information will be sent to you with the software

product.

Installation Guide 2–11

• • • • • • • •

Floating license

1. If you need a floating license, you must determine the hostid and

hostname of the computer where you want to use the license manager.

Also decide how many users will be using the product. See section 2.4.7,

How to Determine the Hostid and section 2.4.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and

number of users to your local TASKING sales representative. The License

Information Form which contains your license key information will be sent

to you with the software product.

2.4.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 2.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described in section 2.2.1, Installation for Windows.

Step 2

Create a file called "license.dat " in the c:\flexlm directory, using an

ASCII editor and insert the license information contained in the "License

Information Form" in this file. This file is called the "license file". If the

directory c:\flexlm does not exist, create the directory.

If you wish to install the license file in a different directory, see section

2.4.6, Modifying the License File Location.

If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 2.4.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

Chapter 22–12
IN
S
TA

L
L
A
T
IO
N

2.4.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 2.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described earlier in this chapter on the computer or workstation where

you will use the software product.

As a result of this installation two additional files for FLEXlm will be

present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

Step 2

If you already have installed FLEXlm v6.1 or higher for Windows or v2.4

or higher for UNIX (for example as part of another product) you can skip

this step and continue with step 3. Otherwise, install SW000098, the

Flexible License Manager (FLEXlm), on the license server where you want

to use the license manager.

The installation of the license manager on Windows also sets up the

license daemon to run automatically whenever a license server reboots.

On UNIX you have to perform the steps as described in section 2.4.5,

Setting Up the License Daemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon (see step 1).

Step 4

Insert the license information contained in the "License Information Form"

in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in

directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX.

Installation Guide 2–13

• • • • • • • •

If you wish to install the license file in a different directory, see section

2.4.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII

editor. You can use the license file license.dat from the toolchain's

flexlm subdirectory as a template.

If you already have a license file, add the license information to the

existing license file. If the SERVER lines in the license file are the same as

the SERVER lines in the License Information Form, you do not need to add

this same information again. If the SERVER lines are not the same, you

must use another license file. See section 2.4.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software

product the location of the license file must be known. If it differs from

the default location (c:\flexlm\license.dat for Windows,

/usr/local/flexlm/licenses/license.dat for UNIX), then you

must set the environment variable LM_LICENSE_FILE. See section 2.4.6,

Modifying the License File Location, for more information.

Step 6

Now all license information is entered, the license manager must be

started (see section section 2.4.4). Or, if it is already running you must

notify the license manager that the license file has changed by entering the

command (located in the flexlm bin directory):

lmreread

On Windows you can also use the graphical FLEXlm Tools (lmtools): Start

lmtools (if you have used the defaults this can be done by selecting Start

-> Programs -> TASKING FLEXlm -> FLEXlm Tools), fill in the current

license file location if this field is empty, click on the Reread button and

then on OK. Another option is to reboot your PC.

The software product and license file are now properly installed.

Where to go from here?

The license manager (daemon) must always be up and running. Read

section 2.4.4 on how to start the daemon and read section 2.4.5 for

information how to set up the license daemon to run automatically.

Chapter 22–14
IN
S
TA

L
L
A
T
IO
N

If the license manager is running, you can now start using the TASKING

product.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

2.4.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start

the daemon complete the following steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXlm installation directory (default

/usr/local/flexlm):

cd /usr/local/flexlm

3. For C shell users, start the license daemon by typing the following:

bin/lmgrd –2 –p –c licenses/license.dat >>& \
 /var/tmp/license.log &

Or, for Bourne shell users, start the license daemon by typing the

following:

bin/lmgrd –2 –p –c licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the

lmdown and lmremove license administration tools to the license

administrator. You omit these options if you want. Refer to the usage of

lmgrd in Appendix A, Flexible License Manager (FLEXlm), for more

information.

Installation Guide 2–15

• • • • • • • •

2.4.5 SETTING UP THE LICENSE DAEMON TO RUN

AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a

license server reboots, follow the instructions below that are appropriate

for your platform. steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Setup tab, enable the Start Server at Power-Up check box.

3. Close the program by clicking on the OK button. If a question appears,

answer Yes to save your settings.

UNIX

In performing any of the procedures below, keep in mind the following:

• Before you edit any system file, make a backup copy.

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.lmgrd with the

following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

3. Make it executable:

chmod u+x rc.lmgrd

4. Create an 'S' link in the /etc/rc3.d directory to this file and create 'K'

links in the other /etc/rc?.d directories:

ln /etc/init.d/rc.lmgrd /etc/rc3.d/S numrc.lmgrd
ln /etc/init.d/rc.lmgrd /etc/rc?.d/K numrc.lmgrd

num must be an appropriate sequence number. Refer to you operating

system documentation for more information.

Chapter 22–16
IN
S
TA

L
L
A
T
IO
N

2.4.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX also ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See Appendix A, Flexible License Manager (FLEXlm), for more information.

Installation Guide 2–17

• • • • • • • •

2.4.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the

methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

SunOS/Solaris hostid 170a3472

Windows tkhostid

(or use lmhostid)

0800200055327

Table 2-2: Determine the hostid

If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXlm.

2.4.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

SunOS/Solaris hostname

Windows 95/98 Go to the Control Panel, open ”Network”, click on
”Identification”. Look for ”Computer name”.

Windows NT Go to the Control Panel, open ”Network”. In the
”Identification” tab look for ”Computer Name”.

Windows XP/2000 Go to the Control Panel, open ”System”. In the ”Computer
Name” tab look for ”Full computer name”.

Table 2-3: Determine the hostname

Chapter 22–18
IN
S
TA

L
L
A
T
IO
N

3

TUTORIAL
C

H
A

P
T

E
R

Chapter 33–2
T
U
T
O
R
IA
L

3

C
H

A
P

T
E

R

Tutorial 3–3

• • • • • • • •

3.1 INTRODUCTION

This tutorial contains a step-by-step series of examples and exercises

designed to teach you how to use your Toolkit. The examples vary in

difficulty from simple to advanced, allowing you to progress to more

advanced functions. The last section of this chapter gives an introduction

to system building concepts so that new users can get started quickly.

Our goal in this tutorial is to teach you how to use the 68K/ColdFire

package to build an executable program from your C source and/or

assembly language programs. The programs which comprise the toolset

are described in the The Development System section in the Introduction
chapter of this manual. We approach the tutorial by guiding you through

examples with the tools, using sample programs included with the

TASKING software. In the later examples we introduce a few advanced

topics that will help you understand this manual. Throughout the tutorial,

we follow document conventions described in the front of the manual.

In this tutorial, we will be compiling and assembling files for the

68K/ColdFire family. You will also be introduced to TASKING's graphical

user interface, EDE, which gives you point-and-click control over the

whole development process. We realize that you may have only one target

available to you. The example output is included in such a way as to be

useful for a variety of 68K/ColdFire family targets. We encourage you to

run as many examples as are applicable, substituting your own target in

place of the target listed in each example. Instructions for invoking the

compiler and assembler for each target are described below. You can find

additional details throughout this manual.

The first part of the tutorial emphasizes the use of the toolchain

components. The second part of this chapter introduces important topics

such as system initialization, memory management, and linking C and

assembly language.

3.2 FINDING THE PROGRAMS AND SETTING UP THE

PATH

The package contains many different files. Some are executables: files that

make up the compiler, assembler, and utilities. Others contain sample

programs, which we use in this tutorial to teach the development system.

The files are organized into directories and subdirectories for easy

reference. Before you can begin to use the product, you must know where

the directories are located and what is contained in each.

Chapter 33–4
T
U
T
O
R
IA
L

This getting started manual includes some information about C++. For

more information, consult your C++ Compiler User's Manual.

For discussion in this manual, we assume that the product was loaded on

drive C: in the directory Program Files\TASKING\c68k for Windows

hosts or in /usr/local/c68k for Unix hosts. If so, the executables will

probably be in the bin subdirectory. You may want to modify your search

path to find the TASKING programs. You can do this by setting the

Executable Files Path in EDE or use the PATH enviroment varable. This

is described in section 2.3, Software Configuration in chapter Installation
Guide.

You will find at least three subdirectories under the installation directory:

bin
examples
rtlibs

if your system administrator has not renamed any of the subdirectories. For

the purpose of this tutorial, we will assume that none of the directories has

been renamed.

Any additional directories or executables are for installation only, and will

not be discussed in this tutorial. The directories and their contents are

described in the next sections.

3.2.1 BIN DIRECTORY

The directory bin contains the executables, or programs which run the

compiler, assembler and utilities. Some of these executables are

user-invoked: you must specify that the file be executed. Others are called

automatically. You never enter these automatically invoked files in any

commands.

A brief description of each file in this directory can be found in the

following sections. On the PC, executable files have a .exe extension.

Tutorial 3–5

• • • • • • • •

Assembler files

as68k (68K)
ascf (ColdFire)

Assembler executable. This file is invoked
automatically when you invoke one of the
target–specific assemblers. You do not invoke
this executable file directly.

asm target Target specific assembler driver. For example
asm68000 for the MC68000, asmec040 for
the MC68EC040 or asm5204 for the
MCF5204.

C compiler files

ctarget Target specific C compiler driver. For example
c68000 for the MC68000, cec040 for the
MC68EC040 or c5204 for the MCF5204.

The following executables are invoked automatically by the C compiler

drivers above:

bc68000 (68K)
becf (ColdFire)

Compiler back end.

cpf C compiler preprocessor and front end.

flow Global optimizer.

interl Used to produce interleaved assembly listings.

merge Used to produce debugging symbols.

xref Used to produce cross–reference listings.

C++ compiler files

cp target Target specific C++ compiler executables. For
example cp68000 for the MC68000, cpec040
for the MC68EC040 or cp5204 for the
MCF5204.

Utilities

form
form695

Object module formatters.

gsmap
symlist

Utilities which generate various listings of
symbol information.

Chapter 33–6
T
U
T
O
R
IA
L

libr Librarian utility.

llink Linking locator.

olsize Utility which lists the total size of a set of object
modules.

C++ Utilities

ldriver C++ Linker.

edg_munch Linker Utility.

edg_prelink Linker Utility.

edg_decode C++ Name Demangling.

3.2.2 RTLIBS DIRECTORY

The compiler run-time libraries are contained in the directory rtlibs .

The run-time libraries are necessary for linking, and contain source files,

include files, and compiled or assembled run-time library routines, which

resolve external references.

The rtlibs directory contains the following subdirectories:

lib000
lib020h
lib020s
lib040h
lib040s
lib060h
lib060s
lib5206
lib5206e

Below each of these directories on the PC are the following subdirectories

(if your system administrator has not renamed them):

inc
lib
src

Tutorial 3–7

• • • • • • • •

The inc directory contains the library include files. The lib directory

contains the library index files and object files. The src directory contains

the library source files.

The C++ compiler contains the additional directories cppinc , cpplib
and cppstl.

3.2.3 EXAMPLES DIRECTORY

The examples directory contains amongst several sample projects a

tutor directory with three subdirectories, fact , main and cfile . These

directories contain files of sample C programs and assembly language

routines which you use throughout the tutorial.

The list below summarizes the source files contained in the tutor\fact
subdirectory:

adexp.68k We will use this assembly language program
to demonstrate use of the assembler.

circle.c This program contains a function to compute
the area of a circle given its radius. This file
demonstrates floating–point features.

fact.c This program includes a function to compute
the factorial of a number. It has external
references to the routines in circle.c and
adexp.68k . Also, it contains external
references to be resolved by linking to the
run–time library.

fpneg.68k This assembly language routine resolves an
external reference in fact.c . We use the
program to demonstrate the linking locator’s
function of resolving references.

inc The inc directory contains the include files
dargstac.h , def.h , and ret_doub.h as
included source. In the examples, you will
specify this directory in order to find files
named in #include directives.

link.lst We will use this file to demonstrate a linking
feature of the linking locator.

loc.lc This is a locator command file which
demonstrates a locating feature of the linking
locator utility.

Chapter 33–8
T
U
T
O
R
IA
L

Before you proceed with the tutorial, we recommend that you make your

own copy of the tutor subdirectory, its contents, and its subdirectories.

TASKING programs create files as you use the tools, and you may want to

keep the tutorial intact for future use.

For the remainder of the tutorial, we assume that you have set your

working directory to your copy of the tutor subdirectory.

3.2.4 DERIVATIVES OVERVIEW

The following table contains an overview of the supported derivatives with

the corresponding target to identify the C compilers (ctarget), C++

compilers (cptarget) and assemblers (asmtarget). It also shows the

corresponding library and in which rtlibs\ libdir \lib directory this

library is present.

Target
Processor

target Library
Directory

Library

MC68000 68000 lib000 lib000

MC68HC000 68000 lib000 lib000

MC68HC001 68000 lib000 lib000

MC68EC000 68000 lib000 lib000

MC68SEC000 68000 lib000 lib000

MC68008 68000 lib000 lib000

MC68010 68010 lib000 lib010

MC68020 (sw fp) 68020 lib020s lib020s

MC68020 (hw fp) 68020 lib020h lib020h

MC68EC020 (sw fp) 68020 lib020s lib020s

MC68EC020 (hw fp) 68020 lib020h lib020h

MC68030 (sw fp) 68030 lib030s lib030s

MC68030 (hw fp) 68030 lib030h lib030h

MC68EC030 (sw fp) ec030 lib020s libe30s

MC68EC030 (hw fp) ec030 lib020h libe30h

MC68040 68040 lib040h lib040

Tutorial 3–9

• • • • • • • •

LibraryLibrary
Directory

targetTarget
Processor

MC68EC040 ec040 lib040s libe40

MC68LC040 lc040 lib040s libe40

MC68V040 lc040 lib040s libe40

MC68060 68060 lib060h lib060

MC68EC060 ec060 lib060s libe60

MC68LC060 lc060 lib060s libe60

MC68302 68302 lib000 lib302

MC68302
 (ADS parallel I/O)

68302 lib000 lib302ap

MC68302
 (ADS trap I/O)

68302 lib000 lib302at

MC68306 68302 lib000 lib302

MC68328 68000 lib000 lib000

MC68EZ328 68000 lib000 lib000

MC68VZ328 68000 lib000 lib000

MC68SZ328 68000 lib000 lib000

MC68330 68332 lib020s lib332

MC68331 68332 lib020s lib332

MC68332 68332 lib020s lib332

MC68336 68332 lib020s lib332

MC68340 68340 lib020s lib340

MC68340 (BBC) 68340 lib020s lib340b

MC68360 68360 lib020s lib360

MC68360 (QUADS) 68360 lib020s lib360b

MC68F375 68332 lib020s lib332

MC68376 68332 lib020s lib332

MCF5204 5204 lib5206 lib5206

MCF5206 5206 lib5206 lib5206

MCF5206E 5206e lib5206e lib5206e

MCF5249 5249 lib5206e lib5206e

Chapter 33–10
T
U
T
O
R
IA
L

LibraryLibrary
Directory

targetTarget
Processor

MCF5249L 5249 lib5206e lib5206e

MCF5272 5272 lib5206e lib5206e

MCF5280 5280 lib5206e lib5206e

MCF5282 5282 lib5206e lib5206e

MCF5307 5307 lib5206e lib5206e

3.3 INVOKING THE TOOLS

3.3.1 INVOKING THE TOOLS FROM EDE

EDE is a complete project environment in which you can create and

maintain project spaces and projects. EDE gives you direct access to the

tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one

project. Before you can create a project you have to setup a project space.

All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a

target! You can create, add or edit files in the project which together form

your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

Tutorial 3–11

• • • • • • • •

When you build your project, EDE handles file dependencies and the

exact sequence of operations required to build your application. When

you click the Build button, EDE generates a makefile, including all

dependencies, and builds your application.

Overview of steps to create and build an application from EDE

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

Start EDE

• Double-click on the EDE shortcut on your desktop.

- or -

Launch EDE via the program folder created by the installation program.

Select Start -> Programs -> TASKING toolchain -> EDE.

Figure 3-1: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,

one or more windows (default, a window to edit source files, a project

window and an output window) and a status bar.

Chapter 33–12
T
U
T
O
R
IA
L

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line ManualsProject Options

Figure 3-2: EDE desktop

Using the sample projects in EDE

3.3.1.1 USING THE SAMPLE PROJECTS IN EDE

When you start EDE for the first time, EDE opens with a ready defined

project space (68K-ColdFire Example.psp) that contains several sample

projects. Each project has its own subdirectory in the examples directory.

Each directory contains a file readme.txt with information about the

example. The default project is called queens.pjt and contains an eight

queens chess problem example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right-click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

Tutorial 3–13

• • • • • • • •

The selected project opens.

3. Read the file readme.txt for more information about the selected sample

project.

Building a sample project

To build the currently active sample project:

• Click on the Execute 'Make' command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

3.3.1.2 CREATE A NEW PROJECT SPACE WITH A

PROJECT

Creating a project space is in fact nothing more than creating a project

space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

Chapter 33–14
T
U
T
O
R
IA
L

2. In the the Filename field, enter a name for your project space (for

example MyProjects). Click the Browse button to select a directory first

and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in

the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project

space button (see previous figure).

The Add New Project to Project Space dialog appears.

Tutorial 3–15

• • • • • • • •

5. Give your project a name, for example getstart\getstart.pjt (a

directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart , which is also created. The Project Properties dialog box appears
with the project selected.

Chapter 33–16
T
U
T
O
R
IA
L

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case

getstart.mak). This file contains the rules to build your application.

EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document

window:

#include <stdio.h>

void main(void)
{
 printf(”Hello World!\n”);
}

10. Click on the Save the changed file <Ctrl-S> button.

Tutorial 3–17

• • • • • • • •

EDE saves the file.

3.3.1.3 SET OPTIONS FOR THE TOOLS IN THE

TOOLCHAIN

The next step in the process of building your application is to select a

target processor and specify the options for the different parts of the

toolchain, such as the C compiler, assembler, linker/locator and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Select Target.

3. In the Target processor list select (for example) MC68020.

4. In the Floating-point support section select the option that is

appropriate for your processor.

Chapter 33–18
T
U
T
O
R
IA
L

5. Click OK to accept the new project settings.

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With

the Default... button you can restore the default project options (for the

current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker/Locator,

CrossView Pro) of the Project Options dialog in a similar way as described

above for the C compiler.

Tutorial 3–19

• • • • • • • •

If available, the Options string field shows the command line options

that correspond to your graphical selections.

3.3.1.4 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results

in an absolute IEEE-695 object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute 'Make' command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.abs .

The build process only builds files that are out-of-date. So, if you click

Make again in this example nothing is done, because all files are

up-to-date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have

been executed (and inspect generated messages) by the build process in

the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by

selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or

assemble.

2. Click on the Execute 'Compile' command button. The following button

is the execute Compile button which is located in the toolbar.

Chapter 33–20
T
U
T
O
R
IA
L

If you selected the file hello.c , this results in the compiled and assembled
file hello.ol .

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project

from scratch (regardless of their date/time stamp), you can perform a

rebuild.

• Click on the Execute 'Rebuild' command button. The following

button is the execute Rebuild button which is located in the toolbar.

3.3.2 INVOKING THE TOOLS USING COMMAND LINE

All of the TASKING 68K/ColdFire programs follow a general three-part

syntax. First, name the program you want to run. Next, name the primary

arguments. Finally, append options.

The program named first on the command line is the command that acts

upon the input. For instance, the command c68000 compiles the C source

code in the input file(s), creating one or more object modules for the

MC68000 target. The command c68020 compiles source code for the

MC68020 target. All the examples shown in this tutorial use the MC68020

target. You should substitute your own target on the command line (for

examples that are applicable to your target) when trying the sample

commands described below.

The primary arguments are usually names of input files. The files may be

source, object modules, or absolute files, depending on the executable. We

will discuss each of these files in the examples.

To generate listings or specify particular operations of the program,

append the necessary options to the invocation line. Options always begin

with a hyphen, �–". While you can append multiple options, you must

include the hyphen for each. For example, the following syntax is correct:

c68020 fact.c –s –l

The combination below is incorrect:

c68020 fact.c –sl

Tutorial 3–21

• • • • • • • •

Due to the page width limitations of this manual, we may present a single

invocation line as two or more lines. You should, however, type the

invocation all on one line.

3.4 TUTORIAL EXAMPLES

The remainder of this tutorial is dedicated to running the TASKING

68K/ColdFire programs on the sample source programs provided with the

release. The examples cover the following topics:

Example 1: Building Your First Application Executable

Example 2: Listings and Non-Default Output Files

Example 3: Non-Default Memory Models and Linking Options

Example 4: Locator Options

Example 5: Formatting Options and Saving Symbol Information

The remaining examples all use PC-style directory pathnames; that is, they

use backslashes (\). If you used the default installation directory on a PC

the product is installed in c:\Program Files\TASKING\c68k
version \ . In the examples we use \c68k instead. If your host is Unix,

you should use forward slashes (/) and directory names starting with

something like /usr/local/c68k instead.

For all examples, we assume that your current working directory is set to

your local copy of the examples\tutor\fact directory.

3.4.1 EXAMPLE 1: BUILDING YOUR FIRST

APPLICATION EXECUTABLE

In this example you will do the following:

• Compile a C source program.

• Link, ROM process and locate the compiled object module.

• Format the absolute module in the default format for the

68K/ColdFire family.

Chapter 33–22
T
U
T
O
R
IA
L

Step 1

Compile a C source program, circle.c . In our example, we compile for

the MC68020 target. Type:

c68020 circle.c

Step 2

Link, ROM process and locate the object module circle.ol . Search the

run-time library specified by the library index file

\c68k\rtlibs\lib020s\lib\lib020s to resolve references. Write

output to a file with the default suffix. Type:

llink circle.ol –L \c68k\rtlibs\lib020s\lib\lib020s –o

Step 3

Format the absolute module circle.ab using the IEEE-695 format:

form695 circle.ab –o circle.abs

Explanation

In Step 1 we compiled circle.c and created an object module for the

MC68020 target. The command c68020 compiles for the MC68020 target.

(You can substitute a different compiler command name for your own

target if you are trying this example.) You named circle.c as the input

file. By default the compiler writes the object module to output to a file

with the suffix .ol . In this example, the compiler wrote the object module

circle.ol . To verify this, list the directory. You should see circle.ol
among the files.

In Step 2 we linked, ROM processed and located the object module

circle.ol . The executable llink invokes the linking locator.

The -L option specifies the library or libraries to be searched to resolve

references during linking. In this case, we specified the library

\c68k\rtlibs\lib020s\lib\lib020s , for the software floating-point

MC68020 library. This is the appropriate library for the options we chose,

since by default the compiler generates instructions for software

floating-point operations. Some targets do not have separate software and

hardware floating-point libraries. The organization of the compiler

run-time library is described fully in the Linking Locator chapter in the

68K/ColdFire User`s Manual. If you are trying this example, substitute the

name of the appropriate run-time library for your target.

Tutorial 3–23

• • • • • • • •

When locating this object module, the linking locator assigns MC68020

memory locations to code and data in the object module. By default, it

assigns code and data segments to consecutive addresses, beginning at

zero.

The -o option directs the linking locator to write output to a file, rather

than the terminal. The output is called absolute because the addresses are

fixed, or completely located, and is therefore named with the .ab suffix.

You should see the file circle.ab in your directory listing. If we had not

appended the -o option, the linking locator would have directed the

output to the screen rather than saving it in a file.

In Step 3 we formatted circle.ab using the IEEE-695 format. The

executable form695 formats the named absolute module circle.ab , and

the -o option specifies the output file circle.abs . You should see the

file circle.abs in your directory list.

This IEEE-696 file is the final result of the development processing chain.

It can be loaded into your target system in a variety of ways and then

executed. Refer to the Downloading application note in the 68K/ColdFire
User`s Manual for more details.

3.4.2 EXAMPLE 2: LISTINGS AND NON-DEFAULT

OUTPUT FILES

In this example you will do the following:

• Generate a source listing.

• Generate and write the following listings to the file fact.mny :

assembly interleaved with C source code, cross-referenced.

• Assemble two assembly language source files and generate a listing

for one file which shows both primary and included source, and

expanded macros.

• Link, ROM process and locate the compiled and assembled object

modules.

• Format the resulting absolute .ab file, and direct the output to a

non-default file.

Chapter 33–24
T
U
T
O
R
IA
L

Step 1

Compile C source code in circle.c for the MC68020 target and generate

a source listing. Type:

c68020 circle.c –s

Step 2

Compile C source code in fact.c for the MC68020 target and generate an

assembly listing interleaved with source code, and a cross-reference

listing. Write both listings to fact.mny . Type:

c68020 fact.c –q –i –x –l fact.mny

Step 3

Assemble the assembly language routines adexp.68k and fpneg.68k for

the MC68020 target. Search the inc directory for include files. Generate a

listing for adexp.68k which shows included source, and expanded

macros. Type:

asm68020 adexp.68k –a –m –I inc
asm68020 fpneg.68k

Step 4

Link, ROM process and locate the object modules fact.ol , circle.ol ,

fpneg.ol and adexp.ol . Search the library

\c68k\rtlibs\lib020s\lib\lib020s to resolve references. Write

output to the default file. Type:

llink fact.ol circle.ol adexp.ol fpneg.ol –L
 \c68k\rtlibs\lib020s\lib\lib020s –rs idata –o

The entire llink command above should be typed on one line.

Step 5

Format the absolute file fact.ab in the default format, packed Motorola.

Write output to a non-default file. Type:

form fact.ab –o output.hex

Tutorial 3–25

• • • • • • • •

Explanation

In Step 1 we compiled the C source program circle.c for the MC68020

target. By appending the -s option to the invocation line, we generated a

source listing with the default suffix .lis . The listing circle.lis
appears below:

 circle.c Oct 8 2003 12:23:49
 PAGE 1

 1 /***
 2 **
 3 ** VERSION: @(#)circle.c version
 4 **
 5 ** IN PACKAGE: 68K/ColdFire
 6 **
 7 ** COPYRIGHT: Copyright year Altium BV
 8 **
 9 ** DESCRIPTION: This program calculates the
 area of a circle
 10 **
 11 ***/
 12
 13 extern double pow(double, double);
 14
 15 float pi = 3.1416;
 16
 17 float circle (double radius)
 18 {
 19 float answer;
 20
 21 /* pow is a function supplied */
 22 /* in the C run time library. */
 23
 24 answer = pi * pow(radius,2.0);
 25
 26 return (answer);
 27 }

Chapter 33–26
T
U
T
O
R
IA
L

In Step 2 we compiled the C program fact.c for the MC68020 target.

Because the TASKING MC68020 C compiler converts source code directly

to object code, it normally bypasses generating an assembly language

representation. To see the C source program as it would appear in

assembly language, you can generate an assembly listing. This assembly

listing can also show the C source interleaved with the generated code. To

generate an interleaved listing, we appended the –q –i options. A portion

of the interleaved listing from fact.mny appears below:

*57 sum = 0;
 CLR.L –20(A6)
*58
*59 for (loopvar = 1; loopvar < 8; ++loopvar) {
 MOVEQ.L #1,D2
*(code hoisted from following statement)
 LEA.L –14(A6),A1
L20003
*60 table[loopvar] = factorial(loopvar);
 MOVE D2,–(A7)
 JSR _factorial
 MOVE D0,(A1)
*61 sum += table[loopvar];
 MOVE.L –20(A6),–(A7)
 MOVE (A1)+,–(A7)
 JSR __Itof
 ADDQ.L #2,A7
 MOVE.L D0,–(A7)
 JSR __Fadd
 MOVE.L D0,–20(A6)
*(see line 59)
 ADDQ #1,D2
 CMPI #8,D2
 ADDA #10,A7
 BLT.S L20003
*62 }

The ColdFire compilers always generate assembly. Use the –i option to

see the interleaved assembly listing.

Tutorial 3–27

• • • • • • • •

A cross-reference listing is a table which shows all user-defined types,

variables and constants, the line numbers in the source code where they

are defined, and any line numbers where they are referenced. The -x

option appended to the invocation line generated this listing. Part of the

cross-reference listing portion of fact.mny appears below:

Oct 8 2003 12:38:42 CROSS–REFERENCE : fact.c PAGE 1

0
 Def : fact.c 31
 Ref : fact.c 31

1
 Def : fact.c 32
 Ref : fact.c 32

2
 Def : fact.c 33
 Ref : fact.c 33

ENUMTYPE
 Def : fact.c 14
 Ref : fact.c 20

FPNEG
 Def : * undefined *
 Ref : fact.c 32 76

RECTYPE
 Def : fact.c 21
 Ref : fact.c 24 25

a
 Def : fact.c 17
 Ref : fact.c 69

b
 Def : fact.c 18

blue
 Def : fact.c 14
 Ref : fact.c 24 68

To write output to a non-default file, we appended the –l option with the

desired file name, fact.mny as an argument. The compiler wrote each

listing to fact.mny consecutively.

Chapter 33–28
T
U
T
O
R
IA
L

In Step 3 we assembled the assembly language routines adexp.68k and

fpneg.68k for the MC68020 target. The asm68020 executable assembled,

for the MC68020 target, the input files adexp.68k and fpneg.68k . You

can substitute a different assembler executable name to assemble for your

target.

The source program adexp.68k names another file to be included upon

assembly. By default, the assembler searches the working directory for

include files. In this tutorial, the named include file resides in the inc
subdirectory. To search outside the working directory, we appended the -I

option with the directory inc as an argument.

The -a option generates an assembler listing that contains primary and

included source. By default, the listing file has the .lis suffix. A portion

of the listing adexp.lis appears below. Note that lines #17 and #18

name dargstac.h and ret_doub.h as included source. The following

portion of adexp.lis shows an assembler listing that contains the

expansion of the first include file source.

13 0 | * registers not being modified when it is called.

14 0 | *

15 0 | ***/

16 0 |

17 0 | include ’dargstac.h’

1 1 0 | ***

2 1 0 | * include file dargstac.h for tutor directory

3 1 0 | *

4 1 0 | * @(#)dargstac.h 1.1 03/03/26

5 1 0 | ***

6 1 0 | *

7 1 0 [$4] | regw set 4 register width

8 1 0 [$E] | regnum set 14 number of registers saved

9 1 0 [$38] | regspc set regw*regnum amount of space

 | taken by saved regs

10 1 0 [$0] | numbyt set 0 init numbyt

11 1 0 |

12 1 0 | pusharg MACRO macro to copy next argument to stack

Tutorial 3–29

• • • • • • • •

The –m option causes the assembler to include macro expansions in the

listing file. Macros provide a shorthand means to invoke a series of

assembly language source statements that appear a number of times

throughout a program. Rather than writing the consecutive lines of code at

every appropriate point in the program, you can name the consecutive

lines as a �macro," then invoke the macro with a single line of code. Note

that line #12 of the dargstac.h included source file defines a macro. The

macro ends at line #23. The macro is invoked in the file adexp.68k ,

which includes dargstac.h . For more information on macros, please

refer to the 68K/ColdFire Reference Manual. Macro expansions show the

macro contents read by the assembler.

In Step 4 we linked, ROM processed and located the compiled and

assembled .ol files fact.ol , circle.ol and adexp.ol . We named

each input object module, separating file names with a space.

The –rs idata option causes the linking locator to perfor ROM

processing. ROM processing is described fully in the Linking Locator
chapter in the 68K/ColdFire User`s Manual. Briefly, ROM processing

provides a way for the program to initialize its global data at run-time.

Initialization is done by copying from a ROM-resident initialization

segment (created by the ROM processor) into the segment. By default the

TASKING 68K/ColdFire compiler allocates all initialized data in the idata

segment. In this example, by supplying the idata argument to the –rs
option, we create a new segment with the initialization values from the

idata segment.

To resolve external references, we first searched the library file

\c68k\rtlibs\lib020s\lib\lib020s and then we located by default.

The linking locator wrote output to the default file fact.ab , using the

first file name listed, fact.ol , to form the root, and appended the default

.ab suffix.

In Step 5, we entered the following invocation:

form fact.ab –o output.hex

This invocation formatted the absolute file fact.ab in the format packed

Motorola, and wrote the output to a non-default file, output.hex , by

appending the -o option with the argument output.hex .

Chapter 33–30
T
U
T
O
R
IA
L

3.4.3 EXAMPLE 3: NON-DEFAULT MEMORY MODELS

AND LINKING OPTIONS

This example illustrates various options which affect the compiler's choice

of generated code. Due to the many approaches, we have divided the

example into two sections: floating-point compilations, and compilations

with the long integer data type option. We will do the following:

• Compare compilations for the MC68020 target using hardware and

software floating-point.

• Link and ROM process multiple files named in a single file.

• Compile using the long integer data type option.

• Link and locate using a long integer library.

• Format the absolute files.

Floating-Point Compilations

Step 1

Compile and generate an interleaved assembly and source listing for the

MC68020 target using software floating-point. Write the listing to

circle.sw . Type:

c68020 circle.c –q –i –l circle.sw

Step 2

Compile and generate an interleaved assembly and source listing for the

MC68020 target using hardware floating-point. Type:

c68020 circle.c –q –i –h

Step 3

Compile fact.c for the MC68020 target using hardware floating-point

and assemble fpneg.68k . Type:

c68020 fact.c –h
asm68020 fpneg.68k

Step 4

Link only the three .ol files fact.ol , circle.ol and fpneg.ol named

in a single file, link.lst .

Tutorial 3–31

• • • • • • • •

Link with the MC68020 hardware floating-point run-time library. Type:

llink –i link.lst –rs idata
 –L \c68k\rtlibs\lib020h\lib\lib020h –lo –o

Explanation

In Step 1, we compiled circle.c for the MC68020 target using software

floating-point. The assembly and source code listing from file circle.sw
appears below. Note the code size shown at the bottom:

21 / pow is a function supplied */
22 / in the C run time library. */
*23
*24 answer = pi * pow(radius,2.0);
 SUBA #16,A7
 MOVE.L _pi–data(A5),–(A7)
 PEA.L 4(A7)
 JSR __Ftod
 CLR.L –(A7)
 MOVE.L #:40000000,–(A7)
 MOVE.L 12(A6),–(A7)
 MOVE.L 8(A6),–(A7)
 PEA.L 16(A7)
 JSR _pow
 ADDA #20,A7
 PEA.L 16(A7)
 JSR __Dmul
 ADDA #20,A7
 JSR __Dtof
 MOVE.L D0,–4(A6)
*25
*26 return (answer);
*27 }
 UNLK A6
 RTS
* Function size = 80
* bytes of code = 80
* bytes of idata = 4
* bytes of udata = 0
* bytes of sdata = 0
 XREF __Ftod
 XREF _pow
 XREF __Dmul
 XREF __Dtof
 _dgroup data
 END

Chapter 33–32
T
U
T
O
R
IA
L

In Step 2 we compiled using hardware floating-point and generated an

interleaved listing. The –h option directs the compiler to use MC68881

instructions to perform floating-point operations. If your target is not

equipped with the MC68881, do not use the –h option.

By default, the compiler names the interleaved listing by appending the .s
suffix. A portion of circle.s appears below:

21 / pow is a function supplied */
22 / in the C run time library. */
*23
*24 answer = pi * pow(radius,2.0);
 FMOVE.S _pi–data(A5),FP4
 FMOVE.X FP4,–(A7)
 CLR.L –(A7)
 MOVE.L #:40000000,–(A7)
 MOVE.L (__R1+32)(A7),–(A7)
 MOVE.L (__R1+32)(A7),–(A7)
 JSR _pow
 ADDA #16,A7
 FMOVE.X (A7)+,FP4
 FMUL.X FP4,FP0
 FMOVE.X FP0,FP1
*25
*26 return (answer);
 FMOVE.X FP1,FP0
*27 }
 FMOVE.X (A7)+,FP1
 RTS

* Function size = 62
* bytes of code = 62
* bytes of idata = 4
* bytes of udata = 0
* bytes of sdata = 0
 XREF _pow
 _dgroup data
 END

The figure of bytes of code shown near the end of the listing for

comparison with the software floating-point example.

In Step 3, we compiled fact.c using hardware floating-point. To do so,

we used the hardware floating-point option, –h .

In this step, we also assembled fpneg.68k . Due to the nature of

assembly language, there is no need to append an option to specify

floating-point type, so we assembled fpneg.68k normally for the

MC68020 target, by using the asm68020 command.

Tutorial 3–33

• • • • • • • •

In Step 4, we linked the three object modules, but rather than listing each

file name separately, we listed the names of the object language files in a

single file, link.lst , included with this release. By appending the –i
option and file name, we directed the linking locator to read the files

named in link.lst . If you list the contents of link.lst , you will see

the three file names.

Because the compiled object modules use hardware floating-point, we

linked with the hardware floating-point library,

\c68k\rtlibs\lib020h\lib\lib020h .

The –rs option with the idata argument ROM processes the idata

segment. To link only, we appended the –lo option, This option bypasses

the locate step, leaving a relocatable object module. Linked and ROM

processed output is named, by default, with the .rmp suffix. By using the

root of the first object module listed, and appending the .rmp suffix, the

linking locator wrote the linked output to fact.rmp .

The Long Integer Data Type Option

Compile for the MC68020 target using the long integer data type option.

Link, locate and format. Type:

c68020 circle.c –L
llink circle.ol –L
 \c68k\rtlibs\lib020s\lib\lib020s.l –o
form695 circle.ab –o circle.abs

Explanation

In the previous step, we compiled using the long integer option data type

option. The long integer option, –L , causes the compiler to assign integers

four bytes of memory, and short two bytes. The default is to assign integer

two bytes of memory and shorts one byte. When invoking the linking

locator, we linked with the long integer run-time library, which has an l
in its extension. All object modules in a single link must use the same data

type options. There are many other data type options which are discussed

in the C Compiler chapter in the 68K/ColdFire User`s Manual.

The ColdFire compilers always use the long integer data type, so the

option –L is not needed for these compilers. Also the run-time libraries

do not have the .l extension.

Chapter 33–34
T
U
T
O
R
IA
L

3.4.4 EXAMPLE 4: LOCATOR OPTIONS

This example addresses locator options. We have divided the example into

two sections: Separate Data and Locator Commands. We will do the

following:

• Locate separate data

• Read locator commands from a file

• Produce a global symbol listing

Separate Data

Step 1

Generate a source listing for the source file fact.c, which contains an

#pragma separate preprocessor directive. Write the listing to

fact.sep . Type:

c68020 fact.c –s –l fact.sep

Explanation

In Step 1, we generated fact.sep . fact.sep is a source listing of

fact.c , which contains a #pragma separate preprocessor directive.

The line of the source listing that contains the directive appears below:

28 #pragma separate io_port

#pragma separate allows you to control the allocation of variables into

segments. You may want to allocate a variable into its own segment to

place it at a particular hardware address. If all data after linking is larger

than 64K bytes, you must use #pragma separate to avoid exceeding the

64K limit on global data. To specify a separate segment in source code,

use a #pragma separate directive, as shown above.

A common use of #pragma separate among embedded system

developers is to accommodate memory mapped I/O. Memory mapped I/O

refers to hardware built so that reading or writing a particular hardware

address causes input or output to an external device. One way to

accommodate memory mapped I/O is to declare a separate variable in

your source code and locate the segment at the memory mapped address.

This use of #pragma separate allows C code to manipulate memory

mapped I/O without using assembly language routines.

Tutorial 3–35

• • • • • • • •

Locator Commands

Step 2

Compile the two sample C programs and assemble the sample assembly

language program for the MC68020 target. Invoke the linking locator to

link and locate, reading locator instructions form the file loc.lc . Write

output to the default file. Type:

c68020 fact.c circle.c –s
asm68020 fpneg.68k –I inc
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –c loc.lc –o
form695 fact.ab –o fact.abs

Now, generate a global symbol listing for the linked and located file

fact.ab . Show all symbols in increasing order of memory address. Type:

gsmap fact.ab –n –o

Explanation

In Step 2, with the –c option, we directed the linking locator to read

locator commands from the file loc.lc . By default, code and data

segments are allocated in memory one after another, beginning at address

0. But in a real embedded system, memory areas are often not contiguous.

Also, certain address ranges correspond to RAM, ROM or memory-mapped

I/O. You must take care to place code and constant data in ROM and

read-write data in RAM.

Default conventions may not result in optimal placement. You can control

placement of code or data using locator commands. The tutorial files

provided with this release include the file loc.lc , a file of commands to

locate segments from the input modules. The –c option tells the llink

program to read commands from loc.lc . Its contents appear below:

––@(#)loc.lc 1.1 03/07/01
MEMORY (#10000); ––Total memory limited to 64K bytes
RESERVE (#0100 TO #1000); ––Prevent locator from overwriting
RESERVE (#8000 TO #8100); ––memory reserved for another program
LOCATE (S_io_port : #FF00); ––I/O port’s memory location
LOCATE (libcode: AFTER #7000);––put runtime libraries at top of ROM
LOCATE ({} {code} : #0100); ––Put other code at start of ROM
LOCATE ({data} : #8100); ––RAM area

Chapter 33–36
T
U
T
O
R
IA
L

Before we discuss locator commands, let's discuss the concepts of segment

and class. A segment is the smallest piece of code or data that can be

independently located in target memory. A collection of segments which

share a common attribute define a class. Classes are defined implicitly by

the compiler, and may be defined explicitly in assembly language or by

using compiler directives and options. By convention, class names are

delimited by curly braces, {}, in locator commands. For instance, the

compiler defines a class named {code} which contains all

compiler-generated segments containing machine instructions.

The file loc.lc uses the optional MEMORY command. The MEMORY
command defines the true size of target memory. By default the linking

locator assumes it can use the entire MC68020 address space.

The RESERVE command prevents the location of segments in specified

areas. For example, if your system has a ROM-based monitor program,

you may wish to avoid loading another program into its address range.

Note that in the TO syntax, the lower bound is included in the reserve

area; the upper bound is not.

The LOCATE command actually places code and data in memory areas.

You can locate individual segments or whole classes with one command.

For example, we located the class {data} after address #8100. The # sign

indicates a hexadecimal value.

In the final step, we generated a global symbol listing in increasing

address order. The global symbol mapper generates a listing of segments

and the definitions of global symbols. It summarizes segment addresses (if

you have located the module), length, class, alignment requirements, and

combinability. You may require a global symbol table when writing locator

commands. Because the symbolic information is derived from an object

module, you can generate a global symbol listing either before or after

linking and locating. The gsmap executable generates a global symbol

listing.

Tutorial 3–37

• • • • • • • •

It may also prove useful to generate the listing in increasing order of

address. With an address order, you can see a sequential listing of

segments. The –n option causes gsmap to sort the symbols in increasing

order of address. The –o option writes gsmap output to a file by

appending the default .map suffix. A portion of fact.map follows:

Symbol Map for fact.ab Oct 8 2003 14:43:39 Page 1

Translator : llink
Target : 68020

Global Address

_modf 00001000 (4096)
_atexit 000010b6 (4278)
_exit 000010da (4314)
__main 0000110c (4364)
_putc 0000116c (4460)
_getc 0000119e (4510)
_ungetc 000011ea (4586)
_pow 00001218 (4632)
_circle 000013a4 (5028)
_factorial 000013f4 (5108)
_main 0000141c (5148)

.

.

.
Group Size Limit Align Member Segments

data 0000d0 (208) hword idata udata

Segment Address Length Class Align Combine

init@0 00000000 (0) 000008 (8) <null> byte private
S___libcdata 00000008 (8) 000009 (9) constant hword private
S_modf 00001000 (4096) 0000b6 (182) code hword private
S_atexit 000010b6 (4278) 000056 (86) code hword private
init 0000110c (4364) 000060 (96) code hword private
S_putc 0000116c (4460) 000032 (50) code hword private
S_getc 0000119e (4510) 00007a (122) code hword private
S_pow 00001218 (4632) 00018c (396) code hword private
S_circle 000013a4 (5028) 000050 (80) code hword private
S_factorial 000013f4 (5108) 0000c8 (200) code hword private
libcode 00008100 (33024) 00146a (5226) code hword private
idata 0000956c (38252) 000040 (64) data lword private
udata 000095ac (38316) 000090 (144) data hword private
S_io_port 0000ff00 (65280) 000004 (4) usep lword private

.

.

.
Statistics

Segments : 14
Globals : 79
Groups : 1
Sum of class ”code” segments : 00001926 (6438)
Sum of class ”data” segments : 000000d0 (208)
Sum of all other segments : 00000015 (21)

Chapter 33–38
T
U
T
O
R
IA
L

Total size of all segments : 00001a0b (6667)

User Start Address = #110c

3.4.5 EXAMPLE 5: FORMATTING OPTIONS AND

SAVING SYMBOL INFORMATION

This example addresses formatting options and saving symbol information.

The three sections are: Creating Debugging Symbols, Formatting for

Multiple ROMs, and Non-Default Formatting. We will do the following:

• Suppress all optimizations that may interfere with debugging.

• Save symbol information for later use by the CrossView Pro

debugger.

• Generate a symbol table listing during assembly.

• Use the formatter window and bias options.

• Format using a non-default format.

Creating Debugging Symbols

Step 1

Compile, assemble and generate a symbol table listing, llink and format.

When compiling, suppress all optimizations that may interfere with

source-level debugging. At each invocation, save symbol information for

CrossView Pro, the TASKING source level cross debugger. Type:

c68020 fact.c circle.c –d –do
asm68020 fpneg.68k –d –b –l table.asm
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –rs idata –x –o
form695 fact.ab –o fact.abs

Explanation

We used the –do option to suppress optimizations that may interfere with

source-level debugging. For more information on optimizations and their

possible effects on debugging, please refer to the C Compiler chapter in

the 68K/ColdFire User`s Manual. We also saved symbol information and

prepared for running CrossView Pro, the TASKING source level debugger.

At each invocation step, we appended the necessary option: –d for the

compiler and assembler to save symbols, –x for the linking locator to link

in two small debugging routines, and –o for the formatter to produce the

necessary .abs symbol table file.

Tutorial 3–39

• • • • • • • •

When we assembled fpneg.68k , we generated an assembly listing and a

symbol table listing by appending the –b option. We directed output to

table.asm with the –l option. Portions of table.asm appear below:

38 1A |
39 1A | * exponent is all 1’s; if mantissa is
 non–zero, then the val is Nan
40 1A 2200 | MOVE.L D0,D1
41 1C 0281007FFFFF | ANDI.L #$007FFFFF,D1
 ; Check if the value of the mantissa is zero
42 22 66000008 | BNE FPN000
 ; Mantissa is non–zero, NaN
43 26 |
44 26 0A8080000000 | FPN010 EORI.L #$80000000,D0 ; Flip sign bit
45 2C |
46 2C 2F00 | FPN000 MOVE.L D0,–(SP)
 ; Push value (negated or not) back on the stack
47 2E 4ED0 | JMP (A0) ; Return
48 30 | END

.

.

.
 –––––––––––– Symbol Table –––––––––––––

FPN000 type: RELOCATABLE SYMBOL value : $2C + libcode
FPN010 type: RELOCATABLE SYMBOL value : $26 + libcode
_FPNEG type: EXTERNAL SYMBOL value : $0 + libcode
libcode type: RELOCATABLE SECTION size : $30

Formatting for Multiple ROMs

Step 2

Use the formatter bias and window options to create hex files for multiple

ROMS each with 16K of memory. Write the output to non-default files.

Type:

c68020 fact.c circle.c
asm68020 fpneg.68k
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –rs idata –o
form fact.ab –w 4000 –o fact.1hx
form fact.ab –w 4000 –a 4000 –o fact.2hx
form fact.ab –w 4000 –a 8000 –o fact.3hx

Chapter 33–40
T
U
T
O
R
IA
L

Explanation

Suppose your system uses 48K bytes of memory, and you plan to burn

your system into three 16K ROM chips, one for each 16K of memory

space. You will want to generate three hex files for input to your PROM

burner. Each hex file will contain 16K bytes starting at address 0, each

extracted in successive 16K byte chunks from the absolute object module

(.ab file). This example shows how to create those three hex files. We

used our small fact.ab file, although it does not really contain 48K bytes

of code and data.

Here, we use the –w and –a options to format three windows of 16K bytes

each, starting at hex addresses 0, 4000 and 8000 in succession. The –w
(windowing) option chooses the highest address in a hex file after biasing.

The –a (biasing) option subtracts a constant hex value from each address

in the object module.

In our example, the first formatter invocation creates a hex file that

contains hex addresses 0 through 3FFF. The second invocation places the

next 16K of addresses, from 4000 to 7FFF, into the second hex file,

fact.2hx , where 4000 hex has been subtracted from each address. In the

third invocation, the formatter creates a hex file that contains the highest

16K of addresses. After these three formatter invocations, we have three

hex files (fact.1hx , fact.2hx , and fact.3hx), each of which is

suitable for loading into a 16K ROM.

Non-Default Formatting

Step 3

Format using a non-default format. Type:

c68020 fact.c circle.c
asm68020 fpneg.68k
llink –i link.lst –rs idata
 –L \c68k\rtlibs\lib020s\lib\lib020s –o
form fact.ab –f bt

Explanation

Non-default formatting may be required to meet specific requirements of

your target system. In Step 3 we invoked the formatter to produce a

download file in Binary Tekhex format. To specify a non-default format,

append the –f option and the desired format. The switch to specify Binary

Tekhex is bt .

Tutorial 3–41

• • • • • • • •

3.5 INTRODUCTION TO SYSTEM BUILDING CONCEPTS

These notes are designed to be an extension to the normal tutorial. They

describe things you must consider for system initialization, loading code,

and linking C with assembly language in order to build an application.

3.5.1 SYSTEM INITIALIZATION

The TASKING 68K/ColdFire run-time library comes with a set of system

initialization templates called either pmain.68k or pmnxxx.68k for 68K

derivatives, where the xxx refers to the target board (i.e., pmn332.68k or

pmn302a.68k), or pmain.asm for ColdFire derivatives. On the PC, these

files are in the \c68k\rtlibs\lib xxx\src directory. On Unix hosts,

these files are in /usr/local/c68k/rtlibs/lib xxx/src . When

compiling a C module containing the procedure main , the compiler

automatically generates an unresolved reference to a symbol called

__main (double underscore). This symbol is defined in all of the pmain
modules as the start of the initialization routine. Thus, when you link your

source modules together, the linker will automatically link in the

appropriate pmain module in order to satisfy the unresolved reference to

__main .

The initialization clears registers, sets up the stack, and performs other

required power-on initializations such as enabling I/O. The libraries

provide examples which were developed for specific boards. The

initialization code must be customized for the actual environment in which

it will run. Therefore, it is important that you look at the source code for

your particular pmain , and change it, if desired. Note that the pmain code

automatically sets up the first two reset vectors (the ORG 0 at the bottom),

and also sets up A5 to point to the global data area (the LEA data,A5 	

don't change it if you want A5-relative code !).

Once you have customized the pmain.68k module for your particular

target board, the next step is to make sure that the modified pmain is the

one that gets used by your application. There are two ways to accomplish

this. The first method is to assemble your modified pmain.68k file and

then explicitly link it with all of your other source files. This will cause the

reference to __main to be satisfied (by your pmain module), and thus the

linker will never look in the library. This is probably the preferable

solution if you think that your system initialization routine might undergo

further changes. The second method is to add your modified pmain to the

library, following the procedure in the Modifying the Libraries section of

the Run-Time Library appendix in the 68K/ColdFire Reference Manual.

Chapter 33–42
T
U
T
O
R
IA
L

3.5.2 A5-RELATIVE VS. SEPARATE DATA ADDRESSING

The TASKING 68K/ColdFire compiler by default uses the A5 register as a

pointer to the global data area. This is accomplished via the LEA data,A5
instruction in pmain . Setting up this pointer means that when the compiler

manipulates global variables it can now generate instructions using the

�address register indirect with offset" addressing mode, which will produce

smaller and faster code than the direct addressing mode that the compiler

would otherwise have to use. The data symbol is set up by the linker to

hold the address to be stored in A5. For example,

i = 2; /* i is a global integer */

With A5-relative code:

move #2,_i–data(A5) 33fc0002 xxxx

xxxx is the 16-bit offset from A5. On a 68000 this takes 16 cycles plus 3

reads and a write.

With direct addressing:

move #2,_i 3b7c0002 xxxxxxxx

xxxxxxxx is the absolute address of _i . On a 68000 this takes 20 cycles

plus 4 reads and a write.

The A5-relative instruction allows for a 16-bit offset to be specified, giving

the compiler a total global data area of 64K to work with. Any global data

that your application has in excess of 64K must be declared as separate

using the #pragma separate directive (see the Pragma Separate (Option
Separate) application note for details).

3.5.3 LINKING AND LOCATING

The llink step combines three important functions: linking, locating, and

ROM processing.

The linking step involves:

1. Telling the linker which modules to link together.

2. Giving the linker access to the libraries it needs to resolve any

unresolved references.

Tutorial 3–43

• • • • • • • •

The first part is accomplished by listing your .ol files (that you got from

compiling/assembling your source files) on the command line or in a

separate file (using the –i option).

The second part is accomplished by specifying the path to a library index

file using the –L option. A library index file is essentially a look-up table

of symbols and the modules that define those symbols. If the linker finds a

symbol that is unresolved in your source files (e.g., printf), the linker

searches the library index file for the symbol, and upon finding it links in

the appropriate library module automatically.

It is important to make sure that you specify the right library index file

when linking. If you look in your rtlibs\lib000\lib or

rtlibs/lib000 (or substitute another target for lib000) directory, you

will find four distinct library index files: lib000 , lib000.l , lib000.nf ,

and lib000.lnf . Library index files with an �.l " extension assume that

the source files have been compiled with –L option (68K compilers only),

which changes the default sizes of shorts and ints to 2 and 4 bytes

respectively. Library index files with a �.nf " extension assume no

floating-point operations. Thus, if you did not compile with –L and used

floating-point operations, you would use lib000 as your index file, and

so on.

The ColdFire compilers always use the long integer data type, so the

option –L is not needed for these compilers. Also the run-time libraries

do not have the .l extension.

The locating step involves telling the linker where to locate your code and

data through the use of a locator command file. The things that you will

actually be locating are segments and classes. A segment is a contiguous

section of memory containing code or data that has had a name assigned

to it either by you or the compiler. A class is a larger classification which

contains any number of �member" segments. For example, the

development system has created the class data to represent all global data

which is A5-relative. The class data has two member segments, idata
and udata , which contain the initialized and uninitialized global data

respectively. The tables which summarize the segments and classes used in

toolchain are in the Linking Locator chapter of the 68K/ColdFire User's
Manual. Below is a table which essentially retranslates this information,

but with more emphasis on the segment-to-class relationship:

Chapter 33–44
T
U
T
O
R
IA
L

A Segment Class

global variable idata if initialized
udata if uninitialized

{data}

string literal sdata {constant}

const qualified
variable

cdata if you compile with
–cs ,
it is treated as a regular global
variable otherwise

{constant} if you compile
with –cs ,
{data} otherwise

separate variable,
no user–defined
segment name or
class name used

S–variable name {isep} if initialized
variable,
{usep} if uninitialized
variable

separate variable,
with user–defined
segment name
ONLY

whatever segment name you
specified

{separate}

ROM processing
segment that you
have created

whatever you specified with
the –b linker option

{constant}

C procedure S_fname , where fname is the
first function in the file
containing the proc

{code}, unless you
change it with the –cc
compiler option

assembly language
routine

whatever you specified the
segment name to be w/ the
SECTION directive.
For example,
SECTION foo,,”bar”
will create a segment foo and
a class {bar}

whatever you specified
the class to be w/ the
SECTION directive, or in
the NULL class ({}), if
you didn’t use the
SECTION directive

assembly language
that has been
absolutely located
with ORG

name@address , where name
is the SECTION name
containing the ORG and
address is the absolute
address
(e.g., init@0)

NULL, although the
segment will be located
according to the address
in the ORG statement
regardless of where the
null class is located

See the ORG - Absolute Origin and SECTION - Relocatable Program Section
sections of the Assembler Directives chapter in the 68K/ColdFire Reference
Manual for more information on the ORG and SECTION directives.

Tutorial 3–45

• • • • • • • •

Once you know what segments and classes are being created by your

compilations, the actual locating process is fairly straight-forward. Within

the locator command file, the LOCATE directive specifies the segments

and/or classes to be located, followed by the absolute address to which

they are to be located. Note that class names which are specified in locator

command files should be enclosed in curly braces (e.g., {code} and {data}).

If you mention more than one segment or class in a particular locate

statement they are located in the order you mention them, one right after

the other. Segments are considered to be word-aligned, so you must

locate segments and classes at even addresses (for separate variables this

restriction can be avoided, see the linking and locating example below).

The last thing to consider in the llink step is ROM processing. ROM

processing is a procedure for storing initialized read-write data in ROM (so

that the initial values are not lost when power is off), with the intention of

copying this data to RAM at startup (so that the values can be changed).

The general procedure works as follows:

1. Establish the identity and contents of a �ROM processing segment". The

ROM processing segment is the area of memory in ROM that contains

the copies of everything that will be copied to RAM at startup.

The name of the ROM processing segment is established through the

use of the –b option (e.g., –b _myrompseg). The catch is that linker

symbol names (such as the ROM processing segment name you create

with –b) are formed by prepending an underscore to the C symbol

name. Since you will need to refer to the ROM processing segment's

name in C, you must give the ROM processing segment a name that

starts with an underscore, so that you can �strip" off the underscore

when you refer to it in C.

The contents of the ROM processing segment are defined via the –rc
(for classes) and –rs (for segments) options. Any classes or segments

that are specified will be copied into the segment named via the –b
option. In this fashion you can copy any number of segments and

classes into the same ROM processing segment.

Chapter 33–46
T
U
T
O
R
IA
L

2. Having established the contents and name of the ROM processing

segment, locate it at an appropriate address in ROM. You can do this

by locating the segment name explicitly:

locate (_myrompseg: #2000);

or by the class name constant;

locate ({constant}: #2000);

3. Locate the segments/classes that you are ROM processing (i.e., the ones

you specified with –rs or –rc) at addresses in RAM.

4. Modify your main() routine to call the library routine rcopy . Given

that you have used –b to define a ROM processing segment called

_myrompseg , the C file containing main() would be modified as

follows:

#pragma separate myrompseg /* no underscore here, we
strip it when we’re in C */
extern int myrompseg; /* #pragma separate is
necessary to make this work */
#include <rcopy.h>
...
...
main()
{
rcopy(&myrompseg); /* should be the first executable
line of main() */
...
}

Linking/Locating example:

For this example assume a �mythical" 68K target, with ROM located at

address $0 (exception vector table occupies $0 through $3ff) and RAM at

address $10000 . This target also has a bank of 8 LEDs located at address

$9001 (each triggered on a different bit in the byte), and two hex displays

at address $8000 (each displays a hex digit, and both are enabled upon

writing a byte to $8000). The application program (main.c as present in

the examples\tutor\main directory) continuously increments the

displayed value after a specified delay; when the display reads FF the

bank of LEDs flashes on and off. The program also performs the set-up

required for ROM processing in the llink step.

Tutorial 3–47

• • • • • • • •

/* begin main.c */

char full = 0xff;
char unused;

#pragma sep_on segment ledbank
char dummy; /* A segment must be word–aligned, so we must add a
dummy */
char leds; /* variable to put leds at an odd address */
#pragma sep_off

#pragma separate display
char display;

#pragma separate myromp /* dummy variable for ROM processing
segment */
extern int myromp;

#include <rcopy.h>

void main(void);
void delay(void);

void main(void)
{
 rcopy(&myromp); /* call to rcopy to do ROM processing */
 leds = display = 0;
 while(1)
 {
 delay();
 leds = 0;
 display++;
 if (display == full) leds = full;
 }
}

void delay(void)
{
 return; /* At some point we could insert an
 appropriate delay routine */
}
/* end main.c */

Now, we compile this file (make the examples\tutor\main directory

the current working directory):

c68332 main.c –S \c68k\rtlibs\lib020s\inc

The segments and classes that are created by this compilation are as

follows:

• Segment idata , which has class {data}, contains the one initialized

non-separate global variable in the program (full).

Chapter 33–48
T
U
T
O
R
IA
L

• Segment udata , which has class {data}, contains the one

uninitialized non-separate global variable in the program (unused).

• Segment ledbank contains the separate variables dummy and leds .

Since the #pragma directive specifies a segment name (ledbank)

but no class, the class defaults to {separate}.

• Segment S_display contains the variable display and has class

{usep}.

• Segment S_main contains the code for the routines main() and

delay() , and has class {code}.

Moving on to the llink step, we want to accomplish the following:

1. Memory map the variables leds and display so that they occupy hex

addresses $9001 and $8000 respectively.

2. ROM process the segment idata , locate the ROM processing segment

in ROM and reserve space for idata (where it will be copied to) in

RAM.

3. Locate all code and constant stuff in ROM, and all read-write data in

RAM.

This is accomplished by the following llink command line:

llink main.ol –L \c68k\rtlibs\lib020s\lib\lib332
 –c loc.lc –rs idata –b _myromp –o

and locator command file, loc.lc :

locate({code}{}{constant}: #2000); –– locate code/constant/null
 classes in ROM
locate(S_display: #8000); –– map hex displays to $8000
locate(ledbank: #9000); –– satisfies linker’s desire for
 word–alignment
locate({data}: #10000); –– locate the data (both idata and udata)
 in RAM

After the llink , try running gsmap on main.ab :

gsmap main.ab –o

Tutorial 3–49

• • • • • • • •

Look at the file main.map . In addition to the list of global variables at the

beginning, you should also find the following chart of segments:

Segment Address Length Class Align Combine

S_atexit 00002002
(8194)

000056 (86) code hword private

S_display 00008000
(32768)

000001 (1) usep hword private

S_main 0000218e
(8590)

00003c (60) code hword private

S_mem-
set

00002058
(8280)

000086 (134) code hword private

S_rcopy 00002134
(8500)

00005a (90) code hword private

_myromp 000021ca
(8650)

000014 (20) constant hword private

idata 00010000
(65536)

000004 (4) data hword private

init 000020de
(8414)

000056 (86) code hword private

init@0 00000000 (0) 000008 (8) <null> byte private

ledbank 00009000
(36864)

000002 (2) separate hword private

libcode 00002000
(8192)

000002 (2) code hword private

udata 00010004
(65540)

000082 (130) data hword private

Chapter 33–50
T
U
T
O
R
IA
L

All of the segments generated as a result of the compilation of main.c are

present, and that new segments have appeared as a result of the linking

process. The init and init@0 segments were created by the linking in

of the module pmn332.ln , which contains the default system initialization

code. This happened automatically due to the existence of a routine

named main() . The init@0 segment represents the data explicitly

located at address 0 due to the ORG 0 at the bottom of the pmn332.68k
file. The _myromp segment is the ROM processing segment that we

created by invoking the linker with –rs idata –b _myromp . It has class

constant by default, a fact that we used in the loc.lc file (by locating

{constant} instead of _myromp). The S_memset and S_rcopy segments

were generated by the external references to the rcopy routine.

3.5.4 LINKING C AND ASSEMBLY

To link C and assembly there really is only one trick and that is:

OBEY THE RUN-TIME AND NAMING CONVENTIONS OF THE

COMPILER. Following is a list of important conventions:

• Each symbol referenced in a C program must have an underscore

prepended to it when you reference it in assembly language. So, if

you declare a variable �int i; " in C and then want to access that

variable in assembly language, you would do something like

move #2,_i . Likewise, a function called main in C will be called

_main in assembly.

Tutorial 3–51

• • • • • • • •

• The compiler, when calling a function with parameters, will push

them onto the stack in reverse order. Also, parameters that are 8 bits

in size will be pushed onto the stack as 16 bits (with the high order

byte undefined). So, as an example, let's say you have an external

function called foo that you call in C like so:

extern void foo(char,int,long);
...
char c; | ”e” (low word) |
int d; 8(A7)–> | ”e” (high word) |
long e; 6(A7)–> | ”d” |
... 4(A7)–> | garbage | ”c” |
foo(c,d,e); | return addr (low word) |
 A7–> | return addr (high word) |

The compiler will push e on the stack first, followed by d and c
(which will be pushed as a word), followed by the return address.

If foo were actually defined in assembly language (as _foo), you

would expect parameter c to be at location 5(a7) (not 4(a7) ,

since the high-order byte is junk), followed by d at 6(a7) , and

then e at 8(a7) .

• The compiler will expect integer return values to be placed in D0,
and pointer return values to be placed in A0. For hardware

floating-point, floats and doubles are returned in FP0. Otherwise,

floats are returned in D0 and doubles are returned in a temporary

stack location.

Chapter 33–52
T
U
T
O
R
IA
L

• The compiler considers D0, D1, A0, and A4 (FP0 and FP4 also for

hardware floating-points) to be scratch registers. As such, you never

need to worry about saving and restoring these registers in your

assembly language programs. A5, A6, and A7 are used by the

compiler as the pointer to the global data area, the frame pointer,

and stack pointer respectively, and you should not load values into

these registers unless you are using a compiler option which

suppresses the default use of these registers (i.e., –n5 or –n6). All

other registers (D2-D7, A1-A3) must be saved and restored if your

assembly language routine writes into them. The compiler will be

following the same convention, so you cannot leave a �live" value

in any of the scratch registers prior to making a function call,

because the compiler will not be saving and restoring the scratch

registers either, and will happily overwrite any useful data that

might exist in these registers. Likewise, you can leave useful data in

any of the preserved registers (D2-D7,A1-A3) prior to calling a C

function from assembly language, since the compiler will save and

restore these registers if it uses them.

Here is an example to illustrate some of the above concepts. Consider a

function foo , which takes two parameters (p1 and p2 , both int 's), and

returns the value (2*p1 + 2*p2) . The function foo is to be written in

assembly language and it calls another function bar , which is written in C.

The bar function takes an int parameter and returns 2*parameter .

In file cfile.c (in the examples\tutor\cfile directory):

extern int foo(int,int);
int bar(int);
int a, b, c;

void t(void)

{

 c = foo(a,b);

}

int bar(int p1)
{

 return(2*p1);

}

Tutorial 3–53

• • • • • • • •

In file asmfile.68k :

 XDEF _foo ; make _foo public

 XREF _bar ; ”extern” the _bar symbol so you can use it

 SECTION fooseg,,”code”

_foo

 MOVE.L D2,–(A7) ; save D2, we’ll be using it

 MOVE 8(A7),–(A7) ; get value of a, push on stack for call to bar

 JSR _bar ; call bar(a)

 ADDQ.L #2,A7 ; clean up stack (clear off a)

 MOVE D0,D2 ; D0 has return value from bar(a), save it since * it

is a scratch register and our second call to bar will clobber it

 MOVE 10(A7),–(A7) ; get value of b, push on stack for call to bar

 JSR _bar ; call bar(b)

 ADDQ.L #2,A7 ; clean up stack (clear off b)

 ADD D2,D0 ; D0 has return value from bar(b) this time,

* we add in the value of bar(a) (still safe and sound in D2,

* since the compiler will save and restore D2 if bar uses it)

 MOVE.L (A7)+,D2 ; restore D2 before exiting

 RTS ; now we can return, since the return value

* from foo, currently resides in D0, which is what the compiler expects

3.6 TUTORIAL CONCLUSION

The examples above address hypothetical but common needs of the

embedded system developer. The tutorial addresses basic topics and may

be helpful for periodic review and reference. With an understanding of

terminology and practice using the tutorial files, you can approach this

manual with fundamental knowledge for detailed applications.

Chapter 33–54
T
U
T
O
R
IA
L

A

FLEXIBLE LICENSE
MANAGER (FLEXlm)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Globetrotter Software's Flexible License Manager

and how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Installation Guide.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

on UNIX, the directory /usr/local/flexlm will contain two

subdirectories, bin and licenses . After installing SW000098 on Windows

the directory c:\flexlm will contain the subdirectory bin . The exact

location may differ if FLEXlm has already been installed as part of a

non-TASKING product but in general there will be a directory for

executables such as bin . That directory must contain a copy of the

Tasking daemon shipped with every TASKING product. It also contains

the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a license file must be present containing the information of all

licenses. This file is usually called license.dat . The default location of

the license file is in directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX. If you did install SW000098

then the licenses directory on UNIX will be empty, and on Windows

the file license.dat will be empty. In that case you can copy the

license.dat file from the product to the licenses directory after filling

in the data from your "License Information Form".

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

Appendix AA–6
F
L
E
X
L
M

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If the pathname of the resulting license file differs from this default

location then you must set the environment variable LM_LICENSE_FILE to

the correct pathname. If you have more than one product using the

FLEXlm license manager you can specify multiple license files by

separating each pathname (lfpath) with a ';' (on UNIX also ':') :

Windows:

set LM_LICENSE_FILE= lfpath[;lfpath]...

UNIX:

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If you are running the TASKING software on multiple nodes, you have

three options for making your license file available on all the machines:

1. Place the license file in a partition which is available (via NFS on Unix

systems) to all nodes in the network that need the license file.

2. Copy the license file to all of the nodes where it is needed.

3. Set LM_LICENSE_FILE to "port@host", where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/license.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/flexlm/Tasking.opt (UNIX), then

you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexlm/Tasking.opt

Appendix AA–8
F
L
E
X
L
M

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

3 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmcksum

Prints license checksums.

lmdiag (Windows only)

Diagnoses license checkout problems.

lmdown

Gracefully shuts down all license daemons (both lmgrd all vendor

daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

lmgrd

The main daemon program for FLEXlm.

lmhostid

Reports the hostid of a system.

lmremove

Removes a single user's license for a specified feature.

lmreread

Causes the license daemon to reread the license file and start any new

vendor daemons.

lmstat

Helps you monitor the status of all network licensing activities.

lmswitchr

Switches the report log file.

lmver

Reports the FLEXlm version of a library or binary file.

lmtools (Windows only)

This is a graphical Windows version of the license administration tools.

Appendix AA–10
F
L
E
X
L
M

3.1 LMCKSUM

Name

lmcksum - print license checksums

Synopsis

lmcksum [-c license_file] [-k]

Description

The lmcksum program will perform a checksum of a license file. This is

useful to verify data entry errors at your location. lmcksum will print a

line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

• hostid on the SERVER lines

• daemon name on the DAEMON lines

• feature name, version, daemon name, expiration date, # of licenses,

encription code, vendor string and hostid on the FEATURE lines

• daemon name and encryption code on FEATURESET lines

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmcksum looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmcksum looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,

lmcksum will compute the checksum using the exact case of

the FEATURE's and FEATURESET's encryption code.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3.2 LMDIAG (Windows only)

Name

lmdiag - diagnose license checkout problems

Synopsis

lmdiag [-c license_file] [-n] [feature]

Description

lmdiag (Windows only) allows you to diagnose problems when you

cannot check out a license.

If no feature is specified, lmdiag will operate on all features in the license

file(s) in your path. lmdiag will first print information about the license,

then attempt to check out each license. If the checkout succeeds, lmdiag

will indicate this. If the checkout fails, lmdiag will give you the reason for

the failure. If the checkout fails because lmdiag cannot connect to the

license server, then you have the option of running "extended connection

diagnostics".

These extended diagnostics attempt to connect to each port on the license

server node, and can detect if the port number in the license file is

incorrect. lmdiag will indicate each port number that is listening, and if it

is an lmgrd process, lmdiag will indicate this as well. If lmdiag finds the

vendor daemon for the feature being tested, then it will indicate the

correct port number for the license file to correct the problem.

Parameters

feature Diagnose this feature only.

Options

-c license_file
Diagnose the specified license_file. If no -c option is

specified, lmdiag looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdiag looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-n Run in non-interactive mode; lmdiag will not prompt for

any input in this mode. In this mode, extended connection

diagnostics are not available.

Appendix AA–12
F
L
E
X
L
M

3.3 LMDOWN

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. You may want to protect the execution of lmdown, since shutting

down the servers causes users to lose their licenses. See the -p option in

Section 3.4, lmgrd.

lmdown sends a message to every license daemon asking it to shut down.

The license daemons write out their last messages to the log file, close the

file, and exit. All licenses which have been given out by those daemons

will be revoked, so that the next time a client program goes to verify his

license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd, lmstat, lmreread

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

3.4 LMGRD

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-2 -p] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features. On UNIX systems, it

is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-2 -p Restricts usage of lmdown, lmreread, and lmremove to a

FLEXlm administrator who is by default root. If there is a

UNIX group called "lmadmin" then use is restricted to only

members of that group. If root is not a member of this group,

then root does not have permission to use any of the above

utilities.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

Appendix AA–14
F
L
E
X
L
M

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown, lmstat

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

3.5 LMHOSTID

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1999 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–16
F
L
E
X
L
M

3.6 LMREMOVE

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

lmstat

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

3.7 LMREREAD

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

The license administrator may want to protect the execution of lmreread.

See the -p option in Section 3.4, lmgrd for details about securing access to

lmreread.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You cannot use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down (lmdown) the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file license.dat in the default location.

lmdown

Appendix AA–18
F
L
E
X
L
M

3.8 LMSTAT

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Options

-a Display all information.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd

Appendix AA–20
F
L
E
X
L
M

3.9 LMSWITCHR (Windows only)

Name

lmswitchr - switch the report log file

Synopsis

lmswitchr [-c license_file] feature new-file

or:

lmswitchr [-c license_file] vendor new-file

Description

lmswitchr (Windows only) switches the report writer (REPORTLOG) log

file. It will also start a new REPORTLOG file if one does not already exist.

Parameters

feature Any feature this daemon supports.

vendor The name of the vendor daemon (such as Tasking).

new-file New file path.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmswitchr looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmswitchr looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

3.10 LMVER

Name

lmver - report the FLEXlm version of a library or binary file

Synopsis

lmver filename

Description

The lmver utility reports the FLEXlm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to

get the FLEXlm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

Appendix AA–22
F
L
E
X
L
M

3.11 LICENSE ADMINISTRATION TOOLS FOR WINDOWS

3.11.1 LMTOOLS FOR WINDOWS

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is

provided. It has the same functionality as listed in the previous sections

but is graphically-oriented. Simply run the program (Start | Programs
| TASKING FLEXlm | FLEXlm Tools) and choose a button for the

functionality required. Refer to the previous sections for information about

the options of each feature. The command line interface is replaced by

pop-up dialogs that can be filled out.The central EDIT field is where the

license file path is placed. This will be used for all other functions and

replaces the "-c license_file" argument in the other utilities.

The HOSTID button displays the hostid's for the computer on which the

program is running. The TIME button prints out the system's internal time

settings, intended to diagnose any time zone problems. The TCP
Settings button is intended to fix a bug in the Microsoft TCP protocol

stack which has a symptom of very slow connections to computers. After

pressing this button, the system will need to be rebooted for the settings to

become effective.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

3.11.2 FLEXLM LICENSE MANAGER FOR WINDOWS

lmgrd.exe can be run manually or using the graphical Windows tool. You

can start this tool from the FLEXlm program folder. Click on Start |
Programs | TASKING FLEXlm | FLEXlm Tools

From the Control tab you can start, stop, and check the status of your

license server. Select the Setup tab to enter information about your

license server.

Appendix AA–24
F
L
E
X
L
M

Select the Control tab and click the Start button to start your license

server. lmgrd.exe will be launched as a background application with the

license file and debug log file locations passed as parameters.

If you want lmgrd.exe to start automatically on NT, select the Use NT
Services check box and lmgrd.exe will be installed as an NT service.

Next, select the Start Server at Power–UP check box.

The Licenses tab provides information about the license file and the

Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–26
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–28
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–29

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–30
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–31

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–32
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–33

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–34
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license key is incorrect. If this is the case then there must be an error

message in the log file of lmgrd. Correct the key using the license data

sheet for the product. Finally rerun lmreread. The log file of lmgrd is

usually specified to lmgrd at startup with the -l option or with >.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–35

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–36
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

Flexible License Manager (FLEXlm) A–37

• • • • • • • •

6 FREQUENTLY ASKED QUESTIONS (FAQS)

6.1 LICENSE FILE QUESTIONS

I've received FLEXlm license files from 2 different companies. Do I

have to combine them?

You don't have to combine license files. Each license file that has any

'counted' lines (the 'number of licenses' field is >0) requires a server. It's

perfectly OK to have any number of separate license files, with different

lmgrd server processes supporting each file. Moreover, since lmgrd is a

lightweight process, for sites without system administrators, this is often

the simplest (and therefore recommended) way to proceed. With v6+

lmgrd/lmdown/lmreread, you can stop/reread/restart a single vendor

daemon (of any FLEXlm version). This makes combining licenses more

attractive than previously. Also, if the application is v6+, using 'dir/*.lic' for

license file management behaves like combining licenses without

physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine

license files to ease administration of FLEXlm licenses. It's purely a matter

of preference.

Does FLEXlm handle dates in the year 2000 and beyond?

Yes. The FLEXlm date format uses a 4-digit year. Dates in the 20th century

(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of

this feature is quite widespread. Dates in the year 2000 and beyond must

specify all 4 year digits.

6.2 FLEXLM VERSION

Which FLEXlm versions does TASKING deliver?

For Windows we deliver FLEXlm v6.1 and for UNIX we deliver v2.4.

Appendix AA–38
F
L
E
X
L
M

I have products from several companies at various FLEXlm version

levels. Do I have to worry about how these versions work together?

If you're not combining license files from different vendors, the simplest

thing to do is make sure you use the tools (especially lmgrd) that are

shipped by each vendor.

lmgrd will always correctly support older versions of vendor daemons

and applications, so it's always safe to use the latest version of lmgrd and

the other FLEXlm utilities. If you've combined license files from 2 vendors,

you must use the latest version of lmgrd.

If you've received 2 versions of a product from the same vendor, you must

use the latest vendor daemon they sent you. An older vendor daemon

with a newer client will cause communication errors.

Please ignore letters appended to FLEXlm versions, i.e., v2.4d. The

appended letter indicates a patch, and does NOT indicate any

compatibility differences. In particular, some elements of FLEXlm didn't

require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b

vendor daemon.

I've received a new copy of a product from a vendor, and it uses a new

version of FLEXlm. Is my old license file still valid?

Yes. Older FLEXlm license files are always valid with newer versions of

FLEXlm.

6.3 WINDOWS QUESTIONS

What Windows Host Platforms can be used as a server for Floating

Licenses?

The system being used as the server (where the FLEXlm License Manager

is running) for Floating licenses, must be Windows NT. The FLEXlm

License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to

provide connectivity with a Netware License server.

Flexible License Manager (FLEXlm) A–39

• • • • • • • •

6.4 TASKING QUESTIONS

How will the TASKING licensing/pricing model change with License

Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can

purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a
specific system. It cannot be
moved to another system.

The pricing for this
license will be the
current product pricing.

Floating This license requires a network
(license server and a TCP/IP (or
IPX/SPX) connection between
clients and server) and can be used
on any host system (using the
same operating system) in the
network.

The pricing for this
license will be 50%
higher than the node
locked license.

How does FLEXlm affect future product ordering?

For all licenses, node locked or floating, you must provide information

that is used to create a license key. For node locked licenses we must

have the HOST ID. Floating licenses require the HOST ID and HOST

NAME. The HOST ID is a unique identification of the machine, which is

based upon different hardware depending upon host platform. The HOST

NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the

HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display

the HOST ID so a customer can easily obtain this information. This utility

is available from our web site, placed on all product CDs (which support

FLEXlm), and from technical support. If you have already installed

FLEXlm, you can also use lmhostid.

• In the case of a Node locked license, it is important that the customer

runs this utility on the exact machine he intends to run the

TASKING tools on.

Appendix AA–40
F
L
E
X
L
M

• In the case of a Floating License, the tkhostid.exe (or lmhostid)

utility should be run on the machine on which the FLEXlm license

manager will be installed, e.g. the server. The HOST NAME

information can be obtained from within the Windows Control

Panel. Select "Network", click on "Identification", look for

"Computer name".

How will the �locking" mechanism work?

• For node locked licenses, FLEXlm will first search for an ethernet card.

If one exists, it will lock onto the number of the ethernet card. If an

ethernet card does not exist, FLEXlm will lock onto the hard disk serial

number.

• For floating licenses, the ethernet card number will be used.

What happens if I try to move my node locked license to another

system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license

from the license server. The license server keeps track of the number of

licenses already issued, and grants or denies the request. When the

software has finished running, the license is kept by the license server for

a period of time known as the �linger-time". If the same user requests the

TASKING product again within the linger-time, he is granted the license

again. If another user requests a license during the linger-time, his

request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is

5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)

than the time specified by TASKING.

What happens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due

to a system crash or to move from one system to another system. You will

then need to work with your local sales representative to obtain a

permanent new license key.

Flexible License Manager (FLEXlm) A–41

• • • • • • • •

6.5 USING FLEXLM FOR FLOATING LICENSES

Does FLEXlm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the

internet. This can be limited with the 'INTERNET=' attribute on the

FEATURE line, which limits access to a range of internet addresses. You

can also use the INCLUDE and EXCLUDE options in the daemon option

file to allow (or deny) access to clients running on a range of internet

addresses.

Does FLEXlm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.

FLEXlm v5 lmgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client's whole system crashes. Assuming communications is

TCP, the license is automatically freed immediately. If communications are

UDP, then the license is freed after the UDP timeout, which is set by each

vendor, but defaults to 45 minutes. UDP communications is normally only

set by the end-user, so TCP should be assumed. If the whole system

crashes, then the license is not freed, and you should use 'lmremove' to

free the license.

What happens when the license server dies?

FLEXlm applications send periodic heartbeats to the server to discover if it

has died. What happens when the server dies is then up to the application.

Some will simply continue periodically attempting to re-checkout the

license when the server comes back up. Some will attempt to re-checkout

a license a few times, and then, presumably with some warning, exit.

Some GUI applications will present pop-ups to the user periodically

letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it's in use, it's because lmgrd is already running on

the port - or was recently killed, and the port isn't freed yet. Assuming this

is not the case, then use 'telnet host port' - if it says "can't connect", it's a
free port.

Appendix AA–42
F
L
E
X
L
M

Does FLEXlm require root permissions?

No. There is no part of FLEXlm, lmgrd, vendor daemon or application,

that requires root permissions. In fact, it is strongly recommended that you

do not run the license server (lmgrd) as root, since root processes can

introduce security risks.

If lmgrd must be started from the root user (for example, in a system boot

script), we recommend that you use the 'su' command to run lmgrd as a

non-privileged user:

su username –c” / path / lmgrd –c / path / license.dat \
 –l / path / log”

where username is a non-privileged user, and path is the correct paths to

lmgrd, license.dat and debug log file. You will have to ensure that the

vendor daemons listed in /path-to-license/license.dat have execute

permissions for username. The paths to all the vendor daemons in the

license file are listed on each DAEMON line.

Is it ok to run lmgrd as 'root' (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on

UNIX, as it may pose a security risk to the Operating System. Therefore,

we recommend that lmgrd be run as a non-privileged user (not 'root'). If

you are starting lmgrd from a boot script, we recommend that you use

su username –c”umask 022; / path / lmgrd \
 –c / path / license.dat –l / path / log”

to run lmgrd as a non-privileged user.

Does FLEXlm licensing impose a heavy load on the network?

No, but partly this depends on the application, and end-user's use. A

typical checkout request requires 5 messages and responses between

client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.

When an application, or lmstat, requests the list of current users, this can

significantly increase the amount of networking FLEXlm uses, depending

on the number of current users. Also, prior to FLEXlm v5, use of

'port@host' can increase network load, since the license file is

down-loaded from the server to the client. 'port@host' should be, if

possible, limited to small license files (say < 50 features). In v5, 'port@host'

actually improves performance.

Flexible License Manager (FLEXlm) A–43

• • • • • • • •

Does FLEXlm work with NFS?

Yes. FLEXlm has no direct interaction with NFS. FLEXlm uses an

NFS-mounted file like any other application.

Does FLEXlm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXlm. FLEXlm requires TCP/IP or

SPX (Novell Netware). So long as TCP/IP works, FLEXlm will work.

Does FLEXlm work with subnets, fully-qualified names, multiple

domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a

license server and a client are located in different domains, fully-qualified

host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the 'hostname'

command or 'uname -n') domain is the internet domain name, e.g.

'globes.com'.

To ensure success with FLEXlm across domains, do the following:

1. Make the sure the fully-qualified hostname is the name on the SERVER

line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet'

to that fully-qualified hostname. For example, if the host is locally called

'speedy', and the domain name is 'corp.com', local systems will be able to

logon to speedy via 'telnet speedy'. But very often, 'telnet

speedy.corp.com' will fail, locally.

Note that this telnet command will always succeed on hosts in other

domains (assuming everything is configured correctly), since the network

will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias' for speedy so it's also known locally as

speedy.corp.com. This alias is added to the /etc/hosts file, or if

NIS/Yellow Pages are being used, then it will have to be added to the NIS

database. This requirement goes away in version 3.0 of FLEXlm.

If all components (application, lmgrd and vendor daemon) are v6.0 or

higher, no aliases are required; the only requirement is that the

fully-qualified domain name, or IP-address, is used as a hostname on the

SERVER, or as a hostname in LM_LICENSE_FILE port@host, or @host.

Appendix AA–44
F
L
E
X
L
M

Does FLEXlm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause

FLEXlm to fail. In v5 of FLEXlm, NIS and DNS can be avoided to solve this

problem. In particular, sometimes DNS is configured for a server that's not

current available (e.g., a dial-up connection from a PC). Again, if DNS is

configured, but the server is not available, FLEXlm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that

applications be linked dynamically to support NIS or DNS. If a vendor

links statically, this can cause the application to fail at a site that uses NIS

or DNS. In these situations, the vendor will have to relink, or recompile

with v5 FLEXlm. Vendors are strongly encouraged to use dynamic libraries

for libc and networking libraries, since this tends to improve quality in

general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is

usually because the system is configured for a dial-up DNS server which is

not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not

legal hostnames, although PCs will allow you to enter them, and they will

not work with DNS.

We're using FLEXlm over a wide-area network. What can we do to

improve performance?

FLEXlm network traffic should be minimized. With the most common uses

of FLEXlm, traffic is negligible. In particular, checkout, checkin and

heartbeats use very little networking traffic. There are two items, however,

which can send considerably more data and should be avoided or used

sparingly:

• 'lmstat -a' should be used sparingly. 'lmstat -a' should not be

used more than, say, once every 15 minutes, and should be

particularly avoided when there's a lot of features, or concurrent

users, and therefore a lot of data to transmit; say, more than 20

concurrent users or features.

• Prior to FLEXlm v5, the 'port@host' mode of the LM_LICENSE_FILE

environment variable should be avoided, especially when the

license file has many features, or there are a lot of license files

included in LM_LICENSE_FILE. The license file information is sent

via the network, and can place a heavy load. Failures due to

'port@host' will generate the error LM_SERVNOREADLIC (-61).

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

B
bin directory, 3-4

build, viewing results, 3-19

Building an executable, 3-21

C
compile, 3-19

configuration

EDE directories, 2-5
UNIX, 2-7

creating a makefile, 3-16

customer support, 1-11

D
data addressing, 3-42�3-46

derivatives, 3-8

directories, setting, 2-5, 2-7

documentation, 1-3�1-14

E
EDE

build an application, 3-19
create a project, 3-14
create a project space, 3-13
Invoking tools from, 3-10
rebuild an application, 3-20
specify development tool options,

3-17
environment variable,

LM_LICENSE_FILE, 2-16, A-6

environment variables, 2-7

I2LIB, 2-7
I2NCLUDE, 2-7
INCLUDE, 2-7

LIB, 2-7
LM_LICENSE_FILE, 2-7
PATH, 2-7
TMP, 2-7

errors, FLEXlm license, A-33

examples, directory, 3-7

F
FAQ, FLEXlm, A-37

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-25
daemon options file, A-7
FAQ, A-37
frequently asked questions, A-37
license administration tools, A-8

for Windows, A-22
license errors, A-33

floating license, 2-10

formatter, 1-8�1-12

G
global symbol mapper, 1-9�1-12

gsmap. See global symbol mapper

H
help, on-line, 1-12�1-14

hostid, determining, 2-17

hostname, determining, 2-17

I
include files, setting search directories,

2-5, 2-7

IndexIndex–4
IN
D
E
X

installation

licensing, 2-10
UNIX, 2-4
Windows 95/98/XP/NT/2000, 2-3

Invoking tools, 3-10

Invoking tools from command line,

3-20

Invoking tools from EDE, 3-10

L
librarian, 1-9�1-12

libraries, setting search directories, 2-6,

2-7

license

floating, 2-10
node-locked, 2-10
obtaining, 2-10

license file

default location, A-6
location, 2-16
setting search directory, 2-7

licensing, 2-10

linking C and assembly, 3-50�3-54

Linking Locator, Rom Processing, 1-8

LM_LICENSE_FILE, 2-16, A-6

lmcksum, A-10

lmdiag, A-11

lmdown, A-12

lmgrd, A-13

lmhostid, A-15

lmremove, A-16

lmreread, A-17

lmstat, A-18

lmswitchr, A-20

lmver, A-21

M
makefile

automatic creation of, 3-16

updating, 3-16
microprocessor family, 1-10

N
node-locked license, 2-10

O
on-line help, 1-12�1-14

P
Path, Setting, 3-3

project, 3-10

add new files, 3-16
create, 3-14

project file, 3-10

project space, 3-10

create, 3-13
project space file, 3-10

R
RAM, 1-8

rcopy, 1-8

ROM processor, and the linking

locator, 1-8

run-time libraries, directory, 3-6

S
Setting , path, 3-3

software installation

UNIX, 2-4
Windows 95/98/XP/NT/2000, 2-3

support, customer, 1-11

Index Index–5

• • • • • • • •

symbol list utility, 1-9�1-12

symlist. See symbol list utility

system building concepts, 3-41�3-54

system initialization, 3-41�3-46

T
temporary files, setting directory, 2-7

toolchain, 1-5

Tools, invoking, 3-10

U
updating makefile, 3-16

IndexIndex–6
IN
D
E
X

	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Overview
	1.2 Documentation
	1.2.1 How to Use This Documentation Set

	1.3 The Development System
	1.3.1 The Compiler
	1.3.2 The Optimizer
	1.3.3 The Run-Time Library
	1.3.4 The Assembler
	1.3.5 Utilities
	1.3.6 The Linking Locator
	1.3.7 The Formatters
	1.3.8 The Librarian
	1.3.9 The Global Symbol Mapper
	1.3.10 The Object Size List Utility
	1.3.11 The Symbol List Utility
	1.3.12 CrossView Pro Debugger

	1.4 Before You Start
	1.4.1 Usage Conventions
	1.4.2 Tool Versions
	1.4.3 Driver Options
	1.4.4 Invocation Conventions
	1.4.5 Error Message Output (PC only)

	1.5 Additional Help
	1.5.1 Tutorial
	1.5.2 On-line Help

	2. INSTALLATION GUIDE
	2.1 Introduction
	2.2 Software Installation
	2.2.1 Installation for Windows
	2.2.2 Installation for UNIX Hosts

	2.3 Software Configuration
	2.3.1 Configuring the Embedded Development Environment
	2.3.2 Configuring the Command Line Environment

	2.4 Licensing TASKING Products
	2.4.1 Obtaining License Information
	2.4.2 Installing Node-Locked Licenses
	2.4.3 Installing Floating Licenses
	2.4.4 Starting the License Daemon
	2.4.5 Setting Up the License Daemon to Run Automatically
	2.4.6 Modifying the License File Location
	2.4.7 How to Determine the Hostid
	2.4.8 How to Determine the Hostname

	3. TUTORIAL
	3.1 Introduction
	3.2 Finding the Programs and Setting Up the Path
	3.2.1 bin Directory
	3.2.2 rtlibs Directory
	3.2.3 examples Directory
	3.2.4 Derivatives Overview

	3.3 Invoking the Tools
	3.3.1 Invoking the Tools from EDE
	3.3.1.1 Using the Sample Projects in EDE
	3.3.1.2 Create a New Project Space with a Project
	3.3.1.3 Set Options for the Tools in the Toolchain
	3.3.1.4 Build your Application

	3.3.2 Invoking the Tools Using Command Line

	3.4 Tutorial Examples
	3.4.1 Example 1: Building Your First Application Executable
	3.4.2 Example 2: Listings and Non-Default Output Files
	3.4.3 Example 3: Non-Default Memory Models and Linking Options
	3.4.4 Example 4: Locator Options
	3.4.5 Example 5: Formatting Options and Saving Symbol Information

	3.5 Introduction to System Building Concepts
	3.5.1 System Initialization
	3.5.2 A5-Relative vs. Separate Data Addressing
	3.5.3 Linking and Locating
	3.5.4 Linking C and Assembly

	3.6 Tutorial Conclusion

	A. FLEXIBLE LICENSE MANAGER (FLEXlm)
	1 Introduction
	2 License Administration
	2.1 Overview
	2.2 Providing For Uninterrupted FLEXlm Operation
	2.3 Daemon Options File

	3 License Administration Tools
	3.1 lmcksum
	3.2 lmdiag (Windows only)
	3.3 lmdown
	3.4 lmgrd
	3.5 lmhostid
	3.6 lmremove
	3.7 lmreread
	3.8 lmstat
	3.9 lmswitchr (Windows only)
	3.10 lmver
	3.11 License Administration Tools for Windows
	3.11.1 LMTOOLS for Windows
	3.11.2 FLEXlm License Manager for Windows

	4 The Daemon Log File
	4.1 Informational Messages
	4.2 Configuration Problem Messages
	4.3 Daemon Software Error Messages

	5 FLEXlm License Errors
	6 Frequently Asked Questions (FAQs)
	6.1 License File Questions
	6.2 FLEXlm Version
	6.3 Windows Questions
	6.4 TASKING Questions
	6.5 Using FLEXlm for Floating Licenses

	INDEX

